WorldWideScience

Sample records for promising insulating thin

  1. Topological phases of topological-insulator thin films

    Science.gov (United States)

    Asmar, Mahmoud M.; Sheehy, Daniel E.; Vekhter, Ilya

    2018-02-01

    We study the properties of a thin film of topological insulator material. We treat the coupling between helical states at opposite surfaces of the film in the properly-adapted tunneling approximation, and show that the tunneling matrix element oscillates as a function of both the film thickness and the momentum in the plane of the film for Bi2Se3 and Bi2Te3 . As a result, while the magnitude of the matrix element at the center of the surface Brillouin zone gives the gap in the energy spectrum, the sign of the matrix element uniquely determines the topological properties of the film, as demonstrated by explicitly computing the pseudospin textures and the Chern number. We find a sequence of transitions between topological and nontopological phases, separated by semimetallic states, as the film thickness varies. In the topological phase, the edge states of the film always exist but only carry a spin current if the edge potentials break particle-hole symmetry. The edge states decay very slowly away from the boundary in Bi2Se3 , making Bi2Te3 , where this scale is shorter, a more promising candidate for the observation of these states. Our results hold for free-standing films as well as heterostructures with large-gap insulators.

  2. Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film

    Science.gov (United States)

    Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping

    2018-04-01

    Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.

  3. Metal-insulator transition induced in CaVO3 thin films

    International Nuclear Information System (INIS)

    Gu Man; Laverock, Jude; Chen, Bo; Smith, Kevin E.; Wolf, Stuart A.; Lu Jiwei

    2013-01-01

    Stoichiometric CaVO 3 (CVO) thin films of various thicknesses were grown on single crystal SrTiO 3 (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 μA. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film (∼60 nm), thin films of CVO (2–4 nm) were more two-dimensional with the V charge state closer to V 4+ .

  4. Differential Hall-sensor Pulsed Eddy Current Probe for the Detection of Wall thinning in an Insulated Stainless Steel Pipe

    International Nuclear Information System (INIS)

    Park, D. G.; Angani, Chandra S.; Cheong, Y. M.; Kim, C. G.

    2010-01-01

    The local wall thinning is one of the most important factors to limit the life-extension of large structures, such as the pipe lines in the NPPs. The pipelines are covered with a thermal insulator for low thermal loss. The PEC testing is the promising technological approach to the NDT, and it has been principally developed for the measurement of surface flaws, subsurface flaws and corrosion. In the pulsed eddy current (PEC) technique, the excitation coil is driven by repeated pulses. According to the skin - depth relationship multiple frequency components penetrate to different depths, hence the PEC technique has the potential for bringing up deeper information about the tested sample. Because of the potential advantages of the PEC, prevalent investigations on this technique have been done. In the present study a differential probe which is used in the Pulsed Eddy Current (PEC) system has been fabricated for the detection of wall thinning of insulated pipelines in a nuclear power plant (NPP). This technique can be used as a potential tool to detect the corrosion or the wall thinning of the pipelines without removing the insulation

  5. Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling

    Science.gov (United States)

    Huebner, Torsten; Martens, Ulrike; Walowski, Jakob; Münzenberg, Markus; Thomas, Andy; Reiss, Günter; Kuschel, Timo

    2018-06-01

    In general, it is difficult to access the thermal conductivity of thin insulating films experimentally by electrical means. Here, we present a new approach utilizing the tunnel magneto-Seebeck effect (TMS) in combination with finite-element modeling (FEM). We detect the laser-induced TMS and the absolute thermovoltage of laser-heated magnetic tunnel junctions with 2.6 nm thin barriers of MgAl2O4 (MAO) and MgO, respectively. A second measurement of the absolute thermovoltage after a dielectric breakdown of the barrier grants insight into the remaining thermovoltage of the stack. Thus, the pure TMS without any parasitic Nernst contributions from the leads can be identified. In combination with FEM via COMSOL, we are able to extract values for the thermal conductivity of MAO (0.7 W (K · m)‑1) and MgO (5.8 W (K · m)‑1), which are in very good agreement with theoretical predictions. Our method provides a new promising way to extract the experimentally challenging parameter of the thermal conductivity of thin insulating films.

