WorldWideScience

Sample records for promotes progressive inflammatory

  1. Inflammatory monocytes promote progression of Duchenne muscular dystrophy and can be therapeutically targeted via CCR2

    OpenAIRE

    Mojumdar, Kamalika; Liang, Feng; Giordano, Christian; Lemaire, Christian; Danialou, Gawiyou; Okazaki, Tatsuma; Bourdon, Johanne; Rafei, Moutih; Galipeau, Jacques; Divangahi, Maziar; Petrof, Basil J

    2014-01-01

    Myofiber necrosis and fibrosis are hallmarks of Duchenne muscular dystrophy (DMD), leading to lethal weakness of the diaphragm. Macrophages (MPs) are required for successful muscle regeneration, but the role of inflammatory monocyte (MO)-derived MPs in either promoting or mitigating DMD is unclear. We show that DMD (mdx) mouse diaphragms exhibit greatly increased expression of CCR2 and its chemokine ligands, along with inflammatory (Ly6Chigh) MO recruitment and accumulation of CD11bhigh MO-de...

  2. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    International Nuclear Information System (INIS)

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

    2007-01-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic

  3. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.

    Science.gov (United States)

    Kim, S B; Bozeman, R G; Kaisani, A; Kim, W; Zhang, L; Richardson, J A; Wright, W E; Shay, J W

    2016-06-30

    Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA.

  4. Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature.

    Science.gov (United States)

    Klement, Wendy; Garbelli, Rita; Zub, Emma; Rossini, Laura; Tassi, Laura; Girard, Benoit; Blaquiere, Marine; Bertaso, Federica; Perroy, Julie; de Bock, Frederic; Marchi, Nicola

    2018-05-01

    Cerebrovascular dysfunction and inflammation occur in epilepsy. Here we asked whether pericytes, a pivotal cellular component of brain capillaries, undergo pathological modifications during experimental epileptogenesis and in human epilepsy. We evaluated whether pro-inflammatory cytokines, present in the brain during seizures, contribute to pericyte morphological modifications. In vivo, unilateral intra-hippocampal kainic acid (KA) injections were performed in NG2DsRed/C57BL6 mice to induce status epilepticus (SE), epileptogenesis, and spontaneous recurrent seizures (SRS). NG2DsRed mice were used to visualize pericytes during seizure progression. The effect triggered by recombinant IL-1β, TNFα, or IL-6 on pericytes was evaluated in NG2DsRed hippocampal slices and in human-derived cell culture. Human brain specimens obtained from temporal lobe epilepsy (TLE) with or without sclerosis (HS) and focal cortical dysplasia (FCD-IIb) were evaluated for pericyte-microglial cerebrovascular assembly. A disarray of NG2DsRed + pericyte soma and ramifications was found 72 h post-SE and 1 week post-SE (epileptogenesis) in the hippocampus. Pericyte modifications topographically overlapped with IBA1 + microglia clustering around the capillaries with cases of pericytes lodged within the microglial cells. Microglial clustering around the NG2DsRed pericytes lingered at SRS. Pericyte proliferation (Ki67 + ) occurred 72 h post-SE and during epileptogenesis and returned towards control levels at SRS. Human epileptic brain tissues showed pericyte-microglia assemblies with IBA1/HLA microglial cells outlining the capillary wall in TLE-HS and FCD-IIb specimens. Inflammatory mediators contributed to pericyte modifications, in particular IL-1β elicited pericyte morphological changes and pericyte-microglia clustering in NG2DsRed hippocampal slices. Modifications also occurred when pro-inflammatory cytokines were added to an in vitro culture of pericytes. These results indicate the

  5. Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors

    DEFF Research Database (Denmark)

    Sales, K U; Friis, S; Abusleme, L

    2015-01-01

    Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor-cMet-Akt-m...

  6. Inflammatory Macrophages Promotes Development of Diabetic Encephalopathy.

    Science.gov (United States)

    Wang, Beiyun; Miao, Ya; Zhao, Zhe; Zhong, Yuan

    2015-01-01

    Diabetes and Alzheimer's disease are often associated with each other, whereas the relationship between two diseases is ill-defined. Although hyperglycemia during diabetes is a major cause of encephalopathy, diabetes may also cause chronic inflammatory complications including peripheral neuropathy. Hence the role and the characteristics of inflammatory macrophages in the development of diabetic encephalopathy need to be clarified. Diabetes were induced in mice by i.p. injection of streptozotocin (STZ). Two weeks after STZ injection and confirmation of development of diabetes, inflammatory macrophages were eliminated by i.p. injection of 20µg saporin-conjugated antibody against a macrophage surface marker CD11b (saporin-CD11b) twice per week, while a STZ-treated group received injection of rat IgG of same frequency as a control. The effects of macrophage depletion on brain degradation markers, brain malondialdehyde (MDA), catalase, superoxidase anion-positive cells and nitric oxide (NO) were measured. Saporin-CD11b significantly reduced inflammatory macrophages in brain, without affecting mouse blood glucose, serum insulin, glucose responses and beta cell mass. However, reduced brain macrophages significantly inhibited the STZ-induced decreases in brain MDA, catalase and superoxidase anion-positive cells, and the STZ-induced decreases in brain NO. Inflammatory macrophages may promote development of diabetic encephalopathy. © 2015 S. Karger AG, Basel.

  7. Progress of inflammatory cytokines in glaucoma

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2015-12-01

    Full Text Available Glaucomais a group of diseases characterized by optic nerve damage and visual field defect, and pathological high intraocular pressure is a risk factor for glaucoma. Glaucoma is affected by the interaction of multiple genes and environmental factors, and inflammation may be involved in the pathogenesis of glaucoma. A great deal of studies have confirmed that high expression of connective tissue growth factor(CTGF, tumor necrosis factor-α(TNF-α, interleukins(ILs, nuclear factor-kappa B(NF-κBand various cytokines in the aqueous humor of patients with glaucoma, which have a close correlation with pathogenesis of glaucoma.This article reviews the progress of inflammatory cytokines and their relationship with glaucoma.

  8. Ionizing radiation in tumor promotion and progression

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1990-08-01

    Chronic exposure to beta radiation has been tested as a tumor promoting or progressing agent. The dorsal skins of groups of 25 female SENCAR mice were chemically initiated with a single exposure to DMBA, and chronic exposure to strontium-90/yttrium-90 beta radiation was tested as a stage 1, stage 2 or complete skin tumor promoter. Exposure of initiated mice to 0.5 gray twice a week for 13 weeks produced no papillomas, indicating no action as a complete promoter. Another similar group of animals was chemically promoted through stage 1 (with TPA) followed by 0.5 gray of beta radiation twice a week for 13 weeks. Again no papillomas developed indicating no action of chronic radiation as a stage 2 tumor promoter. The same radiation exposure protocol in another DMBA initiated group receiving both stage 1 and 2 chemical promotion resulted in a decrease in papilloma frequency, compared to the control group receiving no beta irradiation, indicating a tumor preventing effect of radiation at stage 2 promotion, probably by killing initiated cells. Chronic beta radiation was tested three different ways as a stage 1 tumor promoter. When compared to the appropriate control, beta radiation given after initiation as a stage 1 promoter (0.5 gray twice a week for 13 weeks), after initiation and along with a known stage 1 chemical promoter (1.0 gray twice a week for 2 weeks), or prior to initiation as a stage 1 promoter (0.5 gray twice a week for 4 weeks), each time showed a weak (∼ 15% stimulation) but statistically significant (p<0.01) ability to act as a stage 1 promoter. When tested as a tumor progressing agent delivered to pre-existing papillomas, beta radiation (0.5 gray twice a week for 13 weeks) increased carcinoma frequency from 0.52 to 0.68 carcinoma/animal, but this increase was not statistically significant at the 95% confidence level. We conclude that in the addition to the known initiating, progressing and complete carcinogenic action of acute exposures to ionizing

  9. CXCL5 Promotes Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Lesa A Begley

    2008-03-01

    Full Text Available CXCL5 is a proangiogenic CXC-type chemokine that is an inflammatory mediator and a powerful attractant for granulocytic immune cells. Unlike many other chemokines, CXCL5 is secreted by both immune (neutrophil, monocyte, and macrophage and nonimmune (epithelial, endothelial, and fibroblastic cell types. The current study was intended to determine which of these cell types express CXCL5 in normal and malignant human prostatic tissues, whether expression levels correlated with malignancy and whether CXCL5 stimulated biologic effects consistent with a benign or malignant prostate epithelial phenotype. The results of these studies show that CXCL5 protein expression levels are concordant with prostate tumor progression, are highly associated with inflammatory infiltrate, and are frequently detected in the lumens of both benign and malignant prostate glands. Exogenous administration of CXCL5 stimulates cellular proliferation and gene transcription in both nontransformed and transformed prostate epithelial cells and induces highly aggressive prostate cancer cells to invade through synthetic basement membrane in vitro. These findings suggest that the inflammatory mediator, CXCL5, may play multiple roles in the etiology of both benign and malignant proliferative diseases in the prostate.

  10. Progress in Promoting Research Reactor Coalitions

    International Nuclear Information System (INIS)

    Goldman, Ira; Adelfang, Pablo; Alldred, Kevin; Mote, Nigel

    2008-01-01

    This presentation treats of the IAEA's role in Promoting Research Reactor (RR) coalitions, presents the strategic view, the types of coalitions, the 2007-2008 activities and Results, and the upcoming activities. The RR Coalitions Progress is presented first (Initial discussions, project design, approval of NTI grant request, informal consultations and development of 'national' proposals, Number of 'models' identified, exploratory missions/meetings, initial implementation of several coalitions, IAEA coordination, ideas/proposals/ventures, initial support. Some countries, institutes, or users want access to reactor capabilities without, or in advance of, building a domestic facility. Some countries, institutes, or users need access to alternative capabilities to permit the closure/consolidation of marginal facilities. Cooperative arrangements will result in increased utilization for each participant. The results from the reactor view are as follows: cover increases in order levels or scientific research; cover facility outages (planned or un-planned); delegate 'less profitable' products and services; access capacity for new products and services; reduce transport needs by geographical optimization; reduce investment needs by contracting for complementary capabilities; reduce costs of medical radio-isotope for R and D; share best practices in operations and safety. The results from the stakeholder View are: Better information on what reactors can offer/provide; greater range of services; more proactive product and service support; greater reliability in supplies of products and services. The types of coalitions are of different forms to meet needs, capabilities, objectives of members. In general they start small, evolve, change form, expand as confidence grows. The role of the Scientific consortium is to: distribute excess demand, test new concepts for implementation at high-flux reactors, direct requests for access to most appropriate RR, share best practices

  11. Environmental factors affecting inflammatory bowel disease: have we made progress?

    Science.gov (United States)

    Lakatos, Peter Laszlo

    2009-01-01

    The pathogenesis of inflammatory bowel disease (IBD) is only partially understood; various environmental and host (e.g. genetic, epithelial, immune, and nonimmune) factors are involved. The critical role for environmental factors is strongly supported by recent worldwide trends in IBD epidemiology. One important environmental factor is smoking. A meta-analysis partially confirms previous findings that smoking was found to be protective against ulcerative colitis and, after the onset of the disease, might improve its course, decreasing the need for colectomy. In contrast, smoking increases the risk of developing Crohn's disease and aggravates its course. The history of IBD is dotted by cyclic reports on the isolation of specific infectious agents responsible for Crohn's disease or ulcerative colitis. The more recently published cold chain hypothesis is providing an even broader platform by linking dietary factors and microbial agents. An additional, recent theory has suggested a breakdown in the balance between putative species of 'protective' versus 'harmful' intestinal bacteria - this concept has been termed dysbiosis resulting in decreased bacterial diversity. Other factors such as oral contraceptive use, appendectomy, dietary factors (e.g. refined sugar, fat, and fast food), perinatal events, and childhood infections have also been associated with both diseases, but their role is more controversial. Nonetheless, there is no doubt that economic development, leading to improved hygiene and other changes in lifestyle ('westernized lifestyle') may play a role in the increase in IBD. This review article focuses on the role of environmental factors in the pathogenesis and progression of IBDs. Copyright 2009 S. Karger AG, Basel.

  12. Molecular imaging promotes progress in orthopedic research.

    Science.gov (United States)

    Mayer-Kuckuk, Philipp; Boskey, Adele L

    2006-11-01

    Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics.

  13. Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli.

    Science.gov (United States)

    Rodriguez, Jose A; Orbe, Josune; Martinez de Lizarrondo, Sara; Calvayrac, Olivier; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Paramo, Jose A

    2008-01-01

    Atherosclerosis is the common pathophysiological substrate of ischemic vascular diseases and their thrombotic complications. The unbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) has been hypothesized to be involved in the growth, destabilization, and eventual rupture of atherosclerotic lesions. Different MMPs have been assigned relevant roles in the pathology of vascular diseases and MMP-10 (stromelysin-2) has been involved in vascular development and atherogenesis. This article examines the pathophysiological role of MMPs, particularly MMP-10, in the onset and progression of vascular diseases and their regulation by pro-inflammatory stimuli. MMP-10 over-expression has been shown to compromise vascular integrity and it has been associated with aortic aneurysms. MMP-10 is induced by C-reactive protein in endothelial cells, and it is over-expressed in atherosclerotic lesions. Additionally, higher MMP-10 serum levels are associated with inflammatory markers, increased carotid intima-media thickness and the presence of atherosclerotic plaques. We have cloned the promoter region of the MMP-10 gene and studied the effect of inflammatory stimuli on MMP-10 transcriptional regulation, providing evidences further supporting the involvement of MMP-10 in the pathophysiology of atherothrombosis.

  14. Inflammatory markers and extent and progression of early atherosclerosis

    DEFF Research Database (Denmark)

    Willeit, Peter; Thompson, Simon G; Agewall, Stefan

    2016-01-01

    BACKGROUND: Large-scale epidemiological evidence on the role of inflammation in early atherosclerosis, assessed by carotid ultrasound, is lacking. We aimed to quantify cross-sectional and longitudinal associations of inflammatory markers with common-carotid-artery intima-media thickness (CCA-IMT)...

  15. Alterations in HIV-1 LTR promoter activity during AIDS progression

    International Nuclear Information System (INIS)

    Hiebenthal-Millow, Kirsten; Greenough, Thomas C.; Bretttler, Doreen B.; Schindler, Michael; Wildum, Steffen; Sullivan, John L.; Kirchhoff, Frank

    2003-01-01

    HIV-1 variants evolving in AIDS patients frequently show increased replicative capacity compared to those present during early asymptomatic infection. It is known that late stage HIV-1 variants often show an expanded coreceptor tropism and altered Nef function. In the present study we investigated whether enhanced HIV-1 LTR promoter activity might also evolve during disease progression. Our results demonstrate increased LTR promoter activity after AIDS progression in 3 of 12 HIV-1-infected individuals studied. Further analysis revealed that multiple alterations in the U3 core-enhancer and in the transactivation-response (TAR) region seem to be responsible for the enhanced functional activity. Our findings show that in a subset of HIV-1-infected individuals enhanced LTR transcription contributes to the increased replicative potential of late stage virus isolates and might accelerate disease progression

  16. Progress with infliximab biosimilars for inflammatory bowel disease.

    Science.gov (United States)

    Kurti, Zsuzsanna; Gonczi, Lorant; Lakatos, Peter L

    2018-04-29

    Biological therapies have revolutionized the treatment of inflammatory bowel diseases (IBD) in the last two decades. Though biological drugs are effective, their use is associated with high costs and access to biological agents varies among countries. As the patent for the reference products expired, the advent of biosimilar monoclonal antibodies has been expected. Biosimilars represent less expensive alternatives compared to the reference product. Areas covered: In this review, authors will review the literature on the clinical efficacy, safety and immunogenicity of current and future biosimilar infliximabs. Short- and medium-term data from real-life cohorts and from randomized-clinical trials in IBD demonstrated similar outcomes in terms of efficacy, safety and immunogenicity as the reference product for CT-P13. Switch data from the reference to the biosimilar product are also accumulating (including the NOR-SWITCH and the CT-P13 3.4 study). Expert opinion: The use of biosimilar infliximab in IBD is increasing worldwide. Its use may be associated with budget savings leading to better access to biological therapies and consequently improved health outcomes. Switching from the originator to a biosimilar in patients with IBD is acceptable, although scientific and clinical evidence is lacking regarding reverse switching, multiple switching, and cross-switching among biosimilars in IBD patients.

  17. Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction

    NARCIS (Netherlands)

    Wehmeyer, C.; Frank, S.; Beckmann, D.; Bottcher, M.; Cromme, C.; Konig, U.; Fennen, M.; Held, A.; Paruzel, P.; Hartmann, C.; Stratis, A.; Korb-Pap, A.; Kamradt, T.; Kramer, I.; Berg, W.B. van den; Kneissel, M.; Pap, T.; Dankbar, B.

    2016-01-01

    Sclerostin, an inhibitor of the Wnt/beta-catenin pathway, has anti-anabolic effects on bone formation by negatively regulating osteoblast differentiation. Mutations in the human sclerostin gene (SOST) lead to sclerosteosis with progressive skeletal overgrowth, whereas sclerostin-deficient

  18. Cycling Hypoxia Induces a Specific Amplified Inflammatory Phenotype in Endothelial Cells and Enhances Tumor-Promoting Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    Céline Tellier

    2015-01-01

    Full Text Available Abnormal architecture of the tumor blood network, as well as heterogeneous erythrocyte flow, leads to temporal fluctuations in tissue oxygen tension exposing tumor and stromal cells to cycling hypoxia. Inflammation is another feature of tumor microenvironment and is considered as a new enabling characteristic of tumor progression. As cycling hypoxia is known to participate in tumor aggressiveness, the purpose of this study was to evaluate its role in tumor-promoting inflammation. Firstly, we assessed the impact of cycling hypoxia in vitro on endothelial inflammatory response induced by tumor necrosis factor α. Results showed that endothelial cells exposed to cycling hypoxia displayed an amplified proinflammatory phenotype, characterized by an increased expression of inflammatory cytokines, namely, interleukin (IL-6 and IL-8; by an increased expression of adhesion molecules, in particular intercellular adhesion molecule–1 (ICAM-1; and consequently by an increase in THP-1 monocyte adhesion. This exacerbation of endothelial inflammatory phenotype occurs through nuclear factor–κB overactivation. Secondly, the role of cycling hypoxia was studied on overall tumor inflammation in vivo in tumor-bearing mice. Results showed that cycling hypoxia led to an enhanced inflammation in tumors as prostaglandin-endoperoxide synthase 2 (PTGS2, IL-6, CXCL1 (C-X-C motif ligand 1, and macrophage inflammatory protein 2 (murine IL-8 functional homologs mRNA expression was increased and as a higher leukocyte infiltration was evidenced. Furthermore, cycling hypoxia–specific inflammatory phenotype, characterized by a simultaneous (baculoviral inhibitor of apoptosis repeat-containing 5low/PTGS2high/ICAM-1high/IL-6high/IL-8high expression, is associated with a poor prognosis in human colon cancer. This new phenotype could thus be used in clinic to more precisely define prognosis for colon cancer patients. In conclusion, our findings evidenced for the first time the

  19. Small Interfering RNA Targeted to ASPP2 Promotes Progression of Experimental Proliferative Vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Xiao-Li Chen

    2016-01-01

    Full Text Available Background. Epithelial-mesenchymal transition (EMT of retinal pigment epithelium (RPE is vital in proliferative vitreoretinopathy (PVR development. Apoptosis-stimulating proteins of p53 (ASPP2 have recently been reported to participate in EMT. However, the role of ASPP2 in PVR pathogenesis has not been identified. Methods. Immunohistochemistry was used to investigate the expression of ASPP2 in epiretinal membranes of PVR patients. ARPE-19 cells were transfected with ASPP2-siRNA, followed with measurement of cell cytotoxicity, proliferation, and migration ability. EMT markers and related inflammatory and fibrosis cytokines were measured by western blot or flow cytometry. Additionally, PVR rat models were induced by intravitreal injection of ARPE-19 cells transfected with ASPP2-siRNA and evaluated accordingly. Results. Immunofluorescence analysis revealed less intense expression of ASPP2 in PVR membranes. ASPP2 knockdown facilitated the proliferation and migration of RPE cells and enhanced the expression of mesenchymal markers such as alpha smooth muscle actin, fibronectin, and ZEB1. Meanwhile, ASPP2-siRNA increased EMT-related and inflammatory cytokines, including TGF-β, CTGF, VEGF, TNF-α, and interleukins. PVR severities were more pronounced in the rat models with ASPP2-siRNA treatment. Conclusions. ASPP2 knockdown promoted EMT of ARPE-19 cells in vitro and exacerbated the progression of experimental PVR in vivo, possibly via inflammatory and fibrosis cytokines.

  20. Lipidomic analysis of epidermal lipids: a tool to predict progression of inflammatory skin disease in humans.

    Science.gov (United States)

    Li, Shan; Ganguli-Indra, Gitali; Indra, Arup K

    2016-05-01

    Lipidomics is the large-scale profiling and characterization of lipid species in a biological system using mass spectrometry. The skin barrier is mainly comprised of corneocytes and a lipid-enriched extracellular matrix. The major skin lipids are ceramides, cholesterol and free fatty acids (FFA). Lipid compositions are altered in inflammatory skin disorders with disrupted skin barrier such as atopic dermatitis (AD). Here we discuss some of the recent applications of lipidomics in human skin biology and in inflammatory skin diseases such as AD, psoriasis and Netherton syndrome. We also review applications of lipidomics in human skin equivalent and in pre-clinical animal models of skin diseases to gain insight into the pathogenesis of the skin disease. Expert commentary: Skin lipidomics analysis could be a fast, reliable and noninvasive tool to characterize the skin lipid profile and to monitor the progression of inflammatory skin diseases such as AD.

  1. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Alam Hunain

    2012-01-01

    Full Text Available Abstract Background Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC. Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. Methods To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131 using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Results Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041, increased lymph node metastasis (P = 0.001, less differentiation (P = 0.005, increased recurrence (P = 0.038 and shorter survival (P = 0.004 of the patients. Conclusion In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and

  2. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Alam, Hunain; Kannanl, Sadhna; Gude, Rajiv; Kane, Shubhada; Dalal, Sorab N; Vaidya, Milind M; Bhate, Amruta V; Gangadaran, Prakash; Sawant, Sharda S; Salot, Shimul; Sehgal, Lalit; Dange, Prerana P; Chaukar, Devendra A; D'cruz, Anil K

    2012-01-01

    Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041), increased lymph node metastasis (P = 0.001), less differentiation (P = 0.005), increased recurrence (P = 0.038) and shorter survival (P = 0.004) of the patients. In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC

  3. Allergic Conjunctivitis-induced Retinal Inflammation Promotes Myopia Progression

    Directory of Open Access Journals (Sweden)

    Chang-Ching Wei

    2018-02-01

    Full Text Available Myopia is a highly prevalent eye disease. There is limited information suggesting a relationship between myopia and inflammation. We found children with allergic conjunctivitis (AC had the highest adjusted odds ratio (1.75, 95% confidence interval [CI], 1.72–1.77 for myopia among the four allergic diseases. A cohort study was conducted and confirmed that children with AC had a higher incidence and subsequent risk of myopia (hazard ratio 2.35, 95%CI 2.29–2.40 compared to those without AC. Lower refractive error and longer axial length were observed in an AC animal model. Myopia progression was enhanced by tumor necrosis factor (TNF-α or interleukin (IL-6 administration, two cytokines secreted by mast cell degranulation. The TNF-α or IL-6 weakened the tight junction formed by corneal epithelial (CEP cells and inflammatory cytokines across the layer of CEP cells, which increased the levels of TNF-α, IL-6, and IL-8 secreted by retinal pigment epithelial cells. The expression levels of TNF-α, IL-6, IL-8, monocyte chemoattractant protein-1, and nuclear factor kappa B were up-regulated in eyes with AC, whereas IL-10 and the inhibitor of kappa B were down-regulated. In conclusion, the experimental findings in mice corroborate the epidemiological data showing that allergic inflammation influences the development of myopia.

  4. How Can Humanities Interventions Promote Progress in the Environmental Sciences?

    Directory of Open Access Journals (Sweden)

    Sally L. Kitch

    2017-10-01

    Full Text Available Environmental humanists make compelling arguments about the importance of the environmental humanities (EH for discovering new ways to conceptualize and address the urgent challenges of the environmental crisis now confronting the planet. Many environmental scientists in a variety of fields are also committed to incorporating socio-cultural analyses in their work. Despite such intentions and rhetoric, however, and some humanists’ eagerness to incorporate science into their own work, “radical interdisciplinarity [across the humanities and sciences] is ... rare ... and does not have the impact one would hope for” (Holm et al. 2013, p. 32. This article discusses reasons for the gap between transdisciplinary intentions and the work being done in the environmental sciences. The article also describes a project designed to address that gap. Entitled “From Innovation to Progress: Addressing Hazards of the Sustainability Sciences”, the project encourages humanities interventions in problem definition, before any solution or action is chosen. Progress offers strategies for promoting expanded stakeholder engagement, enhancing understanding of power struggles and inequities that underlie problems and over-determine solutions, and designing multiple future scenarios based on alternative values, cultural practices and beliefs, and perspectives on power distribution and entitlement.

  5. Macrophage CGI-58 Attenuates Inflammatory Responsiveness via Promotion of PPARγ Signaling

    Directory of Open Access Journals (Sweden)

    Dan Yang

    2016-02-01

    Full Text Available Background/Aims: Comparative gene identification-58 (CGI-58, an adipose triglyceride lipase (ATGL coactivator, strongly promotes ATGL-mediated triglyceride (TG catabolism. Beyond its function in promoting lipolysis, other features of CGI-58 have been proposed. Here, we investigated the role of CGI-58 in the regulation of inflammatory responsiveness in macrophages. Methods: Macrophage-specific GCI-58 transgenic mice (TG and wild type mice (WT were fed a high fat diet (HFD, and RAW264.7 cells were treated with lipopolysaccharide (LPS. The peroxisome proliferator-activated receptor (PPAR signaling was detected. The inflammatory responsiveness and mitochondrial function were examined. Results: TG mice showed lower serum levels of proinflammatory cytokines and better mitochondrial function in macrophages compared with WT control. Knockdown of CGI-58 in RAW264.7 cells aggravated LPS-induced inflammation and mitochondrial dysfunction. CGI-58 overexpression and silencing in macrophages induced and inhibited PPARγ expression and activity, respectively. Most importantly, the PPARγ-specific agonist rosiglitazone significantly suppressed inflammation and mitochondrial dysfunction induced by CGI-58 deficiency. Furthermore, knockdown of PPARγ in macrophages significantly dampened the role of CGI-58 in suppression of inflammation and mitochondrial dysfunction. Interestingly, CGI-58 inhibited histone deacetylation and the recruitment of histone deacetylase (HDAC to the PPARγ promoter. Finally, ATGL deficiency did not affect inflammatory responsiveness and PPARγ signaling in macrophages. Conclusion: These results demonstrate that macrophage CGI-58 enhances PPARγ signaling and thus suppresses inflammatory responsiveness and mitochondrial dysfunction.

  6. Osteoarthritis guidelines: a progressive role for topical nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Stanos SP

    2013-04-01

    Full Text Available Steven P Stanos Rehabilitation Institute of Chicago, Center for Pain Management, Chicago, IL, USA Abstract: Current treatment guidelines for the treatment of chronic pain associated with osteoarthritis reflect the collective clinical knowledge of international experts in weighing the benefits of pharmacologic therapy options while striving to minimize the negative effects associated with them. Consideration of disease progression, pattern of flares, level of functional impairment or disability, response to treatment, coexisting conditions such as cardiovascular disease or gastrointestinal disorders, and concomitant prescription medication use should be considered when creating a therapeutic plan for a patient with osteoarthritis. Although topical nonsteroidal anti-inflammatory drugs historically have not been prevalent in many of the guidelines for osteoarthritis treatment, recent evidence-based medicine and new guidelines now support their use as a viable option for the clinician seeking alternatives to typical oral formulations. This article provides a qualitative review of these treatment guidelines and the emerging role of topical nonsteroidal anti-inflammatory drugs as a therapy option for patients with localized symptoms of osteoarthritis who may be at risk for oral nonsteroidal anti-inflammatory drug-related serious adverse events. Keywords: osteoarthritis, nonsteroidal anti-inflammatory drugs, guidelines, topical analgesics, diclofenac

  7. Malignant transformation of oral lichen planus by a chronic inflammatory process. Use of topical corticosteroids to prevent this progression?

    Science.gov (United States)

    Otero-Rey, Eva Maria; Suarez-Alen, Fatima; Peñamaria-Mallon, Manuel; Lopez-Lopez, Jose; Blanco-Carrion, Andres

    2014-11-01

    Oral lichen planus is a potentially malignant disorder with a capacity, although low, for malignant transformation. Of all the factors related to the process of malignant transformation, it is believed that the chronic inflammatory process plays a key role in the development of oral cancer. This inflammatory process is capable of providing a microenvironment based on different inflammatory cells and molecules that affect cellular growth, proliferation and differentiation. The objectives of our study are: to review the available evidence about the possible relationship between the chronic inflammatory process present in oral lichen planus and its malignant transformation, to discuss the potential therapeutic implications derived from this relationship and to study the role that topical corticosteroids play in the control of oral lichen planus inflammation and its possible progression to malignant transformation. The maintenance of a minimum dose of topical corticosteroids could prevent the inflammatory progression of oral lichen planus to oral cancer.

  8. Osteoarthritis guidelines: a progressive role for topical nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Stanos, Steven P

    2013-01-01

    Current treatment guidelines for the treatment of chronic pain associated with osteoarthritis reflect the collective clinical knowledge of international experts in weighing the benefits of pharmacologic therapy options while striving to minimize the negative effects associated with them. Consideration of disease progression, pattern of flares, level of functional impairment or disability, response to treatment, coexisting conditions such as cardiovascular disease or gastrointestinal disorders, and concomitant prescription medication use should be considered when creating a therapeutic plan for a patient with osteoarthritis. Although topical nonsteroidal anti-inflammatory drugs historically have not been prevalent in many of the guidelines for osteoarthritis treatment, recent evidence-based medicine and new guidelines now support their use as a viable option for the clinician seeking alternatives to typical oral formulations. This article provides a qualitative review of these treatment guidelines and the emerging role of topical nonsteroidal anti-inflammatory drugs as a therapy option for patients with localized symptoms of osteoarthritis who may be at risk for oral nonsteroidal anti-inflammatory drug-related serious adverse events.

  9. Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease.

    Science.gov (United States)

    Scriba, Thomas J; Penn-Nicholson, Adam; Shankar, Smitha; Hraha, Tom; Thompson, Ethan G; Sterling, David; Nemes, Elisa; Darboe, Fatoumatta; Suliman, Sara; Amon, Lynn M; Mahomed, Hassan; Erasmus, Mzwandile; Whatney, Wendy; Johnson, John L; Boom, W Henry; Hatherill, Mark; Valvo, Joe; De Groote, Mary Ann; Ochsner, Urs A; Aderem, Alan; Hanekom, Willem A; Zak, Daniel E

    2017-11-01

    Our understanding of mechanisms underlying progression from Mycobacterium tuberculosis infection to pulmonary tuberculosis disease in humans remains limited. To define such mechanisms, we followed M. tuberculosis-infected adolescents longitudinally. Blood samples from forty-four adolescents who ultimately developed tuberculosis disease (“progressors”) were compared with those from 106 matched controls, who remained healthy during two years of follow up. We performed longitudinal whole blood transcriptomic analyses by RNA sequencing and plasma proteome analyses using multiplexed slow off-rate modified DNA aptamers. Tuberculosis progression was associated with sequential modulation of immunological processes. Type I/II interferon signalling and complement cascade were elevated 18 months before tuberculosis disease diagnosis, while changes in myeloid inflammation, lymphoid, monocyte and neutrophil gene modules occurred more proximally to tuberculosis disease. Analysis of gene expression in purified T cells also revealed early suppression of Th17 responses in progressors, relative to M. tuberculosis-infected controls. This was confirmed in an independent adult cohort who received BCG re-vaccination; transcript expression of interferon response genes in blood prior to BCG administration was associated with suppression of IL-17 expression by BCG-specific CD4 T cells 3 weeks post-vaccination. Our findings provide a timeline to the different immunological stages of disease progression which comprise sequential inflammatory dynamics and immune alterations that precede disease manifestations and diagnosis of tuberculosis disease. These findings have important implications for developing diagnostics, vaccination and host-directed therapies for tuberculosis. Clincialtrials.gov, NCT01119521.

  10. Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect.

    Science.gov (United States)

    Shang, Fengqing; Liu, Shiyu; Ming, Leiguo; Tian, Rong; Jin, Fang; Ding, Yin; Zhang, Yongjie; Zhang, Hongmei; Deng, Zhihong; Jin, Yan

    2017-01-01

    Human periodontal ligament stem cells (hPDLSCs) transplantation represents a promising approach for periodontal regeneration; however, the cell source is limited due to the invasive procedure required for cell isolation. As human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested inexpensively and inexhaustibly, here we evaluated the regenerative potentials of hUCMSCs as compared with hPDLSCs to determine whether hUCMSCs could be used as new cell sources for periodontal regeneration. Methods The characteristics of hUCMSCs, including multi-differentiation ability and anti-inflammatory capability, were determined by comparison with hPDLSCs. We constructed cell aggregates (CA) using hUCMSCs and hPDLSCs respectively. Then hPDLSCs-CA and hUCMSCs-CA were combined with β-tricalcium phosphate bioceramic (β-TCP) respectively and their regenerative potentials were determined in a rat inflammatory periodontal defect model. Results hPDLSCs showed higher osteogenic differentiation potentials than hUCMSCs. Meanwhile, hUCMSCs showed higher extracellular matrix secretion and anti-inflammatory abilities than hPDLSCs. Similar to hPDLSCs, hUCMSCs were able to contribute to regeneration of both soft and hard periodontal tissues under inflammatory periodontitis condition. There were more newly formed bone and periodontal ligaments in hPDLSCs and hUCMSCs groups than in non-cell treated group. Moreover, no significant differences of regenerative promoting effects between hPDLSCs and hUCMSCs were found. Conclusion : hUCMSCs generated similar promoting effects on periodontal regeneration compared with hPDLSCs, and can be used as new cell sources for periodontal regeneration.

  11. Technology transfer: Promoting irrigation progress and best management practices

    Science.gov (United States)

    Educational efforts promoting irrigation best management practices are designed to increase adoption of these practices and increase public understanding of the importance of irrigation. They increase visibility and the impact of the Ogallala Aquifer Program and promote affiliated research and exten...

  12. IL-35, a hallmark of immune-regulation in cancer progression, chronic infections and inflammatory diseases.

    Science.gov (United States)

    Teymouri, Manouchehr; Pirro, Matteo; Fallarino, Francesca; Gargaro, Marco; Sahebkar, Amirhosein

    2018-03-25

    Cytokine members of the IL-12 family have attracted enormous attention in the last few years, with IL-35 being the one of the most attractive-suppressive cytokine. IL-35 is an important mediator of regulatory T cell function. Regulatory T cells play key roles in restoring immune homeostasis after facing challenges such as infection by specific pathogens. Moreover, a crucial role for regulatory T cell populations has been demonstrated in several physiological processes, including establishment of fetal-maternal tolerance, maintenance of self-tolerance and prevention of autoimmune diseases. However, a deleterious involvement of immune regulatory T cells has been documented in specific inhibition of immune responses against tumor cells, promotion of chronic infections and establishment of chronic inflammatory disorders. In this review, we attempt to shed light on the concept of immune-homoeostasis on the aforementioned issues, taking IL-35 as the hallmark of regulatory responses. The dilemma between immune-mediated cancer treatment and inflammation is discussed. Histopathological indications of chronic vs. acute infections are elaborated. Moreover, the evidence that IL-35 requires additional immune-regulatory cytokines, such as IL-10 and TGF-β, to induce effective and maximal anti-inflammatory effects suggest that immune-regulation requires multi-factorial analysis of many immune playmakers rather than a specific immune target. © 2018 UICC.

  13. CSF inflammatory biomarkers responsive to treatment in progressive multiple sclerosis capture residual inflammation associated with axonal damage.

    Science.gov (United States)

    Romme Christensen, Jeppe; Komori, Mika; von Essen, Marina Rode; Ratzer, Rikke; Börnsen, Lars; Bielekova, Bibi; Sellebjerg, Finn

    2018-05-01

    Development of treatments for progressive multiple sclerosis (MS) is challenged by the lack of sensitive and treatment-responsive biomarkers of intrathecal inflammation. To validate the responsiveness of cerebrospinal fluid (CSF) inflammatory biomarkers to treatment with natalizumab and methylprednisolone in progressive MS and to examine the relationship between CSF inflammatory and tissue damage biomarkers. CSF samples from two open-label phase II trials of natalizumab and methylprednisolone in primary and secondary progressive MS. CSF concentrations of 20 inflammatory biomarkers and CSF biomarkers of axonal damage (neurofilament light chain (NFL)) and demyelination were analysed using electrochemiluminescent assay and enzyme-linked immunosorbent assay (ELISA). In all, 17 natalizumab- and 23 methylprednisolone-treated patients had paired CSF samples. CSF sCD27 displayed superior standardised response means and highly significant decreases during both natalizumab and methylprednisolone treatment; however, post-treatment levels remained above healthy donor reference levels. Correlation analyses of CSF inflammatory biomarkers and NFL before, during and after treatment demonstrated that CSF sCD27 consistently correlates with NFL. These findings validate CSF sCD27 as a responsive and sensitive biomarker of intrathecal inflammation in progressive MS, capturing residual inflammation after treatment. Importantly, CSF sCD27 correlates with NFL, consistent with residual inflammation after anti-inflammatory treatment being associated with axonal damage.

  14. Inflammatory Th17 cells promote depression-like behavior in mice

    Science.gov (United States)

    Beurel, Eléonore; Harrington, Laurie E.; Jope, Richard S.

    2012-01-01

    Background Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact CNS functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models Th17 cells promote susceptibility to depression-like behaviors. Methods Behavioral characteristics were measured in male mice administered Th17 cells, CD4+ cells, or vehicle, and in RORγT+/GFP mice or male mice treated with RORγT inhibitor or anti-IL-17A antibodies. Results Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-IL-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. Conclusions These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. PMID:23174342

  15. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice.

    Science.gov (United States)

    Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R

    2017-09-01

    Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc

  16. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  17. Alleviating Promotion of Inflammation and Cancer Induced by Nonsteroidal Anti-Inflammatory Drugs

    Directory of Open Access Journals (Sweden)

    Anthony M. Kyriakopoulos

    2017-01-01

    Full Text Available Clinical Relevance. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs including aspirin are of intensive use nowadays. These drugs exert their activity via the metabolism of arachidonic acid (AA by cyclooxygenase inhibition. Though beneficial for health in some instances, both unspecific and specific cyclooxygenase inhibitor activity interfere with AA metabolism producing also proinflammatory lipids that may promote cancer. Materials and Methods. This review is based on available literature on clinical uses, biochemical investigations, molecular medicine, pharmacology, toxicity, and epidemiology-clinical studies on NSAIDs and other drugs that may be used accordingly, which was collected from electronic (SciFinder, Medline, Science Direct, and ACS among others and library searches of books and journals. Results. Relevant literature supports the notion that NDSAID use may also promote proinflammatory biochemical events that are also related to precancerous predisposition. Several agents are proposed that may be employed in immediate future to supplement and optimize treatment with NSAIDs. In this way serious side effects arising from promotion of inflammation and cancer, especially in chronic NSAID users and high risk groups of patients, could be avoided.

  18. Occupational therapists' experiences of career progression following promotion.

    Science.gov (United States)

    Nelson, Helen; Giles, Susan; McInnes, Heather; Hitch, Danielle

    2015-12-01

    The recruitment and retention of a skilled occupational therapy workforce is highlighted as a key issue for the profession, and yet there have been relatively few studies into the career progression of occupational therapists. A qualitative, naturalistic approach was adopted to answer the research question, using semi-structured interviews to gather data. Eleven purposefully selected participants at an Australian health service were interviewed as part of this study. Categories representing the most common themes and topics supplied by participants within their individual interviews were identified and consolidated by the research team. The trustworthiness of this study was supported by strategies to maximise its credibility, dependability and confirmability. Four main themes were elicited from the data - (i) Readiness for progression, (ii) Tools and processes, (iii) Expectations and (iv) What I wish I had known first. Within these themes, related findings were also identified by both Grade 2 and Grade 3 staff. This study indicates that the readiness of occupational therapists to climb the career ladder is influenced by the tools and processes they can utilise, and the expectations they have around the realities of their new position. With hindsight, participants highlighted some things they wish they had known at the time of transition, which appeared to have been implicit. This study is the first to address the common issues for occupational therapy staff around progression between grade levels. It therefore provides a basis for further research in other practice settings and for the development of supports for therapists climbing the career ladder. © 2015 Occupational Therapy Australia.

  19. TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression.

    Science.gov (United States)

    Rutkowski, Melanie R; Conejo-Garcia, Jose R

    2015-08-01

    We have reported that TLR5-mediated recognition of commensal microbiota modulates systemic tumor-promoting inflammation and malignant progression of tumors at distal locations. Approximately 7-10% of the general population harbors a deleterious single nucleotide polymorphism in TLR5, implicating a novel role for genetic variation during the initiation and progression of cancer.

  20. Parental High-Fat Diet Promotes Inflammatory and Senescence-Related Changes in Prostate

    Directory of Open Access Journals (Sweden)

    Kulbhushan Tikoo

    2017-01-01

    Full Text Available Background. Obesity and dietary habits are associated with increased incidences of aging-related prostatic diseases. The present study was aimed to investigate transgenerational effects of chronic high-fat diet (HFD feeding on inflammation and senescence-related changes in prostate. Methods. Sprague-Dawley rats were kept on either normal or HFD one. Senescence-associated β-galactosidase (SA β-gal activity, inflammation, and cellular proliferation were determined in the prostate. Results. Increased SA β-gal activity, expression of p53, and cell proliferation marker PCNA were observed in ventral prostate of HFD-fed rats. Immunostaining for p53 and PCNA revealed that the p53 immunopositive cells were primarily in stroma while PCNA immunopositive cells were epithelial cells. An increase in expression of cycloxygenase-2 (COX-2 and phosphorylation of nuclear factor-kappa B (NF-kB was observed in prostate of weaning pups HFD-fed parents. However, in adult pups, irrespective of dietary habit, a significant increase in the expression of COX-2, PCNA, phosphorylation of NF-kB, infiltration of inflammatory cells, and SA β-gal activity was observed. Conclusions. Present investigation reports that HFD feeding promotes accumulation of p53 expressing cells, proliferation of epithelial cells, and senescence-related changes in prostate. Further, parental HFD-feeding upholds inflammatory, proliferative, and senescence-related changes in prostate of pups.

  1. The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo

    International Nuclear Information System (INIS)

    Eisele, Petra Sabine; Furrer, Regula; Beer, Markus; Handschin, Christoph

    2015-01-01

    The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is abundantly expressed in trained muscles and regulates muscle adaptation to endurance exercise. Inversely, mice lacking a functional PGC-1α allele in muscle exhibit reduced muscle functionality and increased inflammation. In isolated muscle cells, PGC-1α and the related PGC-1β counteract the induction of inflammation by reducing the activity of the nuclear factor κB (NFκB). We now tested the effects of these metabolic regulators on inflammatory reactions in muscle tissue of control and muscle-specific PGC-1α/-1β transgenic mice in vivo in the basal state as well as after an acute inflammatory insult. Surprisingly, we observed a PGC-1-dependent alteration of the cytokine profile characterized by an increase in anti-inflammatory factors and a strong suppression of the pro-inflammatory interleukin 12 (IL-12). In conclusion, the anti-inflammatory environment in muscle that is promoted by the PGC-1s might contribute to the beneficial effects of these coactivators on muscle function and provides a molecular link underlying the tight mutual regulation of metabolism and inflammation. - Highlights: • Muscle PGC-1s are insufficient to prevent acute systemic inflammation. • The muscle PGC-1s however promote a local anti-inflammatory environment. • This anti-inflammatory environment could contribute to the therapeutic effect of the PGC-1s

  2. The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, Petra Sabine [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich (Switzerland); Furrer, Regula; Beer, Markus [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich (Switzerland)

    2015-08-28

    The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is abundantly expressed in trained muscles and regulates muscle adaptation to endurance exercise. Inversely, mice lacking a functional PGC-1α allele in muscle exhibit reduced muscle functionality and increased inflammation. In isolated muscle cells, PGC-1α and the related PGC-1β counteract the induction of inflammation by reducing the activity of the nuclear factor κB (NFκB). We now tested the effects of these metabolic regulators on inflammatory reactions in muscle tissue of control and muscle-specific PGC-1α/-1β transgenic mice in vivo in the basal state as well as after an acute inflammatory insult. Surprisingly, we observed a PGC-1-dependent alteration of the cytokine profile characterized by an increase in anti-inflammatory factors and a strong suppression of the pro-inflammatory interleukin 12 (IL-12). In conclusion, the anti-inflammatory environment in muscle that is promoted by the PGC-1s might contribute to the beneficial effects of these coactivators on muscle function and provides a molecular link underlying the tight mutual regulation of metabolism and inflammation. - Highlights: • Muscle PGC-1s are insufficient to prevent acute systemic inflammation. • The muscle PGC-1s however promote a local anti-inflammatory environment. • This anti-inflammatory environment could contribute to the therapeutic effect of the PGC-1s.

  3. Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence.

    Science.gov (United States)

    Harkin, Benjamin; Webb, Thomas L; Chang, Betty P I; Prestwich, Andrew; Conner, Mark; Kellar, Ian; Benn, Yael; Sheeran, Paschal

    2016-02-01

    Control theory and other frameworks for understanding self-regulation suggest that monitoring goal progress is a crucial process that intervenes between setting and attaining a goal, and helps to ensure that goals are translated into action. However, the impact of progress monitoring interventions on rates of behavioral performance and goal attainment has yet to be quantified. A systematic literature search identified 138 studies (N = 19,951) that randomly allocated participants to an intervention designed to promote monitoring of goal progress versus a control condition. All studies reported the effects of the treatment on (a) the frequency of progress monitoring and (b) subsequent goal attainment. A random effects model revealed that, on average, interventions were successful at increasing the frequency of monitoring goal progress (d+ = 1.98, 95% CI [1.71, 2.24]) and promoted goal attainment (d+ = 0.40, 95% CI [0.32, 0.48]). Furthermore, changes in the frequency of progress monitoring mediated the effect of the interventions on goal attainment. Moderation tests revealed that progress monitoring had larger effects on goal attainment when the outcomes were reported or made public, and when the information was physically recorded. Taken together, the findings suggest that monitoring goal progress is an effective self-regulation strategy, and that interventions that increase the frequency of progress monitoring are likely to promote behavior change. (c) 2016 APA, all rights reserved).

  4. Inflammatory Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Stem Cell-Like Characteristics of Cancer Cells in an IL-1β-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Xiaohe Luo

    2018-01-01

    Full Text Available To ensure the safety of clinical applications of MSCs, thorough understanding of their impacts on tumor initiation and progression is essential. Here, to further explore the complex dialog between MSCs and tumor cells, umbilical cord-derived mesenchymal stem cells (UC-MSCs were employed to be cocultured with either breast or ovarian cancer cells. Though having no obvious influence on proliferation or apoptosis, UC-MSCs exerted intense stem cell-like properties promoting effects on both cancer models. Cocultured cancer cells showed enriched side population, enhanced sphere formation ability, and upregulated pluripotency-associated stem cell markers. Human cytokine array and real-time PCR revealed a panel of MSC-derived prostemness cytokines CCL2, CXCL1, IL-8, and IL-6 which were induced upon coculturing. We further revealed IL-1β, a well-characterized proinflammatory cytokine, to be the inducer of these prostemness cytokines, which was generated from inflammatory UC-MSCs in an autocrine manner. Additionally, with introduction of IL-1RA (an IL-1 receptor antagonist into the coculturing system, the stem cell-like characteristics promoting effects of inflammatory UC-MSCs were partially blocked. Taken together, these findings suggest that transduced inflammatory MSCs work as a major source of IL-1β in tumor microenvironment and initiate the formation of prostemness niche via regulating their secretome in an IL-1β-dependent manner.

  5. Plant-Derived Anti-Inflammatory Compounds: Hopes and Disappointments regarding the Translation of Preclinical Knowledge into Clinical Progress

    Directory of Open Access Journals (Sweden)

    Robert Fürst

    2014-01-01

    Full Text Available Many diseases have been described to be associated with inflammatory processes. The currently available anti-inflammatory drug therapy is often not successful or causes intolerable side effects. Thus, new anti-inflammatory substances are still urgently needed. Plants were the first source of remedies in the history of mankind. Since their chemical characterization in the 19th century, herbal bioactive compounds have fueled drug development. Also, nowadays, new plant-derived agents continuously enrich our drug arsenal (e.g., vincristine, galantamine, and artemisinin. The number of new, pharmacologically active herbal ingredients, in particular that of anti-inflammatory compounds, rises continuously. The major obstacle in this field is the translation of preclinical knowledge into evidence-based clinical progress. Human trials of good quality are often missing or, when available, are frequently not suitable to really prove a therapeutical value. This minireview will summarize the current situation of 6 very prominent plant-derived anti-inflammatory compounds: curcumin, colchicine, resveratrol, capsaicin, epigallocatechin-3-gallate (EGCG, and quercetin. We will highlight their clinical potential and/or pinpoint an overestimation. Moreover, we will sum up the planned trials in order to provide insights into the inflammatory disorders that are hypothesized to be beneficially influenced by the compound.

  6. Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease.

    Directory of Open Access Journals (Sweden)

    Oliver Jung

    2010-08-01

    Full Text Available Epoxyeicotrienoic acids (EETs are cytochrome P450-dependent anti-hypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered reno-protective. EETs are degraded by the enzyme soluble epoxide hydrolase (sEH and sEH inhibitors are considered treatment for chronic renal failure (CRF. We determined whether sEH inhibition attenuates the progression of CRF in the 5/6-nephrectomy model (5/6-Nx in mice. 5/6-Nx mice were treated with a placebo, an ACE-inhibitor (Ramipril, 40 mg/kg, the sEH-inhibitor cAUCB or the CYP-inhibitor fenbendazole for 8 weeks. 5/6-Nx induced hypertension, albuminuria, glomerulosclerosis and tubulo-interstitial damage and these effects were attenuated by Ramipril. In contrast, cAUCB failed to lower the blood pressure and albuminuria was more severe as compared to placebo. Plasma EET-levels were doubled in 5/6 Nx-mice as compared to sham mice receiving placebo. Renal sEH expression was attenuated in 5/6-Nx mice but cAUCB in these animals still further increased the EET-level. cAUCB also increased 5-HETE and 15-HETE, which derive from peroxidation or lipoxygenases. Similar to cAUCB, CYP450 inhibition increased HETEs and promoted albuminuria. Thus, sEH-inhibition failed to elicit protective effects in the 5/6-Nx model and showed a tendency to aggravate the disease. These effects might be consequence of a shift of arachidonic acid metabolism into the lipoxygenase pathway.

  7. SCCRO Promotes Glioma Formation and Malignant Progression in Mice

    Directory of Open Access Journals (Sweden)

    Stephen R. Broderick

    2010-06-01

    Full Text Available Originally identified as an oncogene activated by amplification in squamous cell carcinomas, several lines of evidence now suggest that squamous cell carcinoma-related oncogene (SCCRO; aka DCUN1D1 may play a role in the pathogenesis of a wide range of human cancers including gliomas. SCCRO's oncogenic function is substantiated by its ectopic expression, resulting in transformation of cells in culture and xenograft formation in nude mice. The aim of this study was to assess the in vivo oncogenicity of SCCRO in a murine model. Ubiquitous expression of SCCRO resulted in early embryonic lethality. Because SCCRO overexpression was detected in human gliomas, its in vivo oncogenic activity was assessed in an established murine glioma model. Conditional expression of SCCRO using a replication-competent ASLV long terminal repeat with splice acceptor/nestin-(tumor virus-A tv-a model system was not sufficient to induce tumor formation in a wild-type genetic background, but tumors formed with increasing frequency and decreasing latency in facilitated background containing Ink4a deletion alone or in combination with PTEN loss. Ectopic expression of SCCRO in glial progenitor cells resulted in lower-grade gliomas in Ink4a-/- mice, whereas its expression in Ink4a-/-/PTEN-/- background produced high-grade glioblastoma-like lesions that were indistinguishable from human tumors. Expression of SCCRO with platelet-derived growth factor-beta (PDGF-β resulted in an increased proportion of mice forming glioblastoma-like tumors compared with those induced by PDGF-β alone. This work substantiates SCCRO's function as an oncogene by showing its ability to facilitate malignant transformation and carcinogenic progression in vivo and supports a role for SCCRO in the pathogenesis of gliomas and other human cancers.

  8. Leukocyte scintigraphy: correlation of serial scintigraphic findings and clinical progression of inflammatory bowel disease

    International Nuclear Information System (INIS)

    Ho, Y.; Kelly, M.J.; Kaliff, V.

