WorldWideScience

Sample records for promotes selective cell

  1. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    Science.gov (United States)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  2. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation.

    Science.gov (United States)

    Damaraju, Sita M; Shen, Yueyang; Elele, Ezinwa; Khusid, Boris; Eshghinejad, Ahmad; Li, Jiangyu; Jaffe, Michael; Arinzeh, Treena Livingston

    2017-12-01

    The discovery of electric fields in biological tissues has led to efforts in developing technologies utilizing electrical stimulation for therapeutic applications. Native tissues, such as cartilage and bone, exhibit piezoelectric behavior, wherein electrical activity can be generated due to mechanical deformation. Yet, the use of piezoelectric materials have largely been unexplored as a potential strategy in tissue engineering, wherein a piezoelectric biomaterial acts as a scaffold to promote cell behavior and the formation of large tissues. Here we show, for the first time, that piezoelectric materials can be fabricated into flexible, three-dimensional fibrous scaffolds and can be used to stimulate human mesenchymal stem cell differentiation and corresponding extracellular matrix/tissue formation in physiological loading conditions. Piezoelectric scaffolds that exhibit low voltage output, or streaming potential, promoted chondrogenic differentiation and piezoelectric scaffolds with a high voltage output promoted osteogenic differentiation. Electromechanical stimulus promoted greater differentiation than mechanical loading alone. Results demonstrate the additive effect of electromechanical stimulus on stem cell differentiation, which is an important design consideration for tissue engineering scaffolds. Piezoelectric, smart materials are attractive as scaffolds for regenerative medicine strategies due to their inherent electrical properties without the need for external power sources for electrical stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    Science.gov (United States)

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  4. Pregnancy promotes tolerance to future offspring by programming selective dysfunction in long-lived maternal T cells.

    Science.gov (United States)

    Barton, Brendan M; Xu, Rong; Wherry, E John; Porrett, Paige M

    2017-04-01

    Fetal antigen available during pregnancy induces the proliferation of maternal T cells. It is unknown, however, whether these antigen-activated T cells differentiate into long-lived memory T cells that are capable of mediating rapid-recall responses to tissue antigens. To test the hypothesis that pregnancy induces an alternative fate in fetal-specific maternal T cells, we used a murine model to track longitudinally fetal-specific T cells in pregnant and postpartum animals and test the response of these cells when challenged with the same antigen during sequential pregnancy or skin transplantation. Fetal-specific CD8 + T cells were robustly primed during pregnancy but failed to acquire robust effector functions. These primed cells persisted long term in postpartum animals, frequently maintained a programmed death 1 (PD-1) + phenotype, and failed to expand or produce cytokines robustly in response to second pregnancy or skin transplantation. However, whereas there was no impact on second pregnancy as a result of the persistence of fetal-primed memory CD8 + T cells in the mother, skin grafts bearing the same antigen were rejected more rapidly. Altogether, our data suggest that fetal antigen exposure during pregnancy induces the differentiation of long-lived maternal CD8 + T cells with context-dependent, selective effector dysfunction. This programmed effector dysfunction provides temporal and systemic restraint of maternal anti-fetal alloreactivity to promote reproductive fitness efficiently, while preserving potentially protective effector T cell responses. © Society for Leukocyte Biology.

  5. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate.

    Science.gov (United States)

    Tomasetti, M; Strafella, E; Staffolani, S; Santarelli, L; Neuzil, J; Guerrieri, R

    2010-04-13

    A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H(2)O(2) that promoted cell death. The redox-silent vitamin E analogue alpha-tocopheryl succinate (alpha-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. Prostate cancer cells were sensitive to alpha-TOS and VK3 treatment, but resistant to AA upto 3.2 mM. When combined, a synergistic effect was found for VK3-AA, whereas alpha-TOS-VK3 and alpha-TOS-AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA-VK3 combination combined with a sub-toxic dose of alpha-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal-mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity.

  6. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  7. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  8. Generation of Murine Cardiac Pacemaker Cell Aggregates Based on ES-Cell-Programming in Combination with Myh6-Promoter-Selection

    Science.gov (United States)

    Rimmbach, Christian; Jung, Julia J.; David, Robert

    2015-01-01

    Treatment of the “sick sinus syndrome” is based on artificial pacemakers. These bear hazards such as battery failure and infections. Moreover, they lack hormone responsiveness and the overall procedure is cost-intensive. “Biological pacemakers” generated from PSCs may become an alternative, yet the typical content of pacemaker cells in Embryoid Bodies (EBs) is extremely low. The described protocol combines “forward programming” of murine PSCs via the sinus node inducer TBX3 with Myh6-promoter based antibiotic selection. This yields cardiomyocyte aggregates consistent of >80% physiologically functional pacemaker cells. These “induced-sinoatrial-bodies” (“iSABs”) are spontaneously contracting at yet unreached frequencies (400-500 bpm) corresponding to nodal cells isolated from mouse hearts and are able to pace murine myocardium ex vivo. Using the described protocol highly pure sinus nodal single cells can be generated which e.g. can be used for in vitro drug testing. Furthermore, the iSABs generated according to this protocol may become a crucial step towards heart tissue engineering. PMID:25742394

  9. Tenascin-C in the extracellular matrix promotes the selection of highly proliferative and tubulogenesis-defective endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Tercia Rodrigues [Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biologia Celular, Laboratorio de Biologia da Celula Endotelial e da Angiogenese (LabAngio), Rio de Janeiro (Brazil); Universidade Federal do Rio de Janeiro (UFRJ), Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciencias Biomedicas, INNT/INCT/MCT, Rio de Janeiro (Brazil); Carvalho da Fonseca, Anna Carolina [Universidade Federal do Rio de Janeiro (UFRJ), Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciencias Biomedicas, INNT/INCT/MCT, Rio de Janeiro (Brazil); Nunes, Sara Santana; Oliveira da Silva, Aline [Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biologia Celular, Laboratorio de Biologia da Celula Endotelial e da Angiogenese (LabAngio), Rio de Janeiro (Brazil); Dubois, Luiz Gustavo Feijo; Faria, Jane; Kahn, Suzana Assad [Universidade Federal do Rio de Janeiro (UFRJ), Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciencias Biomedicas, INNT/INCT/MCT, Rio de Janeiro (Brazil); Viana, Nathan Bessa [Universidade Federal do Rio de Janeiro, Laboratorio de Pincas Oticas, Coordenacao de Programas de Estudos Avancados, Instituto de Ciencias Biomedicas, Rio de Janeiro (Brazil); Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil); Marcondes, Jorge [Universidade Federal do Rio de Janeiro, Hospital Universitario Clementino Fraga Filho, Servico de Neurocirurgia, Rio de Janeiro (Brazil); Legrand, Chantal [Institut Universitaire d' Hematologie, Universite Paris-Diderot, Paris 7, INSERM U553, Paris (France); Moura-Neto, Vivaldo [Universidade Federal do Rio de Janeiro (UFRJ), Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciencias Biomedicas, INNT/INCT/MCT, Rio de Janeiro (Brazil); and others

    2011-09-10

    The extracellular matrix (ECM) contains important cues for tissue homeostasis and morphogenesis. The matricellular protein tenascin-C (TN-C) is overexpressed in remodeling tissues and cancer. In the present work, we studied the effect of different ECM-which exhibited a significant diversity in their TN-C content-in endothelial survival, proliferation and tubulogenic differentiation: autologous (endothelial) ECM devoid of TN-C, but bearing large amounts of FN; fibroblast ECM, bearing both high TN-C and FN contents; and finally, glioma-derived matrices, usually poor in FN, but very rich in TN-C. HUVECs initially adhered to the immobilized matrix produced by U373 MG glioma cells, but significantly detached and died by anoikis (50 to 80%) after 24 h, as compared with cells incubated with endothelial and fibroblast matrices. Surviving endothelial cells (20 to 50%) became up to 6-fold more proliferative and formed 74-97% less tube-like structures in vitro than cells grown on non-tumoral matrices. An antibody against the EGF-like repeats of tenascin-C (TN-C) partially rescued cells from the tubulogenic defect, indicating that this molecule is responsible for the selection of highly proliferative and tubulogenic defective endothelial cells. Interestingly, by using defined substrata, in conditions that mimic glioma and normal cell ECM composition, we observed that fibronectin (FN) modulates the TN-C-induced selection of endothelial cells. Our data show that TN-C is able to modulate endothelial branching morphogenesis in vitro and, since it is prevalent in matrices of injured and tumor tissues, also suggest a role for this protein in vascular morphogenesis, in these physiological contexts.

  10. Tenascin-C in the extracellular matrix promotes the selection of highly proliferative and tubulogenesis-defective endothelial cells

    International Nuclear Information System (INIS)

    Alves, Tercia Rodrigues; Carvalho da Fonseca, Anna Carolina; Nunes, Sara Santana; Oliveira da Silva, Aline; Dubois, Luiz Gustavo Feijo; Faria, Jane; Kahn, Suzana Assad; Viana, Nathan Bessa; Marcondes, Jorge; Legrand, Chantal; Moura-Neto, Vivaldo

    2011-01-01

    The extracellular matrix (ECM) contains important cues for tissue homeostasis and morphogenesis. The matricellular protein tenascin-C (TN-C) is overexpressed in remodeling tissues and cancer. In the present work, we studied the effect of different ECM-which exhibited a significant diversity in their TN-C content-in endothelial survival, proliferation and tubulogenic differentiation: autologous (endothelial) ECM devoid of TN-C, but bearing large amounts of FN; fibroblast ECM, bearing both high TN-C and FN contents; and finally, glioma-derived matrices, usually poor in FN, but very rich in TN-C. HUVECs initially adhered to the immobilized matrix produced by U373 MG glioma cells, but significantly detached and died by anoikis (50 to 80%) after 24 h, as compared with cells incubated with endothelial and fibroblast matrices. Surviving endothelial cells (20 to 50%) became up to 6-fold more proliferative and formed 74-97% less tube-like structures in vitro than cells grown on non-tumoral matrices. An antibody against the EGF-like repeats of tenascin-C (TN-C) partially rescued cells from the tubulogenic defect, indicating that this molecule is responsible for the selection of highly proliferative and tubulogenic defective endothelial cells. Interestingly, by using defined substrata, in conditions that mimic glioma and normal cell ECM composition, we observed that fibronectin (FN) modulates the TN-C-induced selection of endothelial cells. Our data show that TN-C is able to modulate endothelial branching morphogenesis in vitro and, since it is prevalent in matrices of injured and tumor tissues, also suggest a role for this protein in vascular morphogenesis, in these physiological contexts.

  11. Quaternary ammonium promoted ultra selective and sensitive fluorescence detection of fluoride ion in water and living cells.

    Science.gov (United States)

    Li, Long; Ji, Yuzhuo; Tang, Xinjing

    2014-10-21

    Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.

  12. Viral dsRNA-activated human dendritic cells produce IL-27, which selectively promotes cytotoxicity in naive CD8(+) T cells

    NARCIS (Netherlands)

    de Groot, Rosa; van Beelen, Astrid J.; Bakdash, Ghaith; Taanman-Kueter, Esther W. M.; de Jong, Esther C.; Kapsenberg, Martien L.

    2012-01-01

    Viral recognition programs DCs to express Signal 3 molecules that promote the differentiation of effector CD8(+) T cells. Besides IL-12, another DC-derived IL-12 family member, IL-27, has been reported to contribute herein, but its specific role is not well understood. Here, we show that whereas

  13. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  14. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    Science.gov (United States)

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after

  15. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Enterotoxigenic Escherichia coli (ETEC are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2 were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial

  16. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model.

    Science.gov (United States)

    Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in

  17. An IFNG SNP with an estrogen-like response element selectively enhances promoter expression in peripheral but not lamina propria T cells.

    Science.gov (United States)

    Gonsky, R; Deem, R L; Bream, J H; Young, H A; Targan, S R

    2006-07-01

    This study examines mucosa-specific regulatory pathways involved in modulation of interferon-gamma (IFN-gamma) in lamina propria T cells. Previous studies identified mucosa-specific CD2 cis-elements within the -204 to -108 bp IFNG promoter. Within this region, a single-site nucleotide polymorphism, -179G/T, imparts tumor necrosis factor-alpha stimulation of IFNG in peripheral blood lymphocytes, and is linked with accelerated AIDS progression. We discovered a putative estrogen response element (ERE) introduced by the -179T, which displays selective activation in peripheral blood mononuclear cells (PBMC) vs lamina propria mononuclear cells (LPMC). Transfection of PBMC with constructs containing the -179G or -179T site revealed CD2-mediated enhancement of the -179T compared to -179G allele, although, in LPMC, a similar level of expression was detected. Electrophoretic mobility shift assay (EMSA) analysis demonstrated CD2-mediated nucleoprotein binding to the -179T but not the -179G in PBMC. In LPMC, binding is constitutive to both -179G and -179T regions. Sequence and EMSA analysis suggests that the -179T allele creates an ERE-like binding site capable of binding recombinant estrogen receptor. Estrogen response element transactivation is enhanced by CD2 signaling, but inhibited by estrogen in PBMC but not in LPMC, although expression of estrogen receptor was similar. This is the first report to describe a potential molecular mechanism responsible for selectively controlling IFN-gamma production in LPMC.

  18. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Strafella, E.; Staffolani, S.; Santarelli, L.; Neužil, Jiří; Guerrieri, R.

    2010-01-01

    Roč. 102, č. 8 (2010), s. 1224-1234 ISSN 0007-0920 Institutional research plan: CEZ:AV0Z50520701 Keywords : Vitamins * prostate cancer * cell-death Subject RIV: ED - Physiology Impact factor: 4.831, year: 2010

  19. Promotion of cooperation by selective group extinction

    Science.gov (United States)

    Böttcher, Marvin A.; Nagler, Jan

    2016-06-01

    Multilevel selection is an important organizing principle that crucially underlies evolutionary processes from the emergence of cells to eusociality and the economics of nations. Previous studies on multilevel selection assumed that the effective higher-level selection emerges from lower-level reproduction. This leads to selection among groups, although only individuals reproduce. We introduce selective group extinction, where groups die with a probability inversely proportional to their group fitness. When accounting for this the critical benefit-to-cost ratio is substantially lowered. Because in game theory and evolutionary dynamics the degree of cooperation crucially depends on this ratio above which cooperation emerges, previous studies may have substantially underestimated the establishment and maintenance of cooperation.

  20. TNF-α promotes nuclear enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in nucleus pulposus cells.

    Science.gov (United States)

    Johnson, Zariel I; Doolittle, Alexandra C; Snuggs, Joseph W; Shapiro, Irving M; Le Maitre, Christine L; Risbud, Makarand V

    2017-10-20

    Intervertebral disc degeneration (IDD) causes chronic back pain and is linked to production of proinflammatory molecules by nucleus pulposus (NP) and other disc cells. Activation of tonicity-responsive enhancer-binding protein (TonEBP)/NFAT5 by non-osmotic stimuli, including proinflammatory molecules, occurs in cells involved in immune response. However, whether inflammatory stimuli activate TonEBP in NP cells and whether TonEBP controls inflammation during IDD is unknown. We show that TNF-α, but not IL-1β or LPS, promoted nuclear enrichment of TonEBP protein. However, TNF-α-mediated activation of TonEBP did not cause induction of osmoregulatory genes. RNA sequencing showed that 8.5% of TNF-α transcriptional responses were TonEBP-dependent and identified genes regulated by both TNF-α and TonEBP. These genes were over-enriched in pathways and diseases related to inflammatory response and inhibition of matrix metalloproteases. Based on RNA-sequencing results, we further investigated regulation of novel TonEBP targets CXCL1 , CXCL2 , and CXCL3 TonEBP acted synergistically with TNF-α and LPS to induce CXCL1 -proximal promoter activity. Interestingly, this regulation required a highly conserved NF-κB-binding site but not a predicted TonE, suggesting cross-talk between these two members of the Rel family. Finally, analysis of human NP tissue showed that TonEBP expression correlated with canonical osmoregulatory targets TauT/SLC6A6 , SMIT/SLC5A3 , and AR/AKR1B1 , supporting in vitro findings that the inflammatory milieu during IDD does not interfere with TonEBP osmoregulation. In summary, whereas TonEBP participates in the proinflammatory response to TNF-α, therapeutic strategies targeting this transcription factor for treatment of disc disease must spare osmoprotective, prosurvival, and matrix homeostatic activities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Phage display selection of fully human antibody fragments to inhibit growth-promoting effects of glycine-extended gastrin 17 on human colorectal cancer cells.

    Science.gov (United States)

    Khajeh, Shirin; Tohidkia, Mohammad Reza; Aghanejad, Ayuob; Mehdipour, Tayebeh; Fathi, Farzaneh; Omidi, Yadollah

    2018-06-09

    Glycine-extended gastrin 17 (G17-Gly), a dominant processing intermediate of gastrin gene, has been implicated in the development or maintenance of colorectal cancers (CRCs). Hence, neutralizing G17-Gly activity by antibody entities can provide a potential therapeutic strategy in the patients with CRCs. To this end, we isolated fully human antibody fragments from a phage antibody library through biopanning against different epitopes of G17-Gly in order to obtain the highest possible antibody diversity. ELISA screening and sequence analysis identified 2 scFvs and 4 V L antibody fragments. Kinetic analysis of the antibody fragments by SPR revealed K D values to be in the nanomolar range (87.9-334 nM). The selected anti-G17-Gly antibody fragments were analyzed for growth inhibition and apoptotic assays in a CRC cell line, HCT-116, which is well-characterized for expressing gastrin intermediate species but not amidated gastrin. The antibody fragments exhibited significant inhibition of HCT-116 cells proliferation ranging from 36.5 to 73% of controls. Further, Annexin V/PI staining indicated that apoptosis rates of scFv H8 and V L G8 treated cells were 45.8 and 63%, respectively. Based on these results, we for the first time, demonstrated the isolation of anti-G17-Gly human scFv and V L antibodies with potential therapeutic applications in G17-Gly-responsive tumors.

  2. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  3. Selected CD133⁺ progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial.

    Science.gov (United States)

    Jimenez-Quevedo, Pilar; Gonzalez-Ferrer, Juan Jose; Sabate, Manel; Garcia-Moll, Xavier; Delgado-Bolton, Roberto; Llorente, Leopoldo; Bernardo, Esther; Ortega-Pozzi, Aranzazu; Hernandez-Antolin, Rosana; Alfonso, Fernando; Gonzalo, Nieves; Escaned, Javier; Bañuelos, Camino; Regueiro, Ander; Marin, Pedro; Fernandez-Ortiz, Antonio; Neves, Barbara Das; Del Trigo, Maria; Fernandez, Cristina; Tejerina, Teresa; Redondo, Santiago; Garcia, Eulogio; Macaya, Carlos

    2014-11-07

    Refractory angina constitutes a clinical problem. The aim of this study was to assess the safety and the feasibility of transendocardial injection of CD133(+) cells to foster angiogenesis in patients with refractory angina. In this randomized, double-blinded, multicenter controlled trial, eligible patients were treated with granulocyte colony-stimulating factor, underwent an apheresis and electromechanical mapping, and were randomized to receive treatment with CD133(+) cells or no treatment. The primary end point was the safety of transendocardial injection of CD133(+) cells, as measured by the occurrence of major adverse cardiac and cerebrovascular event at 6 months. Secondary end points analyzed the efficacy. Twenty-eight patients were included (n=19 treatment; n=9 control). At 6 months, 1 patient in each group had ventricular fibrillation and 1 patient in each group died. One patient (treatment group) had a cardiac tamponade during mapping. There were no significant differences between groups with respect to efficacy parameters; however, the comparison within groups showed a significant improvement in the number of angina episodes per month (median absolute difference, -8.5 [95% confidence interval, -15.0 to -4.0]) and in angina functional class in the treatment arm but not in the control group. At 6 months, only 1 simple-photon emission computed tomography (SPECT) parameter: summed score improved significantly in the treatment group at rest and at stress (median absolute difference, -1.0 [95% confidence interval, -1.9 to -0.1]) but not in the control arm. Our findings support feasibility and safety of transendocardial injection of CD133(+) cells in patients with refractory angina. The promising clinical results and favorable data observed in SPECT summed score may set up the basis to test the efficacy of cell therapy in a larger randomized trial. © 2014 American Heart Association, Inc.

  4. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model

    OpenAIRE

    Zhang, Wei; Zhu, Yao-Hong; Yang, Jin-Cai; Yang, Gui-Yan; Zhou, Dong; Wang, Jiu-Feng

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but t...

  5. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    Science.gov (United States)

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-11

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to an automated (Apple II) procedure for searching and evaluating possible promoters in DNA sequence files.

  6. Natural selection of mitochondria during somatic lifetime promotes healthy aging

    DEFF Research Database (Denmark)

    Rodell, Anders; Rasmussen, Lene J; Bergersen, Linda H

    2013-01-01

    Stimulation of mitochondrial biogenesis during life-time challenges both eliminates disadvantageous properties and drives adaptive selection of advantageous phenotypic variations. Intermittent fission and fusion of mitochondria provide specific targets for health promotion by brief temporal...... stressors, interspersed with periods of recovery and biogenesis. For mitochondria, the mechanisms of selection, variability, and heritability, are complicated by interaction of two independent genomes, including the multiple copies of DNA in each mitochondrion, as well as the shared nuclear genome of each...

  7. Purified Human Dental Pulp Stem Cells Promote Osteogenic Regeneration.

    Science.gov (United States)

    Yasui, T; Mabuchi, Y; Toriumi, H; Ebine, T; Niibe, K; Houlihan, D D; Morikawa, S; Onizawa, K; Kawana, H; Akazawa, C; Suzuki, N; Nakagawa, T; Okano, H; Matsuzaki, Y

    2016-02-01

    Human dental pulp stem/progenitor cells (hDPSCs) are attractive candidates for regenerative therapy because they can be easily expanded to generate colony-forming unit-fibroblasts (CFU-Fs) on plastic and the large cell numbers required for transplantation. However, isolation based on adherence to plastic inevitably changes the surface marker expression and biological properties of the cells. Consequently, little is currently known about the original phenotypes of tissue precursor cells that give rise to plastic-adherent CFU-Fs. To better understand the in vivo functions and translational therapeutic potential of hDPSCs and other stem cells, selective cell markers must be identified in the progenitor cells. Here, we identified a dental pulp tissue-specific cell population based on the expression profiles of 2 cell-surface markers LNGFR (CD271) and THY-1 (CD90). Prospectively isolated, dental pulp-derived LNGFR(Low+)THY-1(High+) cells represent a highly enriched population of clonogenic cells--notably, the isolated cells exhibited long-term proliferation and multilineage differentiation potential in vitro. The cells also expressed known mesenchymal cell markers and promoted new bone formation to heal critical-size calvarial defects in vivo. These findings suggest that LNGFR(Low+)THY-1(High+) dental pulp-derived cells provide an excellent source of material for bone regenerative strategies. © International & American Associations for Dental Research 2015.

  8. Effective Feature Selection for Classification of Promoter Sequences.

    Directory of Open Access Journals (Sweden)

    Kouser K

    Full Text Available Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine, KNN (K Nearest Neighbor and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.

  9. Variable selection for mixture and promotion time cure rate models.

    Science.gov (United States)

    Masud, Abdullah; Tu, Wanzhu; Yu, Zhangsheng

    2016-11-16

    Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with cure rate models. Variable selection methods have not been well developed for cure rate models. In this research, we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data from a study of childhood wheezing. © The Author(s) 2016.

  10. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    OpenAIRE

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-01

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to ...

  11. Promotions, dismissals, and employee selection: Theory and evidence

    DEFF Research Database (Denmark)

    Frederiksen, Anders; Takáts, Elód

    2011-01-01

    Firms offer highly complex contracts to their employees. These contracts contain a mix of incentives, such as fixed wages, bonus payments, promotion options, and dismissals or threats of dismissal. In this article, we show that firms having a production process that is sensitive to employee quality...... may find it optimal to combine cost-efficient incentives such as bonuses and promotions with dismissals. Based on this result, we derive a hierarchy of incentives. Furthermore, we demonstrate the close link between the optimal contract and the employee sorting and selection and use this to analyse...

  12. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  13. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    International Nuclear Information System (INIS)

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica

    2005-01-01

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation

  14. High selection pressure promotes increase in cumulative adaptive culture.

    Directory of Open Access Journals (Sweden)

    Carolin Vegvari

    Full Text Available The evolution of cumulative adaptive culture has received widespread interest in recent years, especially the factors promoting its occurrence. Current evolutionary models suggest that an increase in population size may lead to an increase in cultural complexity via a higher rate of cultural transmission and innovation. However, relatively little attention has been paid to the role of natural selection in the evolution of cultural complexity. Here we use an agent-based simulation model to demonstrate that high selection pressure in the form of resource pressure promotes the accumulation of adaptive culture in spite of small population sizes and high innovation costs. We argue that the interaction of demography and selection is important, and that neither can be considered in isolation. We predict that an increase in cultural complexity is most likely to occur under conditions of population pressure relative to resource availability. Our model may help to explain why culture change can occur without major environmental change. We suggest that understanding the interaction between shifting selective pressures and demography is essential for explaining the evolution of cultural complexity.

  15. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis

    Directory of Open Access Journals (Sweden)

    Giulia Fregni

    2018-03-01

    Full Text Available Metastasis is a multi-step process in which direct crosstalk between cancer cells and their microenvironment plays a key role. Here, we assessed the effect of paired tumor-associated and normal lung tissue mesenchymal stem cells (MSCs on the growth and dissemination of primary human lung carcinoma cells isolated from the same patients. We show that the tumor microenvironment modulates MSC gene expression and identify a four-gene MSC signature that is functionally implicated in promoting metastasis. We also demonstrate that tumor-associated MSCs induce the expression of genes associated with an aggressive phenotype in primary lung cancer cells and selectively promote their dissemination rather than local growth. Our observations provide insight into mechanisms by which the stroma promotes lung cancer metastasis. Keywords: Tumor-associated MSCs, lung cancer, metastasis, GREM1, LOXL2, ADAMTS12, ITGA11

  16. Method for Selection of Solvents for Promotion of Organic Reactions

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Jiménez-González, Concepción; Constable, David J.C.

    2005-01-01

    is to produce, for a given reaction, a short list of chemicals that could be considered as potential solvents, to evaluate their performance in the reacting system, and, based on this, to rank them according to a scoring system. Several examples of application are given to illustrate the main features and steps......A method to select appropriate green solvents for the promotion of a class of organic reactions has been developed. The method combines knowledge from industrial practice and physical insights with computer-aided property estimation tools for selection/design of solvents. In particular, it employs...... estimates of thermodynamic properties to generate a knowledge base of reaction, solvent and environment related properties that directly or indirectly influence the rate and/or conversion of a given reaction. Solvents are selected using a rules-based procedure where the estimated reaction-solvent properties...

  17. Artificial promoter libraries for selected organisms and promoters derived from such libraries

    DEFF Research Database (Denmark)

    1998-01-01

    or organisms may be selected from prokaryotes and from eukaryotes; and in prokaryotes the consensus sequences to be retained most often will comprise the -35 signal (-35 to -30): TTGACA and the -10 signal (-12 to -7): TATAAT or parts of both comprising at least 3 conserved nucleotides of each, while...... in eukaryotes said consensus sequences should comprise a TATA box and at least one upstream activation sequence (UAS). Such artificial promoter libraries can be used i.a. for optimizing the expression of specific genes in various selected organisms....

  18. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2010-01-01

    Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5α-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis. PMID:19357508

  19. Selective androgen receptor modulators as function promoting therapies.

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  20. Book Promotion Efforts in Select Nigerian Newspapers Okere ...

    African Journals Online (AJOL)

    Mrs Afam

    them make informed purchase decision. Hitherto, the ... for product promotion compared to the efforts of manufacturers of consumer goods and other .... The extent of promotion done by a publisher affects greatly the rate of order placed.

  1. Fetal liver stromal cells promote hematopoietic cell expansion

    International Nuclear Information System (INIS)

    Zhou, Kun; Hu, Caihong; Zhou, Zhigang; Huang, Lifang; Liu, Wenli; Sun, Hanying

    2009-01-01

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  2. Sickle Cell: A Selected Resource Bibliography.

    Science.gov (United States)

    National Center for Education in Maternal and Child Health, Washington, DC.

    This annotated, selective bibliography lists the following types of educational and informational material on both sickle cell disease and trait: (1) professional education materials; (2) fact sheets, pamphlets, and brochures; and (3) audiovisual material. A selected list of references is provided for the following topic areas: (1) genetic…

  3. Health-promoting ingredients from four selected Azorean macroalgae.

    Science.gov (United States)

    Paiva, Lisete; Lima, Elisabete; Neto, Ana Isabel; Marcone, Massimo; Baptista, José

    2016-11-01

    This study presents, for the first time, the nutritional and health promoting aspects of four selected Azorean macroalgae (Ulva compressa, Ulva rigida, Gelidium microdon and Pterocladiella capillacea) in terms of total lipids, fatty acids (FA) profile, n6/n3 and hypocholesterolemic (h)/hypercholesterolemic (H) FA ratios, minerals, total essential amino acids (AA), anti-ageing and anti-phenylketonuria AA content, coenzyme Q 10 , α-tocopherol, total phenolics, antioxidant properties and energy value, on a dry weight basis. The results revealed low lipid content (1.02-4.32%) but significant PUFA content (29.57-69.22% of total FA), suitable FA ratios (0.48-9.49 for n6/n3 and 1.26-4.22 for h/H), balanced macromineral ratios (0.27-1.91 for Na/K and 0.15-1.07 for Ca/Mg), appreciable amount of essential AA (45.27-58.13% of total AA), high amount of anti-ageing AA, low Phe content, coenzyme Q 10 (1.25-8.27μg/g), α-tocopherol (2.61-9.14mg/100g), high total phenolic content (27.70-55.07mg of gallic acid equivalents/g extract), significant free radical scavenging activity (29.32-47.73%) and valuable energy content (6.80-9.80kJ/g). A regular consumption of these algae either directly or through food supplements may improve human health or may have a protective effect on some diseases and ageing process. They can also be used for producing pharmaceuticals and cosmeceuticals with potential economic value. Copyright © 2016. Published by Elsevier Ltd.

  4. Selection, de-selection and progression in German football talent promotion.

    Science.gov (United States)

    Güllich, Arne

    2014-01-01

    This study explored to which extent the development of German professional football players is based on early talent identification (TID) and long-term nurture in talent promotion (TP) programmes or on their emergence in the course of repeated procedures of player selection and de-selection in these programmes through childhood and youth. The annual turnover of squad members in national junior teams (2001-2013) and youth elite academies was calculated; national U-team members were followed up with regard to nominations through subsequent seasons and to their success level eventually achieved at senior age; and all current Bundesliga players were analysed retrospectively regarding their earlier involvement in TID/TP programmes. Analyses revealed that the mean annual turnover of squad members was 24.5% (youth academies) and 41.0% (national U-teams), respectively. At any age, the probability of persisting in the programme three years later was <50%. Among current Bundesliga players, the age of recruitment into the TID/TP programme was widely evenly distributed across childhood and youth, respectively. Accordingly, the number of (future) Bundesliga players who were involved in TID/TP was built up continuously through all age categories. The observations suggest that the collective of professional players emerged from repeated procedures of selection and de-selection through childhood and youth rather than from early selection and long-term continuous nurture in TID/TP programmes. The findings are discussed with regard to the uncertainty of TID and of interventions applied to the selected players, and they are related to the individualistic and collectivistic approach in TP.

  5. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P.; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-01-01

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  6. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  7. Src Induces Podoplanin Expression to Promote Cell Migration*

    Science.gov (United States)

    Shen, Yongquan; Chen, Chen-Shan; Ichikawa, Hitoshi; Goldberg, Gary S.

    2010-01-01

    Nontransformed cells can force tumor cells to assume a normal morphology and phenotype by the process of contact normalization. Transformed cells must escape this process to become invasive and malignant. However, mechanisms underlying contact normalization have not been elucidated. Here, we have identified genes that are affected by contact normalization of Src-transformed cells. Tumor cells must migrate to become invasive and malignant. Src must phosphorylate the adaptor protein Cas (Crk-associated substrate) to promote tumor cell motility. We report here that Src utilizes Cas to induce podoplanin (Pdpn) expression to promote tumor cell migration. Pdpn is a membrane-bound extracellular glycoprotein that associates with endogenous ligands to promote tumor cell migration leading to cancer invasion and metastasis. In fact, Pdpn expression accounted for a major part of the increased migration seen in Src-transformed cells. Moreover, nontransformed cells suppressed Pdpn expression in adjacent Src-transformed cells. Of >39,000 genes, Pdpn was one of only 23 genes found to be induced by transforming Src activity and suppressed by contact normalization of Src-transformed cells. In addition, we found 16 genes suppressed by Src and induced by contact normalization. These genes encode growth factor receptors, adaptor proteins, and products that have not yet been annotated and may play important roles in tumor cell growth and migration. PMID:20123990

  8. 5 CFR 335.106 - Special selection procedures for certain veterans under merit promotion.

    Science.gov (United States)

    2010-01-01

    ... veterans under merit promotion. 335.106 Section 335.106 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PROMOTION AND INTERNAL PLACEMENT General Provisions § 335.106 Special selection procedures for certain veterans under merit promotion. Preference eligibles or veterans who have...

  9. Increasing Stem Cell Dose Promotes Posttransplant Immune Reconstitution.

    Science.gov (United States)

    Xu, Ning; Shen, Sylvie; Dolnikov, Alla

    2017-04-01

    Umbilical cord blood (UCB) transplantation can provide a successful therapeutic option for patients that have no suitable related donor. UCB transplantation is often limited by the relatively small hematopoietic stem cell (HSC) numbers in UCB especially for adult recipients. Early neutrophil and platelet engraftment correlates with the stem cell numbers in UCB transplant. Compared to other HSC sources, immune reconstitution following UCB transplant is slower and complicated by increased frequency of opportunistic infections. The effect of HSC numbers in UCB transplant on immune reconstitution was not thoroughly examined. Using immunocompromised mice transplanted with purified UCB CD34+ stem cells, we have demonstrated that increasing the numbers of CD34+ cells in the transplant promotes hematopoietic and immune reconstitution. At early stages posttransplant, high stem cell dose generated relatively more B cells, while lower dose generated more myeloid and T cells. Thus, the size of the stem cell graft appears to modulate the differentiation potential of infused stem cells. In addition, increasing stem cell dose in the transplant improved CD8+ T cell development and delayed late memory T cell skewing in expense of naive T cells highlighting the importance of HSC dose to maintain the pool of naive T cells able to develop strong immune responses. Transplantation of ex vivo expanded CD34+ cells did not promote, but rather delayed immune reconstitution suggesting the loss of primitive lymphoid precursor cells during ex vivo expansion.