  6. Specular Andreev reflection in thin films of topological insulators

    Science.gov (United States)

    Majidi, Leyla; Asgari, Reza

    2016-05-01

    We theoretically reveal the possibility of specular Andreev reflection in a thin film topological insulator normal-superconductor (N/S) junction in the presence of a gate electric field. The probability of specular Andreev reflection increases with the electric field, and electron-hole conversion with unit efficiency happens in a wide experimentally accessible range of the electric field. We show that perfect specular Andreev reflection can occur for all angles of incidence with a particular excitation energy value. In addition, we find that the thermal conductance of the structure displays exponential dependence on the temperature. Our results reveal the potential of the proposed topological insulator thin-film-based N/S structure for the realization of intraband specular Andreev reflection.

  7. Metal-insulator transition induced in CaVO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Laverock, Jude; Chen, Bo; Smith, Kevin E. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-04-07

    Stoichiometric CaVO{sub 3} (CVO) thin films of various thicknesses were grown on single crystal SrTiO{sub 3} (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 {mu}A. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film ({approx}60 nm), thin films of CVO (2-4 nm) were more two-dimensional with the V charge state closer to V{sup 4+}.

  8. Fluxons in thin-film superconductor-insulator superlattices

    DEFF Research Database (Denmark)

    Sakai, S.; Bodin, P.; Pedersen, Niels Falsig

    1993-01-01

    In a system of thin alternating layers of superconductors and insulators the equations describing static and dynamic fluxon solutions are derived. The approach, represented by a useful compact matrix form, is intended to describe systems fabricated for example of niobium or niobium-nitride thin...... films; in the limit of ultrathin superconductor films it may give a model for describing fluxon motion in layered high-Tc superconductors. Numerical examples of current versus voltage curves to be expected in such an experiment are presented. Journal of Applied Physics is copyrighted by The American...

  9. Quantum and classical contributions to linear magnetoresistance in topological insulator thin films

    International Nuclear Information System (INIS)

    Singh, Sourabh; Gopal, R. K.; Sarkar, Jit; Mitra, Chiranjib

    2016-01-01

    Three dimensional topological insulators possess backscattering immune relativistic Dirac fermions on their surface due to nontrivial topology of the bulk band structure. Both metallic and bulk insulating topological insulators exhibit weak-antilocalization in the low magnetic field and linear like magnetoresistance in higher fields. We explore the linear magnetoresistance in bulk insulating topological insulator Bi 2-x Sb x Te 3-y Se y thin films grown by pulsed laser deposition technique. Thin films of Bi 2-x Sb x Te 3-y Se y were found to be insulating in nature, which conclusively establishes the origin of linear magnetoresistance from surface Dirac states. The films were thoroughly characterized for their crystallinity and composition and then subjected to transport measurements. We present a careful analysis taking into considerations all the existing models of linear magnetoresistance. We comprehend that the competition between classical and quantum contributions to magnetoresistance results in linear magnetoresistance in high fields. We observe that the cross-over field decreases with increasing temperature and the physical argument for this behavior is explained.

  10. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    Science.gov (United States)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  11. Magnetic-field induced semimetal in topological crystalline insulator thin films

    International Nuclear Information System (INIS)

    Ezawa, Motohiko

    2015-01-01

    We investigate electromagnetic properties of a topological crystalline insulator (TCI) thin film under external electromagnetic fields. The TCI thin film is a topological insulator indexed by the mirror-Chern number. It is demonstrated that the gap closes together with the emergence of a pair of gapless cones carrying opposite chirarities by applying in-plane magnetic field. A pair of gapless points have opposite vortex numbers. This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. We thus present an a magnetic-field induced semimetal–semiconductor transition in 2D material. This is a giant-magnetoresistance, where resistivity is controlled by magnetic field. Perpendicular electric field is found to shift the gapless points and also renormalize the Fermi velocity in the direction of the in-plane magnetic field. - Highlights: • The band structure of topological crystalline insulator thin films can be controlled by applying in-plane magnetic field. • At the gap closing magnetic field, a pair of gapless cones carrying opposite chirarities emerge. • A pair of gapless points have opposite vortex numbers. • This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. • A magnetic-field induced semimetal–semiconductor transition occurs in 2D material

  12. Magnetic-field induced semimetal in topological crystalline insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ezawa, Motohiko, E-mail: ezawa@ap.t.u-tokyo.ac.jp