    1997-01-01

    Full text: This study was performed (a) to determine whether the clinical progress of individual patients with inflammatory bowel disease mirrored changes in leukocyte scans, and (b) to assess the reasons for significant discrepancies. Two nuclear medicine physicians reviewed 44 white cell scans in 20 consecutive patients (4 males, 18 females) who were referred for two or more leukocyte scans (using either the 111 In Oxine or 99m Tc HMPAO labelling methods) by three gastroenterologists between 1 January 1992 and 1 June 1996. The sequential scanpairs (range 2-18 months apart) were classified by consensus reading as showing no change, more severe or less severe disease. Questionnaires were sent to the referring gastroenterologists to determine whether the overall clinical status of each patient was unchanged, better or worse in the interval between the two scans. There was complete agreement between clinical and scintigraphic assessment in 45% (10/22) of the study pairs. Review of responses of the three individual gastroenterologists showed a wide range of agreement (4/4, 4/5, 2/13). Review of data showed that most disagreement was based on subjective clinical assessment, and hence of uncertain significance. In two patients, however, potentially preventable false negative leukocyte scans occurred in patients with active proctitis. This may be overcome by rigorous attention to ensure complete emptying of radioactivity from the bladder when 99m Tc HMPAO is used. It was concluded that serial leukocyte scans add to clinical assessment but careful technique is needed to avoid false negative scans in the rectum

  9. Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Francos-Quijorna, Isaac; Santos-Nogueira, Eva; Gronert, Karsten; Sullivan, Aaron B; Kopp, Marcel A; Brommer, Benedikt; David, Samuel; Schwab, Jan M; López-Vales, Ruben

    2017-11-29

    Resolution of inflammation is defective after spinal cord injury (SCI), which impairs tissue integrity and remodeling and leads to functional deficits. Effective pharmacological treatments for SCI are not currently available. Maresin 1 (MaR1) is a highly conserved specialized proresolving mediator (SPM) hosting potent anti-inflammatory and proresolving properties with potent tissue regenerative actions. Here, we provide evidence that the inappropriate biosynthesis of SPM in the lesioned spinal cord hampers the resolution of inflammation and leads to deleterious consequences on neurological outcome in adult female mice. We report that, after spinal cord contusion injury in adult female mice, the biosynthesis of SPM is not induced in the lesion site up to 2 weeks after injury. Exogenous administration of MaR1, a highly conserved SPM, propagated inflammatory resolution after SCI, as revealed by accelerated clearance of neutrophils and a reduction in macrophage accumulation at the lesion site. In the search of mechanisms underlying the proresolving actions of MaR1 in SCI, we found that this SPM facilitated several hallmarks of resolution of inflammation, including reduction of proinflammatory cytokines (CXCL1, CXCL2, CCL3, CCL4, IL6, and CSF3), silencing of major inflammatory intracellular signaling cascades (STAT1, STAT3, STAT5, p38, and ERK1/2), redirection of macrophage activation toward a prorepair phenotype, and increase of the phagocytic engulfment of neutrophils by macrophages. Interestingly, MaR1 administration improved locomotor recovery significantly and mitigated secondary injury progression in a clinical relevant model of SCI. These findings suggest that proresolution, immunoresolvent therapies constitute a novel approach to improving neurological recovery after acute SCI. SIGNIFICANCE STATEMENT Inflammation is a protective response to injury or infection. To result in tissue homeostasis, inflammation has to resolve over time. Incomplete or delayed

  10. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    Science.gov (United States)

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  11. Host microenvironment in breast cancer development: Inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor–microenvironment interactions

    International Nuclear Information System (INIS)

    Ben-Baruch, A

    2003-01-01

    A comprehensive overview of breast cancer development and progression suggests that the process is influenced by intrinsic properties of the tumor cells, as well as by microenvironmental factors. Indeed, in breast carcinoma, an intensive interplay exists between the tumor cells on one hand, and inflammatory cells/cytokines/chemokines on the other. The purpose of the present review is to outline the reciprocal interactions that exist between these different elements, and to shed light on their potential involvement in breast cancer development and progression

  12. Immune Reconstitution Inflammatory Syndrome Unmasking or Worsening AIDS-Related Progressive Multifocal Leukoencephalopathy: A Literature Review

    Directory of Open Access Journals (Sweden)

    Anna Fournier

    2017-05-01

    Full Text Available Incidence of progressive multifocal leukoencephalopathy (PML in HIV-infected patients has declined in the combined antiretroviral therapy (cART era although a growing number of acquired immunodeficiency syndrome (AIDS-related PML-immune reconstitution inflammatory syndromes (PML-IRIS have been published during the same period. Therapeutic management of PML-IRIS is not consensual and mainly relies on corticosteroids. Our main aim was, in addition to provide a thoughtful analysis of published PML-IRIS cases, to assess the benefit of corticosteroids in the management of PML-IRIS, focusing on confirmed cases. We performed a literature review of the 46 confirmed cases of PML-IRIS cases occurring in HIV-infected patients from 1998 to September 2016 (21 unmasking and 25 paradoxical PML-IRIS. AIDS-related PML-IRIS patients were mostly men (sex ratio 4/1 with a median age of 40.5 years (range 12–66. Median CD4 T cell count before cART and at PML-IRIS onset was 45/μl (0–301 and 101/μl (20–610, respectively. After cART initiation, PML-IRIS occurred within a median timescale of 38 days (18–120. Clinical signs were motor deficits (69%, speech disorders (36%, cognitive disorders (33%, cerebellar ataxia (28%, and visual disturbances (23%. Brain MRI revealed hyperintense areas on T2-weighted sequences and FLAIR images (76% and suggestive contrast enhancement (87%. PCR for John Cunningham virus (JCV in cerebrospinal fluid (CSF was positive in only 84% of cases; however, when performed, brain biopsy confirmed diagnosis of PML in 90% of cases and demonstrated histological signs of IRIS in 95% of cases. Clinical worsening related to PML-IRIS and leading to death was observed in 28% of cases. Corticosteroids were prescribed in 63% of cases and maraviroc in one case. Statistical analysis failed to demonstrate significant benefit from steroid treatment, despite spectacular improvement in certain cases. Diagnosis of PML-IRIS should be considered in HIV

  13. Immune Reconstitution Inflammatory Syndrome Unmasking or Worsening AIDS-Related Progressive Multifocal Leukoencephalopathy: A Literature Review.

    Science.gov (United States)

    Fournier, Anna; Martin-Blondel, Guillaume; Lechapt-Zalcman, Emmanuèle; Dina, Julia; Kazemi, Apolline; Verdon, Renaud; Mortier, Emmanuel; de La Blanchardière, Arnaud

    2017-01-01

    Incidence of progressive multifocal leukoencephalopathy (PML) in HIV-infected patients has declined in the combined antiretroviral therapy (cART) era although a growing number of acquired immunodeficiency syndrome (AIDS)-related PML-immune reconstitution inflammatory syndromes (PML-IRIS) have been published during the same period. Therapeutic management of PML-IRIS is not consensual and mainly relies on corticosteroids. Our main aim was, in addition to provide a thoughtful analysis of published PML-IRIS cases, to assess the benefit of corticosteroids in the management of PML-IRIS, focusing on confirmed cases. We performed a literature review of the 46 confirmed cases of PML-IRIS cases occurring in HIV-infected patients from 1998 to September 2016 (21 unmasking and 25 paradoxical PML-IRIS). AIDS-related PML-IRIS patients were mostly men (sex ratio 4/1) with a median age of 40.5 years (range 12-66). Median CD4 T cell count before cART and at PML-IRIS onset was 45/μl (0-301) and 101/μl (20-610), respectively. After cART initiation, PML-IRIS occurred within a median timescale of 38 days (18-120). Clinical signs were motor deficits (69%), speech disorders (36%), cognitive disorders (33%), cerebellar ataxia (28%), and visual disturbances (23%). Brain MRI revealed hyperintense areas on T2-weighted sequences and FLAIR images (76%) and suggestive contrast enhancement (87%). PCR for John Cunningham virus (JCV) in cerebrospinal fluid (CSF) was positive in only 84% of cases; however, when performed, brain biopsy confirmed diagnosis of PML in 90% of cases and demonstrated histological signs of IRIS in 95% of cases. Clinical worsening related to PML-IRIS and leading to death was observed in 28% of cases. Corticosteroids were prescribed in 63% of cases and maraviroc in one case. Statistical analysis failed to demonstrate significant benefit from steroid treatment, despite spectacular improvement in certain cases. Diagnosis of PML-IRIS should be considered in HIV

  14. Adverse effect of the CCR5 promoter -2459A allele on HIV-1 disease progression

    DEFF Research Database (Denmark)

    Knudsen, T B; Kristiansen, T B; Katzenstein, T L

    2001-01-01

    /G transition that has been discovered recently, have also been shown to influence HIV progression. Since genetic linkages make these polymorphisms interdependent variables, the aim of the present study was to isolate and evaluate the effect on HIV disease progression for each of these mutations independently......HIV positive individuals heterozygous for a 32 basepair deletion in the CCR5 encoding gene (CCR5 Delta32) have a reduced number of CCR5 receptors on the cell surface and a slower progression towards AIDS and death. Other human polymorphisms, such as the CCR2 64I and the CCR5 promoter -2459 A...

  15. New-onset vitiligo and progression of pre-existing vitiligo during treatment with biological agents in chronic inflammatory diseases.

    Science.gov (United States)

    Méry-Bossard, L; Bagny, K; Chaby, G; Khemis, A; Maccari, F; Marotte, H; Perrot, J L; Reguiai, Z; Sigal, M L; Avenel-Audran, M; Boyé, T; Grasland, A; Gillard, J; Jullien, D; Toussirot, E

    2017-01-01

    The development of vitiligo during treatment with biological agents is an unusual event and only a few isolated cases have been reported. To describe the clinical characteristics and evolution of patients developing new-onset vitiligo following initiation of a biological agent for chronic inflammatory disease; and also to report the clinical course of pre-existing vitiligo under biological therapy. This nationwide multicentre, retrospective study, carried out between July 2013 and January 2015, describes the characteristics of a large series of 18 patients (psoriasis N = 8, inflammatory rheumatic diseases N = 8, ulcerative colitis N = 1, uveitis N = 1) who developed new-onset vitiligo while receiving a biological agent. TNFα inhibitors were the most common biological agent involved (13/18) while anti-IL-12/23 and anti-IL-17 agents or abatacept were less common (4/18 and 1/18 respectively). Mean duration of biological agent exposure before vitiligo onset was 13.9 ± 16.5 months. Outcome was favourable for most patients (15/17) while maintaining the biological agent. Data were also collected for 18 patients (psoriasis N = 5, inflammatory rheumatic diseases N = 10, inflammatory bowel diseases N = 2, SAPHO N = 1) who had pre-existing vitiligo when treatment with a biological agent started (TNFα inhibitors N = 15, ustekinumab N = 1, rituximab N = 1, tocilizumab N = 1). Vitiligo progressed in seven patients and was stable or improved in eight cases. Vitiligo may thus emerge and/or progress during treatment with various biological agents, mainly TNFα inhibitors and could be a new paradoxical skin reaction. De novo vitiligo displays a favourable outcome when maintaining the biological agent, whereas the prognosis seems worse in cases of pre-existing vitiligo. © 2016 European Academy of Dermatology and Venereology.

  16. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.

    Science.gov (United States)

    Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi

    2017-07-01

    Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Progress in etiology, diagnosis, and therapy of idiopathic orbital inflammatory disease

    NARCIS (Netherlands)

    Bijlsma, W.R.

    2011-01-01

    Idiopathic orbital inflammation (IOI) is a disease with signs and symptoms of an orbital inflammatory lesion with after local and systemic evaluation no apparent cause. Little is known about the etiology of the disease. This study aimed to answer three questions: a) what etiologic factors are

  18. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression

    Science.gov (United States)

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K. Craig

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB–mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. PMID:26483397

  19. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis.

    Science.gov (United States)

    Mahmood, Dler Faieeq Darweesh; Abderrazak, Amna; Couchie, Dominique; Lunov, Oleg; Diderot, Vimala; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Gosselet, Fabien; Simmet, Thomas; Rouis, Mustapha; El Hadri, Khadija

    2013-07-01

    Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. Copyright © 2013 Wiley Periodicals, Inc.

  20. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response.

    Science.gov (United States)

    de Carvalho Dias, Kassia; Barbugli, Paula Aboud; de Patto, Fernanda; Lordello, Virginia Barreto; de Aquino Penteado, Letícia; Medeiros, Alexandra Ivo; Vergani, Carlos Eduardo

    2017-06-30

    The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and

  1. Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.

    Science.gov (United States)

    Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D

    2017-07-01

    Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.

  2. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  3. Bisphenol A activates EGFR and ERK promoting proliferation, tumor spheroid formation and resistance to EGFR pathway inhibition in estrogen receptor negative inflammatory breast cancer cells

    Science.gov (United States)

    Background: Inflammatory breast cancer (IBC) is a distinct and the deadliest breast cancer variant, which shows a rapid rate of progression and acquired therapeutic resistance. Epidemiological studies suggest that chemical exposure in the environment and consumer products can aff...

  4. Can the TLR-4-Mediated Signaling Pathway Be “A Key Inflammatory Promoter for Sporadic TAA”?

    Directory of Open Access Journals (Sweden)

    Giovanni Ruvolo

    2014-01-01

    Full Text Available Thoracic aorta shows with advancing age various changes and a progressive deterioration in structure and function. As a result, vascular remodeling (VR and medial degeneration (MD occur as pathological entities responsible principally for the sporadic TAA onset. Little is known about their genetic, molecular, and cellular mechanisms. Recent evidence is proposing the strong role of a chronic immune/inflammatory process in their evocation and progression. Thus, we evaluated the potential role of Toll like receptor- (TLR- 4-mediated signaling pathway and its polymorphisms in sporadic TAA. Genetic, immunohistochemical, and biochemical analyses were assessed. Interestingly, the rs4986790 TLR4 polymorphism confers a higher susceptibility for sporadic TAA (OR=14.4, P=0.0008 and it represents, together with rs1799752 ACE, rs3918242 MMP-9, and rs2285053 MMP-2 SNPs, an independent sporadic TAA risk factor. In consistency with these data, a significant association was observed between their combined risk genotype and sporadic TAA. Cases bearing this risk genotype showed higher systemic inflammatory mediator levels, significant inflammatory/immune infiltrate, a typical MD phenotype, lower telomere length, and positive correlations with histopatological abnormalities, hypertension, smoking, and ageing. Thus, TLR4 pathway should seem to have a key role in sporadic TAA. It might represent a potential useful tool for preventing and monitoring sporadic TAA and developing personalized treatments.

  5. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  6. Proinflammatory Cytokines in Prostate Cancer Development and Progression Promoted by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2015-01-01

    Full Text Available Background. We aimed to examine whether proinflammatory cytokines participated in prostate cancer (PCa development and progression promoted by high-fat diet (HFD. Methods. TRAMP (transgenic adenocarcinoma mouse prostate mice were randomly divided into two groups: normal diet group and HFD group. Mortality rate and tumor formation rate were examined. TRAMP mice were sacrificed and sampled on the 20th, 24th, and 28th week, respectively. Levels of proinflammatory cytokines, including IL-1α, IL-1β, IL-6, and TNF-α, were tested by FlowCytomix. Prostate tissue of TRAMP mice was used for histology study. Results. A total of 13 deaths of TRAMP mice were observed, among which 3 (8.33% were from the normal diet group and 10 (27.78% from the HFD group. The mortality rate of TRAMP mice from HFD group was significantly higher than that of normal diet group (P=0.032. Tumor formation rate at 20th week of age of HFD group was significantly higher than that of normal diet group (P=0.045. Proinflammatory cytokines levels, including IL-1α, IL-1β, IL-6, and TNF-α, were significantly higher in HFD TRAMP mice. Conclusions. HFD could promote TRAMP mouse PCa development and progression with elevated proinflammatory cytokines levels. Proinflammatory cytokines could contribute to PCa development and progression promoted by HFD.

  7. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  8. IL-23 Promotes Myocardial I/R Injury by Increasing the Inflammatory Responses and Oxidative Stress Reactions

    Directory of Open Access Journals (Sweden)

    Xiaorong Hu

    2016-05-01

    Full Text Available Background/Aims: Inflammation and oxidative stress play an important role in myocardial ischemia and reperfusion (I/R injury. We hypothesized that IL-23, a pro-inflammatory cytokine, could promote myocardial I/R injury by increasing the inflammatory response and oxidative stress. Methods: Male Sprague-Dawley rats were randomly assigned into sham operated control (SO group, ischemia and reperfusion (I/R group, (IL-23 + I/R group and (anti-IL-23 + I/R group. At 4 h after reperfusion, the serum concentration of lactate dehydrogenase (LDH, creatine kinase (CK and the tissue MDA concentration and SOD activity were measured. The infarcte size was measured by TTC staining. Apoptosis in heart sections were measured by TUNEL staining. The expression of HMGB1 and IL-17A were detected by Western Blotting and the expression of TNF-α and IL-6 were detected by Elisa. Results: After 4 h reperfusion, compared with the I/R group, IL-23 significantly increased the infarct size, the apoptosis of cardiomyocytes and the levels of LDH and CK (all P 0.05. All these effects were abolished by anti-IL-23 administration. Conclusion: The present study suggested that IL-23 may promote myocardial I/R injury by increasing the inflammatory responses and oxidative stress reaction.

  9. HMGB1 exacerbates experimental mouse colitis by enhancing innate lymphoid cells 3 inflammatory responses via promoted IL-23 production.

    Science.gov (United States)

    Chen, Xiangyu; Li, Lingyun; Khan, Muhammad Noman; Shi, Lifeng; Wang, Zhongyan; Zheng, Fang; Gong, Feili; Fang, Min

    2016-11-01

    In inflammatory bowel diseases (IBD), high mobility group box 1 (HMGB1), as an endogenous inflammatory molecule, can promote inflammatory cytokines secretion by acting on TLR2/4 resulting in tissue damage. The underlying mechanisms remain unclear. Here we report a novel role of HMGB1 in controlling the maintenance and function of intestine-resident group-3 innate lymphoid cells (ILC3s) that are important innate effector cells implicated in mucosal homeostasis and IBD pathogenesis. We showed that mice treated with anti-HMGB1 Ab, or genetically deficient for TLR2 -/- or TLR4 -/- mice, displayed reduced intestinal inflammation. In these mice, the numbers of colonic ILC3s were significantly reduced, and the levels of IL-17 and IL-22 that can be secreted by ILC3s were also decreased in the colon tissues. Furthermore, HMGB1 promoted DCs via TLR2/4 signaling to produce IL-23, activating ILC3s to produce IL-17 and IL-22. Our data thus indicated that the HMGB1-TLR2/4-DCs-IL-23 cascade pathway enhances the functions of ILC3s to produce IL-17 and IL-22, and this signal way might play a vital role in the development of IBD.

  10. An activated unfolded protein response promotes retinal degeneration and triggers an inflammatory response in the mouse retina.

    Science.gov (United States)

    Rana, T; Shinde, V M; Starr, C R; Kruglov, A A; Boitet, E R; Kotla, P; Zolotukhin, S; Gross, A K; Gorbatyuk, M S

    2014-12-18

    Recent studies on the endoplasmic reticulum stress have shown that the unfolded protein response (UPR) is involved in the pathogenesis of inherited retinal degeneration caused by mutant rhodopsin. However, the main question of whether UPR activation actually triggers retinal degeneration remains to be addressed. Thus, in this study, we created a mouse model for retinal degeneration caused by a persistently activated UPR to assess the physiological and morphological parameters associated with this disease state and to highlight a potential mechanism by which the UPR can promote retinal degeneration. We performed an intraocular injection in C57BL6 mice with a known unfolded protein response (UPR) inducer, tunicamycin (Tn) and examined animals by electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT) and histological analyses. We detected a significant loss of photoreceptor function (over 60%) and retinal structure (35%) 30 days post treatment. Analysis of retinal protein extracts demonstrated a significant upregulation of inflammatory markers including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IBA1. Similarly, we detected a strong inflammatory response in mice expressing either Ter349Glu or T17M rhodopsin (RHO). These mutant rhodopsin species induce severe retinal degeneration and T17M rhodopsin elicits UPR activation when expressed in mice. RNA and protein analysis revealed a significant upregulation of pro- and anti-inflammatory markers such as IL-1β, IL-6, p65 nuclear factor kappa B (NF-kB) and MCP-1, as well as activation of F4/80 and IBA1 microglial markers in both the retinas expressing mutant rhodopsins. We then assessed if the Tn-induced inflammatory marker IL-1β was capable of inducing retinal degeneration by injecting C57BL6 mice with a recombinant IL-1β. We observed ~19% reduction in ERG a-wave amplitudes and a 29% loss of photoreceptor cells compared with

  11. The Upregulation of Integrin αDβ2 (CD11d/CD18) on Inflammatory Macrophages Promotes Macrophage Retention in Vascular Lesions and Development of Atherosclerosis.

    Science.gov (United States)

    Aziz, Moammir H; Cui, Kui; Das, Mitali; Brown, Kathleen E; Ardell, Christopher L; Febbraio, Maria; Pluskota, Elzbieta; Han, Juying; Wu, Huaizhu; Ballantyne, Christie M; Smith, Jonathan D; Cathcart, Martha K; Yakubenko, Valentin P

    2017-06-15

    Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin α D β 2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d -/- /ApoE -/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d -/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d -/- monocytes into ApoE -/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d -/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b -/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development

  12. Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies

    DEFF Research Database (Denmark)

    Boyd, Mette; Thodberg, Malte; Vitezic, Morana

    2018-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal disorder, with two main types: Crohn's disease (CD) and ulcerative colitis (UC), whose molecular pathology is not well understood. The majority of IBD-associated SNPs are located in non-coding regions and are hard to characterize since...

  13. Curcumin in inflammatory diseases.

    Science.gov (United States)

    Shehzad, Adeeb; Rehman, Gauhar; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), a yellow coloring agent extracted from turmeric is also used as a remedy for the treatment and prevention of inflammatory diseases. Acute and chronic inflammation is a major factor in the progression of obesity, type II diabetes, arthritis, pancreatitis, cardiovascular, neurodegenerative and metabolic diseases, as well as certain types of cancer. Turmeric has a long history of use in Ayurvedic medicine for the treatment of inflammatory disorders. Recent studies on the efficacy and therapeutic applicability of turmeric have suggested that the active ingredient of tumeric is curcumin. Further, compelling evidence has shown that curcumin has the ability to inhibit inflammatory cell proliferation, invasion, and angiogenesis through multiple molecular targets and mechanisms of action. Curcumin is safe, non-toxic, and mediates its anti-inflammatory effects through the down-regulation of inflammatory transcription factors, cytokines, redox status, protein kinases, and enzymes that all promote inflammation. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways, as well as activation of caspase cascades. In the current study, the anti-inflammatory effects of curcumin were evaluated relative to various chronic inflammatory diseases. Based on the available pharmacological data obtained from in vitro and in vivo research, as well as clinical trials, an opportunity exists to translate curcumin into clinics for the prevention of inflammatory diseases in the near future. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  14. Osteoarthritis guidelines: a progressive role for topical nonsteroidal anti-inflammatory drugs

    OpenAIRE

    Stanos, Steven P

    2013-01-01

    Steven P Stanos Rehabilitation Institute of Chicago, Center for Pain Management, Chicago, IL, USA Abstract: Current treatment guidelines for the treatment of chronic pain associated with osteoarthritis reflect the collective clinical knowledge of international experts in weighing the benefits of pharmacologic therapy options while striving to minimize the negative effects associated with them. Consideration of disease progression, pattern of flares, level of functional impairment or disabili...

  15. Abrogated inflammatory response promotes neurogenesis in a murine model of Japanese encephalitis.

    Directory of Open Access Journals (Sweden)

    Sulagna Das

    2011-03-01

    Full Text Available Japanese encephalitis virus (JEV induces neuroinflammation with typical features of viral encephalitis, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. The detrimental effects of inflammation on neurogenesis have been reported in various models of acute and chronic inflammation. We investigated whether JEV-induced inflammation has similar adverse effects on neurogenesis and whether those effects can be reversed using an anti-inflammatory compound minocycline.Here, using in vitro studies and mouse models, we observed that an acute inflammatory milieu is created in the subventricular neurogenic niche following Japanese encephalitis (JE and a resultant impairment in neurogenesis occurs, which can be reversed with minocycline treatment. Immunohistological studies showed that proliferating cells were replenished and the population of migrating neuroblasts was restored in the niche following minocycline treatment. In vitro, we checked for the efficacy of minocycline as an anti-inflammatory compound and cytokine bead array showed that production of cyto/chemokines decreased in JEV-activated BV2 cells. Furthermore, mouse neurospheres grown in the conditioned media from JEV-activated microglia exhibit arrest in both proliferation and differentiation of the spheres compared to conditioned media from control microglia. These effects were completely reversed when conditioned media from JEV-activated and minocycline treated microglia was used.This study provides conclusive evidence that JEV-activated microglia and the resultant inflammatory molecules are anti-proliferative and anti-neurogenic for NSPCs growth and development, and therefore contribute to the viral neuropathogenesis. The role of minocycline in restoring neurogenesis may implicate enhanced neuronal repair and attenuation of the neuropsychiatric sequelae in JE survivors.

  16. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells.

    Science.gov (United States)

    Li, Juan; Pan, Qianying; Rowan, Patrick D; Trotter, Timothy N; Peker, Deniz; Regal, Kellie M; Javed, Amjad; Suva, Larry J; Yang, Yang

    2016-03-08

    Bone dissemination and bone disease occur in approximately 80% of patients with multiple myeloma (MM) and are a major cause of patient mortality. We previously demonstrated that MM cell-derived heparanase (HPSE) is a major driver of MM dissemination to and progression in new bone sites. However the mechanism(s) by which HPSE promotes MM progression remains unclear. In the present study, we investigated the involvement of mesenchymal features in HPSE-promoted MM progression in bone. Using a combination of molecular, biochemical, cellular, and in vivo approaches, we demonstrated that (1) HPSE enhanced the expression of mesenchymal markers in both MM and vascular endothelial cells; (2) HPSE expression in patient myeloma cells positively correlated with the expression of the mesenchymal markers vimentin and fibronectin. Additional mechanistic studies revealed that the enhanced mesenchymal-like phenotype induced by HPSE in MM cells is due, at least in part, to the stimulation of the ERK signaling pathway. Finally, knockdown of vimentin in HPSE expressing MM cells resulted in significantly attenuated MM cell dissemination and tumor growth in vivo. Collectively, these data demonstrate that the mesenchymal features induced by HPSE in MM cells contribute to enhanced tumor cell motility and bone-dissemination.

  17. Probiotics in Curing Allergic and Inflammatory Conditions - Research Progress and Futuristic Vision.

    Science.gov (United States)

    Dhama, Kuldeep; Latheef, Shyma K; Munjal, Ashok K; Khandia, Rekha; Samad, Hari A; Iqbal, Hafiz M N; Joshi, Sunil K

    2017-01-01

    Probiotics constitute the viable and beneficial microbes, which offer a dietary means to sustain the balance of gastro-intestinal (GI) microflora. Owing to their multiple health benefits, these have recently gained wide attention among researchers for exploring their potential in safeguarding the health of humans and animals. Probiotics could also modulate host-immune responses, thereby help in counteracting the immunological dysfunctions. Probiotics can inhibit the systemic invasion of pathogens entering through the GI mucosa/ oral cavity and have been found to possess effective prophylactic and therapeutic utilities against various infectious pathogens as well as non-infectious diseases and disorders. The present review expedites the role of probiotics in curing the ailments related to allergic and inflammatory disease conditions. A thorough reviewing of the literature and patents available on probiotics and their role in countering inflammation and allergy was conducted using authentic published resources available on Medline, PubMed, PubMed Central, Science Direct and other scientific databases. The information retrieved has been compiled and analysed pertaining to the theme of the study. Various micro-organisms have been evaluated for their probiotic efficacy, among these, the lactic acid bacteria viz. Lactobacillus sp. and Bifidobacterium sp. have extensively been studied and widely exploited. In the current post-globalized era of self and complementary medicines, the concept of probiotics and their therapeutic as well as prophylactic usage is gaining wide acceptance. As more and more bacterial strains are being proven for their pronounced influence on down regulation of immune regulation, atopic, inflammatory conditions, the use of probiotics is getting increased especially in the developed countries where such indications are high in prevalence. Apart from usage in immune related disorders, probiotics have been found to be effective in treating pouchitis

  18. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death

    Directory of Open Access Journals (Sweden)

    Hiroto Kambara

    2018-03-01

    Full Text Available Summary: Gasdermin D (GSDMD is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE, released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies. : Kambara et al. find that GSDMD deficiency augments host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, establishing GSDMD as a negative regulator of innate immunity. GSDMD cleavage and activation in neutrophils is mediated by ELANE, released from cytoplasmic granules into the cytosol in aging neutrophils. Keywords: GSDMD, neutrophil death, neutrophil elastase, innate immunity, host defense

  19. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Mudan Lu

    2015-01-01

    Full Text Available Background/Purpose. HMGB1, which may act as a proinflammatory mediator, has been proposed to contribute to the pathogenesis of multiple chronic inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE; however, the precise mechanism of HMGB1 in the pathogenic process of SLE remains obscure. Method. The expression of HMGB1 was measured by ELISA and western blot. The ELISA was also applied to detect proinflammatory cytokines levels. Furthermore, nephritic pathology was evaluated by H&E staining of renal tissues. Results. In this study, we found that HMGB1 levels were significantly increased and correlated with SLE disease activity in both clinical patients and murine model. Furthermore, gain- and loss-of-function analysis showed that HMGB1 exacerbated the severity of SLE. Of note, the HMGB1 levels were found to be associated with the levels of proinflammatory cytokines such as TNF-α and IL-6 in SLE patients. Further study demonstrated that increased HMGB1 expression deteriorated the severity of SLE via enhancing macrophage inflammatory response. Moreover, we found that receptor of advanced glycation end products played a critical role in HMGB1-mediated macrophage inflammatory response. Conclusion. These findings suggested that HMGB1 might be a risk factor for SLE, and manipulation of HMGB1 signaling might provide a therapeutic strategy for SLE.

  20. Gastric cancer-derived MSC-secreted PDGF-DD promotes gastric cancer progression.

    Science.gov (United States)

    Huang, Feng; Wang, Mei; Yang, Tingting; Cai, Jie; Zhang, Qiang; Sun, Zixuan; Wu, Xiaodan; Zhang, Xu; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2014-11-01

    This study was designed to investigate the role of PDGF-DD secreted by gastric cancer-derived mesenchymal stem cells (GC-MSCs) in human gastric cancer progression. Gastric cancer cells were indirectly co-cultured with GC-MSCs in a transwell system. The growth and migration of gastric cancer cells were evaluated by cell colony formation assay and transwell migration assay, respectively. The production of PDGF-DD in GC-MSCs was determined by using Luminex and ELISA. Neutralization of PDGFR-β by su16f and siRNA interference of PDGF-DD in GC-MSCs was used to demonstrate the role of PDGF-DD produced by GC-MSCs in gastric cancer progression. GC-MSC conditioned medium promoted gastric cancer cell proliferation and migration in vitro and in vivo. Co-culture with GC-MSCs increased the phosphorylation of PDGFR-β in SGC-7901 cells. Neutralization of PDGFR-β by su16f blocked the promoting role of GC-MSC conditioned medium in gastric cancer cell proliferation and migration. Recombinant PDGF-DD duplicated the effects of GC-MSC conditioned medium on gastric cancer cells. Knockdown of PDGF-DD in GC-MSCs abolished its effects on gastric cancer cells in vitro and in vivo. PDGF-DD secreted by GC-MSCs is capable of promoting gastric cancer cell progression in vitro and in vivo. Targeting the PDGF-DD/PDGFR-β interaction between MSCs and gastric cancer cells may represent a novel strategy for gastric cancer therapy.

  1. CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma.

    Science.gov (United States)

    Tang, Juan; Guo, Yun-Shan; Yu, Xiao-Ling; Huang, Wan; Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan

    2015-10-27

    Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC.

  2. Health Promoting Effects of Brassica-Derived Phytochemicals: From Chemopreventive and Anti-Inflammatory Activities to Epigenetic Regulation

    Directory of Open Access Journals (Sweden)

    Anika Eva Wagner

    2013-01-01

    Full Text Available A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways.

  3. A Study on Promotion and Implementation of Cleaner Production Practices in Malaysian Industry - Development of a National Program and Action Plan for Promotion of Cleaner Production. Progress Report 1

    DEFF Research Database (Denmark)

    Wangel, Arne

    This Progress Report presents the initial findings of the research project 'A Study on Promotion and Implementation of Cleaner Production Practices in Malaysian Industry - Development of a National Program and Action Plan for Promotion of Cleaner Production. Progress Report' funded...

  4. SUMOylation of sPRDM16 promotes the progression of acute myeloid leukemia

    International Nuclear Information System (INIS)

    Dong, Song; Chen, Jieping

    2015-01-01

    In addition to genetic and epigenetic alteration, post-translational modification of proteins plays a critical role in the initiation, progression and maturation of acute myeloid leukemia (AML). The SUMOylation site of sPRDM16 at K568 was mutated to arginine by site-directed mutagenesis. THP-1 acute myeloid leukemia cells were transduced with a lentivirus containing wild type or K568 mutant sPRDM16. Proliferation, self-renewal and differentiation of transduced THP-1 cells were analyzed both in vitro cell culture and in mouse xenografts. Gene expression profiles were analyzed by RNA-seq. Overexpression of sPRDM16 promoted proliferation, enhanced self-renewal capacity, but inhibited differentiation of THP-1 acute myeloid leukemia cells. We further confirmed that K568 is a bona fide SUMOylation site on sPRDM16. Mutation of the sPRDM16 SUMOylation site at K568 partially abolished the capacity of sPRDM16 to promote proliferation and inhibit differentiation of acute myeloid leukemia cells both in vitro and in mouse xenografts. Furthermore, THP-1 cells overexpressing sPRDM16-K568R mutant exhibited a distinct gene expression profile from wild type sPRDM16 following incubation with PMA. Our results suggest that K568 SUMOylation of sPRDM16 plays an important role in the progression of acute myeloid leukemia

  5. [Initiation, promotion, initiation experiments with radon and cigarette smoke: Lung tumors in rats]. Progress report

    International Nuclear Information System (INIS)

    Moolgavkar, S.H.

    1994-01-01

    During the past several years, the authors have made considerable progress in modeling carcinogenesis in general, and in modeling radiation carcinogenesis, in particular. They present an overview of their progress in developing stochastic carcinogenesis models and applying them to experimental and epidemiologic data sets. Traditionally, cancer models have been used for the analysis of incidence (or prevalence) data in epidemiology and time to tumor data in experimental studies. The relevant quantities for the analysis of these data are the hazard function and the probability of tumor. The derivation of these quantities is briefly described here. More recently, the authors began to use these models for the analysis of data on intermediate lesions on the pathway to cancer. Such data are available in experimental carcinogenesis studies, in particular in initiation and promotion studies on the mouse skin and the rat liver. If however, quantitative information on intermediate lesions on the pathway to lung cancer were to be come available at some future date, the methods that they have developed for the analysis of initiation-promotion experiments could easily be applied to the analysis of these lesions. The mathematical derivations here are couched in terms of a particular two-mutation model of carcinogenesis. Extension to models postulating more than two mutations is not always straightforward

  6. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  7. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.

    Science.gov (United States)

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-03-10

    Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.

  8. Soluble common gamma chain exacerbates COPD progress through the regulation of inflammatory T cell response in mice

    Directory of Open Access Journals (Sweden)

    Lee B

    2017-03-01

    Full Text Available Byunghyuk Lee,1 Eunhee Ko,1 Jiyeon Lee,2 Yuna Jo,1 Hyunju Hwang,1 Tae Sik Goh,1,3 Myungsoo Joo,2 Changwan Hong1 1Department of Anatomy and Cell Biology, Pusan National University School of Medicine, 2Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, 3Department of Orthopedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, South Korea Abstract: Cigarette smoking (CS is a major cause of considerable morbidity and mortality by inducing lung cancer and COPD. COPD, a smoking-related disorder, is closely related to the alteration of immune system and inflammatory processes that are specifically mediated by T cells. Soluble common gamma chain (sγc has recently been identified as a critical regulator of the development and differentiation of T cells. We examined the effects of sγc in a cigarette smoke extract (CSE mouse model. The sγc level in CSE mice serum is significantly downregulated, and the cellularity of lymph node (LN is systemically reduced in the CSE group. Overexpression of sγc enhances the cellularity and IFNγ production of CD8 T cells in LN and also enhances Th1 and Th17 differentiation of CD4 T cells in the respiratory tract. Mechanistically, the downregulation of sγc expression mediated by CSE is required to prevent excessive inflammatory T cell responses. Therefore, our data suggest that sγc may be one of the target molecules for the control of immunopathogenic progresses in COPD. Keywords: COPD, T cell, soluble common gamma chain, cytokine

  9. DNAJC6 promotes hepatocellular carcinoma progression through induction of epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Yang, Tao; Li, Xiao-Na; Li, Xing-Guang; Li, Ming; Gao, Peng-Zhi

    2014-01-01

    Highlights: • DNAJC6 is up-regulated in hepatocellular carcinoma tissues. • DNAJC6 promotes hepatocellular carcinoma cell proliferation and invasion. • DNAJC6 induces epithelial–mesenchymal transition by activating transforming growth factor β signaling. - Abstract: Epithelial–mesenchymal transition (EMT) is a developmental program, which is associated with hepatocellular carcinoma (HCC) development and progression. DNAJC6 (DNA/HSP40 homolog subfamily C member 6) encodes auxilin, which is responsible for juvenile Parkinsonism with phenotypic variability. However, the role of DNAJC6 in HCC development and progression is limited. Here, we report that DNAJC6 is up-regulated in HCC tissues and up-regulation of DNAJC6 expression predicts poor outcome in patients with HCC. Furthermore, overexpression of DNAJC6 enhances the ability for acquisition of mesenchymal traits, enhanced cell proliferation and invasion. DNAJC6 positively regulated expression of EMT-related transcription factor, also activating transforming growth factor β (TGF-β) pathway to contribute to EMT. Our findings demonstrated an important function of DNAJC6 in the progression of HCC by induction of EMT, and they implicate DNAJC6 as a marker of poor outcome in HCC

  10. DNAJC6 promotes hepatocellular carcinoma progression through induction of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tao [Hepatobiliary Surgery, The First Hospital of Shijiazhuang City, Shijiazhuang 050011 (China); Li, Xiao-Na [General Surgery, Sports Science Institute of Hebei Province, Shijiazhuang 050011 (China); Li, Xing-Guang; Li, Ming [General Surgery, The First Hospital of Shijiazhuang City, Shijiazhuang 050011 (China); Gao, Peng-Zhi, E-mail: pengzhigaovip@163.com [Hepatobiliary Surgery, The First Hospital of Shijiazhuang City, Shijiazhuang 050011 (China)

    2014-12-12

    Highlights: • DNAJC6 is up-regulated in hepatocellular carcinoma tissues. • DNAJC6 promotes hepatocellular carcinoma cell proliferation and invasion. • DNAJC6 induces epithelial–mesenchymal transition by activating transforming growth factor β signaling. - Abstract: Epithelial–mesenchymal transition (EMT) is a developmental program, which is associated with hepatocellular carcinoma (HCC) development and progression. DNAJC6 (DNA/HSP40 homolog subfamily C member 6) encodes auxilin, which is responsible for juvenile Parkinsonism with phenotypic variability. However, the role of DNAJC6 in HCC development and progression is limited. Here, we report that DNAJC6 is up-regulated in HCC tissues and up-regulation of DNAJC6 expression predicts poor outcome in patients with HCC. Furthermore, overexpression of DNAJC6 enhances the ability for acquisition of mesenchymal traits, enhanced cell proliferation and invasion. DNAJC6 positively regulated expression of EMT-related transcription factor, also activating transforming growth factor β (TGF-β) pathway to contribute to EMT. Our findings demonstrated an important function of DNAJC6 in the progression of HCC by induction of EMT, and they implicate DNAJC6 as a marker of poor outcome in HCC.

  11. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression.

    Science.gov (United States)

    Pan, Lei; Liang, Wei; Fu, Min; Huang, Zhen-Hua; Li, Xia; Zhang, Wen; Zhang, Peng; Qian, Hui; Jiang, Peng-Cheng; Xu, Wen-Rong; Zhang, Xu

    2017-06-01

    ZFAS1 is a newly identified long noncoding RNA (lncRNA) that promotes tumor growth and metastasis. Exosomes mediate cellular communications in cancer by transmitting active molecules. The presence of ZFAS1 in the circulating exosomes and the roles of exosomal ZFAS1 in gastric cancer (GC) remains unknown. The aim of this study was to investigate the potential roles of exosomal ZFAS1 in GC. The expression of ZFAS1 was examined in the tumor tissues, serum samples, serum exosomes of GC patients and cell lines using qRT-PCR. The correlation between ZFAS1 expression and the clinicopathological characteristics was analyzed. The characteristics of exosomes were identified using transmission electron microscope (TEM), Nanoparticle Tracking Analysis (NTA), and western blot. The biological roles of ZFAS1 in GC cell growth and mobility were investigated using cell counting, cell colony formation, and transwell migration assay. The potential mechanism of ZFAS1 was demonstrated using flow cytometry, western blot, and qRT-PCR. ZFAS1 expression was elevated in GC cells, tumor tissues, serum and serum exosomes of GC patients. The increased ZFAS1 expression was significantly correlated with lymphatic metastasis and TNM stage. ZFAS1 knockdown inhibited the proliferation and migration of GC cells by suppressing cell cycle progression, inducing apoptosis, and inhibiting epithelial-mesenchymal transition (EMT). On the contrary, ZFAS1 overexpression promoted the proliferation and migration of GC cells. Moreover, ZFAS1 was present in exosomes and could be transmitted by exosomes to enhance GC cell proliferation and migration. ZFAS1 could be delivered by exosomes to promote GC progression, which suggests that ZFAS1 may serve as a potential diagnostic and prognostic biomarker for GC.

  12. Podoplanin promotes progression of malignant pleural mesothelioma by regulating motility and focus formation.

    Science.gov (United States)

    Takeuchi, Shinji; Fukuda, Koji; Yamada, Tadaaki; Arai, Sachiko; Takagi, Satoshi; Ishii, Genichiro; Ochiai, Atsushi; Iwakiri, Shotaro; Itoi, Kazumi; Uehara, Hisanori; Nishihara, Hiroshi; Fujita, Naoya; Yano, Seiji

    2017-04-01

    Malignant pleural mesothelioma (MPM) is characterized by dissemination and aggressive growth in the thoracic cavity. Podoplanin (PDPN) is an established diagnostic marker for MPM, but the function of PDPN in MPM is not fully understood. The purpose of this study was to determine the pathogenetic function of PDPN in MPM. Forty-seven of 52 tumors (90%) from Japanese patients with MPM and 3/6 (50%) MPM cell lines tested positive for PDPN. Knocking down PDPN in PDPN-high expressing MPM cells resulted in decreased cell motility. In contrast, overexpression of PDPN in PDPN-low expressing MPM cells enhanced cell motility. PDPN stimulated motility was mediated by activation of the RhoA/ROCK pathway. Moreover, knocking down PDPN with short hairpin (sh) RNA in PDPN-high expressing MPM cells resulted in decreased development of a thoracic tumor in mice with severe combined immune deficiency (SCID). In sharp contrast, transfection of PDPN in PDPN-low expressing MPM cells resulted in an increase in the number of Ki-67-positive proliferating tumor cells and it promoted progression of a thoracic tumor in SCID mice. Interestingly, PDPN promoted focus formation in vitro, and a low level of E-cadherin expression and YAP1 activation was observed in PDPN-high MPM tumors. These findings indicate that PDPN is a diagnostic marker as well as a pathogenetic regulator that promotes MPM progression by increasing cell motility and inducing focus formation. Therefore, PDPN might be a pathogenetic determinant of MPM dissemination and aggressive growth and may thus be an ideal therapeutic target. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Tryptophan end-tagging for promoted lipopolysaccharide interactions and anti-inflammatory effects

    DEFF Research Database (Denmark)

    Singh, Shalini; Datta, Aritreyee; Schmidtchen, Artur

    2017-01-01

    killing than unmodified KYE21. Analogously, W-tagging promotes binding to E. coli LPS and to its endotoxic lipid A moiety. Furthermore, WWWKYE21 causes more stable peptide/LPS complexes than KYE21, as evidenced by detailed NMR studies, adopting a pronounced helical conformation, with a large hydrophobic...

  14. M2 Macrophages Play Critical Roles in Progression of Inflammatory Liver Disease in Hepatitis C Virus Transgenic Mice.

    Science.gov (United States)

    Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Kohara, Michinori

    2016-01-01

    Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b(+) F4/80(+) CD11c(-) CD206(+) (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism observed following r

  15. Interleukin-Driven Insulin-Like Growth Factor Promotes Prostatic Inflammatory Hyperplasia

    Science.gov (United States)

    Hahn, Alana M.; Myers, Jason D.; McFarland, Eliza K.; Lee, Sanghee

    2014-01-01

    Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation. Using genetic models and in vivo IGF receptor blockade, we demonstrate that the hyperplastic response to inflammation depends on interleukin-1–driven IGF signaling. We show that human prostatic hyperplasia is associated with IGF pathway activation specifically localized to foci of inflammation. This demonstrates that mechanisms of inflammation-induced epithelial proliferation and hyperplasia involve the induction of developmental growth factors, further establishing a link between inflammatory and developmental signals and providing a mechanistic basis for the management of proliferative diseases by IGF pathway modulation. PMID:25292180

  16. Crucial factors of the inflammatory microenvironment (IL-1β/TNF-α/TIMP-1) promote the maintenance of the malignant hemopoietic clone of myelofibrosis: an in vitro study.

    Science.gov (United States)

    Sollazzo, Daria; Forte, Dorian; Polverelli, Nicola; Romano, Marco; Perricone, Margherita; Rossi, Lara; Ottaviani, Emanuela; Luatti, Simona; Martinelli, Giovanni; Vianelli, Nicola; Cavo, Michele; Palandri, Francesca; Catani, Lucia

    2016-07-12

    Along with molecular abnormalities (mutations in JAK2, Calreticulin (CALR) and MPL genes), chronic inflammation is the major hallmark of Myelofibrosis (MF). Here, we investigated the in vitro effects of crucial factors of the inflammatory microenvironment (Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α, Tissue Inhibitor of Metalloproteinases (TIMP)-1 and ATP) on the functional behaviour of MF-derived circulating CD34+ cells.We found that, regardless mutation status, IL-1β or TNF-α increases the survival of MF-derived CD34+ cells. In addition, along with stimulation of cell cycle progression to the S-phase, IL-1β or TNF-α ± TIMP-1 significantly stimulate(s) the in vitro clonogenic ability of CD34+ cells from JAK2V617 mutated patients. Whereas in the JAK2V617F mutated group, the addition of IL-1β or TNF-α + TIMP-1 decreased the erythroid compartment of the CALR mutated patients. Megakaryocyte progenitors were stimulated by IL-1β (JAK2V617F mutated patients only) and inhibited by TNF-α. IL-1β + TNF-α + C-X-C motif chemokine 12 (CXCL12) ± TIMP-1 highly stimulates the in vitro migration of MF-derived CD34+ cells. Interestingly, after migration toward IL-1β + TNF-α + CXCL12 ± TIMP-1, CD34+ cells from JAK2V617F mutated patients show increased clonogenic ability.Here we demonstrate that the interplay of these inflammatory factors promotes and selects the circulating MF-derived CD34+ cells with higher proliferative activity, clonogenic potential and migration ability. Targeting these micro-environmental interactions may be a clinically relevant approach.

  17. Over Expression of Long Non-Coding RNA PANDA Promotes Hepatocellular Carcinoma by Inhibiting Senescence Associated Inflammatory Factor IL8.

    Science.gov (United States)

    Peng, Chuanhui; Hu, Wendi; Weng, Xiaoyu; Tong, Rongliang; Cheng, Shaobing; Ding, Chaofeng; Xiao, Heng; Lv, Zhen; Xie, Haiyang; Zhou, Lin; Wu, Jian; Zheng, Shusen

    2017-06-23

    It has been reported that long non-coding RNA PANDA was disregulated in varieties types of tumor, but its expression level and biological role in hepatocellular carcinoma (HCC) remains contradictory. We detected PANDA expression in two independent cohorts (48 HCC patients following liver transplantation and 84 HCC patients following liver resection), and found that PANDA was down-regulated in HCC. Thereafter we explored its function in cancer biology by inversing its low expression. Surprisingly, overexpression of PANDA promoted HCC proliferation and carcinogenesis in vitro and in vivo. Mechanistically, PANDA repressed transcriptional activity of senescence associated inflammatory factor IL8, which leaded to inhibition of cellular senescence. Therefore, our research help to better understand the complex role of PANDA in HCC, and suggest more thoughtful strategies should be applied before it can be treated as a potential therapeutic target.

  18. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment.

    Science.gov (United States)

    Ségaliny, Aude I; Mohamadi, Amel; Dizier, Blandine; Lokajczyk, Anna; Brion, Régis; Lanel, Rachel; Amiaud, Jérôme; Charrier, Céline; Boisson-Vidal, Catherine; Heymann, Dominique

    2015-07-01

    Interleukin-34 (IL-34) was recently characterized as the M-CSF "twin" cytokine, regulating the proliferation/differentiation/survival of myeloid cells. The implication of M-CSF in oncology was initially suspected by the reduced metastatic dissemination in knock-out mice, due to angiogenesis impairment. Based on this observation, our work studied the involvement of IL-34 in the pathogenesis of osteosarcoma. The in vivo effects of IL-34 were assessed on tissue vasculature and macrophage infiltration in a murine preclinical model based on a paratibial inoculation of human osteosarcoma cells overexpressing or not IL-34 or M-CSF. In vitro investigations using endothelial cell precursors and mature HUVEC cells were performed to analyse the involvement of IL-34 in angiogenesis and myeloid cell adhesion. The data revealed that IL-34 overexpression was associated with the progression of osteosarcoma (tumor growth, lung metastases) and an increase of neo-angiogenesis. In vitro analyses demonstrated that IL-34 stimulated endothelial cell proliferation and vascular cord formation. Pre-treatment of endothelial cells by chondroitinases/heparinases reduced the formation of vascular tubes and abolished the associated cell signalling. In addition, IL-34 increased the in vivo recruitment of M2 tumor-associated macrophages into the tumor tissue. IL-34 increased in vitro monocyte/CD34(+) cell adhesion to activated HUVEC monolayers under physiological shear stress conditions. This work also demonstrates that IL-34 is expressed by osteosarcoma cells, is regulated by TNF-α, IL-1β, and contributes to osteosarcoma growth by increasing the neo-angiogenesis and the recruitment of M2 macrophages. By promoting new vessel formation and extravasation of immune cells, IL-34 may play a key role in tumor development and inflammatory diseases. © 2014 UICC.

  19. Progressive practice promotes motor learning and repeated transient increases in corticospinal excitability across multiple days

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Madsen, Mads Alexander Just; Bojsen-Møller, Emil

    2018-01-01

    Background: A session of motor skill learning is accompanied by transient increases in corticospinal excitability (CSE), which are thought to reflect acute changes in neuronal connectivity associated with improvements in sensorimotor performance. Factors influencing changes in excitability...... and motor skill with continued practice remain however to be elucidated. Objective/Hypothesis: Here we investigate the hypothesis that progressive motor practice during consecutive days can induce repeated transient increases in corticospinal excitability and promote motor skill learning. Methods: Changes...... in motor performance and CSE were assessed during 4 consecutive days of skill learning and 8 days after the last practice session. CSE was assessed as area under recruitment curves (RC) using transcranial magnetic stimulation (TMS). Two groups of participants (n = 12) practiced a visuomotor tracking...

  20. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    Science.gov (United States)

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  1. CD147/basigin promotes progression of malignant melanoma and other cancers.

    Science.gov (United States)

    Kanekura, Takuro; Chen, Xiang

    2010-03-01

    CD147/basigin, a transmembrane protein belonging to the immunoglobulin super family, was originally cloned as a carrier of Lewis X carbohydrate antigen. CD147 is strongly related to cancer progression; it is highly expressed by various cancer cells including malignant melanoma (MM) cells and it plays important roles in tumor invasiveness, metastasis, cellular proliferation, and in vascular endothelial growth factor (VEGF) production, tumor cell glycolysis, and multi-drug resistance (MDR). CD147 on cancer cells induces matrix metalloproteinase expression by neighboring fibroblasts, leading to tumor cell invasion. In a nude mouse model of pulmonary metastasis from MM, the metastatic potential of CD147-expressing MM cells injected into the tail vein is abolished by CD147 silencing. CD147 enhances cellular proliferation and VEGF production by MM cells; it promotes tumor cell glycolysis by facilitating lactate transport in combination with monocarboxylate transporters, resulting in tumor progression. CD147 is responsible for the MDR phenotype via P-glycoprotein expression. These findings strongly suggest CD147 as a possible therapeutic target for overcoming metastasis and MDR, major obstacles to the effective treatment of malignant cancers. 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression.

    Science.gov (United States)

    Teng, Yun; Ren, Yi; Hu, Xin; Mu, Jingyao; Samykutty, Abhilash; Zhuang, Xiaoying; Deng, Zhongbin; Kumar, Anil; Zhang, Lifeng; Merchant, Michael L; Yan, Jun; Miller, Donald M; Zhang, Huang-Ge

    2017-02-17

    Exosomes are emerging mediators of intercellular communication; whether the release of exosomes has an effect on the exosome donor cells in addition to the recipient cells has not been investigated to any extent. Here, we examine different exosomal miRNA expression profiles in primary mouse colon tumour, liver metastasis of colon cancer and naive colon tissues. In more advanced disease, higher levels of tumour suppressor miRNAs are encapsulated in the exosomes. miR-193a interacts with major vault protein (MVP). Knockout of MVP leads to miR-193a accumulation in the exosomal donor cells instead of exosomes, inhibiting tumour progression. Furthermore, miR-193a causes cell cycle G1 arrest and cell proliferation repression through targeting of Caprin1, which upregulates Ccnd2 and c-Myc. Human colon cancer patients with more advanced disease show higher levels of circulating exosomal miR-193a. In summary, our data demonstrate that MVP-mediated selective sorting of tumour suppressor miRNA into exosomes promotes tumour progression.

  3. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    International Nuclear Information System (INIS)

    Chen, Junyi; Jiao, Li; Xu, Chuanliang; Yu, Yongwei; Zhang, Zhensheng; Chang, Zheng; Deng, Zhen; Sun, Yinghao

    2012-01-01

    Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer

  5. The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants.

    Science.gov (United States)

    Buss, M C; Remke, M; Lee, J; Gandhi, K; Schniederjan, M J; Kool, M; Northcott, P A; Pfister, S M; Taylor, M D; Castellino, R C

    2015-02-26

    Recent studies suggest that medulloblastoma, the most common malignant brain tumor of childhood, is comprised of four disease variants. The WIP1 oncogene is overexpressed in Group 3 and 4 tumors, which contain medulloblastomas with the most aggressive clinical behavior. Our data demonstrate increased WIP1 expression in metastatic medulloblastomas, and inferior progression-free and overall survival of patients with WIP1 high-expressing medulloblastoma. Microarray analysis identified upregulation of genes involved in tumor metastasis, including the G protein-coupled receptor CXCR4, in medulloblastoma cells with high WIP1 expression. Stimulation with the CXCR4 ligand SDF1α activated PI-3 kinase signaling, and promoted growth and invasion of WIP1 high-expressing medulloblastoma cells in a p53-dependent manner. When xenografted into the cerebellum of immunodeficient mice, medulloblastoma cells with stable or endogenous high WIP1 expression exhibited strong expression of CXCR4 and activated AKT in primary and invasive tumor cells. WIP1 or CXCR4 knockdown inhibited medulloblastoma growth and invasion. WIP1 knockdown also improved the survival of mice xenografted with WIP1 high-expressing medulloblastoma cells. WIP1 knockdown inhibited cell surface localization of CXCR4 by suppressing expression of the G protein receptor kinase 5, GRK5. Restoration of wild-type GRK5 promoted Ser339 phosphorylation of CXCR4 and inhibited the growth of WIP1-stable medulloblastoma cells. Conversely, GRK5 knockdown inhibited Ser339 phosphorylation of CXCR4, increased cell surface localization of CXCR4 and promoted the growth of medulloblastoma cells with low WIP1 expression. These results demonstrate crosstalk among WIP1, CXCR4 and GRK5, which may be important for the aggressive phenotype of a subclass of medulloblastomas in children.