  10. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1989-01-01

    The survival of cerebellar granule cells in culture is promoted by chronic exposure to N-methyl-D-aspartate (NMDA). The effect is due to the stimulation of 'conventional' NMDA receptor-ionophore complex: it is concentration dependent, voltage dependent and blocked by the selective antagonists D-2...

  11. Employee perspectives of workplace health promotion in selected ...

    African Journals Online (AJOL)

    This study explored (a) available workplace interventions to support or improve workers health and well-being (b) the kind of health messages employees prefer, and (c) preferred methods of delivery for work place health promotion programmes. This study employed a cross-sectional design by a structured questionnaire ...

  12. Health promotion site selection blues: barriers to participation and implementation.

    Science.gov (United States)

    Cherniack, Martin; Morse, Tim; Henning, Robert; Seidner, Adam; Punnett, Laura

    2010-06-01

    To shed light on research-to-practice challenges in workplace health promotion research. More than 1200 companies serviced by a national insurer were assessed by measures, including management surveys, and insurance premium costs and risk profile. A 21-item Workplace Readiness Checklist was the core assessment tool. Quantitative and qualitative measures were used to identify 12 to 14 companies deemed most "ready for change." The four priority candidate companies decided against participation. A post hoc survey to evaluate reasons for non-participation identified factors such as time allocations, the deteriorating economic environment, and the participatory nature of the interventions proposed for half of the study sites. Differing priorities within management also seemed to interfere with participation. A highly structured process for determining corporate readiness for participatory health promotion produced contradictory results.

  13. Selective AR Modulators that Distinguish Proliferative from Differentiative Gene Promoters

    Science.gov (United States)

    2016-08-01

    levels, and in some cases be useful in early stage disease or watchful waiting, and in other cases castration resistant prostate cancer (CRPC...dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Molecular endocrinology 13, 376 (Mar, 1999). 9...analyses and in mouse xenograft experiments, as planned. We will also continue to probe the molecular mechanism by which dox elicits these differential

  14. Gliadin fragments promote migration of dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Chládková, Barbara; Kamanová, Jana; Palová-Jelínková, Lenka; Cinová, Jana; Šebo, Peter; Tučková, Ludmila

    2011-01-01

    Roč. 15, č. 4 (2011), 938-948 ISSN 1582-1838 R&D Projects: GA ČR GA310/07/0414; GA ČR GD310/08/H077; GA ČR GA310/08/0447; GA AV ČR IAA500200801; GA AV ČR IAA500200914 Institutional research plan: CEZ:AV0Z50200510 Keywords : celiac disease * gliadin * dendritic cell Subject RIV: EC - Immunology Impact factor: 4.125, year: 2011

  15. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2013-10-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.

  16. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  17. Microgravity-Enhanced Stem Cell Selection

    Science.gov (United States)

    Claudio, Pier Paolo; Valluri, Jagan

    2011-01-01

    Stem cells, both embryonic and adult, promise to revolutionize the practice of medicine in the future. In order to realize this potential, a number of hurdles must be overcome. Most importantly, the signaling mechanisms necessary to control the differentiation of stem cells into tissues of interest remain to be elucidated, and much of the present research on stem cells is focused on this goal. Nevertheless, it will also be essential to achieve large-scale expansion and, in many cases, assemble cells in 3D as transplantable tissues. To this end, microgravity analog bioreactors can play a significant role. Microgravity bioreactors were originally conceived as a tool to study the cellular responses to microgravity. However, the technology can address some of the shortcomings of conventional cell culture systems; namely, the deficiency of mass transport in static culture and high mechanical shear forces in stirred systems. Unexpectedly, the conditions created in the vessel were ideal for 3D cell culture. Recently, investigators have demonstrated the capability of the microgravity bioreactors to expand hematopoietic stem cells compared to static culture, and facilitate the differentiation of umbilical cord stem cells into 3D liver aggregates. Stem cells are capable of differentiating into functional cells. However, there are no reliable methods to induce the stem cells to form specific cells or to gain enough cells for transplantation, which limits their application in clinical therapy. The aim of this study is to select the best experimental setup to reach high proliferation levels by culturing these cells in a microgravity-based bioreactor. In typical cell culture, the cells sediment to the bottom surface of their container and propagate as a one-cell-layer sheet. Prevention of such sedimentation affords the freedom for self-assembly and the propagation of 3D tissue arrays. Suspension of cells is easily achievable using stirred technologies. Unfortunately, in

  18. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although ?-galactosylceramide (?-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-? by NKT cells, concomitant with a d...

  19. The Preparation and Selection of Budget Methods for Promotion in Kosovo

    Directory of Open Access Journals (Sweden)

    MSc. Halit Karaxha

    2017-06-01

    Full Text Available Selecting the adequate method for promotion has a huge importance in increasing business’s performance. Selecting the method of the budget depends from a number of factors. The formulation of budget is known as the most critical period which requires special analysis from marketing’s managers. The expenses for promotion are usually high, and every investment made in the field of promotion directly influences in the business situation. Thus, the selection and adequate formulation of budget methods for promotion influences the growth of profit. The allocated amount for promotion depends from a number of factors, such as: the size of the firm, the sector in which it operates, competition etc. After planning the budget, we have to do the budget allocation to select the promotional form which is considered to be successful by the firms in promoting the products and services and that will help the company to connect with its clients. In this paper, I have elaborated the role and importance of the preparation and selection of budget methods for promotion in the theoretical aspect and the practical one as well.

  20. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence.

    Science.gov (United States)

    Galloway, Alison; Saveliev, Alexander; Łukasiak, Sebastian; Hodson, Daniel J; Bolland, Daniel; Balmanno, Kathryn; Ahlfors, Helena; Monzón-Casanova, Elisa; Mannurita, Sara Ciullini; Bell, Lewis S; Andrews, Simon; Díaz-Muñoz, Manuel D; Cook, Simon J; Corcoran, Anne; Turner, Martin

    2016-04-22

    Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint. Copyright © 2016, American Association for the Advancement of Science.

  1. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E. [Cambridge Centre for Medical Materials, Materials Science and Metallurgy Department, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Wardale, R. J., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk [Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 2QQ (United Kingdom)

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  2. Sleep Promotes Lasting Changes in Selective Memory for Emotional Scenes

    Directory of Open Access Journals (Sweden)

    Jessica ePayne

    2012-11-01

    Full Text Available Although we know that emotional events enjoy a privileged status in our memories, we still have much to learn about how emotional memories are processed, stored, and how they change over time. Here we show a positive association between REM sleep and the selective consolidation of central, negative aspects of complex scenes. Moreover, we show that the placement of sleep is critical for this selective emotional memory benefit. When testing occurred 24hr post-encoding, subjects who slept soon after learning (24hr Sleep First group had superior memory for emotional objects compared to subjects whose sleep was delayed for 16hr post-encoding following a full day of wakefulness (24hr Wake First group. However, this increase in memory for emotional objects corresponded with a decrease in memory for the neutral backgrounds on which these objects were placed. Furthermore, memory for emotional objects in the 24hr Sleep First group was comparable to performance after just a 12hr delay containing a night of sleep, suggesting that sleep soon after learning selectively stabilizes emotional memory. These results suggest that the sleeping brain preserves in long-term memory only what is emotionally salient and perhaps most adaptive to remember.

  3. Sleep promotes lasting changes in selective memory for emotional scenes.

    Science.gov (United States)

    Payne, Jessica D; Chambers, Alexis M; Kensinger, Elizabeth A

    2012-01-01

    Although we know that emotional events enjoy a privileged status in our memories, we still have much to learn about how emotional memories are processed, stored, and how they change over time. Here we show a positive association between REM sleep and the selective consolidation of central, negative aspects of complex scenes. Moreover, we show that the placement of sleep is critical for this selective emotional memory benefit. When testing occurred 24 h post-encoding, subjects who slept soon after learning (24 h Sleep First group) had superior memory for emotional objects compared to subjects whose sleep was delayed for 16 h post-encoding following a full day of wakefulness (24 h Wake First group). However, this increase in memory for emotional objects corresponded with a decrease in memory for the neutral backgrounds on which these objects were placed. Furthermore, memory for emotional objects in the 24 h Sleep First group was comparable to performance after just a 12 h delay containing a night of sleep, suggesting that sleep soon after learning selectively stabilizes emotional memory. These results suggest that the sleeping brain preserves in long-term memory only what is emotionally salient and perhaps most adaptive to remember.

  4. Promotion of initiated cells by radiation-induced cell inactivation.

    Science.gov (United States)

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  5. Insulin promotes cell migration by regulating PSA-NCAM

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, Hector J.; Coppieters, Natacha [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Park, Thomas I.H. [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Dieriks, Birger V.; Faull, Richard L.M. [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Dragunow, Mike [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Curtis, Maurice A., E-mail: m.curtis@auckland.ac.nz [Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand); Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland (New Zealand)

    2017-06-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.

  6. Insulin promotes cell migration by regulating PSA-NCAM

    International Nuclear Information System (INIS)

    Monzo, Hector J.; Coppieters, Natacha; Park, Thomas I.H.; Dieriks, Birger V.; Faull, Richard L.M.; Dragunow, Mike; Curtis, Maurice A.

    2017-01-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.

  7. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    Science.gov (United States)

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. © 2015 International Federation for Cell Biology.

  9. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  10. Sorafenib-induced defective autophagy promotes cell death by necroptosis.

    Science.gov (United States)

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-11-10

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5-/- cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.

  11. Notch Signaling in Prostate Cancer Cells Promotes Osteoblastic Metastasis

    Science.gov (United States)

    2017-06-01

    information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this...function and number while inducing osteoblast proliferation. Our results suggest that Notch signaling from cancer cells promotes osteoblastic...Participants and other collaborating organizations: I initiated collaboration with Dr. Evan Keller at University of Michigan to interrogate PCa bone

  12. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy.

    Science.gov (United States)

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S; Corey, Eva; Snyder, Linda A; Vessella, Robert L; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.

  13. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Alam Hunain

    2012-01-01

    Full Text Available Abstract Background Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC. Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. Methods To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131 using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Results Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041, increased lymph node metastasis (P = 0.001, less differentiation (P = 0.005, increased recurrence (P = 0.038 and shorter survival (P = 0.004 of the patients. Conclusion In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and

  14. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Alam, Hunain; Kannanl, Sadhna; Gude, Rajiv; Kane, Shubhada; Dalal, Sorab N; Vaidya, Milind M; Bhate, Amruta V; Gangadaran, Prakash; Sawant, Sharda S; Salot, Shimul; Sehgal, Lalit; Dange, Prerana P; Chaukar, Devendra A; D'cruz, Anil K

    2012-01-01

    Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041), increased lymph node metastasis (P = 0.001), less differentiation (P = 0.005), increased recurrence (P = 0.038) and shorter survival (P = 0.004) of the patients. In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC

  15. Ginseng Berry Extract Promotes Maturation of Mouse Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Ginseng extract has been shown to possess certain anti-virus, anti-tumor and immune-activating effects. However, the immunostimulatory effect of ginseng berry extract (GB has been less well characterized. In this study, we investigated the effect of GB on the activation of mouse dendritic cells (DCs in vitro and in vivo. GB treatment induced up-regulation of co-stimulatory molecules in bone marrow-derived DCs (BMDCs. Interestingly, GB induced a higher degree of co-stimulatory molecule up-regulation than ginseng root extract (GR at the same concentrations. Moreover, in vivo administration of GB promoted up-regulation of CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen DCs. GB also promoted the generation of Th1 and Tc1 cells. Furthermore, Toll like receptor 4 (TLR4 and myeloid differentiation primary response 88 (MyD88 signaling pathway were essential for DC activation induced by GB. In addition, GB strongly prompted the proliferation of ovalbumin (OVA-specific CD4 and CD8 T cells. Finally, GB induced DC activation in tumor-bearing mice and the combination of OVA and GB treatment inhibited B16-OVA tumor cell growth in C57BL/6 mice. These results demonstrate that GB is a novel tumor therapeutic vaccine adjuvant by promoting DC and T cell activation.

  16. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  17. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  18. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  19. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  20. Senescent T-Cells Promote Bone Loss in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Johannes Fessler

    2018-02-01

    Full Text Available ObjectiveT-cells are critical players in the pathogenesis of osteoporosis in patients with rheumatoid arthritis (RA. Premature senescence of lymphocytes including the accumulation of senescent CD4+ T-cells is a hallmark feature of RA. Whether T-cell senescence is associated with bone loss in RA patients is elusive so far.MethodsThis includes a prospective study of consecutive patients with RA (n = 107, patients with primary osteopenia/-porosis (n = 75, and healthy individuals (n = 38. Bone mineral density (BMD was determined by dual-energy X-ray absorptiometry scan. Flow cytometry, magnetic-associated cell sorting, and cell culture experiments were performed to analyze the pro-osteoclastic phenotype and the function of senescent CD4+CD28− T-cells.ResultsPatients with osteopenia/-porosis yielded a higher prevalence of senescent CD4+CD28− T-cells than individuals with normal BMD, in the RA, as well as in the non-RA cohort. Receptor activator of nuclear factor kappa-B ligand (RANKL was expressed at higher levels on CD4+CD28− T-cells as compared to CD28+ T-cells. Stimulation with interleukin-15 led to an up-regulation of RANKL expression, particularly on CD28− T-cells. CD4+CD28− T-cells induced osteoclastogenesis more efficiently than CD28+ T-cells.ConclusionOur data indicate that senescent T-cells promote osteoclastogenesis more efficiently than conventional CD28+ T-cells, which might contribute to the pathogenesis of systemic bone loss in RA and primary osteoporosis.

  1. Activation of CHK1 in Supporting Cells Indirectly Promotes Hair Cell Survival

    Directory of Open Access Journals (Sweden)

    Azadeh Jadali

    2017-05-01

    Full Text Available The sensory hair cells of the inner ear are exquisitely sensitive to ototoxic insults. Loss of hair cells after exposure to ototoxic agents causes hearing loss. Chemotherapeutic agents such as cisplatin causes hair cell loss. Cisplatin forms DNA mono-adducts as well as intra- and inter-strand DNA crosslinks. DNA cisplatin adducts are repaired through the DNA damage response. The decision between cell survival and cell death following DNA damage rests on factors that are involved in determining damage tolerance, cell survival and apoptosis. Cisplatin damage on hair cells has been the main focus of many ototoxic studies, yet the effect of cisplatin on supporting cells has been largely ignored. In this study, the effects of DNA damage response in cochlear supporting cells were interrogated. Supporting cells play a major role in the development, maintenance and oto-protection of hair cells. Loss of supporting cells may indirectly affect hair cell survival or maintenance. Activation of the Phosphoinositide 3-Kinase (PI3K signaling was previously shown to promote hair cell survival. To test whether activating PI3K signaling promotes supporting cell survival after cisplatin damage, cochlear explants from the neural subset (NS Cre Pten conditional knockout mice were employed. Deletion of Phosphatase and Tensin Homolog (PTEN activates PI3K signaling in multiple cell types within the cochlea. Supporting cells lacking PTEN showed increased cell survival after cisplatin damage. Supporting cells lacking PTEN also showed increased phosphorylation of Checkpoint Kinase 1 (CHK1 levels after cisplatin damage. Nearest neighbor analysis showed increased numbers of supporting cells with activated PI3K signaling in close proximity to surviving hair cells in cisplatin damaged cochleae. We propose that increased PI3K signaling promotes supporting cell survival through phosphorylation of CHK1 and increased survival of supporting cells indirectly increases hair cell

  2. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells

    OpenAIRE

    Castelnuovo Manuele; Massone Sara; Tasso Roberta; Fiorino Gloria; Gatti Monica; Robello Mauro; Gatta Elena; Berger Audrey; Strub Katharina; Florio Tullio; Dieci Giorgio; Cancedda Ranieri; Pagano Aldo

    2010-01-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted suscept...

  3. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    International Nuclear Information System (INIS)

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-01-01

    Highlights: → Genistein (GEN) is a phytoestrogen found in soy products. → GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. → GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. → A high-resolution melting assay was used to screen for epigenetic change. → We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  4. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  5. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  6. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Science.gov (United States)

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  7. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-01-01

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  8. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  9. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  10. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y.

    2016-01-01

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning two orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality. PMID:26883397

  11. Selective hydrogenation of 4-isobutylacetophenone over a sodium-promoted Pd/C catalyst

    International Nuclear Information System (INIS)

    Cho, Hong-Baek; Lee, Bae Uk; Nakayama, Tadachika; Park, Yeung-Ho; Ryu, Chung-Han

    2013-01-01

    The effect of sodium promotion on the selective hydrogenation of 4-isobutylacetophenone, 4-IBAP, was investigated over a Pd/C catalyst. A precipitation and deposition method was used to prepare the catalyst, and sodium was promoted on the Pd/C catalyst via post-impregnation while varying the sodium content. The sodium-promoted Pd/C catalyst resulted in a significantly improved yield greater than 96% of the desired product, 1-(4-isobutylphenyl) ethanol (4-IBPE), compared with the non-patented literature results under a mild hydrogenation condition. A detailed hydrogenation network over the Pd/C catalyst was suggested. The reaction mechanism for the yield and selectivity enhancement of 4-IBPE induced-by the promoted Pd/C was elucidated in relation to the geometric and electronic effects of reactant molecules in the microporous support depending on the reaction steps

  12. Older partner selection promotes the prevalence of cooperation in evolutionary games.

    Science.gov (United States)

    Yang, Guoli; Huang, Jincai; Zhang, Weiming

    2014-10-21

    Evolutionary games typically come with the interplays between evolution of individual strategy and adaptation to network structure. How these dynamics in the co-evolution promote (or obstruct) the cooperation is regarded as an important topic in social, economic, and biological fields. Combining spatial selection with partner choice, the focus of this paper is to identify which neighbour should be selected as a role to imitate during the process of co-evolution. Age, an internal attribute and kind of local piece of information regarding the survivability of the agent, is a significant consideration for the selection strategy. The analysis and simulations presented, demonstrate that older partner selection for strategy imitation could foster the evolution of cooperation. The younger partner selection, however, may decrease the level of cooperation. Our model highlights the importance of agent׳s age on the promotion of cooperation in evolutionary games, both efficiently and effectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    Directory of Open Access Journals (Sweden)

    Yanan Zhang

    2014-01-01

    Full Text Available Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG. Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.

  14. p63 promotes cell survival through fatty acid synthase.

    Directory of Open Access Journals (Sweden)

    Venkata Sabbisetti

    2009-06-01

    Full Text Available There is increasing evidence that p63, and specifically DeltaNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN, a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or DeltaN-specific p63 isoforms in squamous cell carcinoma (SCC9 or immortalized prostate epithelial (iPrEC cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.

  15. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Jing Song

    2018-03-01

    Full Text Available A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG, a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133+ and CD133− cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133+ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet. αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  16. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation.

    Science.gov (United States)

    Song, Jing; Ma, Dongshen; Xing, Yun; Tang, Shanshan; Alahdal, Murad; Guo, Jiamin; Pan, Yi; Zhang, Yanfeng; Shen, Yumeng; Wu, Qiong; Lu, Zhou; Jin, Liang

    2018-03-22

    A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG), a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133⁺ and CD133 - cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133⁺ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet). αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  17. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    International Nuclear Information System (INIS)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-01-01

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner

  18. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  19. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  20. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy.

    Science.gov (United States)

    Li, Si; Zhang, Hai-Yan; Wang, Tian; Meng, Xin; Zong, Zhi-Hong; Kong, De-Hui; Wang, Hua-Qin; Du, Zhen-Xian

    2014-11-01

    BAG3 plays a regulatory role in a number of cellular processes. Recent studies have attracted much attention on its role in activation of selective autophagy. In addition, we have very recently reported that BAG3 is implicated in a BECN1-independent autophagy, namely noncanonical autophagy. The current study aimed to investigate the potential involvement of BAG3 in canonical autophagy triggered by Earle's Balanced Salt Solution (EBSS) starvation. Replacement of complete medium with EBSS was used to trigger canonical autophagy. BAG3 expression was measured using real-time RT-PCR and Western blot. Autophagy was monitored using LC3-II transition and p62/SQSTM1 accumulation by Western blot, as well as punctate distribution of LC3 by immunofluorescence staining. Cell growth and apoptotic cell death was investigated using real-time cell analyzer and flowcytometry, respectively. BAG3 expression was potently reduced by EBSS starvation. Forced expression of BAG3 suppressed autophagy and promoted apoptotic cell death of thyroid cancer cells elicited by starvation. In addition, in the presence of autophagy inhibitor, the enhancing effect of BAG3 on apoptotic cell death was attenuated. These results suggest that BAG3 promotes apoptotic cell death in starved thyroid cancer cells, at least in part by autophagy attenuation.

  1. Particle compositions with a pre-selected cell internalization mode

    Science.gov (United States)

    Decuzzi, Paolo (Inventor); Ferrari, Mauro (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  2. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  3. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie [Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2 (Ireland); Smith, Anthony J. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom); Fleming, Garry J.P. [Material Science Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Dublin (Ireland); Cooper, Paul R. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom)

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  4. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    International Nuclear Information System (INIS)

    Duncan, Henry F.; Smith, Anthony J.; Fleming, Garry J.P.; Cooper, Paul R.

    2013-01-01

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2

  5. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells.

    Science.gov (United States)

    Martín, César; Etxaniz, Asier; Uribe, Kepa B; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M; Aréchaga, Juan; Ostolaza, Helena

    2015-09-08

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.

  6. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  7. Aquaporin 2 promotes cell migration and epithelial morphogenesis.

    Science.gov (United States)

    Chen, Ying; Rice, William; Gu, Zhizhan; Li, Jian; Huang, Jianmin; Brenner, Michael B; Van Hoek, Alfred; Xiong, Jianping; Gundersen, Gregg G; Norman, Jim C; Hsu, Victor W; Fenton, Robert A; Brown, Dennis; Lu, Hua A Jenny

    2012-09-01

    The aquaporin 2 (AQP2) water channel, expressed in kidney collecting ducts, contributes critically to water homeostasis in mammals. Animals lacking or having significantly reduced levels of AQP2, however, have not only urinary concentrating abnormalities but also renal tubular defects that lead to neonatal mortality from renal failure. Here, we show that AQP2 is not only a water channel but also an integrin-binding membrane protein that promotes cell migration and epithelial morphogenesis. AQP2 expression modulates the trafficking and internalization of integrin β1, facilitating its turnover at focal adhesions. In vitro, disturbing the interaction between AQP2 and integrin β1 by mutating the RGD motif led to reduced endocytosis, retention of integrin β1 at the cell surface, and defective cell migration and tubulogenesis. Similarly, in vivo, AQP2-null mice exhibited significant retention of integrin β1 at the basolateral membrane and had tubular abnormalities. In summary, these data suggest that the water channel AQP2 interacts with integrins to promote renal epithelial cell migration, contributing to the structural and functional integrity of the mammalian kidney.

  8. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  9. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  10. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    International Nuclear Information System (INIS)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-01-01

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  11. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  12. [Phenotype-based primary screening for drugs promoting neuronal subtype differentiation in embryonic stem cells with light microscope].

    Science.gov (United States)

    Gao, Yi-ning; Wang, Dan-ying; Pan, Zong-fu; Mei, Yu-qin; Wang, Zhi-qiang; Zhu, Dan-yan; Lou, Yi-jia

    2012-07-01

    To set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope. Hanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes. The cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons. Phenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.

  13. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons

    Directory of Open Access Journals (Sweden)

    Vitor Fortuna

    2015-06-01

    Full Text Available The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs develop in close proximity to the dorsal aorta (DA and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA differentiation of SN precursors temporally coincides with vascular mural cell (VMC recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  14. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  16. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    Science.gov (United States)

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. © 2015 Zambirinis et al.

  17. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  18. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters.

    Science.gov (United States)

    Dergai, Oleksandr; Cousin, Pascal; Gouge, Jerome; Satia, Karishma; Praz, Viviane; Kuhlman, Tracy; Lhôte, Philippe; Vannini, Alessandro; Hernandez, Nouria

    2018-05-01

    RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.e., TATA-box-binding protein [TBP], TFIIB, and TFIIA for Pol II transcription and TBP and BRF2 for Pol III transcription) assemble to ensure specific Pol recruitment. TFIIB and BRF2 could each, in a mutually exclusive fashion, be recruited to SNAPc. In contrast, TBP-TFIIB and TBP-BRF2 complexes were not recruited unless a TATA box was present, which allowed selective and efficient recruitment of the TBP-BRF2 complex. Thus, TBP both prevented BRF2 recruitment to Pol II promoters and enhanced BRF2 recruitment to Pol III promoters. On Pol II promoters, TBP recruitment was separate from TFIIB recruitment and enhanced by TFIIA. Our results provide a model for specific Pol recruitment at SNAPc-dependent promoters. © 2018 Dergai et al.; Published by Cold Spring Harbor Laboratory Press.

  19. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    Science.gov (United States)

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope. TIM family proteins were recently found to enhance infections by many different viruses, including several members of the Flaviviridae family. However, their importance in HCV infection has not previously been examined experimentally. The TIM family proteins include three members in humans: TIM-1, TIM-3, and TIM-4. The findings derived from our studies demonstrate that TIM-1, but not TIM-3 or TIM-4, promotes HCV infection by functioning as an HCV attachment factor. Knockout of the TIM-1 gene resulted in a remarkable reduction of HCV cell attachment and infection. PS-containing liposomes blocked HCV cell attachment and subsequent HCV infection. HCV particles could also be precipitated with a PS-specific monoclonal antibody. These findings suggest that TIM-1

  20. EBV promotes human CD8 NKT cell development.

    Directory of Open Access Journals (Sweden)

    Yuling He

    2010-05-01

    Full Text Available The reports on the origin of human CD8(+ Valpha24(+ T-cell receptor (TCR natural killer T (NKT cells are controversial. The underlying mechanism that controls human CD4 versus CD8 NKT cell development is not well-characterized. In the present study, we have studied total 177 eligible patients and subjects including 128 healthy latent Epstein-Barr-virus(EBV-infected subjects, 17 newly-onset acute infectious mononucleosis patients, 16 newly-diagnosed EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. We have established human-thymus/liver-SCID chimera, reaggregated thymic organ culture, and fetal thymic organ culture. We here show that the average frequency of total and CD8(+ NKT cells in PBMCs from 128 healthy latent EBV-infected subjects is significantly higher than in 17 acute EBV infectious mononucleosis patients, 16 EBV-associated Hodgkin lymphoma patients, and 16 EBV-negative normal control subjects. However, the frequency of total and CD8(+ NKT cells is remarkably increased in the acute EBV infectious mononucleosis patients at year 1 post-onset. EBV-challenge promotes CD8(+ NKT cell development in the thymus of human-thymus/liver-SCID chimeras. The frequency of total (3% of thymic cells and CD8(+ NKT cells ( approximately 25% of NKT cells is significantly increased in EBV-challenged chimeras, compared to those in the unchallenged chimeras (<0.01% of thymic cells, CD8(+ NKT cells undetectable, respectively. The EBV-induced increase in thymic NKT cells is also reflected in the periphery, where there is an increase in total and CD8(+ NKT cells in liver and peripheral blood in EBV-challenged chimeras. EBV-induced thymic CD8(+ NKT cells display an activated memory phenotype (CD69(+CD45RO(hiCD161(+CD62L(lo. After EBV-challenge, a proportion of NKT precursors diverges from DP thymocytes, develops and differentiates into mature CD8(+ NKT cells in thymus in EBV-challenged human-thymus/liver-SCID chimeras or

  1. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  2. DUOX enzyme activity promotes AKT signalling in prostate cancer cells.

    Science.gov (United States)

    Pettigrew, Christopher A; Clerkin, John S; Cotter, Thomas G

    2012-12-01

    Reactive oxygen species (ROS) and oxidative stress are related to tumour progression, and high levels of ROS have been observed in prostate tumours compared to normal prostate. ROS can positively influence AKT signalling and thereby promote cell survival. The aim of this project was to establish whether the ROS generated in prostate cancer cells positively regulate AKT signalling and enable resistance to apoptotic stimuli. In PC3 cells, dual oxidase (DUOX) enzymes actively generate ROS, which inactivate phosphatases, thereby maintaining AKT phosphorylation. Inhibition of DUOX by diphenylene iodium (DPI), intracellular calcium chelation and small-interfering RNA (siRNA) resulted in lower ROS levels, lower AKT and glycogen synthase kinase 3β (GSK3β) phosphorylation, as well as reduced cell viability and increased susceptibility to apoptosis stimulating fragment (FAS) induced apoptosis. This report shows that ROS levels in PC3 cells are constitutively maintained by DUOX enzymes, and these ROS positively regulate AKT signalling through inactivating phosphatases, leading to increased resistance to apoptosis.

  3. Repurposing Lesogaberan to Promote Human Islet Cell Survival and β-Cell Replication

    Directory of Open Access Journals (Sweden)

    Jide Tian

    2017-01-01

    Full Text Available The activation of β-cell’s A- and B-type gamma-aminobutyric acid receptors (GABAA-Rs and GABAB-Rs can promote their survival and replication, and the activation of α-cell GABAA-Rs promotes their conversion into β-cells. However, GABA and the most clinically applicable GABA-R ligands may be suboptimal for the long-term treatment of diabetes due to their pharmacological properties or potential side-effects on the central nervous system (CNS. Lesogaberan (AZD3355 is a peripherally restricted high-affinity GABAB-R-specific agonist, originally developed for the treatment of gastroesophageal reflux disease (GERD that appears to be safe for human use. This study tested the hypothesis that lesogaberan could be repurposed to promote human islet cell survival and β-cell replication. Treatment with lesogaberan significantly enhanced replication of human islet cells in vitro, which was abrogated by a GABAB-R antagonist. Immunohistochemical analysis of human islets that were grafted into immune-deficient mice revealed that oral treatment with lesogaberan promoted human β-cell replication and islet cell survival in vivo as effectively as GABA (which activates both GABAA-Rs and GABAB-Rs, perhaps because of its more favorable pharmacokinetics. Lesogaberan may be a promising drug candidate for clinical studies of diabetes intervention and islet transplantation.

  4. Natural killer cells promote early CD8 T cell responses against cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Scott H Robbins

    2007-08-01

    Full Text Available Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs for cytokine production, preserves the conventional dendritic cell (cDC compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate

  5. Regulating the advertising and promotion of stem cell therapies.

    Science.gov (United States)

    von Tigerstrom, Barbara

    2017-10-01

    There are widespread concerns with the ways in which 'unproven' stem cell therapies are advertised to patients. This article explores the potential and limits of using laws that regulate advertising and promotion as a tool to address these concerns. It examines general consumer protection laws and laws and policies on advertising medical products and services, focusing on the USA, Canada and Australia. The content of existing laws and policies covers most of the marketing practices that cause concern, but several systemic factors are likely to limit enforcement efforts. Potential reforms in Australia that would prevent direct-to-consumer advertising of autologous cell therapies are justified in principle and should be considered by other jurisdictions, but again face important practical limits to their effectiveness.

  6. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas

    2003-01-01

    .... The novelty in our approach is our ability to enhance the selectivity of killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  7. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas

    2004-01-01

    .... The novelty in our approach is our ability to enhance the selectivity of killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  8. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas S

    2005-01-01

    ...). The novelty in our approach is our ability to enhance the selectivity of VSV-induced killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  9. Mesenchymal stem cells overexpressing Ihh promote bone repair.

    Science.gov (United States)

    Zou, Shasha; Chen, Tingting; Wang, Yanan; Tian, Ruhui; Zhang, Lingling; Song, Pingping; Yang, Shi; Zhu, Yong; Guo, Xizhi; Huang, Yiran; Li, Zheng; Kan, Lixin; Hu, Hongliang

    2014-10-28

    Indian hedgehog (Ihh) signaling pathway is known to play key roles in various aspects of normal endochondral bone development. This study tested the potential roles of high Ihh signaling in the context of injury-induced bone regeneration. A rabbit tibia defect model was established to test the effects of the implant of Ihh/mesenchymal stem cells (MSCs)/scaffold complex. Computed tomography (CT), gross observation, and standard histological and immunohistological techniques were used to evaluate the effectiveness of the treatment. In vitro studies with MSCs and C3H10T1/2 cells were also employed to further understand the cellular and molecular mechanisms. We found that the implanted Ihh/MSCs/scaffold complex promoted bone repair. Consistently, in vitro study found that Ihh induced the upregulation of chondrocytic, osteogenic, and vascular cell markers, both in C3H10T1/2 cells and MSCs. Our study has demonstrated that high Ihh signaling in a complex with MSCs enhanced bone regeneration effectively in a clinically relevant acute injury model. Even though the exact underlying mechanisms are still far from clear, our primary data suggested that enhanced chondrogenesis, osteogenesis, and angiogenesis of MSCs at least partially contribute to the process. This study not only has implications for basic research of MSCs and Ihh signaling pathway but also points to the possibility of direct application of this specific paradigm to clinical bone repair.

  10. Selection of D-Alanine-Tolerant Rice Cells

    OpenAIRE

    Hisashi, Manabe; Koji, Ohira; Aizu Junior College of Fukushima Prefecture; Department of Agricultural Chemistry, Faculty of Agriculture, Tohoku University

    1984-01-01

    By repeating subculture of rice cells (parent cells) in a D-alanine containing medium, we could select rice cells which grew well in the D-alanine medium. The D-alanine-tolerant cells absorbed a fairly small amount of D-alanine from the medium and did not accumulate much D-alanine in the cells. Aggregation of D-alanine-tolerant cells was greater than that of parent cells. D-Alanine metabolism of D-alanine.-tolerant cells did not increase in comparison with parent cells.