    2015-06-19

    We investigate electromagnetic properties of a topological crystalline insulator (TCI) thin film under external electromagnetic fields. The TCI thin film is a topological insulator indexed by the mirror-Chern number. It is demonstrated that the gap closes together with the emergence of a pair of gapless cones carrying opposite chirarities by applying in-plane magnetic field. A pair of gapless points have opposite vortex numbers. This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. We thus present an a magnetic-field induced semimetal–semiconductor transition in 2D material. This is a giant-magnetoresistance, where resistivity is controlled by magnetic field. Perpendicular electric field is found to shift the gapless points and also renormalize the Fermi velocity in the direction of the in-plane magnetic field. - Highlights: • The band structure of topological crystalline insulator thin films can be controlled by applying in-plane magnetic field. • At the gap closing magnetic field, a pair of gapless cones carrying opposite chirarities emerge. • A pair of gapless points have opposite vortex numbers. • This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. • A magnetic-field induced semimetal–semiconductor transition occurs in 2D material.

  13. Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks

    Science.gov (United States)

    Zhang, H. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.

    2018-05-01

    Broadband unity absorption in graphene-insulator-metal (GIM) structures is demonstrated in the visible (VIS) and near-infrared (NIR) spectra. The spectral characteristics possess broadband absorption peaks, by simply choosing a stack of GIM, while no nanofabrication steps and patterning are required, and thus can be easily fabricated to cover a large area. The electromagnetic (EM) waves can be entirely trapped and the absorption can be greatly enhanced are verified with the finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA) methods. The position and the number of the absorption peak can be totally controlled by adjusting the thickness of the insulator layer. The proposed absorber maintains high absorption (above 90%) for both transverse electric (TE) and transverse magnetic (TM) polarizations, and for angles of incidence up to 80°. This work opens up a promising approach to realize perfect absorption (PA) with ultra-thin film, which could implicate many potential applications in optical detection and optoelectronic devices.

  14. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators.

    Science.gov (United States)

    Tse, Wang-Kong; MacDonald, A H

    2010-07-30

    Topological insulators can exhibit strong magneto-electric effects when their time-reversal symmetry is broken. In this Letter we consider the magneto-optical Kerr and Faraday effects of a topological insulator thin film weakly exchange coupled to a ferromagnet. We find that its Faraday rotation has a universal value at low frequencies θF=tan(-1)α, where α is the vacuum fine structure constant, and that it has a giant Kerr rotation θK=π/2. These properties follow from a delicate interplay between thin-film cavity confinement and the surface Hall conductivity of a topological insulator's helical quasiparticles.

  15. Economic Analysis of Installing Fixed and Removable Insulation for Pipe Wall Thinning Management

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyeongmo; Yun, Hun [KEPCO E and C, Gimcheon (Korea, Republic of)

    2016-12-15

    To perform ultrasonic testing (UT) thickness measurement of the secondary side piping installed in nuclear power plants, the insulation for preventing heat loss should be removed. The type of insulation can be divided into fixed and removable insulation. Fixed and removable insulation have their own strengths and weaknesses. Removable insulation has been installed in the components susceptible to wall thinning caused by FAC and erosion from Shin-Kori unit 1, which commenced its commercial operation in 2011. In this paper, the number of repeated inspections of components and the number of replacements of fixed insulation were estimated and a more economical way was identified based on the manufacturing and installation costs for fixed and removable insulation.

  16. Thin Aerogel as a Spacer in Multilayer Insulation

    Science.gov (United States)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  17. Edge states and integer quantum Hall effect in topological insulator thin films.

    Science.gov (United States)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  18. Linear magnetoresistance and surface to bulk coupling in topological insulator thin films.

    Science.gov (United States)

    Singh, Sourabh; Gopal, R K; Sarkar, Jit; Pandey, Atul; Patel, Bhavesh G; Mitra, Chiranjib

    2017-12-20

    We explore the temperature dependent magnetoresistance of bulk insulating topological insulator thin films. Thin films of Bi 2 Se 2 Te and BiSbTeSe 1.6 were grown using the pulsed laser deposition technique and subjected to transport measurements. Magnetotransport measurements indicate a non-saturating linear magnetoresistance (LMR) behavior at high magnetic field values. We present a careful analysis to explain the origin of LMR taking into consideration all the existing models of LMR. Here we consider that the bulk insulating states and the metallic surface states constitute two parallel conduction channels. Invoking this, we were able to explain linear magnetoresistance behavior as a competition between these parallel channels. We observe that the cross-over field, where LMR sets in, decreases with increasing temperature. We propose that this cross-over field can be used phenomenologically to estimate the strength of surface to bulk coupling.