  6. Interleukin 6 Present in Inflammatory Ascites from Advanced Epithelial Ovarian Cancer Patients Promotes Tumor Necrosis Factor Receptor 2-Expressing Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Nirmala Chandralega Kampan

    2017-11-01

    Full Text Available BackgroundEpithelial ovarian cancer (EOC remains a highly lethal gynecological malignancy. Ascites, an accumulation of peritoneal fluid present in one-third of patients at presentation, is linked to poor prognosis. High levels of regulatory T cells (Tregs in ascites are correlated with tumor progression and reduced survival. Malignant ascites harbors high levels of Tregs expressing the tumor necrosis factor receptor 2 (TNFR2, as well as pro-inflammatory factors such as interleukin 6 (IL-6 and tumor necrosis factor (TNF. IL-6 is also associated with poor prognosis. Herein, we study the effect of IL-6 and TNF present in ascites on the modulation of TNFR2 expression on T cells, and specifically Tregs.MethodsAscites and respective peripheral blood sera were collected from 18 patients with advanced EOC and soluble biomarkers, including IL-6, sTNFR2, IL-10, TGF-β, and TNF, were quantified using multiplexed bead-based immunoassay. Peripheral blood mononuclear cells (PBMC from healthy donors were incubated with cell-free ascites for 48 h (or media as a negative control. In some experiments, IL-6 or TNF within the ascites were neutralized by using monoclonal antibodies. The phenotype of TNFR2+ Tregs and TNFR2− Tregs were characterized post incubation in ascites. In some experiments, cell sorted Tregs were utilized instead of PBMC.ResultsHigh levels of immunosuppressive (sTNFR2, IL-10, and TGF-β and pro-inflammatory cytokines (IL-6 and TNF were present in malignant ascites. TNFR2 expression on all T cell subsets was higher in post culture in ascites and highest on CD4+CD25hiFoxP3+ Tregs, resulting in an increased TNFR2+ Treg/effector T cell ratio. Furthermore, TNFR2+ Tregs conditioned in ascites expressed higher levels of the functional immunosuppressive molecules programmed cell death ligand-1, CTLA-4, and GARP. Functionally, TNFR2+ Treg frequency was inversely correlated with interferon-gamma (IFN-γ production by effector T cells, and was

  7. Rapid promotion and progression of fibrovascular polyps by inflammation and/or hyperplasia in hamster check pouch: implications for carcinogenesis assay.

    Science.gov (United States)

    McGaughey, C; Jensen, J L

    1983-03-01

    Tumor initiation by topical application of 7,12-dimethylbenz[a]anthracene (DMBA) in dimethyl sulfoxide (DMSO) followed by topical application of retinyl acetate (RA), ethylphenylpropiolate, or acetic acid in DMSO at inflammatory and hyperplasiogenic dose regimens caused the rapid promotion of fibrovascular polyps with dysplastic epithelium in hamster cheek pouch. Such lesions did not occur in control animals initiated with DMBA followed by application of DMSO only, where inflammation was also minimal. At the dose regimen employed, RA caused obvious cytotoxicity and tissue destruction. With EPP and AA, there was no histological evidence of tissue destruction. At dose regimens resulting in minimal inflammation and no apparent cytotoxicity, RA promoted almost no polyps, but a higher yield of other tumor types. Thus, inflammation and/or hyperplasia apparently exerted a strong polyp-promoting and progressive influence. This and other differences between the tumorigenic responses of hamster-pouch mucosa and mouse skin suggest that the former supplement the latter in carcinogenic risk assessment.

  8. The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations

    DEFF Research Database (Denmark)

    Thastrup, Ole; Linnebjerg, H; Bjerrum, P J

    1987-01-01

    We have studied the activation of human blood platelets by the inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin. The effect of thapsigargin was compared with other common agonists (calcium ionophore A23187, phorbol ester TPA and thrombin). Platelet aggregation, serotonin release...

  9. Protection, promotion and support of breast-feeding in Europe: progress from 2002 to 2007.

    Science.gov (United States)

    Cattaneo, Adriano; Burmaz, Tea; Arendt, Maryse; Nilsson, Ingrid; Mikiel-Kostyra, Krystyna; Kondrate, Irena; Communal, Marie José; Massart, Catherine; Chapin, Elise; Fallon, Maureen

    2010-06-01

    To assess progress in the protection, promotion and support of breast-feeding in Europe. Data for 2002 and 2007 were gathered with the same questionnaire. Of thirty countries, twenty-nine returned data for 2002, twenty-four for 2007. The number of countries with national policies complying with WHO recommendations increased. In 2007, six countries lacked a national policy, three a national plan, four a national breast-feeding coordinator and committee. Little improvement was reported in pre-service training; however, the number of countries with good coverage in the provision of WHO/UNICEF courses for in-service training increased substantially, as reflected in a parallel increase in the number of Baby Friendly Hospitals and the proportion of births taking place in them. Little improvement was reported as far as implementation of the International Code on Marketing of Breastmilk Substitutes is concerned. Except for Ireland and the UK, where some improvement occurred, no changes were reported on maternity protection. Due to lack of standard methods, it was difficult to compare rates of breast-feeding among countries. With this in mind, slight improvements in the rates of initiation, exclusivity and duration were reported by countries where data at two points in time were available. Breast-feeding rates continue to fall short of global recommendations. National policies are improving slowly but are hampered by the lack of action on maternity protection and the International Code. Pre-service training and standard monitoring of breast-feeding rates are the areas where more efforts are needed to accelerate progress.

  10. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Science.gov (United States)

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  11. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism

    Science.gov (United States)

    Mandriota, Stefano J.; Valentijn, Linda J.; Lesne, Laurence; Betts, David R.; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B.; Rougemont, Anne-Laure; Attiyeh, Edward F.; Maris, John M.; Hogarty, Michael D.; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier

    2015-01-01

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  12. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tian-Li [Department of General Surgery, The People’s Hospital of Wuqing, Tianjin (China); Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Yue [Department of Respiration, Affiliated Hospital of Medical College of Chinese People’s Armed Police Force, Tianjin (China); Chen, Ao-Xiang; Sun, Xuan [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie, E-mail: gejie198003@163.com [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2014-04-04

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy.

  13. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Chu, Tian-Li; Zhao, Hong-Meng; Li, Yue; Chen, Ao-Xiang; Sun, Xuan; Ge, Jie

    2014-01-01

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy

  14. Light/Dark Shifting Promotes Alcohol-Induced Colon Carcinogenesis: Possible Role of Intestinal Inflammatory Milieu and Microbiota

    Directory of Open Access Journals (Sweden)

    Faraz Bishehsari

    2016-12-01

    Full Text Available Background: Colorectal cancer (CRC is associated with the modern lifestyle. Chronic alcohol consumption—a frequent habit of majority of modern societies—increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the effect of circadian disruption—another modern life style habit—in promoting alcohol-associated CRC. Method: TS4Cre × adenomatous polyposis coli (APClox468 mice underwent (a an alcohol-containing diet while maintained on a normal 12 h light:12 h dark cycle; or (b an alcohol-containing diet in conjunction with circadian disruption by once-weekly 12 h phase reversals of the light:dark (LD cycle. Mice were sacrificed after eight weeks of full alcohol and/or LD shift to collect intestine samples. Tumor number, size, and histologic grades were compared between animal groups. Mast cell protease 2 (MCP2 and 6 (MCP6 histology score were analyzed and compared. Stool collected at baseline and after four weeks of experimental manipulations was used for microbiota analysis. Results: The combination of alcohol and LD shifting accelerated intestinal polyposis, with a significant increase in polyp size, and caused advanced neoplasia. Consistent with a pathogenic role of stromal tryptase-positive mast cells in colon carcinogenesis, the ratio of mMCP6 (stromal/mMCP2 (intraepithelial mast cells increased upon LD shifting. Baseline microbiota was similar between groups, and experimental manipulations resulted in a significant difference in the microbiota composition between groups. Conclusions: Circadian disruption by Light:dark shifting exacerbates alcohol-induced polyposis and CRC. Effect of circadian disruption could, at least partly, be mediated by promoting a pro-tumorigenic inflammatory milieu via changes in microbiota.

  15. Promoting the Social Inclusion and Academic Progress of Gypsy, Roma and Traveller Children: A Secondary School Case Study

    Science.gov (United States)

    Gould, Siobhan

    2017-01-01

    The aim of this study was to identify support strategies used to promote "social inclusion" and "academic progress" of Key Stage 3 and 4 Gypsy, Roma and Traveller (GRT) pupils. The study used an interpretivist approach, incorporating an embedded single case study with several participant groups, namely GRT pupils, GRT parents,…

  16. Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice.

    Science.gov (United States)

    Gu, Jian-Wei; Young, Emily; Patterson, Sharla G; Makey, Kristina L; Wells, Jeremy; Huang, Min; Tucker, Kevan B; Miele, Lucio

    2011-05-15

    Obese postmenopausal women have a 50% higher risk of breast cancer than non-obese women. There is not an animal model that mimics postmenopausal obesity related to breast cancer progression. Using age-relevant C57BL/6 mice, this study determined whether postmenopausal obesity increases VEGF expression, tumor angiogenesis, and breast tumor growth. Ovariectomy (OVX) was performed in 12 sixty week-old female mice, then followed by a low-fat (5%, LF, n=6) or a high-fat (60%, HF, n=6) diet for 12 weeks. In the eighth week of the dietary program, 10(6) E0771 (mouse breast cancer) cells were injected in the left fourth mammary gland. Tumor size was monitored for 4 weeks. Body weights were monitored weekly. At the end of the experiment, blood samples, visceral fat and tumors were collected for measuring VEGF expression using ELISA and intratumoral microvessel density (IMD) using CD31 immunochemistry. Body weight was significantly increased in OVX/HF mice, compared to OVX/LF group (55.3±1.7 vs. 41.5±1.5 g; p < 0.01). There was a two-fold increase in the ratio of visceral fat/BW in OVX/HF mice, compared to those in OVX/LF group (0.062±0.005 vs. 0.032±0.003; p < 0.01). Postmenopausal obesity significantly increased breast tumor weight over the control (4.62±0.63 vs. 1.98±0.27 g; p < 0.01) and IMD (173±3.7 vs. 139±4.3 IM#/mm^2; p < 0.01). Tumor VEGF levels were higher in OVX/HF mice, compared to OVX/LF group (73.3±3.8 vs. 49.5±4.3 pg/mg protein; p < 0.01). Plasma VEGF levels (69±7.1 vs. 48±3.5 pg/ml) and visceral fat VEGF levels (424.4±39.5 vs. 208.5±22.4 pg/mg protein) were significantly increased in OVX/HF mice, compared to OVX/LF group, respectively (n=6; p < 0.01). Interestingly, adipose tissue primary culture showed that subcutaneous fat released more VEGF, compared to visceral fat (6.77±1.14 vs. 0.94±0.16 pg/mg tissue; n=6; p < 0.01). These findings support the hypothesis that postmenopausal obesity promotes tumor angiogenesis and breast cancer

  17. A Polytropic Caprine Arthritis Encephalitis Virus Promoter Isolated from Multiple Tissues from a Sheep with Multisystemic Lentivirus-Associated Inflammatory Disease

    Directory of Open Access Journals (Sweden)

    Brian Murphy

    2013-08-01

    Full Text Available Caprine arthritis encephalitis virus (CAEV is a lentivirus that infects both goats and sheep and is closely related to maedi-visna virus that infects sheep; collectively, these viruses are known as small ruminant lentiviruses (SRLV. Infection of goats and sheep with SRLV typically results in discrete inflammatory diseases which include arthritis, mastitis, pneumonia or encephalomyelitis. SRLV-infected animals concurrently demonstrating lentivirus-associated lesions in tissues of lung, mammary gland, joint synovium and the central nervous system are either very rare or have not been reported. Here we describe a novel CAEV promoter isolated from a sheep with multisystemic lentivirus-associated inflammatory disease including interstitial pneumonia, mastitis, polyarthritis and leukomyelitis. A single, novel SRLV promoter was cloned and sequenced from five different anatomical locations (brain stem, spinal cord, lung, mammary gland and carpal joint synovium, all of which demonstrated lesions characteristic of lentivirus associated inflammation. This SRLV promoter isolate was found to be closely related to CAEV promoters isolated from goats in northern California and other parts of the world. The promoter was denoted CAEV-ovine-MS (multisystemic disease; the stability of the transcription factor binding sites within the U3 promoter sequence are discussed.

  18. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  19. Daily goal progress is facilitated by spousal support and promotes psychological, physical, and relational well-being throughout adulthood

    Science.gov (United States)

    Jakubiak, Brittany K.; Feeney, Brooke C.

    2016-01-01

    In two daily-diary studies, we tested the consequences and precursors of daily goal progress throughout the adult lifespan. Attachment theory posits that exploration—including the pursuit of autonomous goals—promotes well-being across the lifespan and is facilitated by support from close others. For both young-adult newlyweds (Study 1) and married couples in late adulthood (Study 2), daily independent goal progress predicted same-day and next-day improvements in psychological, physical, and relational well-being. Specifically, when participants made more progress on their goals than usual on one day, they reported increases in positive affect, sleep quality, and relationship quality, and decreased physical symptoms, the following day (as well as concurrently). Additionally, spousal support (i.e., availability, encouragement, and noninterference) enabled same-day and next-day goal progress. Mediational analyses showed indirect links between spousal support and well-being through goal progress. Some effects were moderated by attachment orientation in the newlywed sample; individuals with greater insecure attachment benefited most from goal progress, and spousal support enabled goal progress most strongly for individuals with less anxious attachment. Overall, these results support and extend attachment theoretical propositions regarding the importance of the exploration system across the adult lifespan. They contribute to existing literature by demonstrating wide-ranging consequences of successful exploration for well-being and by providing evidence for the importance of both exploration and support for exploration into late adulthood. PMID:27560610

  20. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  1. Treadmill exercise promotes neuroprotection against cerebral ischemia–reperfusion injury via downregulation of pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-12-01

    Full Text Available Ying Zhang,1,* Richard Y Cao,2,* Xinling Jia,3,* Qing Li,1 Lei Qiao,1 Guofeng Yan,4 Jian Yang1 1Department of Rehabilitation, 2Laboratory of Immunology, Shanghai Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 3School of Life sciences, Shanghai University, 4School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Stroke is one of the major causes of morbidity and mortality worldwide, which is associated with serious physical deficits that affect daily living and quality of life and produces immense public health and economic burdens. Both clinical and experimental data suggest that early physical training after ischemic brain injury may reduce the extent of motor dysfunction. However, the exact mechanisms have not been fully elucidated. The aim of this study was to investigate the effects of aerobic exercise on neuroprotection and understand the underlying mechanisms.Materials and methods: Middle cerebral artery occlusion (MCAO was conducted to establish a rat model of cerebral ischemia–reperfusion injury to mimic ischemic stroke. Experimental animals were divided into the following three groups: sham (n=34, MCAO (n=39, and MCAO plus treadmill exercise (n=28. The effects of aerobic exercise intervention on ischemic brain injury were evaluated using functional scoring, histological analysis, and Bio-Plex Protein Assays.Results: Early aerobic exercise intervention was found to improve motor function, prevent death of neuronal cells, and suppress the activation of microglial cells and astrocytes. Furthermore, it was observed that aerobic exercise downregulated the expression of the cytokine interleukin-1β and the chemokine monocyte chemotactic protein-1 after transient MCAO in experimental rats.Conclusion: This study demonstrates that treadmill exercise rehabilitation promotes neuroprotection against cerebral

  2. The inflammatory cytokine TNFα cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells

    International Nuclear Information System (INIS)

    Leibovich-Rivkin, Tal; Liubomirski, Yulia; Meshel, Tsipi; Abashidze, Anastasia; Brisker, Daphna; Solomon, Hilla; Rotter, Varda; Weil, Miguel; Ben-Baruch, Adit

    2014-01-01

    In the present study we determined the relative contribution of two processes to breast cancer progression: (1) Intrinsic events, such as activation of the Ras pathway and down-regulation of p53; (2) The inflammatory cytokines TNFα and IL-1β, shown in our published studies to be highly expressed in tumors of >80% of breast cancer patients with recurrent disease. Using MCF-7 human breast tumor cells originally expressing WT-Ras and WT-p53, we determined the impact of the above-mentioned elements and cooperativity between them on the expression of CXCL8 (ELISA, qRT-PCR), a member of a “cancer-related chemokine cluster” that we have previously identified. Then, we determined the mechanisms involved (Ras-binding-domain assays, Western blot, luciferase), and tested the impact of Ras + TNFα on angiogenicity (chorioallantoic membrane assays) and on tumor growth at the mammary fat pad of mice and on metastasis, in vivo. Using Ras G12V that recapitulates multiple stimulations induced by receptor tyrosine kinases, we found that Ras G12V alone induced CXCL8 expression at the mRNA and protein levels, whereas down-regulation of p53 did not. TNFα and IL-1β potently induced CXCL8 expression and synergized with Ras G12V , together leading to amplified CXCL8 expression. Testing the impact of WT-Ras, which is the common form in breast cancer patients, we found that WT-Ras was not active in promoting CXCL8; however, TNFα has induced the activation of WT-Ras: joining these two elements has led to cooperative induction of CXCL8 expression, via the activation of MEK, NF-κB and AP-1. Importantly, TNFα has led to increased expression of WT-Ras in an active GTP-bound form, with properties similar to those of Ras G12V . Jointly, TNFα + Ras activities have given rise to increased angiogenesis and to elevated tumor cell dissemination to lymph nodes. TNFα cooperates with Ras in promoting the metastatic phenotype of MCF-7 breast tumor cells, and turns WT-Ras into a tumor

  3. EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth

    Directory of Open Access Journals (Sweden)

    Naiara Perurena

    2017-01-01

    Full Text Available Abstract Background Activated protein C/endothelial protein C receptor (APC/EPCR axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1 silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR

  4. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  5. Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPβ and potentiates breast cancer progression

    NARCIS (Netherlands)

    Kim, E.S.; Cha, Y.; Ham, M.; Jung, J.; Kim, S.G.; Hwang, S.; Kleemann, R.; Moon, A.

    2014-01-01

    A crucial role of the inflammatory lipid sphingosine-1-phosphate (S1P) in breast cancer aggressiveness has been reported. Recent clinical studies have suggested that C-reactive protein (CRP) has a role in breast cancer development. However, limited information is available on the molecular basis for

  6. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    Directory of Open Access Journals (Sweden)

    Ayesha Bhatia

    2016-01-01

    Full Text Available Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  7. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    Science.gov (United States)

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  8. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer's disease and progressive supranuclear palsy brains.

    Science.gov (United States)

    Huin, Vincent; Buée, Luc; Behal, Hélène; Labreuche, Julien; Sablonnière, Bernard; Dhaenens, Claire-Marie

    2017-10-03

    Alternative promoter usage is an important mechanism for transcriptome diversity and the regulation of gene expression. Indeed, this alternative usage may influence tissue/subcellular specificity, protein translation and function of the proteins. The existence of an alternative promoter for MAPT gene was considered for a long time to explain differential tissue specificity and differential response to transcription and growth factors between mRNA transcripts. The alternative promoter usage could explain partly the different tau proteins expression patterns observed in tauopathies. Here, we report on our discovery of a functional alternative promoter for MAPT, located upstream of the gene's second exon (exon 1). By analyzing genome databases and brain tissue from control individuals and patients with Alzheimer's disease or progressive supranuclear palsy, we identified novel shorter transcripts derived from this alternative promoter. These transcripts are increased in patients' brain tissue as assessed by 5'RACE-PCR and qPCR. We suggest that these new MAPT isoforms can be translated into normal or amino-terminal-truncated tau proteins. We further suggest that activation of MAPT's alternative promoter under pathological conditions leads to the production of truncated proteins, changes in protein localization and function, and thus neurodegeneration.

  9. Promoting Lifelong Ocean Education-2 Years Later: Charting Progress and Adjusting Course

    Science.gov (United States)

    Meeson, Blanche; McDougall, Carrie; Simms, Eric; Walker, Sharon; Keener-Chavis, Paula

    2006-01-01

    Session participants will identify how their regional or national efforts contribute to the overall progress on the education recommendations in the USCOP and the work that remains. They will examine progress, identify shortcomings, and suggest course corrections in current and planned efforts. This session will build upon VADM Lautenbacher's keynote presentation on ocean education. Examples, such as ocean literacy efforts at regional and national levels, will be highlighted to stimulate discussion on progress, challenges, and solutions. Working in small groups, participants will consider actions that they, their organizations, or NMEA might take to further the ocean and aquatic education agenda.

  10. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Cao, Lu; Wu, Mengchao; Zhang, Ying; Su, Changqing; Li, Chunguang; Shen, Shuwen; Yan, Yan; Ji, Weidan; Wang, Jinghan; Qian, Haihua; Jiang, Xiaoqing; Li, Zhigang

    2013-01-01

    OCT4 and BIRC5 are preferentially expressed in human cancer cells and mediate cancer cell survival and tumor maintenance. However, the molecular mechanism that regulates OCT4 and BIRC5 expression is not well characterized. By manipulating OCT4 and BIRC5 expression in hepatocellular carcinoma (HCC) cell lines, the regulatory mechanism of OCT4 on BIRC5 and CCND1 were investigated. Increasing or decreasing OCT4 expression could enhance or suppress BIRC5 expression, respectively, by regulating the activity of BIRC5 promoter. Because there is no binding site for OCT4 within BIRC5 promoter, the effect of OCT4 on BIRC5 promoter is indirect. An octamer motif for OCT4 in the CCND1 promoter has directly and partly participated in the regulation of CCND1 promoter activity, suggesting that OCT4 also could upregulated the expression of CCND1. Co-suppression of OCT4 and BIRC5 induced cancer cell apoptosis and cell cycle arrest, thereby efficiently inhibiting the proliferative activity of cancer cells and suppressing the growth of HCC xenogrfts in nude mice. OCT4 can upregulate BIRC5 and CCND1 expression by increasing their promoter activity. These factors collusively promotes HCC cell proliferation, and co-suppression of OCT4 and BIRC5 is potentially beneficial for HCC treatment

  11. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice

    NARCIS (Netherlands)

    Peferoen, Laura A. N.; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H. W. G. M.; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M.; Baker, David; Amor, Sandra

    2016-01-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical

  12. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27.

    Science.gov (United States)

    Soler, Laura; Miller, Ingrid; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Jessen, Flemming; Escribano, Damian; Niewold, Theo

    2016-05-01

    The growth promoting effect of supplementing animal feed with antibiotics like tetracycline has traditionally been attributed to their antibiotic character. However, more evidence has been accumulated on their direct anti-inflammatory effect during the last two decades. Here we used a pig model to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation and lipid metabolism, confirming the anti-inflammatory mechanism of OTC. Interestingly, apart from the classic acute phase reactants also down regulation was seen of a hibernation associated plasma protein (HP-27), which is to our knowledge the first description in pigs. Although the exact function in non-hibernators is unclear, down regulation of HP-27 could be consistent with increased appetite, which is possibly linked to the anti-inflammatory action of OTC. Given that pigs are good models for human medicine due to their genetic and physiologic resemblance, the present results might also be used for rational intervention in human diseases in which inflammation plays an important role such as obesity, type 2 diabetes and cardiovascular diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuya; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-01-01

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE_2. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  14. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-08-26

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  15. Increased systemic and epidermal levels of IL-17A and IL-1β promotes progression of non-segmental vitiligo.

    Science.gov (United States)

    Bhardwaj, Supriya; Rani, Seema; Srivastava, Niharika; Kumar, Ravinder; Parsad, Davinder

    2017-03-01

    Non-segmental vitiligo (NSV) results from autoimmune destruction of melanocytes. The altered levels of various cytokines have been proposed in the pathogenesis of vitiligo. However, the exact immune mechanisms have not yet been fully elucidated. To investigate the role of epidermal and systemic cytokines in active and stable NSV patients. Serum levels of inflammatory cytokines were checked in 42 active and 30 stable NSV patients with 30 controls. The lesional, perilesional and normal skin sections were subjected to H&E staining. The mRNA expression of inflammatory cytokines and their respective receptors were assessed by quantitative PCR in lesional skin of both active and stable NSV skin. The MITF and IL-17A were immunolocalized in lesional, perilesional and normal skin tissue. Significant increase in the expression of inflammatory cytokines, IL-17A, IL-1β and TGF-β was observed in active patients, whereas no change was observed in stable patients. A marked reduction in epidermal thickness was observed in lesional skin sections. Significant increase in IL-17A and significant decrease in microphthalmia associated transcription factor (MITF) expression was observed in lesional and perilesional skin sections. Moreover, qPCR analysis showed significant alterations in the mRNA levels of IL-17A, IL-1β, IFN-γ, TGF-β and their respective receptors in active and stable vitiligo patient samples. Increased levels of IL-17A and IL-1β cytokines and decreased expression of MITF suggested a possible role of these cytokines in dysregulation of melanocytic activity in the lesional skin and hence might be responsible for the progression of active vitiligo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Science as a Common Language in a Globalised World - Scientific Collaboration Promoting Progress, Building Bridges

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2003-01-01

    International scientific collaboration and co-operation can accelerate the progress of science, help build bridges between diverse societies, and foster the development of science and technology in non-industrialised countries. This is possible because science is a common language (although the progress of science is often influenced by non-scientific factors). I shall describe examples of the role that scientific collaboration can play in bridge building and in conflict resolution. I shall then present a proposal for "Bridge Building Fellowships" which would contribute to strengthening scientific capacity in developing countries by helping to stem the brain drain and providing a basis for collaborations with scientists in industrialised countries.

  17. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression.

    Science.gov (United States)

    Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong

    2016-09-01

    Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.

  19. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Złotek, Urszula; Świeca, Michał

    2016-05-01

    This paper presents a study on changes in the main phytochemical levels and antioxidant and anti-inflammatory activity of lettuce caused by different doses and times of application of yeast extracts. Elicitation with yeast extract caused an increase in the total phenolic compounds and chlorophyll content, which varied according to the dose and time of spraying, but it did not have a positive impact on vitamin C, flavonoid and carotenoid content in lettuce. The best effect was achieved by double spraying with 1% yeast extract and by single spraying with 0.1% yeast extract. The increase in phytochemical content was positively correlated with the antioxidant and anti-inflammatory activity of the studied lettuce leaves. Chicoric acid seems to be the major contributor to these antioxidant activities. Yeast extract may be used as a natural, environmentally friendly and safe elicitor for improving the health-promoting qualities of lettuce. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Endothelial cell-based methods for the detection of cyanobacterial anti-inflammatory and wound-healing promoting metabolites.

    Science.gov (United States)

    Wiesner, Christoph; Kopecky, Jiri; Pflueger, Maren; Hundsberger, Harald; Entler, Barbara; Kleber, Christoph; Atzler, Josef; Hrouzek, Pavel; Stys, Dalibor; Lukesova, Alena; Schuett, Wolfgang; Lucas, Rudolf

    2007-12-01

    Acute lung injury is accompanied by an increased endothelial chemokine production and adhesion molecule expression, which may result in an extensive neutrophil infiltration. Moreover, a destruction of the alveolar epithelium and capillary endothelium may result in permeability edema. As such, the search for novel anti-inflammatory substances, able to downregulate these parameters as well as the tissue damage holds therapeutic promise. We therefore describe here the use of human endothelial cell-based in vitro assays for the detection of anti-inflammatory and wound-healing metabolites from cyanobacteria.

  1. Placement, Progress, and Promotion: ESL Assessment in California's Adult Schools

    Science.gov (United States)

    Gonzalves, Lisa

    2017-01-01

    In California adult schools, standardized language assessments are typically administered to adult English as a second language (ESL) students upon enrollment; students then take these same state-approved tests throughout the academic year to demonstrate progress. As these tests assess only listening and reading skills, schools may use their own…

  2. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer

    DEFF Research Database (Denmark)

    Antonio, Nicole; Bønnelykke-Behrndtz, Marie Louise; Ward, Laura Chloe

    2015-01-01

    There is a long-standing association between wound healing and cancer, with cancer often described as a "wound that does not heal". However, little is known about how wounding, such as following surgery, biopsy collection or ulceration, might impact on cancer progression. Here, we use a transluce...

  3. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    Science.gov (United States)

    2015-09-01

    described previously (21). Bioluminesence IVIS -100 (Xenogen) and MRI (Bruker Biospin) were performed to monitor the progression of tumor. Tumor margins in...Cancer Cell 2006;9:157–73. 16. Tang Z, Arjunan P, Lee C, Li Y, Kumar A, Hou X, et al. Survival effect of PDGF-CC rescues neurons from apoptosis in both

  4. MiR-338-5p Promotes Inflammatory Response of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via Targeting SPRY1.

    Science.gov (United States)

    Yang, Yan; Wang, Yanfeng; Liang, Qingwei; Yao, Lutian; Gu, Shizhong; Bai, Xizhuang

    2017-08-01

    Our purpose is to study the roles of microRNA-338-5p (miR-338-5p) on the proliferation, invasion, and inflammatory response of fibroblast-like synoviocytes (SFs) in rheumatoid arthritis patients by regulating SPRY1. The target relationship between miR-338-5p and SPRY1 was validated through luciferase reporter system. The expression of miR-338-5p and SPRY1 in synovial tissues and synovial cells were detected using RT-PCR and western blot. The mimics and inhibitors of miR-338-5p were transfected into SFs. MTT, Transwell, and ELISA assays were used to analyze cell proliferation, invasiveness, and the secreted extracellular pro-inflammatory cytokines (such as IL-1a, IL-6, COX2) levels of SFs. MiR-338-5p was highly expressed in rheumatoid arthritis tissues and cells, and directly down-regulated the expression of SPRY1 in the SFs of rheumatoid arthritis patients. Cell proliferation, invasiveness and the expression level of pro-inflammatory cytokines in synovial cells increased after the transfection of miR-338-5p mimics, while the proliferation, invasion and expression level of pro-inflammatory cytokines decreased after the transfection of miR-338-5p inhibitors. In conclusion,miR-338-5p promoted the proliferation, invasion and inflammatory reaction in SFs of rheumatoid arthritis by directly down-regulating SPRY1 expression. J. Cell. Biochem. 118: 2295-2301, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Zhang, L-H; Yin, A-A; Cheng, J-X; Huang, H-Y; Li, X-M; Zhang, Y-Q; Han, N; Zhang, X

    2015-01-29

    The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.

  6. Increased Tumor Necrosis Factor (TNF)-α and Its Promoter Polymorphisms Correlate with Disease Progression and Higher Susceptibility towards Vitiligo

    Science.gov (United States)

    Laddha, Naresh C.; Dwivedi, Mitesh; Begum, Rasheedunnisa

    2012-01-01

    Abstract Tumor Necrosis Factor (TNF)-α, is a paracrine inhibitor of melanocytes, which plays a critical role in the pathogenesis of several autoimmune diseases including vitiligo, as abnormal immune responses have frequently been observed in vitiligo patients. Moreover, vitiligo patients show higher lesion levels of TNF-α. Genetic polymorphisms in the promoter region of TNF-α are involved in the regulation of its expression. The present study explores TNF-α promoter polymorphisms and correlates them with TNF-α transcript and protein levels in vitiligo patients and controls of Gujarat along with its effect on disease onset and progression. PCR-RFLP technique was used for genotyping of these polymorphisms in 977 vitiligo patients and 990 controls. TNF-α transcript and protein levels were measured by Real time PCR and ELISA respectively. The genotype and allele frequencies for the investigated polymorphisms were significantly associated with vitiligo patients. The study revealed significant increase in TNF-α transcript and protein levels in vitiligo patients compared to controls. In particular, haplotypes: AATCC, AACCT, AGTCT, GATCT, GATCC and AGCCT were found to increase the TNF-α levels in vitiligo patients. Analysis of TNF-α levels based on the gender and disease progression suggests that female patients and patients with active vitiligo had higher levels of TNF-α. Also, the TNF-α levels were high in patients with generalized vitiligo as compared to localized vitiligo. Age of onset analysis of the disease suggests that the haplotypes: AACAT, AACCT, AATCC and AATCT had a profound effect in the early onset of the disease. Moreover, the analysis suggests that female patients had an early onset of vitiligo. Overall, our results suggest that TNF-α promoter polymorphisms may be genetic risk factors for susceptibility and progression of the disease. The up-regulation of TNF-α transcript and protein levels in individuals with susceptible haplotypes advocates

  7. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation.

    Science.gov (United States)

    Papaspyridonos, Marianna; Matei, Irina; Huang, Yujie; do Rosario Andre, Maria; Brazier-Mitouart, Helene; Waite, Janelle C; Chan, April S; Kalter, Julie; Ramos, Ilyssa; Wu, Qi; Williams, Caitlin; Wolchok, Jedd D; Chapman, Paul B; Peinado, Hector; Anandasabapathy, Niroshana; Ocean, Allyson J; Kaplan, Rosandra N; Greenfield, Jeffrey P; Bromberg, Jacqueline; Skokos, Dimitris; Lyden, David

    2015-04-29

    A central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive 'macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it. Id1 overexpression leads to systemic immunosuppression by downregulation of key molecules involved in DC differentiation and suppression of CD8 T-cell proliferation, thus promoting primary tumour growth and metastatic progression. Furthermore, advanced melanoma patients have increased plasma TGFβ levels and express higher levels of ID1 in myeloid peripheral blood cells. This study reveals a critical role for Id1 in suppressing the anti-tumour immune response during tumour progression and metastasis.

  8. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression

    OpenAIRE

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-01-01

    Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Po...

  9. Decrease in PSCA expression caused by Helicobacter pylori infection may promote progression to severe gastritis

    Science.gov (United States)

    Toyoshima, Osamu; Tanikawa, Chizu; Yamamoto, Ryuta; Watanabe, Hidenobu; Yamashita, Hiroharu; Sakitani, Kosuke; Yoshida, Shuntaro; Kubo, Michiaki; Matsuo, Keitaro; Ito, Hidemi; Koike, Kazuhiko; Seto, Yasuyuki; Matsuda, Koichi

    2018-01-01

    SNP rs2294008 in Prostate Stem Cell Antigen (PSCA) and decreased PSCA expression are associated with gastric cancer. The objective of this study is to investigate the role of rs2294008 and PSCA expression in the gastritis-gastric cancer carcinogenic pathway. We conducted a case-control association study of H. pylori-infected gastritis and gastric cancer. rs2294008 was associated with the progression to chronic active gastritis (P = 9.4 × 10–5; odds ratio = 3.88, TT + TC vs CC genotype), but not with H. pylori infection per se nor with the progression from active gastritis to gastric cancer. We also assessed the association of rs2294008 with PSCA mRNA expression in the gastric mucosa at various disease stages and found that rs2294008 was associated with PSCA expression (P = 1.3 × 10–12). H. pylori infection (P = 5.1 × 10–8) and eradication therapy (P gastritis compared with mild gastritis only among T allele carriers. Our findings revealed the regulation of PSCA expression by host genetic variation and bacterial infection might contribute to gastritis progression after H. pylori infection. PMID:29423095

  10. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review.

    Science.gov (United States)

    Surh, Young-Joon

    2002-08-01

    A wide variety of phenolic substances derived from spice possess potent antimutagenic and anticarcinogenic activities. Examples are curcumin, a yellow colouring agent, contained in turmeric (Curcuma longa L., Zingiberaceae), [6]-gingerol, a pungent ingredient present in ginger (Zingiber officinale Roscoe, Zingiberaceae) and capsaicin, a principal pungent principle of hot chili pepper (Capsicum annuum L, Solanaceae). The chemopreventive effects exerted by these phytochemicals are often associated with their antioxidative and anti-inflammatory activities. Cyclo-oxygenase-2 (COX-2) has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. Recent studies have shown that COX-2 is regulated by the eukaryotic transcription factor NF-kappaB. This short review summarizes the molecular mechanisms underlying chemopreventive effects of the aforementioned spice ingredients in terms of their effects on intracellular signaling cascades, particularly those involving NF-kappaB and mitogen-activated protein kinases.

  11. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon

    DEFF Research Database (Denmark)

    Chung, Wing Sun Faith; Meijerink, Marjolein; Zeuner, Birgitte

    2017-01-01

    Dietary plant cell wall carbohydrates are important in modulating the composition and metabolism of the complex gut microbiota, which can impact on health. Pectin is a major component of plant cell walls. Based on studies in model systems and available bacterial isolates and genomes, the capacity...... suggest the potential to explore further the prebiotic potential of pectin and its derivatives to re-balance the microbiota towards an anti-inflammatory profile....

  12. Association Between Inflammatory Markers and Progression to Kidney Dysfunction: Examining Different Assessment Windows in Patients With Type 1 Diabetes.

    Science.gov (United States)

    Baker, Nathaniel L; Hunt, Kelly J; Stevens, Danielle R; Jarai, Gabor; Rosen, Glenn D; Klein, Richard L; Virella, Gabriel; Lopes-Virella, Maria F

    2018-01-01

    To determine whether biomarkers of inflammation and endothelial dysfunction are associated with the development of kidney dysfunction and the time frame of their association. Biomarkers were measured at four time points during 28 years of treatment and follow-up in patients with type 1 diabetes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. In addition to traditional biomarkers of inflammation (C-reactive protein and fibrinogen), we measured interleukin-6 (IL-6) and soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1/2), markers of endothelial dysfunction (soluble intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin [sE-selectin]), and fibrinolysis (total and active plasminogen activator inhibitor-1 [PAI-1]). Renal outcomes were defined as progression to incident chronic kidney disease (stage 3 or more severe) or macroalbuminuria (albumin excretion rate ≥300 mg/24 h). Prospective multivariate event-time analyses were used to determine the association of each biomarker with each subsequent event within prespecified intervals (3-year and 10-year windows). Multivariate event-time models indicated that several markers of inflammation (sTNFR-1/2), endothelial dysfunction (sE-selectin), and clotting/fibrinolysis (fibrinogen and PAI-1) are significantly associated with subsequent development of kidney dysfunction. Although some markers showed variations in the associations between the follow-up windows examined, the results indicate that biomarkers (sTNFR-1/2, sE-selectin, PAI-1, and fibrinogen) are associated with progression to chronic kidney disease in both the 3-year and the 10-year windows. Plasma markers of inflammation, endothelial dysfunction, and clotting/fibrinolysis are associated with progression to kidney dysfunction in type 1 diabetes during both short-term and long-term follow-up. © 2017 by the American Diabetes Association.

  13. SCF, regulated by HIF-1α, promotes pancreatic ductal adenocarcinoma cell progression.

    Directory of Open Access Journals (Sweden)

    Chuntao Gao

    Full Text Available Stem cell factor (SCF and hypoxia-inducible factor-1α (HIF-1α both have important functions in pancreatic ductal adenocarcinoma (PDAC. This study aims to analyze the expression and clinicopathological significance of SCF and HIF-1α in PDAC specimens and explore the molecular mechanism at PDAC cells in vitro and in vivo. We showed that the expression of SCF was significantly correlated with HIF-1α expression via Western blot, PCR, chromatin immunoprecipitation (ChIP assay, and luciferase assay analysis. The SCF level was also correlated with lymph node metastasis and the pathological tumor node metastasis (pTNM stage in PDAC samples. The SCF higher-expression group had significantly lower survival rates than the SCF lower-expression group (p<0.05. Hypoxia up-regulated the expression of SCF through the hypoxia-inducible factor (HIF-1α in PDAC cells at the protein and RNA levels. When HIF-1α was knocked down by RNA interference, the SCF level decreased significantly. Additionally, ChIP and luciferase results demonstrated that HIF-1α can directly bind to the hypoxia response element (HRE region of the SCF promoter and activate the SCF transcription under hypoxia. The results of colony formation, cell scratch, and transwell migration assay showed that SCF promoted the proliferation and invasion of PANC-1 cells under hypoxia. Furthermore, the down-regulated ability of cell proliferation and invasion following HIF-1α knockdown was rescued by adding exogenous SCF under hypoxia in vitro. Finally, when the HIF-1α expression was inhibited by digoxin, the tumor volume and the SCF level decreased, thereby proving the relationship between HIF-1α and SCF in vivo. In conclusion, SCF is an important factor for the growth of PDAC. In our experiments, we proved that SCF, a downstream gene of HIF-1α, can promote the development of PDAC under hypoxia. Thus, SCF might be a potential therapeutic target for PDAC.

  14. The progress of tumor gene-radiotherapy induced by Egr-1 promoter

    International Nuclear Information System (INIS)

    Guo Rui; Li Biao

    2010-01-01

    The promoter of early growth response gene-1 (Egr-1) is a cis-acting element of Egr-1, and its activity is regulated by inducers such as ionizing radiation, free radical. In designated gene-radiotherapy system, radiation combined with therapeutic gene (such as tumor necrosis factor-α gene, suicide gene) can spatially and temporally regulate therapeutic gene expression in the irradiated field, produced a marked effect, while little systemic toxicities were observed. The combination of radiotherapy and gene therapy is promising in tumor therapy. (authors)

  15. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.

    Science.gov (United States)

    Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun

    2016-01-01

    The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.

  16. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    Science.gov (United States)

    Liang, Li; Zhou, Wei; Yang, Nan; Yu, Jifeng; Liu, Hongchen

    2016-01-01

    Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment. PMID:26884650

  17. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    Directory of Open Access Journals (Sweden)

    Li Liang

    2016-01-01

    Full Text Available Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs. PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment.

  18. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bajenova, Olga, E-mail: o.bazhenova@spbu.ru [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Chaika, Nina [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); Tolkunova, Elena; Davydov-Sinitsyn, Alexander [Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064 (Russian Federation); Gapon, Svetlana [Boston Children' s Hospital, Boston, MA 02115 (United States); Thomas, Peter [Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178 (United States); O’Brien, Stephen [Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2014-06-10

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.

  19. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    International Nuclear Information System (INIS)

    Bajenova, Olga; Chaika, Nina; Tolkunova, Elena; Davydov-Sinitsyn, Alexander; Gapon, Svetlana; Thomas, Peter; O’Brien, Stephen

    2014-01-01

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein

  20. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    International Nuclear Information System (INIS)

    Zhang, Ge; Miyake, Makito; Lawton, Adrienne; Goodison, Steve; Rosser, Charles J

    2014-01-01

    Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment

  1. Oral health information systems--towards measuring progress in oral health promotion and disease prevention

    DEFF Research Database (Denmark)

    Petersen, Poul Erik; Bourgeois, Denis; Bratthall, Douglas

    2005-01-01

    and the general public. WHO has developed global and regional oral health databanks for surveillance, and international projects have designed oral health indicators for use in oral health information systems for assessing the quality of oral health care and surveillance systems. Modern oral health information...... been designed by WHO and used by countries worldwide for the surveillance of oral disease and health. Global, regional and national oral health databanks have highlighted the changing patterns of oral disease which primarily reflect changing risk profiles and the implementation of oral health...... programmes oriented towards disease prevention and health promotion. The WHO Oral Health Country/Area Profile Programme (CAPP) provides data on oral health from countries, as well as programme experiences and ideas targeted to oral health professionals, policy-makers, health planners, researchers...

  2. The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling

    DEFF Research Database (Denmark)

    Zecchini, Silvia; Bombardelli, Lorenzo; Decio, Alessandra

    2011-01-01

    glycoprotein involved in brain development and plasticity, in EOC. NCAM is absent from normal ovarian epithelium but becomes highly expressed in a subset of human EOC, in which NCAM expression is associated with high tumour grade, suggesting a causal role in cancer aggressiveness. We demonstrate that NCAM......Epithelial ovarian carcinoma (EOC) is an aggressive neoplasm, which mainly disseminates to organs of the peritoneal cavity, an event mediated by molecular mechanisms that remain elusive. Here, we investigated the expression and functional role of neural cell adhesion molecule (NCAM), a cell surface...... stimulates EOC cell migration and invasion in vitro and promotes metastatic dissemination in mice. This pro-malignant function of NCAM is mediated by its interaction with fibroblast growth factor receptor (FGFR). Indeed, not only FGFR signalling is required for NCAM-induced EOC cell motility, but targeting...

  3. Overexpression of Long Non-Coding RNA TUG1 Promotes Colon Cancer Progression.

    Science.gov (United States)

    Zhai, Hui-Yuan; Sui, Ming-Hua; Yu, Xiao; Qu, Zhen; Hu, Jin-Chen; Sun, Hai-Qing; Zheng, Hai-Tao; Zhou, Kai; Jiang, Li-Xin

    2016-09-16

    BACKGROUND Colon cancer is one of the most prevalent and deadly cancers worldwide. It is still necessary to further define the mechanisms and explore therapeutic targets of colon cancer. Dysregulation of long noncoding RNAs (lncRNAs) has been shown to be correlated with diverse biological processes, including tumorigenesis. This study aimed to characterize the biological mechanism of taurine-upregulated gene 1 (TUG1) in colon cancer. MATERIAL AND METHODS qRT-PCR was used to analyze the expression level of TUG1 and p63 in 75 colon cancer tissues and the matched adjacent non-tumor tissue. In vitro, cultured colon cancer cell lines HCT-116 and LoVo were used as cell models. TUG1 and p63 were silenced via transferring siRNA into HCT-116 or LoVo. The effects of TUG1 were investigated by examining cell proliferation, apoptosis, and migration. RESULTS Among the 75 colon cancer cases, the expression of TUG1 was significantly higher in colon cancer tissues compared with the matched adjacent non-tumor tissue, while p63 expression was lower in the tumor tissue. In HCT-116 and LoVo, the expression of TUG1 was significantly increased by p63 siRNA transfection. Furthermore, down-regulation of TUG1 by siRNA significantly inhibited the cell proliferation and promoted colon cancer cell apoptosis. In addition, inhibition of TUG1 expression significantly blocked the cell migration ability of colon cancer cells. CONCLUSIONS LncRNA TUG1 may serve as a potential oncogene for colon cancer. Overexpressed TUG1 may contribute to promoting cell proliferation and migration in colon cancer cells.

  4. Tumor-Promoting Circuits That Regulate a Cancer-Related Chemokine Cluster: Dominance of Inflammatory Mediators Over Oncogenic Alterations

    International Nuclear Information System (INIS)

    Leibovich-Rivkin, Tal; Buganim, Yosef; Solomon, Hilla; Meshel, Tsipi; Rotter, Varda; Ben-Baruch, Adit

    2012-01-01

    Here, we investigated the relative contribution of genetic/signaling components versus microenvironmental factors to the malignancy phenotype. In this system, we took advantage of non-transformed fibroblasts that carried defined oncogenic modifications in Ras and/or p53. These cells were exposed to microenvironmental pressures, and the expression of a cancer-related chemokine cluster was used as readout for the malignancy potential (CCL2, CCL5, CXCL8, CXCL10). In cells kept in-culture, synergism between Ras hyper-activation and p53 dysfunction was required to up-regulate the expression of the chemokine cluster. The in vivo passage of Ras High /p53 Low -modified cells has led to tumor formation, accompanied by potentiation of chemokine release, implicating a powerful role for the tumor microenvironment in up-regulating the chemokine cluster. Indeed, we found that inflammatory mediators which are prevalent in tumor sites, such as TNFα and IL-1β, had a predominant impact on the release of the chemokines, which was substantially higher than that obtained by the oncogenic modifications alone, possibly acting through the transcription factors AP-1 and NF-κB. Together, our results propose that in the unbiased model system that we were using, inflammatory mediators of the tumor milieu have dominating roles over oncogenic modifications in dictating the expression of a pro-malignancy chemokine readout

  5. Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

    Science.gov (United States)

    Yuen, Hiu-Fung; Chan, Ka-Kui; Platt-Higgins, Angela; Dakir, El-Habib; Matchett, Kyle B.; Haggag, Yusuf Ahmed; Jithesh, Puthen V.; Habib, Tanwir; Faheem, Ahmed; Dean, Fennell A.; Morgan, Richard; Rudland, Philip S.; El-Tanani, Mohamed

    2016-01-01

    It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator. PMID:27716616

  6. Pokemon/miR-137 auto-regulatory circuit promotes the progression of renal carcinoma.

    Science.gov (United States)

    Wang, Lihui; Li, Qi; Ye, Zhuo; Qiao, Baoping

    2018-04-19

    Renal carcinoma greatly threatens human health, but the involved molecular mechanisms are far from complete understanding. As a master oncogene driving the initiation of many other cancers, Pokemon has not been established to be associated with renal cancer. Our data revealed that Pokemon is highly expressed in renal carcinoma specimen and cell lines, compared with normal cells. The silencing of Pokemon suppressed the proliferation and invasion of renal cancer cells. Pokemon overexpression rendered normal cells with higher proliferation rates and invasiveness. Animal study further confirmed the role of Pokemon in the growth of renal carcinoma. Moreover, miR-137 was identified to negatively regulate the expression of Pokemon, and its abundance is inversely correlated with that of Pokemon in renal carcinoma specimen and cell lines. Pokemon overexpression may be induced by miR-137 downregulation. Interestingly, Pokemon can also suppress miR-137 expression by binding to its recognition site within miR-137 promoter region. Taken together, we identified an autoregulatory loop consisting of Pokemon and miR-137 in gastric cancers, and targeting this pathway may be an effective strategy for renal carcinoma cancer therapy.

  7. GTPBP4 Promotes Gastric Cancer Progression via Regulating P53 Activity

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-01-01

    Full Text Available Background/Aims: gastric cancer is a serious health concern with high morbidity and mortality. Therefore, it is urgent to find novel targets for gastric cancer diagnosis and treatment. Methods: qRT-PCR and immunohistochemistry assays were used to detect GTPBP4 expression in gastric cancer tissues, and gastric cancer and gastric epithelial cells. Lentivirus infection was used to construct GTPBP4 stable knockdown cells. Annexin V/PI apoptosis, CCK8, EdU incorporation and cell clone formation analysis were performed to evaluate the effects of GTPBP4 on gastric cancer cell proliferation and apoptosis. Further RNA-based high-throughput sequencing and co-IP assays were constructed to explore the related mechanisms contributing to GTPBP4-mediated effects. Results: GTPBP4 expression was significantly increased in gastric cancer tissues compared with that in adjacent normal tissues, and positively correlated with gastric cancer stages. Meanwhile, GTPBP4 level was markedly upregulated in gastric cancer cells than in gastric epithelial cells. Additionaly, stable knockdown of GTPBP4 inhibited cell proliferation and promoted cell apoptosis. Mechanistically, p53 and its related signaling were significantly activated in GTPBP4 stable knockdown cells. And GTPBP4 interacted with p53 in gastric cancer cells. Conclusions: our results provide insights into mechanistic regulation and linkage of the GTPBP4-p53 in gastric cancer, and also a valuable potential target for gastric cancer.

  8. OTX1 promotes colorectal cancer progression through epithelial-mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kun; Cai, Xin-Yi; Li, Qiang; Yang, Zhi-Bin; Xiong, Wei; Shen, Tao; Wang, Wei-Ya; Li, Yun-Feng, E-mail: ynsliyunfeng@163.com

    2014-01-31

    Highlights: • OTX1 is overexpression in colorectal cancer tissues. • Overexpression of OTX1 promotes colorectal cancer cell proliferation and invasion in vitro and tumor growth in vivo. • Depletion of OTX1 inhibits colorectal cancer cell proliferation and invasion in vitro. • Overexpression of OTX1 is linked to the EMT-like phenotype. - Abstract: Orthodenticle homeobox 1 (OTX1), a transcription factor containing a bicoid-like homeodomain, plays a role in brain and sensory organ development. In this study, we report that OTX1 is overexpressed in human colorectal cancer (CRC) and OTX1 overexpression is associated with higher stage. Functional analyses reveal that overexpression of OTX1 results in accumulation of CRC cell proliferation and invasion in vitro and tumor growth in vivo, whereas ablation of OTX1 expression significantly inhibits the proliferative and invasive capability of CRC cells in vitro. Together, our results indicate that OTX1 is involved in human colon carcinogenesis and may serve as a potential therapeutic target for human colorectal cancer.

  9. OTX1 promotes colorectal cancer progression through epithelial-mesenchymal transition

    International Nuclear Information System (INIS)

    Yu, Kun; Cai, Xin-Yi; Li, Qiang; Yang, Zhi-Bin; Xiong, Wei; Shen, Tao; Wang, Wei-Ya; Li, Yun-Feng

    2014-01-01

    Highlights: • OTX1 is overexpression in colorectal cancer tissues. • Overexpression of OTX1 promotes colorectal cancer cell proliferation and invasion in vitro and tumor growth in vivo. • Depletion of OTX1 inhibits colorectal cancer cell proliferation and invasion in vitro. • Overexpression of OTX1 is linked to the EMT-like phenotype. - Abstract: Orthodenticle homeobox 1 (OTX1), a transcription factor containing a bicoid-like homeodomain, plays a role in brain and sensory organ development. In this study, we report that OTX1 is overexpressed in human colorectal cancer (CRC) and OTX1 overexpression is associated with higher stage. Functional analyses reveal that overexpression of OTX1 results in accumulation of CRC cell proliferation and invasion in vitro and tumor growth in vivo, whereas ablation of OTX1 expression significantly inhibits the proliferative and invasive capability of CRC cells in vitro. Together, our results indicate that OTX1 is involved in human colon carcinogenesis and may serve as a potential therapeutic target for human colorectal cancer

  10. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    2010-04-01

    Full Text Available The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved.We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice.Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  11. Possible Mechanisms of Mercury Toxicity and Cancer Promotion: Involvement of Gap Junction Intercellular Communications and Inflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Roberto Zefferino

    2017-01-01

    Full Text Available A number of observations indicate that heavy metals are able to alter cellular metabolic pathways through induction of a prooxidative state. Nevertheless, the outcome of heavy metal-mediated effects in the development of human diseases is debated and needs further insights. Cancer is a well-established DNA mutation-linked disease; however, epigenetic events are perhaps more important and harmful than genetic alterations. Unfortunately, we do not have reliable screening methods to assess/validate the epigenetic (promoter effects of a physical or a chemical agent. We propose a mechanism of action whereby mercury acts as a possible promoter carcinogen. In the present contribution, we resume our previous studies on mercury tested at concentrations comparable with its occurrence as environmental pollutant. It is shown that Hg(II elicits a prooxidative state in keratinocytes linked to inhibition of gap junction-mediated intercellular communication and proinflammatory cytokine production. These combined effects may on one hand isolate cells from tissue-specific homeostasis promoting their proliferation and on the other hand tamper the immune system defense/surveillance checkmating the whole organism. Since Hg(II is not a mutagenic/genotoxic compound directly affecting gene expression, in a broader sense, mercury might be an example of an epigenetic tumor promoter or, further expanding this concept, a “metagenetic” effector.