  11. Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    Science.gov (United States)

    Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa

    2012-01-01

    Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425

  12. Activated ovarian endothelial cells promote early follicular development and survival.

    Science.gov (United States)

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  13. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-01-01

    Research highlights: → Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. → Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. → PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. → This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti

  14. A novel splice variant of supervillin, SV5, promotes carcinoma cell proliferation and cell migration

    International Nuclear Information System (INIS)

    Chen, Xueran; Yang, Haoran; Zhang, Shangrong; Wang, Zhen; Ye, Fang; Liang, Chaozhao; Wang, Hongzhi; Fang, Zhiyou

    2017-01-01

    Supervillin is an actin-associated protein that regulates actin dynamics by interacting with Myosin II, F-actin, and Cortactin to promote cell contractility and cell motility. Two splicing variants of human Supervillin (SV1 and SV4) have been reported in non-muscle cells; SV1 lacks 3 exons present in the larger isoform SV4. SV2, also called archvillin, is present in striated muscle; SV3, also called smooth muscle archvillin or SmAV, was cloned from smooth muscle. In the present study, we identify a novel splicing variant of Supervillin (SV5). SV5 contains a new splicing pattern. In the mouse tissues and cell lines examined, SV5 was predominantly expressed in skeletal and cardiac muscles and in proliferating cells, but was virtually undetectable in most normal tissues. Using RNAi and rescue experiments, we show here that SV5 displays altered functional properties in cancer cells, and regulates cell proliferation and cell migration.

  15. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment.

    Science.gov (United States)

    Cheng, Chiung-Chi; Chao, Wei-Ting; Liao, Chen-Chun; Tseng, Yu-Hui; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Hsu, Yung-Hsiang; Liu, Yi-Hsiang

    2018-01-02

    Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.

  16. Selective eradication of cancer cells in vitro

    International Nuclear Information System (INIS)

    Schneiderman, M.H.; Schneiderman, G.S.

    1984-01-01

    A simple system consisting of cultured HeLa (human cancer) and WI38 (normal human fetal lung) cells and the control cultures of the individual cells were set up to test and compare the effects of the cell cycle-active agents /sup 125/I-iododeoxyuridine (/sup 125/IUdR) and hydroxyurea (HU) on cell survival. The presence of cells and growth after treatment were used as a positive indication of survival. The experimental cultures were first seeded with WI38 cells and allowed to grow to confluency before adding 1.0 x 10/sup 5/ HeLa cells. After two days of treatment-free growth, the co-cultures were continuously treated with /sup 125/IUdR (0.5-2.0 μCi/ml, carrier free) or HU (1.0 x 10/sup -9/ and 1.0 x 10/sup -3/M). At the termination of treatment the co-cultures were split 3 to 1 and incubated for seven days. As expected, there was little or no detectable effect on the growth of WI38 cells treated with HU or /sup 125/IUdR while the cells were confluent. However, HeLa cells were reduced by 1.0 x 10/sup -3/M HU and were eradicated after all concentrations of /sup 125/IUdR

  17. Caspase 8 and maspin are downregulated in breast cancer cells due to CpG site promoter methylation

    International Nuclear Information System (INIS)

    Wu, Yanyuan; Alvarez, Monica; Slamon, Dennis J; Koeffler, Phillip; Vadgama, Jaydutt V

    2010-01-01

    Epigenetic changes associated with promoter DNA methylation results in silencing of several tumor suppressor genes that lead to increased risk for tumor formation and for progression of the cancer. Methylation specific PCR (MSP) and bisulfite sequencing were used for determination of proapoptotic gene Caspase 8 (CASP8) and the tumor suppressor gene maspin promoter methylation in four breast cancer and two non-tumorigenic breast cell lines. Involvement of histone H3 methylation in those cell lines were examined by CHIP assay. The CpG sites in the promoter region of CASP8 and maspin were methylated in all four breast cancer cell lines but not in two non-tumorigenic breast cell lines. Demethylation agent 5-aza-2'-deoxycytidine (5-aza-dc) selectively inhibits DNA methyltransferases, DNMT3a and DNMT3b, and restored CASP8 and maspin gene expression in breast cancer cells. 5-aza-dc also reduced histone H3k9me2 occupancy on CASP8 promoter in SKBR3cells, but not in MCF-7 cells. Combination of histone deacetylase inhibitor Trichostatin A (TSA) and 5-aza-dc significant decrease in nuclear expression of Di-methyl histone H3-Lys27 and slight increase in acetyl histone H3-Lys9 in MCF-7 cells. CASP8 mRNA and protein level in MCF-7 cells were increased by the 5-aza-dc in combination with TSA. Data from our study also demonstrated that treatment with 5-FU caused a significant increase in unmethylated CASP8 and in CASP8 mRNA in all 3 cancer lines. CASP8 and maspin expression were reduced in breast cancer cells due to promoter methylation. Selective application of demethylating agents could offer novel therapeutic opportunities in breast cancer

  18. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.

    Science.gov (United States)

    Nambu-Nishida, Yumiko; Sakihama, Yuri; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2018-01-01

    To efficiently utilize xylose, a major sugar component of hemicelluloses, in Saccharomyces cerevisiae requires the proper expression of varied exogenous and endogenous genes. To expand the repertoire of promoters in engineered xylose-utilizing yeast strains, we selected promoters in S. cerevisiae during cultivation and fermentation using xylose as a carbon source. To select candidate promoters that function in the presence of xylose, we performed comprehensive gene expression analyses using xylose-utilizing yeast strains both during xylose and glucose fermentation. Based on microarray data, we chose 29 genes that showed strong, moderate, and weak expression in xylose rather than glucose fermentation. The activities of these promoters in a xylose-utilizing yeast strain were measured by lacZ reporter gene assays over time during aerobic cultivation and microaerobic fermentation, both in xylose and glucose media. In xylose media, P TDH3 , P FBA1 , and P TDH1 were favorable for high expression, and P SED1 , P HXT7 , P PDC1 , P TEF1 , P TPI1 , and P PGK1 were acceptable for medium-high expression in aerobic cultivation, and moderate expression in microaerobic fermentation. P TEF2 allowed moderate expression in aerobic culture and weak expression in microaerobic fermentation, although it showed medium-high expression in glucose media. P ZWF1 and P SOL4 allowed moderate expression in aerobic cultivation, while showing weak but clear expression in microaerobic fermentation. P ALD3 and P TKL2 showed moderate promoter activity in aerobic cultivation, but showed almost no activity in microaerobic fermentation. The knowledge of promoter activities in xylose cultivation obtained in this study will permit the control of gene expression in engineered xylose-utilizing yeast strains that are used for hemicellulose fermentation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Promoting the selection of healthy food through menu item description in a family-style restaurant.

    Science.gov (United States)

    Colby, J J; Elder, J P; Peterson, G; Knisley, P M; Carleton, R A

    1987-01-01

    We describe an attempt to influence the selection of menu items in a family-style restaurant. Three different messages, varying in content and emphasis, were used to promote one food special each intervention day. One message emphasized that the specials were particularly healthful, being relatively low in fat, sodium, and cholesterol. A second message stressed flavor and added that the choice was healthful. A third, nonspecific message made no mention of taste or health factors, but simply noted that there was a daily special. Results indicated that restaurant patrons selected healthful specials when the message noted that the choice was healthful but emphasized flavor. Patrons were apparently more open to information about the palatability of the food than its healthfulness per se. These results have implications for point-of-purchase health promotion efforts in general, especially those involving food-labeling programs in restaurants and grocery stores.

  20. Method of cell transplantation promoting the organization of intraarterial thrombus.

    Science.gov (United States)

    Hirano, Koji; Shimono, Takatsugu; Imanaka-Yoshida, Kyoko; Miyamoto, Keiichi; Fujinaga, Kazuya; Kajimoto, Masaki; Miyake, Yoichiro; Nishikawa, Masakatsu; Yoshida, Toshimichi; Uchida, Atsumasa; Shimpo, Hideto; Yada, Isao; Hirata, Hitoshi

    2005-08-30

    Endovascular aortic repairs have been developed as less invasive treatments for aortic aneurysms. Some aneurismal cavities, however, remain without organization, causing a re-expansion of the aneurysms. We studied cell transplantation into the aneurismal sac to promote the organization of thrombus for the complete healing of aneurysms. Skin fibroblasts and skeletal myoblasts were isolated from rats for cell transplantation. An intraarterial thrombus model was made by ligation of the carotid artery. Culture medium (medium group, n=11), collagen gel (gel group, n=11), fibroblasts with collagen gel (F group, n=15), myoblasts with collagen gel (M group, n=12), or mixture of fibroblasts and myoblasts with collagen gel (F+M group, n=14) were injected into the thrombus. After 28 days, histologically, the arterial lumens of the F and M groups were partly filled with fibrous tissues, whereas in the F+M group organization was almost completed and luminal sizes diminished. Immunohistochemical staining demonstrated that alpha-smooth muscle actin-positive cells were more abundantly contained in the organized area of the F+M group than in the other groups. We also analyzed cellular function in vitro with immunofluorescence; coculture of fibroblasts and myoblasts showed that the fraction of alpha-smooth muscle actin-positive fibroblasts increased. This phenomenon accounts for the rapid organization of thrombus in the F+M group in vivo. Cell transplantation accelerated thrombus organization. Especially, myoblasts enhanced differentiation of fibroblasts into myofibroblasts, contributing to rapid thrombus organization. Cell transplantation into unorganized spaces seems applicable to endovascular treatment of aneurysms.

  1. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-01-01

    Highlights: ► Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). ► Presence of SCs dramatically increased proliferation and migration of UCMSCs. ► Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of “nurse” cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  2. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  3. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    Science.gov (United States)

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy.

    Science.gov (United States)

    Park, Jungsun; Li, Haiyan; Zhang, Mingjun; Lu, Yong; Hong, Bangxing; Zheng, Yuhuan; He, Jin; Yang, Jing; Qian, Jianfei; Yi, Qing

    2014-08-01

    Dendritic cells (DCs) are professional antigen-presenting cells to initiate immune responses, and DC survival time is important for affecting the strength of T-cell responses. Interleukin (IL)-9-producing T-helper (Th)-9 cells play an important role in anti-tumor immunity. However, it is unclear how Th9 cells communicate with DCs. In this study, we investigated whether murine Th9 cells affected the survival of myeloid DCs. DCs derived from bone marrow of C57BL/6 mice were cocultured with Th9 cells from OT-II mice using transwell, and the survival of DCs was examined. DCs cocultured with Th9 cells had longer survival and fewer apoptotic cells than DCs cultured alone in vitro. In melanoma B16-OVA tumor-bearing mice, DCs conditioned by Th9 cells lived longer and induced stronger anti-tumor response than control DCs did in vivo. Mechanistic studies revealed that IL-3 but not IL-9 secreted by Th9 cells was responsible for the prolonged survival of DCs. IL-3 upregulated the expression of anti-apoptotic protein Bcl-xL and activated p38, ERK and STAT5 signaling pathways in DCs. Taken together, our data provide the first evidence that Th9 cells can promote the survival of DCs through IL-3, and will be helpful for designing Th9 cell immunotherapy and more effective DC vaccine for human cancers.

  5. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease.

    Science.gov (United States)

    Valentine, Kristen M; Davini, Dan; Lawrence, Travis J; Mullins, Genevieve N; Manansala, Miguel; Al-Kuhlani, Mufadhal; Pinney, James M; Davis, Jason K; Beaudin, Anna E; Sindi, Suzanne S; Gravano, David M; Hoyer, Katrina K

    2018-05-09

    CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality. Copyright © 2018 by The American Association of Immunologists, Inc.

  6. Endogenous Tim-1 (Kim-1) promotes T-cell responses and cell-mediated injury in experimental crescentic glomerulonephritis.

    Science.gov (United States)

    Nozaki, Yuji; Nikolic-Paterson, David J; Snelgrove, Sarah L; Akiba, Hisaya; Yagita, Hideo; Holdsworth, Stephen R; Kitching, A Richard

    2012-05-01

    The T-cell immunoglobulin mucin 1 (Tim-1) modulates CD4(+) T-cell responses and is also expressed by damaged proximal tubules in the kidney where it is known as kidney injury molecule-1 (Kim-1). We sought to define the role of endogenous Tim-1 in experimental T-cell-mediated glomerulonephritis induced by sheep anti-mouse glomerular basement membrane globulin acting as a planted foreign antigen. Tim-1 is expressed by infiltrating activated CD4(+) cells in this model, and we studied the effects of an inhibitory anti-Tim-1 antibody (RMT1-10) on immune responses and glomerular disease. Crescentic glomerulonephritis, proliferative injury, and leukocyte accumulation were attenuated following treatment with anti-Tim-1 antibodies, but interstitial foxp3(+) cell accumulation and interleukin-10 mRNA were increased. T-cell proliferation and apoptosis decreased in the immune system along with a selective reduction in Th1 and Th17 cellular responses both in the immune system and within the kidney. The urinary excretion and renal expression of Kim-1 was reduced by anti-Tim-1 antibodies reflecting diminished interstitial injury. The effects of anti-Tim-1 antibodies were not apparent in the early phase of renal injury, when the immune response to sheep globulin was developing. Thus, endogenous Tim-1 promotes Th1 and Th17 nephritogenic immune responses and its neutralization reduces renal injury while limiting inflammation in cell-mediated glomerulonephritis.

  7. Selection of radioresistant cells by vitamin A deficiency in a small cell lung cancer cell line

    International Nuclear Information System (INIS)

    Terasaki, Takeo; Shimosato, Yukio; Wada, Makio; Yokota, Jun; Terada, Masaaki

    1990-01-01

    Radiation sensitivity of a human small cell lung cancer cell line, Lu-134-B cells, cultured in serum-supplemented medium and of cells transferred to and cultured in delipidized serum-supplemented (vitamin A-deficient) medium was studied. The cells cultured in serum-supplemented medium showed the phenotype of classic small cell lung cancer sensitive to radiation, while cells transferred to delipidized serum-supplemented medium showed partial squamous cell differentiation and became resistant to radiation. These results suggest that some small cell lung cancer cells in vitro change their morphology and radiosensitivity depending on the culture conditions. The change in radiosensitivity was reproducible, and was not reversible by culture of the radioresistant cells in delipidized serum-supplemented medium with addition of retinoic acid (vitamin A-sufficient medium) for two months, although squamous cells disappeared. Acquisition of radioresistancy was considered to occur as the result of clonal selective growth in delipidized medium of a minor cell population in the original cell culture, based on a study of chromosome number. It was also found that there was no association of myc-family oncogenes with the changes of radiosensitivity in this cell line. (author)

  8. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning

    OpenAIRE

    Olson, Timothy S.; Caselli, Anna; Otsuru, Satoru; Hofmann, Ted J.; Williams, Richard; Paolucci, Paolo; Dominici, Massimo; Horwitz, Edwin M.

    2013-01-01

    After radioablative conditioning, host megakaryocytes promote endosteal HSC niche expansion and donor stem cell engraftment.Thrombopoietin administration before radiation and bone marrow transplant enhances megakaryocyte promotion of HSC engraftment.

  9. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina.

    Science.gov (United States)

    White, David T; Sengupta, Sumitra; Saxena, Meera T; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai; Mumm, Jeff S

    2017-05-02

    Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration-i.e., selective cell-loss paradigms akin to degenerative disease-are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of ( i ) rod cell clearance, ( ii ) MG/progenitor cell proliferation, and ( iii ) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions.

  10. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  11. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells.

    Science.gov (United States)

    Castelnuovo, Manuele; Massone, Sara; Tasso, Roberta; Fiorino, Gloria; Gatti, Monica; Robello, Mauro; Gatta, Elena; Berger, Audrey; Strub, Katharina; Florio, Tullio; Dieci, Giorgio; Cancedda, Ranieri; Pagano, Aldo

    2010-10-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted susceptibility to the effects of antiblastic drugs used in NB therapy. Altogether, these results suggest the induction of NDM29 expression as possible treatment to increase cancer cells vulnerability to therapeutics and the measure of its synthesis in NB explants as prognostic factor of this cancer type.

  12. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells.

    Science.gov (United States)

    Nakamura, Koji; Sawada, Kenjiro; Kinose, Yasuto; Yoshimura, Akihiko; Toda, Aska; Nakatsuka, Erika; Hashimoto, Kae; Mabuchi, Seiji; Morishige, Ken-Ichirou; Kurachi, Hirohisa; Lengyel, Ernst; Kimura, Tadashi

    2017-01-01

    Epithelial ovarian cancer (EOC) cells metastasize within the peritoneal cavity and directly encounter human peritoneal mesothelial cells (HPMC) as the initial step of metastasis. The contact between ovarian cancer cells and the single layer of mesothelial cells involves direct communications that modulate cancer progression but the mechanisms are unclear. One candidate mediating cell-cell communications is exosomes, 30-100 nm membrane vesicles of endocytic origin, through the cell-cell transfer of proteins, mRNAs, or microRNAs. Therefore, the goal was to mechanistically characterize how EOC-derived exosomes modulate metastasis. Exosomes from ovarian cancer cells were fluorescently labeled and cocultured with HPMCs which internalized the exosomes. Upon exosome uptake, HPMCs underwent a change in cellular morphology to a mesenchymal, spindle phenotype. CD44, a cell surface glycoprotein, was found to be enriched in the cancer cell-derived exosomes, transferred, and internalized to HPMCs, leading to high levels of CD44 in HPMCs. This increased CD44 expression in HPMCs promoted cancer invasion by inducing the HPMCs to secrete MMP9 and by cleaning the mesothelial barrier for improved cancer cell invasion. When CD44 expression was knocked down in cancer cells, exosomes had fewer effects on HPMCs. The inhibition of exosome release from cancer cells blocked CD44 internalization in HPMCs and suppressed ovarian cancer invasion. In ovarian cancer omental metastasis, positive CD44 expression was observed in those mesothelial cells that directly interacted with cancer cells, whereas CD44 expression was negative in the mesothelial cells remote from the invading edge. This study indicates that ovarian cancer-derived exosomes transfer CD44 to HPMCs, facilitating cancer invasion. Mechanistic insight from the current study suggests that therapeutic targeting of exosomes may be beneficial in treating ovarian cancer. Mol Cancer Res; 15(1); 78-92. ©2016 AACR. ©2016 American

  13. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

    Science.gov (United States)

    Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter

    2015-01-01

    Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855

  14. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    Science.gov (United States)

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  15. Dendritic Cells Promote Pancreatic Viability in Mice with Acute Pancreatitis

    Science.gov (United States)

    Bedrosian, Andrea S.; Nguyen, Andrew H.; Hackman, Michael; Connolly, Michael K.; Malhotra, Ashim; Ibrahim, Junaid; Cieza-Rubio, Napoleon E.; Henning, Justin R.; Barilla, Rocky; Rehman, Adeel; Pachter, H. Leon; Medina-Zea, Marco V.; Cohen, Steven M.; Frey, Alan B.; Acehan, Devrim; Miller, George

    2011-01-01

    Background & Aims Acute pancreatitis increases morbidity and mortality from organ necrosis by mechanisms that are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. Methods Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier analysis. Results Numbers of MHC II+CD11c+DC increased 100-fold in pancreas of mice with acute pancreatitis, to account for nearly 15% of intra-pancreatic leukocytes. Intra-pancreatic DC acquired an immune phenotype in mice with acute pancreatitis; they expressed higher levels of MHC II and CD86 and increased production of interleukin-6, membrane cofactor protein (MCP)-1, and tumor necrosis factor (TNF)-α. However, rather than inducing an organ-destructive inflammatory process, DC were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DC and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DC died from acinar cell death within 4 days. Depletion of DC from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DC did not require infiltrating neutrophils, activation of NF-κB, or signaling by mitogen-activated protein kinase or TNF-α. Conclusions DC are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress. PMID:21801698

  16. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    Science.gov (United States)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  17. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    International Nuclear Information System (INIS)

    Dozmorov, Mikhail G; Lin, Hsueh-Kung; Azzarello, Joseph T; Wren, Jonathan D; Fung, Kar-Ming; Yang, Qing; Davis, Jeffrey S; Hurst, Robert E; Culkin, Daniel J; Penning, Trevor M

    2010-01-01

    Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Bioinformatics

  18. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    International Nuclear Information System (INIS)

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-α-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 μM) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-α and 5 μM sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction

  19. IGFBP1 increases β-cell regeneration by promoting α- to β-cell transdifferentiation.

    Science.gov (United States)

    Lu, Jing; Liu, Ka-Cheuk; Schulz, Nadja; Karampelias, Christos; Charbord, Jérémie; Hilding, Agneta; Rautio, Linn; Bertolino, Philippe; Östenson, Claes-Göran; Brismar, Kerstin; Andersson, Olov

    2016-09-15

    There is great interest in therapeutically harnessing endogenous regenerative mechanisms to increase the number of β cells in people with diabetes. By performing whole-genome expression profiling of zebrafish islets, we identified 11 secreted proteins that are upregulated during β-cell regeneration. We then tested the proteins' ability to potentiate β-cell regeneration in zebrafish at supraphysiological levels. One protein, insulin-like growth factor (Igf) binding-protein 1 (Igfbp1), potently promoted β-cell regeneration by potentiating α- to β-cell transdifferentiation. Using various inhibitors and activators of the Igf pathway, we show that Igfbp1 exerts its regenerative effect, at least partly, by inhibiting Igf signaling. Igfbp1's effect on transdifferentiation appears conserved across species: Treating mouse and human islets with recombinant IGFBP1 in vitro increased the number of cells co-expressing insulin and glucagon threefold. Moreover, a prospective human study showed that having high IGFBP1 levels reduces the risk of developing type-2 diabetes by more than 85%. Thus, we identify IGFBP1 as an endogenous promoter of β-cell regeneration and highlight its clinical importance in diabetes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  20. Preferential selection based on strategy persistence and memory promotes cooperation in evolutionary prisoner's dilemma games

    Science.gov (United States)

    Liu, Yuanming; Huang, Changwei; Dai, Qionglin

    2018-06-01

    Strategy imitation plays a crucial role in evolutionary dynamics when we investigate the spontaneous emergence of cooperation under the framework of evolutionary game theory. Generally, when an individual updates his strategy, he needs to choose a role model whom he will learn from. In previous studies, individuals choose role models randomly from their neighbors. In recent works, researchers have considered that individuals choose role models according to neighbors' attractiveness characterized by the present network topology or historical payoffs. Here, we associate an individual's attractiveness with the strategy persistence, which characterizes how frequently he changes his strategy. We introduce a preferential parameter α to describe the nonlinear correlation between the selection probability and the strategy persistence and the memory length of individuals M into the evolutionary games. We investigate the effects of α and M on cooperation. Our results show that cooperation could be promoted when α > 0 and at the same time M > 1, which corresponds to the situation that individuals are inclined to select their neighbors with relatively higher persistence levels during the evolution. Moreover, we find that the cooperation level could reach the maximum at an optimal memory length when α > 0. Our work sheds light on how to promote cooperation through preferential selection based on strategy persistence and a limited memory length.

  1. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility

    International Nuclear Information System (INIS)

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan; Maitz, Manfred F.; Zhao, Anshan

    2016-01-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. - Highlights: • Construction of fucoidan/laminin functional multilayer to biomimic the basement membrane of vascular • The fucoidan/laminin complex demonstrates anti-coagulation property. • The fucoidan/laminin complex can selectively regulate EC and SMC growth behavior to prevent restenosis.

  2. Construction of a fucoidan/laminin functional multilayer to direction vascular cell fate and promotion hemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changrong; Wang, Yan; Su, Hong; Yang, Ping; Huang, Nan [Key Laboratory of Advanced Materials Technology of Ministry of Education, Department of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden 01069 (Germany); Zhao, Anshan [Key Laboratory of Advanced Materials Technology of Ministry of Education, Department of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-07-01

    Surface biofunctional modification of cardiovascular stents is a versatile approach to reduce the adverse effects after implantation. In this work, a novel multifunctional coating was fabricated by coimmobilization of the sulfated polysaccharide of brown algae fucoidan and laminin to biomimic the vascular intimal conditions in order to support rapid endothelialization, prevent restenosis and improve hemocompatibility. The surface properties of the coating such as hydrophilicity, bonding density of biomolecules and stability were evaluated and optimized. According to the biocompatibility tests, the fucoidan/laminin multilayer coated surface displayed less platelet adhesion with favorable anticoagulant property. In addition, the fucoidan/laminin complex showed function to selectively regulate vascular cells growth behavior. The proliferation of endothelial cells (ECs) on the fucoidan/laminin biofunctional coating was significantly promoted. For the smooth muscle cells (SMCs), inhibitory effects on cell adhesion and proliferation were observed. In conclusion, the fucoidan/laminin biofunctional coating was successfully fabricated with desirable anticoagulant and endothelialization properties which show a promising application in the vascular devices such as vascular stents or grafts surface modification. - Highlights: • Construction of fucoidan/laminin functional multilayer to biomimic the basement membrane of vascular • The fucoidan/laminin complex demonstrates anti-coagulation property. • The fucoidan/laminin complex can selectively regulate EC and SMC growth behavior to prevent restenosis.

  3. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.

    Science.gov (United States)

    Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan

    2017-05-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  4. A human thymic epithelial cell culture system for the promotion of lymphopoiesis from hematopoietic stem cells.

    Science.gov (United States)

    Beaudette-Zlatanova, Britte C; Knight, Katherine L; Zhang, Shubin; Stiff, Patrick J; Zúñiga-Pflücker, Juan Carlos; Le, Phong T

    2011-05-01

    A human thymic epithelial cell (TEC) line expressing human leukocyte antigen-ABC and human leukocyte antigen-DR was engineered to overexpress murine Delta-like 1 (TEC-Dl1) for the purpose of establishing a human culture system that supports T lymphopoiesis from hematopoietic progenitor cells (HPCs). Cord blood or bone marrow HPCs were co-cultured with either the parental TEC line expressing low levels of the Notch ligands, Delta-like 1 and Delta-like 4, or with TEC-Dl1 to determine if these cell lines support human lymphopoiesis. In co-cultures with cord blood or bone marrow HPCs, TEC-Dl1 cells promote de novo generation of CD7(pos)CD1a(pos) T-lineage committed cells. Most CD7(pos)CD1a(hi) cells are CD4(pos)CD8(pos) double-positive (DP). We found that TEC-Dl1 cells are insufficient to generate mature CD3(hi) CD4(pos) or CD3(hi) CD8(pos) single-positive (SP) T cells from the CD4(pos)CD8(pos) DP T cells; however, we detected CD3(lo) cells within the DP and SP CD4 and CD8 populations. The CD3(lo) SP cells expressed lower levels of interleukin-2Rα and interleukin-7Rα compared to CD3(lo) DP cells. In contrast to the TEC-Dl1 line, the parental TEC-84 line expressing low levels of human Notch ligands permits HPC differentiation to the B-cell lineage. We report for the first time a human TEC line that supports lymphopoiesis from cord blood and bone marrow HPC. The TEC cell lines described herein provide a novel human thymic stroma model to study the contribution of human leukocyte antigen molecules and Notch ligands to T-cell commitment and maturation and could be utilized to promote lymphopoiesis for immune cell therapy. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  5. Selective apoptosis induction in MCF-7 cell line by truncated minimal functional region of Apoptin

    International Nuclear Information System (INIS)

    Shen Ni, Lim; Allaudin, Zeenathul Nazariah bt; Mohd Lila, Mohd Azmi b; Othman, Abas Mazni b; Othman, Fauziah bt

    2013-01-01

    Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. Five truncated Apoptin proteins were analyzed to determine their selective ability to migrate into the nucleus of human breast adenocarcinoma MCF-7 cells for inducing apoptosis. For identification of the minimal selective domain for apoptosis, the wild-type Apoptin gene had been reconstructed by PCR to generate segmental deletions at the N’ terminal and linked with nuclear localization sites (NLS1 and NLS2). All the constructs were fused with maltose-binding protein gene and individually expressed by in vitro Rapid Translation System. Standardized dose of proteins were delivered into human breast adenocarcinoma MCF-7 cells and control human liver Chang cells by cytoplasmic microinjection, and subsequently observed for selective apoptosis effect. Three of the truncated Apoptin proteins with N-terminal deletions spanning amino acid 32–83 retained the cancer selective nature of wild-type Apoptin. The proteins were successfully translocated to the nucleus of MCF-7 cells initiating apoptosis, whereas non-toxic cytoplasmic retention was observed in normal Chang cells. Whilst these truncated proteins retained the tumour-specific death effector ability, the specificity for MCF-7 cells was lost in two other truncated proteins that harbor deletions at amino acid 1–31. The detection of apoptosing normal Chang cells and MCF-7 cells upon cytoplasmic microinjection of these proteins implicated a loss in Apoptin’s signature targeting activity. Therefore, the critical stretch spanning amino acid 1–31 at the upstream of a known hydrophobic leucine-rich stretch (LRS) was strongly suggested as one of the prerequisite region in Apoptin for cancer targeting. Identification of this selective domain provides a platform for developing small targets to facilitating carrier-mediated-transport across

  6. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Duda, Georg N; Geissler, Sven

    2017-09-01

    Mesenchymal stromal cells (MSCs) secrete paracrine factors that play crucial roles during tissue regeneration. Whether this paracrine function is influenced by the properties of biomaterials in general, and those used for cell delivery in particular, largely remains unexplored. Here, we investigated if three-dimensional culture in distinct microenvironments - nanoporous hydrogels (mean pore size ∼5 nm) and macroporous scaffolds (mean pore size ∼120 μm) - affects the secretion pattern of MSCs, and consequently leads to differential paracrine effects on target progenitor cells such as myoblasts. We report that compared to MSCs encapsulated in hydrogels, scaffold seeded MSCs show an enhanced secretion profile and exert beneficial paracrine effects on various myoblast functions including migration and proliferation. Additionally, we show that the heightened paracrine effects of scaffold seeded cells can in part be attributed to N-cadherin mediated cell-cell interactions during culture. In hydrogels, this physical interaction between cells is prevented by the encapsulating matrix. Functionally blocking N-cadherin negatively affected the secretion profile and paracrine effects of MSCs on myoblasts, with stronger effects observed for scaffold seeded compared to hydrogel encapsulated cells. Together, these findings demonstrate that the therapeutic potency of MSCs can be enhanced by biomaterials that promote cell-cell interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. T cell depleted haploidentical transplantation: positive selection

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2011-06-01

    Full Text Available Interest in mismatched transplantation arises from the fact that a suitable one-haplotype mismatched donor is immediately available for virtually all patients, particularly for those who urgently need an allogenic transplant. Work on one haplotype-mismatched transplants has been proceeding for over 20 years all over the world and novel transplant techniques have been developed. Some centres have focused on the conditioning regimens and post transplant immune suppression; others have concentrated on manipulating the graft which may be a megadose of extensively T celldepleted or unmanipulated progenitor cells. Excellent engraftment rates are associated with a very low incidence of acute and chronic GVHD and regimen-related mortality even in patients who are over 50 years old. Overall, event-free survival and transplant-related mortality compare favourably with reports on transplants from sources of stem cells other than the matched sibling.

  8. Selective uptake of boronophenylalanine by glioma stem/progenitor cells

    International Nuclear Information System (INIS)

    Sun, Ting; Zhou, Youxin; Xie, Xueshun; Chen, Guilin; Li, Bin; Wei, Yongxin; Chen, Jinming; Huang, Qiang; Du, Ziwei

    2012-01-01

    The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts. - Highlights: ► Uptake of BPA was analyzed in stem/progenitor and differentiated glioma cells. ► Selective accumulation of BPA was lower in glioma stem/progenitor cells. ► Retention of boron after BPA removal was longer in glioma stem/progenitor cells. ► Boron biodistribution was not statistically different in mice with xenografts.

  9. Follicular B Cells Promote Atherosclerosis via T Cell-Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G.

    Science.gov (United States)

    Tay, Christopher; Liu, Yu-Han; Kanellakis, Peter; Kallies, Axel; Li, Yi; Cao, Anh; Hosseini, Hamid; Tipping, Peter; Toh, Ban-Hock; Bobik, Alex; Kyaw, Tin

    2018-05-01

    B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte-induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice. Using mixed chimeric Ldlr -/- mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells. During development of atherosclerosis, these deficiencies affected T-B cell interactions, germinal center B cells, plasma cells, and IgG. As FO B cells differentiating into plasma cells require Blimp-1, we also assessed its role in the development of atherosclerosis. Blimp-1-deficient B cells greatly attenuated atherosclerosis and immunoglobulin-including IgG production, preventing IgG accumulation in atherosclerotic lesions; Blimp-1 deletion also attenuated lesion proinflammatory cytokines, apoptotic cell numbers, and necrotic core. To determine the importance of IgG for atherosclerosis, we purified IgG from atherosclerotic mice. Their transfer but not IgG from nonatherosclerotic mice into Ldlr -/- mice whose B cells are Blimp-1-deficient increased atherosclerosis; transfer was associated with IgG accumulating in atherosclerotic lesions, increased lesion inflammatory cytokines, apoptotic cell numbers, and necrotic core size. The mechanism by which FO B cells promote atherosclerosis is highly dependent on their expression of MHCII, CD40, and Blimp-1. FO B cell differentiation into IgG-producing plasma cells also is critical for their proatherogenic actions. Targeting B-T cell interactions and pathogenic IgG may provide novel therapeutic strategies to prevent atherosclerosis and its adverse cardiovascular complications. © 2018 American Heart Association, Inc.

  10. Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection.

    Directory of Open Access Journals (Sweden)

    Emma C Reilly

    Full Text Available α-Galactosylceramide (α-GalCer is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV. We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+ T cells, as a consequence of reduced inflammation.

  11. Treatment selection for tonsillar squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yao-Yuan Kuo

    2013-04-01

    Conclusion: Both primary surgery and RT/CRT organ preservation are effective treatments for tonsillar SCC. Single modality treatment, either surgery or RT/CRT, can typically be provided for stage I–II diseases. Although RT/CRT organ preservation is used more frequently for stage III–IV tonsillar SCC in recent years, primary surgery combined with adjuvant therapy still achieves equivalent outcomes. Multidisciplinary pretreatment counseling and the facilities and personnel available are therefore important for decision-making. In addition, if RT/CRT organ preservation is selected as the primary treatment, tumor tonsillectomy is not indicated.