  19. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  20. Phase coexistence in the metal-insulator transition of a VO2 thin film

    International Nuclear Information System (INIS)

    Chang, Y.J.; Koo, C.H.; Yang, J.S.; Kim, Y.S.; Kim, D.H.; Lee, J.S.; Noh, T.W.; Kim, Hyun-Tak; Chae, B.G.

    2005-01-01

    Vanadium dioxide (VO 2 ) shows a metal-insulator transition (MIT) near room temperature, accompanied by an abrupt resistivity change. Since the MIT of VO 2 is known to be a first order phase transition, it is valuable to check metallic and insulating phase segregation during the MIT process. We deposited (100)-oriented epitaxial VO 2 thin films on R-cut sapphire substrates. From the scanning tunneling spectroscopy (STS) spectra, we could distinguish metallic and insulating regions by probing the band gap. Optical spectroscopic analysis also supported the view that the MIT in VO 2 occurs through metal and insulator phase coexistence

  1. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    Science.gov (United States)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  2. Detection of wall thinning of carbon steel pipe covered with insulation using Pulsed Eddy Current technique

    International Nuclear Information System (INIS)

    Park, Duckgun; Kishore, M. B.; Lee, D. H.

    2013-01-01

    The test sample is a ferromagnetic carbon steel pipe having different thickness, covered with a 10 cm plastic insulation laminated by 0.4 mm Al plate to simulate the pipelines in NPPs. The PEC Probe used for the wall thinning detection consists of an excitation coil and a Hall sensor. The excitation coils in the probe is driven by a rectangular bipolar current pulse and the Hall-sensor will detects the resultant field. The Hall sensor output is considered as PEC signal. Results shows that the PEC system can detect wall thinning in an insulated pipeline of the NPPs. Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed

  3. Study of thin insulating films using secondary ion emission

    International Nuclear Information System (INIS)

    Hilleret, Noel

    1973-01-01

    Secondary ion emission from insulating films was investigated using a CASTAING-SLODZIAN ion analyzer. Various different aspects of the problem were studied: charge flow across a silica film; the mobilization of sodium during ion bombardment; consequences of the introduction of oxygen on the emission of secondary ions from some solids; determination of the various characteristics of secondary ion emission from silica, silicon nitride and silicon. An example of measurements made using this type of operation is presented: profiles (concentration as a function of depth) of boron introduced by diffusion or implantation in thin films of silica on silicon or silicon nitride. Such measurements have applications in microelectronics. The same method of operation was extended to other types of insulating film, and in particular, to the metallurgical study of passivation films formed on the surface of stainless steels. (author) [fr

  4. Growth and characterization of MnGa thin films with perpendicular magnetic anisotropy on BiSb topological insulator

    Science.gov (United States)

    Duy Khang, Nguyen Huynh; Ueda, Yugo; Yao, Kenichiro; Hai, Pham Nam

    2017-10-01

    We report on the crystal growth as well as the structural and magnetic properties of Bi0.8Sb0.2 topological insulator (TI)/MnxGa1-x bi-layers grown on GaAs(111)A substrates by molecular beam epitaxy. By optimizing the growth conditions and Mn composition, we were able to grow MnxGa1-x thin films on Bi0.8Sb0.2 with the crystallographic orientation of Bi0.8Sb0.2(001)[1 1 ¯ 0]//MnGa (001)[100]. Using magnetic circular dichroism (MCD) spectroscopy, we detected both the L10 phase ( x 0.6 ) of MnxGa1-x. For 0.50 ≤ x ≤ 0.55 , we obtained ferromagnetic L10-MnGa thin films with clear perpendicular magnetic anisotropy, which were confirmed by MCD hysteresis, anomalous Hall effect as well as superconducting quantum interference device measurements. Our results show that the BiSb/MnxGa1-x bi-layer system is promising for perpendicular magnetization switching using the giant spin Hall effect in TIs.