  12. Cux1 promotes cell proliferation and polycystic kidney disease progression in an ADPKD mouse model.

    Science.gov (United States)

    Porath, Binu; Livingston, Safia; Andres, Erica L; Petrie, Alexandra M; Wright, Joshua C; Woo, Anna E; Carlton, Carol G; Baybutt, Richard; Vanden Heuvel, Gregory B

    2017-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1 CD ;Cux1 tm2Ejn ). While kidneys isolated from newborn Pkd1 CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1 CD ;Cux1 tm2Ejn-/- mice did not show any cysts. Because Cux1 tm2Ejn-/- are perinatal lethal, we evaluated Pkd1 CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1 CD ;Cux1 tm2Ejn-/- mice, newborn Pkd1 CD ;Cux1 tm2Ejn+/- mice did not show any cysts. Comparison of Pkd1 CD and Pkd1 CD ;Cux1 tm2Ejn+/- mice at later stages of development showed a reduction in the severity of PKD in the Pkd1 CD ;Cux1 tm2Ejn+/- mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27. Copyright © 2017 the American Physiological Society.

  13. Selection, de-selection and progression in German football talent promotion.

    Science.gov (United States)

    Güllich, Arne

    2014-01-01

    This study explored to which extent the development of German professional football players is based on early talent identification (TID) and long-term nurture in talent promotion (TP) programmes or on their emergence in the course of repeated procedures of player selection and de-selection in these programmes through childhood and youth. The annual turnover of squad members in national junior teams (2001-2013) and youth elite academies was calculated; national U-team members were followed up with regard to nominations through subsequent seasons and to their success level eventually achieved at senior age; and all current Bundesliga players were analysed retrospectively regarding their earlier involvement in TID/TP programmes. Analyses revealed that the mean annual turnover of squad members was 24.5% (youth academies) and 41.0% (national U-teams), respectively. At any age, the probability of persisting in the programme three years later was <50%. Among current Bundesliga players, the age of recruitment into the TID/TP programme was widely evenly distributed across childhood and youth, respectively. Accordingly, the number of (future) Bundesliga players who were involved in TID/TP was built up continuously through all age categories. The observations suggest that the collective of professional players emerged from repeated procedures of selection and de-selection through childhood and youth rather than from early selection and long-term continuous nurture in TID/TP programmes. The findings are discussed with regard to the uncertainty of TID and of interventions applied to the selected players, and they are related to the individualistic and collectivistic approach in TP.

  14. Ketogenic Diet Impairs FGF21 Signaling and Promotes Differential Inflammatory Responses in the Liver and White Adipose Tissue.

    Directory of Open Access Journals (Sweden)

    Mohamed Asrih

    Full Text Available Beside its beneficial effects on weight loss, ketogenic diet (KD causes dyslipidemia, a pro-inflammatory state involved in the development of hepatic steatosis, glucose intolerance and insulin resistance, although the latter is still being debated. Additionally, KD is known to increase fibroblast growth factor 21 (FGF21 plasma levels. However, FGF21 cannot initiate its beneficial actions on metabolism in these conditions. We therefore hypothesized and tested in the present study that KD may impair FGF21 signaling.Using indirect calorimetry, we found that KD-fed mice exhibited higher energy expenditure than regular chow (RC-fed mice associated with increased Ucp1 levels in white adipose tissue (WAT, along with increased plasma FGF21 levels. We then assessed the effect of KD on FGF21 signaling in both the liver and WAT. We found that Fgfr4 and Klb (β-klotho were downregulated in the liver, while Fgfr1 was downregulated in WAT of KD-fed mice. Because inflammation could be one of the mechanisms linking KD to impaired FGF21 signaling, we measured the expression levels of inflammatory markers and macrophage accumulation in WAT and liver and found an increased inflammation and macrophage accumulation in the liver, but surprisingly, a reduction of inflammation in WAT.We also showed that KD enhances lipid accumulation in the liver, which may explain hepatic inflammation and impaired Fgfr4 and Klb expression. In contrast, import of lipids from the circulation was significantly reduced in WAT of KD-fed mice, as suggested by a downregulation of Lpl and Cd36. This was further associated with reduced inflammation in WAT.Altogether, these results indicate that KD could be beneficial for a given tissue but deleterious for another.

  15. Adenosine A2b receptor promotes progression of human oral cancer

    International Nuclear Information System (INIS)

    Kasama, Hiroki; Sakamoto, Yosuke; Kasamatsu, Atsushi; Okamoto, Atsushi; Koyama, Tomoyoshi; Minakawa, Yasuyuki; Ogawara, Katsunori; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Adenosine A2b receptor (ADORA2B) encodes an adenosine receptor that is a member of the G protein-coupled receptor superfamily. This integral membrane protein stimulates adenylate cyclase activity in the presence of adenosine. Little is known about the relevance of ADORA2B to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of ADORA2B in OSCC. The ADORA2B expression levels in nine OSCC-derived cells were analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Using an ADORA2B knockdown model, we assessed cellular proliferation and expression of hypoxia-inducible factor1α (HIF-1α). We examined the adenosine receptor expression profile under both normoxic and hypoxic conditions in the OSCC-derived cells. In addition to in vitro data, the clinical correlation between the ADORA2B expression levels in primary OSCCs (n = 100 patients) and the clinicopathological status by immunohistochemistry (IHC) also was evaluated. ADORA2B mRNA and protein were up-regulated significantly (p < 0.05) in seven OSCC-derived cells compared with human normal oral keratinocytes. Suppression of ADORA2B expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells. HIF-1α also was down-regulated in ADORA2B knockdown OSCC cells. During hypoxia, ADORA2B expression was induced significantly (p < 0.05) in the mRNA and protein after 24 hours of incubation in OSCC-derived cells. IHC showed that ADORA2B expression in primary OSCCs was significantly (p < 0.05) greater than in the normal oral counterparts and that ADORA2B-positive OSCCs were correlated closely (p < 0.05) with tumoral size. Our results suggested that ADORA2B controls cellular proliferation via HIF-1α activation, indicating that ADORA2B may be a key regulator of tumoral progression in OSCCs. The online version of this article (doi:10.1186/s12885-015-1577-2) contains

  16. BAG3 promotes chondrosarcoma progression by upregulating the expression of β-catenin

    Science.gov (United States)

    Shi, Huijuan; Chen, Wenfang; Dong, Yu; Lu, Xiaofang; Zhang, Wenhui; Wang, Liantang

    2018-01-01

    To investigate the roles of B-cell lymphoma-2 associated athanogene 3 (BAG3) in human chondrosarcoma and the potential mechanisms, the expression levels of BAG3 were detected in the present study, and the associations between BAG3 and clinical pathological parameters, clinical stage as well as the survival of patients were analyzed. The present study detected BAG3 mRNA and protein expression in the normal cartilage cell line HC-a and in SW1353 chondrosarcoma cells by reverse transcription-quantitative polymerase chain reaction and western blot analysis. The BAG3 protein expression in 59 cases of chondrosarcoma, 30 patients with endogenous chondroma and 8 cases of normal cartilage was semi-quantitatively analyzed using the immunohistochemical method. In addition, the BAG3 protein expression level, the clinical pathological parameters, clinical stage and the survival time of patients with chondrosarcoma were analyzed. The plasmid transfection method was employed to upregulate the expression BAG3 and small RNA interference to downregulate the expression of BAG3 in SW1353 cells. The expression levels of BAG3 protein and mRNA were significantly increased in the chondrosarcoma cell line when compared with the normal cartilage cell line. The immunohistochemistry results indicated that BAG3 protein was overexpressed in the tissue of human chondrosarcoma. Statistical analysis showed that the expression level of BAG3 was significantly increased in the different Enneking staging of patients with chondrosarcoma and Tumor staging, and there were no statistical differences in age, gender, histological classification and tumor size. In the in vitro experiments, the data revealed that BAG3 significantly promoted chondrosarcoma cell proliferation, colony-formation, migration and invasion; however, it inhibited chondrosarcoma cell apoptosis. It was observed that BAG3 upregulated β-catenin expression at the mRNA and protein levels. In addition, BAG3 induced the expression of runt

  17. BAG3 promotes chondrosarcoma progression by upregulating the expression of β-catenin.

    Science.gov (United States)

    Shi, Huijuan; Chen, Wenfang; Dong, Yu; Lu, Xiaofang; Zhang, Wenhui; Wang, Liantang

    2018-04-01

    To investigate the roles of B‑cell lymphoma‑2 associated athanogene 3 (BAG3) in human chondrosarcoma and the potential mechanisms, the expression levels of BAG3 were detected in the present study, and the associations between BAG3 and clinical pathological parameters, clinical stage as well as the survival of patients were analyzed. The present study detected BAG3 mRNA and protein expression in the normal cartilage cell line HC‑a and in SW1353 chondrosarcoma cells by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The BAG3 protein expression in 59 cases of chondrosarcoma, 30 patients with endogenous chondroma and 8 cases of normal cartilage was semi-quantitatively analyzed using the immunohistochemical method. In addition, the BAG3 protein expression level, the clinical pathological parameters, clinical stage and the survival time of patients with chondrosarcoma were analyzed. The plasmid transfection method was employed to upregulate the expression BAG3 and small RNA interference to downregulate the expression of BAG3 in SW1353 cells. The expression levels of BAG3 protein and mRNA were significantly increased in the chondrosarcoma cell line when compared with the normal cartilage cell line. The immunohistochemistry results indicated that BAG3 protein was overexpressed in the tissue of human chondrosarcoma. Statistical analysis showed that the expression level of BAG3 was significantly increased in the different Enneking staging of patients with chondrosarcoma and Tumor staging, and there were no statistical differences in age, gender, histological classification and tumor size. In the in vitro experiments, the data revealed that BAG3 significantly promoted chondrosarcoma cell proliferation, colony‑formation, migration and invasion; however, it inhibited chondrosarcoma cell apoptosis. It was observed that BAG3 upregulated β‑catenin expression at the mRNA and protein levels. In addition, BAG3 induced the

  18. Association of promoter methylation of VGF and PGP9.5 with ovarian cancer progression.

    Directory of Open Access Journals (Sweden)

    Mariana Brait

    Full Text Available To elucidate the role of biological and clinical impact of aberrant promoter hypermethylation (PH in ovarian cancer (OC.PH of PGP9.5, HIC1, AIM1, APC, PAK3, MGMT, KIF1A, CCNA1, ESR1, SSBP2, GSTP1, FKBP4 and VGF were assessed by quantitative methylation specific PCR (QMSP in a training set. We selected two genes (VGF and PGP9.5 for further QMSP analysis in a larger independent validation (IV set with available clinical data. Biologic relevance of VGF gene was also evaluated.PH frequency for PGP9.5 and VGF were 85% (316/372 and 43% (158/366 respectively in the IV set of samples while no PH was observed in controls. In 372 OC cases with available follow up, PGP9.5 and VGF PH were correlated with better patient survival [Hazard Ratios (HR for overall survival (OS were 0.59 (95% Confidence Intervals (CI  = 0.42-0.84, p = 0.004, and 0.73 (95%CI = 0.55-0.97, p = 0.028 respectively, and for disease specific survival (DSS were 0.57 (95%CI 0.39-0.82, p = 0.003 and 0.72 (95%CI 0.54-0.96, p = 0.027. In multivariate analysis, VGF PH remained an independent prognostic factor for OS (HR 0.61, 95%CI 0.43-0.86, p<0.005 and DSS (HR 0.58, 95%CI 0.41-0.83, p<0.003. Furthermore, PGP9.5 PH was significantly correlated with lower grade, early stage tumors, and with absence of residual disease. Forced expression of VGF in OC cell lines inhibited cell growth.Our results indicate that VGF and PGP9.5 PH are potential biomarkers for ovarian carcinoma. Confirmatory cohorts with longitudinal follow-up are required in future studies to define the clinical impact of VGF and PGP9.5 PH before clinical application.

  19. HNRNPLL stabilizes mRNAs for DNA replication proteins and promotes cell cycle progression in colorectal cancer cells.

    Science.gov (United States)

    Sakuma, Keiichiro; Sasaki, Eiichi; Kimura, Kenya; Komori, Koji; Shimizu, Yasuhiro; Yatabe, Yasushi; Aoki, Masahiro

    2018-06-05

    HNRNPLL (heterogeneous nuclear ribonucleoprotein L-like), an RNA-binding protein that regulates alternative splicing of pre-mRNAs, has been shown to regulate differentiation of lymphocytes, as well as metastasis of colorectal cancer cells. Here we show that HNRNPLL promotes cell cycle progression and hence proliferation of colorectal cancer cells. Functional annotation analysis of those genes whose expression levels were changed by three-fold or more in RNA sequencing analysis between SW480 cells overexpressing HNRNPLL and those knocked down for HNRNPLL revealed enrichment of DNA replication-related genes by HNRNPLL overexpression. Among 13 genes detected in the DNA replication pathway, PCNA, RFC3, and FEN1 showed reproducible upregulation by HNRNPLL overexpression both at mRNA and protein levels in SW480 and HT29 cells. Importantly, knockdown of any of these genes alone suppressed the proliferation promoting effect induced by HNRNPLL overexpression. RNA-immunoprecipitation assay presented a binding of FLAG-tagged HNRNPLL to mRNA of these genes, and HNRNPLL overexpression significantly suppressed the downregulation of these genes during 12 hours of actinomycin D treatment, suggesting a role of HNRNPLL in mRNA stability. Finally, analysis of a public RNA sequencing dataset of clinical samples suggested a link between overexpression of HNRNPLL and that of PCNA, RFC3, and FEN1. This link was further supported by immunohistochemistry of colorectal cancer clinical samples, whereas expression of CDKN1A, which is known to inhibit the cooperative function of PCNA, RFC3, and FEN1, was negatively associated with HNRNPLL expression. These results indicate that HNRNPLL stabilizes mRNAs encoding regulators of DNA replication and promotes colorectal cancer cell proliferation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Tie2 signaling cooperates with TNF to promote the pro-inflammatory activation of human macrophages independently of macrophage functional phenotype.

    Science.gov (United States)

    García, Samuel; Krausz, Sarah; Ambarus, Carmen A; Fernández, Beatriz Malvar; Hartkamp, Linda M; van Es, Inge E; Hamann, Jörg; Baeten, Dominique L; Tak, Paul P; Reedquist, Kris A

    2014-01-01

    Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 -differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 -differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.

  1. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile.

    Science.gov (United States)

    DeFuria, Jason; Belkina, Anna C; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R; Markham, Douglas; Strissel, Katherine J; Watkins, Amanda A; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S; McDonnell, Marie E; Apovian, Caroline; Denis, Gerald V; Nikolajczyk, Barbara S

    2013-03-26

    Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell-null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell-null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D.

  2. Maternal administration of cannabidiol promotes an anti-inflammatory effect on the intestinal wall in a gastroschisis rat model

    Directory of Open Access Journals (Sweden)

    G.H. Callejas

    2018-03-01

    Full Text Available Gastroschisis (GS is an abdominal wall defect that results in histological and morphological changes leading to intestinal motility perturbation and impaired absorption of nutrients. Due to its anti-inflammatory, antioxidant, and neuroprotective effects, cannabidiol (CBD has been used as a therapeutic agent in many diseases. Our aim was to test the effect of maternal CBD in the intestine of an experimental model of GS. Pregnant rats were treated over 3 days with CBD (30 mg/kg after the surgical induction of GS (day 18.5 of gestation and compared to controls. Fetuses were divided into 4 groups: 1 control (C; 2 C+CBD (CCBD; 3 gastroschisis (G, and 4 G+CBD (GCBD. On day 21.5 of gestation, the fetuses were harvested and evaluated for: a body weight (BW, intestinal weight (IW, and IW/BW ratio; b histometric analysis of the intestinal wall; c immunohistochemically analysis of inflammation (iNOS and nitrite/nitrate level. BW: GCBD was lower than CCBD (P<0.005, IW and IW/BW ratio: GCBD was smaller than G (P<0.005, GCBD presented lower thickness in all parameters compared to G (P<0.005, iNOS and nitrite/nitrate were lower concentration in GCBD than to G (P<0.005. Maternal use of CBD had a beneficial effect on the intestinal loops of GS with decreased nitrite/nitrate and iNOS expression.

  3. Peripartum Antibiotics Promote Gut Dysbiosis, Loss of Immune Tolerance, and Inflammatory Bowel Disease in Genetically Prone Offspring.

    Science.gov (United States)

    Miyoshi, Jun; Bobe, Alexandria M; Miyoshi, Sawako; Huang, Yong; Hubert, Nathaniel; Delmont, Tom O; Eren, A Murat; Leone, Vanessa; Chang, Eugene B

    2017-07-11

    Factors affecting the developing neonatal gut microbiome and immune networks may increase the risk of developing complex immune disorders such as inflammatory bowel diseases (IBD). In particular, peripartum antibiotics have been suggested as risk factors for human IBD, although direct evidence is lacking. Therefore, we examined the temporal impact of the commonly used antibiotic cefoperazone on both maternal and offspring microbiota when administered to dams during the peripartum period in the IL-10-deficient murine colitis model. By rigorously controlling for cage, gender, generational, and murine pathobiont confounders, we observed that offspring from cefoperazone-exposed dams develop a persistent gut dysbiosis into adulthood associated with skewing of the host immune system and increased susceptibility to spontaneous and chemically dextran sodium sulfate (DSS)-induced colitis. Thus, early life exposure to antibiotic-induced maternal dysbiosis during a critical developmental window for gut microbial assemblage and immune programming elicits a lasting impact of increased IBD risk on genetically susceptible offspring. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. TNF-α promotes nuclear enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in nucleus pulposus cells.

    Science.gov (United States)

    Johnson, Zariel I; Doolittle, Alexandra C; Snuggs, Joseph W; Shapiro, Irving M; Le Maitre, Christine L; Risbud, Makarand V

    2017-10-20

    Intervertebral disc degeneration (IDD) causes chronic back pain and is linked to production of proinflammatory molecules by nucleus pulposus (NP) and other disc cells. Activation of tonicity-responsive enhancer-binding protein (TonEBP)/NFAT5 by non-osmotic stimuli, including proinflammatory molecules, occurs in cells involved in immune response. However, whether inflammatory stimuli activate TonEBP in NP cells and whether TonEBP controls inflammation during IDD is unknown. We show that TNF-α, but not IL-1β or LPS, promoted nuclear enrichment of TonEBP protein. However, TNF-α-mediated activation of TonEBP did not cause induction of osmoregulatory genes. RNA sequencing showed that 8.5% of TNF-α transcriptional responses were TonEBP-dependent and identified genes regulated by both TNF-α and TonEBP. These genes were over-enriched in pathways and diseases related to inflammatory response and inhibition of matrix metalloproteases. Based on RNA-sequencing results, we further investigated regulation of novel TonEBP targets CXCL1 , CXCL2 , and CXCL3 TonEBP acted synergistically with TNF-α and LPS to induce CXCL1 -proximal promoter activity. Interestingly, this regulation required a highly conserved NF-κB-binding site but not a predicted TonE, suggesting cross-talk between these two members of the Rel family. Finally, analysis of human NP tissue showed that TonEBP expression correlated with canonical osmoregulatory targets TauT/SLC6A6 , SMIT/SLC5A3 , and AR/AKR1B1 , supporting in vitro findings that the inflammatory milieu during IDD does not interfere with TonEBP osmoregulation. In summary, whereas TonEBP participates in the proinflammatory response to TNF-α, therapeutic strategies targeting this transcription factor for treatment of disc disease must spare osmoprotective, prosurvival, and matrix homeostatic activities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Chronic inflammatory demyelinative polyneuropathy

    DEFF Research Database (Denmark)

    Said, Gérard; Krarup, Christian

    2013-01-01

    Chronic inflammatory demyelinative polyneuropathy (CIDP) is an acquired polyneuropathy presumably of immunological origin. It is characterized by a progressive or a relapsing course with predominant motor deficit. The diagnosis rests on the association of non-length-dependent predominantly motor...

  6. Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Stefania Cannito

    Full Text Available Non-Alcoholic Fatty Liver Disease (NAFLD is a major form of chronic liver disease in the general population in relation to its high prevalence among overweight/obese individuals and patients with diabetes type II or metabolic syndrome. NAFLD can progress to steatohepatitis (NASH, fibrosis and cirrhosis and end-stage of liver disease but mechanisms involved are still incompletely characterized. Within the mechanisms proposed to mediate the progression of NAFLD, lipotoxicity is believed to play a major role. In the present study we provide data suggesting that microvesicles (MVs released by fat-laden cells undergoing lipotoxicity can activate NLRP3 inflammasome following internalization by either cells of hepatocellular origin or macrophages. Inflammasome activation involves NF-kB-mediated up-regulation of NLRP3, pro-caspase-1 and pro-Interleukin-1, then inflammasome complex formation and Caspase-1 activation leading finally to an increased release of IL-1β. Since the release of MVs from lipotoxic cells and the activation of NLRP3 inflammasome have been reported to occur in vivo in either clinical or experimental NASH, these data suggest a novel rational link between lipotoxicity and increased inflammatory response.

  7. Strontium-Doped Calcium Phosphate and Hydroxyapatite Granules Promote Different Inflammatory and Bone Remodelling Responses in Normal and Ovariectomised Rats

    Science.gov (United States)

    Xia, Wei; Emanuelsson, Lena; Norlindh, Birgitta; Omar, Omar; Thomsen, Peter

    2013-01-01

    The healing of bone defects may be hindered by systemic conditions such as osteoporosis. Calcium phosphates, with or without ion substitutions, may provide advantages for bone augmentation. However, the mechanism of bone formation with these materials is unclear. The aim of this study was to evaluate the healing process in bone defects implanted with hydroxyapatite (HA) or strontium-doped calcium phosphate (SCP) granules, in non-ovariectomised (non-OVX) and ovariectomised (OVX) rats. After 0 (baseline), six and 28d, bone samples were harvested for gene expression analysis, histology and histomorphometry. Tumour necrosis factor-α (TNF-α), at six days, was higher in the HA, in non-OVX and OVX, whereas interleukin-6 (IL-6), at six and 28d, was higher in SCP, but only in non-OVX. Both materials produced a similar expression of the receptor activator of nuclear factor kappa-B ligand (RANKL). Higher expression of osteoclastic markers, calcitonin receptor (CR) and cathepsin K (CatK), were detected in the HA group, irrespective of non-OVX or OVX. The overall bone formation was comparable between HA and SCP, but with topological differences. The bone area was higher in the defect centre of the HA group, mainly in the OVX, and in the defect periphery of the SCP group, in both non-OVX and OVX. It is concluded that HA and SCP granules result in comparable bone formation in trabecular bone defects. As judged by gene expression and histological analyses, the two materials induced different inflammatory and bone remodelling responses. The modulatory effects are associated with differences in the spatial distribution of the newly formed bone. PMID:24376855

  8. Bone marrow mesenchymal stem cells promote head and neck cancer progression through Periostin-mediated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin.

    Science.gov (United States)

    Liu, Chuanxia; Feng, Xiaoxia; Wang, Baixiang; Wang, Xinhua; Wang, Chaowei; Yu, Mengfei; Cao, Guifen; Wang, Huiming

    2018-03-01

    Bone marrow mesenchymal stem cells (BMMSC) have been shown to be recruited to the tumor microenvironment and exert a tumor-promoting effect in a variety of cancers. However, the molecular mechanisms related to the tumor-promoting effect of BMMSC on head and neck cancer (HNC) are not clear. In this study, we investigated Periostin (POSTN) and its roles in the tumor-promoting effect of BMMSC on HNC. In vitro analysis of HNC cells cultured in BMMSC-conditioned media (MSC-CM) showed that MSC-CM significantly promoted cancer progression by enhancing cell proliferation, migration, epithelial-mesenchymal transformation (EMT), and altering expression of cell cycle regulatory proteins and inhibition of apoptosis. Moreover, MSC-CM promoted the expression of POSTN and POSTN promoted HNC progression through the activation of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. In a murine model of HNC, we found that BMMSC promoted tumor growth, invasion, metastasis and enhanced the expression of POSTN and EMT in tumor tissues. Clinical sample analysis further confirmed that the expression of POSTN and N-cadherin were correlated with pathological grade and lymph node metastasis of HNC. In conclusion, this study indicated that BMMSC promoted proliferation, invasion, survival, tumorigenicity and migration of head and neck cancer through POSTN-mediated PI3K/Akt/mTOR activation. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression.

    Science.gov (United States)

    Chakraborty, Ujani; Dinh, Timothy A; Alani, Eric

    2018-04-13

    Mismatch repair (MMR) proteins act in spellchecker roles to excise misincorporation errors that occur during DNA replication. Curiously, large-scale analyses of a variety of cancers showed that increased expression of MMR proteins often correlated with tumor aggressiveness, metastasis, and early recurrence. To better understand these observations, we used the TCGA and GENT databases to analyze MMR protein expression in cancers. We found that the MMR genes MSH2 and MSH6 are overexpressed more frequently than MSH3 , and that MSH2 and MSH6 are often co-overexpressed as a result of copy number amplifications of these genes. These observations encouraged us to test the effects of upregulating MMR protein levels in baker's yeast, where we can sensitively monitor genome instability phenotypes associated with cancer initiation and progression. Msh6 overexpression (2 to 4-fold) almost completely disrupted mechanisms that prevent recombination between divergent DNA sequences by interacting with the DNA polymerase processivity clamp PCNA and by sequestering the Sgs1 helicase. Importantly, co-overexpression of Msh2 and Msh6 (∼8-fold) conferred, in a PCNA interaction dependent manner, several genome instability phenotypes including increased mutation rate, increased sensitivity to the DNA replication inhibitor hydroxyurea and the DNA damaging agents methyl methanesulfonate and 4-nitroquinoline N-oxide, and elevated loss of heterozygosity. Msh2 and Msh6 co-overexpression also altered the cell cycle distribution of exponentially growing cells, resulting in an increased fraction of unbudded cells, consistent with a larger percentage of cells in G1. These novel observations suggested that overexpression of MSH factors affected the integrity of the DNA replication fork, causing genome instability phenotypes that could be important for promoting cancer progression. Copyright © 2018, Genetics.

  10. Interleukin-6 promotes systemic lupus erythematosus progression with Treg suppression approach in a murine systemic lupus erythematosus model.

    Science.gov (United States)

    Mao, Xiaoli; Wu, Yunyun; Diao, Huitian; Hao, Jianlei; Tian, Gaofei; Jia, Zhenghu; Li, Zheng; Xiong, Sidong; Wu, Zhenzhou; Wang, Puyue; Zhao, Liqing; Yin, Zhinan

    2014-11-01

    Our aim is to reveal the role of interleukin 6 (IL-6) in the pathogenesis of systemic lupus erythematosus (SLE) in a murine model of SLE. Normal female C57BL/6 mice were immunized with syngeneic-activated lymphocyte-derived DNA (ALD-DNA) to induce SLE. Non-immunized mice were used as control. SLE-associated markers, including anti-double-stranded DNA (anti-dsDNA) Abs, urine protein, and kidney histopathology, were assayed to ensure the induction of the disease. Compared with control mice, ALD-DNA immunized mice exhibited high levels of anti-dsDNA Abs, IL-6 expression in vivo and in vitro. We also found that IL-6 knockout (IL-6KO) mice were resistant to ALD-DNA-induced SLE. The activation of CD4(+) T cells in immunized IL-6KO mice was lower than in immunized wild-type (Wt) mice. Intracellular cytokine staining showed that Foxp3 expression in immunized IL-6KO mice was higher than in immunized Wt mice, which might be associated with the disease severity. We further discovered that ALD-DNA-stimulated dendritic cells supernatants could result in higher IL-6 and TNF-α expression and could suppress Foxp3 expression. In addition, blocking IL-6 could up-regulate Foxp3 expression. Therefore, our findings show that IL-6 promotes the progression of SLE via suppressing Treg differentiation.

  11. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration.

    Science.gov (United States)

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-08-11

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections.

  12. RIP3 Inhibits Inflammatory Hepatocarcinogenesis but Promotes Cholestasis by Controlling Caspase-8- and JNK-Dependent Compensatory Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Mihael Vucur

    2013-08-01

    Full Text Available For years, the term “apoptosis” was used synonymously with programmed cell death. However, it was recently discovered that receptor interacting protein 3 (RIP3-dependent “necroptosis” represents an alternative programmed cell death pathway activated in many inflamed tissues. Here, we show in a genetic model of chronic hepatic inflammation that activation of RIP3 limits immune responses and compensatory proliferation of liver parenchymal cells (LPC by inhibiting Caspase-8-dependent activation of Jun-(N-terminal kinase in LPC and nonparenchymal liver cells. In this way, RIP3 inhibits intrahepatic tumor growth and impedes the Caspase-8-dependent establishment of specific chromosomal aberrations that mediate resistance to tumor-necrosis-factor-induced apoptosis and underlie hepatocarcinogenesis. Moreover, RIP3 promotes the development of jaundice and cholestasis, because its activation suppresses compensatory proliferation of cholangiocytes and hepatic stem cells. These findings demonstrate a function of RIP3 in regulating carcinogenesis and cholestasis. Controlling RIP3 or Caspase-8 might represent a chemopreventive or therapeutic strategy against hepatocellular carcinoma and biliary disease.

  13. Fasting and meal-stimulated residual beta cell function is positively associated with serum concentrations of proinflammatory cytokines and negatively associated with anti-inflammatory and regulatory cytokines in patients with longer term type 1 diabetes

    DEFF Research Database (Denmark)

    Pham, Minh-Long; Kolb, H; Battelino, T

    2013-01-01

    Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes.......Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes....

  14. Promoting universal financial protection: evidence from seven low- and middle-income countries on factors facilitating or hindering progress.

    Science.gov (United States)

    McIntyre, Di; Ranson, Michael K; Aulakh, Bhupinder K; Honda, Ayako

    2013-09-24

    problem in LMICs. The case studies also highlighted the critical role of high-level political leadership in pursuing UHC policies and citizen support in sustaining these policies.This series demonstrates the value of promoting greater sharing of experiences on UHC reforms across LMICs. It also identifies key areas of future research on health care financing in LMICs that would support progress towards UHC.

  15. Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice

    Energy Technology Data Exchange (ETDEWEB)

    Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania; Cantatore, Santina [Department of Forensic Pathology, University of Foggia, Foggia (Italy); Cerretani, Daniela [Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena (Italy); Di Paolo, Marco [Department of Forensic Pathology, University of Pisa, Pisa (Italy); Fiaschi, Anna Ida [Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena (Italy); Frati, Paola [Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, University of Rome Sapienza, Viale Regina Elena 336, 00161 Rome (Italy); Neri, Margherita [Department of Forensic Pathology, University of Foggia, Foggia (Italy); Pedretti, Monica [Department of Forensic Pathology, University of Pisa, Pisa (Italy); Fineschi, Vittorio, E-mail: vfinesc@tin.it [Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, University of Rome Sapienza, Viale Regina Elena 336, 00161 Rome (Italy)

    2014-10-01

    Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. - Highlights: • We analyze abuse of nandrolone decanoate in strength-trained male CD1 mice. • Nandrolone decanoate administration increases oxidative stress. • Increased cytokine expressions were observed. • Renal apoptosis was described. • Long-term administration of nandrolone promotes oxidative injury in mice kidney.

  16. Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice

    International Nuclear Information System (INIS)

    Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania; Cantatore, Santina; Cerretani, Daniela; Di Paolo, Marco; Fiaschi, Anna Ida; Frati, Paola; Neri, Margherita; Pedretti, Monica; Fineschi, Vittorio

    2014-01-01

    Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. - Highlights: • We analyze abuse of nandrolone decanoate in strength-trained male CD1 mice. • Nandrolone decanoate administration increases oxidative stress. • Increased cytokine expressions were observed. • Renal apoptosis was described. • Long-term administration of nandrolone promotes oxidative injury in mice kidney

  17. LIVER FUNCTION CHANGES IN PATIENTS WITH SPONDYLOARTHRITIS TAKING NONSTEROIDAL ANTI-INFLAMMATORY DRUGS OVER A LONG PERIOD: RESULTS OF A 10-YEAR PROGRESS PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    A. P. Rebrov

    2016-01-01

    Full Text Available Objective: to assess liver function changes in patients with spondyloarthritis (SpA taking NSAIDs regularly over a long period.Patients and methods. The data obtained during a 10-year PROGRESS prospective single-center cohort study of functional status, activity, and comorbidity (including gastrointestinal tract diseases in patients with SpA were analyzed. The data of 363 SpA patients receiving NSAIDs regularly over a long period and followed up for 10 years were also explored. The changes that had occurred over a decade in the liver enzyme levels, the number of discontinued NSAID treatments because of a persistent increase in liver enzyme levels, and the number of prescriptions of hepatoprotective agents were analyzed.Results. For 10 years, 18 patients with SpA discontinued their NSAID intake due to elevated liver enzyme levels (≥3 times greater than the reference value; during that time, the same increase in enzyme levels was observed in 2 healthy individuals (χ2 =1.39; p=0.2. In the patients with SpA as compared to the healthy individuals, the relative risk of abnormal liver function was 1.19 (95% CI, 1.009–1.405; odds ratio was 2.9 (95% CI, 0.65–12.95. There was no increased risk for discontinuation of some NSAIDs, including nimesulide (χ2 =0.03, p=0.85, the frequency of using hepatoprotective drugs was proved to be highest for diclofenac sodium, ibuprofen, nimesulide, and ketoprofen.Conclusion. The regular long-term (as long as 10 years use of NSAIDs to treat SpA is associated with treatment discontinuation because of elevated enzyme levels in every 10 patients. The maximum rate of discontinuation of NSAIDs due to a persistent increase in liver enzyme levels is observed 6–8 years after their regular use, so long-term NSAID therapy requires continuous monitoring of hepatic safety. The longterm intake of nimesulide, as compared with other NSAIDs, is shown to be unassociated with the higher rate of its discontinuation because of

  18. Lymphotoxin β receptor activation promotes mRNA expression of RelA and pro-inflammatory cytokines TNFα and IL-1β in bladder cancer cells.

    Science.gov (United States)

    Shen, Mo; Zhou, Lianlian; Zhou, Ping; Zhou, Wu; Lin, Xiangyang

    2017-07-01

    The role of inflammation in tumorigenesis and development is currently well established. Lymphotoxin β receptor (LTβR) activation induces canonical and noncanonical nuclear factor (NF)‑κB signaling pathways, which are linked to inflammation‑induced carcinogenesis. In the present study, 5,637 bladder cancer cells were cultured and the activation of LTβR was induced by functional ligand, lymphotoxin (LT) α1β2, and silencing with shRNA. Reverse transcription‑quantitative polymerase chain reaction was utilized to detect the mRNA expression levels of NF‑κB family members RelA and RelB, cytokines including LTα, LTβ, tumor necrosis factor (TNF)α, TNF superfamily member 14, interleukin (IL)‑6 and IL‑1β, and proliferation‑related genes including CyclinD1 and Survivin. The expression of phospho‑p65 was determined by western blotting. Activation of LTβR on bladder cancer 5,637 cells was demonstrated to upregulate the mRNA expression levels of the RELA proto‑oncogene, RelA, by 2.5‑fold compared with unstimulated cells, while no significant change was observed in the RELB proto‑oncogene NF‑κB member mRNA levels. Expression of pro‑inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)‑1β mRNA levels were significantly increased nearly 5‑fold and 1.5‑fold, respectively, following LTβR activation compared with unstimulated cells. The LTβR‑induced upregulation of RelA, TNFα and IL‑1β was decreased by ~33, 27, and 26% respectively when LTβR was silenced via short hairpin RNA. Activation of LTβR had no effect on 5,637 cell growth, despite CyclinD1 and Survivin mRNA levels increasing by ~2.7 and 1.3‑fold, respectively, compared with unstimulated cells. In conclusion, activation of LTβR induced the expression of RelA mRNA levels. LTβR activation might be an important mediator in promoting an inflammatory microenvironment in bladder cancer, via the upregulation of TNFα and IL‑1β mRNA levels. LTβR may

  19. Progress in Teachers' Readiness to Promote Positive Youth Development among Students during the Lions Quest Teaching Workshop

    Science.gov (United States)

    Talvio, Markus; Berg, Minna; Ketonen, Elina; Komulainen, Erkki; Lonka, Kirsti

    2015-01-01

    Modern learning psychology places an emphasis on the ability of teachers to promote their students' social and emotional learning (SEL) and living a good life. Research on precisely how teachers promote SEL and well-being among their students, however, remains scarce. This study focused on evaluating the Lions Quest teaching workshop (LQ), which…

  20. S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression.

    Science.gov (United States)

    Prieto, Daniel; Sotelo, Natalia; Seija, Noé; Sernbo, Sandra; Abreu, Cecilia; Durán, Rosario; Gil, Magdalena; Sicco, Estefanía; Irigoin, Victoria; Oliver, Carolina; Landoni, Ana Inés; Gabus, Raúl; Dighiero, Guillermo; Oppezzo, Pablo

    2017-08-10

    Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by accumulation of clonal B lymphocytes, resulting from a complex balance between cell proliferation and apoptotic death. Continuous crosstalk between cancer cells and local/distant host environment is required for effective tumor growth. Among the main actors of this dynamic interplay between tumoral cells and their microenvironment are the nano-sized vesicles called exosomes. Emerging evidence indicates that secretion, composition, and functional capacity of exosomes are altered as tumors progress to an aggressive phenotype. In CLL, no data exist exploring the specific changes in the proteomic profile of plasma-derived exosomes from patients during disease evolution. We hereby report for the first time different proteomic profiles of plasma exosomes, both between indolent and progressive CLLs as well as within the individual patients at the onset of disease and during its progression. Next, we focus on the changes of the exosome protein cargoes, which are found exclusively in patients with progressive CLL after disease progression. The alterations in the proteomic cargoes underline different networks specific for leukemia progression related to inflammation, oxidative stress, and NF-κB and phosphatidylinositol 3-kinase/AKT pathway activation. Finally, our results suggest a preponderant role for the protein S100-A9 as an activator of the NFκB pathway during CLL progression and suggest that the leukemic clone can generate an autoactivation loop through S100-A9 expression, NF-κB activation, and exosome secretion. Collectively, our data propose a new pathway for NF-κB activation in CLL and highlight the importance of exosomes as extracellular mediators promoting tumor progression in CLL. © 2017 by The American Society of Hematology.

  1. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

    OpenAIRE

    Ruth Moges; Ruth Moges; Dimitri Desmonts De Lamache; Dimitri Desmonts De Lamache; Saman Sajedy; Bernard S. Renaux; Bernard S. Renaux; Morley D. Hollenberg; Morley D. Hollenberg; Gregory Muench; Elizabeth M. Abbott; Andre G. Buret; Andre G. Buret

    2018-01-01

    Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the ...

  2. Early Involvement of Death-Associated Protein Kinase Promoter Hypermethylation in the Carcinogenesis of Barrett's Esophageal Adenocarcinoma and Its Association with Clinical Progression

    Directory of Open Access Journals (Sweden)

    Doerthe Kuester

    2007-03-01

    Full Text Available Esophageal Barrett's adenocarcinoma (BA develops through a multistage process, which is associated with the transcriptional silencing of tumor-suppressor genes by promoter CpG island hypermethylation. In this study, we explored the promoter hypermethylation and protein expression of proapoptotic deathassociated protein kinase (DAPK during the multistep Barrett's carcinogenesis cascade. Early BA and paired samples of premalignant lesions of 61 patients were analyzed by methylation-specific polymerase chain reaction and immunohistochemistry. For the association of clinicopathological markers and protein expression, an immunohistochemical tissue microarray analysis of 66 additional BAs of advanced tumor stages was performed. Hypermethylation of DAPK promoter was detected in 20% of normal mucosa, 50% of Barrett's metaplasia, 53% of dysplasia, and 60% of adenocarcinomas, and resulted in a marked decrease in DAPK protein expression (P < .01. The loss of DAPK protein was significantly associated with advanced depth of tumor invasion and advanced tumor stages (P < .001. Moreover, the severity of reflux esophagitis correlated significantly with the hypermethylation rate of the DAPK promoter (P < .003. Thus, we consider DAPK inactivation by promoter hypermethylation as an early event in Barrett's carcinogenesis and suggest that a decreased protein expression of DAPK likely plays a role in the development and progression of BA.

  3. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  4. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdh1 and cyclin A-Cdk2 during cell cycle progression

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2001-01-01

    Periodic activity of the anaphase-promoting complex (APC) ubiquitin ligase determines progression through multiple cell cycle transitions by targeting cell cycle regulators for destruction. At the G(1)/S transition, phosphorylation-dependent dissociation of the Cdh1-activating subunit inhibits...... the APC, allowing stabilization of proteins required for subsequent cell cycle progression. Cyclin-dependent kinases (CDKs) that initiate and maintain Cdh1 phosphorylation have been identified. However, the issue of which cyclin-CDK complexes are involved has been a matter of debate, and the mechanism...... of how cyclin-CDKs interact with APC subunits remains unresolved. Here we substantiate the evidence that mammalian cyclin A-Cdk2 prevents unscheduled APC reactivation during S phase by demonstrating its periodic interaction with Cdh1 at the level of endogenous proteins. Moreover, we identified...

  5. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM.

    Science.gov (United States)

    Cromer, Laurence; Heyman, Jefri; Touati, Sandra; Harashima, Hirofumi; Araou, Emilie; Girard, Chloe; Horlow, Christine; Wassmann, Katja; Schnittger, Arp; De Veylder, Lieven; Mercier, Raphael

    2012-01-01

    Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor.

  6. Evaluating Structural Change Approaches to Health Promotion: An Exploratory Scoping Review of a Decade of U.S. Progress

    Science.gov (United States)

    Asada, Yuka; Lieberman, Lisa D.; Neubauer, Leah C.; Hanneke, Rosie; Fagen, Michael C.

    2018-01-01

    Structural change approaches--also known as policy and environmental changes--are becoming increasingly common in health promotion, yet our understanding of how to evaluate them is still limited. An exploratory scoping review of the literature was conducted to understand approaches and methods used to evaluate structural change interventions in…

  7. Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression.

    Science.gov (United States)

    Hung, Shun-Pei; Yang, Muh-Hwa; Tseng, Kuo-Fung; Lee, Oscar K

    2013-01-01

    In solid tumors, a decreased oxygen and nutrient supply creates a hypoxic microenvironment in the central region. This hypoxic condition induces molecular responses of normal and cancer cells in the local area, including angiogenesis, metabolic changes, and metastasis. In addition, other cells including mesenchymal stem cells (MSCs) have been reported to be recruited into the hypoxic area of solid tumors. In our previous study, we found that hypoxic condition induces the secretion of growth factors and cytokines in MSCs, and here we demonstrate that elevated secretion of transforming growth factor-β1 (TGF-β1) by MSCs under hypoxia promotes the growth, motility, and invasive ability of breast cancer cells. It was found that TGF-β1 promoter activity was regulated by hypoxia, and the major hypoxia-regulated element was located between bp -1030 to -666 in front of the TGF-β1 promoter region. In ChIP assay, the results revealed that HIF-1 was bound to the hypoxia response element (HRE) of TGF-β1 promoter. Collectively, the results indicate that hypoxia microenvironment can enhance cancer cell growth through the paracrine effects of the MSCs by driving their TGF-β1 gene expression and secretion. Therefore, extra caution has to be exercised when considering hypoxia pretreatment of MSCs before cell transplantation into patients for therapeutic purposes, particularly in patients susceptible to tumor growth.

  8. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Fujin [Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu (China); Department of Urinary Surgery, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Ma, Song [Department of Urinary Surgery, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Xue, Yubao [Department of Medical Oncology, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China); Hou, Jianquan, E-mail: Jianquanhou@aliyun.com [Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu (China); Zhang, Yongjie, E-mail: zhangyj0818@126.com [Department of Medical Oncology, Huai' an Hospital to Xuzhou Medical University, Huai' an, Jiangsu (China)

    2016-01-22

    Lactate dehydrogenase-A(LDH-A) is an important rate-limiting enzyme in the Warburg effect. Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. The results of in vitro experiment indicated that LDH-A promotes MIBC cells proliferation, invasion and migration. The positive relationship between LDH-A expression and CSC/EMT markers was confirmed both in invasive bladder cell line and in 136 MIBC specimens. Thus, we conclude that LDH-A may be a promising target for MIBC. - Highlights: • Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. • IHC analysis of 136 MIBC specimens revealed increased LDH-A is correlated with positive Oct4 and negative E-cadherin. • In vitro experiments demonstrated LDH-A promotes MIBC progression by positive regulation of EMT/CSC.

  9. Multiple endocrine neoplasia (MEN) - like syndrome and other hormonal factors of promotion and progression of thyroid gland cancer in males-liquidators of Chernobyl accident consequences

    International Nuclear Information System (INIS)

    Strukov, E.L.; Dryguina, L.B.; Nikiforova, I.D.

    1997-01-01

    The clinical and laboratory endocrinological screening performed in 1,000 males - liquidators of Chernobyl accident consequences revealed hormonal factors leading to node formation and having unfavourable influence on progression and promotion of thyroid gland cancer. The factors include syndrome of low thriiodothyronine, hyperprolactinemia, latent hypothyrosis and increased production of thyroglobulin. Peculiarities of hormonal status in liquidators allow us to suggest the presence of MEN-like syndrome among the liquidators population. Possible mechanisms of expression of RET oncogene in adults that may result in MEN- like syndrome have been discussed. (author)

  10. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis.

    Science.gov (United States)

    Nooh, Hanaa Z; Nour-Eldien, Nermeen M

    2016-07-01

    A decreased antioxidant capacity and excessive inflammation are well-known features in the pathogenesis of ulcerative colitis (UC). Recent evidence has suggested a role of honey in reducing colitis-induced inflammatory and oxidative stress markers. In this study, we examined whether the anti-inflammatory and anti-oxidative properties of honey have a beneficial effect on the enteric innervation and cellular proliferation of UC in rat. The colitis was induced in rats by dextran sodium sulphate (DSS). The effect of natural honey on induced colitis was assessed by the following parameters in colonic samples: tissue injury, inflammatory infiltration, interleukin-1β and -6, superoxide dismutase and reduced glutathione. In addition, the expression of tumour necrosis factor-α, inducible NO synthase, caspase-3, CD34, Ki67, S100, c-kit, and neuron-specific enolase were examined by immunohistochemistry. Compared to the DSS-induced colitis group, the honey-treated group had significantly improved macroscopic and microscopic scores and exhibited the down-regulation of oxidative, inflammatory, and apoptotic markers. In addition, up-regulation of intrinsic muscular innervation and epithelial cellular proliferation markers was detected. These results provide new insight into the beneficial role of natural honey in the treatment of DSS-induced colitis via the inhibition of colonic motor dysfunction and the inflammatory-oxidative-apoptotic cascade. In addition, the role of honey in epithelial regeneration was clarified. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    Science.gov (United States)

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    OpenAIRE

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T.; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for bu...

  13. Lifestyle habits and obesity progression in overweight and obese American young adults: Lessons for promoting cardiometabolic health

    OpenAIRE

    Cha, EunSeok; Akazawa, Margeaux K.; Kim, Kevin H.; Dawkins, Colleen R.; Lerner, Hannah M.; Umpierrez, Guillermo; Dunbar, Sandra B.

    2015-01-01

    Obesity among young adults is a growing problem in the United States and is related to unhealthy lifestyle habits such as high caloric intake and inadequate exercise. Accurate assessment of lifestyle habits across obesity stages is important for informing age-specific intervention strategies to prevent and reduce obesity progression. Using a modified version of the Edmonton Obesity Staging System (mEOSS), a new scale for defining obesity risk and predicting obesity morbidity and mortality, th...

  14. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment

    Science.gov (United States)

    Deep, Gagan; Panigrahi, Gati K.

    2017-01-01

    Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, stemness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/β-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles “exosomes” in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes’ role has been reported in hypoxia-induced angiogenesis, stemness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways. PMID:27279239

  15. The International Accounting Standards Board’s Progress in Promoting Judgement Through Objectives-Oriented Accounting Standards

    OpenAIRE

    Tanja Lakovic; Jayne Fuglister

    2013-01-01

    This study analyzes how the International Accounting Standards Board (IASB) promotes professional judgement by issuing objectives-oriented accounting standards and exposure drafts.  We focus on the the role of judgement as outlined in Phase I of the IASB Conceptual Framework (CF), Chapter 1, “Objective of General Purpose Financial Statements” and Chapter 3, “Qualitative Characteristics of Useful Financial Information” (IASB 2010). We discuss how the framework, when viewed through the prism of...

  16. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice.

    Science.gov (United States)

    de Sousa Rodrigues, Maria Elizabeth; Bekhbat, Mandakh; Houser, Madelyn C; Chang, Jianjun; Walker, Douglas I; Jones, Dean P; Oller do Nascimento, Claudia M P; Barnum, Christopher J; Tansey, Malú G

    2017-01-01

    The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis.

    Science.gov (United States)

    Yan, Xin-Long; Jia, Ya-Li; Chen, Lin; Zeng, Quan; Zhou, Jun-Nian; Fu, Chun-Jiang; Chen, Hai-Xu; Yuan, Hong-Feng; Li, Zhi-Wei; Shi, Lei; Xu, Ying-Chen; Wang, Jing-Xue; Zhang, Xiao-Mei; He, Li-Juan; Zhai, Chao; Yue, Wen; Pei, Xue-Tao

    2013-06-01

    Cancer-associated mesenchymal stem cells (MSCs) play a pivotal role in modulating tumor progression. However, the interactions between liver cancer-associated MSCs (LC-MSCs) and hepatocellular carcinoma (HCC) remain unreported. Here, we identified the presence of MSCs in HCC tissues. We also showed that LC-MSCs significantly enhanced tumor growth in vivo and promoted tumor sphere formation in vitro. LC-MSCs also promoted HCC metastasis in an orthotopic liver transplantation model. Complementary DNA (cDNA) microarray analysis showed that S100A4 expression was significantly higher in LC-MSCs compared with liver normal MSCs (LN-MSCs) from adjacent cancer-free tissues. Importantly, the inhibition of S100A4 led to a reduction of proliferation and invasion of HCC cells, while exogenous S100A4 expression in HCC cells resulted in heavier tumors and more metastasis sites. Our results indicate that S100A4 secreted from LC-MSCs can promote HCC cell proliferation and invasion. We then found the expression of oncogenic microRNA (miR)-155 in HCC cells was significantly up-regulated by coculture with LC-MSCs and by S100A4 ectopic overexpression. The invasion-promoting effects of S100A4 were significantly attenuated by a miR-155 inhibitor. These results suggest that S100A4 exerts its effects through the regulation of miR-155 expression in HCC cells. We demonstrate that S100A4 secreted from LC-MSCs promotes the expression of miR-155, which mediates the down-regulation of suppressor of cytokine signaling 1, leading to the subsequent activation of STAT3 signaling. This promotes the expression of matrix metalloproteinases 9, which results in increased tumor invasiveness. S100A4 secreted from LC-MSCs is involved in the modulation of HCC progression, and may be a potential therapeutic target. (HEPATOLOGY 2013). Copyright © 2013 American Association for the Study of Liver Diseases.

  18. Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis.

    Science.gov (United States)

    Zhu, Jie; Shi, Huirong; Liu, Huina; Wang, Xiaojuan; Li, Fengmei

    2017-09-12

    Increasing evidences showed that long non-coding RNAs (lncRNAs) play vital roles in tumor progression. Recent studies indicated that lncRNA TUG1 was upregulated and promoted tumor processes in several cancers. However, the expression and underlying mechanism of TUG1 in cervical cancer remain unclear. In the present study, we found that TUG1 expression was upregulated in cervical cancer tissues and correlated with advanced clinical features and poor overall survival. TUG1 knockdown suppressed cervical cancer cell growth and metastasis in vitro and tumor growth in vivo . In addition, our results indicated that TUG1 could act as an endogenous sponge by directly binding to miR-138-5p and suppressed miR-138-5p expression. Furthermore, we found that TUG1 could reverse the inhibitory effect of miR-138-5p on cervical cancer cells processes, which might be involved in the activation of SIRT1, a target gene of miR-138-5p, and activation of Wnt/β-catenin signaling pathway. Taken together, we elucidated that TUG1 might promote cervical cancer malignant progression via miR-138-5p-SIRT1-Wnt/β-catenin signaling pathway axis.

  19. Insulin-Like growth factor 1 related pathways and high-fat diet promotion of transgenic adenocarcinoma mouse prostate (TRAMP) cancer progression.

    Science.gov (United States)

    Xu, H; Jiang, H W; Ding, Q

    2015-04-01

    We aimed to investigate the role of IGF-1 related pathway in high-fat diet (HFD) promotion of TRAMP mouse PCa progression. TRAMP mice were randomly divided into two groups: HFD group and normal diet group. TRAMP mice of both groups were sacrificed and sampled on the 20th, 24th and 28th week respectively. Serum levels of insulin, IGF-1 and IGF-2 were tested by ELISA. Prostate tissue of TRAMP mice was used for both HE staining and immunohistochemical staining of IGF-1 related pathway proteins, including IGF-1Rα, IGF -1Rβ, IGFBPs and AKT. The mortality of TRAMP mice from HFD group was significantly higher than that of normal diet group (23.81% and 7.14%, p=.035). The tumor incidence of HFD TRAMP mice at 20(th) week was significantly higher than normal diet group (78.57% and 35.71%, p=.022). Serum IGF-1 level of HFD TRAMP mice was significantly higher than that of normal diet TRAMP mice. Serum IGF-1 level tended to increase with HFD TRAMP mice's age. HFD TRAMP mice had higher positive staining rate of IGF-1Rα, IGF-1Rβ, IGFBP3 and Akt than normal diet TRAMP mice. IGF-1 related pathway played an important role in high-fat diet promotion of TRAMP mouse PCa development and progression. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Lifestyle habits and obesity progression in overweight and obese American young adults: Lessons for promoting cardiometabolic health.