  12. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D.

    2006-01-01

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells

  13. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool

    Directory of Open Access Journals (Sweden)

    Siegel Robert S

    2008-02-01

    Full Text Available Abstract Background A common limitation in guard cell signaling research is that it is difficult to obtain consistent high expression of transgenes of interest in Arabidopsis guard cells using known guard cell promoters or the constitutive 35S cauliflower mosaic virus promoter. An additional drawback of the 35S promoter is that ectopically expressing a gene throughout the organism could cause pleiotropic effects. To improve available methods for targeted gene expression in guard cells, we isolated strong guard cell promoter candidates based on new guard cell-specific microarray analyses of 23,000 genes that are made available together with this report. Results A promoter, pGC1(At1g22690, drove strong and relatively specific reporter gene expression in guard cells including GUS (beta-glucuronidase and yellow cameleon YC3.60 (GFP-based calcium FRET reporter. Reporter gene expression was weaker in immature guard cells. The expression of YC3.60 was sufficiently strong to image intracellular Ca2+ dynamics in guard cells of intact plants and resolved spontaneous calcium transients in guard cells. The GC1 promoter also mediated strong reporter expression in clustered stomata in the stomatal development mutant too-many-mouths (tmm. Furthermore, the same promoter::reporter constructs also drove guard cell specific reporter expression in tobacco, illustrating the potential of this promoter as a method for high level expression in guard cells. A serial deletion of the promoter defined a guard cell expression promoter region. In addition, anti-sense repression using pGC1 was powerful for reducing specific GFP gene expression in guard cells while expression in leaf epidermal cells was not repressed, demonstrating strong cell-type preferential gene repression. Conclusion The pGC1 promoter described here drives strong reporter expression in guard cells of Arabidopsis and tobacco plants. It provides a potent research tool for targeted guard cell expression or

  14. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool

    Science.gov (United States)

    Yang, Yingzhen; Costa, Alex; Leonhardt, Nathalie; Siegel, Robert S; Schroeder, Julian I

    2008-01-01

    Background A common limitation in guard cell signaling research is that it is difficult to obtain consistent high expression of transgenes of interest in Arabidopsis guard cells using known guard cell promoters or the constitutive 35S cauliflower mosaic virus promoter. An additional drawback of the 35S promoter is that ectopically expressing a gene throughout the organism could cause pleiotropic effects. To improve available methods for targeted gene expression in guard cells, we isolated strong guard cell promoter candidates based on new guard cell-specific microarray analyses of 23,000 genes that are made available together with this report. Results A promoter, pGC1(At1g22690), drove strong and relatively specific reporter gene expression in guard cells including GUS (beta-glucuronidase) and yellow cameleon YC3.60 (GFP-based calcium FRET reporter). Reporter gene expression was weaker in immature guard cells. The expression of YC3.60 was sufficiently strong to image intracellular Ca2+ dynamics in guard cells of intact plants and resolved spontaneous calcium transients in guard cells. The GC1 promoter also mediated strong reporter expression in clustered stomata in the stomatal development mutant too-many-mouths (tmm). Furthermore, the same promoter::reporter constructs also drove guard cell specific reporter expression in tobacco, illustrating the potential of this promoter as a method for high level expression in guard cells. A serial deletion of the promoter defined a guard cell expression promoter region. In addition, anti-sense repression using pGC1 was powerful for reducing specific GFP gene expression in guard cells while expression in leaf epidermal cells was not repressed, demonstrating strong cell-type preferential gene repression. Conclusion The pGC1 promoter described here drives strong reporter expression in guard cells of Arabidopsis and tobacco plants. It provides a potent research tool for targeted guard cell expression or gene silencing. It is also

  15. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    Science.gov (United States)

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  16. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation.

    Science.gov (United States)

    Lee, Don-Ching; Chen, Jong-Hang; Hsu, Tai-Yu; Chang, Li-Hsun; Chang, Hsu; Chi, Ya-Hui; Chiu, Ing-Ming

    2017-03-01

    Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  18. Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.

    Science.gov (United States)

    Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko

    2018-05-01

    Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.

  19. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration.

    Science.gov (United States)

    Zhang, Xuexin; Li, Hui; Sun, Jingjing; Luo, Xiangyou; Yang, Hefeng; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong

    2017-10-01

    The function of the dental pulp is closely connected to the extracellular matrix (ECM) structure, and ECM has received significant attention due to its biological functions for regulating cells. As such, the interaction between the ECM niche and cells is worth exploring for potential clinical uses. In this study, dental pulp stem cell (DPSC)-derived ECM (DPM) was prepared through cell culture and decellularization to function as the cell niche, and changes in DPSC behaviour and histological analysis of dental pulp tissue regeneration were evaluated following the DPM culture. DPM promoted the replication of DPSCs and exhibited retention of their mineralization. Then, the DPM-based culture strategy under odontogenic culture medium was further investigated, and the mineralization-related markers showed that DPSCs were regulated towards odontogenic differentiation. Dental pulp-like tissue with well-arranged ECM was harvested after a 2-month subcutaneous implantation in nude mice with DPM application. Additionally, DPSCs cultured on the plastic culture surface showed the up-regulation of mineralization makers in vitro, but there was a disorder in matrix formation and mineralization when the cells were cultured in vivo. DPM-based cultivation could serve as a cell niche and modulate DPSC behaviour, and this method also provided an alternative to harvest tissue-specific ECM and provided a strategy for ECM-cell interaction. © 2017 John Wiley & Sons Ltd.

  20. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  1. G Protein-Coupled Receptor 87 (GPR87 Promotes Cell Proliferation in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2015-10-01

    Full Text Available G protein-coupled receptor 87 (GPR87 is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87 and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3, but not in the mutant p53 cells (HT1376 and J82. As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.

  2. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC Promote Trophoblast Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Nan Yu

    Full Text Available Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo-secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β and leukemia inhibitory factor (LIF expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR. The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP-2 (MMP-2, MMP-9, vascular endothelial growth factor (VEGF, tissue inhibitor of metalloproteinase (TIMP-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion.

  3. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death

    International Nuclear Information System (INIS)

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna M; Mackinnon, A Craig Jr; Joseph, Joy; Dwinell, Michael B; Kalyanaraman, Balaraman

    2013-01-01

    Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect

  4. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    Science.gov (United States)

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  5. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.

  6. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    Administrator

    2011-04-25

    Apr 25, 2011 ... Bone marrow stromal cells (BMSCs), a type of multipotent stem cell, can differentiate into various types ... induced to differentiate into neuron-like cells when they are ... axonal regeneration and functional reconstruction do not.

  7. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2

    DEFF Research Database (Denmark)

    Hubackova, Sona; Davidova, Eliska; Rohlenova, Katerina

    2018-01-01

    and development of age-related diseases. We found that the anticancer agent mitochondria-targeted tamoxifen (MitoTam), unlike conventional anticancer agents, kills cancer cells without inducing senescence in vitro and in vivo. Surprisingly, it also selectively eliminates both malignant and non-cancerous senescent...... cells. In naturally aged mice treated with MitoTam for 4 weeks, we observed a significant decrease of senescence markers in all tested organs compared to non-treated animals. Mechanistically, we found that the susceptibility of senescent cells to MitoTam is linked to a very low expression level...... of adenine nucleotide translocase-2 (ANT2), inherent to the senescent phenotype. Restoration of ANT2 in senescent cells resulted in resistance to MitoTam, while its downregulation in non-senescent cells promoted their MitoTam-triggered elimination. Our study documents a novel, translationally intriguing role...

  8. Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells.

    Science.gov (United States)

    Kleene, Kenneth C

    2005-01-01

    This review proposes that the peculiar patterns of gene expression in spermatogenic cells are the consequence of powerful evolutionary forces known as sexual selection. Sexual selection is generally characterized by intense competition of males for females, an enormous variety of the strategies to maximize male reproductive success, exaggerated male traits at all levels of biological organization, co-evolution of sexual traits in males and females, and conflict between the sexual advantage of the male trait and the reproductive fitness of females and the individual fitness of both sexes. In addition, spermatogenesis is afflicted by selfish genes that promote their transmission to progeny while causing deleterious effects. Sexual selection, selfish genes, and genetic conflict provide compelling explanations for many atypical features of gene expression in spermatogenic cells including the gross overexpression of certain mRNAs, transcripts encoding truncated proteins that cannot carry out basic functions of the proteins encoded by the same genes in somatic cells, the large number of gene families containing paralogous genes encoding spermatogenic cell-specific isoforms, the large number of testis-cancer-associated genes that are expressed only in spermatogenic cells and malignant cells, and the overbearing role of Sertoli cells in regulating the number and quality of spermatozoa.

  9. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  10. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  11. Palmitoylation at Cys574 is essential for MT1-MMP to promote cell migration

    DEFF Research Database (Denmark)

    Anilkumar, Narayanapanicker; Uekita, Takamasa; Couchman, John R

    2005-01-01

    of the palmitoylated cysteine relative to LLY573, a motif that interacts with mu2 subunit of adaptor protein 2, is critical for the cell motility-promoting activity of MT1-MMP and its clathrin-mediated internalization. Taken together, palmitoylation of MT1-MMP is one of the key posttranslational modifications......MT1-MMP is a type I transmembrane proteinase that promotes cell migration and invasion. Here, we report that MT1-MMP is palmitoylated at Cys574 in the cytoplasmic domain, and this lipid modification is critical for its promotion of cell migration and clathrin-mediated internalization...... that determines MT1-MMP-dependent cell migration....

  12. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew A Bill

    Full Text Available The Janus kinase-2 (Jak2-signal transducer and activator of transcription-3 (STAT3 pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization. We hypothesized that FLLL32 and FLLL62 would induce apoptosis in RCC and melanoma cells and display specificity for the Jak2-STAT3 pathway. FLLL32 and FLLL62 could inhibit STAT3 dimerization in vitro. These compounds reduced basal STAT3 phosphorylation (pSTAT3, and induced apoptosis in four separate human RCC cell lines and in human melanoma cell lines as determined by Annexin V/PI staining. Apoptosis was also confirmed by immunoblot analysis of caspase-3 processing and PARP cleavage. Pre-treatment of RCC and melanoma cell lines with FLLL32/62 did not inhibit IFN-γ-induced pSTAT1. In contrast to FLLL32, curcumin and FLLL62 reduced downstream STAT1-mediated gene expression of IRF1 as determined by Real Time PCR. FLLL32 and FLLL62 significantly reduced secretion of VEGF from RCC cell lines in a dose-dependent manner as determined by ELISA. Finally, each of these compounds inhibited in vitro generation of myeloid-derived suppressor cells. These data support further investigation of FLLL32 and FLLL62 as lead compounds for STAT3 inhibition in RCC and melanoma.

  13. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  14. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  15. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  16. TP508 accelerates fracture repair by promoting cell growth over cell death

    International Nuclear Information System (INIS)

    Li Xinmin; Wang Hali; Touma, Edward; Qi Yuchen; Rousseau, Emma; Quigg, Richard J.; Ryaby, James T.

    2007-01-01

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD Clontech TM Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-κB, PDGF, PI3K/AKT, PTEN, and ERK/MAPK

  17. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Directory of Open Access Journals (Sweden)

    Saikali Melody

    2012-07-01

    Full Text Available Abstract Background Sesquiterpene lactones (SL are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan isolated from Achillea falcata and salograviolide A (Sal A isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to

  18. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells.

    Science.gov (United States)

    Saikali, Melody; Ghantous, Akram; Halawi, Racha; Talhouk, Salma N; Saliba, Najat A; Darwiche, Nadine

    2012-07-09

    Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary

  19. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    Science.gov (United States)

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  20. CNPY2 promoted the proliferation of renal cell carcinoma cells and increased the expression of TP53

    International Nuclear Information System (INIS)

    Taniguchi, Hidefumi; Ito, Saya; Ueda, Takashi; Morioka, Yukako; Kayukawa, Naruhiro; Ueno, Akihisa; Nakagawa, Hideo; Fujihara, Atsuko; Ushijima, So; Kanazawa, Motohiro; Hongo, Fumiya; Ukimura, Osamu

    2017-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer. However, the mechanisms underlying the progression of the disease are not well understood. The data in this report suggest that canopy FGF signaling regulator 2 (CNPY2) is a promoter of RCC progression. We found that CNPY2 significantly promoted growth of RCC cells and upregulated TP53 gene expression. Although TP53 is widely known as a tumor suppressor, in RCC TP53 promoted tumor cell growth. A typical p53 target gene, CDKN1A, was upregulated by both p53 and CNPY2 in RCC cells, suggesting that CNPY2 increased the expression level of TP53. Consistent with these results, CNPY2 and TP53 expression levels were positively correlated in RCC patients. These findings suggested that CNPY2 promoted cancer cell growth in RCC through regulating TP53 gene expression. - Highlights: • CNPY2 promoted growth of renal cell carcinoma (RCC) cells. • TP53 expression levels were increased by CNPY2 in RCC cells. • Growth of RCC cells was promoted by TP53. • CNPY2 expression positively correlated with TP53 expression in RCC patients.

  1. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yang CM

    2017-02-01

    Full Text Available Chun-ming Yang,1 Shan Ji,2 Yan Li,3 Li-ye Fu,3 Tao Jiang,3 Fan-dong Meng31Department of Urology, The First Affiliated Hospital, China Medical University, 2Department of Endocrinology, The Fifth People’s Hospital of Shenyang, 3Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, ChinaAbstract: β-Catenin (CTNNB1 gene coding protein is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC.Keywords: kidney cancer, oncogene, β-catenin, survival time, tumor migration-related protein

  2. Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers

    Directory of Open Access Journals (Sweden)

    Doğan A

    2012-09-01

    Full Text Available Aysegül Doğan,1 Mehmet E Yalvaç,1,2 Fikrettin Şahin,1 Alexander V Kabanov,3–5 András Palotás,6 Albert A Rizvanov71Department of Genetics and BioEngineering, College of Engineering and Architecture, Yeditepe University, Istanbul, Turkey; 2Center for Gene Therapy, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA; 3Center for Drug Delivery and Nanomedicine, 4Department of Pharmaceutical Sciences, College of Pharmacy, Durham Research Center, University of Nebraska Medical Center, Omaha, NE, USA; 5Laboratory of Chemical Design of Bio-nano-materials, Department of Chemistry, Mikhail V Lomonosov Moscow State University, Moscow, Russia; 6Asklepios-Med, Szeged, Hungary; 7Institute of Fundamental Medicine and Biology, Kazan (Volga Region Federal University, Kazan, RussiaAbstract: Stem cell usage provides novel avenues of tissue regeneration and therapeutics across disciplines. Apart from ethical considerations, the selection and amplification of donor stem cells remain a challenge. Various biopolymers with a wide range of properties have been used extensively to deliver biomolecules such as drugs, growth factors and nucleic acids, as well as to provide biomimetic surface for cellular adhesion. Using human tooth germ stem cells with high proliferation and transformation capacity, we have investigated a range of biopolymers to assess their potential for tissue engineering. Tolerability, toxicity, and their ability to direct differentiation were evaluated. The majority of pluronics, consisting of both hydrophilic and hydrophobic poly(ethylene oxide chains, either exerted cytotoxicity or had no significant effect on human tooth germ stem cells; whereas F68 increased the multi-potency of stem cells, and efficiently transformed them into osteogenic, chondrogenic, and adipogenic tissues. The data suggest that differentiation and maturation of stem cells can be promoted by selecting the appropriate mechanical and chemical

  3. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  4. Double suicide genes selectively kill human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Liu Lunxu

    2011-02-01

    Full Text Available Abstract Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli cytosine deaminase (CD gene and the herpes simplex virus-thymidine kinase (TK gene were cloned using polymerase chain reaction (PCR. Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304 and KDR-negative liver cancer cell line (HepG2 were infected with the recombinant adenoviruses at different multiplicity of infection (MOI. The infection rate was measured by green fluorescent protein (GFP expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV and/or 5-fluorocytosine (5-FC. The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful

  5. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The miR-599 promotes non-small cell lung cancer cell invasion via SATB2

    International Nuclear Information System (INIS)

    Tian, Wenjun; Wang, Guanghai; Liu, Yiqing; Huang, Zhenglan; Zhang, Caiqing; Ning, Kang; Yu, Cuixiang; Shen, Yajuan; Wang, Minghui; Li, Yuantang; Wang, Yong; Zhang, Bingchang; Zhao, Yaoran

    2017-01-01

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we identified that miR-599 is up-regulated in non-small cell lung cancer (NSCLC) patients. It promoted NSCLC cell proliferation by negatively regulating SATB2. In NSCLC cell lines, CCK-8 proliferation assay indicated that the cell proliferation is promoted by miR-599 mimics. Transwell assay showed that miR-599 mimics promoted the invasion and migration of NSCLC cells. Luciferase assays confirmed that miR-599 directly binds to the 3'untranslated region of SATB2, and western blotting showed that miR-599 suppresses the expression of SATB2 at the protein level. This study indicates that miR-599 promotes proliferation and invasion of NSCLC cell lines via SATB2. The miR-599 may represent a potential therapeutic target for NSCLC treatment. - Highlights: • miR-599 is up-regulated in NSCLC. • miR-599 promotes the proliferation and invasion of NSCLC cells. • miR-599 inhibitors inhibits the proliferation and invasion of NSCLC cells. • miR-599 targets 3′ UTR of SATB2 in NSCLC cells. • miR-599 inhibits SATB2 in NSCLC cells.

  7. Extracellular ATP4- promotes cation fluxes in the J774 mouse macrophage cell line

    International Nuclear Information System (INIS)

    Steinberg, T.H.; Silverstein, S.C.

    1987-01-01

    Extracellular ATP stimulates transmembrane ion fluxes in the mouse macrophage cell line J774. In the presence of Mg2+, nonhydrolyzable ATP analogs and other purine and pyrimidine nucleotides do not elicit this response, suggesting the presence of a specific receptor for ATP on the macrophage plasma membrane. One candidate for such a receptor is the ecto-ATPase expressed on these cells. We, therefore, investigated the role of this enzyme in ATP-induced 86 Rb+ efflux in J774 cells. The ecto-ATPase had a broad nucleotide specificity and did not hydrolyze extracellular ATP in the absence of divalent cations. 86 Rb+ efflux was not blocked by inhibition of the ecto-ATPase and did not require Ca2+ or Mg2+. In fact, ATP-stimulated 86 Rb+ efflux was inhibited by Mg2+ and correlated with the availability of ATP4- in the medium. In the absence of divalent cations, the slowly hydrolyzable ATP analogs adenosine 5'-(beta, gamma-imido)triphosphate (AMP-PNP) and adenosine 5'-O-(3-thio)triphosphate (ATP-gamma-S) also stimulated 86 Rb+ efflux, albeit at higher concentrations than that required for ATP4-. Exposure of J774 cells to 10 mM ATP for 45 min caused death of 95% of cells. By this means we selected variant J774 cells that did not exhibit 86 Rb+ efflux in the presence of extracellular ATP but retained ecto-ATPase activity. These results show that the ecto-ATPase of J774 cells does not mediate the effects of ATP on these cells; that ATP4- and not MgATP2- promotes 86 Rb+ efflux from these cells; and that hydrolysis of ATP is not required to effect this change in membrane permeability. These findings suggest that J774 cells possess a plasma membrane receptor which binds ATP4-, AMP-PNP, and ATP-gamma-S, and that the ecto-ATPase limits the effects of ATP on these cells by hydrolyzing Mg-ATP2-

  8. Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres.

    Directory of Open Access Journals (Sweden)

    Alexander M Many

    Full Text Available The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.

  9. Gold Nanoparticles Promote Proliferation of Human Periodontal Ligament Stem Cells and Have Limited Effects on Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Chen Li

    2016-01-01

    Full Text Available Gold nanoparticles (AuNPs had been widely applied in the practice and advancement of chemistry, biology, and medicine due to facility of synthesis and versatility in surface functionalization. Recent studies had shown that AuNPs can be applied to cells, affecting cellular physiological processes such as proliferation and differentiation. In this study, four diameters of AuNPs (20, 40, 60, and 80 nm were cocultured with human periodontal ligament cells (hPDLCs at six different concentrations. The optimal size and concentration of AuNPs were selected to treat human periodontal ligament stem cells (hPDLSCs to evaluate proliferation. Moreover, the influence of AuNPs on multiple differentiation capacity of hPDLSCs was clarified. The results revealed that AuNPs (60 nm, 56 μM can effectively promote the proliferation of hPDLCs/hPDLSCs in vitro, slightly enhance osteoblastic differentiation, and have no effect on adipogenic differentiation. In addition, the expression of COL-1, Runx2, BSP, and OCN was upregulated in the presence of AuNPs (60 nm, 56 μM. These results indicated that AuNPs (60 nm, 56 μM can effectively promote the proliferation of hPDLCs/hPDLSCs and have no significant effect on the differentiation of hPDLSCs. These results provide an insight on the advantage of implementing of AuNPs on hPDLSCs culture and expose the influence of these materials on periodontal tissue engineering.

  10. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    OpenAIRE

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Bj?rklund, Ann-Charlotte; Zhivotovsky, Boris; Grand?r, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencin...

  11. Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts

    NARCIS (Netherlands)

    M. Nethe (Micha); B.J. de Kreuk (Bart-Jan); D.V.F. Tauriello (Daniele); E.C. Anthony (Eloise); B. Snoek (Barbara); T. Stumpel (Thomas); M. Salinas; K. Maurice (Karelle); D. Geerts (Dirk); A.M. Deelder (André); P. Hensbergen (Paul); P.L. Hordijk (Peter )

    2012-01-01

    textabstractThe Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4

  12. Notch3 is dispensable for thymocyte β-selection and Notch1-induced T cell leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Sara Suliman

    Full Text Available Notch1 (N1 signaling induced by intrathymic Delta-like (DL ligands is required for T cell lineage commitment as well as self-renewal during "β-selection" of TCRβ⁺CD4⁻CD8⁻ double negative 3 (DN3 T cell progenitors. However, over-expression of the N1 intracellular domain (ICN1 renders N1 activation ligand-independent and drives leukemic transformation during β-selection. DN3 progenitors also express Notch3 (N3 mRNA, and over-expression of ligand-independent mutant N3 (ICN3 influences β-selection and drives T cell leukemogenesis. However, the importance of ligand-activated N3 in promoting β-selection and ICN1-induced T cell leukemogenesis has not been examined. To address these questions we generated mice lacking functional N3. We confirmed that DN3 progenitors express N3 protein using a N3-specific antibody. Surprisingly however, N3-deficient DN3 thymocytes were not defective in generating DP thymocytes under steady state conditions or in more stringent competition assays. To determine if N3 co-operates with N1 to regulate β-selection, we generated N1;N3 compound mutants. However, N3 deficiency did not exacerbate the competitive defect of N1⁺/⁻ DN3 progenitors, demonstrating that N3 does not compensate for limiting N1 during T cell development. Finally, N3 deficiency did not attenuate T cell leukemogenesis induced by conditional expression of ICN1 in DN3 thymocytes. Importantly, we showed that in contrast to N1, N3 has a low binding affinity for DL4, the most abundant intrathymic DL ligand. Thus, despite the profound effects of ectopic ligand-independent N3 activation on T cell development and leukemogenesis, physiologically activated N3 is dispensable for both processes, likely because N3 interacts poorly with intrathymic DL4.

  13. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells

    Science.gov (United States)

    Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.

    2004-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127

  14. Cellular therapy without cells: extracellular vesicles promote activation of stem cells after irradiation

    International Nuclear Information System (INIS)

    Lange, C.

    2016-01-01

    Mesenchymal stromal cells from the bone marrow (MSC) have been shown to be effective in several cell therapeutic treatments. However, MSC accumulate in lungs after i.v. injection. How do MSC transfer their potential to organs with therapeutic need? We show that released extracellular vesicles (EV) might be playing an active role in this transfer. EV were isolated from MSC supernatant and characterized with flow cytometry, proteomics and next generation sequencing. Our data showed the transfer of RNAs, clustering into several protective gene groups. Besides, we repeatedly detected genomic DNA on vesicles. Using a plant - derived detector gene we showed horizontal DNA transfer via EV. Furthermore, we showed that EV were able to salvage stem/progenitor cells in vitro from radiation suppression. Three selected proteins from proteomics data were examined for stem cell protection after irradiation. EV derived from down-regulated producer MSC showed a substantial loss of protection in irradiated stem cells supporting their relevance for stem cell protection. Finally, we showed that EV after i.v. injection into lethally irradiated animals colocalize within 2-4 hours with hematopoietic stem cells in the bone marrow giving hint to direct protection of stem cells by EV. In conclusion, EV derived from bone marrow MSC were able to transfer several cargo compounds leading potentially to change of the genetic properties. Importantly, EV protect irradiated hematopoietic stem cells, stimulate their recovery and proliferation and rescue lethally irradiated animals long-term. Thus, EV might be an alternative for future cell therapeutic treatment particularly in radiation-based events. (author)

  15. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte...... adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules...

  16. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions

    Science.gov (United States)

    Séry, D. Jean-Marc; Kouadjo, Z. G. Claude; Voko, B. R. Rodrigue; Zézé, Adolphe

    2016-01-01

    The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the

  17. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury.

    Science.gov (United States)

    Volarevic, Vladislav; Markovic, Bojana Simovic; Bojic, Sanja; Stojanovic, Maja; Nilsson, Ulf; Leffler, Hakon; Besra, Gurdyal S; Arsenijevic, Nebojsa; Paunovic, Verica; Trajkovic, Vladimir; Lukic, Miodrag L

    2015-02-01

    Galectin-3 (Gal-3), an endogenous lectin, exhibits pro- and anti-inflammatory effects in various disease conditions. In order to explore the role of Gal-3 in NKT-cell-dependent pathology, we induced hepatitis in C57BL/6 WT and Gal-3-deficient mice by using specific ligand for NKT cells: α-galactosylceramide, glycolipid Ag presented by CD1d. The injection of α-galactosylceramide significantly enhanced expression of Gal-3 in liver NKT and dendritic cells (DCs). Genetic deletion or selective inhibition of Gal-3 (induced by Gal-3-inhibitor TD139) abrogated the susceptibility to NKT-cell-dependent hepatitis. Blood levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-12) and their production by liver DCs and NKT cells were also downregulated. Genetic deletion or selective inhibition of Gal-3 alleviated influx of inflammatory CD11c(+) CD11b(+) DCs in the liver and favored tolerogenic phenotype and IL-10 production of liver NKT and DCs. Deletion of Gal-3 attenuated the capacity of DCs to support liver damage in the passive transfer experiments and to produce pro-inflammatory cytokines in vitro. Gal-3-deficient DCs failed to optimally stimulate production of pro-inflammatory cytokines in NKT cells, in vitro and in vivo. In conclusion, Gal-3 regulates the capacity of DCs to support NKT-cell-mediated liver injury, playing an important pro-inflammatory role in acute liver injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Promoter motifs required for c-mpl gene expression induced by thrombopoietin in CMK cells.

    Science.gov (United States)

    Sunohara, Masataka; Sato, Iwao; Morikawa, Shigeru

    2017-11-30

    Thrombopoietin (TPO) and its receptor, c-Mpl, are the central regulators of megakaryocyte development and platelet production and are also crucial to regulate megakaryocytopoiesis. TPO remarkably elevated c-mpl promoter activity, while the protein kinase C (PKC) inhibitors, GF109203, H7 and Calphostin C, clearly reduced the steady level of its promoter activity.  In the present study, motifs crucial for c-mpl promoter activity induced by TPO treatment have been analyzed using a human megakaryoblastic cell line, CMK. Destruction of the -107Sp1 and the -57Sp1 sites in the c-mpl promoter enhancer region resulted in decrease of the promoter activity by 53.1% and 64.4%, respectively, and destruction of -69Ets and -28Ets elements dramatically decreased the promoter activity by 96.4% and 87.8%, respectively, while mutation of -77GATA moderately reduced the activity by 31.4%. The result was in agreement with our previous report that showed the crucial motifs in the c-mpl promoter for the promoter activity induced by PMA-treatment. This indicates that TPO-induced activation of the c-mpl promoter activity is fully modulated by transcription through a PKC-dependent pathway and the two Sp1 and two Ets motifs are crucial for the activation of the c-mpl promoter activity rather than a GATA motif in the c-mpl promoter of CMK cells.

  19. In Vivo Functional Selection Identifies Cardiotrophin-1 as a Cardiac Engraftment Factor for Mesenchymal Stromal Cells.

    Science.gov (United States)

    Bortolotti, Francesca; Ruozi, Giulia; Falcione, Antonella; Doimo, Sara; Dal Ferro, Matteo; Lesizza, Pierluigi; Zentilin, Lorena; Banks, Lawrence; Zacchigna, Serena; Giacca, Mauro

    2017-10-17

    Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium. © 2017 American Heart Association, Inc.

  20. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    Science.gov (United States)

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Delocalized Claudin-1 promotes metastasis of human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Yuekui; Chen, Changqiong; Li, Bo; Tian, Xiaobin, E-mail: drtxb_guiyang@sina.com

    2015-10-23

    Tight junction proteins (TJPs) including Claudins, Occludin and tight junction associated protein Zonula occludens-1 (ZO-1), are the most apical component of junctional complex that mediates cell–cell adhesion in epithelial and endothelial cells. In human malignancies, TJPs are often deregulated and affect cellular behaviors of tumor cells. In this study, we investigated alternations of TJPs and related biological characteristics in human osteosarcoma (OS). Claudin1 was increased in the metastatic OS cells (KRIB and KHOS) compared with the normal osteoblast cells (hFOB1.19) or primary tumor cells (HOS and U2OS), whereas no significant difference was found in Occludin and ZO-1. Immunohistochemistry, immunofluorescence and Western blotting revealed that Claudin1 was initially localized at cell junctions of normal osteoblasts, but substantially delocalized to the nucleus of metastatic OS cells. Phenotypically, inhibition of the nucleus Claudin1 expression compromised the metastatic potential of KRIB and KHOS cells. Moreover, we found that protein kinase C (PKC) but not PKA phosphorylation influenced Claudin1 expression and cellular functions, as PKC inhibitor (Go 6983 and Staurosporine) or genetic silencing of PKC reduced Claudin1 expression and decreased the motility of KRIB and KHOS cells. Taken together, our study implied that delocalization of claudin-1 induced by PKC phosphorylation contributes to metastatic capacity of OS cells. - Highlights: • Claudin1 is increased during the malignant transformation of human OS. • Delocalization of Claudin1 in metastatic OS cells. • Silencing nuclear Claudin1 expression inhibits cell invasion of OS. • Deregulated Claudin1 is regulated by PKC.

  2. 4-Hydroxy-2(E)-nonenal metabolism differs in Apc(+/+) cells and in Apc(Min/+) cells: it may explain colon cancer promotion by heme iron.

    Science.gov (United States)

    Baradat, Maryse; Jouanin, Isabelle; Dalleau, Sabine; Taché, Sylviane; Gieules, Mathilde; Debrauwer, Laurent; Canlet, Cécile; Huc, Laurence; Dupuy, Jacques; Pierre, Fabrice H F; Guéraud, Françoise

    2011-11-21

    Animal and epidemiological studies suggest that dietary heme iron would promote colorectal cancer. Oxidative properties of heme could lead to the formation of cytotoxic and genotoxic secondary lipid oxidation products, such as 4-hydroxy-2(E)-nonenal (HNE). This compound is more cytotoxic to mouse wild-type colon cells than to isogenic cells with a mutation on the adenomatous polyposis coli (APC) gene. The latter thus have a selective advantage, possibly leading to cancer promotion. This mutation is an early and frequent event in human colorectal cancer. To explain this difference, the HNE biotransformation capacities of the two cell types have been studied using radiolabeled and stable isotope-labeled HNE. Apc-mutated cells showed better biotransformation capacities than nonmutated cells did. Thiol compound conjugation capacities were higher for mutated cells, with an important advantage for the extracellular conjugation to cysteine. Both cells types were able to reduce HNE to 4-hydroxynonanal, a biotransformation pathway that has not been reported for other intestinal cells. Mutated cells showed higher capacities to oxidize 4-hydroxynonanal into 4-hydroxynonanoic acid. The mRNA expression of different enzymes involved in HNE metabolism such as aldehyde dehydrogenase 1A1, 2 and 3A1, glutathione transferase A4-4, or cystine transporter xCT was upregulated in mutated cells compared with wild-type cells. In conclusion, this study suggests that Apc-mutated cells are more efficient than wild-type cells in metabolizing HNE into thiol conjugates and 4-hydroxynonanoic acid due to the higher expression of key biotransformation enzymes. These differential biotransformation capacities would explain the differences of susceptibility between normal and Apc-mutated cells regarding secondary lipid oxidation products.

  3. Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance.

    Directory of Open Access Journals (Sweden)

    John Koren

    Full Text Available MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB. Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family.

  4. Identification of learning and memory genes in canine; promoter investigation and determining the selective pressure.

    Science.gov (United States)

    Seifi Moroudi, Reihane; Masoudi, Ali Akbar; Vaez Torshizi, Rasoul; Zandi, Mohammad

    2014-12-01

    One of the important behaviors of dogs is trainability which is affected by learning and memory genes. These kinds of the genes have not yet been identified in dogs. In the current research, these genes were found in animal models by mining the biological data and scientific literatures. The proteins of these genes were obtained from the UniProt database in dogs and humans. Not all homologous proteins perform similar functions, thus comparison of these proteins was studied in terms of protein families, domains, biological processes, molecular functions, and cellular location of metabolic pathways in Interpro, KEGG, Quick Go and Psort databases. The results showed that some of these proteins have the same performance in the rat or mouse, dog, and human. It is anticipated that the protein of these genes may be effective in learning and memory in dogs. Then, the expression pattern of the recognized genes was investigated in the dog hippocampus using the existing information in the GEO profile. The results showed that BDNF, TAC1 and CCK genes are expressed in the dog hippocampus, therefore, these genes could be strong candidates associated with learning and memory in dogs. Subsequently, due to the importance of the promoter regions in gene function, this region was investigated in the above genes. Analysis of the promoter indicated that the HNF-4 site of BDNF gene and the transcription start site of CCK gene is exposed to methylation. Phylogenetic analysis of protein sequences of these genes showed high similarity in each of these three genes among the studied species. The dN/dS ratio for BDNF, TAC1 and CCK genes indicates a purifying selection during the evolution of the genes.