  5. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  6. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  7. Chiral topological excitons in a Chern band insulator

    Science.gov (United States)

    Chen, Ke; Shindou, Ryuichi

    2017-10-01

    A family of semiconductors called Chern band insulators are shown to host exciton bands with nonzero topological Chern integers and chiral exciton edge modes. Using a prototypical two-band Chern insulator model, we calculate a cross-correlation function to obtain the exciton bands and their Chern integers. The lowest exciton band acquires Chern integers such as ±1 and ±2 in the electronic Chern insulator phase. The nontrivial topology can be experimentally observed both by a nonlocal optoelectronic response of exciton edge modes and by a phase shift in the cross-correlation response due to the bulk mode. Our result suggests that magnetically doped HgTe, InAs/GaSb quantum wells, and (Bi,Sb)2Te3 thin films are promising candidates for a platform of topological excitonics.

  8. Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain

    Science.gov (United States)

    Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.

    2018-03-01

    The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.

  9. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    Science.gov (United States)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  10. Stability of low-carrier-density topological-insulator Bi2Se3 thin films and effect of capping layers

    International Nuclear Information System (INIS)

    Salehi, Maryam; Brahlek, Matthew; Koirala, Nikesh; Moon, Jisoo; Oh, Seongshik; Wu, Liang; Armitage, N. P.

    2015-01-01

    Although over the past number of years there have been many advances in the materials aspects of topological insulators (TIs), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi 2 Se 3 thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi 2 Se 3 thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ∼150% over a week and by ∼280% over 9 months. In situ-deposited Se and ex situ-deposited poly(methyl methacrylate) suppress the aging effect to ∼27% and ∼88%, respectively, over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators

  11. Chromium-induced ferromagnetism with perpendicular anisotropy in topological crystalline insulator SnTe (111) thin films

    Science.gov (United States)

    Wang, Fei; Zhang, Hongrui; Jiang, Jue; Zhao, Yi-Fan; Yu, Jia; Liu, Wei; Li, Da; Chan, Moses H. W.; Sun, Jirong; Zhang, Zhidong; Chang, Cui-Zu

    2018-03-01

    Topological crystalline insulator is a recently discovered topological phase of matter. It possesses multiple Dirac surface states, which are protected by the crystal symmetry. This is in contrast to the time-reversal symmetry that is operative in the well-known topological insulators. In the presence of a Zeeman field and/or strain, the multiple Dirac surface states are gapped. The high-Chern-number quantum anomalous Hall (QAH) state is predicted to emerge if the chemical potential resides in all the Zeeman gaps. Here, we use molecular-beam epitaxy to grow 12 double-layer (DL) pure and Cr-doped SnTe (111) thin film on heat-treated SrTi O3 (111) substrate using a quintuple layer of insulating (Bi0.2Sb0.8 ) 2T e3 topological insulator as a buffer film. The Hall traces of Cr-doped SnTe film at low temperatures display square hysteresis loops indicating long-range ferromagnetic order with perpendicular anisotropy. The Curie temperature of the 12 DL S n0.9C r0.1Te film is ˜110 K. Due to the chemical potential crossing the bulk valence bands, the anomalous Hall resistance of 12 DL S n0.9C r0.1Te film is substantially lower than the predicted quantized value (˜1 /4 h /e2 ). It is possible that with systematic tuning the chemical potential via chemical doping and electrical gating, the high-Chern-number QAH state can be realized in the Cr-doped SnTe (111) thin film.

  12. Metal-insulator transition in SrTi1−xVxO3 thin films

    International Nuclear Information System (INIS)

    Gu, Man; Wolf, Stuart A.; Lu, Jiwei

    2013-01-01

    Epitaxial SrTi 1−x V x O 3 (0 ≤ x ≤ 1) thin films were grown on (001)-oriented (LaAlO 3 ) 0.3 (Sr 2 AlTaO 6 ) 0.7 (LSAT) substrates using the pulsed electron-beam deposition technique. The transport study revealed a temperature driven metal-insulator transition (MIT) at 95 K for x = 0.67. The films with higher vanadium concentration (x > 0.67) were metallic corresponding to a Fermi liquid system. In the insulating phase (x < 0.67), the resistivity behavior was governed by Mott's variable range hopping mechanism. The possible mechanisms for the induced MIT are discussed, including the effects of electron correlation, lattice distortion, and Anderson localization