    Science.gov (United States)

    Cha, EunSeok; Akazawa, Margeaux K; Kim, Kevin H; Dawkins, Colleen R; Lerner, Hannah M; Umpierrez, Guillermo; Dunbar, Sandra B

    2015-12-01

    Obesity among young adults is a growing problem in the United States and is related to unhealthy lifestyle habits, such as high caloric intake and inadequate exercise. Accurate assessment of lifestyle habits across obesity stages is important for informing age-specific intervention strategies to prevent and reduce obesity progression. Using a modified version of the Edmonton Obesity Staging System (mEOSS), a new scale for defining obesity risk and predicting obesity morbidity and mortality, this cross-sectional study assessed the prevalence of overweight/obese conditions in 105 young adults and compared their lifestyle habits across the mEOSS stages. Descriptive statistics, chi-square tests, and one-way analyses of variance were performed. Eighty percent of participants (n = 83) fell into the mEOSS-2 group and had obesity-related chronic disorders, such as diabetes, hypertension, and/or dyslipidemia. There were significant differences in dietary quality and patterns across the mEOSS stages. Findings highlighted the significance of prevention and early treatment for overweight and obese young adults to prevent and cease obesity progression. © 2015 Wiley Publishing Asia Pty Ltd.

  1. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer.

    Science.gov (United States)

    Gerhardt, Josefine; Montani, Matteo; Wild, Peter; Beer, Marc; Huber, Fabian; Hermanns, Thomas; Müntener, Michael; Kristiansen, Glen

    2012-02-01

    Forkhead box protein A1 (FOXA1) modulates the transactivation of steroid hormone receptors and thus may influence tumor growth and hormone responsiveness in prostate cancer. We therefore investigated the correlation of FOXA1 expression with clinical parameters, prostate-specific antigen (PSA) relapse-free survival, and hormone receptor expression in a large cohort of prostate cancer patients at different disease stages. FOXA1 expression did not differ significantly between benign glands from the peripheral zone and primary peripheral zone prostate carcinomas. However, FOXA1 was overexpressed in metastases and particularly in castration-resistant cases, but was expressed at lower levels in both normal and neoplastic transitional zone tissues. FOXA1 levels correlated with higher pT stages and Gleason scores, as well as with androgen (AR) and estrogen receptor expression. Moreover, FOXA1 overexpression was associated with faster biochemical disease progression, which was pronounced in patients with low AR levels. Finally, siRNA-based knockdown of FOXA1 induced decreased cell proliferation and migration. Moreover, in vitro tumorigenicity was inducible by ARs only in the presence of FOXA1, substantiating a functional cooperation between FOXA1 and AR. In conclusion, FOXA1 expression is associated with tumor progression, dedifferentiation of prostate cancer cells, and poorer prognosis, as well as with cellular proliferation and migration and with AR signaling. These findings suggest FOXA1 overexpression as a novel mechanism inducing castration resistance in prostate cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. MicroRNA-124 slows down the progression of Huntington′s disease by promoting neurogenesis in the striatum

    Directory of Open Access Journals (Sweden)

    Tian Liu

    2015-01-01

    Full Text Available MicroRNA-124 contributes to neurogenesis through regulating its targets, but its expression both in the brain of Huntington′s disease mouse models and patients is decreased. However, the effects of microRNA-124 on the progression of Huntington′s disease have not been reported. Results from this study showed that microRNA-124 increased the latency to fall for each R6/2 Huntington′s disease transgenic mouse in the rotarod test. 5-Bromo-2′-deoxyuridine (BrdU staining of the striatum shows an increase in neurogenesis. In addition, brain-derived neurotrophic factor and peroxisome proliferator-activated receptor gamma coactivator 1-alpha protein levels in the striatum were increased and SRY-related HMG box transcription factor 9 protein level was decreased. These findings suggest that microRNA-124 slows down the progression of Huntington′s disease possibly through its important role in neuronal differentiation and survival.

  3. n-Butyl benzyl phthalate promotes breast cancer progression by inducing expression of lymphoid enhancer factor 1.

    Directory of Open Access Journals (Sweden)

    Tsung-Hua Hsieh

    Full Text Available Environmental hormones play important roles in regulating the expression of genes involved in cell proliferation, drug resistance, and breast cancer risk; however, their precise role in human breast cancer cells during cancer progression remains unclear. To elucidate the effect of the most widely used industrial phthalate, n-butyl benzyl phthalate (BBP, on cancer progression, we evaluated the results of BBP treatment using a whole human genome cDNA microarray and MetaCore software and selected candidate genes whose expression was changed by more than ten-fold by BBP compared with controls to analyze the signaling pathways in human breast cancer initiating cells (R2d. A total of 473 genes were upregulated, and 468 were downregulated. Most of these genes are involved in proliferation, epithelial-mesenchymal transition, and angiogenesis signaling. BBP induced the viability, invasion and migration, and tube formation in vitro, and Matrigel plug angiogenesis in vivo of R2d and MCF-7. Furthermore, the viability and invasion and migration of these cell lines following BBP treatment was reduced by transfection with a small interfering RNA targeting the mRNA for lymphoid enhancer-binding factor 1; notably, the altered expression of this gene consistently differentiated tumors expressing genes involved in proliferation, epithelial-mesenchymal transition, and angiogenesis. These findings contribute to our understanding of the molecular impact of the environmental hormone BBP and suggest possible strategies for preventing and treating human breast cancer.

  4. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression.

    Science.gov (United States)

    Xu, Wen Wen; Li, Bin; Guan, Xin Yuan; Chung, Sookja K; Wang, Yang; Yip, Yim Ling; Law, Simon Y K; Chan, Kin Tak; Lee, Nikki P Y; Chan, Kwok Wah; Xu, Li Yan; Li, En Min; Tsao, Sai Wah; He, Qing-Yu; Cheung, Annie L M

    2017-02-10

    Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression.

  5. ß-Hydroxybutyrate Activates the NF-κB Signaling Pathway to Promote the Expression of Pro-Inflammatory Factors in Calf Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xiaoxia Shi

    2014-01-01

    Full Text Available Background/Aims: ß-hydroxybutyrate (BHBA is the major component of ketone bodies in ketosis. Dairy cows with ketosis often undergo oxidative stress. BHBA is related to the inflammation involved in other diseases of dairy cattle. However, whether BHBA can induce inflammatory injury in dairy cow hepatocytes and the potential mechanism of this induction are not clear. The NF-κB pathway plays a vital role in the inflammatory response. Methods: Therefore, this study evaluated the oxidative stress, pro-inflammatory factors and NF-κB pathway in cultured calf hepatocytes treated with different concentrations of BHBA, pyrrolidine dithiocarbamate (PDTC, an NF-κB pathway inhibitor and N-acetylcysteine (NAC, antioxidant. Results: The results showed that BHBA could significantly increase the levels of oxidation indicators (MDA, NO and iNOS, whereas the levels of antioxidation indicators (GSH-Px, CAT and SOD were markedly decreased in hepatocytes. The IKKß activity and phospho-IκBa (p-IκBa contents were increased in BHBA-treated hepatocytes. This increase was accompanied by the increased expression level and transcription activity of p65. The expression levels of NF-κB-regulated inflammatory cytokines, namely TNF-a, IL-6 and IL-1ß, were markedly increased after BHBA treatment, while significantly decreased after NAC treatment. However, the p-IκBa level and the expression and activity of p65 and its target genes were markedly decreased in the PDTC + BHBA group compared with the BHBA (1.8 mM group. Moreover, immunocytofluorescence of p65 showed a similar trend. Conclusion: The present data indicate that higher concentrations of BHBA can induce cattle hepatocyte inflammatory injury through the NF-κB signaling pathway, which may be activated by oxidative stress.

  6. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  7. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    International Nuclear Information System (INIS)

    Marín-Prida, Javier; Pavón-Fuentes, Nancy; Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R.; Delgado-Roche, Liván; Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto; Pardo-Andreu, Gilberto L.; Polentarutti, Nadia; Riva, Federica; Pentón-Arias, Eduardo; Pentón-Rol, Giselle

    2013-01-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H 2 O 2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H 2 O 2 and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy

  8. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingjing [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Xu, Chen [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003 (China); Fang, Ziyu; Li, Yaoming [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Liu, Houqi; Wang, Yue [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Translational Medicine Center, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Xu, Chuanliang [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Sun, Yinghao, E-mail: sunyh@medmail.com.cn [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China)

    2016-05-20

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  9. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    International Nuclear Information System (INIS)

    Yao, Jingjing; Xu, Chen; Fang, Ziyu; Li, Yaoming; Liu, Houqi; Wang, Yue; Xu, Chuanliang; Sun, Yinghao

    2016-01-01

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  10. Annexin A4 fucosylation enhances its interaction with the NF-kB p50 and promotes tumor progression of ovarian clear cell carcinoma.

    Science.gov (United States)

    Wang, Huimin; Deng, Lu; Cai, Mingbo; Zhuang, Huiyu; Zhu, Liancheng; Hao, Yingying; Gao, Jian; Liu, Juanjuan; Li, Xiao; Lin, Bei

    2017-12-08

    To study the structural relationship between annexin A4 and the Lewis y antigen and compare their expression and significance in ovarian clear cell carcinoma, and to explore how annexin A4 fucose glycosylation effects the interaction between annexin A4 and NF-kB p50, and how it promotes tumour progression of ovarian clear cell carcinoma. Structural relationships between annexin A4 and Lewis y antigen were detected using immunoprecipitation. Annexin A4 and Lewis y antigen expression in various subtypes of ovarian cancer tissues was detected by immunohistochemistry, and the relation between their expression was examined. Any interactions between annexin A4 and NF-kB p50 in ovarian clear cell carcinoma were detected by co-immunoprecipitation. Then looked for changes in expression of Lewis y antigen, annexin A4, NF-kB p50 and a number of downstream related molecules before and after transfection annexin A4 or FUT1, and also analyzed changes in biological processes. Lewis y antigen is a part of annexin A4 structure. The expression rate of both annexin A4 and Lewis y antigen was significantly higher in ovarian clear cell carcinoma than in other subtypes of epithelial ovarian cancer, and are associated with the clinical stages, chemotherapy resistance and poor prognostic. The interaction between annexin A4 and NF-kB p50 promoted cell proliferation, adhesion, invasion, metastasis ability and autophagy, and inhibits apoptosis, Lewis y enhanced this interaction. Annexin A4 contains Lewis y structure, Lewis y antigen modification of annexin A4 enhances its interaction with NF-kB p50, which promotes ovarian clear cell carcinoma malignancy progression.

  11. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  12. The International Accounting Standards Board’s Progress in Promoting Judgement Through Objectives-Oriented Accounting Standards

    Directory of Open Access Journals (Sweden)

    Tanja Lakovic

    2013-07-01

    Full Text Available This study analyzes how the International Accounting Standards Board (IASB promotes professional judgement by issuing objectives-oriented accounting standards and exposure drafts.  We focus on the the role of judgement as outlined in Phase I of the IASB Conceptual Framework (CF, Chapter 1, “Objective of General Purpose Financial Statements” and Chapter 3, “Qualitative Characteristics of Useful Financial Information” (IASB 2010. We discuss how the framework, when viewed through the prism of 'objectives-oriented accounting standards' as recommended by the United States Securities and Exchange Commission (SEC Report in its “Study Pursuant to Section 108(d of the Sarbanes-Oxley Act of 2002 on the Adoption by the United States Financial Reporting System of a Principles-Based Accounting System” (July 2003, encourages professional judgement. We analyze International Financial Reporting Standards (IFRS and Exposure Drafts (ED issued by the IASB since its inception in 2002 to determine if those documents are consistent with objectives-oriented accounting standards. Our analysis is useful for gaining insights into how the IASB integrates the CF with the SEC’s recommended objectives-oriented accounting approach to promote judgement in the interest of IASB/FASB convergence of accounting standards.

  13. High NUCB2 expression level is associated with metastasis and may promote tumor progression in colorectal cancer.

    Science.gov (United States)

    Xie, Jun; Chen, Lina; Chen, Wenbin

    2018-06-01

    Nucleobindin 2 (NUCB2) is mainly expressed in the hypothalamic nuclei and has a proven role in energy homeostasis. It has also been recently reported to have a key role in tumor progression. However, the clinical significance of NUCB2 in colorectal cancer (CRC) remains unknown. In the present study, the level of NUCB2 mRNA was quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 34 paired fresh tissues from patients with CRC. RT-qPCR was followed by immunohistochemical (IHC) staining of NUCB2 protein in tissue microarrays of 251 samples to evaluate the clinical significance of NUCB2 in CRC. The RT-qPCR indicated an upregulation of NUCB2 mRNA in CRC tissues compared with normal tissues (P=0.027). IHC staining indicated a positive association between elevated NUCB2 expression and lymph node metastasis or tumor-node-metastasis (TNM) stage. Patients with CRC and lymph node metastasis demonstrated a higher expression of NUCB2 (49.5%, 50/101) compared with those without lymph node metastasis (36.7%, 55/150; P=0.043). Furthermore, NUCB2 expression was also higher in patients with CRC and TNM stage III-IV compared with those with TNM stage I-II (50.9% vs. 35.0%; P=0.011). However, Kaplan-Meier analysis indicated no significant association between NUCB2 expression and disease-free survival of patients. Additionally, multivariate analysis did not identify the upregulation of NUCB2 as an independent prognostic predictor in patients with CRC (P=0.755). In conclusion, the present study demonstrated that upregulation of NUCB2 is significantly associated with CRC metastasis, indicating that NUCB2 may be a cancer-associated oncogene associated with the aggressive progression of CRC.

  14. PROGRESS (PROmoting Geoscience Research Education and SuccesS): a novel mentoring program for retaining undergraduate women in the geosciences

    Science.gov (United States)

    Clinton, Sandra; Adams, Amanda; Barnes, Rebecca; Bloodhart, Brittany; Bowker, Cheryl; Burt, Melissa; Godfrey, Elaine; Henderson, Heather; Hernandez, Paul; Pollack, Ilana; Sample McMeeking, Laura Beth; Sayers, Jennifer; Fischer, Emily

    2017-04-01

    Women still remain underrepresented in many areas of the geosciences, and this underrepresentation often begins early in their university career. In 2015, an interdisciplinary team including expertise in the geosciences (multiple sub-disciplines), psychology, education and STEM persistence began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in geoscience fields. The developed program (PROGRESS) focuses on mentoring undergraduate female students, starting in their 1st and 2nd year, from two geographically disparate areas of the United States: the Carolinas in the southeastern part of the United States and the Front Range of the Rocky Mountains in the western part of the United States. The two regions were chosen due to their different student demographics, as well as the differences in the number of working female geoscientists in the region. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. Four cohorts of students were recruited and participated in our professional development workshops (88 participants in Fall 2015 and 94 participants in Fall 2016). Components of the workshops included perceptions of the geosciences, women in STEM misconceptions, identifying personal strengths, coping strategies, and skills on building their own personal network. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in the fall of 2015 and is used by both cohorts in conjunction with social media platforms. We will present an overview of the major components of the program, discuss lessons learned during 2015 that were applied to 2016, and share preliminary analyses of surveys and interviews with study participants from the first two years of a five-year longitudinal study that follows PROGRESS participants and a control group.

  15. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice.

    Science.gov (United States)

    Zheng, Wenhao; Feng, Zhenhua; You, Shengban; Zhang, Hui; Tao, Zhenyu; Wang, Quan; Chen, Hua; Wu, Yaosen

    2017-04-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. Fisetin, a polyphenol extracted from fruits and vegetables, has been reported to have anti-inflammatory effects. Our study aimed to investigate the effect of fisetin on OA both in vitro and in vivo. In vitro, chondrocytes were pretreated with fisetin alone or fisetin combined with sirtinol (an inhibitor of SIRT1) for 2h before IL-1β stimulation. Production of NO, PGE2, TNF-α and IL-6 were evaluated by the Griess reaction and ELISAs. The mRNA (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5, Sox-9, aggrecan and collagen-II) and protein expression (COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5 and SIRT1) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and SIRT1. SIRT1 activity was quantified with SIRT1 fluorometric assay kit. The in vivo effect of fisetin was evaluated by gavage in mice OA models induced by destabilization of the medial meniscus (DMM). We found that fisetin inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, MMP-3, MMP-13, ADAMTS-5. Besides, fisetin remarkably decreased IL-1β-induced degradation of Sox-9, aggrecan and collagen-II. Furthermore, fisetin significantly inhibited IL-1β-induced SIRT1 decrease and inactivation. However, the inhibitory effect of fisetin was obvious abolished by sirtinol, suggesting that fisetin exerts anti-inflammatory effects through activating SIRT1. In vivo, fisetin-treated mice exhibited less cartilage destruction and lower OARSI scores. Moreover, fisetin reduced subchondral bone plate thickness and alleviated synovitis. Taken together, these findings indicate that fisetin may be a potential agent in the treatment of OA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Multi-channel promotion of lung cancer progress by bone marrow derived mesenchymal stem cells in tumor microenvironment].

    Science.gov (United States)

    Luo, D; Hu, S Y; Liu, G X

    2018-02-23

    Objective: To observe the growth and metastasis of lung cancer promoted by bone marrow derived mesenchymal stem cells (BMSCs) in tumor microenvironment and investigate the underlined mechanisms. Methods: Specific chemotaxis of BMSCs towards lung cancer was observed, and the tumor growth and metastasis were assessed in vivo . Furthermore, CD34 expression determined by immunohistochemistry was used to assess the microvessel density (MVD), and the expressions of GFP and α-SMA determined by immunofluorescence were used to detect the BMSCs derived mesenchymal cells. We investigated the effect of BMSCs on migration, invasion of lung cancer cells including A549 and H446 cells by using scratch assays and Transwell Assay in vitro. We also explored the effect of BMSCs on epithelial mesenchymal transition of A549 and H446 cells by observing the phenotype transition and E-Cadherin protein expression detected by Western blot. At last, we screened the potentially key soluble factors by enzyme linked immunosorbent assay (ELISA). Results: In NOD mice, labeled BMSCs injected via tail vein were special chemotaxis to tumor cells, and promoted the tumor growth [the time of tumor formation in A549+ BMSCs and A549 alone was (5.0±1.5) days and (10.0±3.6) days, respectively, P cell carcinoma and promoted the migration and invasion of lung cancer cells (the A of cells in the migrated lower chambers of A549+ BMSCs and A549 alone was 1.9±0.2 and 1.1±0.1, respectively, P cells in the migrated lower chambers of H446+ BMSCs and H446 alone was 1.9±0.3 and 0.9±0.2, respectively, P cell shape was longer and sharper, the intercellular junctions were reduced and the relative expression level of E-Cadherin protein in A549 co-cultured with BMDCs was 0.36, significantly down-regulated when compared to 0.55 of A549 alone ( P cells alone ( P <0.05). The concentration of IL-6 in the conditional medium of BMSCs, A549 co-cultured with BMSCs and H446 co-cultured with BMSCs was 910.5, 957.2, and 963

  17. Progressive adult primary glioblastoma in the medulla oblongata with an unmethylated MGMT promoter and without an IDH mutation.

    Science.gov (United States)

    Yoshikawa, Akifumi; Nakada, Mitsutoshi; Watanabe, Takuya; Hayashi, Yutaka; Sabit, Hemragul; Kato, Yukinari; Suzuki, Shioto; Ooi, Akishi; Sato, Hiroshi; Hamada, Jun-ichiro

    2013-07-01

    A 63-year-old woman presented with dizziness followed by gait disturbance and loss of appetite. Magnetic resonance image (MRI) showed that a lesion located in the medulla oblongata, appearing as hyperintense on T2-weighted image and with slight enhancement area, appeared in the ventral aspect of the mass on T1-weighted MR imaging with gadolinium. It was diagnosed as high-grade brain-stem glioma and the patient underwent chemoradiotherapy. However, she died 18 days after treatment, and autopsy was performed. The pathological diagnosis was glioblastoma (GBM) with unmethylated O-6-methylguanine-DNA methyltransferase promoter and wild isocitrate dehydrogenase 1 gene. We report an extremely short clinical course of adult GBM in medulla oblongata with genetic analysis and present a review of the literature.

  18. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Fujun [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Zheng, Jianjian [Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Dong, Peihong [Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Li, Guojun [Department of Hepatology, Ningbo Yinzhou Second Hospital, Ningbo, 315000 (China); Lu, Zhongqiu [Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Guo, Chuanyong; Liu, Zhanju [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072 (China); Fan, Xiaoming, E-mail: ktsqdph@163.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China)

    2015-08-07

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.

  19. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  20. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.; Arold, Stefan T.; Chauhan, Gaurav B.; Blachno, Korina V.; Deng, Nanfu; Chang, Wei-Chao; Jin, Quanri; Huang, Tzu-Hsuan; Hsu, Jung-Mao; Brady, Samuel W.; Bartholomeusz, Chandra; Ladbury, John E.; Stone, Steve; Yu, Dihua; Hung, Mien-Chie; Esteva, Francisco J.

    2014-01-01

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  1. MFAP5 promotes tumor progression and bone metastasis by regulating ERK/MMP signaling pathways in breast cancer.

    Science.gov (United States)

    Wu, Zhiqiang; Wang, Ting; Fang, Meng; Huang, Wending; Sun, Zhengwang; Xiao, Jianru; Yan, Wangjun

    2018-04-06

    Breast cancer accounts for about 30% of all cancers in women, while approximately 70% breast cancer patients developed bone metastases throughout the course of their disease, highlighting the importance of exploring new therapeutic targets. Microfibrillar-associated protein 5 (MFAP5) is a component of extracellular elastic microfibril which has been confirmed to function in tissue development and cancer progression. But the role of MFAP5 in breast cancer remains unclear. The present study demonstrated that MFAP5 was up-regulated in breast cancers compared with that in normal breast tissues, and further increased in breast cancer bone metastasis. Functionally, MFAP5 overexpression accelerated breast cancer cell proliferation and migration, while an opposite effect was observed when MFAP5 was knocked down. In addition, up-regulation of MFAP5 increased the expression of MMP2 and MMP9 and activated the ERK signaling pathway. Conversely, inhibition of MFAP5 suppressed the expression of MMP2, MMP9, p-FAK, p-Erk1/2 and p-cJun. These findings may provide a better understanding about the mechanism of breast cancer and suggest that MFAP5 may be a potential prognostic biomarker and therapeutic target for breast cancer, especially for bone metastasis of breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Feed-in tariffs versus quotas: how to promote renewable s and stimulate technical progress for cost decrease?

    International Nuclear Information System (INIS)

    Menanteau, Ph.; Finon, D.; Lamy, M.L.

    2002-01-01

    Incentive schemes for the development of renewable energy sources may focus on quantities (defining national targets and setting up bidding systems, or quota systems providing for green certificate trading), or they may focus on prices (feed-in tariffs). Whatever the system chosen, the role of the public authorities is quite specific: to stimulate technical progress and speed up the technological learning processes so that ultimately renewable energy technologies will be able to compete with conventional technologies, once the environmental costs have been internalized. A comparison of instruments must thus take into account the characteristics of the innovation process and adoption conditions (uncertainties regarding cost curves, learning effects) which means also looking at dynamic efficiency criteria. The paper concludes that a system of feed-in tariffs is more efficient than a bidding system, but highlights the theoretical interest of green certificate trading which must be confirmed through practice, given the influence of market structures and rules on the performance of this type of approach. (author)

  3. The advanced glycation end-product Nϵ -carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention.

    Science.gov (United States)

    Menini, Stefano; Iacobini, Carla; de Latouliere, Luisa; Manni, Isabella; Ionta, Vittoria; Blasetti Fantauzzi, Claudia; Pesce, Carlo; Cappello, Paola; Novelli, Francesco; Piaggio, Giulia; Pugliese, Giuseppe

    2018-03-13

    Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end-products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour-promoting role of receptor for advanced glycation end-products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE N ϵ -carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration-dependent and time-dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML-treated versus one of 11 (9.1%) vehicle-treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor-mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other

  4. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  5. Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications.

    Directory of Open Access Journals (Sweden)

    Anne Chastre

    Full Text Available Acute liver failure (ALF due to ischemic or toxic liver injury is a clinical condition that results from massive loss of hepatocytes and may lead to hepatic encephalopathy (HE, a serious neuropsychiatric complication. Although increased expression of tumor necrosis factor-alpha (TNF-α in liver, plasma and brain has been observed, conflicting results exist concerning its roles in drug-induced liver injury and on the progression of HE. The present study aimed to investigate the therapeutic value of etanercept, a TNF-α neutralizing molecule, on the progression of liver injury and HE in mice with ALF resulting from azoxymethane (AOM hepatotoxicity.Mice were administered saline or etanercept (10 mg/kg; i.p. 30 minutes prior to, or up to 6 h after AOM. Etanercept-treated ALF mice were sacrificed in parallel with vehicle-treated comatose ALF mice and controls. AOM induced severe hepatic necrosis, leading to HE, and etanercept administered prior or up to 3 h after AOM significantly delayed the onset of coma stages of HE. Etanercept pretreatment attenuated AOM-induced liver injury, as assessed by histological examination, plasma ammonia and transaminase levels, and by hepatic glutathione content. Peripheral inflammation was significantly reduced by etanercept as shown by decreased plasma IL-6 (4.1-fold; p<0.001 and CD40L levels (3.7-fold; p<0.001 compared to saline-treated ALF mice. Etanercept also decreased IL-6 levels in brain (1.2-fold; p<0.05, attenuated microglial activation (assessed by OX-42 immunoreactivity, and increased brain glutathione concentrations.These results indicate that systemic sequestration of TNF-α attenuates both peripheral and cerebral inflammation leading to delayed progression of liver disease and HE in mice with ALF due to toxic liver injury. These results suggest that etanercept may provide a novel therapeutic approach for the management of ALF patients awaiting liver transplantation.

  6. Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma.

    Science.gov (United States)

    Peponi, Evangelia; Drakos, Elias; Reyes, Guadalupe; Leventaki, Vasiliki; Rassidakis, George Z; Medeiros, L Jeffrey

    2006-12-01

    Mantle cell lymphoma (MCL) is characterized by the t(11;14) and cyclin D1 overexpression. However, additional molecular events are most likely required for oncogenesis, possibly through cell cycle and apoptosis deregulation. We hypothesized that mammalian target of rapamycin (mTOR) is activated in MCL and contributes to tumor proliferation and survival. In MCL cell lines, pharmacological inhibition of the phosphoinositide 3-kinase/AKT pathway was associated with decreased phosphorylation (activation) of mTOR and its downstream targets phosphorylated (p)-4E-BP1, p-p70S6 kinase, and p-ribosomal protein S6, resulting in apoptosis and cell cycle arrest. These changes were associated with down-regulation of cyclin D1 and the anti-apoptotic proteins cFLIP, BCL-XL, and MCL-1. Furthermore, silencing of mTOR expression using mTOR-specific short interfering RNA decreased phosphorylation of mTOR signaling proteins and induced cell cycle arrest and apoptosis. Silencing of eukaryotic initiation factor (eIF4E), a downstream effector of mTOR, recapitulated these results. We also assessed mTOR signaling in MCL tumors using immunohistochemical methods and a tissue microarray: 10 of 30 (33%) expressed Ser473p-AKT, 13 of 21 (62%) Ser2448p-mTOR, 22 of 22 (100%) p-p70S6K, and 5 of 20 (25%) p-ribosomal protein S6. Total eIF4E binding protein 1 and eukaryotic initiation factor 4E were expressed in 13 of 14 (93%) and 16 of 29 (55%) MCL tumors, respectively. These findings suggest that the mTOR signaling pathway is activated and may contribute to cell cycle progression and tumor cell survival in MCL.

  7. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    Science.gov (United States)

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.

  8. Variability in the precore and core promoter regions of HBV strains in Morocco: characterization and impact on liver disease progression.

    Directory of Open Access Journals (Sweden)

    Bouchra Kitab

    Full Text Available BACKGROUND: Hepatitis B virus (HBV is one of the most common human pathogens that cause aggressive hepatitis and advanced liver disease (AdLD, including liver cirrhosis and Hepatocellular Carcinoma. The persistence of active HBV replication and liver damage after the loss of hepatitis B e antigen (HBeAg has been frequently associated with mutations in the pre-core (pre-C and core promoter (CP regions of HBV genome that abolish or reduce HBeAg expression. The purpose of this study was to assess the prevalence of pre-C and CP mutations and their impact on the subsequent course of liver disease in Morocco. METHODS/PRINCIPAL FINDINGS: A cohort of 186 patients with HBeAg-negative chronic HBV infection was studied (81 inactive carriers, 69 with active chronic hepatitis, 36 with AdLD. Pre-C and CP mutations were analyzed by PCR-direct sequencing method. The pre-C stop codon G1896A mutation was the most frequent (83.9% and was associated with a lower risk of AdLD development (OR, 0.4; 95% CI, 0.15-1.04; p = 0.04. HBV-DNA levels in patients with G1896A were not significantly different from the other patients carrying wild-type strains (p = 0.84. CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were associated with higher HBV-DNA level and increased liver disease severity. Multiple logistic regression analysis showed that older age (≥ 40 years, male sex, high viral load (>4.3 log(10 IU/mL and CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were independent risk factors for AdLD development. Combination of these mutations was significantly associated with AdLD (OR, 7.52; 95% CI, 4.8-8; p<0.0001. CONCLUSIONS: This study shows for the first time the association of HBV viral load and CP mutations with the severity of liver disease in Moroccan HBV chronic carriers. The examination of CP mutations alone or in combination could be helpful for prediction of the clinical outcome.

  9. MeCP2 Promotes Gastric Cancer Progression Through Regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Lingyu Zhao

    2017-02-01

    Full Text Available Methyl-CpG binding protein 2 (MeCP2 has recently been characterized as an oncogene frequently amplified in several types of cancer. However, its precise role in gastric cancer (GC and the molecular mechanism of MeCP2 regulation are still largely unknown. Here we report that MeCP2 is highly expressed in primary GC tissues and the expression level is correlated with the clinicopathologic features of GC. In our experiments, knockdown of MeCP2 inhibited tumor growth. Molecular mechanism of MeCP2 regulation was investigated using an integrated approach with combination of microarray analysis and chromatin immunoprecipitation sequencing (ChIP-Seq. The results suggest that MeCP2 binds to the methylated CpG islands of FOXF1 and MYOD1 promoters and inhibits their expression at the transcription level. Furthermore, we show that MeCP2 promotes GC cell proliferation via FOXF1-mediated Wnt5a/β-Catenin signaling pathway and suppresses apoptosis through MYOD1-mediated Caspase-3 signaling pathway. Due to its high expression level in GC and its critical function in driving GC progression, MeCP2 represents a promising therapeutic target for GC treatment.

  10. Gastric cancer tissue-derived mesenchymal stem cells impact peripheral blood mononuclear cells via disruption of Treg/Th17 balance to promote gastric cancer progression.

    Science.gov (United States)

    Wang, Mei; Chen, Bin; Sun, Xiao-Xian; Zhao, Xiang-Dong; Zhao, Yuan-Yuan; Sun, Li; Xu, Chang-Gen; Shen, Bo; Su, Zhao-Liang; Xu, Wen-Rong; Zhu, Wei

    2017-12-01

    Gastric cancer tissue-derived mesenchymal stem cells (GC-MSCs) are important resident stromal cells in the tumor microenvironment (TME) and have been shown to play a key role in gastric cancer progression. Whether GC-MSCs exert a tumor-promoting function by affecting anti-tumor immunity is still unclear. In this study, we used GC-MSC conditioned medium (GC-MSC-CM) to pretreat peripheral blood mononuclear cells (PBMCs) from healthy donors. We found that GC-MSC-CM pretreatment markedly reversed the inhibitory effect of PBMCs on gastric cancer growth in vivo, but did not affect functions of PBMCs on gastric cancer cell proliferation, cell cycle and apoptosis in vitro. PBMCs pretreated with GC-MSC-CM significantly promoted gastric cancer migration and epithelial-mesenchymal transition in vitro and liver metastases in vivo. Flow cytometry analysis showed that GC-MSC-CM pretreatment increased the proportion of Treg cells and reduced that of Th17 cells in PBMCs. CFSE labeling and naïve CD4 + T cells differentiation analysis revealed that GC-MSC-CM disrupted the Treg/Th17 balance in PBMCs by suppressing Th17 cell proliferation and inducing differentiation of Treg cells. Overall, our collective results indicate that GC-MSCs impair the anti-tumor immune response of PBMCs through disruption of Treg/Th17 balance, thus providing new evidence that gastric cancer tissue-derived MSCs contribute to the immunosuppressive TME. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    Science.gov (United States)

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  12. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1.

    Science.gov (United States)

    Moges, Ruth; De Lamache, Dimitri Desmonts; Sajedy, Saman; Renaux, Bernard S; Hollenberg, Morley D; Muench, Gregory; Abbott, Elizabeth M; Buret, Andre G

    2018-01-01

    Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096-9.6 µM) were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A 4 (LXA 4 ) and Resolvin D1 (RvD 1 ) while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB 4 ) in Ca 2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C-X-C motif) ligand 8 (CXCL-8, also known as Interleukin-8) and interleukin-1 alpha (IL-1α) protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects in porcine

  13. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

    Directory of Open Access Journals (Sweden)

    Ruth Moges

    2018-04-01

    Full Text Available Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096–9.6 µM were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A4 (LXA4 and Resolvin D1 (RvD1 while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB4 in Ca2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C–X–C motif ligand 8 (CXCL-8, also known as Interleukin-8 and interleukin-1 alpha (IL-1α protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects

  14. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27

    DEFF Research Database (Denmark)

    Soler, Laura; Miller, Ingrid; Hummel, Karin

    2016-01-01

    to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation...

  15. The influence of asymptomatic inflammatory prostatitis on the onset and progression of lower urinary tract symptoms in men with histologic benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Rikiya Taoka

    2017-07-01

    Full Text Available Benign prostatic hyperplasia (BPH is a condition that greatly affects the quality of life of middle-aged and elderly men. Histopathologically, hyperplastic changes frequently occur in the prostate tissue of elderly men, the incidence of which has been reported to reach approximately 80% in men in their 70s. In clinical practice, approximately 25% of men with histologic BPH are assumed to experience lower urinary tract symptoms (LUTS and receive some kind of treatment. In other words, there are some men with histologic BPH who do not exhibit LUTS. For that reason, many factors, such as the change in hormonal environment, the immune or autoimmune response, the alteration of gene expression, and so on, are thought to affect the onset and progression of LUTS in men with histologic BPH. One such factor that has long drawn attention is the presence of asymptomatic histological inflammation, which very often accompanies symptomatic BPH. Recent studies have suggested that asymptomatic histological inflammation causes repeated destruction, healing, and regeneration of the prostate tissue, leading to the enlargement of prostatic nodules, while at the same time causing stromal tissue-predominant remodeling of the prostate tissue, which can increase urination resistance and result in the condition changing from asymptomatic BPH to symptomatic BPH. In future, the biomolecular clarification of the significance of asymptomatic histological inflammation in the prostate tissue could help develop new treatment strategies for BPH accompanied by LUTS.

  16. Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals.

    Science.gov (United States)

    Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang

    2016-08-01

    The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras

    Science.gov (United States)

    Acin, Sergio; Li, Zhongyou; Mejia, Olga; Roop, Dennis R; El-Naggar, Adel K; Caulin, Carlos

    2015-01-01

    Mutations in p53 occur in over 50% of the human head and neck squamous cell carcinomas (SCCHN). The majority of these mutations result in the expression of mutant forms of p53, rather than deletions in the p53 gene. Some p53 mutants are associated with poor prognosis in SCCHN patients. However, the molecular mechanisms that determine the poor outcome of cancers carrying p53 mutations are unknown. Here, we generated a mouse model for SCCHN and found that activation of the endogenous p53 gain-of-function mutation p53R172H, but not deletion of p53, cooperates with oncogenic K-ras during SCCHN initiation, accelerates oral tumour growth, and promotes progression to carcinoma. Mechanistically, expression profiling of the tumours that developed in these mice and studies using cell lines derived from these tumours determined that mutant p53 induces the expression of genes involved in mitosis, including cyclin B1 and cyclin A, and accelerates entry in mitosis. Additionally, we discovered that this oncogenic function of mutant p53 was dependent on K-ras because the expression of cyclin B1 and cyclin A decreased, and entry in mitosis was delayed, after suppressing K-ras expression in oral tumour cells that express p53R172H. The presence of double-strand breaks in the tumours suggests that oncogene-dependent DNA damage resulting from K-ras activation promotes the oncogenic function of mutant p53. Accordingly, DNA damage induced by doxorubicin also induced increased expression of cyclin B1 and cyclin A in cells that express p53R172H. These findings represent strong in vivo evidence for an oncogenic function of endogenous p53 gain-of-function mutations in SCCHN and provide a mechanistic explanation for the genetic interaction between oncogenic K-ras and mutant p53. PMID:21952947

  18. Inhibition of myeloperoxidase by N-acetyl lysyltyrosylcysteine amide reduces experimental autoimmune encephalomyelitis-induced injury and promotes oligodendrocyte regeneration and neurogenesis in a murine model of progressive multiple sclerosis.

    Science.gov (United States)

    Yu, Guoliang; Zheng, Shikan; Zhang, Hao

    2018-02-07

    It is known that oxidative stress produced by proinflammatory myeloid cells plays an important role in demyelination and neuronal injury in progressive multiple sclerosis (MS). Myeloperoxidase (MPO) is a pro-oxidative enzyme released from myeloid cells during inflammation. It has been shown that MPO-dependent oxidative stress plays important roles in inducing tissue injury in many inflammatory diseases. In this report, we treated NOD experimental autoimmune encephalomyelitis (EAE) mice, a murine model of progressive MS, with N-acetyl lysyltyrosylcysteine amide (KYC), a novel specific MPO inhibitor. Our data showed that KYC treatment not only attenuated MPO-mediated oxidative stress but also reduced demyelination and axonal injury in NOD EAE mice. More importantly, we found that KYC treatment increased oligodendrocyte regeneration and neurogenesis in NOD EAE mice. Taken together, our data suggests that targeting MPO should be a good therapeutic approach for reducing oxidative injury and preserving neuronal function in progressive MS patients.

  19. Sustained Interleukin-1β Exposure Modulates Multiple Steps in Glucocorticoid Receptor Signaling, Promoting Split-Resistance to the Transactivation of Prominent Anti-Inflammatory Genes by Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Pedro Escoll

    2015-01-01

    Full Text Available Clinical treatment with glucocorticoids (GC can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR, a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR- driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GRSer203 and GRSer211 phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the “split GCR” model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.

  20. Promoter Variation and Expression Levels of Inflammatory Genes IL1A, IL1B, IL6 and TNF in Blood of Spinocerebellar Ataxia Type 3 (SCA3) Patients.

    Science.gov (United States)

    Raposo, Mafalda; Bettencourt, Conceição; Ramos, Amanda; Kazachkova, Nadiya; Vasconcelos, João; Kay, Teresa; Bruges-Armas, Jácome; Lima, Manuela

    2017-03-01

    Age at onset in spinocerebellar ataxia type 3 (SCA3/MJD) is incompletely explained by the size of the CAG tract at the ATXN3 gene, implying the existence of genetic modifiers. A role of inflammation in SCA3 has been postulated, involving altered cytokines levels; promoter variants leading to alterations in cytokines expression could influence onset. Using blood from 86 SCA3 patients and 106 controls, this work aimed to analyse promoter variation of four cytokines (IL1A, IL1B, IL6 and TNF) and to investigate the association between variants detected and their transcript levels, evaluated by quantitative PCR. Moreover, the effect of APOE isoforms, known to modulate cytokines, was investigated. Correlations between cytokine variants and onset were tested; the cumulative modifier effects of cytokines and APOE were analysed. Patients carrying the IL6*C allele had a significant earlier onset (4 years in average) than patients carrying the G allele, in agreement with lower mRNA levels produced by IL6*C carriers. The presence of APOE*ɛ2 allele seems to anticipate onset in average 10 years in patients carrying the IL6*C allele; a larger number of patients will be needed to confirm this result. These results highlight the pertinence of conducting further research on the role of cytokines as SCA3 modulators, pointing to the presence of shared mechanisms involving IL6 and APOE.

  1. Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity

    Directory of Open Access Journals (Sweden)

    Spreadbury I

    2012-07-01

    Full Text Available Ian SpreadburyGastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, CanadaAbstract: A novel hypothesis of obesity is suggested by consideration of diet-related inflammation and evolutionary medicine. The obese homeostatically guard their elevated weight. In rodent models of high-fat diet-induced obesity, leptin resistance is seen initially at vagal afferents, blunting the actions of satiety mediators, then centrally, with gastrointestinal bacterial-triggered SOCS3 signaling implicated. In humans, dietary fat and fructose elevate systemic lipopolysaccharide, while dietary glucose also strongly activates SOCS3 signaling. Crucially however, in humans, low-carbohydrate diets spontaneously decrease weight in a way that low-fat diets do not. Furthermore, nutrition transition patterns and the health of those still eating diverse ancestral diets with abundant food suggest that neither glycemic index, altered fat, nor carbohydrate intake can be intrinsic causes of obesity, and that human energy homeostasis functions well without Westernized foods containing flours, sugar, and refined fats. Due to being made up of cells, virtually all "ancestral foods" have markedly lower carbohydrate densities than flour- and sugar-containing foods, a property quite independent of glycemic index. Thus the "forgotten organ" of the gastrointestinal microbiota is a prime candidate to be influenced by evolutionarily unprecedented postprandial luminal carbohydrate concentrations. The present hypothesis suggests that in parallel with the bacterial effects of sugars on dental and periodontal health, acellular flours, sugars, and processed foods produce an inflammatory microbiota via the upper gastrointestinal tract, with fat able to effect a "double hit" by increasing systemic absorption of lipopolysaccharide. This model is consistent with a broad spectrum of reported dietary phenomena. A diet of grain-free whole foods with carbohydrate from cellular

  2. Long non-coding RNA TUG1 promotes progression of oral squamous cell carcinoma through upregulating FMNL2 by sponging miR-219.

    Science.gov (United States)

    Yan, Guangqi; Wang, Xue; Yang, Mingliang; Lu, Li; Zhou, Qing

    2017-01-01

    Oral squamous cell carcinoma (OSCC) is a prevalent oral disease with a high morbidity and mortality rate. Several long non-coding RNAs (lncRNAs) were identified as important regulators of carcinogenesis. However, the pathogenic implications of TUG1 in OSCC are still unclear. In the present study, the expression of TUG1 was increased in OSCC cells. Knockdown of TUG1 inhibited cell proliferation, migration, and invasion, and induced cell cycle arrest at G0/G1 phase, whereas overexpression of TUG1 exerted the opposite effect on OSCC cells. A reciprocal repressive interaction between TUG1 and miR-219 was found, and miR-219 inhibition abolished the tumor-suppressive effect of TUG1 knockdown on cell growth and motility. Furthermore, bioinformatics analysis and luciferase reporter assay showed that FMNL2 was a direct target of miR-219. Restoration of FMNL2 abrogated the miR-219-induced inhibition of cell proliferation, cell cycle progression, migration, and invasion. Besides, overexpression of TUG1 promoted tumor growth and metastasis in vivo . Clinically, the expression of TUG1 and FMNL2 were increased, but miR-219 was decreased in primary tumors compared to non-tumor tissues. Both the upregulated TUG1, and FMNL2 and the downregulated miR-219 was associated with advanced stage of OSCC and poor overall survival. Notably, multivariate analyses confirmed that FMNL2 was an independent risk factor for OSCC. In conclusion, our data revealed that TUG1 confers oncogenic function in OSCC and TUG1/miR-219/FMNL2 axis may be a novel therapeutic strategy in this disease.

  3. Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK activity.

    Directory of Open Access Journals (Sweden)

    Shelly Inbar

    2011-04-01

    Full Text Available In leukemia patients, stress and anxiety were suggested to predict poorer prognosis. Oncological patients experience ample physiological and psychological stress, potentially leading to increased secretion of stress factors, including epinephrine, corticosteroids, and prostaglandins. Here we tested whether environmental stress and these stress factors impact survival of leukemia-challenged rats, and studied mediating mechanisms. F344 rats were administered with a miniscule dose of 60 CRNK-16 leukemia cells, and were subjected to intermittent forced swim stress or to administration of physiologically relevant doses of epinephrine, prostaglandin-E(2 or corticosterone. Stress and each stress factor, and/or their combinations, doubled mortality rates when acutely applied simultaneously with, or two or six days after tumor challenge. Acute administration of the β-adrenergic blocker nadolol diminished the effects of environmental stress, without affecting baseline survival rates. Prolonged β-adrenergic blockade or COX inhibition (using etodolac also increased baseline survival rates, possibly by blocking tumor-related or normal levels of catecholamines and prostaglandins. Searching for mediating mechanisms, we found that each of the stress factors transiently suppressed NK activity against CRNK-16 and YAC-1 lines on a per NK basis. In contrast, the direct effects of stress factors on CRNK-16 proliferation, vitality, and VEGF secretion could not explain or even contradicted the in vivo survival findings. Overall, it seems that environmental stress, epinephrine, and prostaglandins promote leukemia progression in rats, potentially through suppressing cell mediated immunity. Thus, patients with hematological malignancies, which often exhibit diminished NK activity, may benefit from extended β-blockade and COX inhibition.

  4. Progress report on the promotion and use of renewable energy sources. 1. report. Implementation of article 22 of European Union Directive 2009/28/EEC

    International Nuclear Information System (INIS)

    2011-12-01

    This report has been prepared for the European Commission pursuant to article 22 of Directive 2009/28/EEC regarding the promotion and use of energy produced from renewable sources, based on the model provided by the Commission. Contents: 1. Sectoral and overall shares, actual production and consumption of energy from renewable sources for 2009 and 2010; 2. Measures taken during the last 2 years and/or forecast at a national level for promoting renewable energy sources; 2.a Evaluations and improvements for administrative procedures aimed at removing regulatory and other obstacles to the development of renewable energy sources; 2.b Measures aimed at ensuring the transmission and distribution of renewable electricity and improving the regulatory framework concerning the management and sharing of grid connection and consolidation costs; 3. Description of support schemes and promotional measures for renewable energy sources and new elements introduced by the national action plan; 3.1. Information on the mode of distribution between end-users of electricity benefiting from support in accordance with article 3, paragraph 6 of Directive 2003/54/EEC; 4. Information on the manner in which support schemes are structured, where appropriate, for integrating RES applications presenting additional advantages but which can entail higher costs, notably biofuels produced from waste, residue, non-food cellulose material and lignocellulose material; 5. Information on the guarantees of origin mechanism for electricity, heating and cooling from RES, and measures taken to ensure the system's reliability and protection against fraud; 6. Description of changes brought over the 2 previous years on the availability and use of biomass resources for energy purposes; 7. Changes to the prices of basic products and land use for the past 2 years in relation to the increased use of biomass and other forms of renewable energy; 8. Evolution in the share of biofuels produced from waste, residue

  5. Outcome measures in inflammatory rheumatic diseases.

    NARCIS (Netherlands)

    Fransen, J.; Riel, P.L.C.M. van

    2009-01-01

    Inflammatory rheumatic diseases are generally multifaceted disorders and, therefore, measurement of multiple outcomes is relevant to most of these diseases. Developments in outcome measures in the rheumatic diseases are promoted by the development of successful treatments. Outcome measurement will

  6. The Promotion of Girls' Education through Recruitment and Training of Female Teachers in Nepal (Phase I). Mid-Decade Review of Progress towards Education for All.

    Science.gov (United States)

    Thapa, Bijaya; Bajracharya, Hridaya; Thapa, Renu; Chitrakar, Roshan; Lamichhane, Shreeram; Tuladhar, Sumon

    In 1995, the International Consultative Forum on Education for All commissioned case studies in developing countries as part of a mid-decade review of progress in expanding access to basic education. This paper examines the progress of Nepal's Basic and Primary Education Master Plan (BPEP), which aims to increase female participation in formal and…

  7. Regulation of Tumor Progression by Programmed Necrosis

    Directory of Open Access Journals (Sweden)

    Su Yeon Lee

    2018-01-01

    Full Text Available Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1, which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.

  8. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2.

    Science.gov (United States)

    Nie, Jing; Liu, Lin; Zheng, Wei; Chen, Lin; Wu, Xin; Xu, Yingxin; Du, Xiaohui; Han, Weidong

    2012-01-01

    Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.

  9. Progressive Resistance Training and Cancer Testis (PROTRACT) - Efficacy of resistance training on muscle function, morphology and inflammatory profile in testicular cancer patients undergoing chemotherapy: design of a randomized controlled trial

    International Nuclear Information System (INIS)

    Christensen, Jesper F; Andersen, Jesper L; Adamsen, Lis; Lindegaard, Birgitte; Mackey, Abigail L; Nielsen, Rie H; Rørth, Mikael; Daugaard, Gedske

    2011-01-01

    Standard treatment for patients with disseminated germ cell tumors is combination chemotherapy with bleomycin, etoposide and cisplatin (BEP). This treatment is highly effective, but the majority of patients experience severe adverse effects during treatment and are at risk of developing considerable long-term morbidity, including second malignant neoplasms, cardiovascular disease, and pulmonary toxicity. One neglected side effect is the significant muscular fatigue mentioned by many patients with testicular cancer both during and after treatment. Very limited information exists concerning the patho-physiological effects of antineoplastic agents on skeletal muscle. The primary aim of this study is to investigate the effects of BEP-treatment on the skeletal musculature in testicular cancer patients, and to examine whether the expected treatment-induced muscular deterioration can be attenuated or even reversed by high intensity progressive resistance training (HIPRT). The PROTRACT study is a randomized controlled trial in 30 testicular cancer patients undergoing three cycles of BEP chemotherapy. Participants will be randomized to either a 9-week HIPRT program (STR) initiated at the onset of treatment, or to standard care (UNT). 15 healthy matched control subjects (CON) will complete the same HIPRT program. All participants will take part in 3 assessment rounds (baseline, 9 wks, 21 wks) including muscle biopsies, maximum muscle strength tests, whole body DXA scan and blood samples. Primary outcome: mean fiber area and fiber type composition measured by histochemical analyses, satellite cells and levels of protein and mRNA expression of intracellular mediators of protein turnover. Secondary outcomes: maximum muscle strength and muscle power measured by maximum voluntary contraction and leg-extensor-power tests, body composition assessed by DXA scan, and systemic inflammation analyzed by circulating inflammatory markers, lipid and glucose metabolism in blood samples

  10. Progressive Resistance Training and Cancer Testis (PROTRACT - Efficacy of resistance training on muscle function, morphology and inflammatory profile in testicular cancer patients undergoing chemotherapy: design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mackey Abigail L

    2011-08-01

    Full Text Available Abstract Background Standard treatment for patients with disseminated germ cell tumors is combination chemotherapy with bleomycin, etoposide and cisplatin (BEP. This treatment is highly effective, but the majority of patients experience severe adverse effects during treatment and are at risk of developing considerable long-term morbidity, including second malignant neoplasms, cardiovascular disease, and pulmonary toxicity. One neglected side effect is the significant muscular fatigue mentioned by many patients with testicular cancer both during and after treatment. Very limited information exists concerning the patho-physiological effects of antineoplastic agents on skeletal muscle. The primary aim of this study is to investigate the effects of BEP-treatment on the skeletal musculature in testicular cancer patients, and to examine whether the expected treatment-induced muscular deterioration can be attenuated or even reversed by high intensity progressive resistance training (HIPRT. Design/Methods The PROTRACT study is a randomized controlled trial in 30 testicular cancer patients undergoing three cycles of BEP chemotherapy. Participants will be randomized to either a 9-week HIPRT program (STR initiated at the onset of treatment, or to standard care (UNT. 15 healthy matched control subjects (CON will complete the same HIPRT program. All participants will take part in 3 assessment rounds (baseline, 9 wks, 21 wks including muscle biopsies, maximum muscle strength tests, whole body DXA scan and blood samples. Primary outcome: mean fiber area and fiber type composition measured by histochemical analyses, satellite cells and levels of protein and mRNA expression of intracellular mediators of protein turnover. Secondary outcomes: maximum muscle strength and muscle power measured by maximum voluntary contraction and leg-extensor-power tests, body composition assessed by DXA scan, and systemic inflammation analyzed by circulating inflammatory markers

  11. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  12. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2017-10-01

    Full Text Available Background: Low-intensity ultrasound (LIUS was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders.Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS.Results: Our data revealed following interesting findings: (1 LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2 LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells, MSCs (mesenchymal stem cells, B1-B cells and Treg (regulatory T cells; (3 LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4 LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5 Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6 LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways.Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.

  13. CD1d-restricted IFN-γ-secreting NKT cells promote immune complex-induced acute lung injury by regulating macrophage-inflammatory protein-1α production and activation of macrophages and dendritic cells.

    Science.gov (United States)

    Kim, Ji Hyung; Chung, Doo Hyun

    2011-02-01

    Immune complex-induced acute lung injury (IC-ALI) has been implicated in various pulmonary disease states. However, the role of NKT cells in IC-ALI remains unknown. Therefore, we explored NKT cell functions in IC-ALI using chicken egg albumin and anti-chicken egg albumin IgG. The bronchoalveolar lavage fluid of CD1d(-/-) and Jα18(-/-) mice contained few Ly6G(+)CD11b(+) granulocytes, whereas levels in B6 mice were greater and were increased further by α-galactosyl ceramide. IFN-γ and MIP-1α production in the lungs was greater in B6 than CD1d(-/-) mice. Adoptive transfer of wild type (WT) but not IFN-γ-, MIP-1α-, or FcγR-deficient NKT cells into CD1d(-/-) mice caused recruitment of inflammatory cells to the lungs. Moreover, adoptive transfer of IFN-γR-deficient NKT cells enhanced MIP-1α production and cell recruitment in the lungs of CD1d(-/-) or CD1d(-/-)IFN-γ(-/-) mice, but to a lesser extent than WT NKT cells. This suggests that IFN-γ-producing NKT cells enhance MIP-1α production in both an autocrine and a paracrine manner. IFN-γ-deficient NKT cells induced less IL-1β and TNF-α production by alveolar macrophages and dendritic cells in CD1d(-/-) mice than did WT NKT cells. Taken together, these data suggest that CD1d-restricted IFN-γ-producing NKT cells promote IC-ALI by producing MIP-1α and enhancing proinflammatory cytokine production by alveolar macrophages and dendritic cells.