  5. Expression of Nanog gene promotes NIH3T3 cell proliferation

    International Nuclear Information System (INIS)

    Zhang Jingyu; Wang Xia; Chen Bing; Suo Guangli; Zhao Yanhong; Duan Ziyuan; Dai Jianwu

    2005-01-01

    Cells are the functional elements in tissue engineering and regenerative medicine. A large number of cells are usually needed for these purposes. However, there are numbers of limitations for in vitro cell proliferation. Nanog is an important self-renewal determinant in embryonic stem cells. However, it remains unknown whether Nanog will influence the cell cycle and cell proliferation of mature cells. In this study, we expressed Nanog in NIH3T3 cells and showed that expression of Nanog in NIH3T3 promoted cells to enter into S phase and enhanced cell proliferation. This suggests that Nanog gene might function in a similar fashion in mature cells as in ES cells. In addition, it may provide an approach for in vitro cell expansion

  6. Clonorchis sinensis infestation promotes three-dimensional aggregation and invasion of cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jihee Won

    Full Text Available Numerous experimental and epidemiological studies have demonstrated a correlation between Clonorchis sinensis (C. sinensis infestation and cholangiocarcinoma (CCA. However, the role of C. sinensis in the increased invasiveness and proliferation involved in the malignancy of CCA has not been addressed yet. Here, we investigated the possibility that C. sinensis infestation promotes expression of focal and cell-cell adhesion proteins in CCA cells and secretion of matrix metalloproteinases (MMPs. Adhesion proteins help maintain cell aggregates, and MMPs promote the three-dimensional invasion of cells into the neighboring extracellular matrix (ECM. Using a novel microfluidic assay, we quantitatively addressed the role of excretory-secretory products (ESPs gradients from C. sinensis in promoting the invasion of cells into the neighboring ECM.

  7. Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.

    Science.gov (United States)

    Xie, Ran; Hong, Senlian; Chen, Xing

    2013-10-01

    Metabolic labeling of biomolecules with bioorthogonal functionalities enables visualization, enrichment, and analysis of the biomolecules of interest in their physiological environments. This versatile strategy has found utility in probing various classes of biomolecules in a broad range of biological processes. On the other hand, metabolic labeling is nonselective with respect to cell type, which imposes limitations for studies performed in complex biological systems. Herein, we review the recent methodological developments aiming to endow metabolic labeling strategies with cell-type selectivity. The cell-selective metabolic labeling strategies have emerged from protein and glycan labeling. We envision that these strategies can be readily extended to labeling of other classes of biomolecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Laser Process for Selective Emitter Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    G. Poulain

    2012-01-01

    Full Text Available Selective emitter solar cells can provide a significant increase in conversion efficiency. However current approaches need many technological steps and alignment procedures. This paper reports on a preliminary attempt to reduce the number of processing steps and therefore the cost of selective emitter cells. In the developed procedure, a phosphorous glass covered with silicon nitride acts as the doping source. A laser is used to open locally the antireflection coating and at the same time achieve local phosphorus diffusion. In this process the standard chemical etching of the phosphorous glass is avoided. Sheet resistance variation from 100 Ω/sq to 40 Ω/sq is demonstrated with a nanosecond UV laser. Numerical simulation of the laser-matter interaction is discussed to understand the dopant diffusion efficiency. Preliminary solar cells results show a 0.5% improvement compared with a homogeneous emitter structure.

  9. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis.

    Science.gov (United States)

    Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A

    2010-08-01

    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.

  10. MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Dang, Jun; Bian, Yong-qian; Sun, Jian-yong

    2013-01-01

    and patients with oral squamous cell carcinoma (OSCC). A total of 20 OLP and 12 patients with OSCC as well as 10 healthy subjects were subjected to miR-137 promoter methylation analysis using methylation-specific PCR (MSP). To address the malignancy prediction potential from miR-137 promoter methylation status...

  11. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  12. Gastritis promotes an activated bone marrow-derived mesenchymal stem cell with a phenotype reminiscent of a cancer-promoting cell.

    Science.gov (United States)

    Donnelly, Jessica M; Engevik, Amy C; Engevik, Melinda; Schumacher, Michael A; Xiao, Chang; Yang, Li; Worrell, Roger T; Zavros, Yana

    2014-03-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis. The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype. Age matched C57BL/6 (BL/6) and gastrin deficient (GKO) mice were used for isolation of stomach, serum and mesenchymal stem cells (MSCs) at 3 and 6 months of age. MSC activation was assessed by growth curve analysis, fluorescence-activated cell sorting and xenograft assays. To allow for the isolation of bone marrow-derived stromal cells and assay in response to chronic gastritis, IRG/Vav-1(Cre) mice that expressed both enhanced green fluorescent protein-expressing hematopoietic cells and red fluorescent protein-expressing stromal cells were generated. In a parabiosis experiment, IRG/Vav-1(Cre) mice were paired to either an uninfected Vav-1(Cre) littermate or a BL/6 mouse inoculated with Helicobacter pylori. GKO mice displayed severe atrophic gastritis accompanied by elevated gastric tissue and circulating transforming growth factor beta (TGFβ) by 3 months of age. Compared to BM-MSCs isolated from uninflamed BL/6 mice, BM-MSCs isolated from GKO mice displayed an increased proliferative rate and elevated phosphorylated-Smad3 suggesting active TGFβ signaling. In xenograft assays, mice injected with BM-MSCs from 6-month-old GKO animals displayed tumor growth. RFP+ stromal cells were rapidly recruited to the gastric mucosa of H. pylori parabionts and exhibited changes in gene expression. Gastritis promotes the in vivo activation of BM-MSCs to a phenotype reminiscent of a cancer-promoting cell.

  13. HBx induced AFP receptor expressed to activate PI3K/AKT signal to promote expression of Src in liver cells and hepatoma cells

    International Nuclear Information System (INIS)

    Zhu, Mingyue; Guo, Junli; Li, Wei; Xia, Hua; Lu, Yan; Dong, Xu; Chen, Yi; Xie, Xieju; Fu, Shigan; Li, Mengsen

    2015-01-01

    Hepatitis B virus (HBV)-X protein(HBx) is a transactivator of host several cellular genes including alpha-fetoprotein(AFP) and AFP receptor(AFPR) which contributes to HBV-associated tumor development. The expression of AFP/AFPR are correlated with hepatocellular carcinoma(HCC)-initial cells. But the role of AFP and AFPR in promoting occurrence of HBV-related HCC were still unclear. A total of 71 clinical patients’ liver specimens, normal human liver cells L-02 and HCC cell lines, PLC/PRF/5 were selected for analyzing the effects of HBx on expression of AFP, AFPR and Src. The expression of goal proteins were detected by Immunohistochemical stained and Western blotting; HBx-expressed vectors were constructed and transfected into L-02 cells, laser confocal microscopy was applied to observe expression and location of AFP, AFPR and Src in the normal liver cells and HCC cells, soft agar colony formation assay was used to observe colonies formed of the cells. We confirmed HBx gives preference to promote the expression of AFP and AFPR; HBx priors to up-regulate the expression of AFPR and AFP in L-02 cells and in normal liver specimens; AFPR signal been able to stimulate Src expression. The results also indicated that phosphatidylinositol 3-kinase(PI3K) inhibitors Ly294002 and GDC0941 effectively suppress AFPR mediated up-regulation expression of Src in AFPR positive HCC lines. HBx priors to drive the expression of AFP and AFPR to promote expression of Src in normal liver cells and hepatoma cells; AFP and AFPR maybe play pivotal role in HBV-related hepatocarcinogenesis; Targeting AFPR is an available therapeutic strategy of HCC. The online version of this article (doi:10.1186/s12885-015-1384-9) contains supplementary material, which is available to authorized users

  14. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division.

    Science.gov (United States)

    Bohineust, Armelle; Garcia, Zacarias; Beuneu, Hélène; Lemaître, Fabrice; Bousso, Philippe

    2018-05-07

    T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion. © 2018 Bohineust et al.

  15. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    It has been suggested that the BMSCs have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. In this study, we showed that BMSCs can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells by Brdu pulse label technology.

  16. The process and promotion of radiation-induced cell death

    International Nuclear Information System (INIS)

    Sasaki, Hiroshi

    1998-01-01

    Radiation-induced cell death is divided into reproductive and interphase death, whose process can be revealed by time-lapse observations. Pedigree analyses of progenies derived from a surviving progenitor cell have shown that moribund cells appear in clusters among cells which are apparently undamaged (lethal sectoring). Sister cell fusion, which likely results from chromosome bridge, is the most frequently observed cell abnormality leading to reproductive death. While interphase death does not occur unless the dose exceeds 10 Gy for low LET radiation such as X-rays, high-LET radiation is very effective at inducing interphase death (RBE: ≅3 at 230 keV/μm). Expression or fixation of potentially lethal damage (PLD) is closely associated with cell cycle events and enhanced by inducing premature chromosome condensation (PCC) at a nonpermissive temperature in tsBN2 cells with a ts-defect in RCC1 protein (a regulator of chromatin condensation) which monitors the completion of DNA replication. Furthermore, higher-order structural changes in nuclear matrix such as induced by leptomycin B, an inhibitor of CRM1 (chromosome region maintenance) protein, also play an important role in the fixation of PLD. (author)

  17. Promotion or suppression of experimental metastasis of B16 melanoma cells after oral administration of lapachol

    International Nuclear Information System (INIS)

    Maeda, Masayo; Murakami, Manabu; Takegami, Tsutomu; Ota, Takahide

    2008-01-01

    Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] is a vitamin K antagonist with antitumor activity. The effect of lapachol on the experimental metastasis of murine B16BL6 melanoma cells was examined. A single oral administration of a high toxic dose of lapachol (80-100 mg/kg) 6 h before iv injection of tumor cells drastically promoted metastasis. This promotion of metastasis was also observed in T-cell-deficient mice and NK-suppressed mice. In vitro treatment of B16BL6 cells with lapachol promoted metastasis only slightly, indicating that lapachol promotes metastasis primarily by affecting host factors other than T cells and NK cells. A single oral administration of warfarin, the most commonly used vitamin K antagonist, 6 h before iv injection of tumor cells also drastically promoted the metastasis of B16BL6 cells. The promotion of metastasis by lapachol and warfarin was almost completely suppressed by preadministration of vitamin K3, indicating that the promotion of metastasis by lapachol was derived from vitamin K antagonism. Six hours after oral administration of lapachol or warfarin, the protein C level was reduced maximally, without elongation of prothrombin time. These observations suggest that a high toxic dose of lapachol promotes metastasis by inducing a hypercoagulable state as a result of vitamin K-dependent pathway inhibition. On the other hand, serial oral administration of low non-toxic doses of lapachol (5-20 mg/kg) weakly but significantly suppressed metastasis by an unknown mechanism, suggesting the possible use of lapachol as an anti-metastatic agent

  18. Cadmium promotes the proliferation of triple-negative breast cancer cells through EGFR-mediated cell cycle regulation

    International Nuclear Information System (INIS)

    Wei, Zhengxi; Song, Xiulong; Shaikh, Zahir A.

    2015-01-01

    Cadmium (Cd) is a carcinogenic metal which is implicated in breast cancer by epidemiological studies. It is reported to promote breast cancer cell growth in vitro through membrane receptors. The study described here examined Cd-mediated growth of non-metastatic human breast cancer derived cells that lack receptors for estrogen, progesterone, and HER2. Treatment of triple-negative HCC 1937 cells with 0.1–0.5 μM Cd increased cell growth by activation of AKT and ERK. Accelerated cell cycle progression was achieved by increasing the levels of cyclins A, B, and E, as well as those of CDKs 1 and 2. Although triple negative cells lack estrogen receptor, they express high levels of EGFR. Therefore, further studies on HCC 1937 and another triple-negative cell line, HCC 38, were conducted using specific siRNA and an inhibitor of EGFR to determine whether EGFR was responsible for mediating the effect of Cd. The results revealed that in both cell types EGFR was not only activated upon Cd treatment, but was also essential for the downstream activation of AKT and ERK. Based on these observations, it is concluded that, in breast cancer cells lacking estrogen receptor, sub-micromolar concentration of Cd can promote cell proliferation. Furthermore, that EGFR plays a critical role in this process. - Highlights: • Sub-micromolar concentrations of Cd promote cell growth in breast cancer cells that lack ER, PR, and HER2. • The increase in cell number is not due to reduction in apoptosis. • Growth promotion involves AKT and ERK signaling and downstream stimulation of cell cycle progression. • Initiation of cell growth by Cd occurs at the cell membrane and requires the activation of EGFR.

  19. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Chi-Chin Sun

    Full Text Available Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  20. A drought resistance-promoting microbiome is selected by root system under desert farming.

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    Full Text Available BACKGROUND: Traditional agro-systems in arid areas are a bulwark for preserving soil stability and fertility, in the sight of "reverse desertification". Nevertheless, the impact of desert farming practices on the diversity and abundance of the plant associated microbiome is poorly characterized, including its functional role in supporting plant development under drought stress. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the structure of the microbiome associated to the drought-sensitive pepper plant (Capsicum annuum L. cultivated in a traditional Egyptian farm, focusing on microbe contribution to a crucial ecosystem service, i.e. plant growth under water deficit. The root system was dissected by sampling root/soil with a different degree of association to the plant: the endosphere, the rhizosphere and the root surrounding soil that were compared to the uncultivated soil. Bacterial community structure and diversity, determined by using Denaturing Gradient Gel Electrophoresis, differed according to the microhabitat, indicating a selective pressure determined by the plant activity. Similarly, culturable bacteria genera showed different distribution in the three root system fractions. Bacillus spp. (68% of the isolates were mainly recovered from the endosphere, while rhizosphere and the root surrounding soil fractions were dominated by Klebsiella spp. (61% and 44% respectively. Most of the isolates (95% presented in vitro multiple plant growth promoting (PGP activities and stress resistance capabilities, but their distribution was different among the root system fractions analyzed, with enhanced abilities for Bacillus and the rhizobacteria strains. We show that the C. annuum rhizosphere under desert farming enriched populations of PGP bacteria capable of enhancing plant photosynthetic activity and biomass synthesis (up to 40% under drought stress. CONCLUSIONS/SIGNIFICANCE: Crop cultivation provides critical ecosystem services in arid lands with the

  1. Pleural mesothelial cells promote expansion of IL-17-producing CD8+ T cells in tuberculous pleural effusion.

    Science.gov (United States)

    Li, X; Zhou, Q; Yang, W B; Xiong, X Z; Du, R H; Zhang, J C

    2013-05-01

    IL-17-producing CD8(+) T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ-producing CD8(+) T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8(+) T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6(+) CD8(+) T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8(+) T cells at sites of TPE via cell-cell interactions.

  2. Industasis, a promotion of tumor formation by nontumorigenic stray cells

    Czech Academy of Sciences Publication Activity Database

    Pajer, Petr; Karafiát, Vít; Pečenka, Vladimír; Průková, Dana; Dudlová, J.; Plachý, Jiří; Kašparová, P.; Dvořák, Michal

    2009-01-01

    Roč. 69, č. 11 (2009), s. 4605-4612 ISSN 0008-5472 R&D Projects: GA ČR GA204/06/1728; GA MŠk(CZ) LC06061; GA AV ČR IAA500520608 Institutional research plan: CEZ:AV0Z50520514 Keywords : tumor promotion * lung tumors * Fyn-related kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.543, year: 2009

  3. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  4. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    Science.gov (United States)

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  5. Tetraspanin 1 promotes invasiveness of cervical cancer cells.

    Science.gov (United States)

    Hölters, Sebastian; Anacker, Jelena; Jansen, Lars; Beer-Grondke, Katrin; Dürst, Matthias; Rubio, Ignacio

    2013-08-01

    Tetraspanins are a heterogeneous group of 4-transmembrane proteins that segregate into so-called tetraspanin-enriched microdomains (TEMs) along with other cell surface proteins such as integrins. TEMs of various types are reportedly involved in the regulation of cell growth, migration and invasion of several tumour cell types, both as suppressors or supporting structures. Tetraspanin 1 (Tspan1, NET-1), a member of the transmembrane 4 superfamily (TM4SF) of tetraspanins, is overexpressed in high-grade cervical intraepithelial neoplasia (CIN) and terminal carcinomas but its precise function in the context of carcinoma of the cervix uteri is not known. Here, we present a comprehensive investigation of the role of tetraspanin 1 in the cervical cancer cell lines SiHa and HeLa. We document that tetraspanin 1 increases the invasive potential of cervical cancer cells, whereas proliferation, growth in soft agar and adhesion are largely unaffected. In line with the latter findings, our data exclude the participation of testraspanin in integrin-mediated activation of focal adhesion kinase (FAK), paxillin and phosphoinositide-3-kinase (PI3K) and in EGFR-dependent signalling to the Ras/Erk pathway. In conclusion, our data argue against a role for tetraspanin 1 as a genuine mediator of cell surface receptor signalling but rather document a role for tetraspanin 1 in the control of cervical cancer cell motility and invasion.

  6. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia).

    Science.gov (United States)

    Ribeiro, Carlos Marcelo; Cardoso, Elke Jurandy Bran Nogueira

    2012-01-20

    Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Interaction between the immune system and acute myeloid leukemia: A model incorporating promotion of regulatory T cell expansion by leukemic cells.

    Science.gov (United States)

    Nishiyama, Yoshiaki; Saikawa, Yutaka; Nishiyama, Nobuaki

    2018-03-01

    Population dynamics of regulatory T cells (Treg) are crucial for the underlying interplay between leukemic and immune cells in progression of acute myeloid leukemia (AML). The goal of this work is to elucidate the dynamics of a model that includes Treg, which can be qualitatively assessed by accumulating clinical findings on the impact of activated immune cell infusion after selective Treg depletion. We constructed an ordinary differential equation model to describe the dynamics of three components in AML: leukemic blast cells, mature regulatory T cells (Treg), and mature effective T cells (Teff), including cytotoxic T lymphocytes. The model includes promotion of Treg expansion by leukemic blast cells, leukemic stem cell and progenitor cell targeting by Teff, and Treg-mediated Teff suppression, and exhibits two coexisting, stable steady states, corresponding to high leukemic cell load at diagnosis or relapse, and to long-term complete remission. Our model is capable of explaining the clinical findings that the survival of patients with AML after allogeneic stem cell transplantation is influenced by the duration of complete remission, and that cut-off minimal residual disease thresholds associated with a 100% relapse rate are identified in AML. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury

    Directory of Open Access Journals (Sweden)

    Yuewen Tang

    2017-02-01

    Full Text Available Abstract Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  9. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  10. Prolactin promotes breast cancer cell migration through actin cytoskeleton remodeling

    Directory of Open Access Journals (Sweden)

    Priscilla Ludovico da Silva

    2015-12-01

    Full Text Available The role of prolactin on breast cancer development and progression is debated. Breast cancer progression largely depends on cell movement and on the ability to remodel the actin cytoskeleton. In this process, actin-binding proteins are requested to achieve fibrillar actin de-polymerization and relocation at the cell membrane. Kinases such as focal adhesion kinase (FAK are later required to form actin/vinculin-enriched structures called focal adhesion complexes, which mediate firm adhesion to the extracellular matrix. These controllers are regulated by c-Src, which forms multiprotein signaling complexes with membrane receptors and is regulated by a number of hormones, including prolactin. We here show that breast cancer cells exposed to prolactin display an elevated c-Src expression and phosphorylation. In parallel, increased moesin and FAK expression and phosphorylation are found. These molecular changes are associated to relocation to the plasma membrane of cytoskeletal actin fibers and to increased horizontal cell movement. In conclusion, prolactin regulates actin remodeling and enhances breast cancer cell movement. This finding broadens the understanding of prolactin actions on breast cancer cells, highlighting new pathways that may be relevant to on breast cancer progression.

  11. Minocycline promotes the generation of dendritic cells with regulatory properties.

    Science.gov (United States)

    Kim, Narae; Park, Chan-Su; Im, Sun-A; Kim, Ji-Wan; Lee, Jae-Hee; Park, Young-Jun; Song, Sukgil; Lee, Chong-Kil

    2016-08-16

    Minocycline, which has long been used as a broad-spectrum antibiotic, also exhibits non-antibiotic properties such as inhibition of inflammation and angiogenesis. In this study, we show that minocycline significantly enhances the generation of dendritic cells (DCs) from mouse bone marrow (BM) cells when used together with GM-CSF and IL-4. DCs generated from BM cells in the presence of minocycline (Mino-DCs) demonstrate the characteristics of regulatory DCs. Compared with control DCs, Mino-DCs are resistant to subsequent maturation stimuli, impaired in MHC class II-restricted exogenous Ag presentation, and show decreased cytokine secretion. Mino-DCs also show decreased ability to prime allogeneic-specific T cells, while increasing the expansion of CD4+CD25+Foxp3+ T regulatory cells both in vitro and in vivo. In addition, pretreatment with MOG35-55 peptide-pulsed Mino-DCs ameliorates clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection. Our study identifies minocycline as a new pharmacological agent that could be potentially used to increase the production of regulatory DCs for cell therapy to treat autoimmune disorders, allergy, and transplant rejection.

  12. Nattokinase-promoted tissue plasminogen activator release from human cells.

    Science.gov (United States)

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration. Copyright 2009 S. Karger AG, Basel.

  13. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  14. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    Science.gov (United States)

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    Science.gov (United States)

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  16. High frequency of p 16 promoter methylation in non-small cell lung carcinomas from Chile

    Directory of Open Access Journals (Sweden)

    LEDA M GUZMAN

    2007-01-01

    Full Text Available The inactivation of tumour suppressor genes by aberrant methylation of promoter regions has been described as a frequent event in neoplasia development, including lung cancer. The p16 gene is a tumour suppressor gene involved in the regulation of cell cycle progression that has been reported to be inactivated by promoter methylation in lung carcinomas at variable frequencies around the world in a smoking habit dependent manner. The purpose of this study was to investigate the methylation status of the promoter region of the p16 gene in 74 non-small cell lung carcinomas from Chile. The frequency of p16 gene inactivation by promoter methylation was determined as 79.7% (59/74. When we considered histological type, we observed that p16 promoter methylation was significantly higher in squamous cell carcinomas (30/33, 91% compared with adenocarcinomas (21/30, 70% (p=0.029. In addition, no association between p16 promoter methylation and gender, age or smoking habit was found (p=0.202, 0.202 and 0.147 respectively. Our results suggest that p16 promoter hypermethylation is a very frequent event in non-small cell lung carcinomas from Chile and could be smoking habit-independent

  17. Differential Top10 promoter regulation by six tetracycline analogues in plant cells

    Science.gov (United States)

    Love, John; Allen, George C.; Gatz, Christiane; Thompson, William F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.

  18. Building Cell Selectivity into CPP-Mediated Strategies

    Directory of Open Access Journals (Sweden)

    Irene Martín

    2010-05-01

    Full Text Available There is a pressing need for more effective and selective therapies for cancer and other diseases. Consequently, much effort is being devoted to the development of alternative experimental approaches based on selective systems, which are designed to be specifically directed against target cells. In addition, a large number of highly potent therapeutic molecules are being discovered. However, they do not reach clinical trials because of their low delivery, poor specificity or their incapacity to bypass the plasma membrane. Cell-penetrating peptides (CPPs are an open door for cell-impermeable compounds to reach intracellular targets. Putting all these together, research is sailing in the direction of the design of systems with the capacity to transport new drugs into a target cell. Some CPPs show cell type specificity while others require modifications or form part of more sophisticated drug delivery systems. In this review article we summarize several strategies for directed drug delivery involving CPPs that have been reported in the literature.

  19. Molecular Evolution of Two Distinct dmrt1 Promoters for Germ and Somatic Cells in Vertebrate Gonads.

    Science.gov (United States)

    Mawaribuchi, Shuuji; Musashijima, Masato; Wada, Mikako; Izutsu, Yumi; Kurakata, Erina; Park, Min Kyun; Takamatsu, Nobuhiko; Ito, Michihiko

    2017-03-01

    The transcription factor DMRT1 has important functions in two distinct processes, somatic-cell masculinization and germ-cell development in mammals. However, it is unknown whether the functions are conserved during evolution, and what mechanism underlies its expression in the two cell lineages. Our analysis of the Xenopus laevis and Silurana tropicalis dmrt1 genes indicated the presence of two distinct promoters: one upstream of the noncoding first exon (ncEx1), and one within the first intron. In contrast, only the ncEx1-upstream promoter was detected in the dmrt1 gene of the agnathan sand lamprey, which expressed dmrt1 exclusively in the germ cells. In X. laevis, the ncEx1- and exon 2-upstream promoters were predominantly used for germ-cell and somatic-cell transcription, respectively. Importantly, knockdown of the ncEx1-containing transcript led to reduced germ-cell numbers in X. laevis gonads. Intriguingly, two genetically female individuals carrying the knockdown construct developed testicles. Analysis of the reptilian leopard gecko dmrt1 revealed the absence of ncEx1. We propose that dmrt1 regulated germ-cell development in the vertebrate ancestor, then acquired another promoter in its first intron to regulate somatic-cell masculinization during gnathostome evolution. In the common ancestor of reptiles and mammals, only one promoter got function for both the two cell lineages, accompanied with the loss of ncEx1. In addition, we found a conserved noncoding sequence (CNS) in the dmrt1 5'-flanking regions only among amniote species, and two CNSs in the introns among most vertebrates except for agnathans. Finally, we discuss relationships between these CNSs and the promoters of dmrt1 during vertebrate evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  1. Nocardia rubra cell-wall skeleton promotes CD4+ T cell activation and drives Th1 immune response.

    Science.gov (United States)

    Wang, Guangchuan; Wu, Jie; Miao, Miao; Dou, Heng; Nan, Ning; Shi, Mingsheng; Yu, Guang; Shan, Fengping

    2017-08-01

    Several lines of evidences have shown that Nocardia rubra cell wall skeleton (Nr-CWS) has immunoregulatory and anti-tumor activities. However, there is no information about the effect of Nr-CWS on CD4 + T cells. The aim of this study was to explore the effect of Nr-CWS on the phenotype and function of CD4 + T cells. Our results of in vitro experiments showed that Nr-CWS could significantly up-regulate the expression of CD69 and CD25 on CD4 + T cells, promote the proliferation of CD4 + T cells, increase the production of IFN-γ, TNF-α and IL-2 in the supernatants, but has no significant effect on the apoptosis and death of CD4 + T cells. Results of in vivo experiments showed that Nr-CWS could promote the proliferation of CD4 + T cells, and increase the production of IL-2, IFN-γ and TNF-α (Th1 type cytokines). These data suggest that Nr-CWS can enhance the activation of CD4 + T cells, promote the proliferation of CD4 + T cells and the differentiation of CD4 + T cells to Th1 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Directory of Open Access Journals (Sweden)

    Gongbo Li

    Full Text Available The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  3. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Science.gov (United States)

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  4. ProMot - A tool for making decisions when selecting drives; ProMot: ein Werkzeug zur Entscheidfindung fuer Motorenbetreiber

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.

    2005-12-15

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the development of the software basis for a tool for making decisions when selecting electrical drives. Work in a three-phase project is described. The phases involve the integration of existing components in a software-system, the Europe-wide distribution of the tool and, finally, various marketing activities. The concept behind an Internet-based system is described and its Content Management System is discussed. Examples of web-pages are presented.

  5. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  6. RLIM interacts with Smurf2 and promotes TGF-β induced U2OS cell migration

    International Nuclear Information System (INIS)

    Huang, Yongsheng; Yang, Yang; Gao, Rui; Yang, Xianmei; Yan, Xiaohua; Wang, Chenji; Jiang, Sirui; Yu, Long

    2011-01-01

    Highlights: → RLIM directly binds to Smurf2. → RLIM enhances TGF-β responsiveness in U2OS cells. → RLIM promotes TGF-β driven migration of osteosarcoma U2OS cells. -- Abstract: TGF-β (transforming growth factor-β), a pleiotropic cytokine that regulates diverse cellular processes, has been suggested to play critical roles in cell proliferation, migration, and carcinogenesis. Here we found a novel E3 ubiquitin ligase RLIM which can directly bind to Smurf2, enhancing TGF-β responsiveness in osteosarcoma U2OS cells. We constructed a U2OS cell line stably over-expressing RLIM and demonstrated that RLIM promoted TGF-β-driven migration of U2OS cells as tested by wound healing assay. Our results indicated that RLIM is an important positive regulator in TGF-β signaling pathway and cell migration.

  7. Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Ansaya Thonpho

    Full Text Available Pyruvate carboxylase (PC is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse. RT-PCR analysis performed with cDNA prepared from human liver and islets showed that the distal promoter, but not the proximal promoter, of the human PC gene is active in pancreatic beta cells. A 1108 bp fragment of the human PC distal promoter was cloned and analyzed. It contains no TATA box but possesses two CCAAT boxes, and other putative transcription factor binding sites, similar to those of the distal promoter of rat PC gene. To localize the positive regulatory region in the human PC distal promoter, 5'-truncated and the 25-bp and 15-bp internal deletion mutants of the human PC distal promoter were generated and used in transient transfections in INS-1 832/13 insulinoma and HEK293T (kidney cell lines. The results indicated that positions -340 to -315 of the human PC distal promoter serve as (an activator element(s for cell-specific transcription factor, while the CCAAT box at -71/-67, a binding site for nuclear factor Y (NF-Y, as well as a GC box at -54/-39 of the human PC distal promoter act as activator sequences for basal transcription.

  8. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Aurélie Tormo

    2017-06-01

    Full Text Available Abstract Background Impaired T cell reconstitution remains a major deterrent in the field of bone marrow (BM transplantation (BMT due to pre-conditioning-induced damages inflicted to the thymi of recipient hosts. Given the previously reported thymo-stimulatory property of interleukin (IL-21, we reasoned that its use post-BMT could have a profound effect on de novo T cell development. Methods To evaluate the effect of IL-21 on de novo T cell development in vivo, BM derived from RAG2p-GFP mice was transplanted into LP/J mice. Lymphocyte reconstitution was first assessed using a hematological analyzer and a flow cytometer on collected blood samples. Detailed flow cytometry analysis was then performed on the BM, thymus, and spleen of transplanted animals. Finally, the effect of human IL-21 on thymopoiesis was validated in humanized mice. Results Using a major histocompatibility complex (MHC-matched allogeneic BMT model, we found that IL-21 administration improves immune reconstitution by triggering the proliferation of BM Lin−Sca1+c-kit+ (LSK subsets. The pharmacological effect of IL-21 also culminates in the recovery of both hematopoietic (thymocytes and non-hematopoietic (stromal cells within the thymi of IL-21-treated recipient animals. Although T cells derived from all transplanted groups proliferate, secrete various cytokines, and express granzyme B similarly in response to T cell receptor (TCR stimulation, full regeneration of peripheral naïve CD4+ and CD8+ T cells and normal TCRvβ distribution could only be detected in IL-21-treated recipient mice. Astonishingly, none of the recipient mice who underwent IL-21 treatment developed graft-versus-host disease (GVHD in the MHC-matched allogeneic setting while the graft-versus-tumor (GVT effect was strongly retained. Inhibition of GVHD onset could also be attributed to the enhanced generation of regulatory B cells (B10 observed in the IL-21, but not PBS, recipient mice. We also tested the

  9. Hydroxysteroid sulfotransferase SULT2B1b promotes hepatocellular carcinoma cells proliferation in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiaoming Yang

    Full Text Available Hydroxysteroid sulfotransferase 2B1b (SULT2B1b is highly selective for the addition of sulfate groups to 3β-hydroxysteroids. Although previous reports have suggested that SULT2B1b is correlated with cell proliferation of hepatocytes, the relationship between SULT2B1b and the malignant phenotype of hepatocarcinoma cells was not clear. In the present study, we found that SULT2B1 was comparatively higher in the human hepatocarcinoma tumorous tissues than their adjacent tissues. Besides, SULT2B1b overexpression promoted the growth of the mouse hepatocarcinoma cell line Hepa1-6, while Lentivirus-mediated SULT2B1b interference inhibited growth as assessed by the CCK-8 assay. Likewise, inhibition of SULT2B1b expression induced cell-cycle arrest and apoptosis in Hepa1-6 cells by upregulating the expression of FAS, downregulating the expression of cyclinB1, BCL2 and MYC in vitro and in vivo at both the transcript and protein levels. Knock-down of SULT2B1b expression significantly suppressed tumor growth in nude mouse xenografts. Moreover, proliferation rates and SULT2B1b expression were highly correlated in the human hepatocarcinoma cell lines Huh-7, Hep3B, SMMC-7721 and BEL-7402 cells. Knock-down of SULT2B1b inhibited cell growth and cyclinB1 levels in human hepatocarcinoma cells and suppressed xenograft growth in vivo. In conclusion, SULT2B1b expression promotes proliferation of hepatocellular carcinoma cells in vitro and in vivo, which may contribute to the progression of HCC.

  10. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Chinnapaka Somaiah

    Full Text Available Mesenchymal stem cells (MSC can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  11. Cell adsorption and selective desorption for separation of microbial cells by using chitosan-immobilized silica.

    Science.gov (United States)

    Kubota, Munehiro; Matsui, Masayoshi; Chiku, Hiroyuki; Kasashima, Nobuyuki; Shimojoh, Manabu; Sakaguchi, Kengo

    2005-12-01

    Cell adsorption and selective desorption for separation of microbial cells were conducted by using chitosan-immobilized silica (CIS). When chitosan was immobilized onto silica surfaces with glutaraldehyde, bacterial cells adsorbed well and retained viability. Testing of the adsorption and desorption ability of CIS using various microbes such as Escherichia coli, Aeromonas hydrophila, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus casei, Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Saccharomyces cerevisiae, Saccharomyces ludwigii, and Schizosaccharomyces pombe revealed that most microbes could be adsorbed and selectively desorbed under different conditions. In particular, recovery was improved when L-cysteine was added. A mixture of two bacterial strains adsorbed onto CIS could also be successfully separated by use of specific solutions for each strain. Most of the desorbed cells were alive. Thus, quantitative and selective fractionation of cells is readily achievable by employing chitosan, a known antibacterial material.