  13. MIS field effect transistor with barium titanate thin film as a gate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Firek, P., E-mail: pfirek@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Werbowy, A.; Szmidt, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland)

    2009-11-25

    The properties of barium titanate (BaTiO{sub 3}, BT) like, e.g. high dielectric constant and resistivity, allow it to find numerous applications in field of microelectronics. In this work silicon metal insulator semiconductor field effect transistor (MISFET) structures with BaTiO{sub 3} (containing La{sub 2}O{sub 3} admixture) thin films in a role of gate insulator were investigated. The films were produced by means of radio frequency plasma sputtering (RF PS) of sintered BaTiO{sub 3} + La{sub 2}O{sub 3} (2 wt.%) target. In the paper transfer and output current-voltage (I-V), transconductance and output conductance characteristics of obtained transistors are presented and discussed. Basic parameters of these devices like, e.g. threshold voltage (V{sub TH}), are determined and discussed.

  14. Giant spin Hall angle from topological insulator BixSe(1 - x) thin films

    Science.gov (United States)

    Dc, Mahendra; Jamali, Mahdi; Chen, Junyang; Hickey, Danielle; Zhang, Delin; Zhao, Zhengyang; Li, Hongshi; Quarterman, Patrick; Lv, Yang; Mkhyon, Andre; Wang, Jian-Ping

    Investigation on the spin-orbit torque (SOT) from large spin-orbit coupling materials has been attracting interest because of its low power switching of the magnetization and ultra-fast driving of the domain wall motion that can be used in future spin based memory and logic devices. We investigated SOT from topological insulator BixSe(1 - x) thin film in BixSe(1 - x) /CoFeB heterostructure by using the dc planar Hall method, where BixSe(1 - x) thin films were prepared by a unique industry-compatible deposition process. The angle dependent Hall resistance was measured in the presence of a rotating external in-plane magnetic field at bipolar currents. The spin Hall angle (SHA) from this BixSe(1 - x) thin film was found to be as large as 22.41, which is the largest ever reported at room temperature (RT). The giant SHA and large spin Hall conductivity (SHC) make this BixSe(1 - x) thin film a very strong candidate as an SOT generator in SOT based memory and logic devices.

  15. Effects of reductive annealing on insulating polycrystalline thin films of Nb-doped anatase TiO2: recovery of high conductivity

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2016-01-01

    We studied the effects of reductive annealing on insulating polycrystalline thin films of anatase Nb-doped TiO 2 (TNO). The insulating TNO films were intentionally fabricated by annealing conductive TNO films in oxygen ambient at 400 °C. Reduced free carrier absorption in the insulating TNO films indicated carrier compensation due to excess oxygen. With H 2 -annealing, both carrier density and Hall mobility recovered to the level of conducting TNO, demonstrating that the excess oxygen can be efficiently removed by the annealing process without introducing additional scattering centers. (paper)

  16. Magnetic field induced superconductor-insulator transitions for ultra-thin Bi films on the different underlayers

    International Nuclear Information System (INIS)

    Makise, K; Kawaguti, T; Shinozaki, B

    2009-01-01

    This work shows the experimental results of the superconductor-insulator (S-I) transition for ultra-thin Bi films in magnetic fields. The quench-condensed (q-c) Bi film onto insulating underlayers have been interpreted to be homogeneous. In contrast, the Bi film without underlayers has been regarded as a granular film. The electrical transport properties of ultra-thin metal films near the S-I transition depend on the structure of the film. In order to confirm the effect of the underlayer to the homogeneity of the superconducting films, we investigate the characteristics of S-I transitions of q-c nominally homogeneous Bi films on underlayers of two insulating materials, SiO, and Sb. Under almost the same deposition condition except for the material of underlayer, we prepared the Bi films by repeating the additional deposition and performed in-situ electrical measurement. It is found that the transport properties near the S-I transitions show the remarkable difference between two films on different underlayers. As for Bi films on SiO, it turned out that the temperature dependence of resistance per square R sq (T) of the field-tuned transition and the thickness-tuned transition shows similar behavior; it was a thermally activated form. On the other hand, the R sq (T) of Bi films on Sb for thickness-tuned S-I transition showed logarithmic temperature dependence, but that for field-tuned S-I transition showed a thermally activated form.