  14. Inflammatory breast cancer

    International Nuclear Information System (INIS)

    Wagnerova, M.

    2012-01-01

    Inflammatory breast cancer (IBC) is an extremely aggressive disease that progresses rapidly and carries a very grim prognosis. It is characterized by erythema, rapid enlargement of the breast, skin ridging, and a characteristics peau d´orange appearance of the skin secondary to dermal lymphatic tumor involvement. Although a palpable tumor may not by present, about 55% to 85% of patient will present with metastases to the axillary or supraclavicular lymph nodes. Diagnosis of IBC is made on the basis of these clinical characteristics, as well as histologic verification of carcinoma. Accurate diagnosis is critically important, as multimodal therapy can significantly improve outcome if instituted early enough. Primary systemic treatment (neoadjuvant, induction, initials) is standard treatment for inflammatory breast cancer. If treatment response is not satisfactory it is necessary to look for new treatment regimens with different concept of dose intensity, density and sequence of treatment. In the neoadjuvant setting it is possible to employ all targeted and non-targeted therapies as was shown in a number of clinical trials. (author)

  15. 55th electric science promotion prize (progress prize). Demonstration of optical soliton transmission on OPGW first in the world; Dai 55 kai denki gakujutsu shinkosho (shinposho) jusho. Seiaihatsu no OPGW ni okeru hikari soriton denso no jissho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-10

    Electric science promotion prize (progress prize) is given to `Person who newly proposed a new concept, theory, material, device, system and method on electrical science and technology, or demonstrated these proposals` by the commendation committee of Institute of Electrical Engineers of Japan every year. Eight promotion prizes including that for Kansai Electric Power`s `Demonstration of optical soliton transmission on OPGW first in the world` were given. This research succeeded in development of the transmission/ receiving device suitable for optical soliton transmission, and the prediction method of an optimum transmission condition by computer simulation. In addition, this research succeeded in 10Gbit transmission of 784km and 40Gbit transmission (4-wave multiplex) of 392km by applying the above research result to Okurobe trunk line OPGW (98.2km). This demonstration of optical soliton transmission on OPGW is first in the world. (NEDO)

  16. Probable Chemical Hypoxia Effects on Progress of CNV Through Induction of Promoter CpG Demethylation and Overexpression of IL17RC in Human RPE Cells.

    Science.gov (United States)

    Alivand, Mohammad Reza; Sabouni, Farzaneh; Soheili, Zahra-Soheila

    2016-09-01

    To survey the changes of promoter CpG methylation status and mRNA expression of IL17RC (interleukin 17 receptor C) gene in retinal pigment epithelium (RPE) cells under chemical hypoxia condition for choroidal neovascularization (CNV) modeling in vitro. RPE cells were cultured in both untreated as a control group and treated by cobalt chloride media as a hypoxia group for various concentrations (100-150μM) and times (24-36 hrs.) To confirm chemical hypoxia condition, mRNA expression of HIF (Hypoxia Inducible Factor) -1α, -2α, and Vascular Endothelial Growth Factor (VEGF) was compared between two groups by Real-time PCR. Also, in normoxia and hypoxia conditions, IL17RC expression changes and promoter CpG methylation status were evaluated by Real-time PCR and methylation-specific PCR (MSP) techniques, respectively. Overexpression of HIF-1α, HIF-2α, and VEGF was significant in hypoxia versus normoxia conditions. Our data showed overexpression of IL17RC (2.1- to 6.3-fold) and decreasing of its promoter methylation in comparison with hypoxia and normoxia conditions. It was found that there are significant association between promoter methylation status and expression of IL17RC in chemical hypoxia condition. Therefore, methylation of IL17RC could play as a marker in CNV and degeneration of RPE cells in vitro. Additionally, HIF-α and methylation phenomena may be considered as critical targets for blocking in angiogenesis of age-related degeneration in future studies.

  17. Inflammatory carcinoma of breast: The chameleon

    Directory of Open Access Journals (Sweden)

    Indranil Chakrabarti

    2017-01-01

    Full Text Available Inflammatory breast carcinoma is an extremely rare, rapidly progressive breast carcinoma which is a great masquerader and often is mistaken as an inflammatory lesion. This leads to the delay in diagnosis. Here, we report such a case where the mistaken clinical diagnosis led to it being treated with antibiotics. However, fine-needle aspiration cytology of the case saved the day. Histopathological confirmation followed by multimodal therapy was rendered, and the patient responded well to the treatment. Thus, awareness and recognition of this rare entity, which mimics various inflammatory and nonmalignant causes, is of paramount importance for the doctors and patients alike.

  18. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Takatori, Hiroaki; Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi; Tanzawa, Hideki; Bukawa, Hiroki

    2012-01-01

    Cell division cycle associated 3 (CDCA3), part of the Skp1-cullin-F-box (SCF) ubiquitin ligase, refers to a trigger of mitotic entry and mediates destruction of the mitosis inhibitory kinase. Little is known about the relevance of CDCA3 to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of CDCA3 in OSCC. We evaluated CDCA3 mRNA and protein expression in both OSCC-derived cell lines and primary OSCCs and performed functional analyses of CDCA3 in OSCC-derived cells using the shRNA system. The CDCA3 expression at both the mRNA and protein levels was frequently up-regulated in all cell lines examined and primary tumors (mRNA, 51/69, 74 %; protein, 79/95, 83 %) compared to normal controls (p < 0.001). In contrast, no significant level of CDCA3 protein expression was seen in oral premalignant lesions (OPLs) (n = 20) compared with the expression in OSCCs. Among the clinical variables analyzed, the CDCA3 expression status was closely related to tumor size (p < 0.05). In addition, suppression of CDCA3 expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase. Further, there was up-regulation of the cyclin-dependent kinase inhibitors (p21 Cip1 , p27 Kip1 , p15 INK4B , and p16 INK4A ) in the knockdown cells. The current results showed that overexpression of CDCA3 occurs frequently during oral carcinogenesis and this overexpression might be associated closely with progression of OSCCs by preventing the arrest of cell-cycle progression at the G1 phase via decreased expression of the cyclin-dependent kinase inhibitors

  19. Methyl salicylate 2-O-β-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction.

    Science.gov (United States)

    He, Yang-Yang; Yan, Yu; Zhang, Hui-Fang; Lin, Yi-Huang; Chen, Yu-Cai; Yan, Yi; Wu, Ping; Fang, Jian-Song; Yang, Shu-Hui; Du, Guan-Hua

    2016-01-01

    Systemic lupus erythematosus (SLE), with a high incidence rate and insufficient therapy worldwide, is a complex disease involving multiple organs characterized primarily by inflammation due to deposition of immunocomplexes formed by production of autoantibodies. The mechanism of SLE remains unclear, and the disease still cannot be cured. We used pristane to induce SLE in female BALB/c mice. Methyl salicylate 2- O -β-d-lactoside (MSL; 200, 400, and 800 mg/kg) was orally administered 45 days after pristane injection for 4.5 months. The results showed that MSL antagonized the increasing levels of multiple types of antibodies and cytokines in lupus mice. MSL was found to suppress joint swelling and have potent inhibitory effect on arthritis-like symptoms. MSL also significantly decreased the spleen index and expression of inflammatory markers in the lupus mice. MSL protected the kidneys of lupus mice from injury through inhibiting the expression of inflammatory cytokines and reducing the IgG and C3 immunocomplex deposits. Further Western blot assays revealed that the downregulation of the intracellular inflammatory signals of NFκB and JAK/STAT3 might be the potential molecular mechanisms of the pharmacological activity of MSL against SLE in vivo. These findings may demonstrate that MSL has the potential to be a useful and highly effective treatment for SLE.

  20. The Novel miR-9600 Suppresses Tumor Progression and Promotes Paclitaxel Sensitivity in Non–small-cell Lung Cancer Through Altering STAT3 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Cao Sun

    2016-01-01

    Full Text Available MicroRNAs have been identified to be involved in center stage of cancer biology. They accommodate cell proliferation and migration by negatively regulate gene expression either by hampering the translation of targeted mRNAs or by promoting their degradation. We characterized and identified the novel miR-9600 and its target in human non–small-cell lung cancer (NSCLC. Our results demonstrated that the miR-9600 were downregulated in NSCLC tissues and cells. It is confirmed that signal transducer and activator of transcription 3 (STAT3, a putative target gene, is directly inhibited by miR-9600. The miR-9600 markedly suppressed the protein expression of STAT3, but with no significant influence in corresponding mRNA levels, and the direct combination of miR-9600 and STAT3 was confirmed by a luciferase reporter assay. miR-9600 inhibited cell growth, hampered expression of cell cycle-related proteins and inhibited cell migration and invasion in human NSCLC cell lines. Further, miR-9600 significantly suppressed tumor growth in nude mice. Similarly, miR-9600 impeded tumorigenesis and metastasis through directly targeting STAT3. Furthermore, we identified that miR-9600 augmented paclitaxel and cisplatin sensitivity by downregulating STAT3 and promoting chemotherapy-induced apoptosis. These data demonstrate that miR-9600 might be a useful and novel therapeutic target for NSCLC.

  1. Researching health promotion

    National Research Council Canada - National Science Library

    Platt, Stephen David; Watson, Jonathan

    2000-01-01

    ... the progress towards developing and implementing health promotion interventions that: * * * * are theoretically grounded, socio-culturally appropriate and sustainable involve the redistribution of resources towards those most in need reflect the principles of equity, participation and empowerment incorporate rigorous, methodologically ...

  2. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  3. A double-blind, randomized controlled trial to compare the effect of biannual peripheral magnetic resonance imaging, radiography and standard of care disease progression monitoring on pharmacotherapeutic escalation in rheumatoid and undifferentiated inflammatory arthritis: study protocol for a randomized controlled trial

    Science.gov (United States)

    2014-01-01

    Background Permanent joint damage is a major consequence of rheumatoid arthritis (RA), the most common and destructive form of inflammatory arthritis. In aggressive disease, joint damage can occur within 6 months from symptom onset. Early, intensive treatment with conventional and biologic disease-modifying anti-rheumatic drugs (DMARDs) can delay the onset and progression of joint damage. The primary objective of the study is to investigate the value of magnetic resonance imaging (MRI) or radiography (X-ray) over standard of care as tools to guide DMARD treatment decision-making by rheumatologists for the care of RA. Methods A double-blind, randomized controlled trial has been designed. Rheumatoid and undifferentiated inflammatory arthritis patients will undergo an MRI and X-ray assessment every 6 months. Baseline adaptive randomization will be used to allocate participants to MRI, X-ray, or sham-intervention groups on a background of standard of care. Prognostic markers, treating physician, and baseline DMARD therapy will be used as intervention allocation parameters. The outcome measures in rheumatology RA MRI score and the van der Heijde-modified Sharp score will be used to evaluate the MRI and X-ray images, respectively. Radiologists will score anonymized images for all patients regardless of intervention allocation. Disease progression will be determined based on the study-specific, inter-rater smallest detectable difference. Allocation-dependent, intervention-concealed reports of positive or negative disease progression will be reported to the treating rheumatologist. Negative reports will be delivered for the sham-intervention group. Study-based radiology clinical reports will be provided to the treating rheumatologists for extra-study X-ray requisitions to limit patient radiation exposure as part of diagnostic imaging standard of care. DMARD treatment dose escalation and therapy changes will be measured to evaluate the primary objective. A sample size of

  4. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Little, J. B.

    1981-06-01

    Emphasis during the past year has been on studies of the effects of potential promoting agents on radiation transformation, and of transformation by internal radionuclides emitting high LET radiation. We have also carried out a detailed investigation of the dosimetry of our alpha radiation source. Preliminary studies on the mechanisms of radiation transformation have been initiated as described in the previous proposal. Studies on promotion have focused on the effects of: (1) the endogenous steroid hormone 17-..beta..-estradiol; (2) the non-steroidal anti-inflammatory agent indomethacin; (3) the endogenous growth factor called Epidermal Growth Factor (EGF); and (4) Melittin, a stimulator of prostaglandins synthesis.

  5. Annual progress report

    International Nuclear Information System (INIS)

    Little, J.B.

    1981-01-01

    Emphasis during the past year has been on studies of the effects of potential promoting agents on radiation transformation, and of transformation by internal radionuclides emitting high LET radiation. We have also carried out a detailed investigation of the dosimetry of our alpha radiation source. Preliminary studies on the mechanisms of radiation transformation have been initiated as described in the previous proposal. Studies on promotion have focused on the effects of: (1) the endogenous steroid hormone 17-β-estradiol; (2) the non-steroidal anti-inflammatory agent indomethacin; (3) the endogenous growth factor called Epidermal Growth Factor (EGF); and (4) Melittin, a stimulator of prostaglandins synthesis

  6. [Changes of fecal flora and its correlation with inflammatory indicators in patients with inflammatory bowel disease].

    Science.gov (United States)

    Zhang, Ting; Chen, Ye; Wang, Zhongqiu; Zhou, Youlian; Zhang, Shaoheng; Wang, Pu; Xie, Shan; Jiang, Bo

    2013-10-01

    To investigate the changes in fecal flora and its correlation with the occurrence and progression of inflammatory bowel disease (IBD). We collected fresh fecal specimens from 167 IBD patients (including 113 with ulcerative colitis and 54 with Crohn's disease) and 54 healthy volunteers. The fecal flora was analyzed by gradient dilution method and the data of inflammatory markers including WBC, PLT, CRP and ESR were collected to assess the association between the fecal flora and the inflammatory markers. The species Enterrococcus (6.60∓0.23, Pflora. The changes in fecal flora did not show a significant correlation with these inflammatory markers. IBD patients have fecal flora imbalance compared with the healthy controls, and this imbalance may contribute to the occurrence and progression of IBD. The decline of Eubacterium contributes to the occurrence and development of IBD.

  7. LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis.

    Science.gov (United States)

    Zeng, Bing; Ye, Huilin; Chen, Jianming; Cheng, Di; Cai, Canfeng; Chen, Guoxing; Chen, Xiang; Xin, Haiyang; Tang, Chaoming; Zeng, Jun

    2017-12-26

    Long noncoding RNAs (lncRNAs) are important regulators in cancer progression. Deregulation of the lncRNA taurine upregulated gene 1 (TUG1) predicts poor prognosis and is implicated in the development of several cancers. In this study, we investigated the role of TUG1 in the pathogenesis of intrahepatic cholangiocarcinoma (ICC). We found that TUG1 is upregulated in ICC samples, which correlates with poor prognosis and adverse clinical pathological characteristics. Knockdown of TUG1 inhibited the proliferation, motility, and invasiveness of cultured ICC cells, and decreased tumor burden in a xenograft mouse model. When we explored the mechanisms underlying these effects, we found that TUG1 acts as an endogenous competing RNA (ceRNA) that 'sponges' miR-145, thereby preventing the degradation of Sirt3 mRNA and increasing expression of Sirt3 and GDH proteins. Accordingly, glutamine consumption, α-KG production, and ATP levels were dramatically decreased by TUG1 knockdown in ICC cells, and this effect was reversed by miR-145 inhibition. These findings indicate that the TUG1/miR-145/Sirt3/GDH regulatory network may provide a novel therapeutic strategy for treatment of ICC.

  8. Avian leukosis virus subgroup J promotes cell proliferation and cell cycle progression through miR-221 by targeting CDKN1B.

    Science.gov (United States)

    Ren, Chaoqi; Yu, Mengmeng; Zhang, Yao; Fan, Minghui; Chang, Fangfang; Xing, Lixiao; Liu, Yongzhen; Wang, Yongqiang; Qi, Xiaole; Liu, Changjun; Zhang, Yanping; Cui, Hongyu; Li, Kai; Gao, Li; Pan, Qing; Wang, Xiaomei; Gao, Yulong

    2018-04-23

    Avian leukosis virus subgroup J (ALV-J), a highly oncogenic retrovirus, causes leukemia-like proliferative diseases in chickens. microRNAs post-transcriptionally suppress targets and are involved in the development of various tumors. We previously showed that miR-221 is upregulated in ALV-J-induced tumors. In this study, we analyzed the possible function of miR-221 in ALV-J tumorigenesis. The target validation system showed that CDKN1B is a target of miR-221 and is downregulated in ALV-J infection. As CDKN1B arrests the cell cycle and regulates its progression, we analyzed the proliferation of ALV-J-infected DF-1 cells. ALV-J-infection-induced DF1 cell derepression of G1/S transition and overproliferation required high miR-221 expression followed by CDKN1B downregulation. Cell cycle pathway analysis showed that ALV-J infection induced DF-1 cell overproliferation via the CDKN1B-CDK2/CDK6 pathway. Thus, miR-221 may play an important role in ALV-J-induced aggressive growth of DF-1 cells; these findings have expanded our insights into the mechanism underlying ALV-J infection and tumorigenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Inflammatory mechanisms in the lung

    Directory of Open Access Journals (Sweden)

    B Moldoveanu

    2008-12-01

    Full Text Available B Moldoveanu1, P Otmishi1, P Jani1, J Walker1,2, X Sarmiento3, J Guardiola1, M Saad1, Jerry Yu11Department of Medicine, University of Louisville, Louisville, KY, USA, 40292; 2Department of Respiratory Therapy, Bellarmine University, Louisville, KY, USA, 40205; 3Intensive Care Medicine Service, University Hospital Germans Trias i Pujol, Badalona, Spain 08916Abstract: Inflammation is the body’s response to insults, which include infection, trauma, and hypersensitivity. The inflammatory response is complex and involves a variety of mechanisms to defend against pathogens and repair tissue. In the lung, inflammation is usually caused by pathogens or by exposure to toxins, pollutants, irritants, and allergens. During inflammation, numerous types of inflammatory cells are activated. Each releases cytokines and mediators to modify activities of other inflammatory cells. Orchestration of these cells and molecules leads to progression of inflammation. Clinically, acute inflammation is seen in pneumonia and acute respiratory distress syndrome (ARDS, whereas chronic inflammation is represented by asthma and chronic obstructive pulmonary disease (COPD. Because the lung is a vital organ for gas exchange, excessive inflammation can be life threatening. Because the lung is constantly exposed to harmful pathogens, an immediate and intense defense action (mainly inflammation is required to eliminate the invaders as early as possible. A delicate balance between inflammation and anti-inflammation is essential for lung homeostasis. A full understanding of the underlying mechanisms is vital in the treatment of patients with lung inflammation. This review focuses on cellular and molecular aspects of lung inflammation during acute and chronic inflammatory states.Keywords: inflammation, lung, inflammatory mediators, cytokines

  10. Interaction with CCNH/CDK7 facilitates CtBP2 promoting esophageal squamous cell carcinoma (ESCC) metastasis via upregulating epithelial-mesenchymal transition (EMT) progression.

    Science.gov (United States)

    Zhang, Jianguo; Zhu, Junya; Yang, Lei; Guan, Chengqi; Ni, Runzhou; Wang, Yuchan; Ji, Lili; Tian, Ye

    2015-09-01

    CtBP2, as a transcriptional corepressor of epithelial-specific genes, has been reported to promote tumor due to upregulating epithelial-mesenchymal transition (EMT) in cancer cells. CtBP2 was also demonstrated to contribute to the proliferation of esophageal squamous cell carcinoma (ESCC) cells through a negative transcriptional regulation of p16(INK4A). In this study, for the first time, we reported that CtBP2 expression, along with CCNH/CDK7, was higher in ESCC tissues with lymph node metastases than in those without lymph node metastases. Moreover, both CtBP2 and CCNH/CDK7 were positively correlated with E-cadherin, tumor grade, and tumor metastasis. However, the concrete mechanism of CtBP2's role in enhancing ESCC migration remains incompletely understood. We confirmed that CCNH/CDK7 could directly interact with CtBP2 in ESCC cells in vivo and in vitro. Furthermore, our data demonstrate for the first time that CtBP2 enhanced the migration of ESCC cells in a CCNH/CDK7-dependent manner. Our results indicated that CCNH/CDK7-CtBP2 axis may augment ESCC cell migration, and targeting the interaction of both may provide a novel therapeutic target of ESCC.

  11. NO2 inhalation promotes Alzheimer’s disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication

    Science.gov (United States)

    Yan, Wei; Yun, Yang; Ku, Tingting; Li, Guangke; Sang, Nan

    2016-03-01

    Air pollution has been reported to be associated with increased risks of cognitive impairment and neurodegenerative diseases. Because NO2 is a typical primary air pollutant and an important contributor to secondary aerosols, NO2-induced neuronal functional abnormalities have attracted greater attention, but the available experimental evidence, modulating mechanisms, and targeting medications remain ambiguous. In this study, we exposed C57BL/6J and APP/PS1 mice to dynamic NO2 inhalation and found for the first time that NO2 inhalation caused deterioration of spatial learning and memory, aggravated amyloid β42 (Aβ42) accumulation, and promoted pathological abnormalities and cognitive defects related to Alzheimer’s disease (AD). The microarray and bioinformation data showed that the cyclooxygenase-2 (COX-2)-mediated arachidonic acid (AA) metabolism of prostaglandin E2 (PGE2) played a key role in modulating this aggravation. Furthermore, increasing endocannabinoid 2-arachidonoylglycerol (2-AG) by inhibiting monoacylglycerol lipase (MAGL) prevented PGE2 production, neuroinflammation-associated Aβ42 accumulation, and neurodegeneration, indicating a therapeutic target for relieving cognitive impairment caused by NO2 exposure.

  12. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    Science.gov (United States)

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    . Furthermore, RAB11FIP3 combines with Eps15 homology domain 1 to promote the endocytosis recycling of phosphorylation of epithelial growth factor receptor.

  13. Inflammatory myofibroblastic tumor

    Directory of Open Access Journals (Sweden)

    Sangeeta Palaskar

    2011-01-01

    Full Text Available Inflammatory myofibroblastic tumor is an uncommon lesion of unknown cause. It encompasses a spectrum of myofibroblastic proliferation along with varying amount of inflammatory infiltrate. A number of terms have been applied to the lesion, namely, inflammatory pseudotumor, fibrous xanthoma, plasma cell granuloma, pseudosarcoma, lymphoid hamartoma, myxoid hamartoma, inflammatory myofibrohistiocytic proliferation, benign myofibroblatoma, and most recently, inflammatory myofibroblastic tumor. The diverse nomenclature is mostly descriptive and reflects the uncertainty regarding true biologic nature of these lesions. Recently, the concept of this lesion being reactive has been challenged based on the clinical demonstration of recurrences and metastasis and cytogenetic evidence of acquired clonal chromosomal abnormalities. We hereby report a case of inflammatory pseudotumor and review its inflammatory versus neoplastic behavior.

  14. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease

    Directory of Open Access Journals (Sweden)

    Strieter Robert

    2002-01-01

    Full Text Available Abstract The lung responds to a variety of insults in a remarkably consistent fashion but with inconsistent outcomes that vary from complete resolution and return to normal to the destruction of normal architecture and progressive fibrosis. Increasing evidence indicates that diffuse lung disease results from an imbalance between the pro-inflammatory and anti-inflammatory mechanisms, with a persistent imbalance that favors pro-inflammatory mediators dictating the development of chronic diffuse lung disease. This review focuses on the mediators that influence this imbalance.

  15. Progressive Resistance Training and Cancer Testis (PROTRACT) - Efficacy of resistance training on muscle function, morphology and inflammatory profile in testicular cancer patients undergoing chemotherapy: design of a randomized controlled trial

    DEFF Research Database (Denmark)

    Christensen, Jesper F; Andersen, Jesper L; Adamsen, Lis

    2011-01-01

    of developing considerable long-term morbidity, including second malignant neoplasms, cardiovascular disease, and pulmonary toxicity. One neglected side effect is the significant muscular fatigue mentioned by many patients with testicular cancer both during and after treatment. Very limited information exists....... Primary outcome: mean fiber area and fiber type composition measured by histochemical analyses, satellite cells and levels of protein and mRNA expression of intracellular mediators of protein turnover. Secondary outcomes: maximum muscle strength and muscle power measured by maximum voluntary contraction...... and leg-extensor-power tests, body composition assessed by DXA scan, and systemic inflammation analyzed by circulating inflammatory markers, lipid and glucose metabolism in blood samples. Health related Quality of Life (QoL) will be assessed by validated questionnaires (EORTC QLQ-C30, SF-36). DISCUSSION...

  16. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells.

    Science.gov (United States)

    Trosko, James E; Tai, Mei-Hui

    2006-01-01

    Inflammation, induced by microbial agents, radiation, endogenous or exogenous chemicals, has been associated with chronic diseases, including cancer. Since carcinogenesis has been characterized as consisting of the 'initiation', 'promotion' and 'progression' phases, the inflammatory process could affect any or all three phases. The stem cell theory of carcinogenesis has been given a revival, in that isolated human adult stem cells have been isolated and shown to be 'targets' for neoplastic transformation. Oct4, a transcription factor, has been associated with adult stem cells, as well as their immortalized and tumorigenic derivatives, but not with the normal differentiated daughters. These data are consistent with the stem cell theory of carcinogenesis. In addition, Gap Junctional Intercellular Communication (GJIC) seems to play a major role in cell growth. Inhibition of GJIC by non-genotoxic chemicals or various oncogenes seems to be the mechanism for the tumor promotion and progression phases of carcinogenesis. Many of the toxins, synthetic non-genotoxicants, and endogenous inflammatory factors have been shown to inhibit GJIC and act as tumor promoters. The inhibition of GJIC might be the mechanism by which the inflammatory process affects cancer and that to intervene during tumor promotion with anti-inflammatory factors might be the most efficacious anti-cancer strategy.

  17. Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc.

    Science.gov (United States)

    Teixeira, Graciosa Q; Leite Pereira, Catarina; Castro, Flávia; Ferreira, Joana R; Gomez-Lazaro, Maria; Aguiar, Paulo; Barbosa, Mário A; Neidlinger-Wilke, Cornelia; Goncalves, Raquel M

    2016-09-15

    Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain (LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have been purposed in the context of IVD regeneration. Anti-inflammatory nanoparticles (NPs) of Chitosan and Poly-(γ-glutamic acid) with a non-steroidal anti-inflammatory drug, diclofenac (Df), were previously shown to counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal injection of Df-NPs in degenerated IVD was evaluated. For that, Df-NPs were injected in a bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with needle-puncture and interleukin (IL)-1β. Df-NPs were internalized by IVD cells, down-regulating IL-6, IL-8, MMP1 and MMP3, and decreasing PGE2 production, compared with IL-1β-stimulated IVD punches. Interestingly, at the same time, Df-NPs promoted an up-regulation of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study suggests that IVD treatment with Df-NPs not only reduces inflammation, but also delays and/or decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD degeneration, based on the modulation of inflammation. Degeneration of the IVD is an age-related progressive process considered to be the major cause of spine disorders. The pro-inflammatory environment and biomechanics of the degenerated IVD is a challenge for regenerative therapies. The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on Chitosan (Ch)/Poly-(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) with an anti-inflammatory drug (diclofenac, Df), previously developed by us. This drug delivery system was tested in a pro-inflammatory/degenerative intervertebral disc ex vivo model. The main findings support the success of an anti-inflammatory

  18. Cardiovascular calcification. An inflammatory disease

    International Nuclear Information System (INIS)

    New, S.E.P.; Aikawa, E.

    2011-01-01

    Cardiovascular calcification is an independent risk factor for cardiovascular morbidity and mortality. This disease of dysregulated metabolism is no longer viewed as a passive degenerative disease, but instead as an active process triggered by pro-inflammatory cues. Furthermore, a positive feedback loop of calcification and inflammation is hypothesized to drive disease progression in arterial calcification. Both calcific aortic valve disease and atherosclerotic arterial calcification may possess similar underlying mechanisms. Early histopathological studies first highlighted the contribution of inflammation to cardiovascular calcification by demonstrating the accumulation of macrophages and T lymphocytes in 'early' lesions within the aortic valves and arteries. A series of in vitro work followed, which gave a mechanistic insight into the stimulation of smooth muscle cells to undergo osteogenic differentiation and mineralization. The emergence of novel technology, in the form of animal models and more recently molecular imaging, has enabled accelerated progression of this field, by providing strong evidence regarding the concept of this disorder as an inflammatory disease. Although there are still gaps in our knowledge of the mechanisms behind this disorder, this review discusses the various studies that have helped form the concept of the inflammation-dependent cardiovascular calcification paradigm. (author)

  19. Aggressive and multifocal pulmonary inflammatory myofiberblastic tumor in young woman

    International Nuclear Information System (INIS)

    Choi, Yang Sean; Chung, Myung Hee; Kim, Hyun Jung; Park, Ki Hoon; Kim, Jeanna; Kwon, Soon Suck; Yoo, Won Jong

    2016-01-01

    We report a case of pulmonary inflammatory myofibroblastic tumor (IMT) showing aggressive and unusually rapid progression. A 27-year-old woman was admitted to the emergency room due to dry cough, fever and blood-tinged sputum that lasted one week. Initial chest radiograph and computed tomography scan revealed multifocal pulmonary nodules, which subsequently progressed into large necrotic masses within two months. She underwent a fine needle biopsy of the largest mass in the right middle lung zone which revealed inflammatory myofibroblastic cells consistent with IMT. The masses showed complete regression after six months of corticosteroid therapy. This unusual clinical manifestation could help explain the reactive inflammatory nature associated with IMTs

  20. Aggressive and multifocal pulmonary inflammatory myofiberblastic tumor in young woman

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yang Sean; Chung, Myung Hee; Kim, Hyun Jung; Park, Ki Hoon; Kim, Jeanna; Kwon, Soon Suck; Yoo, Won Jong [Bucheon St. Mary' s Hospital, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2016-08-15

    We report a case of pulmonary inflammatory myofibroblastic tumor (IMT) showing aggressive and unusually rapid progression. A 27-year-old woman was admitted to the emergency room due to dry cough, fever and blood-tinged sputum that lasted one week. Initial chest radiograph and computed tomography scan revealed multifocal pulmonary nodules, which subsequently progressed into large necrotic masses within two months. She underwent a fine needle biopsy of the largest mass in the right middle lung zone which revealed inflammatory myofibroblastic cells consistent with IMT. The masses showed complete regression after six months of corticosteroid therapy. This unusual clinical manifestation could help explain the reactive inflammatory nature associated with IMTs.

  1. The inflammatory microenvironment in colorectal neoplasia.

    Science.gov (United States)

    McLean, Mairi H; Murray, Graeme I; Stewart, Keith N; Norrie, Gillian; Mayer, Claus; Hold, Georgina L; Thomson, John; Fyfe, Nicky; Hope, Mairi; Mowat, N Ashley G; Drew, Janice E; El-Omar, Emad M

    2011-01-07

    Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.

  2. The Inflammatory Microenvironment in Colorectal Neoplasia

    Science.gov (United States)

    McLean, Mairi H.; Murray, Graeme I.; Stewart, Keith N.; Norrie, Gillian; Mayer, Claus; Hold, Georgina L.; Thomson, John; Fyfe, Nicky; Hope, Mairi; Mowat, N. Ashley G.; Drew, Janice E.; El-Omar, Emad M.

    2011-01-01

    Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified. PMID:21249124

  3. The inflammatory microenvironment in colorectal neoplasia.

    Directory of Open Access Journals (Sweden)

    Mairi H McLean

    Full Text Available Colorectal cancer (CRC is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5 are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.

  4. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Antonietta Rosella; Mackay, Andrew Reay, E-mail: andrewreay.mackay@univaq.it [Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, L’Aquila 67100 (Italy)

    2014-01-27

    Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the gelatinase B/MMP-9 gene and protein, we analyse the role(s) of gelatinase B/MMP-9 in different phases of the tumorigenic process, and compare the importance of gelatinase B/MMP-9 source in the carcinogenic process. What becomes apparent is the importance of inflammatory cell-derived gelatinase B/MMP-9 in tumour promotion, early progression and triggering of the “angiogenic switch”, the integral relationship between inflammatory, stromal and tumour components with respect to gelatinase B/MMP-9 production and activation, and the fundamental role for gelatinase B/MMP-9 in the formation and maintenance of tumour stem cell and metastatic niches. It is also apparent that gelatinase B/MMP-9 plays important tumour suppressing functions, producing endogenous angiogenesis inhibitors, promoting inflammatory anti-tumour activity, and inducing apoptosis. The fundamental roles of gelatinase B/MMP-9 in cancer biology underpins the need for specific therapeutic inhibitors of gelatinase B/MMP-9 function, the use of which must take into account and substitute for tumour-suppressing gelatinase B/MMP-9 activity and also limit inhibition of physiological gelatinase B/MMP-9 function.

  5. Tissue Transglutaminase (TG2)-Induced Inflammation in Initiation, Progression, and Pathogenesis of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Kapil, E-mail: kmehta@mdanderson.org; Han, Amy [Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 (United States)

    2011-02-25

    Pancreatic cancer (PC) is among the deadliest cancers, with a median survival of six months. It is generally believed that infiltrating PC arises through the progression of early grade pancreatic intraepithelial lesions (PanINs). In one model of the disease, the K-ras mutation is an early molecular event during progression of pancreatic cancer; it is followed by the accumulation of additional genetic abnormalities. This model has been supported by animal studies in which activated K-ras and p53 mutations produced metastatic pancreatic ductal adenocarcinoma in mice. According to this model, oncogenic K-ras induces PanIN formation but fails to promote the invasive stage. However, when these mice are subjected to caerulein treatment, which induces a chronic pancreatitis-like state and inflammatory response, PanINs rapidly progress to invasive carcinoma. These results are consistent with epidemiologic studies showing that patients with chronic pancreatitis have a much higher risk of developing PC. In line with these observations, recent studies have revealed elevated expression of the pro-inflammatory protein tissue transglutaminase (TG2) in early PanINs, and its expression increases even more as the disease progresses. In this review we discuss the implications of increased TG2 expression in initiation, progression, and pathogenesis of pancreatic cancer.

  6. Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: implications for neuroinflammation.

    Science.gov (United States)

    Rom, Slava; Zuluaga-Ramirez, Viviana; Reichenbach, Nancy L; Erickson, Michelle A; Winfield, Malika; Gajghate, Sachin; Christofidou-Solomidou, Melpo; Jordan-Sciutto, Kelly L; Persidsky, Yuri

    2018-01-27

    Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models. We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple group comparisons were performed by one-way analysis of variance with Dunnet's post hoc tests. We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of aseptic encephalitis (intracerebral TNFα injection) and prevented enhanced BBB permeability during systemic inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFα, or IL-1β in BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion and migration) and prevented the cytoskeleton changes in primary human monocytes activated by relevant inflammatory stimuli. This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism by which SDG mediates these effects, the ability of SDG to exert a multi

  7. Use of Prebiotics for Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Andrew Szilagyi

    2005-01-01

    Full Text Available The relevance of diet in both the pathogenesis and the therapy of inflammatory bowel disease is an evolving science. Disturbance of intestinal microflora (dysbiosis is putatively a key element in the environmental component causing inflammatory bowel disease. Prebiotics are among the dietary components used in an attempt to counteract dysbiosis. Such predominantly carbohydrate dietary components exert effects on the luminal environment by physicochemical changes through pH alteration, by production of short chain fatty acids and by selectively promoting putatively 'health-beneficial' bacteria. The present review elaborates on some of the background rationale and mechanisms on the use of prebiotics. Additionally, published animal and human trials are discussed.

  8. On Another Topic... Promoting Progress through Science.

    Science.gov (United States)

    Marchuk, Guri

    1988-01-01

    Reviews the achievements of scientists and technologists of the Soviet Union and their impact on the development of production, social consciousness, and international politics. Discusses future directions and thrusts to be pursued through extensive application of scientific ideas. (RT)

  9. Critical Role of PepT1 in Promoting Colitis-Associated Cancer and Therapeutic Benefits of the Anti-inflammatory PepT1-Mediated Tripeptide KPV in a Murine ModelSummary

    Directory of Open Access Journals (Sweden)

    Emilie Viennois

    2016-05-01

    Full Text Available Background & Aims: The human intestinal peptide transporter 1 (hPepT1, is expressed in the small intestine at low levels in the healthy colon and up-regulated during inflammatory bowel disease. hPepT1 plays a role in mouse colitis and human studies have shown that chronic intestinal inflammation leads to colorectal cancer (colitis-associated cancer; CAC. Hence, we assessed here the role of PepT1 in CAC. Methods: Mice with hPepT1 overexpression in intestinal epithelial cells (transgenic [TG] or PepT1 (PepT1-knockout [KO] deletion were used and CAC was induced by azoxymethane/dextran sodium sulfate. Results: TG mice had larger tumor sizes, increased tumor burdens, and increased intestinal inflammation compared with wild-type (WT mice. Conversely, tumor number and size and intestinal inflammation were decreased significantly in PepT1-KO mice. Proliferating crypt cells were increased in TG mice and decreased in PepT1-KO mice. Analysis of human colonic biopsy specimens showed increased expression of PepT1 in patients with colorectal cancer, suggesting that PepT1 might be targeted for the treatment of CAC. The use of an anti-inflammatory tripeptide Lys-Pro-Val (KPV transported by PepT1 was able to prevent carcinogenesis in WT mice. When administered to PepT1-KO mice, KPV did not trigger any of the inhibitory effect on tumorigenesis observed in WT mice. Conclusions: The observations that PepT1 was highly expressed in human colorectal tumor and that its overexpression and deletion in mice increased and decreased colitis-associated tumorigenesis, respectively, suggest that PepT1 is a potential therapeutic target for the treatment of colitis-associated tumorigenesis. Keywords: Colitis-Associated Cancer, Intestinal Inflammation, PepT1, KPV Peptide

  10. Adenovirus-mediated siRNA targeting TNF-α and overexpression of bone morphogenetic protein-2 promotes early osteoblast differentiation on a cell model of Ti particle-induced inflammatory response in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.H.; Yu, C.C.; Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China); Ma, X.J. [Ningxia Medical Autonomous Region of the First People' s Hospital, Department of Orthopedic Surgery, Yinchuan (China); Yang, X.C.; Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedic Surgery, Yinchuan (China)

    2013-10-02

    Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.

  11. Relationship between the inflammatory molecular profile of breast carcinomas and distant metastasis development.

    Directory of Open Access Journals (Sweden)

    Noemí Eiró

    Full Text Available Inflammatory conditions may promote tumor progression and aggressiveness. In previous reports, we found a group of breast cancer tumors characterized by metalloprotease-11 (MMP-11 expression by intratumoral mononuclear inflammatory cells (MICs, which was associated with distant metastasis development. Thus, in the present study we evaluated the relationship between MMP-11 expression by MICs, distant metastasis development, and a wide panel of inflammatory factors in breast carcinoma. In an initial approach, we analyzed 65 factors associated with tumor progression and inflammation, in a tumor population classified in good or bad prognosis, based on MMP-11 expression by intratumoral MICs. The most differentially expressed factors were then analyzed in a wider tumor population classified according to MMP-11 expression by MICs and also according to metastasis development. These analyses were carried out by Real-time PCR. The results showed that of the 65 starting factors analyzed, those related with MMP-11 expression by MICs were: IL-1, -5, -6, -8, -17, -18, MMP-1, TIMP-1, ADAM-8, -10, -15, -23, ADAMTS-1, -2, -15, Annexin A2, IFNβ, Claudin-3, CCL-3, MyD88, IRAK-4 and NFκB. Of them, factors more differentially expressed between both groups of tumors were IL-1, IL-5, IL-6, IL-17, IFNβ and NFκB. Thereafter, we confirmed in the wider tumor population, that there is a higher expression of those factors in tumors infiltrated by MMP-11 positive MICs. Altogether these results indicate that tumors developing worse prognosis and identified by MMP-11 expression by intratumoral MICs, shows an up-regulation of inflammatory-related genes.

  12. Dry eye disease as an inflammatory disorder.

    Science.gov (United States)

    Calonge, Margarita; Enríquez-de-Salamanca, Amalia; Diebold, Yolanda; González-García, María J; Reinoso, Roberto; Herreras, José M; Corell, Alfredo

    2010-08-01

    Dry eye disease (DED) is a prevalent inflammatory disorder of the lacrimal functional unit of multifactorial origin leading to chronic ocular surface disease, impaired quality of vision, and a wide range of complications, eventually causing a reduction in quality of life. It still is a frustrating disease because of the present scarcity of therapies that can reverse, or at least stop, its progression. A comprehensive literature survey of English-written scientific publications on the role of inflammation in DED. New investigations have demonstrated that a chronic inflammatory response plays a key role in the pathogenesis of human DED. Additionally, correlations between inflammatory molecules and clinical data suggest that inflammation can be responsible for some of the clinical symptoms and signs. Research efforts to clarify its pathophysiology are leading to a better understanding of DED, demonstrating that inflammation, in addition to many other factors, plays a relevant role.

  13. Complex role for the immune system in initiation and progression of pancreatic cancer.

    Science.gov (United States)

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  14. Inflammatory Drug (NSAID)

    African Journals Online (AJOL)

    Inflammatory Drug (NSAID)-Induced Seizures in a Patient with HIV Infection ... interaction not supported by existing literature, and it is possible that the background HIV infection may have a role to .... Foods and Drug Administration and Control.

  15. Inflammatory Breast Cancer

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... white women. Inflammatory breast tumors are frequently hormone receptor negative, which means they cannot be treated with ...

  16. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  17. Progress Report

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999.......Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999....

  18. Progress Report

    Science.gov (United States)

    2018-05-16

    This report summarizes the annual progress of EPA’s Clean Air Markets Programs such as the Acid Rain Program (ARP) and the Cross-State Air Pollution Rule (CSAPR). EPA systematically collects data on emissions, compliance, and environmental effects, these data are highlighted in our Progress Reports.

  19. [Clinical overview of auto-inflammatory diseases].

    Science.gov (United States)

    Georgin-Lavialle, S; Rodrigues, F; Hentgen, V; Fayand, A; Quartier, P; Bader-Meunier, B; Bachmeyer, C; Savey, L; Louvrier, C; Sarrabay, G; Melki, I; Belot, A; Koné-Paut, I; Grateau, G

    2018-04-01

    Monogenic auto-inflammatory diseases are characterized by genetic abnormalities coding for proteins involved in innate immunity. They were initially described in mirror with auto-immune diseases because of the absence of circulating autoantibodies. Their main feature is the presence of peripheral blood inflammation in crisis without infection. The best-known auto-inflammatory diseases are mediated by interleukines that consisted in the 4 following diseases familial Mediterranean fever, cryopyrinopathies, TNFRSF1A-related intermittent fever, and mevalonate kinase deficiency. Since 10 years, many other diseases have been discovered, especially thanks to the progress in genetics. In this review, we propose the actual panorama of the main known auto-inflammatory diseases. Some of them are recurrent fevers with crisis and remission; some others evaluate more chronically; some are associated with immunodeficiency. From a physiopathological point of view, we can separate diseases mediated by interleukine-1 and diseases mediated by interferon. Then some polygenic inflammatory diseases will be shortly described: Still disease, Schnitzler syndrome, aseptic abscesses syndrome. The diagnosis of auto-inflammatory disease is largely based on anamnesis, the presence of peripheral inflammation during attacks and genetic analysis, which are more and more performant. Copyright © 2018 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  20. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review.

    Science.gov (United States)

    Salaritabar, Ali; Darvishi, Behrad; Hadjiakhoondi, Farzaneh; Manayi, Azadeh; Sureda, Antoni; Nabavi, Seyed Fazel; Fitzpatrick, Leo R; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2017-07-28

    The inflammatory process plays a central role in the development and progression of numerous pathological situations, such as inflammatory bowel disease (IBD), autoimmune and neurodegenerative diseases, metabolic syndrome, and cardiovascular disorders. IBDs involve inflammation of the gastrointestinal area and mainly comprise Crohn's disease (CD) and ulcerative colitis (UC). Both pathological situations usually involve recurring or bloody diarrhea, pain, fatigue and weight loss. There is at present no pharmacological cure for CD or UC. However, surgery may be curative for UC patients. The prescribed treatment aims to ameliorate the symptoms and prevent and/or delay new painful episodes. Flavonoid compounds are a large family of hydroxylated polyphenolic molecules abundant in plants, including vegetables and fruits which are the major dietary sources of these compounds for humans, together with wine and tea. Flavonoids are becoming very popular because they have many health-promoting and disease-preventive effects. Most interest has been directed towards the antioxidant activity of flavonoids, evidencing a remarkable free-radical scavenging capacity. However, accumulating evidence suggests that flavonoids have many other biological properties, including anti-inflammatory, antiviral, anticancer, and neuroprotective activities through different mechanisms of action. The present review analyzes the available data about the different types of flavonoids and their potential effectiveness as adjuvant therapy of IBDs.

  1. Maintaining Intestinal Health: The Genetics and Immunology of Very Early Onset Inflammatory Bowel DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Judith R. Kelsen

    2015-09-01

    Full Text Available Inflammatory bowel disease (IBD is a multifactoral disease caused by dysregulated immune responses to commensal or pathogenic microbes in the intestine, resulting in chronic intestinal inflammation. An emerging population of patients with IBD younger than 5 years of age represent a unique form of disease, termed very early onset IBD (VEO-IBD, which is phenotypically and genetically distinct from older-onset IBD. VEO-IBD is associated with increased disease severity, aggressive progression, and poor responsiveness to most conventional therapies. Further investigation into the causes and pathogenesis of VEO-IBD will help improve treatment strategies and may lead to a better understanding of the mechanisms that are essential to maintain intestinal health or provoke the development of targeted therapeutic strategies to limit intestinal inflammation and promote tissue repair. Here, we discuss the phenotypic nature of VEO-IBD, the recent identification of novel gene variants associated with disease, and functional immunologic studies interrogating the contribution of specific genetic variants to the development of chronic intestinal inflammation. Keywords: Inflammatory Bowel Disease, Very Early Onset Inflammatory Bowel Disease, Whole Exome Sequencing, Mucosal Immunology

  2. A small peptide with potential ability to promote wound healing.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  3. In vivo immune signatures of healthy human pregnancy: Inherently inflammatory or anti-inflammatory?

    Directory of Open Access Journals (Sweden)

    Caroline Graham

    Full Text Available Changes in maternal innate immunity during healthy human pregnancy are not well understood. Whether basal immune status in vivo is largely unaffected by pregnancy, is constitutively biased towards an inflammatory phenotype (transiently enhancing host defense or exhibits anti-inflammatory bias (reducing potential responsiveness to the fetus is unclear. Here, in a longitudinal study of healthy women who gave birth to healthy infants following uncomplicated pregnancies within the Canadian Healthy Infant Longitudinal Development (CHILD cohort, we test the hypothesis that a progressively altered bias in resting innate immune status develops. Women were examined during pregnancy and again, one and/or three years postpartum. Most pro-inflammatory cytokine expression, including CCL2, CXCL10, IL-18 and TNFα, was reduced in vivo during pregnancy (20-57%, p<0.0001. Anti-inflammatory biomarkers (sTNF-RI, sTNF-RII, and IL-1Ra were elevated by ~50-100% (p<0.0001. Systemic IL-10 levels were unaltered during vs. post-pregnancy. Kinetic studies demonstrate that while decreased pro-inflammatory biomarker expression (CCL2, CXCL10, IL-18, and TNFα was constant, anti-inflammatory expression increased progressively with increasing gestational age (p<0.0001. We conclude that healthy resting maternal immune status is characterized by an increasingly pronounced bias towards a systemic anti-inflammatory innate phenotype during the last two trimesters of pregnancy. This is resolved by one year postpartum in the absence of repeat pregnancy. The findings provide enhanced understanding of immunological changes that occur in vivo during healthy human pregnancy.

  4. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression.

    Science.gov (United States)

    Lu, Wanlu; Lu, Libing; Feng, Yun; Chen, Jiao; Li, Yan; Kong, Xiangli; Chen, Sixiu; Li, Xiaoyu; Chen, Qianming; Zhang, Ping

    2013-05-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8 + T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment.

  5. Role of inflammasomes in inflammatory autoimmune rheumatic diseases.

    Science.gov (United States)

    Yi, Young-Su

    2018-01-01

    Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and Sjögren's syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.

  6. Progressive Business

    DEFF Research Database (Denmark)

    Christiansen, Christian O.

    2016-01-01

    Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015.......Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015....

  7. Age-Related Macular Degeneration: Insights into Inflammatory Genes

    Directory of Open Access Journals (Sweden)

    Raffaella Cascella

    2014-01-01

    Full Text Available Age-related macular degeneration (AMD is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old. AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension. In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2 that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines, immune cells (macrophages, and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression.

  8. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.

    Science.gov (United States)

    Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis

    2015-06-01

    Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Inflammatory reaction in chondroblastoma

    International Nuclear Information System (INIS)

    Yamamura, Sigeki; Sato, Keiji; Sugiura, Hideshi; Iwata, Hisashi

    1996-01-01

    The objective of this study was to evaluate the inflammatory reaction accompanying chondroblastoma and to define the value of the finding in clinical practice. We reviewed the clinical, radiographic, and magnetic resonance (MR) findings in six patients with histologically proven chondroblastoma. In all cases, MR imaging showered marrow and soft tissue edema. In four of six cases, periosteal reaction related to intra-osseous edema was more clearly demonstrated on MR imaging than on radiographs. Follow-up MR studies after surgery were available in three patients and all showed disappearance of inflammatory responses such as marrow and soft tissue edema, and reactive synovitis. We propose that these inflammatory reactions of chondroblastomas are inportant signs for detecting residual tumor in recurrences after surgery, as well as for making a precise diagnosis. The MR changes may also be valuable in demonstrating eradication of the tumor. (orig./MG)

  10. Lung inflammatory pseudo tumor

    International Nuclear Information System (INIS)

    Veliz, Elizabeth; Leone, Gaetano; Cano, Fernando; Sanchez, Jaime

    2005-01-01

    The inflammatory pseudo tumor is a non neoplastic process characterized by an irregular growth of inflammatory cells. We described the case of a 38 year-old patient, she went to our institute for a in situ cervix cancer and left lung nodule without breathing symptoms; valued by neumology who did bronchoscopy with biopsy whose result was negative for malignancy. She went to surgery in where we find intraparenquima nodule in felt lingula of approximately 4 cms, we remove it; the result was: Inflammatory pseudotumor. This pathology is a not very frequent, it can develop in diverse regions of the organism, it is frequent in lung. The image tests are not specific for the diagnose, which it is possible only with the biopsy. The treatment is the complete resection. (The author)

  11. Inflammatory reaction in chondroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Sigeki [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Sato, Keiji [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Sugiura, Hideshi [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Iwata, Hisashi [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan)

    1996-05-01

    The objective of this study was to evaluate the inflammatory reaction accompanying chondroblastoma and to define the value of the finding in clinical practice. We reviewed the clinical, radiographic, and magnetic resonance (MR) findings in six patients with histologically proven chondroblastoma. In all cases, MR imaging showered marrow and soft tissue edema. In four of six cases, periosteal reaction related to intra-osseous edema was more clearly demonstrated on MR imaging than on radiographs. Follow-up MR studies after surgery were available in three patients and all showed disappearance of inflammatory responses such as marrow and soft tissue edema, and reactive synovitis. We propose that these inflammatory reactions of chondroblastomas are inportant signs for detecting residual tumor in recurrences after surgery, as well as for making a precise diagnosis. The MR changes may also be valuable in demonstrating eradication of the tumor. (orig./MG)

  12. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Zhang, Yong, E-mail: zhangyong1956@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China); Gao, Ming-Qing, E-mail: gaomingqing@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A& F University, Yangling 712100, Shaanxi (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100, Shaanxi (China)

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  13. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    International Nuclear Information System (INIS)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.

  14. Vasculitis and inflammatory arthritis.

    Science.gov (United States)

    Watts, Richard A; Scott, David G I

    2016-10-01

    Vasculitis has been described in most types of inflammatory arthritis. The best described and most widely recognised form is rheumatoid vasculitis. The incidence of systemic rheumatoid vasculitis has declined significantly following the general early use of methotrexate in the 1990s, and it is now a rare form of vasculitis. Treatment of rheumatoid vasculitis is conventionally with glucocorticoids and cyclophosphamide, but there is an increasing role for rituximab similar to that in other types of vasculitis. Despite these developments the mortality of rheumatoid vasculitis remains high. Vasculitis in other types of inflammatory arthritis is less well described and the treatment remains empirical. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Progressive pseudorheumatoid dysplasia

    International Nuclear Information System (INIS)

    Mampaey, S.; De Schepper, A.; Vanhoenacker, F.; Boven, K.; Hul, W. van

    2000-01-01

    A rare case of progressive pseudorheumatoid dysplasia (PPD) in a 9-year-old girl is presented. Clinically, chronic painless swollen joints, accompanied by progressive motion restriction and progressive walking difficulties, were found. Radiologically, there was enlargement of the epimetaphyseal portions of the large joints, metacarpal heads, and phalanges, and generalized platyspondyly with irregular delineation of the endplates of the vertebral bodies. The radioclinical features at the peripheral joints were originally misdiagnosed as juvenile rheumatoid arthritis (JRA), and the structural spinal abnormalities were neglected and interpreted as Scheuermann's disease. However, the absence of active inflammatory parameters argues against JRA, whereas the low age of onset of the irregularities at the vertebral endplates is an argument against the diagnosis of Scheuermann's disease. The combination of the dysplastic abnormalities of the spine, with platyspondyly and Scheuermann-like lesions at an unusually low age of onset, and radiological features mimicking JRA of the peripheral joints, is the clue to the diagnosis of this rare autosomal-recessive disease. This case is the first to document the MRI features of PPD of the spine. (orig.)

  16. Renal inflammatory myofibroblastic tumor

    DEFF Research Database (Denmark)

    Heerwagen, S T; Jensen, C; Bagi, P

    2007-01-01

    Renal inflammatory myofibroblastic tumor (IMT) is a rare soft-tissue tumor of controversial etiology with a potential for local recurrence after incomplete surgical resection. The radiological findings in renal IMT are not well described. We report two cases in adults with a renal mass treated...