  12. Sodium Tungstate for Promoting Mesenchymal Stem Cell Chondrogenesis.

    Science.gov (United States)

    Khader, Ateka; Sherman, Lauren S; Rameshwar, Pranela; Arinzeh, Treena L

    2016-12-15

    Articular cartilage has a limited ability to heal. Mesenchymal stem cells (MSCs) derived from the bone marrow have shown promise as a cell type for cartilage regeneration strategies. In this study, sodium tungstate (Na 2 WO 4 ), which is an insulin mimetic, was evaluated for the first time as an inductive factor to enhance human MSC chondrogenesis. MSCs were seeded onto three-dimensional electrospun scaffolds in growth medium (GM), complete chondrogenic induction medium (CCM) containing insulin, and CCM without insulin. Na 2 WO 4 was added to the media leading to final concentrations of 0, 0.01, 0.1, and 1 mM. Chondrogenic differentiation was assessed by biochemical analyses, immunostaining, and gene expression. Cytotoxicity using human peripheral blood mononuclear cells (PBMCS) was also investigated. The chondrogenic differentiation of MSCs was enhanced in the presence of low concentrations of Na 2 WO 4 compared to control, without Na 2 WO 4 . In the induction medium containing insulin, cells in 0.01 mM Na 2 WO 4 produced significantly higher sulfated glycosaminoglycans, collagen type II, and chondrogenic gene expression than all other groups at day 28. Cells in 0.1 mM Na 2 WO 4 had significantly higher collagen II production and significantly higher sox-9 and aggrecan gene expression compared to control at day 28. Cells in GM and induction medium without insulin containing low concentrations of Na 2 WO 4 also expressed chondrogenic markers. Na 2 WO 4 did not stimulate PBMC proliferation or apoptosis. The results demonstrate that Na 2 WO 4 enhances chondrogenic differentiation of MSCs, does not have a toxic effect, and may be useful for MSC-based approaches for cartilage repair.

  13. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  14. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  15. Radiation-induced irreparable heritable changes in cells promoting their tumoral transformation

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vagabova, M.Eh.; Yurov, S.S.

    1988-01-01

    In experiments with model plant tumors (Kalanchoe-ti plasmid Agrobat. tumefaciens C-58D) it was shown that exposure of the recepient plant to low-level γ-radiation of Gy induced changes in cells that were not repaired over two months promoting tumoral transformations in them. Those changes were shown to persist in the offspring of the exposed somatic cells

  16. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells.

    Science.gov (United States)

    Paglino, Justin C; Ozduman, Koray; van den Pol, Anthony N

    2012-07-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.

  17. Characterization of Rat Hair Follicle Stem Cells Selected by Vario Magnetic Activated Cell Sorting System

    International Nuclear Information System (INIS)

    Huang, Enyi; Lian, Xiaohua; Chen, Wei; Yang, Tian; Yang, Li

    2009-01-01

    Hair follicle stem cells (HfSCs) play crucial roles in hair follicle morphogenesis and hair cycling. These stem cells are self-renewable and have the multi-lineage potential to generate epidermis, sebaceous glands, and hair follicle. The separation and identification of hair follicle stem cells are important for further research in stem cell biology. In this study, we report on the successful enrichment of rat hair follicle stem cells through vario magnetic activated cell sorting (Vario MACS) and the biological characteristics of the stem cells. We chose the HfSCs positive surface markers CD34, α6-integrin and the negative marker CD71 to design four isolation strategies: positive selection with single marker of CD34, positive selection with single marker of α6-integrin, CD71 depletion followed by CD34 positive selection, and CD71 depletion followed by α6-integrin positive selection. The results of flow cytometry analysis showed that all four strategies had ideal effects. Specifically, we conducted a series of researches on HfSCs characterized by their high level of CD34, termed CD34 bri cells, and low to undetectable expression of CD34, termed CD34 dim cells. CD34 bri cells had greater proliferative potential and higher colony-forming ability than CD34 dim cells. Furthermore, CD34 bri cells had some typical characteristics as progenitor cells, such as large nucleus, obvious nucleolus, large nuclear:cytoplasmic ratio and few cytoplasmic organelles. Our findings clearly demonstrated that HfSCs with high purity and viability could be successfully enriched with Vario MACS

  18. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.

    Science.gov (United States)

    Matsunaga, Taichi; Yamashita, Jun K

    2014-02-07

    Specific gene knockout and rescue experiments are powerful tools in developmental and stem cell biology. Nevertheless, the experiments require multiple steps of molecular manipulation for gene knockout and subsequent rescue procedures. Here we report an efficient and single step strategy to generate gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9 genome editing technology. We inserted a tetracycline-regulated inducible gene promoter (tet-OFF/TRE-CMV) upstream of the endogenous promoter region of vascular endothelial growth factor receptor 2 (VEGFR2/Flk1) gene, an essential gene for endothelial cell (EC) differentiation, in mouse embryonic stem cells (ESCs) with homologous recombination. Both homo- and hetero-inserted clones were efficiently obtained through a simple selection with a drug-resistant gene. The insertion of TRE-CMV promoter disrupted endogenous Flk1 expression, resulting in null mutation in homo-inserted clones. When the inserted TRE-CMV promoter was activated with doxycycline (Dox) depletion, Flk1 expression was sufficiently recovered from the downstream genomic Flk1 gene. Whereas EC differentiation was almost completely perturbed in homo-inserted clones, Flk1 rescue with TRE-CMV promoter activation restored EC appearance, indicating that phenotypic changes in EC differentiation can be successfully reproduced with this knockout-rescue system. Thus, this promoter insertion strategy with CRISPR/Cas9 would be a novel attractive method for knockout-rescue experiments. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. HNF1 alpha activates the aminopeptidase N promoter in intestinal (Caco-2) cells

    DEFF Research Database (Denmark)

    Olsen, Jørgen; Laustsen, Lotte; Troelsen, J

    1994-01-01

    The importance of HNF1 binding proteins for intestinal aminopeptidase N expression was investigated using the Caco-2 cell-line. Aminopeptidase N promoter activity in Caco-2 cells depends on the HNF1 element (positions -85 to -58) and co-transfection with an HNF1 alpha expression vector demonstrates...... a direct activation of the promoter by HNF1 alpha through this element. Electrophoretic mobility shift assays using nuclear extracts from Caco-2 cells show the presence of high amounts of HNF1 binding proteins irrespective of their state of differentiation....

  20. Andrographolide Ameliorate Rheumatoid Arthritis by Promoting the Development of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2010-10-01

    Full Text Available Andrographolide is important material present in Andrographis paniculata. This material can promote T cell to develop into regulatory T cell, CD4+CD25+. CD4+CD25+ regulatory T (Treg cells, a component of the innate immune response, which play a key role in the maintenance of self-tolerance, have become the focus of numerous studies over the last decade. These cells have the potential to be exploited to treat autoimmune disease. These cells inhibit the immune response in an Ag-nonspecific manner, interacting with other T cells. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity but also influence the immune response to allergens as well as against tumor cells and pathogens. In this experiment we showed that active compound from Andrographis paniculata namely andrographolide can induce active regulatory T cell that has an efficacy to cure rheumatoid arthritis mice model.

  1. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  2. Activity of Metabotropic Glutamate Receptor 4 Suppresses Proliferation and Promotes Apoptosis With Inhibition of Gli-1 in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is the most lethal glioma variant in the adult brain and among the deadliest of human cancers. Increasing evidence has shown that metabotropic glutamate receptor subtype 4 (mGluR4 expression may play roles in regulating the growth of neural stem cells as well as several cancer cell lines. Here, we investigated the effects of mGluR4 on the growth and apoptosis of the LN229 GBM cell line. Involvement of Gli-1, one of the key transcription factors in the sonic Hedgehog (SHH signaling pathway, was further explored. In this study, mGluR4 was activated using selective agonist VU0155041; and gene-targeted siRNAs were used to generate loss of function of mGluR4 and Gli-1 in LN229 cells. The results demonstrated that LN229 cells expressed mGluR4 and the agonist VU0155041 decreased cell viability in a dose- and time-dependent manner. Activation of mGluR4 inhibited cyclin D1 expression, activated pro-caspase-8/9/3, and disrupted the balance of Bcl-2/Bax expression, which indicated cell cycle arrest and apoptosis of LN229 cells, respectively. Furthermore, Gli-1 expression was reduced by mGluR4 activation in LN229 cells, and downregulation of Gli-1 expression by gene-targeted siRNA resulted in both inhibition of cell proliferation and promotion of apoptosis. Moreover, VU0155041 treatment substantially blocked SHH-induced cyclin D1 expression and cell proliferation, while increasing TUNEL-positive cells and the activation of apoptosis-related proteins. We concluded that activation of mGluR4 expressed in LN229 cells could inhibit GBM cell growth by decreasing cell proliferation and promoting apoptosis. Further suppression of intracellular Gli-1 expression might be involved in the action of mGluR4 on cancer cells. Our study suggested a novel role of mGluR4, which might serve as a potential drug target for control of GBM cell growth.

  3. Collateral methotrexate resistance in cisplatin-selected murine leukemia cells

    Directory of Open Access Journals (Sweden)

    Bhushan A.

    1999-01-01

    Full Text Available Resistance to anticancer drugs is a major cause of failure of many therapeutic protocols. A variety of mechanisms have been proposed to explain this phenomenon. The exact mechanism depends upon the drug of interest as well as the tumor type treated. While studying a cell line selected for its resistance to cisplatin we noted that the cells expressed a >25,000-fold collateral resistance to methotrexate. Given the magnitude of this resistance we elected to investigate this intriguing collateral resistance. From a series of investigations we have identified an alteration in a membrane protein of the resistant cell as compared to the sensitive cells that could be the primary mechanism of resistance. Our studies reviewed here indicate decreased tyrosine phosphorylation of a protein (molecular mass = 66 in the resistant cells, which results in little or no transfer of methotrexate from the medium into the cell. Since this is a relatively novel function for tyrosine phosphorylation, this information may provide insight into possible pharmacological approaches to modify therapeutic regimens by analyzing the status of this protein in tumor samples for a better survival of the cancer patients.

  4. Regulatory dendritic cells for promotion of liver transplant operational tolerance: Rationale for a clinical trial and accompanying mechanistic studies.

    Science.gov (United States)

    Thomson, Angus W; Humar, Abhinav; Lakkis, Fadi G; Metes, Diana M

    2018-05-01

    Dendritic cells (DC) are rare, bone marrow (BM)-derived innate immune cells that critically maintain self-tolerance in the healthy steady-state. Regulatory DC (DCreg) with capacity to suppress allograft rejection and promote transplant tolerance in pre-clinical models can readily be generated from BM precursors or circulating blood monocytes. These DCreg enhance allograft survival via various mechanisms, including promotion of regulatory T cells. In non-human primates receiving minimal immunosuppressive drug therapy (IS), infusion of DCreg of donor origin, one week before transplant, safely prolongs renal allograft survival and selectively attenuates anti-donor CD8 + memory T cell responses in the early post-transplant period. Based on these observations, and in view of the critical need to reduce patient dependence on non-specific IS agents that predispose to cardiometabolic side effects and renal insufficiency, we will conduct a first-in-human safety and preliminary efficacy study of donor-derived DCreg infusion to achieve early (18 months post-transplant) complete IS withdrawal in low-risk, living donor liver transplant recipients receiving standard-of-care IS (mycophenolate mofetil, tacrolimus and steroids). We will test the hypothesis that, although donor-derived DCreg are short-lived, they will induce robust donor-specific T cell hyporesponsiveness. We will examine immunological mechanisms by sequential analysis of blood and tissue samples, incorporating cutting-edge technologies. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  5. Nanoparticles carrying neurotrophin-3-modified Schwann cells promote repair of sciatic nerve defects.

    Science.gov (United States)

    Zong, Haibin; Zhao, Hongxing; Zhao, Yilei; Jia, Jingling; Yang, Libin; Ma, Chao; Zhang, Yang; Dong, Yuzhen

    2013-05-15

    Schwann cells and neurotrophin-3 play an important role in neural regeneration, but the secretion of neurotrophin-3 from Schwann cells is limited, and exogenous neurotrophin-3 is inactived easily in vivo. In this study, we have transfected neurotrophin-3 into Schwann cells cultured in vitro using nanoparticle liposomes. Results showed that neurotrophin-3 was successfully transfected into Schwann cells, where it was expressed effectively and steadily. A composite of Schwann cells transfected with neurotrophin-3 and poly(lactic-co-glycolic acid) biodegradable conduits was transplanted into rats to repair 10-mm sciatic nerve defects. Transplantation of the composite scaffold could restore the myoelectricity and wave amplitude of the sciatic nerve by electrophysiological examination, promote nerve axonal and myelin regeneration, and delay apoptosis of spinal motor neurons. Experimental findings indicate that neurotrophin-3 transfected Schwann cells combined with bridge grafting can promote neural regeneration and functional recovery after nerve injury.

  6. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    Science.gov (United States)

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  7. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Huaying; Li, Guiyuan; Zhang, Liming; Niu, Zhaoxia; Zhou, Ming; Peng, Cong; Li, Xiayu; Deng, Tan; Shi, Lei; Tan, Yixin

    2008-01-01

    Nasopharyngeal carcinoma (NPC) is a head and neck malignancy with high occurrence in South-East Asia and Southern China. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumourigenesis of NPC. BRD7 is a NPC-associated bromodomain gene that exhibits a much higher-level of mRNA expression in normal than in NPC biopsies and cell lines. In this study, we explored the role of DNA methylation in regulation of BRD7 transcription. The presence of CpG islands within BRD7 promoter was predicted by EMBOSS CpGplot and Softberry CpGFinder, respectively. Nested methylation-specific PCR and RT-PCR were employed to detect the methylation status of BRD7 promoter and the mRNA expression of BRD7 gene in tumor cell lines as well as clinical samples. Electrophoretic mobility shift assays (EMSA) and luciferase assay were used to detect the effects of cytosine methylation on the nuclear protein binding to BRD7 promoter. We found that DNA methylation suppresses BRD7 expression in NPC cells. In vitro DNA methylation in NPC cells silenced BRD7 promoter activity and inhibited the binding of the nuclear protein (possibly Sp1) to Sp1 binding sites in the BRD7 promoter. In contrast, inhibition of DNA methylation augments induction of endogenous BRD7 mRNA in NPC cells. We also found that methylation frequency of BRD7 promoter is much higher in the tumor and matched blood samples from NPC patients than in the blood samples from normal individuals. BRD7 promoter demethylation is a prerequisite for high level induction of BRD7 gene expression. DNA methylation of BRD7 promoter might serve as a diagnostic marker in NPC

  8. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  9. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    International Nuclear Information System (INIS)

    Costa-Silva, Bruno; Coelho da Costa, Meline; Melo, Fernanda Rosene; Neves, Cynara Mendes; Alvarez-Silva, Marcio; Calloni, Giordano Wosgrau; Trentin, Andrea Goncalves

    2009-01-01

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells

  10. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    International Nuclear Information System (INIS)

    Uchino, Keita; Hirano, Gen; Hirahashi, Minako; Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi; Tsuneyoshi, Masazumi; Akashi, Koichi

    2012-01-01

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: ► Nanog maintains pluripotency by regulating embryonic stem cells differentiation. ► Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. ► Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. ► Nanog pseudogene8 promotes cancer stem cells proliferation. ► Nanog pseudogene8 is involved in gastrointestinal cancer development.

  11. JNK2 promotes endothelial cell alignment under flow.

    Directory of Open Access Journals (Sweden)

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  12. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary.

    Directory of Open Access Journals (Sweden)

    Fei Lin

    Full Text Available More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro.

  13. Centrosomal protein 55 activates NF-?B signalling and promotes pancreatic cancer cells aggressiveness

    OpenAIRE

    Peng, Tao; Zhou, Wei; Guo, Feng; Wu, He-shui; Wang, Chun-you; Wang, Li; Yang, Zhi-yong

    2017-01-01

    Centrosomal protein 55 (CEP55) is a microtubule-bundling protein that participants in cell mitosis. It is overexpressed in several solid tumours and promotes the growth and invasion of cancer cells. However, the role of CEP55 in pancreatic cancer (PANC) remains unclear. Herein, upregulated expression of CEP55 (associated with poor prognosis) was detected in PANC using quantitative real-time reverse transcription PCR, western blotting, and immunohistochemistry. Cell migration, colony formation...

  14. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders

    2011-01-01

    Cu/TiO2, Fe/TiO2 and heteropoly acid promoted Cu/TiO2, Fe/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR and EPR. The catalysts exhibited only crystalline TiO2 phases with the active metals and promoters in highly dispersed state. The acidic properties...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might...... be suitable for biomass fired power plant SCR applications....

  15. Connective tissue growth factor is a positive regulator of epithelial-mesenchymal transition and promotes the adhesion with gastric cancer cells in human peritoneal mesothelial cells.

    Science.gov (United States)

    Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Na, Di; Li, Feng; Li, Jia-Bin; Sun, Zhe; Xu, Hui-Mian

    2013-01-01

    Connective tissue growth factor (CTGF) is involved in human cancer development and progression. Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. In this study, we wished to investigate the role of CTGF in EMT of peritoneal mesothelial cells and the effects of CTGF on adhesion of gastric cancer cells to mesothelial cells. Human peritoneal mesothelial cells (HPMCs) were cultured with TGF-β1 or various concentrations of CTGF for different time. The EMT process was monitored by morphology. Real-time RT-PCR and Western blot were used to evaluate the expression of vimentin, α-SMA , E-cadherin and β-catenin. RNA interference was used to achieve selective and specific knockdown of CTGF. We demonstrated that CTGF induced EMT of mesothelial cells in a dose- and time-dependent manner. HPMCs were exposed to TGF-β1 also underwent EMT which was associated with the induction of CTGF expression. Transfection with CTGF siRNA was able to reverse the EMT partially after treatment of TGF-β1. Moreover, the induced EMT of HPMCs was associated with an increased adhesion of gastric cancer cells to mesothelial cells. These findings suggest that CTGF is not only an important mediator but a potent activator of EMT in peritoneal mesothelial cells, which in turn promotes gastric cancer cell adhesion to peritoneum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development

    Directory of Open Access Journals (Sweden)

    Nadine Teichweyde

    2018-03-01

    Full Text Available Summary: Generation of hematopoietic stem cells (HSCs from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs. Through the use of Runx1(−/− ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression. : In this article, Klump and colleagues demonstrate that the human homeotic selector protein HOXB4 promotes ESC-derived hematopoiesis by inducing hemogenic endothelium formation, in vitro. It propels hematopoietic specification by upregulating the transcription of genes essential for hematopoietic development, such as those encoding members of the so-called heptad transcription factors. Keywords: HOXB4, hematopoietic stem cells, hemangioblast, hemogenic endothelium, hematopoietic specification, EHT, RUNX1, pluripotent stem cells

  17. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  18. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction

    DEFF Research Database (Denmark)

    Burns, Jorge S; Kristiansen, Malthe; Kristensen, Lars P

    2011-01-01

    . Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells...... of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization....

  19. Cell-derived microparticles promote coagulation after moderate exercise.

    Science.gov (United States)

    Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang

    2011-07-01

    Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.

  20. Low-Dose Radiation Induces Genes Promoting Cell Survival

    International Nuclear Information System (INIS)

    Liu, Shu-Zheng; Chen, Dong; Mu, Ying

    1999-01-01

    Apoptosis is an important process controlling homeostasis of the body. It is influenced by stimuli constantly arising from the external and internal environment of the organism. It is well known that radiation could induce apoptosis of cells in vitro and in vivo. However, the dose-effect relationship of apoptosis extending to the low-dose range has scarcely been studied. Here, the molecular basis of the phenomenon is explored by examining the changes in expression of some of the proapoptotic and antiapoptotic genes

  1. Methylation Status of miR-182 Promoter in Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yongwen LI

    2015-05-01

    Full Text Available Background and objective It has been proven that the abnormal expression of miR-182 was related to the occurrence and development of tumors. The aim of this study is to explore the relationship between the methylation of miR-182 promoter and its expression in lung cancer cell lines. Methods Real-time quantitative PCR and methylation-specific PCR were used to detect the expression level of miR-182 and its promoter methylation status in five lung cancer cell lines (A549, L9981, NL9980, 95C and 95D. DNA sequencing was used to confirm the methylation results. Results The level of miR-182 expression significantly differs among these lung cancer cell lines. The highly metastatic human lung cancer cell lines, namely, A549 and L9981, demonstrate a relatively lower expression level of miR-182 compared with the lowly metastatic human lung cancer cell line 95C. Methylation-specific PCR and DNA sequencing assay results indicate that these lung cancer cell lines present different levels of miR-182 promoter methylation, and the highest methylation level is observed in A549 cells. Furthermore, the expression of miR-182 in these cell lines significantly increases when treated with 10 μM 5’-Aza-dC. Conclusion DNA methylation occurs in the miR-182 promoter region in lung cancer cell lines. This methylation can regulate the expression level of miR-182. Further study must be conducted to explore the function of miR-182 promoter methylation in lung cancer occurrence and development.

  2. Selection of aptamers for Candida albicans by cell-SELEX

    International Nuclear Information System (INIS)

    Miranda, Alessandra Nunes Duarte

    2017-01-01

    The growing concern with invasive fungal infections, responsible for an alarming mortality rate of immunosuppressed patients and in Intensive Care Units, evidences the need for a fast and specific method for the Candida albicans detection, since this species is identified as one of the main causes of septicemia. Commonly, it is a challenge for clinicians to determine the primary infection foci, the dissemination degree, or whether the site of a particular surgery is involved. Although scintigraphic imaging represents a promising tool for infectious foci detection, it still lacks a methodology for C. albicans diagnosis due to the absence of specific radiotracers for this microorganism. Aptamers are molecules that have almost ideal properties for use as diagnostic radiopharmaceuticals, such as high specificity for their molecular targets, lack of immunogenicity and toxicity, high tissue penetration and rapid blood clearance. Aptamers can also be labeled with different radionuclides. This work aims to obtain aptamers for specific binding to C. albicans cells for future application as a radiopharmaceutical. It was used a variation of the SELEX (Systematic Evolution of Ligands by EXponential Enrichment) technique, termed cell-SELEX, in which cells are the targets for selection. A selection protocol was standardized using a random library of single-stranded oligonucleotides, each containing two fixed regions flanking a sequence of 40 random nucleotides. This library was incubated with C. albicans cells in the presence of competitors. Then, the binding sequences were separated by centrifugation, resuspended and amplified by PCR. The amplification was confirmed by agarose gel electrophoresis. After that, the ligands were purified to obtain a new pool of ssDNA, from which a new incubation was carried out. The selection parameters were gradually modified in order to increase stringency. This cycle was repeated 12 times to allow the selection of sequences with the maximum

  3. hTERT promoter mediating gene therapy in laryngeal squamous carcinomas cells in vitro

    International Nuclear Information System (INIS)

    Liao Zhengkai; Zhou Yunfeng; Zhou Fuxiang; Luo Zhiguo; Xiong Jie; Bao Jie; Xie Conghua; Liu Shiquan

    2007-01-01

    Objective: To investigate the relationship among hTERT promoter activity, hTERT mRNA expression, and telomerase activity (TA) in laryngeal squamous carcinomas cell lines, and to evaluate the usefulness of hTERT promoter mediated gene therapy. Methods: After plasmids pGL3-hTERTp were transfected, hTEBT promoter activity, hTERT mRNA expression and TA were determined by luciferase assay, RT-PCR and TRAP-PCR-ELISA, respectively. Plasmid phTERTp-HRP was constructed and transfected, HRP expression was determined by RT-PCR and competent peroxidase activity was confirmed by enzyme activity assay. The cytotoxicity and radiosensitivity of phTERTp-HRP/IAA were determined by clonogenic assay. Results: The relative levels of hTERT promoter activity, hTERT mRNA expression and TA in Hep2R cells were 1.37-fold, 1.43-fold and 1.81-fold compared with Hep2R cells, hTERT promoter activity was closely associated with hTERT mRNA expression and TA levels (P SF 2 ) was 1.24 (Hep2R cells) and 1.20 (Hep 2cells), the parameter a of with or without IAA incubation were 0.090, 0.020 (Hep2R)and 0.099, 0.042 (Hep2). Conclusions: hTERT promoter is applicable in mediating gene therapy in different radiosensitive laryngeal squamous carcinomas cells. hTERTp-HRP/IAA gene therapy may be a promising supplementary method for radiotherapy of laryngeal squamous-cell carcinomas. (authors)

  4. Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression.

    Science.gov (United States)

    Hung, Shun-Pei; Yang, Muh-Hwa; Tseng, Kuo-Fung; Lee, Oscar K

    2013-01-01

    In solid tumors, a decreased oxygen and nutrient supply creates a hypoxic microenvironment in the central region. This hypoxic condition induces molecular responses of normal and cancer cells in the local area, including angiogenesis, metabolic changes, and metastasis. In addition, other cells including mesenchymal stem cells (MSCs) have been reported to be recruited into the hypoxic area of solid tumors. In our previous study, we found that hypoxic condition induces the secretion of growth factors and cytokines in MSCs, and here we demonstrate that elevated secretion of transforming growth factor-β1 (TGF-β1) by MSCs under hypoxia promotes the growth, motility, and invasive ability of breast cancer cells. It was found that TGF-β1 promoter activity was regulated by hypoxia, and the major hypoxia-regulated element was located between bp -1030 to -666 in front of the TGF-β1 promoter region. In ChIP assay, the results revealed that HIF-1 was bound to the hypoxia response element (HRE) of TGF-β1 promoter. Collectively, the results indicate that hypoxia microenvironment can enhance cancer cell growth through the paracrine effects of the MSCs by driving their TGF-β1 gene expression and secretion. Therefore, extra caution has to be exercised when considering hypoxia pretreatment of MSCs before cell transplantation into patients for therapeutic purposes, particularly in patients susceptible to tumor growth.

  5. Subcortical orientation biases explain orientation selectivity of visual cortical cells.

    Science.gov (United States)

    Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V

    2015-04-01

    The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and inva......Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading...... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....

  7. Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism.

    Science.gov (United States)

    Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua

    2016-03-01

    Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.

  8. Inflammatory Th17 cells promote depression-like behavior in mice

    Science.gov (United States)

    Beurel, Eléonore; Harrington, Laurie E.; Jope, Richard S.

    2012-01-01

    Background Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact CNS functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models Th17 cells promote susceptibility to depression-like behaviors. Methods Behavioral characteristics were measured in male mice administered Th17 cells, CD4+ cells, or vehicle, and in RORγT+/GFP mice or male mice treated with RORγT inhibitor or anti-IL-17A antibodies. Results Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-IL-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. Conclusions These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. PMID:23174342

  9. Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana.

    Science.gov (United States)

    Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela; Fisahn, Joachim

    2010-05-01

    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.

  10. Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro.

    Science.gov (United States)

    Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2012-12-01

    Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.

  11. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin; Qin Xinyu

    2008-01-01

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU + insulin - PDX-1 + cells, Ngn3 + cells and insulin + glucagon + cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34 + cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  12. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Pena, AndreAna N., E-mail: andreana.pena@gmail.com [Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Tominaga, Kaoru; Pereira-Smith, Olivia M. [Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2011-07-01

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  13. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    International Nuclear Information System (INIS)

    Pena, AndreAna N.; Tominaga, Kaoru; Pereira-Smith, Olivia M.

    2011-01-01

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  14. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    International Nuclear Information System (INIS)

    Wan Jin; Zheng Hua; Xiao Honglei; She Zhenjue; Zhou Guomin

    2007-01-01

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons

  15. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wan; Hua, Zheng; Honglei, Xiao; Zhenjue, She [Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai (China); Zhou Guomin [Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai (China)], E-mail: gmzhou185@yahoo.com.cn

    2007-11-16

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.

  16. Electrical Stimulation of Schwann Cells Promotes Sustained Increases in Neurite Outgrowth

    OpenAIRE

    Koppes, Abigail N.; Nordberg, Andrea L.; Paolillo, Gina M.; Goodsell, Nicole M.; Darwish, Haley A.; Zhang, Linxia; Thompson, Deanna M.

    2013-01-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite ou...

  17. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4+ T cells.

    Science.gov (United States)

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4 + T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4 + T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4 + T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4 + T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4 + T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4 + T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4 + T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4 + T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Epigenetic Silencing of CXCR4 Promotes Loss of Cell Adhesion in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Suresh Singh Yadav

    2014-01-01

    Full Text Available In the network of chemokine signaling pathways, recent reports have described the SDF-1α/CXCR4 axis and its role in cancer progression and metastasis. Interestingly, we found downregulation of CXCR4 at both transcript and protein level in cervical cancer cell lines and primary tumors. We also found CXCR4 promoter hypermethylation in cervical cancer cell lines and primary biopsy samples. DNA hypomethylating drug 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor Trichostatin A treatments in cell lines reactivate both CXCR4 transcription and protein expression. Cell adhesion assay demonstrated that autocrine SDF-1α promotes the loss of cell adhesion while paracrine SDF-1α predominantly protects the normal cervical cells from loss of cell adhesion. Cervical cancer cell line C-33A having increased expression of CXCR4 after TSA treatment showed increased cell adhesion by paracrine source of SDF-1α in comparison to untreated C-33A. These findings demonstrate the first evidence that epigenetic silencing of CXCR4 makes the cells inefficient to respond to the paracrine source of SDF-1α leading to loss of cell adhesion, one of the key events in metastases and progression of the disease. Our results provide novel insight of SDF-1α/CXCR4 signaling in tumor microenvironment which may be promising to further delineate molecular mechanism of cervical carcinogenesis.

  19. Polycystin-1 promotes PKCα-mediated NF-κB activation in kidney cells

    International Nuclear Information System (INIS)

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky; Mangolini, Alessandra; Pinton, Paolo; Witzgall, Ralph; Rizzuto, Rosario; Senno, Laura del

    2006-01-01

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-κB signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293 CTT ), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-κB nuclear levels and NF-κB-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-κB promoter activation was mediated by PKCα because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293 CTT cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-κB inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKCα-mediated NF-κB signalling and cell survival

  20. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    Science.gov (United States)

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-03-13

    The remarkable regeneration capability of skeletal muscle depends on coordinated proliferation and differentiation of satellite cells. The self-renewal of satellite cells is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in satellite cells in vivo remains largely unknown. Here, we report that satellite cells are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of satellite cells by maintaining the quiescence, increasing the self-renewal and blocking the myogenic differentiation of satellite cells. HIF2A stabilization in satellite cells cultured under normoxia augmented their engraftment potential in regenerative muscle. Reversely, HIF2A ablation led to the depletion of satellite cells and the consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerated muscle regeneration by increasing satellite cell proliferation and differentiation. Mechanistically, HIF2A induces the quiescence/self-renewal of satellite cells by binding the promoter of Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in satellite cells and may be therapeutically targeted to improve muscle regeneration.

  1. Non-canonical TAF complexes regulate active promoters in human embryonic stem cells.

    Science.gov (United States)

    Maston, Glenn A; Zhu, Lihua Julie; Chamberlain, Lynn; Lin, Ling; Fang, Minggang; Green, Michael R

    2012-11-13

    The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs). Here we find, unexpectedly, that undifferentiated human embryonic stem cells (hESCs) contain only six TAFs (TAFs 2, 3, 5, 6, 7 and 11), whereas following differentiation all TAFs are expressed. Directed and global chromatin immunoprecipitation analyses reveal an unprecedented promoter occupancy pattern: most active genes are bound by only TAFs 3 and 5 along with TBP, whereas the remaining active genes are bound by TBP and all six hESC TAFs. Consistent with these results, hESCs contain a previously undescribed complex comprising TAFs 2, 6, 7, 11 and TBP. Altering the composition of hESC TAFs, either by depleting TAFs that are present or ectopically expressing TAFs that are absent, results in misregulated expression of pluripotency genes and induction of differentiation. Thus, the selective expression and use of TAFs underlies the ability of hESCs to self-renew.DOI:http://dx.doi.org/10.7554/eLife.00068.001.

  2. Enhanced incorporation of radioactive inorganic phosphate into phospholipids of HeLa cells by tumor promoters

    International Nuclear Information System (INIS)

    Nishino, H.; Fujiki, H.; Terada, M.; Sato, S.

    1983-01-01

    Teleocidin, a new tumor promoter, increased incorporation of radioactive inorganic phosphate ( 32 P/sub i/) into phospholipids in HeLa cells. This effect was detected within 1 h on incubation of the cells in medium containing teleocidin. The half-maximum effective dose of teleocidin was approximately 10 ng/ml. The main effect of teleocidin was on the incorporation of 32 P/sub i/ into the phosphatidylcholine fraction, with a lesser effect on 32 P/sub i/ incorporation into other phospholipid fractions. Increased incorporation of 32 P/sub i/ into phospholipids was also observed on incubation of the cells with 12-O-tetradecanoylphorbol-13-acetate (TPA), dihydroteleocidin B, or lyngbyatoxin A, which are all complete tumor promoters, and also with mezerein, which is an incomplete and second stage promoter. On the other hand, at concentrations of up to 1 microgram/ml, 4-O-methyl TPA and C/sub a/ 2 + ionophore A23187, which are incomplete and first stage promoters, and phorbol, which has no promoting activity in skin carcinogenesis, did not cause any increased incorporation of 32 P/sub i/ into phospholipid fractions of HeLa cells

  3. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsu Anna

    2011-10-01

    Full Text Available Abstract Sulforaphane (SFN, an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.