  17. The inaccuracy of heat transfer characteristics for non-insulated and insulated spherical containers neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, King-Leung; Salazar, Jose Luis Leon; Prasad, Leo; Chen, Wen-Lih

    2011-01-01

    In this investigation, the differences of heat transfer characteristics for insulated and non-insulated spherical containers between considering and neglecting the influence of heat radiation are studied by the simulations in some practical situations. It is found that the heat radiation effect cannot be ignored in conditions of low ambient convection heat coefficients (such ambient air) and high surface emissivities, especially for the non-insulated and thin insulated cases. In most practical situations when ambient temperature is different from surroundings temperature and the emissivity of insulation surface is different from that of metal wall surface, neglecting heat radiation will result in inaccurate insulation effect and heat transfer errors even with very thick insulation. However, the insulation effect considering heat radiation will only increase a very small amount after some dimensionless insulated thickness (such insulation thickness/radius ≥0.2 in this study), thus such dimensionless insulated thickness can be used as the optimum thickness in practical applications. Meanwhile, wrapping a material with low surface emissivity (such as aluminum foil) around the oxidized metal wall or insulation layer (always with high surface emissivity) can achieve very good insulated effect for the non-insulated or thin insulated containers.

  18. Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate

    Directory of Open Access Journals (Sweden)

    Takayoshi Katase

    2017-05-01

    Full Text Available Infrared (IR transmittance tunable metal-insulator conversion was demonstrated on a glass substrate by using thermochromic vanadium dioxide (VO2 as the active layer in a three-terminal thin-film-transistor-type device with water-infiltrated glass as the gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of a VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in an all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as an advanced smart window.

  19. Study on Automatic Solar Heat Insulated and Cooling Device of Car

    Directory of Open Access Journals (Sweden)

    Chen Gui-Yue

    2017-01-01

    Full Text Available In view of the common device for heat insulated and cooling of car, an improved new scheme which drove by solar energy is put forward. In this study, the transmission device are arranged inside the automobile, the thin-film solar is composited into the heat insulated and cooling material. Thus, the whole device can be driven by the energy from the photovoltaic conversion, which is clear and zero-pollution. The theoretical energy consumptions and preventable gas emissions are calculated to verify the environmental savings of the device. The results show that it has promising application prospect since it is not only environmentally friendly but also save and convenient as compared to the conventional device.

  20. Quantum coherent transport in SnTe topological crystalline insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Assaf, B. A.; Heiman, D. [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Katmis, F.; Moodera, J. S. [Francis Bitter Magnet Laboratory, MIT, Cambridge, Massachusetts 02139 (United States); Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Wei, P. [Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Zhang, Z. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bennett, S. P.; Harris, V. G. [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-09-08

    Topological crystalline insulators (TCI) are unique systems where a band inversion that is protected by crystalline mirror symmetry leads to a multiplicity of topological surface states. Binary SnTe is an attractive lead-free TCI compound; the present work on high-quality thin films provides a route for increasing the mobility and reducing the carrier density of SnTe without chemical doping. Results of quantum coherent magnetotransport measurements reveal a multiplicity of Dirac surface states that are unique to TCI. Modeling of the weak antilocalization shows variations in the extracted number of carrier valleys that reflect the role of coherent intervalley scattering in coupling different Dirac states on the degenerate TCI surface.

  1. Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.

    Science.gov (United States)

    Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-09-24

    A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.

  2. Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method

    International Nuclear Information System (INIS)

    Jannot, Yves; Degiovanni, Alain; Félix, Vincent; Bal, Harouna

    2011-01-01

    This paper presents a method dedicated to the thermal conductivity measurement of thin insulating anisotropic materials. The method is based on three hot-strip-type experiments in which the stationary temperature is measured at the center of the hot strip. A 3D model of the heat transfer in the system is established and simulated to determine the validity of a 2D transfer hypothesis at the center of the hot strip. A simplified 2D model is then developed leading to the definition of a geometrical factor calculable from a polynomial expression. A very simple calculation method enabling the estimation of the directional thermal conductivities from the three stationary temperature measurements and from the geometrical factor is presented. The uncertainties on each conductivity are estimated. The method is then validated by measurements on polyethylene foam and Ayous (anistropic low-density tropical wood); the estimated values of the thermal conductivities are in good agreement with the values estimated using the hot plate and the flash method. The method is finally applied on a thin super-insulating fibrous material for which no other method is able to measure the in-plane conductivity