  17. Pelvic Inflammatory Disease (PID)

    Science.gov (United States)

    ... a serious condition, in women. 1 in 8 women with a history of PID experience difficulties getting pregnant. You can prevent PID if you know how to protect yourself. What is PID? Pelvic inflammatory disease is an infection of a woman’s reproductive organs. It is a complication often caused ...

  18. Inflammatory bowel disease epidemiology

    DEFF Research Database (Denmark)

    Burisch, Johan; Munkholm, Pia

    2013-01-01

    The occurrence of inflammatory bowel disease (IBD) is increasing worldwide, yet the reasons remain unknown. New therapeutic approaches have been introduced in medical IBD therapy, but their impact on the natural history of IBD remains uncertain. This review will summarize the recent findings...

  19. Progressive cerebral atrophy in neuromyelitis optica.

    Science.gov (United States)

    Warabi, Yoko; Takahashi, Toshiyuki; Isozaki, Eiji

    2015-12-01

    We report two cases of neuromyelitis optica patients with progressive cerebral atrophy. The patients exhibited characteristic clinical features, including elderly onset, secondary progressive tetraparesis and cognitive impairment, abnormally elevated CSF protein and myelin basic protein levels, and extremely highly elevated serum anti-AQP-4 antibody titer. Because neuromyelitis optica pathology cannot switch from an inflammatory phase to the degenerative phase until the terminal phase, neuromyelitis optica rarely appears as a secondary progressive clinical course caused by axonal degeneration. However, severe intrathecal inflammation and massive destruction of neuroglia could cause a secondary progressive clinical course associated with cerebral atrophy in neuromyelitis optica patients. © The Author(s), 2015.

  20. Anti-metastatic Action of Non-steroidal Anti-inflammatory Drugs

    Directory of Open Access Journals (Sweden)

    Wen-Chun Hung

    2008-08-01

    Full Text Available Epidemiological studies suggest that nonsteroidal anti-inflammatory drugs (NSAIDs reduce the incidence and mortality of several types of human cancer. However, the molecular mechanisms by which NSAIDs exert their chemopreventive and anticancer effects are not fully understood. Cyclooxygenase 1 (COX-1 and COX-2 are the main targets for NSAIDs. Recent studies demonstrate that COX-2 is overexpressed in many human cancers and may promote tumorigenesis via: (1 stimulation of cancer cell proliferation; (2 increase of tumor angiogenesis; (3 prevention of cancer cell apoptosis; (4 modulation of immunoregulatory reactions; and (5 enhancement of tumor metastasis. NSAIDs may target the signaling molecules (from upstream activators to downstream effectors involved in these mechanisms to attenuate the development and progression of cancer. In this review, we discuss the recent findings with regard to the mechanisms by which NSAIDs inhibit tumorigenesis and will specifically focus on the elucidation of NSAID-induced inhibition of tumor metastasis.

  1. Targeting ECM Disrupts Cancer Progression

    DEFF Research Database (Denmark)

    Venning, Freja A; Wullkopf, Lena; Erler, Janine T

    2015-01-01

    , the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread...... is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression....

  2. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases.

    Science.gov (United States)

    Dolan, Kyle T; Chang, Eugene B

    2017-01-01

    The rising incidence of inflammatory bowel diseases in recent decades has notably paralleled changing lifestyle habits in Western nations, which are now making their way into more traditional societies. Diet plays a key role in IBD pathogenesis, and there is a growing appreciation that the interaction between diet and microbes in a susceptible person contributes significantly to the onset of disease. In this review, we examine what is known about dietary and microbial factors that promote IBD. We summarize recent findings regarding the effects of diet in IBD epidemiology from prospective population cohort studies, as well as new insights into IBD-associated dysbiosis. Microbial metabolism of dietary components can influence the epithelial barrier and the mucosal immune system, and understanding how these interactions generate or suppress inflammation will be a significant focus of IBD research. Our knowledge of dietary and microbial risk factors for IBD provides important considerations for developing therapeutic approaches through dietary modification or re-shaping the microbiota. We conclude by calling for increased sophistication in designing studies on the role of diet and microbes in IBD pathogenesis and disease resolution in order to accelerate progress in response to the growing challenge posed by these complex disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Functional significance of SPINK1 promoter variants in chronic pancreatitis.

    Science.gov (United States)

    Derikx, Monique H M; Geisz, Andrea; Kereszturi, Éva; Sahin-Tóth, Miklós

    2015-05-01

    Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation. Copyright © 2015 the American Physiological Society.

  4. Gut Microbiota in HIV Infection: Implication for Disease Progression and Management

    Directory of Open Access Journals (Sweden)

    Felix Chinweije Nwosu

    2014-01-01

    Full Text Available Survival rates among HIV patients have significantly improved since the introduction of antiretroviral therapy (ART in HIV management. However, persistent disease progression and clinical complications in virally suppressed individuals point to additional contributing factors other than HIV replication; microbial translocation is one such factor. The role of underlying commensal microbes and microbial products that traverse the intestinal lumen into systemic circulation in the absence of overt bacteraemia is under current investigation. This review focuses on current knowledge of the complex microbial communities and microbial markers involved in the disruption of mucosal immune T-cells in the promotion of inflammatory processes in HIV infections. Unanswered questions and aims for future studies are addressed. We provide perspective for discussing potential future therapeutic strategies focused on modulating the gut microbiota to abate HIV disease progression.

  5. Current Research of the Roles of IL-35 in Tumor Progression

    Directory of Open Access Journals (Sweden)

    Chongbiao HUANG

    2016-04-01

    Full Text Available Interleukin(IL-35 is a new member of the interleukin-12 superfamily. Since its first report in 2007, IL-35 rapidly became a research highlight in the field of immunology. Like other IL-12 superfamily members, IL-35 was a heterodimer which was composed of an α chain P35 and a β chain Epstein-Barr virus induced gene 3 (EBI3. Recent research work revealed two distinct roles of IL-35. Firstly, IL-35 is highly expressed in some kinds of inflammatory diseases and autoimmune diseases and plays import roles in the pathogenesis. Secondly, IL-35 is positively expressed in some cancers and plays some roles in the process of tumor progression. Here we demonstrate the structure and the signalling of IL-35. We reviewed the the roles of IL-35 in promoting tumor progression.

  6. Research Progress of Serum Inflammatory Biomarkers in Chronic Insomnia Patients with Anxiety or/and Depression%慢性失眠伴焦虑抑郁患者血清炎症相关标志物研究进展

    Institute of Scientific and Technical Information of China (English)

    吴伟; 林传行; 陈书丽

    2017-01-01

    慢性失眠是临床上常见的睡眠障碍,慢性失眠患者多伴有焦虑抑郁,慢性失眠是导致焦虑抑郁的重要危险因素,同时焦虑抑郁又会加重患者的慢性失眠,两者关系密切,相互影响,最终有可能进一步引发大脑认知功能损伤.慢性失眠和焦虑抑郁的发病机制目前尚不十分明确,最新研究提示慢性失眠伴焦虑抑郁可以导致机体内免疫机能及炎症反应的变化,现就慢性失眠伴焦虑抑郁患者血清炎症相关标志物研究进展进行综述.%Chronic insomnia is a common clinical sleep disorder and chronic insomnia patients often suffer with anxiety or/and depression.Chronic insomnia is an important risk factor causing anxiety and depression.Meanwhile, anxiety and depression may aggravate chronic insomnia, their mutual influence can eventually trigger damage on cerebral cognition.The pathogenesis of chronic insomnia, anxiety and depression is not quietly clear.Studies suggest chronic insomnia accompanied with anxiety depression can lead to immune system dysfunction.Here we'll review research progress of serum inflammatory markers in chronic insomnia patients with anxiety or/and depression.

  7. The systemic inflammatory response syndrome.

    Science.gov (United States)

    Robertson, Charles M; Coopersmith, Craig M

    2006-04-01

    The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.

  8. Inhibition of inflammatory and proliferative responses of human keratinocytes exposed to the sesquiterpene lactones dehydrocostuslactone and costunolide.

    Directory of Open Access Journals (Sweden)

    Claudia Scarponi

    Full Text Available The imbalance of the intracellular redox state and, in particular, of the glutathione (GSH/GSH disulfide couple homeostasis, is involved in the pathogenesis of a number of diseases. In many skin diseases, including psoriasis, oxidative stress plays an important role, as demonstrated by the observation that treatments leading to increase of the local levels of oxidant species ameliorate the disease. Recently, dehydrocostuslactone (DCE and costunolide (CS, two terpenes naturally occurring in many plants, have been found to exert various anti-inflammatory and pro-apoptotic effects on different human cell types. These compounds decrease the level of the intracellular GSH by direct interaction with it, and, therefore, can alter cellular redox state. DCE and CS can trigger S-glutathionylation of various substrates, including the transcription factor STAT3 and JAK1/2 proteins. In the present study, we investigated on the potential role of DCE and CS in regulating inflammatory and proliferative responses of human keratinocytes to cytokines. We demonstrated that DCE and CS decreased intracellular GSH levels in human keratinocytes, as well as inhibited STAT3 and STAT1 phosphorylation and activation triggered by IL-22 or IFN-γ, respectively. Consequently, DCE and CS decreased the IL-22- and IFN-γ-induced expression of inflammatory and regulatory genes in keratinocytes, including CCL2, CXCL10, ICAM-1 and SOCS3. DCE and CS also inhibited proliferation and cell-cycle progression-related gene expression, as well as they promoted cell cycle arrest and apoptosis. In parallel, DCE and CS activated the anti-inflammatory EGFR and ERK1/2 molecules in keratinocytes, and, thus, wound healing in an in vitro injury model. In light of our findings, we can hypothesize that the employment of DCE and CS in psoriasis could efficiently counteract the pro-inflammatory effects of IFN-γ and IL-22 on keratinocytes, revert the apoptosis-resistant phenotype, as well as inhibit

  9. T cells in vascular inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Lucas L Lintermans

    2014-10-01

    Full Text Available Inflammation of the human vasculature is a manifestation of many different diseases ranging from systemic autoimmune diseases to chronic inflammatory diseases, in which multiple types of immune cells are involved. For both autoimmune diseases and chronic inflammatory diseases several observations support a key role for T lymphocytes in these disease pathologies, but the underlying mechanisms are poorly understood. Previous studies in several autoimmune diseases have demonstrated a significant role for a specific subset of CD4+ T cells termed effector memory T cells. This expanded population of effector memory T cells may contribute to tissue injury and disease progression. These cells exert multiple pro-inflammatory functions through the release of effector cytokines. Many of these cytokines have been detected in the inflammatory lesions and participate in the vasculitic reaction, contributing to recruitment of macrophages, neutrophils, dendritic cells, NK cells, B cells and T cells. In addition, functional impairment of regulatory T cells paralyzes anti-inflammatory effects in vasculitic disorders. Interestingly, activation of effector memory T cells in uniquely dependent on the voltage-gated Kv1.3 potassium channel providing an anchor for specific drug targeting. In this review, we focus on the CD4+ T cells in the context of vascular inflammation and describe the evidence supporting the role of different T cell subsets in vascular inflammation. Selective targeting of pathogenic effector memory T cells might enable a more tailored therapeutic approach that avoids unwanted adverse side effects of generalized immunosuppression by modulating the effector functions of T cell responses to inhibit the development of vascular inflammation.

  10. Research progress on property and application of theaflavins

    African Journals Online (AJOL)

    hope&shola

    2006-02-02

    Feb 2, 2006 ... coronary heart disease and to treat diabetes in clinical trials. ... (SOD) and catalase (CAT) significantly which are .... promoters recruit inflammatory cells to the application site ... And cancer of the breast, colon, prostate and.

  11. Inflammatory bowel diseases: principles of nutritional therapy

    Directory of Open Access Journals (Sweden)

    Campos Fábio Guilherme

    2002-01-01

    Full Text Available Inflammatory Bowel Diseases - ulcerative colitis and Crohn's disease- are chronic gastrointestinal inflammatory diseases of unknown etiology. Decreased oral intake, malabsorption, accelerated nutrient losses, increased requirements, and drug-nutrient interactions cause nutritional and functional deficiencies that require proper correction by nutritional therapy. The goals of the different forms of nutritional therapy are to correct nutritional disturbances and to modulate inflammatory response, thus influencing disease activity. Total parenteral nutrition has been used to correct and to prevent nutritional disturbances and to promote bowel rest during active disease, mainly in cases of digestive fistulae with high output. Its use should be reserved for patients who cannot tolerate enteral nutrition. Enteral nutrition is effective in inducing clinical remission in adults and promoting growth in children. Due to its low complication rate and lower costs, enteral nutrition should be preferred over total parenteral nutrition whenever possible. Both present equal effectiveness in primary therapy for remission of active Crohn's disease. Nutritional intervention may improve outcome in certain individuals; however, because of the costs and complications of such therapy, careful selection is warranted, especially in patients presumed to need total parenteral nutrition. Recent research has focused on the use of nutrients as primary treatment agents. Immunonutrition is an important therapeutic alternative in the management of inflammatory bowel diseases, modulating the inflammation and changing the eicosanoid synthesis profile. However, beneficial reported effects have yet to be translated into the clinical practice. The real efficacy of these and other nutrients (glutamine, short-chain fatty acids, antioxidants still need further evaluation through prospective and randomized trials.

  12. Immune evasion mechanisms of Entamoeba histolytica: progression to disease

    Directory of Open Access Journals (Sweden)

    Sharmin eBegum

    2015-12-01

    Full Text Available Entamoeba histolytica (Eh is a protozoan parasite that infects 10% of the world’s population and results in 100,000 deaths/year from amebic dysentery and/or liver abscess. In most cases, this extracellular parasite colonizes the colon by high affinity binding to MUC2 mucin without disease symptoms, whereas in some cases, Eh triggers an aggressive inflammatory response upon invasion of the colonic mucosa. The specific host-parasite factors critical for disease pathogenesis are still not well characterized. From the parasite, the signature events that lead to disease progression are cysteine protease cleavage of the C-terminus of MUC2 that dissolves the mucus layer followed by Eh binding and cytotoxicity of the mucosal epithelium. The host mounts an ineffective excessive host pro-inflammatory response following contact with host cells that causes tissue damage and participates in disease pathogenesis as Eh escapes host immune clearance by mechanisms that are not completely understood. Ameba can modulate or destroy effector immune cells by inducing neutrophil apoptosis and suppressing respiratory burst or nitric oxide (NO production from macrophages. Eh adherence to the host cells also induce multiple cytotoxic effects that can promote cell death through phagocytosis, apoptosis or by trogocytosis (ingestion of living cells that might play critical roles in immune evasion. This review focuses on the immune evasion mechanisms that Eh uses to survive and induce disease manifestation in the host.

  13. Immune Evasion Mechanisms of Entamoeba histolytica: Progression to Disease.

    Science.gov (United States)

    Begum, Sharmin; Quach, Jeanie; Chadee, Kris

    2015-01-01

    Entamoeba histolytica (Eh) is a protozoan parasite that infects 10% of the world's population and results in 100,000 deaths/year from amebic dysentery and/or liver abscess. In most cases, this extracellular parasite colonizes the colon by high affinity binding to MUC2 mucin without disease symptoms, whereas in some cases, Eh triggers an aggressive inflammatory response upon invasion of the colonic mucosa. The specific host-parasite factors critical for disease pathogenesis are still not well characterized. From the parasite, the signature events that lead to disease progression are cysteine protease cleavage of the C-terminus of MUC2 that dissolves the mucus layer followed by Eh binding and cytotoxicity of the mucosal epithelium. The host mounts an ineffective excessive host pro-inflammatory response following contact with host cells that causes tissue damage and participates in disease pathogenesis as Eh escapes host immune clearance by mechanisms that are not completely understood. Ameba can modulate or destroy effector immune cells by inducing neutrophil apoptosis and suppressing respiratory burst or nitric oxide (NO) production from macrophages. Eh adherence to the host cells also induce multiple cytotoxic effects that can promote cell death through phagocytosis, apoptosis or by trogocytosis (ingestion of living cells) that might play critical roles in immune evasion. This review focuses on the immune evasion mechanisms that Eh uses to survive and induce disease manifestation in the host.

  14. Inflammatory Myopathies (Myositis)

    Science.gov (United States)

    ... a somewhat elevat- ed risk of cancer. One theory about this is that, as the immune system ... generally a slowly progressive dis- ease, and life expectancy isn’t significantly affected. Most people with IBM ...

  15. Drug Repositioning in Inflammatory Bowel Disease Based on Genetic Information

    NARCIS (Netherlands)

    Collij, Valerie; Festen, Eleonora A. M.; Alberts, Rudi; Weersma, Rinse K.

    2016-01-01

    Background:Currently, 200 genetic risk loci have been identified for inflammatory bowel disease (IBD). Although these findings have significantly advanced our insight into IBD biology, there has been little progress in translating this knowledge toward clinical practice, like more cost-efficient

  16. Treg subsets in inflammatory bowel disease and colorectal carcinoma: Characteristics, role, and therapeutic targets

    NARCIS (Netherlands)

    van Herk, Egbert H.; te Velde, Anje A.

    2016-01-01

    T regulatory cells (Tregs) play an important role in the regulation of autoimmunity, autoinflammation, allergic diseases, infection, and the tumor environment. Different subsets are characterized that use a number of regulatory mechanisms. Tregs can influence the progression of inflammatory bowel

  17. Diagnosis, progression and intervention in Sjogren's syndrome

    NARCIS (Netherlands)

    Pijpe, Justin

    2006-01-01

    Sjögren’s syndrome (SS) is a chronic inflammatory and lymphoproliferative progressive autoimmune disease. It is characterized by B cell activation and infiltration of T and B cells in the exocrine glands. Common symptoms are related to diminished lacrimal and salivary gland function. Besides

  18. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis

    Science.gov (United States)

    Bradley, Elizabeth W.; Carpio, Lomeli R.; McGee-Lawrence, Meghan E.; Becerra, Clara Castillejo; Amanatullah, Derek F.; Ta, Lauren E.; Otero, Miguel; Goldring, Mary B.; Kakar, Sanjeev; Westendorf, Jennifer J.

    2016-01-01

    OBJECTIVE Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability. OA is characterized by articular chondrocyte deterioration, subchondral bone changes and debilitating pain. One strategy to promote cartilage regeneration and repair is to accelerate proliferation and matrix production of articular chondrocytes. We previously reported that the protein phosphatase Phlpp1 controls chondrocyte differentiation by regulating the activities of anabolic kinases. Here we examined the role of Phlpp1 in osteoarthritis progression in a murine model. We also assessed PHLPP1 expression and promoter methylation. DESIGN Knee joints of WT and Phlpp1−/− mice were surgically destabilized by transection of the medial meniscal ligament (DMM). Mice were assessed for signs of OA progression via radiographic and histological analyses, and pain assessment for mechanical hypersensitivity using the von Frey assay. Methylation of the PHLPP1 promoter and PHLPP1 expression was evaluated in human articular cartilage and chondrocyte cell lines. RESULTS Following DMM surgeries, Phlpp1 deficient mice showed fewer signs of OA and cartilage degeneration. Mechanical allodynia associated with DMM surgeries was also attenuated in Phlpp1−/− mice. PHLPP1 was highly expressed in human articular cartilage from OA patients, but was undetectable in cartilage specimens from femoral neck fractures. Higher PHLPP1 levels correlated with less PHLPP1 promoter CpG methylation in cartilage from OA patients. Blocking cytosine methylation or treatment with inflammatory mediators enhanced PHLPP1 expression in human chondrocyte cell lines. CONCLUSION Phlpp1 deficiency protects against OA progression while CpG demethylation and inflammatory responses promote PHLPP1 expression. PMID:26746148

  19. [Nutrition in inflammatory bowel disease].

    Science.gov (United States)

    Banai, János

    2009-05-03

    Aetiology of inflammatory bowel disease (IBD) is complex and probably multifactorial. Nutrition has been proposed to be an important aetiological factor for development of IBD. Several components of the diet (such as sugar, fat, fibre, fruit and vegetable, protein, fast food, preservatives etc.) were examined as possible causative agents for IBD. According to some researchers infant feeding (breast feeding) may also contribute to the development of IBD. Though the importance of environmental factors is evidenced by the increasing incidence in developed countries and in migrant population in recent decades, the aetiology of IBD remained unclear. There are many theories, but as yet no dietary approaches have been proved to reduce the risk of developing IBD. The role of nutrition in the management of IBD is better understood. The prevention and correction of malnutrition, the provision of macro- and micronutrients and vitamins and the promotion of optimal growth and development of children are key points of nutritional therapy. In active disease, the effective support of energy and nutrients is a very important part of the therapy. Natural and artificial nutrition or the combination of two can be chosen for supporting therapy of IBD. The author summarises the aetiological and therapeutic role of nutrition in IBD.

  20. Measuring progress

    DEFF Research Database (Denmark)

    Wahlberg, Ayo

    2007-01-01

    In recent years, sociological examinations of genetics, therapeutic cloning, neuroscience and tissue engineering have suggested that 'life itself' is currently being transformed through technique with profound implications for the ways in which we understand and govern ourselves and others...... in much the same way that mortality rates, life expectancy or morbidity rates can. By analysing the concrete ways in which human progress has been globally measured and taxonomised in the past two centuries or so, I will show how global stratifications of countries according to their states...

  1. Mechanisms of the noxious inflammatory cycle in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Freyssinet Jean-Marie

    2009-03-01

    Full Text Available Abstract Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508, accounting for this pathology, is retained in the endoplasmic reticulum (ER, induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis.

  2. Progressivity Enhanced

    Directory of Open Access Journals (Sweden)

    Marko Hren

    2013-09-01

    Full Text Available Rather than a scientific text, the author contributes a concise memorandum from the originator of the idea who has managed the campaign for the conversion of the military barracks into a creative cluster between 1988 and 2002, when he parted ways with Metelkova due to conflicting views on the center’s future. His views shed light on a distant period of time from a perspective of a participant–observer. The information is abundantly supported by primary sources, also available online. However, some of the presented hypotheses are heavily influenced by his personal experiences of xenophobia, elitism, and predatorial behavior, which were already then discernible on the so-called alternative scene as well – so much so that they obstructed the implementation of progressive programs. The author claims that, in spite of the substantially different reality today, the myths and prejudices concerning Metelkova must be done away with in order to enhance its progressive nature. Above all, the paper calls for an objective view on internal antagonisms, mainly originating in deep class divisions between the users. These make a clear distinction between truly marginal ndividuals and the overambitious beau-bourgeois, as the author labels the large part of users of Metelkova of »his« time. On these grounds, he argues for a robust approach to ban all forms of xenophobia and self-ghettoization.

  3. Atorvastatin Improves Inflammatory Response in Atherosclerosis by Upregulating the Expression of GARP

    Science.gov (United States)

    Zhao, Xiaoqi; Liu, Yuzhou; Zhong, Yucheng; Liu, Bo; Yu, Kunwu; Shi, Huairui; Zhu, Ruirui; Meng, Kai; Zhang, Wei; Wu, Bangwei

    2015-01-01

    Regulatory T cells play an important role in the progression of atherosclerosis. GARP is a newly biological membrane molecule existed on activated Tregs, which is related to the release of TGF-β. The antiatherosclerosis effects of statins partly depend on their multiple immune modulatory potencies. In this paper, we present that atorvastatin could upregulate the expression of GARP and TGF-β in CD4+ T cells and increase the numbers of CD4+LAP+ and CD4+Foxp3+ regulatory T cells in ApoE−/− mice. Also, we indicate that atorvastatin promotes the aggregation of GARP+ and Foxp3+ cells and secretory of the TGF-β1 in atherosclerotic plaques. Furthermore, we prove that atorvastatin could delay the procession of atherosclerosis and improve the stability of atherosclerotic plaques. Interestingly, we report that inhibition of GARP distinctly inhibits the anti-inflammatory effects of atorvastatin. We conclude that atorvastatin improves the inflammatory response in atherosclerosis partly by upregulating the expression of GARP on regulatory T cells. PMID:26063978

  4. Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Elzinandes Leal de Azeredo

    2015-01-01

    Full Text Available Dengue is an infectious disease caused by dengue virus (DENV. In general, dengue is a self-limiting acute febrile illness followed by a phase of critical defervescence, in which patients may improve or progress to a severe form. Severe illness is characterized by hemodynamic disturbances, increased vascular permeability, hypovolemia, hypotension, and shock. Thrombocytopenia and platelet dysfunction are common in both cases and are related to the clinical outcome. Different mechanisms have been hypothesized to explain DENV-associated thrombocytopenia, including the suppression of bone marrow and the peripheral destruction of platelets. Studies have shown DENV-infected hematopoietic progenitors or bone marrow stromal cells. Moreover, anti-platelet antibodies would be involved in peripheral platelet destruction as platelets interact with endothelial cells, immune cells, and/or DENV. It is not yet clear whether platelets play a role in the viral spread. Here, we focus on the mechanisms of thrombocytopenia and platelet dysfunction in DENV infection. Because platelets participate in the inflammatory and immune response by promoting cytokine, chemokine, and inflammatory mediator secretion, their relevance as “immune-like effector cells” will be discussed. Finally, an implication for platelets in plasma leakage will be also regarded, as thrombocytopenia is associated with clinical outcome and higher mortality.

  5. Neurological Manifestations In Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    youssef HNACH

    2015-06-01

    Full Text Available IntroductionThe purpose of this retrospective study was to report neurological manifestations noted in patients who were monitored for inflammatory bowel disease, in order to document the pathophysiological, clinical, progressive, and therapeutic characteristics of this entity.Material and methodsWe conducted a retrospective study on patients monitored -in the gastroenterology service in Ibn Sina Hospital in Rabat, Morocco- for inflammatory bowel disease from 1992 till 2013 and who developed neurological manifestations during its course. Patients with iatrogenic complications were excluded, as well as patients with cerebrovascular risk factors.ResultsThere were 6 patients, 4 of whom have developed peripheral manifestations. Electromyography enabled the diagnosis to be made and the outcome was favorable with disappearance of clinical manifestations and normalization of the electromyography.The other 2 patients, monitored for Crohn’s disease, developed ischemic stroke. Cerebral computed tomography angiography provided positive and topographic diagnosis. Two patients were admitted to specialized facilities.ConclusionNeurological manifestations in inflammatory bowel disease are rarely reported.  Peripheral neuropathies and stroke remain the most common manifestations. The mechanisms of these manifestations are not clearly defined yet. Currently, we hypothesize the interaction of immune mediators.

  6. A Role for TIMP-1 in Breast Cancer Progression

    National Research Council Canada - National Science Library

    Cardelli, James

    2004-01-01

    ... as compared to patients that survive. This suggests that this protein may have multiple functions that include both inhibition of cancer promoting proteinases and stimulation of cell-signaling pathways that promote cancer progression...

  7. Inflammatory bowel disease.

    Science.gov (United States)

    Gibson, Peter R; Iser, John

    2005-04-01

    Inflammatory bowel disease (IBD) is increasing in frequency in Australia. General practitioners play an important role in early diagnosis and in a multidisciplinary approach to managing such patients. Keeping abreast of evolving concepts, particularly in treatment, is challenging. This article aims to address key issues in diagnosis and management to better equip general practitioners for their role in multidisciplinary management of patients with IBD. Making the diagnosis can be difficult, but is facilitated by appropriate clinical suspicion and sensible judgment as to who undergoes diagnostic tests such as colonoscopy. Treatment of ulcerative colitis has changed little in recent years, except for our improved ability to deliver mesalazine to the large bowel via the recent availability of several oral and rectal preparations. Prevention of relapse using these is an important strategy in the majority of patients. Treatment of Crohn disease is changing due to more realistic concepts of the natural history of the disease and the development of new, powerful anti-inflammatory therapies. Attention to issues other than intestinal inflammation such as nutrition, education and counselling, remain important in achieving optimal management.

  8. Progress report

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    Progress Report, covering the period up to the end of 1979 year, was sent to the IAEA according to the research agreement No. 1971 /CF. This work covered the following fields: preparation and dummy irradiation experiments with a new experimental capsule of ''CHOUCA-M'' type; measurement of temperature fields and design of specimen holders; measurement of neutron energy spectrum in the irradiation place in our experimental reactor of VVR-S type (Nuclear Research Institute) using a set of activation detectors; unification and calibration of the measurement of neutron fluence with the use of Fe, Cu, Mn-Mg and Co-Al monitors; development and improvement of the measuring apparatus and technique for the dynamic testing of pre-cracked specimens with determination of dynamic parameters of fracture mechanics; preparation and manufacture of testing specimens from the Japanese steels - forging, plate and weld metal; preparation of the irradiation capsule for assembling

  9. Inflammatory aortic aneurysms

    DEFF Research Database (Denmark)

    Bitsch, M; Nørgaard, H H; Røder, O

    1997-01-01

    -scans performed at a median of 24 (range 3-108) months after surgery showed complete regression of the fibrosis in 29%, partial regression in 57% and no change in 14% of the patients. Progression of the fibrosis or persistence of hydronephrosis was not seen. No sign of fibrosis were seen in the 10 controls...

  10. Health Promotion

    DEFF Research Database (Denmark)

    Povlsen, Lene; Borup, I.

    2015-01-01

    and Adolescent Health Promotion', Salutogenesis - from theory to practice' and Health, Stress and Coping'. More than half of all doctoral theses undertaken at NHV during these years had health promotion as their theme. As a derivative, the Nordic Health Promotion Research Network (NHPRN) was established in 2007......In 1953 when the Nordic School of Public Health was founded, the aim of public health programmes was disease prevention more than health promotion. This was not unusual, since at this time health usually was seen as the opposite of disease and illness. However, with the Ottawa Charter of 1986......, the World Health Organization made a crucial change to view health not as a goal in itself but as the means to a full life. In this way, health promotion became a first priority and fundamental action for the modern society. This insight eventually reached NHV and in 2002 - 50 years after the foundation...

  11. Direct inhibition of TNF-α promoter activity by Fanconi anemia protein FANCD2.

    Directory of Open Access Journals (Sweden)

    Nobuko Matsushita

    Full Text Available Fanconi anemia (FA, an inherited disease, is associated with progressive bone marrow failure, predisposition to cancer, and genomic instability. Genes corresponding to 15 identified FA complementation groups have been cloned, and each gene product functions in the response to DNA damage induced by cross-linking agents and/or in protection against genome instability. Interestingly, overproduction of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α and aberrant activation of NF-κB-dependent transcriptional activity have been observed in FA cells. Here we demonstrated that FANCD2 protein inhibits NF-κB activity in its monoubiquitination-dependent manner. Furthermore, we detected a specific association between FANCD2 and an NF-κB consensus element in the TNF-α promoter by electrophoretic mobility shift assays (EMSA and chromatin immunoprecipitation (ChIP assay. Therefore, we propose FANCD2 deficiency promotes transcriptional activity of the TNF-α promoter and induces overproduction of TNF-which then sustains prolonged inflammatory responses. These results also suggest that artificial modulation of TNFα production could be a promising therapeutic approach to FA.

  12. Interleukin-10 overexpression promotes Fas-ligand-dependent chronic macrophage-mediated demyelinating polyneuropathy.

    Directory of Open Access Journals (Sweden)

    Dru S Dace

    Full Text Available BACKGROUND: Demyelinating polyneuropathy is a debilitating, poorly understood disease that can exist in acute (Guillain-Barré syndrome or chronic forms. Interleukin-10 (IL-10, although traditionally considered an anti-inflammatory cytokine, has also been implicated in promoting abnormal angiogenesis in the eye and in the pathobiology of autoimmune diseases such as lupus and encephalomyelitis. PRINCIPAL FINDINGS: Overexpression of IL-10 in a transgenic mouse model leads to macrophage-mediated demyelinating polyneuropathy. IL-10 upregulates ICAM-1 within neural tissues, promoting massive macrophage influx, inflammation-induced demyelination, and subsequent loss of neural tissue resulting in muscle weakness and paralysis. The primary insult is to perineural myelin followed by secondary axonal loss. Infiltrating macrophages within the peripheral nerves demonstrate a highly pro-inflammatory signature. Macrophages are central players in the pathophysiology, as in vivo depletion of macrophages using clodronate liposomes reverses the phenotype, including progressive nerve loss and paralysis. Macrophage-mediate demyelination is dependent on Fas-ligand (FasL-mediated Schwann cell death. SIGNIFICANCE: These findings mimic the human disease chronic idiopathic demyelinating polyneuropathy (CIDP and may also promote further understanding of the pathobiology of related conditions such as acute idiopathic demyelinating polyneuropathy (AIDP or Guillain-Barré syndrome.

  13. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis.

    Science.gov (United States)

    Sedel, Frédéric; Bernard, Delphine; Mock, Donald M; Tourbah, Ayman

    2016-11-01

    Progressive multiple sclerosis (MS) is a severely disabling neurological condition, and an effective treatment is urgently needed. Recently, high-dose biotin has emerged as a promising therapy for affected individuals. Initial clinical data have shown that daily doses of biotin of up to 300 mg can improve objective measures of MS-related disability. In this article, we review the biology of biotin and explore the properties of this ubiquitous coenzyme that may explain the encouraging responses seen in patients with progressive MS. The gradual worsening of neurological disability in patients with progressive MS is caused by progressive axonal loss or damage. The triggers for axonal loss in MS likely include both inflammatory demyelination of the myelin sheath and primary neurodegeneration caused by a state of virtual hypoxia within the neuron. Accordingly, targeting both these pathological processes could be effective in the treatment of progressive MS. Biotin is an essential co-factor for five carboxylases involved in fatty acid synthesis and energy production. We hypothesize that high-dose biotin is exerting a therapeutic effect in patients with progressive MS through two different and complementary mechanisms: by promoting axonal remyelination by enhancing myelin production and by reducing axonal hypoxia through enhanced energy production. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The role of ultrasound in the diagnosis and follow-up of early inflammatory arthritis

    International Nuclear Information System (INIS)

    Spencer, S.P.; Ganeshalingam, S.; Kelly, S.; Ahmad, M.

    2012-01-01

    The inflammatory arthritides are a group of chronic, often debilitating disorders characterized by synovial inflammation and progressive joint destruction. The primary diagnostic aim is to recognize the inflammatory arthritis at an early stage, such that therapies may be implemented before irreversible joint destruction has occurred. The radiologist now plays a pivotal role both in making an accurate and early diagnosis of inflammatory arthritis as well as assessing treatment response. This article reviews the current literature and presents our approach to the sonographic assessment of early inflammatory arthritis.

  15. Neuroimmune regulation of inflammatory responses in inflammatory bowel disease

    NARCIS (Netherlands)

    Rijnierse, Anneke

    2006-01-01

    The term inflammatory bowel disease (IBD) is used to describe chronic inflammatory conditions of the gastro-intestinal tract. Patients suffer from abdominal pain, diarrhea, rectal bleeding and a substantial personal burden. The etiology of IBD is gradually being unraveled but remains a complex

  16. Pediatric Inflammatory Bowel Diseases

    DEFF Research Database (Denmark)

    Lauritzen, Didde; Andreassen, Bente Utoft; Heegaard, Niels Henrik H

    2018-01-01

    Background: Kidney disease has been reported in adults with inflammatory bowel disease (IBD) and is regarded an extraintestinal manifestation or more rarely a side effect of the medical treatment. Methods: In this cross-sectional study we describe the extent of kidney pathology in a cohort of 56...... children with IBD. Blood and urine samples were analyzed for markers of kidney disease and ultrasonography was performed to evaluate pole-to-pole kidney length. Results: We found that 25% of the patients had either previously reported kidney disease or ultrasonographic signs of chronic kidney disease...... are at risk of chronic kidney disease, and the risk seems to be increased with the severity of the disease....

  17. Inflammatory biomarkers and cancer

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Schultz, Martin; Gaardsting, Anne

    2017-01-01

    and previous cancer diagnoses compared to patients who were not diagnosed with cancer. Previous cancer, C-reactive protein (CRP) and suPAR were significantly associated with newly diagnosed cancer during follow-up in multiple logistic regression analyses adjusted for age, sex and CRP. Neither any of the PRRs......In Denmark, patients with serious nonspecific symptoms and signs of cancer (NSSC) are referred to the diagnostic outpatient clinics (DOCs) where an accelerated cancer diagnostic program is initiated. Various immunological and inflammatory biomarkers have been associated with cancer, including...... soluble urokinase plasminogen activator receptor (suPAR) and the pattern recognition receptors (PRRs) pentraxin-3, mannose-binding lectin, ficolin-1, ficolin-2 and ficolin-3. We aimed to evaluate these biomarkers and compare their diagnostic ability to classical biomarkers for diagnosing cancer...

  18. Glycogen synthase kinase-3 regulates inflammatory tolerance in astrocytes

    Science.gov (United States)

    Beurel, Eléonore; Jope, Richard S.

    2010-01-01

    Inflammatory tolerance is the down-regulation of inflammation upon repeated stimuli, which is well-established to occur in peripheral immune cells. However, less is known about inflammatory tolerance in the brain although it may provide an important protective mechanism from detrimental consequences of prolonged inflammation, which appears to occur in many psychiatric and neurodegenerative conditions. Array analysis of 308 inflammatory molecules produced by mouse primary astrocytes after two sequential stimulations with lipopolysaccharide (LPS) distinguished three classes, tolerant, sensitized and unaltered groups. For many of these inflammatory molecules, inhibition of glycogen synthase kinase-3 (GSK3) increased tolerance and reduced sensitization. Focusing on LPS-tolerance in interleukin-6 (IL-6) production, we found that microglia exhibited a strong tolerance response that matched that of macrophages, whereas astrocytes exhibited only partial tolerance. The astrocyte semi-tolerance was found to be regulated by GSK3. GSK3 inhibitors or knocking down GSK3 levels promoted LPS-tolerance and astrocytes expressing constitutively active GSK3 did not develop LPS-tolerance. These findings identify the critical role of GSK3 in counteracting IL-6 inflammatory tolerance in cells of the CNS, supporting the therapeutic potential of GSK3 inhibitors to reduce neuroinflammation by promoting tolerance. PMID:20553816

  19. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Luís Henrique Corrêa

    2017-09-01

    Full Text Available Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs, which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.

  20. Autophagy in Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Alexander J. S. Choi

    2011-01-01

    Full Text Available Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation.

  1. Targeting the Redox Balance in Inflammatory Skin Conditions

    Directory of Open Access Journals (Sweden)

    Ditte M. S. Lundvig

    2013-04-01

    Full Text Available Reactive oxygen species (ROS can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has been linked to various inflammatory diseases. Inflammation is an essential response in the protection against injurious insults and thus important at the onset of wound healing. However, hampered resolution of inflammation can result in a chronic, exaggerated response with additional tissue damage. In the pathogenesis of several inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue damage is central. The prolonged release of excess ROS in the skin can aggravate inflammatory injury and promote chronic inflammation. The cellular redox balance is therefore tightly regulated by several (enzymatic antioxidants and pro-oxidants; however, in case of chronic inflammation, the antioxidant system may be depleted, and prolonged oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, restoring the redox balance forms an innovative therapeutic target in the development of new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of antioxidant-related therapies is still in its infancy.

  2. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  3. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  4. Design and synthesis of some new 2,3'-bipyridine-5-carbonitriles as potential anti-inflammatory/antimicrobial agents.

    Science.gov (United States)

    Elzahhar, Perihan A; Elkazaz, Salwa; Soliman, Raafat; El-Tombary, Alaa A; Shaltout, Hossam A; El-Ashmawy, Ibrahim M; Abdel Wahab, Abeer E; El-Hawash, Soad A

    2017-08-01

    Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. This work describes synthesis of new series of 2,3'-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.

  5. Inflammatory pathways of importance for management of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Pedersen, Jannie; Coskun, Mehmet; Soendergaard, Christoffer

    2014-01-01

    Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract comprising Crohn's disease (CD) and ulcerative colitis (UC). Their etiologies are unknown, but they are characterised by an imbalanced production of pro-inflammatory mediators, e.g., tumor necrosis factor......-inflammatory cytokines, antibodies targeting integrins, and small anti-adhesion molecules that block adhesion between leukocytes and the intestinal vascular endothelium, reducing their infiltration into the inflamed mucosa. In this review we have elucidated the major signaling pathways of clinical importance for IBD...

  6. CXC-type chemokines promote myofibroblast phenoconversion and prostatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Gharaee-Kermani

    Full Text Available Recent studies from our group suggest that extracellular matrix (ECM deposition and fibrosis characterize the peri-urethral prostate tissues of some men suffering from Lower Urinary Tract Symptoms (LUTS and that fibrosis may be a contributing factor to the etiology of LUTS. Fibrosis can generally be regarded as an errant wound-healing process in response to chronic inflammation, and several studies have shown that the aging prostate tissue microenvironment is rich with inflammatory cells and proteins. However, it is unclear whether these same inflammatory proteins, particularly CXC-type chemokines, can mediate myofibroblast phenoconversion and the ECM deposition necessary for the development of prostatic tissue fibrosis. To examine this, immortalized and primary prostate stromal fibroblasts treated with TGF-β1, CXCL5, CXCL8, or CXCL12 were evaluated morphologically by microscopy, by immunofluorescence and qRT-PCR for αSMA, collagen 1, vimentin, calponin, and tenascin protein and transcript expression, and by gel contraction assays for functional myofibroblast phenoconversion. The results of these studies showed that that immortalized and primary prostate stromal fibroblasts are induced to express collagen 1 and 3 and αSMA gene transcripts and proteins and to undergo complete and functional myofibroblast phenoconversion in response to CXC-type chemokines, even in the absence of exogenous TGF-β1. Moreover, CXCL12-mediated myofibroblast phenoconversion can be completely abrogated by inhibition of the CXCL12 receptor, CXCR4. These findings suggest that CXC-type chemokines, which comprise inflammatory proteins known to be highly expressed in the aging prostate, can efficiently and completely mediate myofibroblast phenoconversion and may thereby promote fibrotic changes in prostate tissue architecture associated with the development and progression of male lower urinary tract dysfunction.

  7. Early inflammatory response in epithelial ovarian tumor cyst fluids

    International Nuclear Information System (INIS)

    Kristjánsdóttir, Björg; Partheen, Karolina; Fung, Eric T; Yip, Christine; Levan, Kristina; Sundfeldt, Karin

    2014-01-01

    Mortality rates for epithelial ovarian cancer (EOC) are high, mainly due to late-stage diagnosis. The identification of biomarkers for this cancer could contribute to earlier diagnosis and increased survival rates. Given that chronic inflammation plays a central role in cancer initiation and progression, we selected and tested 15 cancer-related cytokines and growth factors in 38 ovarian cyst fluid samples. We used ovarian cyst fluid since it is found in proximity to the pathology and mined it for inflammatory biomarkers suitable for early detection of EOC. Immunoprecipitation and high-throughput sample fractionation were obtained by using tandem antibody libraries bead and mass spectrometry. Two proteins, monocyte chemoattractant protein-1 (MCP-1/CCL2) and interleucin-8 (IL-8/CXCL8), were significantly (P < 0.0001) higher in the malignant (n = 16) versus benign (n = 22) tumor cysts. Validation of MCP-1, IL-8, and growth-regulated protein-α (GROα/CXCL1) was performed with ELISA in benign, borderline, and malignant cyst fluids (n = 256) and corresponding serum (n = 256). CA125 was measured in serum from all patients and used in the algorithms performed. MCP-1, IL-8, and GROα are proinflammatory cytokines and promoters of tumor growth. From 5- to 100-fold higher concentrations of MCP-1, IL-8 and GROα were detected in the cyst fluids compared to the serum. Significant (P < 0.001) cytokine response was already established in borderline cyst fluids and stage I EOC. In serum a significant (P < 0.01) increase of IL-8 and GROα was found, but not until stage I and stage III EOC, respectively. These findings confirm that early events in tumorigenesis can be analyzed and detected in the tumor environment and we conclude that ovarian cyst fluid is a promising source in the search for new biomarkers for early ovarian tumors

  8. Idiopathic inflammatory myositis.

    Science.gov (United States)

    Tieu, Joanna; Lundberg, Ingrid E; Limaye, Vidya

    2016-02-01

    Knowledge on idiopathic inflammatory myopathy (IIM) has evolved with the identification of myositis-associated and myositis-specific antibodies, development of histopathological classification and the recognition of how these correlate with clinical phenotype and response to therapy. In this paper, we outline key advances in diagnosis and histopathology, including the more recent identification of antibodies associated with immune-mediated necrotising myopathy (IMNM) and inclusion body myositis (IBM). Ongoing longitudinal observational cohorts allow further classification of these patients with IIM, their predicted clinical course and response to specific therapies. Registries have been developed worldwide for this purpose. A challenging aspect in IIM, a multisystem disease with multiple clinical subtypes, has been defining disease status and clinically relevant improvement. Tools for assessing activity and damage are now recognised to be important in determining disease activity and guiding therapeutic decision-making. The International Myositis Assessment and Clinical Studies (IMACS) group has developed such tools for use in research and clinical settings. There is limited evidence for specific treatment strategies in IIM. With significant development in the understanding of IIM and improved classification, longitudinal observational cohorts and trials using validated outcome measures are necessary, to provide important information for evidence-based care in the clinical setting. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Imaging inflammatory acne: lesion detection and tracking

    Science.gov (United States)

    Cula, Gabriela O.; Bargo, Paulo R.; Kollias, Nikiforos

    2010-02-01

    It is known that effectiveness of acne treatment increases when the lesions are detected earlier, before they could progress into mature wound-like lesions, which lead to scarring and discoloration. However, little is known about the evolution of acne from early signs until after the lesion heals. In this work we computationally characterize the evolution of inflammatory acne lesions, based on analyzing cross-polarized images that document acne-prone facial skin over time. Taking skin images over time, and being able to follow skin features in these images present serious challenges, due to change in the appearance of skin, difficulty in repositioning the subject, involuntary movement such as breathing. A computational technique for automatic detection of lesions by separating the background normal skin from the acne lesions, based on fitting Gaussian distributions to the intensity histograms, is presented. In order to track and quantify the evolution of lesions, in terms of the degree of progress or regress, we designed a study to capture facial skin images from an acne-prone young individual, followed over the course of 3 different time points. Based on the behavior of the lesions between two consecutive time points, the automatically detected lesions are classified in four categories: new lesions, resolved lesions (i.e. lesions that disappear completely), lesions that are progressing, and lesions that are regressing (i.e. lesions in the process of healing). The classification our methods achieve correlates well with visual inspection of a trained human grader.

  10. Integrated Inflammatory Stress (ITIS) Model

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth O.; Hjorth, Poul G.; Olufsen, Mette S.

    2017-01-01

    maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing....... A constant activation results in elevated levels of the variables in the model while a prolonged change of the oscillations in ACTH and cortisol concentrations is the most pronounced result of different LPS doses predicted by the model....

  11. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  12. Suppression of LRRC19 promotes cutaneous wound healing in pressure ulcers in mice.

    Science.gov (United States)

    Sun, Jie; Wang, Zhijing; Wang, Xirui

    2018-02-20

    The ischemia-reperfusion (I/R) induced skin lesion has been identified as primary cause of pressure ulcer. Better understanding of the mechanism is required for new therapy development. Leucine rich repeat containing protein 19 (LRRC19) is a recently discovered transmembrane protein containing leucine-rich repeats and plays a role in immune response. To investigate the role of LRRC19 in pressure ulcers, mouse ulcer model was established with two cycles of I/R. The expression of LRRC19 was assessed during injury. siRNA mediated LRRC19 downregulation was applied to investigate the disease severity, immune cell infiltration and pro-inflammatory cytokines production. The primary skin fibroblasts were stimulated with IL-1β to dissect the molecular mechanism. LRRC19 was readily induced in I/R induced lesion site in a pattern mimicking the disease progress as measured by wound area. Knockdown of LRRC19 by siRNA significantly alleviated the disease severity and attenuated immune cell infiltration and pro-inflammatory cytokines production. In primary skin fibroblast model, siRNA knockdown of LRRC19 suppressed IL-1β mediated NFκB activation and its downstream cytokines production. LRRC19 was a novel factor for I/R-induced tissue damage by promoting NFκB dependent pro-inflammatory response. Our results supported that LRRC19 could be a potential therapeutic target for pressure ulcers.

  13. Nonnecrotizing anterior scleritis mimicking orbital inflammatory disease

    Directory of Open Access Journals (Sweden)

    Lynch MC

    2013-08-01

    Full Text Available Michelle Chen Lynch,1 Andrew B Mick21Optometry Clinic, Ocala West Veterans Affairs Specialty Clinic, Ocala, FL, USA; 2Eye Clinic, San Francisco VA Medical Center, San Francisco, CA, USABackground: Anterior scleritis is an uncommon form of ocular inflammation, often associated with coexisting autoimmune disease. With early recognition and aggressive systemic therapy, prognosis for resolution is good. The diagnosis of underlying autoimmune disease involves a multidisciplinary approach.Case report: A 42-year-old African American female presented to the Eye Clinic at the San Francisco Veteran Affairs Medical Center, with a tremendously painful left eye, worse on eye movement, with marked injection of conjunctiva. There was mild swelling of the upper eyelid. Visual acuity was unaffected, but there was a mild red cap desaturation. The posterior segment was unremarkable. The initial differential diagnoses included anterior scleritis and orbital inflammatory disease. Oral steroid treatment was initiated with rapid resolution over a few days. Orbital imaging was unremarkable, and extensive laboratory work-up was positive only for antinuclear antibodies. The patient was diagnosed with idiopathic diffuse, nonnecrotizing anterior scleritis and has been followed for over 5 years without recurrence. The rheumatology clinic monitors the patient closely, as suspicion remains for potential arthralgias including human leukocyte antigen-B27-associated arthritis, lupus-associated arthritis, seronegative rheumatoid arthritis, recurrent juvenile idiopathic arthritis, and scleroderma, based on her constitutional symptoms and clinical presentation, along with a positive anti-nuclear antibody lab result.Conclusion: Untreated anterior scleritis can progress to formation of cataracts, glaucoma, uveitis, corneal melting, and posterior segment disease with significant risk of vision loss. Patients with anterior scleritis must be aggressively treated with systemic anti-inflammatories

  14. IMMUNOPHENOTYPIC CHARACTERISTICS OF INFLAMMATORY BREAST CANCER

    Directory of Open Access Journals (Sweden)

    A. I. Berishvili

    2009-01-01

    Full Text Available The investigation enrolled 31 patients with inflammatory breast cancer (IBC treated at the N. N. Blokhin Cancer Research Center from 2006 to 2008. IBC is diagnosed on the basis of signs of rapid progression, such as localized or generalized breast induration, red- ness and edema. IBC accounts for less than 5% of all diagnosed breast cancers and is the most lethal form of primary breast cancer. We studied tumor markers of the immunophenotype of IBC and levels and subpopulations of immunocompetent tumor-infiltrating cells. We found that expression of HLA-DR is in negative correlation with MUC-1 expression and lymphoid cells tumor infiltration is asso- ciated with the increase in T-cell subpopulations.

  15. Microbiome, Metabolome and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmed

    2016-06-01

    Full Text Available Inflammatory Bowel Disease (IBD is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD or Ulcerative Colitis (UC, two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  16. Review of Anti-Inflammatory Herbal Medicines

    Directory of Open Access Journals (Sweden)

    Mona Ghasemian

    2016-01-01

    Full Text Available Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil’s claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle.

  17. Inflammatory nodule mimicking a phrenic neoplasm.

    Science.gov (United States)

    Vannucci, Jacopo; Scarnecchia, Elisa; Del Sordo, Rachele; Cagini, Lucio; Puma, Francesco

    2016-05-01

    Isolated phrenic nerve nodule is usually a primitive tumour. Surgery is diagnostic and therapeutic at the same time. We report the case of a completely serum-negative Caucasian male with a right diaphragmatic relaxation associated to an isolated small nodule of the phrenic nerve. The patient was referred to our unit complaining shortness of breath and progressive fatigue. A standard chest X-ray showed right diaphragmatic palsy; chest scanning revealed a nodular lesion belonging to the right phrenic nerve. Positron emission tomography was negative for glucose uptake. The preoperative diagnosis of primitive neurogenic tumour was thus supposed, and the patient treated by the lesion's surgical resection along with diaphragmatic plication. Histopathological examination revealed an idiopathic inflammatory nodule of the phrenic nerve. Such condition has not previously been reported in the literature among the possible aetiology of a diaphragmatic relaxation. © 2014 John Wiley & Sons Ltd.

  18. Inflammatory cell phenotypes in AAAs; their role and potential as targets for therapy

    Science.gov (United States)

    Dale, Matthew A; Ruhlman, Melissa K.; Baxter, B. Timothy

    2015-01-01

    Abdominal aortic aneurysms are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused approximately 15,000 deaths annually in the U.S. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4+ T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Pro-inflammatory CD4+ T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to pro-inflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the pro-inflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. PMID:26044582

  19. Radiotherapy of brain inflammatory diseases

    International Nuclear Information System (INIS)

    Pil', B.N.

    1982-01-01

    An experience of radiation treatment of brain inflammatory diseases is described. Radiation treatment goes with antiinflammatory, anticonvulsive agents, with resorbing and dehydrating measures and some times with surgical treatment. The methods of radiation treatment of convexital and optochiasmic arachnoiditis

  20. Atypical idiopathic inflammatory demyelinating lesions

    DEFF Research Database (Denmark)

    Wallner-Blazek, Mirja; Rovira, Alex; Fillipp, Massimo

    2013-01-01

    Atypical lesions of a presumably idiopathic inflammatory demyelinating origin present quite variably and may pose diagnostic problems. The subsequent clinical course is also uncertain. We, therefore, wanted to clarify if atypical idiopathic inflammatory demyelinating lesions (AIIDLs) can be class......Atypical lesions of a presumably idiopathic inflammatory demyelinating origin present quite variably and may pose diagnostic problems. The subsequent clinical course is also uncertain. We, therefore, wanted to clarify if atypical idiopathic inflammatory demyelinating lesions (AIIDLs) can...... be classified according to previously suggested radiologic characteristics and how this classification relates to prognosis. Searching the databases of eight tertiary referral centres we identified 90 adult patients (61 women, 29 men; mean age 34 years) with ≥1 AIIDL. We collected their demographic, clinical...

  1. Treatment progress of diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Dou Kou

    2016-05-01

    Full Text Available Diabetic retinopathy(DR,which can cause blindness, is a serious eye diseases. Diabetic macular edema(DME, often causes irreversible vision loss, can occur in any period of DR. The treatment of DME, including laser photocoagulation, anti-inflammatory therapy, anti-VEGF therapy and surgical treatment have made great progress in recent years as the researches on the pathogenesis deepening. The innovation of minimally invasive technique also proved the surgical treatment more convenience. The joint application of a variety of treatments, also become the main trend of treatment. A review of the present status and progress of the treatment was made in this paper.