  4. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26

    KAUST Repository

    Meller, Stephan; Di Domizio, Jeremy; Voo, Kui S; Friedrich, Heike C; Chamilos, Georgios; Ganguly, Dipyaman; Conrad, Curdin; Gregorio, Josh; Le Roy, Didier; Roger, Thierry; Ladbury, John E; Homey, Bernhard; Watowich, Stanley; Modlin, Robert L; Kontoyiannis, Dimitrios P; Liu, Yong-Jun; Arold, Stefan T.; Gilliet, Michel

    2015-01-01

    Interleukin 17-producing helper T cells (TH 17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death. © 2015 Nature America, Inc.

  5. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26

    KAUST Repository

    Meller, Stephan

    2015-07-13

    Interleukin 17-producing helper T cells (TH 17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death. © 2015 Nature America, Inc.

  6. EDAG promotes the expansion and survival of human CD34+ cells.

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    Full Text Available EDAG is multifunctional transcriptional regulator primarily expressed in the linloc-kit+Sca-1+ hematopoietic stem cells (HSC and CD34+ progenitor cells. Previous studies indicate that EDAG is required for maintaining hematopoietic lineage commitment balance. Here using ex vivo culture and HSC transplantation models, we report that EDAG enhances the proliferative potential of human cord blood CD34+ cells, increases survival, prevents cell apoptosis and promotes their repopulating capacity. Moreover, EDAG overexpression induces rapid entry of CD34+ cells into the cell cycle. Gene expression profile analysis indicate that EDAG knockdown leads to down-regulation of various positive cell cycle regulators including cyclin A, B, D, and E. Together these data provides novel insights into EDAG in regulation of expansion and survival of human hematopoietic stem/progenitor cells.

  7. Promotion of haematopoietic activity in embryonic stem cells by the aorta-gonad-mesonephros microenvironment

    International Nuclear Information System (INIS)

    Krassowska, Anna; Gordon-Keylock, Sabrina; Samuel, Kay; Gilchrist, Derek; Dzierzak, Elaine; Oostendorp, Robert; Forrester, Lesley M.; Ansell, John D.

    2006-01-01

    We investigated whether the in vitro differentiation of ES cells into haematopoietic progenitors could be enhanced by exposure to the aorta-gonadal-mesonephros (AGM) microenvironment that is involved in the generation of haematopoietic stem cells (HSC) during embryonic development. We established a co-culture system that combines the requirements for primary organ culture and differentiating ES cells and showed that exposure of differentiating ES cells to the primary AGM region results in a significant increase in the number of ES-derived haematopoietic progenitors. Co-culture of ES cells on the AM20-1B4 stromal cell line derived from the AGM region also increases haematopoietic activity. We conclude that factors promoting the haematopoietic activity of differentiating ES cells present in primary AGM explants are partially retained in the AM20.1B4 stromal cell line and that these factors are likely to be different to those required for adult HSC maintenance

  8. Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-09-01

    Full Text Available Non-viral transfection protocols are typically optimized using standard cells and reporter proteins, potentially underestimating cellular or transgene effects. Here such effects were studied for two human (Jurkat, HEK-293 and two rodent (CHO-K1, L929 cell lines and three fluorescent reporter proteins. Expression of the enhanced green fluorescent protein (EGFP was studied under the control of the human elongation factor 1 alpha promoter and three viral promoters (SV40, SV40/enhancer, CMV, that of ZsYellow1 (yellow fluorescence and mCherry (red fluorescence for the CMV promoter. Results varied with the cell line, in particular for the Jurkat cells. Pair-wise co-transfection of the CMV controlled transgenes resulted in a significant fraction of monochromatic cells (EGFP for EGFP/YFP and EGFP/RFP co-transfections, YFP in case of YFP/RFP co-transfections. Only Jurkat cells were almost incapable of expressing YFP. Dilution of the plasmid DNA with a non-expressed plasmid showed cell line dependent effects on transfection efficiency and/or expression levels.

  9. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    Science.gov (United States)

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  10. Prognostic value of MLH1 promoter methylation in male patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wu, Dongping; Chen, Xiaoying; Xu, Yan; Wang, Haiyong; Yu, Guangmao; Jiang, Luping; Hong, Qingxiao; Duan, Shiwei

    2017-04-01

    The DNA mismatch repair (MMR) gene MutL homolog 1 ( MLH1 ) is critical for the maintenance of genomic integrity. Methylation of the MLH1 gene promoter was identified as a prognostic marker for numerous types of cancer including glioblastoma, colorectal, ovarian and gastric cancer. The present study aimed to determine whether MLH1 promoter methylation was associated with survival in male patients with esophageal squamous cell carcinoma (ESCC). Formalin-fixed, paraffin-embedded ESCC tissues were collected from 87 male patients. MLH1 promoter methylation was assessed using the methylation-specific polymerase chain reaction approach. Kaplan-Meier survival curves and log-rank tests were used to evaluate the association between MLH1 promoter methylation and overall survival (OS) in patients with ESCC. Cox regression analysis was used to obtain crude and multivariate hazard ratios (HR), and 95% confidence intervals (CI). The present study revealed that MLH1 promoter methylation was observed in 53/87 (60.9%) of male patients with ESCC. Kaplan-Meier survival analysis demonstrated that MLH1 promoter hypermethylation was significantly associated with poorer prognosis in patients with ESCC (P=0.048). Multivariate survival analysis revealed that MLH1 promoter hypermethylation was an independent predictor of poor OS in male patients with ESCC (HR=1.716; 95% CI=1.008-2.921). Therefore, MLH1 promoter hypermethylation may be a predictor of prognosis in male patients with ESCC.

  11. Selection for Unequal Densities of Sigma70 Promoter-like Signalsin Different Regions of Large Bacterial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, Araceli M.; Francino, M. Pilar; Morett, Enrique; Collado-Vides, Julio

    2006-03-01

    The evolutionary processes operating in the DNA regions that participate in the regulation of gene expression are poorly understood. In Escherichia coli, we have established a sequence pattern that distinguishes regulatory from nonregulatory regions. The density of promoter-like sequences, that are recognizable by RNA polymerase and may function as potential promoters, is high within regulatory regions, in contrast to coding regions and regions located between convergently-transcribed genes. Moreover, functional promoter sites identified experimentally are often found in the subregions of highest density of promoter-like signals, even when individual sites with higher binding affinity for RNA polymerase exist elsewhere within the regulatory region. In order to investigate the generality of this pattern, we have used position weight matrices describing the -35 and -10 promoter boxes of E. coli to search for these motifs in 43 additional genomes belonging to most established bacterial phyla, after specific calibration of the matrices according to the base composition of the noncoding regions of each genome. We have found that all bacterial species analyzed contain similar promoter-like motifs, and that, in most cases, these motifs follow the same genomic distribution observed in E. coli. Differential densities between regulatory and nonregulatory regions are detectable in most bacterial genomes, with the exception of those that have experienced evolutionary extreme genome reduction. Thus, the phylogenetic distribution of this pattern mirrors that of genes and other genomic features that require weak selection to be effective in order to persist. On this basis, we suggest that the loss of differential densities in the reduced genomes of host-restricted pathogens and symbionts is the outcome of a process of genome degradation resulting from the decreased efficiency of purifying selection in highly structured small populations. This implies that the differential

  12. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    Science.gov (United States)

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells.

    Science.gov (United States)

    Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Taya, Masahito

    2015-04-01

    Introduction of a polyploidy inducer is a promising strategy to achieve a high level of polyploidization during megakaryocytic (MK) differentiation. Here, we report that a multi-kinase inhibitor, BMS-777607, is a potent polyploidy inducer for elevating high ploidy cell formation in the MK-differentiated CHRF-288-11 (CHRF) cells. Our result showed that BMS-777607 strongly inhibited cell division without affecting cell viability when detected at day 1 after treatment. As a consequence, the high ploidy (≥8N) cells were accumulated in culture for 8 days, with an increase from 16.2 to 75.2 % of the total cell population. The elevated polyploidization was accompanied by the increased expression level of MK marker, CD41 (platelet glycoprotein IIb/IIIa, GPIIb/IIIa), suggesting that BMS-777607 promoted both polyploidization and commitment of MK-differentiated CHRF cells. Platelet-like fragments (PFs) were released by mature CHRF cells. Based on a flow cytometry assay, it was found that the PFs produced from BMS-777607-treated cells tended to have larger size and higher expression of GPIIb/IIIa, a receptor for platelet adhesion. Taken together, these results suggested that BMS-777607 promoted MK differentiation of CHRF cells and increased the functional property of platelet-like fragments.

  14. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Guenhaël Sanz

    Full Text Available Olfactory receptors (ORs are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand, as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor, an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.

  15. The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors

    DEFF Research Database (Denmark)

    Alexopoulou, Annika N; Couchman, John R; Whiteford, James

    2008-01-01

    BACKGROUND: Mouse embryonic stem cells cultured in vitro have the ability to differentiate into cells of the three germ layers as well as germ cells. The differentiation mimics early developmental events, including vasculogenesis and early angiogenesis and several differentiation systems are being...... used to identify factors that are important during the formation of the vascular system. Embryonic stem cells are difficult to transfect, while downregulation of promoter activity upon selection of stable transfectants has been reported, rendering the study of proteins by overexpression difficult....... RESULTS: CCE mouse embryonic stem cells were differentiated on collagen type IV for 4-5 days, Flk1+ mesodermal cells were sorted and replated either on collagen type IV in the presence of VEGFA to give rise to endothelial cells and smooth muscle cells or in collagen type I gels for the formation...

  16. Topical application of ex vivo expanded endothelial progenitor cells promotes vascularisation and wound healing in diabetic mice.

    Science.gov (United States)

    Asai, Jun; Takenaka, Hideya; Ii, Masaaki; Asahi, Michio; Kishimoto, Saburo; Katoh, Norito; Losordo, Douglas W

    2013-10-01

    Impaired wound healing leading to skin ulceration is a serious complication of diabetes and may be caused by defective angiogenesis. Endothelial progenitor cells (EPCs) can augment neovascularisation in the ischaemic tissue. Experiments were performed to test the hypothesis that locally administered EPCs can promote wound healing in diabetes. Full-thickness skin wounds were created on the dorsum of diabetic mice. EPCs were obtained from bone marrow mononuclear cells (BMMNCs) and applied topically to the wound immediately after surgery. Vehicle and non-selective BMMNCs were used as controls. Wound size was measured on days 5, 10 and 14 after treatment, followed by resection, histological analysis and quantification of vascularity. Topical application of EPCs significantly promoted wound healing, as assessed by closure rate and wound vascularity. Immunostaining revealed that transplanted EPCs induced increased expression of vascular endothelial growth factor and basic fibroblast growth factor. Few EPCs were observed in the neovasculature based on in vivo staining of the functional vasculature. Ex vivo expanded EPCs promote wound healing in diabetic mice via mechanisms involving increased local cytokine expression and enhanced neovascularisation of the wound. This strategy exploiting the therapeutic capacity of autologously derived EPCs may be a novel approach to skin repair in diabetes. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  17. Tumor-promoting phorbol esters effect alkalinization of canine renal proximal tubular cells

    International Nuclear Information System (INIS)

    Mellas, J.; Hammerman, M.R.

    1986-01-01

    We have demonstrated the presence of specific receptors for tumor-promoting phorbol esters in the plasma membrane of the canine renal proximal tubular cell. These compounds affect proximal tubular metabolism in vitro. For example, we have shown that they inhibit gluconeogenesis in canine renal proximal tubular segments. Tumor-promoting phorbol esters have been shown to effect alkalinization of non-renal cells, by enhancing Na + -H + exchange across the plasma membrane. To determine whether the actions of tumor-promoting phorbol esters in proximal tubular segments might be mediated by a similar process, we incubated suspensions of segments from dog kidney with these compounds and measured changes in intracellular pH using [ 14 C]-5,5-dimethoxazoladine-2-4-dione (DMO) and flow dialysis. Incubation of segments with phorbol 12,13 dibutyrate, but not inactive phorbol ester, 4 γ phorbol, effected alkalinization of cells within the segments in a concentration-dependent manner. Alkalinization was dependent upon the presence of extracellular [Na + ] > intracellular [Na + ], was prevented by amiloride and was demonstrable in the presence of SITS. Our findings suggest that tumor-promoting esters stimulate the Na + -H + exchanger known to be present in the brush border membrane of the renal proximal tubular cell. It is possible that the stimulation reflects a mechanism by which phorbol esters affect metabolic processes in these cells

  18. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    International Nuclear Information System (INIS)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming

    2016-01-01

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  19. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming, E-mail: zengshenming@gmail.com

    2016-04-22

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  20. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-01-01

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma

  1. PDGFBB promotes PDGFRα-positive cell migration into artificial bone in vivo

    International Nuclear Information System (INIS)

    Yoshida, Shigeyuki; Iwasaki, Ryotaro; Kawana, Hiromasa; Miyauchi, Yoshiteru; Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki; Kanagawa, Hiroya; Katsuyama, Eri; Fujie, Atsuhiro; Hao, Wu

    2012-01-01

    Highlights: ► We examined effects of PDGFBB in PDGFRα positive cell migration in artificial bones. ► PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. ► PDGFBB promoted PDGFRα positive cell migration into artificial bones but not osteoblast proliferation. ► PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor α (PDGFRα)-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGFβ) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  2. Six1 promotes proliferation of pancreatic cancer cells via upregulation of cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Zhaoming Li

    Full Text Available Six1 is one of the transcription factors that act as master regulators of development and are frequently dysregulated in cancers. However, the role of Six1 in pancreatic cancer is not clear. Here we show that the relative expression of Six1 mRNA is increased in pancreatic cancer and correlated with advanced tumor stage. In vitro functional assays demonstrate that forced overexpression of Six1 significantly enhances the growth rate and proliferation ability of pancreatic cancer cells. Knockdown of endogenous Six1 decreases the proliferation of these cells dramatically. Furthermore, Six1 promotes the growth of pancreatic cancer cells in a xenograft assay. We also show that the gene encoding cyclin D1 is a direct transcriptional target of Six1 in pancreatic cancer cells. Overexpression of Six1 upregulates cyclin D1 mRNA and protein, and significantly enhances the activity of the cyclin D1 promoter in PANC-1 cells. We demonstrate that Six1 promotes cell cycle progression and proliferation by upregulation of cyclin D1. These data suggest that Six1 is overexpressed in pancreatic cancer and may contribute to the increased cell proliferation through upregulation of cyclin D1.

  3. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  4. CacyBP/SIP promotes the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Huihong Zhai

    Full Text Available CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

  5. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  6. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeyuki [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Iwasaki, Ryotaro; Kawana, Hiromasa [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Miyauchi, Yoshiteru [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Integrated Bone Metabolism and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kanagawa, Hiroya [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Katsuyama, Eri; Fujie, Atsuhiro [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hao, Wu [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); and others

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  7. Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells.

    Science.gov (United States)

    Wang, Chun; Xu, Can-Xin; Alippe, Yael; Qu, Chao; Xiao, Jianqiu; Schipani, Ernestina; Civitelli, Roberto; Abu-Amer, Yousef; Mbalaviele, Gabriel

    2017-07-07

    Skeletal complications are common features of neonatal-onset multisystem inflammatory disease (NOMID), a disorder caused by NLRP3-activating mutations. NOMID mice in which NLRP3 is activated globally exhibit several characteristics of the human disease, including systemic inflammation and cartilage dysplasia, but the mechanisms of skeletal manifestations remain unknown. In this study, we find that activation of NLRP3 in myeloid cells, but not mesenchymal cells triggers chronic inflammation, which ultimately, causes growth plate and epiphyseal dysplasia in mice. These responses are IL-1 signaling-dependent, but independent of PARP1, which also functions downstream of NLRP3 and regulates skeletal homeostasis. Mechanistically, inflammation causes severe anemia and hypoxia in the bone environment, yet down-regulates the HIF-1α pathway in chondrocytes, thereby promoting the demise of these cells. Thus, activation of NLRP3 in hematopoietic cells initiates IL-1β-driven paracrine cascades, which promote abnormal growth plate development in NOMID mice.

  8. Sox2 promotes survival of satellite glial cells in vitro

    International Nuclear Information System (INIS)

    Koike, Taro; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-01-01

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling

  9. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  10. Isolation and selection of plant growth-promoting bacteria associated with sugarcane

    Directory of Open Access Journals (Sweden)

    Ariana Alves Rodrigues

    2016-06-01

    Full Text Available Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN, ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.

  11. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  12. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  13. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures.

    Science.gov (United States)

    Matsui, Mikiko; Kobayashi, Tomoko; Tsutsui, Takeo W

    2018-04-01

    CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146 + ) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146 - ) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146 + and CD146 - cells, as well as mixtures composed of 25% CD146 + cells and 75% CD146 - cells (CD146 +/- ). Cell growth assays indicated that CD146 + cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146 - cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146 + cells' DNA content in G 0 /G 1 phase were compared with CD146 - and non-separated cells. In contrast to CD146 - and non-separated cells, prompt mineralization was observed in CD146 + cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146 + cells. CD146 + cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146 + cells, compared with CD146 - and CD146 +/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146 + cells. CD146 + cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.

  14. Performance Improvements of Selective Emitters by Laser Openings on Large-Area Multicrystalline Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Sheng-Shih Wang

    2014-01-01

    Full Text Available This study focuses on the laser opening technique used to form a selective emitter (SE structure on multicrystalline silicon (mc-Si. This technique can be used in the large-area (156 × 156 mm2 solar cells. SE process of this investigation was performed using 3 samples SE1–SE3. Laser fluences can vary in range of 2–5 J/cm2. The optimal conversion efficiency of 15.95% is obtained with the SE3 (2 J/cm2 fluence after laser opening with optimization of heavy and light dopant, which yields a gain of 0.48%abs compared with that of a reference cell (without fluence. In addition, this optimal SE3 cell displays improved characteristics compared with other cells with a higher average value of external quantum efficiency (EQEavg = 68.6% and a lower average value of power loss (Ploss = 2.33 mW/cm2. For the fabrication of solar cells, the laser opening process comprises fewer steps than traditional photolithography does. Furthermore, the laser opening process decreases consumption of chemical materials; therefore, the laser opening process decreases both time and cost. Therefore, SE process is simple, cheap, and suitable for commercialization. Moreover, the prominent features of the process render it effective means to promote overall performance in the photovoltaic industry.

  15. The Impact of Promotion Activities on Touristic Area Selection: A Case Study of Japanese Tourists Visiting Cappadocia

    Directory of Open Access Journals (Sweden)

    R. Pars Şahbaz

    2012-09-01

    Full Text Available The purpose of this research is to examine the impact of promotion activities on destination selection and to determine the level of the impact of promotion activities on Japanese tourists visiting Cappadocia region. The target population of the study is all Japanese tourists visiting Nevsehir province of Turkey. The sample of the study is composed of tourists visiting the city center and some districts of Nevsehir. After getting the required permissions, the questionnaires were distributed to Japanese tourists while they were staying at the hotels in Cappadocia. The software SPSS (Statistical Package for Social Sciences was used to analyze the data. The findings of the study indicate that the Japanese tourists visiting Cappadocia were influenced at a certain level from the promotion activities. As a result, it was determined that the promotion activities have a significant impact on destinations. It was also determined that as the importance given to the promotion activities increase, both the familiarity of the destinations and the tourist arrivals could increase.

  16. NF-{kappa}B p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Gao [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yeh, P Y [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Lu, Y -S [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan, ROC (China); Chang, W C [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Kuo, M -L [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Cheng, A -L [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China)], E-mail: alcheng@ntu.edu.tw

    2008-11-14

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-{kappa}B controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-{kappa}B activity in response to TNF-{alpha}, an abundance of basal and TNF-{alpha}-induced NF-{kappa}B-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a {kappa}B site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells.

  17. NF-κB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Gao Ming; Yeh, P.Y.; Lu, Y.-S.; Chang, W.C.; Kuo, M.-L.; Cheng, A.-L.

    2008-01-01

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-κB controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-κB activity in response to TNF-α, an abundance of basal and TNF-α-induced NF-κB-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a κB site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells

  18. The reorientation of cell nucleus promotes the establishment of front-rear polarity in migrating fibroblasts.

    Science.gov (United States)

    Maninová, Miloslava; Klímová, Zuzana; Parsons, J Thomas; Weber, Michael J; Iwanicki, Marcin P; Vomastek, Tomáš

    2013-06-12

    The establishment of cell polarity is an essential step in the process of cell migration. This process requires precise spatiotemporal coordination of signaling pathways that in most cells create the typical asymmetrical profile of a polarized cell with nucleus located at the cell rear and the microtubule organizing center (MTOC) positioned between the nucleus and the leading edge. During cell polarization, nucleus rearward positioning promotes correct microtubule organizing center localization and thus the establishment of front-rear polarity and directional migration. We found that cell polarization and directional migration require also the reorientation of the nucleus. Nuclear reorientation is manifested as temporally restricted nuclear rotation that aligns the nuclear axis with the axis of cell migration. We also found that nuclear reorientation requires physical connection between the nucleus and cytoskeleton mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex. Nuclear reorientation is controlled by coordinated activity of lysophosphatidic acid (LPA)-mediated activation of GTPase Rho and the activation of integrin, FAK (focal adhesion kinase), Src, and p190RhoGAP signaling pathway. Integrin signaling is spatially induced at the leading edge as FAK and p190RhoGAP are predominantly activated or localized at this location. We suggest that integrin activation within lamellipodia defines cell front, and subsequent FAK, Src, and p190RhoGAP signaling represents the polarity signal that induces reorientation of the nucleus and thus promotes the establishment of front-rear polarity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    2011-04-01

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  20. IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment

    Science.gov (United States)

    Fang, Min; Li, Yongkui; Huang, Kai; Qi, Shanshan; Zhang, Jian; Zgodzinski, Witold; Majewski, Marek; Wallner, Grzegorz; Gozdz, Stanislaw; Macek, Pawel; Kowalik, Artur; Pasiarski, Marcin; Grywalska, Ewelina; Vatan, Linda; Nagarsheth, Nisha; Li, Wei; Zhao, Lili; Kryczek, Ilona; Wang, Guobin; Wang, Zheng; Zou, Weiping; Wang, Lin

    2018-01-01

    The expression and biological role of IL33 in colon cancer is poorly understood. In this study, we show that IL33 is expressed by vascular endothelial cells and tumor cells in the human colon cancer microenvironment. Administration of human IL33 and overexpression of murine IL33 enhanced human and murine colon cancer cell growth in vivo, respectively. IL33 stimulated cell sphere formation and prevented chemotherapy-induced tumor apoptosis. Mechanistically, IL33 activated core stem cell genes NANOG, NOTCH3, and OCT3/4 via the ST2 signaling pathway, and induced phosphorylation of c-Jun N terminal kinase (JNK) activation and enhanced binding of c-Jun to the promoters of the core stem cell genes. Moreover, IL33 recruited macrophages into the cancer microenvironment and stimulated them to produce prostaglandin E2, which supported colon cancer stemness and tumor growth. Clinically, tumor IL33 expression associated with poor survival in patients with metastatic colon cancer. Thus, IL33 dually targets tumor cells and macrophages and endows stem-like qualities to colon cancer cells to promote carcinogenesis. Collectively, our work reveals an immune-associated mechanism that extrinsically confers cancer cell stemness properties. Targeting the IL33 signaling pathway may offer an opportunity to treat patients with metastatic cancer. PMID:28249897

  1. Tafazzin (TAZ promotes the tumorigenicity of cervical cancer cells and inhibits apoptosis.

    Directory of Open Access Journals (Sweden)

    Mei Chen

    Full Text Available Tafazzin (TAZ is often aberrantly expressed in some cancers, including rectal cancer and thyroid neoplasms. However, the function of TAZ in cervical cancer cells remains unknown. This study aims to explore the expression and function of TAZ in cervical cancer cells. Here, we determined the expression of TAZ protein in normal cervical tissue (NC, n = 27, high-grade squamous intraepithelial lesions (HSIL, n = 26 and squamous cervical carcinoma (SCC, n = 41 by immunohistochemistry, the expression of TAZ protein gradually increased from NC to HSIL to SCC. TAZ was overexpressed or down-regulated in cervical cancer cells by stably transfecting a TAZ-expressing plasmid or a shRNA plasmid targeting TAZ. In vitro, the cell growth curves and MTT assays showed that TAZ may promote the growth and viability of cervical cancer cells. In vivo, xenografts experiment showed that TAZ may increase tumor-forming ability. The percentage of apoptosis cells analyzed by FACS and TUNEL assays consistently showed that TAZ inhibits apoptosis in cervical cancer cells. Furthermore, the Cleaved Caspase 9 and Cleaved Caspase 3 were down-regulated by TAZ in cervical cancer cells. Taken together, this study demonstrated that TAZ is overexpressed in cervical cancer and may promote tumorigenicity of cervical cancer cells and inhibit apoptosis.

  2. Elimination of proliferating cells from CNS grafts using a Ki67 promoter-driven thymidine kinase

    Directory of Open Access Journals (Sweden)

    Vannary Tieng

    2016-01-01

    Full Text Available Pluripotent stem cell (PSC-based cell therapy is an attractive concept for neurodegenerative diseases, but can lead to tumor formation. This is particularly relevant as proliferating neural precursors rather than postmitotic mature neurons need to be transplanted. Thus, safety mechanisms to eliminate proliferating cells are needed. Here, we propose a suicide gene approach, based on cell cycle-dependent promoter Ki67-driven expression of herpes simplex virus thymidine kinase (HSV-TK. We generated a PSC line expressing this construct and induced neural differentiation. In vitro, proliferating PSC and early neural precursor cells (NPC were killed by exposure to ganciclovir. In vivo, transplantation of PSC led to tumor formation, which was prevented by early ganciclovir treatment. Transplanted NPC did not lead to tumor formation and their survival and neural maturation were not affected by ganciclovir. In conclusion, the cell cycle promoter-driven suicide gene approach described in this study allows killing of proliferating undifferentiated precursor cells without expression of the suicide gene in mature neurons. This approach could also be of use for other stem cell-based therapies where the final target consists of postmitotic cells.

  3. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    International Nuclear Information System (INIS)

    Zhang, Yong; Yu, Guoyu; Xiang, Yang; Wu, Jianbo; Jiang, Ping; Lee, Wenhui; Zhang, Yun

    2010-01-01

    Research highlights: → Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. → Bm-TFF2 suppresses cell apoptosis. → Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  4. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Guoyu [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Department of Biochemistry, Kunming Medical College, Kunming, Yunnan 650032 (China); Xiang, Yang [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jianbo [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Jiang, Ping [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Lee, Wenhui [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang, Yun, E-mail: zhangy@mail.kiz.ac.cn [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)

    2010-07-30

    Research highlights: {yields} Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. {yields} Bm-TFF2 suppresses cell apoptosis. {yields} Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  5. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells.

    Science.gov (United States)

    Keerthivasan, Shilpa; Aghajani, Katayoun; Dose, Marei; Molinero, Luciana; Khan, Mohammad W; Venkateswaran, Vysak; Weber, Christopher; Emmanuel, Akinola Olumide; Sun, Tianjao; Bentrem, David J; Mulcahy, Mary; Keshavarzian, Ali; Ramos, Elena M; Blatner, Nichole; Khazaie, Khashayarsha; Gounari, Fotini

    2014-02-26

    The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become proinflammatory and tumor-promoting. These properties were directly linked with their expression of RORγt (retinoic acid-related orphan receptor-γt), the signature transcription factor of T(H)17 cells. We report that Wnt/β-catenin signaling in T cells promotes expression of RORγt. Expression of β-catenin was elevated in T cells, including Tregs, of patients with colon cancer. Genetically engineered activation of β-catenin in mouse T cells resulted in enhanced chromatin accessibility in the proximity of T cell factor-1 (Tcf-1) binding sites genome-wide, induced expression of T(H)17 signature genes including RORγt, and promoted T(H)17-mediated inflammation. Strikingly, the mice had inflammation of small intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. On the basis of these findings, we conclude that activation of Wnt/β-catenin signaling in effector T cells and/or Tregs is causatively linked with the imprinting of proinflammatory properties and the promotion of colon cancer.

  6. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  7. PAI-1 expression and its regulation by promoter 4G/5G polymorphism in clear cell renal cell carcinoma.

    Science.gov (United States)

    Choi, Jung-Woo; Lee, Ju-Han; Park, Hong Seok; Kim, Young-Sik

    2011-10-01

    To characterise patients with high plasminogen activator inhibitor-1 (PAI-1) expression as oral PAI-1 antagonists are currently in preclinical trials, and to determine whether the PAI-1 promoter 4G/5G polymorphism regulates PAI-1 expression in clear cell renal cell carcinoma (CCRCC). PAI-1 expression was examined by immunohistochemistry in 69 CCRCC specimens. In addition, the promoter 4G/5G polymorphism was investigated by both allele-specific PCR and direct DNA sequencing. PAI-1 was overexpressed in 25/69 (36.2%) patients with CCRCC. PAI-1 staining was intense in tumour cells with a high Fuhrman nuclear grade and in spindle-shaped tumour cells. PAI-1 expression was significantly associated with older age at diagnosis (p=0.027), high nuclear grade (p5G and 31.9% (22/69) 5G/5G. The homozygous 4G/4G or 5G/5G group showed a tendency for a high nuclear grade (p=0.05) but the 4G/5G polymorphism was not related to other prognostic parameters. PAI-1 expression was poorly correlated with its promoter 4G/5G polymorphism (Spearman ρ=0.088). CCRCC with high PAI-1 expression is characterised by older age, high nuclear grade, advanced stage, distant metastasis and/or shortened disease-free survival. PAI-1 expression is not affected by the promoter 4G/5G polymorphism.

  8. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    Science.gov (United States)

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  9. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  10. The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells.

    Science.gov (United States)

    Castro-Vega, Luis Jaime; Jouravleva, Karina; Ortiz-Montero, Paola; Liu, Win-Yan; Galeano, Jorge Luis; Romero, Martha; Popova, Tatiana; Bacchetti, Silvia; Vernot, Jean Paul; Londoño-Vallejo, Arturo

    2015-10-01

    There is a well-established association between aging and the onset of metastasis. Although the mechanisms through which age impinges upon the malignant phenotype remain uncharacterized, the role of a senescent microenvironment has been emphasized. We reported previously that human epithelial cells that undergo telomere-driven chromosome instability (T-CIN) display global microRNA (miR) deregulation and develop migration and invasion capacities. Here, we show that post-crisis cells are not able to form tumors unless a senescent microenvironment is provided. The characterization of cell lines established from such tumors revealed that these cells have acquired cell autonomous tumorigenicity, giving rise to heterogeneous tumors. Further experiments demonstrate that explanted cells, while displaying differences in cell differentiation markers, are all endowed of enhanced stem cell properties including self-renewal and multilineage differentiation capacity. Treatments of T-CIN+ cells with senescence-conditioned media induce sphere formation exclusively in cells with senescence-associated tumorigenicity, a capacity that depends on miR-145 repression. These results indicate that the senescent microenvironment, while promoting further transdifferentiations in cells with genome instability, is able to propel the progression of premalignant cells towards a malignant, cell stem-like state. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  12. T-cell activation promotes tumorigenesis in inflammation-associated cancer

    Directory of Open Access Journals (Sweden)

    Lairmore Michael

    2009-12-01

    Full Text Available Abstract Chronic inflammation has long been associated with a wide range of malignancies, is now widely accepted as a risk factor for development of cancer, and has been implicated as a promoter of a variety of cancers including hematopoietic malignancies. We have described a mouse model uniquely suited to examine the link between inflammation and lymphoma in which the Tax oncogene, expressed in activated T and NK cells, perpetuates chronic inflammation that begins as microscopic intraepithelial lesions and develops into inflammatory nodules, subcutaneous tumors, and large granular lymphocytic leukemia. The use of bioluminescent imaging in these mice has expanded our ability to interrogate aspects of inflammation and tumorigenesis non-invasively. Here we demonstrate that bioluminescence induction in these mice correlated with inflammation resulting from wounding, T cell activation, and exposure to chemical agents. In experiments in which long-term effects of inflammation on disease outcome were monitored, the development of lymphoma was promoted by an inflammatory stimulus. Finally we demonstrated that activation of T-cells in T-cell receptor (TCR transgenic TAX-LUC animals dramatically exacerbated the development of subcutaneous TCR- CD16+ LGL tumors. The role of activated T-cells and acquired immunity in inflammation-associated cancers is broadly applicable to hematopoietic malignancies, and we propose these mice will be of use in dissecting mechanisms by which activated T-cells promote lymphomagenesis in vivo.

  13. Use of wind energy in selected European countries -- Legislation and promotion incentives

    International Nuclear Information System (INIS)

    Langraf, B.; Kellner, T.

    2000-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews the strategies for the promotion of the use of wind energy used in various countries in Europe. The three main types of promotion - fixed-tariff purchase of renewable energy, call-for-tender systems and the trading of green energy certificates - are described. An appendix illustrates these three types of promotion with their advantages and disadvantages. The ambitious European Union guidelines on the proposed raising of the proportion of renewable energy are reviewed and the commercial implications in terms of increased turnover are looked at. The effects of electricity market liberalisation are examined, particularly in the fixed-tariff purchasing area. The situation in Switzerland, where much less effort is being made to promote renewable energy sources, is reviewed and the dangers of being left behind in the worldwide market for economic and ecological energy technology are stressed. The report is concluded with recommendations for Switzerland on how existing regulations can be improved and how the market for electricity from renewable sources can be opened

  14. Species selection in secondary wood products: implications for product design and promotion

    Science.gov (United States)

    Matthew S. Bumgardner; Scott A. Bowe; Scott A. Bowe

    2002-01-01

    This study investigated the perceptions that people have of several commercially important wood species and determined if word-based and specimen-based evaluations differed. Such knowledge can help secondary wood manufacturers better understand their products and develop more effective design concepts and promotional messages. A sample of more than 250 undergraduate...

  15. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gregory R.; Bell, Alexis T. (LBNL); (UCB)

    2016-06-17

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH4 and increase the selectivity toward C5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM–EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becoming insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. A strong positive correlation was found between the C5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid–base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir–Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. In conclusion, these results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and

  16. Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors

    DEFF Research Database (Denmark)

    Sales, K U; Friis, S; Abusleme, L

    2015-01-01

    Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor-cMet-Akt-m...