  2. Study in mice shows that an aggressive type of breast cancer is linked to an inflammatory protein

    Science.gov (United States)

    Aberrant expression of an inflammatory protein, nitric oxide synthase 2 (NOS2), may enhance the progression and metastasis of an aggressive and less common form of breast cancer, known as the estrogen receptor-negative type of disease.

  3. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.

    Science.gov (United States)

    Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P

    2014-09-01

    Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. © 2014 by the Society for Experimental Biology and Medicine.

  4. DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model.

    Science.gov (United States)

    Achiwa, Koichi; Ishigami, Masatoshi; Ishizu, Yoji; Kuzuya, Teiji; Honda, Takashi; Hayashi, Kazuhiko; Hirooka, Yoshiki; Katano, Yoshiaki; Goto, Hidemi

    2016-01-29

    Nonalcoholic steatohepatitis (NASH) patients progress to liver cirrhosis and even hepatocellular carcinoma (HCC). Several lines of evidence indicate that accumulation of lipopolysaccharide (LPS) and disruption of gut microbiota play contributory roles in HCC. Moreover, in a dextran sodium sulfate (DSS)-induced colitis model in mice, a high-fat diet increases portal LPS level and promotes hepatic inflammation and fibrosis. However, this diet-induced NASH model requires at least 50 weeks for carcinogenesis. In this study, we sought to determine whether increased intestinal permeability would aggravate liver inflammation and fibrosis and accelerate tumorigenesis in a diet-induced NASH model. Mice were fed a choline-deficient high-fat (CDHF) diet for 4 or 12 weeks. The DSS group was fed CDHF and intermittently received 1% DSS in the drinking water. Exposure to DSS promoted mucosal changes such as crypt loss and increased the number of inflammatory cells in the colon. In the DSS group, portal LPS levels were elevated at 4 weeks, and the proportions of Clostridium cluster XI in the fecal microbiota were elevated. In addition, levels of serum transaminase, number of lobular inflammatory cells, F4/80 staining-positive area, and levels of inflammatory cytokines were all elevated in the DSS group. Liver histology in the DSS group revealed severe fibrosis at 12 weeks. Liver tumors were detected in the DSS group at 12 weeks, but not in the other groups. Thus, DSS administration promoted liver tumors in a CDHF diet-induced NASH mouse over the short term, suggesting that the induction of intestinal inflammation and gut disruption of microbiota in NASH promote hepatic tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases.

    Science.gov (United States)

    Cardoso, Elsa Maria; Reis, Cátia; Manzanares-Céspedes, Maria Cristina

    2018-01-01

    Periodontal diseases, such as chronic periodontitis, share common inflammatory risk factors with other systemic and chronic inflammatory disorders. Mucosal tissues, such as oral epithelia, are exposed to environmental stressors, such as tobacco and oral bacteria, that might be involved in promoting a systemic inflammatory state. Conversely, chronic disorders can also affect oral health. This review will summarize recent evidence for the interrelationship between chronic periodontitis and other prevalent chronic diseases such as cardiovascular diseases, diabetes, cancer and chronic respiratory diseases. The association with pregnancy is also included due to possible obstetric complications. We will focus on inflammatory cytokines such as TNF-alpha, IL-1, and IL-6, because they have been shown to be increased in patients with chronic periodontitis, in patients with chronic systemic diseases, and in patients with both chronic periodontitis and other chronic diseases. Therefore, an imbalance towards a proinflammatory immune response could underline a bidirectional link between chronic periodontitis and other chronic diseases. Finally, we highlight that a close coordination between dental and other health professionals could promote oral health and prevent or ameliorate other chronic diseases.

  6. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2014-01-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  7. The gut microbiota and inflammatory noncommunicable diseases

    DEFF Research Database (Denmark)

    West, Christina E; Renz, Harald; Jenmalm, Maria C

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity...... for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti....... In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention....

  8. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Directory of Open Access Journals (Sweden)

    Seeley TW

    2017-03-01

    Full Text Available Todd W Seeley, Mark D Sternlicht, Stephen J Klaus, Thomas B Neff, David Y Liu Therapeutics R&D, FibroGen, Inc., San Francisco, CA, USA Abstract: The effects of pharmacological hypoxia-inducible factor (HIF stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF, using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs, FG-4497 or roxadustat (FG-4592. In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. Keywords: cancer progression, erythropoiesis, hypoxia-inducible factor, hypoxia-inducible factor prolyl hydroxylase inhibitors, vascular endothelial growth factor, MMTV-Neu breast cancer model

  9. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.

    Science.gov (United States)

    Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin

    2018-01-01

    Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Rotllan, Noemi; Zhang, Xinbo; Fernández-Fuertes, Marta; Ramírez-Hidalgo, Cristina; Araldi, Elisa; Daimiel, Lidia; Busto, Rebeca; Fernández-Hernando, Carlos; Suárez, Yajaira

    2017-09-01

    Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory disease characterized by the accumulation of lipids and inflammatory cells in the artery wall. Aberrant expression of microRNAs has been implicated in the pathophysiological processes underlying the progression of atherosclerosis. Here, we define the contribution of miR-21 in hematopoietic cells during atherogenesis. Interestingly, we found that miR-21 is the most abundant miRNA in macrophages and its absence results in accelerated atherosclerosis, plaque necrosis, and vascular inflammation. miR-21 expression influences foam cell formation, sensitivity to ER-stress-induced apoptosis, and phagocytic clearance capacity. Mechanistically, we discovered that the absence of miR-21 in macrophages increases the expression of the miR-21 target gene, MKK3, promoting the induction of p38-CHOP and JNK signaling. Both pathways enhance macrophage apoptosis and promote the post-translational degradation of ABCG1, a transporter that regulates cholesterol efflux in macrophages. Altogether, these findings reveal a major role for hematopoietic miR-21 in atherogenesis. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Physical exercise, inflammatory process and adaptive condition: an overview

    OpenAIRE

    Silva, Fernando Oliveira Catanho da; Macedo, Denise Vaz

    2011-01-01

    Physical exercise induces inflammation, a physiological response that is part of immune system activity and promotes tissue remodeling after exercise overload. The activation of the inflammatory process is local and systemic and is mediated by different cells and secreted compounds. The objective is to reestablish organ homeostasis after a single bout of exercise or after several exercise sessions. The acute-phase response involves the combined actions of activated leukocytes, cytokines, acut...

  12. Health promotion.

    Science.gov (United States)

    Miyake, S; Lucas-Miyake, M

    1989-01-01

    This article will describe a marketing model for the development of a role for occupational therapy in the industrial market. Health promotion activities are used as a means to diversify existing revenue bases by establishing new referral sources in industry. The technique of need satisfaction -selling or marketing one's services to a customer based on needs expressed by the customer - is reviewed, and implementation of this approach is described from two settings, one in psychiatry and the other in rehabilitation.

  13. Inflammatory bowel disease: the role of inflammatory cytokine gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Joanna Balding

    2004-01-01

    Full Text Available THE mechanisms responsible for development of inflammatory bowel disease (IBD have not been fully elucidated, although the main cause of disease pathology is attributed to up-regulated inflammatory processes. The aim of this study was to investigate frequencies of polymorphisms in genes encoding pro-inflammatory and anti-inflammatory markers in IBD patients and controls. We determined genotypes of patients with IBD (n=172 and healthy controls (n=389 for polymorphisms in genes encoding various cytokines (interleukin (IL-1β, IL-6, tumour necrosis factor (TNF, IL-10, IL-1 receptor antagonist. Association of these genotypes to disease incidence and pathophysiology was investigated. No strong association was found with occurrence of IBD. Variation was observed between the ulcerative colitis study group and the control population for the TNF-α-308 polymorphism (p=0.0135. There was also variation in the frequency of IL-6-174 and TNF-α-308 genotypes in the ulcerative colitis group compared with the Crohn's disease group (p=0.01. We concluded that polymorphisms in inflammatory genes are associated with variations in IBD phenotype and disease susceptibility. Whether the polymorphisms are directly involved in regulating cytokine production, and consequently pathophysiology of IBD, or serve merely as markers in linkage disequilibrium with susceptibility genes remains unclear.

  14. Dismicrobism in inflammatory bowel disease and colorectal cancer: Changes in response of colocytes

    Science.gov (United States)

    Tomasello, Giovanni; Tralongo, Pietro; Damiani, Provvidenza; Sinagra, Emanuele; Di Trapani, Benedetto; Zeenny, Marie Noelle; Hajj Hussein, Inaya; Jurjus, Abdo; Leone, Angelo

    2014-01-01

    Patients with inflammatory bowel disease (IBD) have an increased risk of 10%-15% developing colorectal cancer (CRC) that is a common disease of high economic costs in developed countries. The CRC has been increasing in recent years and its mortality rates are very high. Multiple biological and biochemical factors are responsible for the onset and progression of this pathology. Moreover, it appears absolutely necessary to investigate the environmental factors favoring the onset of CRC and the promotion of colonic health. The gut microflora, or microbiota, has an extensive diversity both quantitatively and qualitatively. In utero, the intestine of the mammalian fetus is sterile. At birth, the intestinal microbiota is acquired by ingesting maternal anal or vaginal organisms, ultimately developing into a stable community, with marked variations in microbial composition between individuals. The development of IBD is often associated with qualitative and quantitative disorders of the intestinal microbial flora (dysbiosis). The healthy human gut harbours about 10 different bacterial species distributed in colony forming units which colonize the gastrointestinal tract. The intestinal microbiota plays a fundamental role in health and in the progression of diseases such as IBD and CRC. In healthy subjects, the main control of intestinal bacterial colonization occurs through gastric acidity but other factors such as endoluminal temperature, competition between different bacterial strains, peristalsis and drugs can influence the intestinal microenvironment. The microbiota exerts diverse physiological functions to include: growth inhibition of pathogenic microorganisms, synthesis of compounds useful for the trophism of colonic mucosa, regulation of intestinal lymphoid tissue and synthesis of amino acids. Furthermore, mucus seems to play an important role in protecting the intestinal mucosa and maintaining its integrity. Changes in the microbiota composition are mainly

  15. Down-regulation of inflammatory mediator synthesis and infiltration of inflammatory cells by MMP-3 in experimentally induced rat pulpitis.

    Science.gov (United States)

    Takimoto, Koyo; Kawashima, Nobuyuki; Suzuki, Noriyuki; Koizumi, Yu; Yamamoto, Mioko; Nakashima, Misako; Suda, Hideaki

    2014-09-01

    Matrix metalloproteinase (MMP)-3 is a member of the MMP family that degrades the extracellular matrix. Application of MMP-3 to injured pulp tissue induces angiogenesis and wound healing, but its anti-inflammatory effects are still unclear. Here, we evaluated the anti-inflammatory functions of MMP-3 in vitro and in vivo. Nitric oxide and inflammatory mediator synthesis in macrophages activated by lipopolysaccharide (LPS) was measured in the presence or absence of MMP-3. The mouse Mmp3 (mMmp3) expression vector containing full length cDNA sequence of mMmp3 or cDNA sequence of mMmp3 missing the signal peptide and pro-peptide regions was transfected to RAW264, a mouse macrophage cell line, and NO synthesis and inflammatory mediator expression were evaluated. Pulpal inflammation was histologically and immunohistochemically evaluated in a rat model of incisor pulpitis induced by the application of LPS for 9 hours in the presence or absence of MMP-3. NO and pro-inflammatory mediator synthesis promoted by LPS was significantly down-regulated by MMP-3 in vitro. The full length of mMmp3 down-regulated the LPS-induced NO synthesis and chemical mediator mRNA expression, however the mMmp3 missing the signal peptide failed to block the NO synthesis induced by LPS. The numbers of major histocompatibility complex class II+ and CD68+ cells, which infiltrated into the rat incisor pulp tissues in response to the topical application of LPS, were significantly decreased by the application of MMP-3 in vivo. These results indicate that MMP-3 possesses anti-inflammatory functions, suggesting its potential utility as an anti-inflammatory agent for pulpal inflammation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization.

    Science.gov (United States)

    Mukwaya, Anthony; Lennikov, Anton; Xeroudaki, Maria; Mirabelli, Pierfrancesco; Lachota, Mieszko; Jensen, Lasse; Peebo, Beatrice; Lagali, Neil

    2018-05-01

    Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.

  17. Promotional Tool of Marketing: An Islamic Perspective

    OpenAIRE

    Muhammad Anwar; Mohammad Saeed

    1996-01-01

    Promotional tools of marketing, (e.g., personal selling, advertising, sales promotion, public relations, promotional games as well as contests), play a key role in creating consumer awareness about the qualities of various products and services available on the market, and can go a long way in contributing to economic progress and social development. Muslim marketers have to be conscious of their position and role in managing marketing activities. The Qur'anic view about man and his resources...

  18. Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus

    Science.gov (United States)

    Du, Yifeng; Kemper, Timothy; Qiu, Jiange; Jiang, Jianxiong

    2016-01-01

    Neuroinflammation is a common feature in nearly all neurological and some psychiatric disorders. Resembling its extraneural counterpart, neuroinflammation can be both beneficial and detrimental depending on the responding molecules. The overall effect of inflammation on disease progression is highly dependent on the extent of inflammatory mediator production and the duration of inflammatory induction. The time-dependent aspect of inflammatory responses suggests that the therapeutic time window for quelling neuroinflammation might vary with molecular targets and injury types. Therefore, it is important to define the therapeutic time window for anti-inflammatory therapeutics, as contradicting or negative results might arise when different treatment regimens are utilized even in similar animal models. Herein, we discuss a few critical factors that can help define the therapeutic time window and optimize treatment paradigm for suppressing the cyclooxygenase-2/prostaglandin-mediated inflammation after status epilepticus. These determinants should also be relevant to other anti-inflammatory therapeutic strategies for the CNS diseases. PMID:26689339

  19. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review.

    Science.gov (United States)

    Zhu, Fengmei; Du, Bin; Xu, Baojun

    2018-05-24

    Inflammation is the first biological response of the immune system to infection, injury or irritation. Evidence suggests that the anti-inflammatory effect is mediated through the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ as well as noncytokine mediator, prostaglandin E 2 . Fruits, vegetables, and food legumes contain high levels of phytochemicals that show anti-inflammatory effect, but their mechanisms of actions have not been completely identified. The aim of this paper was to summarize the recent investigations and findings regarding in vitro and animal model studies on the anti-inflammatory effects of fruits, vegetables, and food legumes. Specific cytokines released for specific type of physiological event might shed some light on the specific use of each source of phytochemicals that can benefit to counter the inflammatory response. As natural modulators of proinflammatory gene expressions, phytochemical from fruits, vegetables, and food legumes could be incorporated into novel bioactive anti-inflammatory formulations of various nutraceuticals and pharmaceuticals. Finally, these phytochemicals are discussed as the natural promotion strategy for the improvement of human health status. The phenolics and triterpenoids in fruits and vegetables showed higher anti-inflammatory activity than other compounds. In food legumes, lectins and peptides had anti-inflammatory activity in most cases. However, there are lack of human study data on the anti-inflammatory activity of phytochemicals from fruits, vegetables, and food legumes.

  20. Promoting industrialisation

    International Nuclear Information System (INIS)

    Hayfield, F.

    1986-04-01

    When the first nuclear power programme is decided upon, automatically the country has to initiate in parallel a programme to modify or add to its current industrial structure and resources. The extent of this new industrialisation depends upon many factors which both, the Government and the Industries have to consider. The Government has a vital role which includes the setting up of the background against which the industrial promotion should take place and in many cases may have also to play an active role all along this programme. Equally, the existing industries have an important role so as to achieve the most efficient participation in the nuclear programme. Invariably the industrial promotional programme will incur a certain degree of transfer of technology, the extent depending on the policies adopted. For this technology transfer to take place efficiently, both the donor and the receiver have to recognise each other's legitimate ambitions and fears. The transfer of technology is a process having a high human content and both donor and receiver have to take this into account. This can be further complicated when there is a difference in culture between them. Technology transfer is carried out within a contractual and organisational framework which will identify the donor (licensor) and the receiver (licensee). This framework may take various forms from a simple cooperative agreement, through a joint-venture organisation right to a standard contract between two separate entities. Each arrangement has its advantages and drawbacks and requires investment of different degrees. One of the keys to a successful industrial promotion is having it carried out in a timely fashion which will be parallel with the nuclear power programme. Experience in some countries has shown the problems when the industrialisation is out of phase with the programme whilst in other cases this industrialisation was at a level and scale unjustified. (author)

  1. Progressive multifocal leukoencephalopathy: new concepts

    Directory of Open Access Journals (Sweden)

    Marco A. Lima

    2013-09-01

    Full Text Available Progressive multifocal leukoencephalopathy (PML is a demyelinating disease of the CNS caused by reactivation of JC virus (JCV in a setting of cellular immunosuppression. Originally, PML was observed in patients with advanced HIV infection, lymphoproliferative disorders and transplant recipients. However, the widespread use of HIV antiretroviral drugs and the new selective immunomodulatory and immunosuppressive medications, such as Rituximab and Natalizumab, has recently modified the epidemiology, clinical presentation and prognosis of PML. Herein, we discuss the new concepts on PML, emphasizing the recent modification in the epidemiology; the impact of new immunomodulatory treatments in the disease, PML-IRIS (Immune reconstitution inflammatory síndrome, new treatment strategies and other JCV related CNS diseases.

  2. Scientific progress without increasing verisimilitude: In response to Niiniluoto.

    Science.gov (United States)

    Rowbottom, Darrell P

    2015-06-01

    First, I argue that scientific progress is possible in the absence of increasing verisimilitude in science's theories. Second, I argue that increasing theoretical verisimilitude is not the central, or primary, dimension of scientific progress. Third, I defend my previous argument that unjustified changes in scientific belief may be progressive. Fourth, I illustrate how false beliefs can promote scientific progress in ways that cannot be explicated by appeal to verisimilitude. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Development and characterization of targeted poly(NIPAm) nanoparticles for delivery of anti-inflammatory peptides in peripheral artery disease and osteoarthritis

    Science.gov (United States)

    McMasters, James F.

    Inflammation is the underlying cause of several severe diseases including cardiovascular disease and osteoarthritis. Peripheral artery disease (PAD) is characterized by atherosclerotic occlusions within the peripheral vasculature. Current treatment for severe PAD involves mechanical widening of the artery via percutaneous transluminal angioplasty. Unfortunately, deployment of the balloon damages the endothelial layer, exposing the underlying collagenous matrix. Circulating platelets can bind to this collagen and become activated, releasing proinflammatory cytokines that promote proliferation of local smooth muscle cells. These proliferating cells eventually reocclude the vessel, resulting in restenosis and necessitating the need for a second procedure to reopen the vessel. Current treatments for moderate osteoarthritis include local injection of anti-inflammatory compounds such as glucocorticoids. Unfortunately, prolonged treatment carries with it significant side effects including osteoporosis, and cardiovascular complications. Our lab has developed an anti-inflammatory cell-penetrating peptide that inhibits mitogen-activated protein kinase activated protein kinase 2 (MK2). MK2 is implicated in the inflammatory cascade of atherosclerosis and osteoarthritis, making it a potentially effective strategy for reducing inflammation in both disease states. Unfortunately, these peptides are untargeted and quickly degraded in the presence of serum proteases, making the development of an effective delivery system of paramount importance. The overall goal of the research presented here is to detail the development of a poly(N-isopropylacrylamide) nanoparticle that is able to effectively load and release anti-inflammatory peptides for the treatment of these inflammatory diseases. In this dissertation, I will discuss the development of a collagen-binding nanoparticle that is able to inhibit platelet binding following angioplasty, thereby halting the initial inflammatory cascade

  4. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression

    Directory of Open Access Journals (Sweden)

    Otto Ka-Wing Cheung

    2016-09-01

    Full Text Available Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.

  5. Geothermal progress monitor. Progress report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Progress is reported on the following: electrical uses, direct-heat uses, drilling activities, leases, geothermal loan guarantee program, general activities, and legal, institutional, and regulatory activites. (MHR)

  6. Anti-inflammatory effects of Zea mays L. husk extracts.

    Science.gov (United States)

    Roh, Kyung-Baeg; Kim, Hyoyoung; Shin, Seungwoo; Kim, Young-Soo; Lee, Jung-A; Kim, Mi Ok; Jung, Eunsun; Lee, Jongsung; Park, Deokhoon

    2016-08-19

    Zea mays L. (Z. mays) has been used for human consumption in the various forms of meal, cooking oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However, especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated. The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced. ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition, expression of iNOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity. Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition, LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE. Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.

  7. Immunoregulatory actions of epithelial cell PPAR gamma at the colonic mucosa of mice with experimental inflammatory bowel disease.

    Science.gov (United States)

    Mohapatra, Saroj K; Guri, Amir J; Climent, Montse; Vives, Cristina; Carbo, Adria; Horne, William T; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-04-20

    Peroxisome proliferator-activated receptors are nuclear receptors highly expressed in intestinal epithelial cells (IEC) and immune cells within the gut mucosa and are implicated in modulating inflammation and immune responses. The objective of this study was to investigate the effect of targeted deletion of PPAR gamma in IEC on progression of experimental inflammatory bowel disease (IBD). In the first phase, PPAR gamma flfl; Villin Cre- (VC-) and PPAR gamma flfl; Villin Cre+ (VC+) mice in a mixed FVB/C57BL/6 background were challenged with 2.5% dextran sodium sulfate (DSS) in drinking water for 0, 2, or 7 days. VC+ mice express a transgenic recombinase under the control of the Villin-Cre promoter that causes an IEC-specific deletion of PPAR gamma. In the second phase, we generated VC- and VC+ mice in a C57BL/6 background that were challenged with 2.5% DSS. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to phenotypically characterize lymphocyte and macrophage populations in blood, spleen and mesenteric lymph nodes. Global gene expression analysis was profiled using Affymetrix microarrays. The IEC-specific deficiency of PPAR gamma in mice with a mixed background worsened colonic inflammatory lesions, but had no effect on disease activity (DAI) or weight loss. In contrast, the IEC-specific PPAR gamma null mice in C57BL/6 background exhibited more severe inflammatory lesions, DAI and weight loss in comparison to their littermates expressing PPAR gamma in IEC. Global gene expression profiling revealed significantly down-regulated expression of lysosomal pathway genes and flow cytometry results demonstrated suppressed production of IL-10 by CD4+ T cells in mesenteric lymph nodes (MLN) of IEC-specific PPAR gamma null mice. Our results demonstrate that adequate expression of PPAR gamma in IEC is required for the regulation of mucosal immune responses and prevention of experimental IBD, possibly by modulation of

  8. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  9. IL-4 Receptor Alpha Signaling through Macrophages Differentially Regulates Liver Fibrosis Progression and Reversal

    Directory of Open Access Journals (Sweden)

    Shih-Yen Weng

    2018-03-01

    Full Text Available Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal. However, the signals that determine fibrogenic vs fibrolytic macrophage function remain ill defined. We studied the role of interleukin-4 receptor α (IL-4Rα, a potential central switch of macrophage polarization, in liver fibrosis progression and reversal. We demonstrate that inflammatory monocyte infiltration and liver fibrogenesis were suppressed in general IL-4Rα−/− as well as in macrophage-specific IL-4Rα−/− (IL-4RαΔLysM mice. However, with deletion of IL-4RαΔLysM spontaneous fibrosis reversal was retarded. Results were replicated by pharmacological intervention using IL-4Rα-specific antisense oligonucleotides. Retarded resolution was linked to the loss of M2-type resident macrophages, which secreted MMP-12 through IL-4 and IL-13-mediated phospho-STAT6 activation. We conclude that IL-4Rα signaling regulates macrophage functional polarization in a context-dependent manner. Pharmacological targeting of macrophage polarization therefore requires disease stage-specific treatment strategies. Research in Context: Alternative (M2-type macrophage activation through IL-4Rα promotes liver inflammation and fibrosis progression but speeds up fibrosis reversal. This demonstrates context dependent, opposing roles of M2-type macrophages. During reversal IL-4Rα induces fibrolytic MMPs, especially MMP-12, through STAT6. Liver-specific antisense oligonucleotides efficiently block IL-4Rα expression and attenuate fibrosis progression. Keywords: Fibrosis, IL-4 receptor alpha, Liver, Macrophage, MMP12, Progression, Reversal

  10. Estimation of nitric oxide as an inflammatory marker in periodontitis

    Directory of Open Access Journals (Sweden)

    Menaka K

    2009-01-01

    Full Text Available Nitric oxide (NO is not only important in host defense and homeostasis but it is also regarded as harmful and has been implicated in the pathogenesis of a wide variety of inflammatory and autoimmune diseases. The presence of NO in periodontal disease may reflect the participation of an additional mediator of bone resorption responsible for disease progression. The aim of this study was to assess the level of NO in serum in chronic periodontitis, and correlate these levels with the severity of periodontal disease. Sixty subjects participated in the study and were divided into two groups. NO levels were assayed by measuring the accumulation of stable oxidative metabolite, nitrite with Griess reaction. Results showed subjects with periodontitis had significantly high nitrite in serum than healthy subjects. NO production is increased in periodontal disease, this will enable us to understand its role in disease progression and selective inhibition of NO may be of therapeutic utility in limiting the progression of periodontitis.

  11. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

    Science.gov (United States)

    Bald, Tobias; Quast, Thomas; Landsberg, Jennifer; Rogava, Meri; Glodde, Nicole; Lopez-Ramos, Dorys; Kohlmeyer, Judith; Riesenberg, Stefanie; van den Boorn-Konijnenberg, Debby; Hömig-Hölzel, Cornelia; Reuten, Raphael; Schadow, Benjamin; Weighardt, Heike; Wenzel, Daniela; Helfrich, Iris; Schadendorf, Dirk; Bloch, Wilhelm; Bianchi, Marco E.; Lugassy, Claire; Barnhill, Raymond L.; Koch, Manuel; Fleischmann, Bernd K.; Förster, Irmgard; Kastenmüller, Wolfgang; Kolanus, Waldemar; Hölzel, Michael; Gaffal, Evelyn; Tüting, Thomas

    2014-03-01

    Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere

  12. Inflammatory Response in Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Mazhar A. Kanak

    2014-01-01

    Full Text Available Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation.

  13. Inflammatory Response in Islet Transplantation

    Science.gov (United States)

    Kanak, Mazhar A.; Kunnathodi, Faisal; Lawrence, Michael C.; Levy, Marlon F.

    2014-01-01

    Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation. PMID:24883060

  14. Inflammatory mechanisms in Alzheimer's disease

    NARCIS (Netherlands)

    Eikelenboom, P.; Zhan, S. S.; van Gool, W. A.; Allsop, D.

    1994-01-01

    Alzheimer's disease is aetiologically heterogeneous, but the pathogenesis is often considered to be initiated by the deposition of amyloid fibrils, followed by neuritic tau pathology and neuronal death. A variety of inflammatory proteins has been identified in the brains of patients with Alzheimer's

  15. Neonatal umbilical inflammatory myofibroblastic tumor

    African Journals Online (AJOL)

    antenatal scan. The preferred treatment option is resection of the tumor. Spontaneous regression has been described. Ann Pediatr Surg 13:160–162 c 2017 Annals of Pediatric. Surgery. ... Keywords: inflammatory myofibroblastic tumor, neonatal tumor, surgical resection ... Other anatomical regions were the brain, the.

  16. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells

    Science.gov (United States)

    Valdor, Rut; García-Bernal, David; Bueno, Carlos; Ródenas, Mónica; Moraleda, José M.; Macian, Fernando; Martínez, Salvador

    2017-01-01

    The establishment of immune tolerance during Glioblastoma Multiforme (GBM) progression, is characterized by high levels expression of anti-inflammatory cytokines, which suppress the function of tumor assocciated myeloid cells, and the activation and expansion of tumor antigen specific T cells. However, the mechanisms underlying the failed anti-tumor immune response around the blood vessels during GBM, are poorly understood. The consequences of possible interactions between cancer cells and the perivascular compartment might affect the tumor growth. In this work we show for the first time that GBM cells induce immunomodulatory changes in pericytes in a cell interaction-dependent manner, acquiring an immunosuppresive function that possibly assists the evasion of the anti-tumor immune response and consequently participates in tumor growth promotion. Expression of high levels of anti-inflammatory cytokines was detected in vitro and in vivo in brain pericytes that interacted with GBM cells (GBC-PC). Furthermore, reduction of surface expression of co-stimulatory molecules and major histocompatibility complex molecules in GBC-PC correlated with a failure of antigen presentation to T cells and the acquisition of the ability to supress T cell responses. In vivo, orthotopic xenotransplant of human glioblastoma in an immunocompetent mouse model showed significant GBM cell proliferation and tumor growth after the establishment of interspecific immunotolerance that followed GMB interaction with pericytes. PMID:28978142

  17. STAT3 activation in monocytes accelerates liver cancer progression

    International Nuclear Information System (INIS)

    Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  18. Treatment of inflammatory diseases with mesenchymal stem cells.

    Science.gov (United States)

    Newman, Robert E; Yoo, Dana; LeRoux, Michelle A; Danilkovitch-Miagkova, Alla

    2009-06-01

    Human mesenchymal stem cells (hMSCs) are rare progenitor cells present in adult bone marrow that have the capacity to differentiate into a variety of tissue types, including bone, cartilage, tendon, fat, and muscle. In addition to multilineage differentiation capacity, MSCs regulate immune and inflammatory responses, providing therapeutic potential for treating diseases characterized by the presence of an inflammatory component. The availability of bone marrow and the ability to isolate and expand hMSCs ex vivo make these cells an attractive candidate for drug development. The low immunogenicity of these cells suggests that hMSCs can be transplanted universally without matching between donors and recipients. MSCs universality, along with the ability to manufacture and store these cells long-term, present a unique opportunity to produce an "off-the-shelf" cellular drug ready for treatment of diseases in acute settings. Accumulated animal and human data support MSC therapeutic potential for inflammatory diseases. Several phase III clinical trials for treatment of acute Graft Versus Host Disease (GVHD) and Crohn's disease are currently in progress. The current understanding of cellular and molecular targets underlying the mechanisms of MSCs action in inflammatory settings as well as clinical experience with hMSCs is summarized in this review.

  19. Oral pathology in inflammatory bowel disease

    Science.gov (United States)

    Muhvić-Urek, Miranda; Tomac-Stojmenović, Marija; Mijandrušić-Sinčić, Brankica

    2016-01-01

    The incidence of inflammatory bowel diseases (IBD) - Crohn’s disease (CD) and ulcerative colitis (UC) - has been increasing on a global scale, and progressively, more gastroenterologists will be included in the diagnosis and treatment of IBD. Although IBD primarily affects the intestinal tract, extraintestinal manifestations of the disease are often apparent, including in the oral cavity, especially in CD. Specific oral manifestations in patients with CD are as follows: indurate mucosal tags, cobblestoning and mucogingivitis, deep linear ulcerations and lip swelling with vertical fissures. The most common non-specific manifestations, such as aphthous stomatitis and angular cheilitis, occur in both diseases, while pyostomatitis vegetans is more pronounced in patients with UC. Non-specific lesions in the oral cavity can also be the result of malnutrition and drugs. Malnutrition, followed by anemia and mineral and vitamin deficiency, affects the oral cavity and teeth. Furthermore, all of the drug classes that are applied to the treatment of inflammatory bowel diseases can lead to alterations in the oral cavity due to the direct toxic effects of the drugs on oral tissues, as well as indirect immunosuppressive effects with a risk of developing opportunistic infections or bone marrow suppression. There is a higher occurrence of malignant diseases in patients with IBD, which is related to the disease itself and to the IBD-related therapy with a possible oral pathology. Treatment of oral lesions includes treatment of the alterations in the oral cavity according to the etiology together with treatment of the primary intestinal disease, which requires adequate knowledge and a strong cooperation between gastroenterologists and specialists in oral medicine. PMID:27433081

  20. TNFSF14 (LIGHT Exhibits Inflammatory Activities in Lung Fibroblasts Complementary to IL-13 and TGF-β

    Directory of Open Access Journals (Sweden)

    Ricardo da Silva Antunes

    2018-03-01

    Full Text Available The cytokine TNFSF14 [homologous to Lymphotoxin, exhibits Inducible expression and competes with HSV Glycoprotein D for binding to HVEM, a receptor expressed on T lymphocytes (LIGHT] has been shown in mouse models to be important for development of lung tissue remodeling that is characteristic of asthma, idiopathic pulmonary fibrosis (IPF, and systemic sclerosis (SSc. However, its cellular targets are not fully delineated. In the present report, we show that LTβR and HVEM, the receptors for LIGHT, are constitutively expressed in primary human lung fibroblasts (HLFs. We asked whether LIGHT could promote inflammatory and remodeling-relevant activity in HLFs and how this was similar to, or distinct from, IL-13 or TGF-β, two cytokines strongly implicated in the pathogenesis of asthma, IPF, and SSc. Accumulation of myofibroblasts expressing alpha smooth muscle actin is a feature of lung inflammatory diseases. LIGHT promoted cell cycle progression and proliferation of HLFs, but not alpha smooth muscle actin expression. In contrast, TGF-β upregulated alpha smooth muscle actin but did not drive their proliferation. LIGHT also increased the gene or protein expression of a number of proinflammatory mediators, including ICAM-1 and VCAM-1, IL-6 and GM-CSF, the chemokines CCL5 and 20, and CXCL5, 11, and 12, and lung remodeling-associated proteinases MMP-9 and ADAM8. These were dependent on LTβR but not HVEM. LIGHT displayed overlapping and synergistic activities with IL-13 for a number of the activities, but LIGHT additionally enhanced the gene expression of several molecules, including the innate cytokines IL-33 and TSLP, which were not upregulated by IL-13. Our results highlight the varied and pleiotropic effects of LIGHT in HLFs. LIGHT might then be a therapeutic target for modulation of inflammation and remodeling associated with asthma and other similar diseases of the lung that involve fibroblasts.

  1. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    Science.gov (United States)

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-β, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects. PMID:27121311

  2. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.

  3. Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain

    Science.gov (United States)

    Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke

    2014-01-01

    Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing

  4. Nonclassical Ly6C− Monocytes Drive the Development of Inflammatory Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Alexander V. Misharin

    2014-10-01

    Full Text Available Different subsets and/or polarized phenotypes of monocytes and macrophages may play distinct roles during the development and resolution of inflammation. Here, we demonstrate in a murine model of rheumatoid arthritis that nonclassical Ly6C− monocytes are required for the initiation and progression of sterile joint inflammation. Moreover, nonclassical Ly6C− monocytes differentiate into inflammatory macrophages (M1, which drive disease pathogenesis and display plasticity during the resolution phase. During the development of arthritis, these cells polarize toward an alternatively activated phenotype (M2, promoting the resolution of joint inflammation. The influx of Ly6C− monocytes and their subsequent classical and then alternative activation occurs without changes in synovial tissue-resident macrophages, which express markers of M2 polarization throughout the course of the arthritis and attenuate joint inflammation during the initiation phase. These data suggest that circulating Ly6C− monocytes recruited to the joint upon injury orchestrate the development and resolution of autoimmune joint inflammation.

  5. Inflammatory pathways of importance for management of inflammatory bowel disease.

    Science.gov (United States)

    Pedersen, Jannie; Coskun, Mehmet; Soendergaard, Christoffer; Salem, Mohammad; Nielsen, Ole Haagen

    2014-01-07

    Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract comprising Crohn's disease (CD) and ulcerative colitis (UC). Their etiologies are unknown, but they are characterised by an imbalanced production of pro-inflammatory mediators, e.g., tumor necrosis factor (TNF)-α, as well as increased recruitment of leukocytes to the site of inflammation. Advantages in understanding the role of the inflammatory pathways in IBD and an inadequate response to conventional therapy in a large portion of patients, has over the last two decades lead to new therapies which includes the TNF inhibitors (TNFi), designed to target and neutralise the effect of TNF-α. TNFi have shown to be efficient in treating moderate to severe CD and UC. However, convenient alternative therapeutics targeting other immune pathways are needed for patients with IBD refractory to conventional therapy including TNFi. Indeed, several therapeutics are currently under development, and have shown success in clinical trials. These include antibodies targeting and neutralising interleukin-12/23, small pharmacologic Janus kinase inhibitors designed to block intracellular signaling of several pro-inflammatory cytokines, antibodies targeting integrins, and small anti-adhesion molecules that block adhesion between leukocytes and the intestinal vascular endothelium, reducing their infiltration into the inflamed mucosa. In this review we have elucidated the major signaling pathways of clinical importance for IBD therapy and highlighted the new promising therapies available. As stated in this paper several new treatment options are under development for the treatment of CD and UC, however, no drug fits all patients. Hence, optimisations of treatment regimens are warranted for the benefit of the patients either through biomarker establishment or other rationales to maximise the effect of the broad range of mode-of-actions of the present and future drugs in IBD.

  6. A Case Report of Inflammatory Myopathy and Sideroblastic Anemia

    Directory of Open Access Journals (Sweden)

    F Binesh

    2007-01-01

    Full Text Available Mitochondrial myopathy, lactic acidosis, and siderobastic anemia (MLA SA syndrome is one of the newly reported mitochondrial diseases, seven cases of which have been reported. We report a child with inflammatory myopathy, sideroblastic anemia and lactic acidosis .The patient is a 8.5 year old boy with normal cognitive function suffering from chronic progressive weakness in lower extremities, inability to walk since four months and pallor. In paraclinical evaluation, sideroblastic anemia, mild lactic acidosis and elevated muscle enzymes were seen. Inflammatory myopathy (myositis in muscle biopsy was detected as well .The patient was administered oral prednisolone, folic acid, B6 and underwent regular physiotherapy. He ambulated after four months and resumed education and schooling.

  7. What Are the Targets of Inflammatory Bowel Disease Management.

    Science.gov (United States)

    Lega, Sara; Dubinsky, Marla C

    2018-04-25

    With recent evidence suggesting that keeping the inflammatory process under tight control prevents long-term disability, the aim of treatments in inflammatory bowel disease (IBD) has shifted from symptom control toward the resolution of bowel inflammation. Mucosal healing is currently recognized as the principal treatment target to be used in a "treat to target" paradigm, whereas histologic healing and normalization of biomarkers are being evaluated as potential future targets. Although symptom relief is no longer a sufficient target, patient experience with the disease is of unquestionable importance and should be assessed in the form of patient-reported outcomes, to be used as a co-primary target with an objective measure of disease activity. IBD in is a heterogeneous disease; thus besides defining common treatment targets, every effort should be made to deliver a personalized treatment plan based on the risk factors for disease progression and individual drug metabolism to improve treatment success.

  8. Monoclonal antibody therapy of inflammatory bowel disease

    NARCIS (Netherlands)

    van Deventer, S. J.; Camoglio, L.

    1997-01-01

    Animal models of inflammatory bowel disease have provided insight in the regulation of mucosal inflammation. This has resulted in novel therapeutic approaches that specifically target a single inflammatory mediator. Monoclonal antibody therapy has been used in steroid refractory Crohn's disease

  9. Factors Affecting Career Progress of MBA Students

    Directory of Open Access Journals (Sweden)

    Vivien T. Supangco

    2001-06-01

    Full Text Available This paper explored the factors that affect career progress of students in the MBA program of the University of the Philippines.To understand career progression, four measures of career progress were used in this study, namely: number of promotions, number of years in between promotions, total cash compensation, and number of administrative levels from the company president. On the other hand, the factors used to explain career progess included human capital, organizational, interpersonal and demographic variables.The results showed that the different measures of career progress had distinct determinants implying different dynamics. It appeared that measures of career progress that are sensitive to the value employers attach to the individual (Whitely, Dougherty, & Dreher, 1991 such as total compensation, total number of promotion and years per promotion were related with human capital factors such as work experience and number of companies worked for. On the other hand, measures that relate to centrality if the position, in which market forces have less impact, were associated with organizational variables such as organization size and the demographic variable gender.While gender did not explain variation in total compensation, number of promotions and number of uears between promotions, these null results are important for two reasons. First, it implies that the female MBA students were at par with their male counterparts as fas as these measures of career progress are concerned. Second, it challenges the generalizability of the finding of gender segregation at the organizational level-where men receive significantly higher wages that women-which is a common finding among studies done in the United States. The results using the MBA students as sample show that income and promotion parity may indeed be achievable and this brings hope to women in general.However, the statistical significance of gender in explaining career progress as centrality

  10. Progressive Pigmentary Purpura

    Science.gov (United States)

    ... Category: Share: Yes No, Keep Private Progressive Pigmentary Purpura Share | Progressive pigmentary purpura (we will call it PPP) is a group ... conditions ( Schamberg's disease , Lichenoid dermatitis of Gourgerot-Blum, purpura annularis telangiectodes of Majocchi and Lichen aureus). Schamberg's ...

  11. Primary Progressive Aphasia

    Science.gov (United States)

    ... which cause different symptoms. Semantic variant primary progressive aphasia Symptoms include these difficulties: Comprehending spoken or written ... word meanings Naming objects Logopenic variant primary progressive aphasia Symptoms include: Having difficulty retrieving words Frequently pausing ...

  12. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Romme Christensen, Jeppe; Börnsen, Lars; Khademi, Mohsen

    2013-01-01

    BACKGROUND: The mechanism underlying disease progression in progressive multiple sclerosis (MS) is uncertain. Pathological studies found widespread inflammation in progressive MS brains correlating with disease progression and axonal damage. OBJECTIVES: To study cerebrospinal fluid (CSF) biomarkers...... and clarify whether inflammation and axonal damage are associated in progressive MS. METHODS: Using enzyme-linked immunosorbent assay (ELISA), we analysed CSF from 40 secondary progressive (SPMS), 21 primary progressive (PPMS), and 36 relapsing-remitting (RRMS) and 20 non-inflammatory neurological disease...... (NIND) patients. Twenty-two of the SPMS patients participated in an MBP8298 peptide clinical trial and had CSF follow-up after one year. RESULTS: Compared to NIND patients, inflammatory biomarkers osteopontin and matrix metalloproteinase-9 (MMP9) were increased in all MS patients while CXCL13...

  13. The progressive tax

    OpenAIRE

    Estrada, Fernando

    2010-01-01

    This article describes the argumentative structure of Hayek on the relationship between power to tax and the progressive tax. It is observed throughout its work giving special attention to two works: The Constitution of Liberty (1959) and Law, Legislation and Liberty, vol3; The Political Order of Free People, 1979) Hayek describes one of the arguments most complete information bout SFP progressive tax systems (progressive tax). According to the author the history of the tax progressive system...

  14. Monoclonal antibody therapy of inflammatory bowel disease

    NARCIS (Netherlands)

    van Deventer, S. J.; Camoglio, L.

    1996-01-01

    Several anti-inflammatory drugs have therapeutic efficacy in inflammatory bowel disease, but their targets remain incompletely characterized. The development of monoclonal antibodies that either recognize epitopes on immune-competent cells, or neutralize pro-inflammatory cytokines, has helped to

  15. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    Science.gov (United States)

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance. Copyright © 2014 by The American Association of Immunologists, Inc.

  16. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression.

    Science.gov (United States)

    Li, Linda Xiaoyan; Zhou, Julie Xia; Calvet, James P; Godwin, Andrew K; Jensen, Roy A; Li, Xiaogang

    2018-02-27

    We identified SMYD2, a SMYD (SET and MYND domain) family protein with lysine methyltransferase activity, as a novel breast cancer oncogene. SMYD2 was expressed at significantly higher levels in breast cancer cell lines and in breast tumor tissues. Silencing of SMYD2 by RNAi in triple-negative breast cancer (TNBC) cell lines or inhibition of SMYD2 with its specific inhibitor, AZ505, significantly reduced tumor growth in vivo. SMYD2 executes this activity via methylation and activation of its novel non-histone substrates, including STAT3 and the p65 subunit of NF-κB, leading to increased TNBC cell proliferation and survival. There are cross-talk and synergistic effects among SMYD2, STAT3, and NF-κB in TNBC cells, in that STAT3 can contribute to the modification of NF-κB p65 subunit post-translationally by recruitment of SMYD2, whereas the p65 subunit of NF-κB can also contribute to the modification of STAT3 post-translationally by recruitment of SMYD2, leading to methylation and activation of STAT3 and p65 in these cells. The expression of SMYD2 can be upregulated by IL-6-STAT3 and TNFα-NF-κB signaling, which integrates epigenetic regulation to inflammation in TNBC development. In addition, we have identified a novel SMYD2 transcriptional target gene, PTPN13, which links SMYD2 to other known breast cancer associated signaling pathways, including ERK, mTOR, and Akt signaling via PTPN13 mediated phosphorylation.

  17. One fungus, one name promotes progressive plant pathology.

    Science.gov (United States)

    Wingfield, Michael J; De Beer, Z Wilhelm; Slippers, Bernard; Wingfield, Brenda D; Groenewald, Johannes Z; Lombard, Lorenzo; Crous, Pedro W

    2012-08-01

    The robust and reliable identification of fungi underpins virtually every element of plant pathology, from disease diagnosis to studies of biology, management/control, quarantine and, even more recently, comparative genomics. Most plant diseases are caused by fungi, typically pleomorphic organisms, for which the taxonomy and, in particular, a dual nomenclature system have frustrated and confused practitioners of plant pathology. The emergence of DNA sequencing has revealed cryptic taxa and revolutionized our understanding of relationships in the fungi. The impacts on plant pathology at every level are already immense and will continue to grow rapidly as new DNA sequencing technologies continue to emerge. DNA sequence comparisons, used to resolve a dual nomenclature problem for the first time only 19 years ago, have made it possible to approach a natural classification for the fungi and to abandon the confusing dual nomenclature system. The journey to a one fungus, one name taxonomic reality has been long and arduous, but its time has come. This will inevitably have a positive impact on plant pathology, plant pathologists and future students of this hugely important discipline on which the world depends for food security and plant health in general. This contemporary review highlights the problems of a dual nomenclature, especially its impact on plant pathogenic fungi, and charts the road to a one fungus, one name system that is rapidly drawing near. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  18. One fungus, one name promotes progressive plant pathology

    NARCIS (Netherlands)

    Wingfield, M.J.; De Beer, Z.W.; Slippers, B.; Wingfield, B.D.; Groenewald, J.Z.; Lombard, L.; Crous, P.W.

    2011-01-01

    The robust and reliable identification of fungi underpins virtually every element of plant pathology, from disease diagnosis to studies of biology, management/control, quarantine and, even more recently, comparative genomics. Most plant diseases are caused by fungi, typically pleomorphic organisms,

  19. One fungus, one name promotes progressive plant pathology

    NARCIS (Netherlands)

    Wingfield, M.J.; Beer, de Z.W.; Slippers, B.; Wingfield, B.D.; Groenewald, J.Z.; Lombard, L.; Crous, P.W.

    2012-01-01

    The robust and reliable identification of fungi underpins virtually every element of plant pathology, from disease diagnosis to studies of biology, management/control, quarantine and, even more recently, comparative genomics. Most plant diseases are caused by fungi, typically pleomorphic organisms,

  20. Progress report 2000

    International Nuclear Information System (INIS)

    2001-01-01

    Clean Air Hamilton is the new name of the Hamilton-Wentworth Air Quality Initiative and its implementation committee, which began in 1995 as a collaborative, multi-sectoral effort to identify and examine important air quality issues and to implement strategies to reduce many of the harmful emissions that endanger human health. During the year 2000 Clean Air Hamilton focused on nine program areas. Strategies were initiated to (1) reduce single occupancy auto trips, (2) purchase low emission vehicles, (3) model transportation emissions, (4) reduce smog-causing emissions, (5) plant trees, (6) provide advice on air quality related land use and transportation issues for consideration in city-wide planning, (7) promote public awareness through social marketing, (8) study fugitive road dust, and (9) reduce transboundary air pollution. A number of indicators to measure progress in efforts to improve air quality have been developed; many of these indicators show significant improvements which, taken collectively, show a positive trend toward cleaner air. The report highlights major accomplishment of Clean Air Hamilton; reports trends in ambient air quality data; assesses human health impacts of air quality, and recommends strategies for further improvements. Among major improvements, inhalable particulate (PM10) levels have decreased by about 20 per cent since 1991; sulphur dioxide levels dropped by 40 per cent since 1989 at industrial sampling sites and 20 per cent at the downtown sampling site; the air pollution index has remained under the advisory level of 32 at all API stations in Hamilton since June 1996. Benzene levels in air decreased by over 50 per cent near the Dofasco plant compared to the five-year composite average from 1994-1998. Given these accomplishments, participants in Clean Air Hamilton believe that while there is much room for improvement, the efforts to date have been worthwhile and provide encouragement for the future. 14 figs., 4 appendices

  1. Inflammatory chronic disease of the colon: How to image

    International Nuclear Information System (INIS)

    Ambrosini, Roberta; Barchiesi, Annalisa; Di Mizio, Veronica; Di Terlizzi, Marco; Leo, Luca; Filippone, Antonella; Canalis, Luigi; Fossaceca, Rita; Carriero, Alessandro

    2007-01-01

    Inflammatory bowel disease, including Crohn's disease and UC, is a chronic disorder of the gastrointestinal tract. The inflammatory process in UC is confined to the mucosa and submucosa and it involves only the colon. In contrast, in Crohn's disease the inflammation process extends through the bowel wall layers and it can involve any part of gastrointestinal tract. Moreover, inflammatory bowel disease of the colon may be associated with complications, such as toxic megacolon, fulminant colitis, acute bleeding, fistulas and abscesses. Radiographic imaging studies are useful for the diagnosis of inflammatory bowel disease, and may be used to assess the extent and severity of disease, rule out complications, and monitor the response to therapy. The double-contrast barium study is a valuable technique for diagnosing inflammatory bowel disease colonic alterations, even in patients with early mucosal abnormalities. The earliest finding of UC is characterized by a fine granular appeareance of the colonic mucosa, usually involving the rectosigmoid junction. In chronic UC double-contrast enema may reveal marked colonic shortening with tubular narrowing of the bowel and loss of haustration. The earliest radiographics findings of Crohn's disease are represented by aphthous ulcers. As disease progresses, aphthous ulcers may enlarge and coalesce to form stellate or linear areas of ulceration. In advanced Crohn's disease, transmural ulceration may lead to the development of fissures, sinus tracts, fistulas, and abscesses. Cross sectional studies such as computed tomography, magnetic resonance imaging and sometimes ultrasound, are useful alternative tools not only in the assessment of bowel wall abnormalities, but also for the assessment of extraluminal alterations in patients with advanced disease

  2. The choroid plexus response to a repeated peripheral inflammatory stimulus

    Directory of Open Access Journals (Sweden)

    Palha Joana A

    2009-11-01

    Full Text Available Abstract Background Chronic systemic inflammation triggers alterations in the central nervous system that may relate to the underlying inflammatory component reported in neurodegenerative disorders such as multiple sclerosis and Alzheimer's disease. However, it is far from being understood whether and how peripheral inflammation contributes to induce brain inflammatory response in such illnesses. As part of the barriers that separate the blood from the brain, the choroid plexus conveys inflammatory immune signals into the brain, largely through alterations in the composition of the cerebrospinal fluid. Results In the present study we investigated the mouse choroid plexus gene expression profile, using microarray analyses, in response to a repeated inflammatory stimulus induced by the intraperitoneal administration of lipopolysaccharide every two weeks for a period of three months; mice were sacrificed 3 and 15 days after the last lipopolysaccharide injection. The data show that the choroid plexus displays a sustained response to the repeated inflammatory stimuli by altering the expression profile of several genes. From a total of 24,000 probes, 369 are up-regulated and 167 are down-regulated 3 days after the last lipopolysaccharide injection, while at 15 days the number decreases to 98 and 128, respectively. The pathways displaying the most significant changes include those facilitating entry of cells into the cerebrospinal fluid, and those participating in the innate immune response to infection. Conclusion These observations contribute to a better understanding of the brain response to peripheral inflammation and pave the way to study their impact on the progression of several disorders of the central nervous system in which inflammation is known to be implicated.

  3. Rapidly Destructive Inflammatory Arthritis of the Hip

    Directory of Open Access Journals (Sweden)

    Jenny Shu

    2014-01-01

    Full Text Available Rapidly destructive coxarthrosis (RDC is a rare syndrome that involves aggressive hip joint destruction within 6–12 months of symptom onset with no single diagnostic laboratory, pathological, or radiographic finding. We report an original case of RDC as an initial presentation of seronegative rheumatoid arthritis (RA in a 57-year-old Caucasian woman presenting with 6 months of progressive right groin pain and no preceding trauma or chronic steroid use. Over 5 months, she was unable to ambulate and plain films showed complete resorption of the right femoral head and erosion of the acetabulum. There were inflammatory features seen on computed tomography (CT and magnetic resonance imaging (MRI. She required a right total hip arthroplasty, but arthritis in other joints showed improvement with triple disease modifying antirheumatic drugs (DMARD therapy and almost complete remission with the addition of adalimumab. We contrast our case of RDC as an initial presentation of RA to 8 RDC case reports of patients with established RA. Furthermore, this case highlights the importance of obtaining serial imaging to evaluate a patient with persistent hip symptoms and rapid functional deterioration.

  4. Imaging B lymphocytes in autoimmune inflammatory diseases

    International Nuclear Information System (INIS)

    Iodice, V.; Lauri, C.; Capriotti, G.; Lagana', B.; Germano, V.; D’Amelio, R.; Picchianti Diamanti, A.

    2014-01-01

    B cells arise from stem cells precursor and develop through a tightly regulated and selective process that lead to the generation of different B cell populations such as transitional, mature, memory and plasma cells. These B cell subsets can be identified using flow cytometry by the expression of specific surface antigens. The growing knowledge of the pivotal role played by B cells in the development and progression of autoimmune diseases combined with the advances in monoclonal antibody technology, led in the last years to the generation of different biological agents targeting B cells. In this context, nuclear medicine can offer the possibility to use a panel of biologic radiopharmaceuticals for molecular imaging of inflammatory diseases. Radiopharmaceuticals bind to their targets with high affinity and specificity and have an excellent imaging diagnostic potential for the evaluation of disease activity, selection and monitoring of immune therapies. Several molecules have been radiolabelled for the imaging of T lymphocytes whereas, by now, the anti CD20 rituximab is the only biological therapy targeting B cells that demonstrated to be efficiently radiolabelled and used to detect inflammation in autoimmune patients

  5. Idiopathic inflammatory myopathies and the lung

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Lega

    2015-06-01

    Full Text Available Idiopathic