  17. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration

    OpenAIRE

    Lee, Catherine A.; Silva, Milton; Siber, Andrew M.; Kelly, Aaron J.; Galyov, Edouard; McCormick, Beth A.

    2000-01-01

    In response to Salmonella typhimurium, the intestinal epithelium generates an intense inflammatory response consisting largely of polymorphonuclear leukocytes (neutrophils, PMN) migrating toward and ultimately across the epithelial monolayer into the intestinal lumen. It has been shown that bacterial-epithelial cell interactions elicit the production of inflammatory regulators that promote transepithelial PMN migration. Although S. typhimurium can enter intestinal ...

  18. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis.

    Science.gov (United States)

    Tan, Cong; Qiao, Fan; Wei, Ping; Chi, Yayun; Wang, Weige; Ni, Shujuan; Wang, Qifeng; Chen, Tongzhen; Sheng, Weiqi; Du, Xiang; Wang, Lei

    2016-04-01

    DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and the Wnt pathway are unclear. In the current study, the upregulation of DIXDC1 was detected in gastric cancer and was associated with advanced TNM stage cancer, lymph node metastasis, and poor prognosis. We also found that the overexpression of DIXDC1 could promote the invasion and migration of gastric cancer cells. The upregulation of MMPs and the downregulation of E-cadherin were found to be involved in the process. DIXDC1 enhanced β-catenin nuclear accumulation, which activated the Wnt pathway. Additionally, the inhibition of β-catenin in DIXDC1-overexpressing cells reversed the metastasis promotion effects of DIXDC1. These results demonstrate that the expression of DIXDC1 is associated with poor prognosis of gastric cancer patients and that DIXDC1 promotes gastric cancer invasion and metastasis through the activation of the Wnt pathway; E-cadherin and MMPs are also involved in this process. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  20. Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro.

    Science.gov (United States)

    Koike, Eiko; Yanagisawa, Rie; Takigami, Hidetaka; Takano, Hirohisa

    2014-03-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in consumer products. Humans can be exposed to PBDEs mainly through the inhalation of air or dust. Thus, PBDEs can affect respiratory and immune systems. In the present study, we investigated whether PBDEs stimulate bronchial epithelial cells. We examined commercial penta-BDE (DE-71), octa-BDE (DE-79), and deca-BDE (DE-83R). Human bronchial epithelial cells (BEAS-2B) were exposed to each PBDE for 24h. Subsequently, the expression of intercellular adhesion molecule-1 (ICAM-1) and proinflammatory cytokines were investigated. DE-71 and DE-79, but not DE-83R, significantly increased the expression of ICAM-1, interleukin-6 (IL-6), and IL-8 in BEAS-2B. Because these remarkable effects were observed with DE-71, we further investigated the underlying intracellular mechanisms. DE-71 promoted epidermal growth factor receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and p38 mitogen-activated protein kinase effectively blocked the increase of IL-6 and IL-8. Furthermore, antagonists of thyroid hormone receptor and aryl hydrocarbon receptor significantly suppressed the increase in IL-6 and/or IL-8 production. In conclusion, penta- and octa-BDE, but not deca-BDE, might promote the expression of proinflammatory proteins in bronchial epithelial cells possibly by activating protein kinases and/or stimulating nuclear receptors related to subsequent activation of transcriptional factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A 310-bp minimal promoter mediates smooth muscle cell-specific expression of telokin.

    Science.gov (United States)

    Smith, A F; Bigsby, R M; Word, R A; Herring, B P

    1998-05-01

    A cell-specific promoter located in an intron of the smooth muscle myosin light chain kinase gene directs transcription of telokin exclusively in smooth muscle cells. Transgenic mice were generated in which a 310-bp rabbit telokin promoter fragment, extending from -163 to +147, was used to drive expression of simian virus 40 large T antigen. Smooth muscle-specific expression of the T-antigen transgene paralleled that of the endogenous telokin gene in all smooth muscle tissues except uterus. The 310-bp promoter fragment resulted in very low levels of transgene expression in uterus; in contrast, a transgene driven by a 2.4-kb fragment (-2250 to +147) resulted in high levels of transgene expression in uterine smooth muscle. Telokin expression levels correlate with the estrogen status of human myometrial tissues, suggesting that deletion of an estrogen response element (ERE) may account for the low levels of transgene expression driven by the 310-bp rabbit telokin promoter in uterine smooth muscle. Experiments in A10 smooth muscle cells directly showed that reporter gene expression driven by the 2.4-kb, but not 310-bp, promoter fragment could be stimulated two- to threefold by estrogen. This stimulation was mediated through an ERE located between -1447 and -1474. Addition of the ERE to the 310-bp fragment restored estrogen responsiveness in A10 cells. These data demonstrate that in addition to a minimal 310-bp proximal promoter at least one distal cis-acting regulatory element is required for telokin expression in uterine smooth muscle. The distal element may include an ERE between -1447 and -1474.

  2. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    International Nuclear Information System (INIS)

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs

  3. Cell-specific cre recombinase expression allows selective ablation of glutamate receptors from mouse horizontal cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Ströh

    Full Text Available In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57, a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99% and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl. In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼ 50% in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼ 75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less

  4. Cell-Specific Cre Recombinase Expression Allows Selective Ablation of Glutamate Receptors from Mouse Horizontal Cells

    Science.gov (United States)

    Janssen-Bienhold, Ulrike; Schultz, Konrad; Cimiotti, Kerstin; Weiler, Reto; Willecke, Klaus; Dedek, Karin

    2013-01-01

    In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57), a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99%) and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl). In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼50%) in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less excitatory input

  5. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    Science.gov (United States)

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was

  6. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance.

    Science.gov (United States)

    Li, Yi; Guo, Gang; Li, Li; Chen, Fei; Bao, Ji; Shi, Yu-Jun; Bu, Hong

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation is a promising treatment of many diseases. However, conventional techniques with cells being cultured as a monolayer result in slow cell proliferation and insufficient yield to meet clinical demands. Three-dimensional (3D) culture systems are gaining attention with regard to recreating a complex microenvironment and to understanding the conditions experienced by cells. Our aim is to establish a novel 3D system for the culture of human umbilical cord MSCs (hUC-MSCs) within a real 3D microenvironment but with no digestion or passaging. Primary hUC-MSCs were isolated and grown in serum-free medium (SFM) on a suspension Rocker system. Cell characteristics including proliferation, phenotype and multipotency were recorded. The therapeutic effects of 3D-cultured hUC-MSCs on carbon tetrachloride (CCl4)-induced acute liver failure in mouse models were examined. In the 3D Rocker system, hUC-MSCs formed spheroids in SFM and maintained high viability and active proliferation. Compared with monolayer culture, the 3D-culture system yielded more hUC-MSCs cells within the same volume. The spheroids expressed higher levels of stem cell markers and displayed stronger multipotency. After transplantation into mouse, 3D hUC-MSCs significantly promoted the secretion of interferon-γ and interleukin-6 but inhibited that of tumor necrosis factor-α, thereby alleviating liver necrosis and promoting regeneration following CCl4 injury. The 3D culture of hUC-MSCs thus promotes cell yield and stemness maintenance and represents a promising strategy for hUC-MSCs expansion on an industrial scale with great potential for cell therapy and biotechnology.

  7. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  8. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation.

    Science.gov (United States)

    Liang, Xiao; Huang, Xiaolu; Zhou, Yiwen; Jin, Rui; Li, Qingfeng

    2016-07-01

    Skin tissue expansion is a clinical procedure for skin regeneration to reconstruct cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and helping to ameliorate complications; however, systematic understanding of its mechanism remains unclear. MSCs from luciferase-Tg Lewis rats were intravenously transplanted into a rat tissue expansion model to identify homing and transdifferentiation. To clarify underlying mechanisms, a systematic approach was used to identify the differentially expressed genes between mechanically stretched human MSCs and controls. The biological significance of these changes was analyzed through bioinformatic methods. We further investigated genes and pathways of interest to disclose their potential role in mechanical stretching-induced skin regeneration. Cross sections of skin samples from the expanded group showed significantly more luciferase(+) and stromal cell-derived factor 1α (SDF-1α)(+), luciferase(+)keratin 14(+), and luciferase(+)CD31(+) cells than the control group, indicating MSC transdifferentiation into epidermal basal cells and endothelial cells after SDF-1α-mediated homing. Microarray analysis suggested upregulation of genes related to hypoxia, vascularization, and cell proliferation in the stretched human MSCs. Further investigation showed that the homing of MSCs was blocked by short interfering RNA targeted against matrix metalloproteinase 2, and that mechanical stretching-induced vascular endothelial growth factor A upregulation was related to the Janus kinase/signal transducer and activator of transcription (Jak-STAT) and Wnt signaling pathways. This study determines that mechanical stretching might promote skin regeneration by upregulating MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhancing transplanted MSC homing to the expanded skin; and

  9. Application of the Sensor Selection Approach in Polymer Electrolyte Membrane Fuel Cell Prognostics and Health Management

    Directory of Open Access Journals (Sweden)

    Lei Mao

    2017-09-01

    Full Text Available In this paper, the sensor selection approach is investigated with the aim of using fewer sensors to provide reliable fuel cell diagnostic and prognostic results. The sensitivity of sensors is firstly calculated with a developed fuel cell model. With sensor sensitivities to different fuel cell failure modes, the available sensors can be ranked. A sensor selection algorithm is used in the analysis, which considers both sensor sensitivity to fuel cell performance and resistance to noise. The performance of the selected sensors in polymer electrolyte membrane (PEM fuel cell prognostics is also evaluated with an adaptive neuro-fuzzy inference system (ANFIS, and results show that the fuel cell voltage can be predicted with good quality using the selected sensors. Furthermore, a fuel cell test is performed to investigate the effectiveness of selected sensors in fuel cell fault diagnosis. From the results, different fuel cell states can be distinguished with good quality using the selected sensors.

  10. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells.

    Science.gov (United States)

    Li, Juan; Pan, Qianying; Rowan, Patrick D; Trotter, Timothy N; Peker, Deniz; Regal, Kellie M; Javed, Amjad; Suva, Larry J; Yang, Yang

    2016-03-08

    Bone dissemination and bone disease occur in approximately 80% of patients with multiple myeloma (MM) and are a major cause of patient mortality. We previously demonstrated that MM cell-derived heparanase (HPSE) is a major driver of MM dissemination to and progression in new bone sites. However the mechanism(s) by which HPSE promotes MM progression remains unclear. In the present study, we investigated the involvement of mesenchymal features in HPSE-promoted MM progression in bone. Using a combination of molecular, biochemical, cellular, and in vivo approaches, we demonstrated that (1) HPSE enhanced the expression of mesenchymal markers in both MM and vascular endothelial cells; (2) HPSE expression in patient myeloma cells positively correlated with the expression of the mesenchymal markers vimentin and fibronectin. Additional mechanistic studies revealed that the enhanced mesenchymal-like phenotype induced by HPSE in MM cells is due, at least in part, to the stimulation of the ERK signaling pathway. Finally, knockdown of vimentin in HPSE expressing MM cells resulted in significantly attenuated MM cell dissemination and tumor growth in vivo. Collectively, these data demonstrate that the mesenchymal features induced by HPSE in MM cells contribute to enhanced tumor cell motility and bone-dissemination.

  11. Glycerol-3-phosphate Acyltransferase 1 Promotes Tumor Cell Migration and Poor Survival in Ovarian Carcinoma.

    Science.gov (United States)

    Marchan, Rosemarie; Büttner, Bettina; Lambert, Jörg; Edlund, Karolina; Glaeser, Iris; Blaszkewicz, Meinolf; Leonhardt, Gregor; Marienhoff, Lisa; Kaszta, Darius; Anft, Moritz; Watzl, Carsten; Madjar, Katrin; Grinberg, Marianna; Rempel, Eugen; Hergenröder, Roland; Selinski, Silvia; Rahnenführer, Jörg; Lesjak, Michaela S; Stewart, Joanna D; Cadenas, Cristina; Hengstler, Jan G

    2017-09-01

    Glycerophosphodiesterase EDI3 (GPCPD1; GDE5; GDPD6) has been suggested to promote cell migration, adhesion, and spreading, but its mechanisms of action remain uncertain. In this study, we targeted the glycerol-3-phosphate acyltransferase GPAM along with choline kinase-α (CHKA), the enzymes that catabolize the products of EDI3 to determine which downstream pathway is relevant for migration. Our results clearly showed that GPAM influenced cell migration via the signaling lipid lysophosphatidic acid (LPA), linking it with GPAM to cell migration. Analysis of GPAM expression in different cancer types revealed a significant association between high GPAM expression and reduced overall survival in ovarian cancer. Silencing GPAM in ovarian cancer cells decreased cell migration and reduced the growth of tumor xenografts. In contrast to these observations, manipulating CHKA did not influence cell migration in the same set of cell lines. Overall, our findings show how GPAM influences intracellular LPA levels to promote cell migration and tumor growth. Cancer Res; 77(17); 4589-601. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Bone marrow adipocytes promote the regeneration of stem cells and hematopoiesis by secreting SCF

    Science.gov (United States)

    Zhou, Bo O.; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J.; Naveiras, Olaia; Morrison, Sean J.

    2017-01-01

    Endothelial cells and Leptin Receptor+ (LepR+) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including Stem Cell Factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER+ progenitors, which represent ~5% of LepR+ cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited hematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR+ cells, but not endothelial, hematopoietic, or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 ‘fatless” mice exhibited delayed hematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes hematopoietic regeneration. PMID:28714970

  13. miR-200–containing extracellular vesicles promote breast cancer cell metastasis

    Science.gov (United States)

    Le, Minh T.N.; Hamar, Peter; Guo, Changying; Basar, Emre; Perdigão-Henriques, Ricardo; Balaj, Leonora; Lieberman, Judy

    2014-01-01

    Metastasis is associated with poor prognosis in breast cancer patients. Not all cancer cells within a tumor are capable of metastasizing. The microRNA-200 (miR-200) family, which regulates the mesenchymal-to-epithelial transition, is enriched in the serum of patients with metastatic cancers. Ectopic expression of miR-200 can confer metastatic ability to poorly metastatic tumor cells in some settings. Here, we investigated whether metastatic capability could be transferred between metastatic and nonmetastatic cancer cells via extracellular vesicles. miR-200 was secreted in extracellular vesicles from metastatic murine and human breast cancer cell lines, and miR-200 levels were increased in sera of mice bearing metastatic tumors. In culture, murine and human metastatic breast cancer cell extracellular vesicles transferred miR-200 microRNAs to nonmetastatic cells, altering gene expression and promoting mesenchymal-to-epithelial transition. In murine cancer and human xenograft models, miR-200–expressing tumors and extracellular vesicles from these tumors promoted metastasis of otherwise weakly metastatic cells either nearby or at distant sites and conferred to these cells the ability to colonize distant tissues in a miR-200–dependent manner. Together, our results demonstrate that metastatic capability can be transferred by the uptake of extracellular vesicles. PMID:25401471

  14. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF.

    Science.gov (United States)

    Zhou, Bo O; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J; Naveiras, Olaia; Morrison, Sean J

    2017-08-01

    Endothelial cells and leptin receptor + (LepR + ) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER + progenitors, which represent ∼5% of LepR + cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited haematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR + cells, but not endothelial, haematopoietic or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 'fatless' mice exhibited delayed haematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes haematopoietic regeneration.

  15. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate.

    Science.gov (United States)

    Moon, Mi-Young; Kim, Hyun Jung; Choi, Bo Young; Sohn, Min; Chung, Tae Nyoung; Suh, Sang Won

    2018-01-01

    Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs) are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30  μ M and 100  μ M of ZnCl 2 . Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin) in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.

  16. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate

    Directory of Open Access Journals (Sweden)

    Mi-Young Moon

    2018-01-01

    Full Text Available Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30 μM and 100 μM of ZnCl2. Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.

  17. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Han, Shuai; Wu, Zhipeng; Han, Zhitao; Yan, Wangjun; Liu, Tielong; Wei, Haifeng; Song, Dianwen; Zhou, Wang, E-mail: brilliant212@163.com; Yang, Xinghai, E-mail: cnspineyang@163.com; Xiao, Jianru, E-mail: jianruxiao83@163.com

    2015-08-21

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.

  18. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    , a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects...... of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor......RNA and cell surface protein levels and a decrease of NFATc1 stimulation and NF-kappaB nuclear translocation, whereas the gene expression of c-fms, CD14, and CD11a is up-regulated. Finally, resveratrol promotes dose-dependently the expression of osteoblast markers like osteocalcin and osteopontin in human bone...

  19. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  20. Triiodothyronine promotes the proliferation of epicardial progenitor cells through the MAPK/ERK pathway

    International Nuclear Information System (INIS)

    Deng, Song-Bai; Jing, Xiao-Dong; Wei, Xiao-ming; Du, Jian-Lin; Liu, Ya-Jie; Qin, Qin; She, Qiang

    2017-01-01

    Thyroid hormone has important functions in the development and physiological function of the heart. The aim of this study was to determine whether 3,5,3′-Triiodothyronine (T3) can promote the proliferation of epicardial progenitor cells (EPCs) and to investigate the potential underlying mechanism. Our results showed that T3 significantly promoted the proliferation of EPCs in a concentration- and time-dependent manner. The thyroid hormone nuclear receptor inhibitor bisphenol A (100 μmol/L) did not affect T3's ability to induce proliferation. Further studies showed that the mRNA expression levels of mitogen-activated protein kinase 1 (MAPK1), MAPK3, and Ki67 in EPCs in the T3 group (10 nmol/L) increased 2.9-, 3-, and 4.1-fold, respectively, compared with those in the control group (P < 0.05). In addition, the mRNA expression of the cell cycle protein cyclin D1 in the T3 group increased approximately 2-fold compared with the control group (P < 0.05), and there were more EPCs in the S phase of the cell cycle (20.6% vs. 12.0%, P < 0.05). The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway inhibitor U0126 (10 μmol/L) significantly inhibited the ability of T3 to promote the proliferation of EPCs and to alter cell cycle progression. This study suggested that T3 significantly promotes the proliferation of EPCs, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. - Highlights: • Epicardial progenitor cells were successfully cultured from E12.5 mice. • Thyroid hormone T3 significantly promoted the proliferation of EPCs. • This biological effect may be mediated via activation of the MAPK/ERK pathway.

  1. c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells

    International Nuclear Information System (INIS)

    Chen, Yinghua; Xu, Jinhua; Borowicz, Stanley; Collins, Cindy; Huo, Dezheng; Olopade, Olufunmilayo I

    2011-01-01

    The BRCA1 gene plays an important role in the maintenance of genomic stability. BRCA1 inactivation contributes to breast cancer tumorigenesis. An increasing number of transcription factors have been shown to regulate BRCA1 expression. c-Myc can act as a transcriptional activator, regulating up to 15% of all genes in the human genome and results from a high throughput screen suggest that BRCA1 is one of its targets. In this report, we used cultured breast cancer cells to examine the mechanisms of transcriptional activation of BRCA1 by c-Myc. c-Myc was depleted using c-Myc-specific siRNAs in cultured breast cancer cells. BRCA1 mRNA expression and BRCA1 protein expression were determined by quantitative RT-PCR and western blot, respectively and BRCA1 promoter activities were examined under these conditions. DNA sequence analysis was conducted to search for high similarity to E boxes in the BRCA1 promoter region. The association of c-Myc with the BRCA1 promoter in vivo was tested by a chromatin immunoprecipitation assay. We investigated the function of the c-Myc binding site in the BRCA1 promoter region by a promoter assay with nucleotide substitutions in the putative E boxes. BRCA1-dependent DNA repair activities were measured by a GFP-reporter assay. Depletion of c-Myc was found to be correlated with reduced expression levels of BRCA1 mRNA and BRCA1 protein. Depletion of c-Myc decreased BRCA1 promoter activity, while ectopically expressed c-Myc increased BRCA1 promoter activity. In the distal BRCA1 promoter, DNA sequence analysis revealed two tandem clusters with high similarity, and each cluster contained a possible c-Myc binding site. c-Myc bound to these regions in vivo. Nucleotide substitutions in the c-Myc binding sites in these regions abrogated c-Myc-dependent promoter activation. Furthermore, breast cancer cells with reduced BRCA1 expression due to depletion of c-Myc exhibited impaired DNA repair activity. The distal BRCA1 promoter region is associated with c

  2. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Directory of Open Access Journals (Sweden)

    Yi Eunhee S

    2010-04-01

    impaired. Conclusions These data indicate that COPD is associated with increased numbers of cells bearing markers associated with Langerhans cells and mature dendritic cells, and that cigarette smoke promotes survival signals and augments survival of dendritic cells. Although CSE suppressed dendritic cell CCR7 expression, migration towards a CCR7 ligand was not diminished, suggesting that reduced CCR7-dependent migration is unlikely to be an important mechanism for dendritic cell retention in the lungs of smokers with COPD.

  3. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF.

    Science.gov (United States)

    Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An

    2013-10-01

    Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.

  4. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    Directory of Open Access Journals (Sweden)

    Seung-Ju Cho

    2015-12-01

    Full Text Available Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  5. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  6. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent adult stem cells which are recruited to the tumor microenvironment (TME and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.

  7. Promotion of breast cancer by β-Hexachlorocyclohexane in MCF10AT1 cells and MMTV-neu mice

    International Nuclear Information System (INIS)

    Wong, Patrick S; Matsumura, Fumio

    2007-01-01

    Exposure to β-Hexachlorocyclohexane (β-HCH), a contaminant of the hexachlorohexane pesticide lindane, has been implicated as a risk factor in the development of breast cancers in epidemiological studies. Previous studies in our laboratory have demonstrated the ability of β-HCH to elicit its actions via a ligand-independent activation of the estrogen receptor through increased c-Neu (= erbB 2 or HER-2) expression and kinase activation in both the BG-1 and MCF-7 cell lines. In addition, long term exposure (33 passages) to β-HCH was shown to promote the selection of MCF-7 cells which exhibit a more metastatic phenotype. In this current study, we decided to investigate the long-term effects of β-HCH in both the MCF10AT1 cell line which was derived from a normal epithelial cell line by stably transfecting a mutated c-Ha-ras and a MMTV-Neu mouse model for mammary cancer in vivo. MCF10AT1 cells were exposed for 20 passages with β-HCH, 4-OH-Tamoxifen (Tam), or 17-β-estradiol (E 2 ) after which cells were analyzed for proliferation rates and mRNA expression by RT-PCR. In our in vivo studies, MMTV-Neu mice were injected with β-HCH and observed for tumor formation over a 70 week period. β-HCH and Tam selected MCF10AT1 cells demonstrated increased mRNA expression of MMP-13 (collagenase-3) a marker of increased invasiveness. β-HCH treatment was also seen to increase the expression in a number of proto-oncogenes (c-Neu, Cyclin D1, p27), cell status markers (Met-1, CK19), and the inflammatory marker NFκB. Previous studies, have demonstrated the role of these markers as evidence of malignant transformations, and further illustrate the ability of β-HCH to be carcinogenic. To demonstrate β-HCH's tumorigenic properties in an in vivo system, we used an MMTV-Neu mouse model. MMTV-Neu is a c-Neu overexpressing strain which has been shown to spontaneously develop mammary tumors at later stages of aging. In this experiment, β-HCH exposure was shown to both accelerate

  8. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Neil Q. Tay

    2017-11-01

    Full Text Available CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses.

  9. BAFF promotes regulatory T-cell apoptosis and blocks cytokine production by activating B cells in primary biliary cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Hu, Mintao [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China); Zhang, Peng [Nanjing Medical University, Nanjing, Jiangsu (China); Cao, Hong [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China); Wang, Yongzhen [The Second Hospital of Nanjing, Nanjing, Jiangsu (China); Wang, Zheng; Su, Tingting [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China)

    2013-05-10

    Primary biliary cirrhosis (PBC) is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology. A number of questions regarding its etiology are unclear. CD4+CD25+ regulatory T cells (Tregs) play a critical role in self-tolerance and, for unknown reasons, their relative number is reduced in PBC patients. B-cell-activating factor (BAFF) is a key survival factor during B-cell maturation and its concentration is increased in peripheral blood of PBC patients. It has been reported that activated B cells inhibit Treg cell proliferation and there are no BAFF receptors on Tregs. Therefore, we speculated that excessive BAFF may result in Treg reduction via B cells. To prove our hypothesis, we isolated Tregs and B cells from PBC and healthy donors. BAFF and IgM concentrations were then analyzed by ELISA and CD40, CD80, CD86, IL-10, and TGF-β expression in B cells and Tregs were measured by flow cytometry. BAFF up-regulated CD40, CD80, CD86, and IgM expression in B cells. However, BAFF had no direct effect on Treg cell apoptosis and cytokine secretion. Nonetheless, we observed that BAFF-activated B cells could induce Treg cell apoptosis and reduce IL-10 and TGF-β expression. We also showed that BAFF-activated CD4+ T cells had no effect on Treg apoptosis. Furthermore, we verified that bezafibrate, a hypolipidemic drug, can inhibit BAFF-induced Treg cell apoptosis. In conclusion, BAFF promotes Treg cell apoptosis and inhibits cytokine production by activating B cells in PBC patients. The results of this study suggest that inhibition of BAFF activation is a strategy for PBC treatment.

  10. Syndecans promote integrin-mediated adhesion of mesenchymal cells in two distinct pathways

    DEFF Research Database (Denmark)

    Whiteford, James; Behrends, Volker; Kirby, Hishani

    2007-01-01

    and signaling through the cytoplasmic domain of syndecan-4. Here an alternate pathway mediated by the extracellular domains of syndecans-2 and -4 is characterized that is independent of both heparan sulphate and syndecan signaling. This pathway is restricted to mesenchymal cells and was not seen in any...... epithelial cell line tested, apart from vascular endothelia. The syndecan ectodomains coated as substrates promoted integrin-dependent attachment, spreading and focal adhesion formation. Syndecan-4 null cells were competent, as were fibroblasts compromised in heparan sulphate synthesis that were unable...

  11. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  12. DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zou, Shitao; Shang, Zeng-Fu; Liu, Biao; Zhang, Shuyu; Wu, Jinchang; Huang, Min; Ding, Wei-Qun; Zhou, Jundong

    2016-05-31

    DNA polymerase iota (Pol ι) is an error-prone DNA polymerase involved in translesion DNA synthesis (TLS) that contributes to the accumulation of DNA mutations. We recently showed that Pol ι is overexpressed in human esophageal squamous cell cancer (ESCC) tissues which promotes ESCC' progression. The present study was aimed at investigating the molecular mechanisms by which Pol ι enhances the invasiveness and metastasis of ESCC cells. We found that the expression of Pol ι is significantly higher in ESCCs with lymph node metastasis compared to those without lymph node metastasis. Kaplan-Meier analysis revealed an inverse correlation between Pol ι expression and patient prognosis. The expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two essential regulators of cells' invasiveness, were positively associated with Pol ι expression in ESCC tissues. Ectopic expression of Pol ι enhanced the motility and invasiveness of ESCC cells as evaluated by wound-healing and transwell assays, respectively. A xenograft nude mouse model showed that Pol ι promotes the colonization of ESCC cells in the liver, lung and kidney. Signaling pathway analysis identified the JNK-AP-1 cascade as a mediator of the Pol ι-induced increase in the expression of MMP-2/9 and enhancement of ESCC progression. These data demonstrate the underlying mechanism by which Pol ι promotes ESCC progression, suggesting that Pol ι is a potential novel prognostic biomarker and therapeutic target for ESCC.

  13. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    International Nuclear Information System (INIS)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji; Gong, Yaoqin; Shao, Changshun

    2009-01-01

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of β-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of β-catenin, the ability to activate transcription of β-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of β-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced β-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3β (GSK-3β), which phosphorylates and destabilizes β-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3β requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  14. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    International Nuclear Information System (INIS)

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-01-01

    The effects and the underlying mechanisms of hydrogen sulfide (H 2 S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H 2 S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H 2 S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H 2 S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H 2 S promotes keratinocyte proliferation and differentiation. • The effects of H 2 S on proliferation and differentiation is modulated by autophagy. • Exogenous H 2 S has no effect on keratinocyte apoptosis.

  15. Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis

    International Nuclear Information System (INIS)

    Weichhaus, Michael; Segaran, Prabu; Renaud, Ashleigh; Geerts, Dirk; Connelly, Linda

    2014-01-01

    Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells

  16. Estradiol represses Insulin-like 3 expression and promoter activity in MA-10 Leydig cells

    International Nuclear Information System (INIS)

    Lague, Eric; Tremblay, Jacques J.

    2009-01-01

    There are increasing evidence in the literature reporting the detrimental effects of endocrine disruptors on the development and function of the male reproductive system. One example is cryptorchidism, or undescended testis, caused by exposure to excessive estrogens. Estrogens, acting through the estrogen receptor α (ERα), have been shown to repress expression of the gene encoding insulin-like 3 (INSL3), a small peptide produced by testicular Leydig cells that is essential for normal testis descent. The molecular mechanism of estrogen/ER action on Insl3 expression, however, remains poorly understood. Here we report estradiol (E 2 ) represses Insl3 mRNA levels in MA-10 cells, a Leydig cell line model. We also found that E 2 represses the activity of the human and mouse Insl3 promoter in these cells. The E 2 -responsive region of the human INSL3 promoter was located to the proximal INSL3 promoter. This region does not contain a consensus estrogen response element indicating an indirect mechanism of action. In agreement with this, we found that E 2 -responsiveness was lost when two previously characterized binding sites for the nuclear receptors NUR77 and SF1 were mutated. Finally we show that the E 2 repressive effect could be overcome by cotreatment with testosterone, a positive regulator of Insl3 transcription. Collectively our data provide important new insights into the molecular mechanism of estrogen action in Insl3 transcription in Leydig cells

  17. KDM6B Elicits Cell Apoptosis by Promoting Nuclear Translocation of FOXO1 in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2015-08-01

    Full Text Available Background/Aims: Non-small cell lung carcinoma (NSCLC is the most common type of lung cancer and the cause of most cancer-related deaths. The molecular mechanisms that are involved in NSCLC development are currently not well understood. Accumulating evidence shows that histone demethylases play important roles in the regulation of pathological developmental processes in many diseases, including various types of cancers. Methods: Mitochondrial membrane potential assays, migration and invasion assays, caspase-3 and caspase-9 activity assays and western blot analysis were used in this research. Results: We found that overexpression of KDM6B, a demethylase that acts on histone H3 at lysine 27 (H3K27, inhibited cell growth by initiating mitochondria-dependent apoptosis and by attenuating the invasion-metastasis cascade in NSCLC cells. Moreover, our results showed that KDM6B directly interacted with FOXO1 and that overexpression of KDM6B promoted nuclear accumulation of FOXO1. The effects of KDM6B on cell apoptosis and metastasis were weakened by knockdown of FOXO1 expression. On the contrary, knocking down expression of KDM6B inhibited cell apoptosis and promoted cell growth by mitigating the nuclear translocation of FOXO1 in NSCLC cells. Conclusions: These findings suggest that KDM6B may act in a pro-apoptotic role in NSCLC by causing the nuclear translocation of FOXO1.

  18. Selecting appropriate energy efficiency indicators for the Thai Energy Conservation Promotion Programme. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eichhammer, W.; Gruber, E.; Cremer, C.

    2000-06-01

    In 1992 the Thai Government passed the Energy Conservation Promotion (ECP) Act to improve energy efficiency in Thai industry and commerce. The Thai-German Energy Efficiency Promotion Project (ENEP) is supporting the Department of Energy Development and Promotion (DEDP) in its effort to implement the Energy Conservation Program for large buildings and designated factories. About 4000 buildings and factories under the Compulsory Program, have to report every 6 months their energy consumption data to DEDP. Every 3 years energy audits have to be conducted by registered energy consultants, to identify energy saving opportunities, to set saving targets and to recommend energy conservation measures. Investments in energy efficient technologies are subsidized from an Energy Conservation Fund. Data from the energy consumption reports and the energy audit reports are collected in DEDP's database for further processing. The database is structured according to the Thai Standard Industrial Classification. In order to exploit the wealth of information provided by the auditing procedure the objective of the present work carried out by the consultant FhG-ISI for DEDP/BERC on behalf of the German Gesellschaft fuer Technische Zusammenarbeit (GTZ) was to recommend an appropriate set of energy efficiency indicators. This indicator set should allow DEDP to extract from the energy consumption reports, energy audit reports and other sources, useful statistical information to monitor and improve energy efficiency in Thailand. (orig.)

  19. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought

    KAUST Repository

    Cherif, Hanene; Marasco, Ramona; Rolli, Eleonora; Ferjani, Raoudha; Fusi, Marco; Soussi, Asma; Mapelli, Francesca; Blilou, Ikram; Borin, Sara; Boudabous, Abdellatif; Cherif, Ameur; Daffonchio, Daniele; Ouzari, Hadda

    2015-01-01

    Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactyliferaL.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara was studied with emphasis on their capacity to promote growth under drought. Endophytic communities segregated along a north-south gradient in correlation with geo-climatic parameters. Screening of 120 endophytes indicated that date palm roots select for bacteria with multiple PGP traits. Bacteria rapidly cross-colonized the root tissues of different species of plants, including the original Tunisian date palm cultivar, Saudi Arabian cultivars and Arabidopsis. Selected endophytes significantly increased the biomass of date palms exposed to repeated drought stress periods during a 9-month greenhouse experiment. Overall, results indicate that date palm roots shape endophytic communities that are capable to promote plant growth under drought conditions, thereby contributing an essential ecological service to the entire oasis ecosystem. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought

    KAUST Repository

    Cherif, Hanene

    2015-07-21

    Oases are desert-farming agro-ecosystems, where date palm (Phoenix dactyliferaL.) plays a keystone role in offsetting the effects of drought and maintaining a suitable microclimate for agriculture. At present, abundance, diversity and plant growth promotion (PGP) of date palm root-associated bacteria remain unknown. Considering the environmental pressure determined by the water scarcity in the desert environments, we hypothesized that bacteria associated with date palm roots improve plant resistance to drought. Here, the ecology of date palm root endophytes from oases in the Tunisian Sahara wa