  3. Poly(4-vinylphenol-co-methyl methacrylate) / titanium dioxide nanocomposite gate insulators for 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xue; Park, Jiho; Baang, Sungkeun; Park, Jaehoon [Hallym University, Chuncheon (Korea, Republic of); Piao, Shanghao; Kim, Sohee; Choi, Hyoungjin [Inha University, Incheon (Korea, Republic of)

    2014-12-15

    Poly(4-vinylphenol-co-methyl methacrylate) / titanium dioxide (TiO{sub 2}) nanocomposite insulators were fabricated for application in 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) thin-film transistors (TFTs). The capacitance of the fabricated capacitors with this nanocomposite insulator increased with increasing content of the high-dielectric-constant TiO{sub 2} nanoparticles. Nonetheless, particle aggregates, which were invariably produced in the insulator at higher TiO{sub 2} contents, augmented gate-leakage currents during device operation while the rough surface of the insulator obstructed charge transport in the conducting channel of the TIPS-Pn TFTs. These results suggest a significant effect of the morphological characteristics of nanocomposite insulators on TFT performance, as well as on their dielectric properties. Herein, the optimal particle composition was determined to be approximately 1.5 wt%, which contributed to characteristic improvements in the drain current, field-effect mobility, and threshold voltage of TIPS-Pn TFTs.

  4. Simulation of magnetic tunnel junction in ferromagnetic/insulator/semiconductor structure

    Science.gov (United States)

    Kostrov, Alexander I.; Stempitsky, Viktor R.; Kazimirchik, Vladimir N.

    2008-07-01

    In this work, we present a physical model and electrical macromodel for simulation of Magnetic Tunnel Junction (MTJ) effect based on Ferromagnetic/Insulator/Semiconductor (FIS) nanostructure. A modified Brinkman model has been proposed by including the voltage-dependent density of states of the ferromagnetic electrodes in order to explain the bias dependence magnitoresistance. The model takes into account injection of carriers in the semiconductor and Shottky barrier, electron tunneling through thin insulator and spin-transfer torque writing approach in memory cell. These very promising features should constitute the third generation of Magnetoresistive RAM (MRAM). Besides, the model can efficiently be used to design magnetic CMOS circuits. The behavioral macro-model has been developed by means of Verilog-AMS language and implemented on the Cadence Virtuoso platform with Spectre simulator.

  5. Current-induced metal-insulator transition in VO x thin film prepared by rapid-thermal-annealing

    International Nuclear Information System (INIS)

    Cho, Choong-Rae; Cho, SungIl; Vadim, Sidorkin; Jung, Ranju; Yoo, Inkyeong

    2006-01-01

    The phenomenon of metal-insulator transition (MIT) in polycrystalline VO x thin films and their preparations have been studied. The films were prepared by sputtering of vanadium thin films succeeded by Rapid Thermal Annealing (RTA) in oxygen ambient at 500 deg. C. Crystalline, compositional, and morphological characterizations reveal a continuous change of phase from vanadium metal to the highest oxide phase, V 2 O 5 , with the time of annealing. Electrical MIT switching has been observed in these films. Sweeping mode, electrode area, and temperature dependent MIT has been studied in Pt/VO x /Pt vertical structure. The important parameters for MIT in VO x have been found to be the current density and the electric field, which depend on carrier density in the films

  6. Low-Temperature Fabrication of Robust, Transparent, and Flexible Thin-Film Transistors with a Nanolaminated Insulator.

    Science.gov (United States)

    Kwon, Jeong Hyun; Park, Junhong; Lee, Myung Keun; Park, Jeong Woo; Jeon, Yongmin; Shin, Jeong Bin; Nam, Minwoo; Kim, Choong-Ki; Choi, Yang-Kyu; Choi, Kyung Cheol

    2018-05-09

    The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al 2 O 3 /MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al 2 O 3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al 2 O 3

  7. Metal-oxide assisted surface treatment of polyimide gate insulators for high-performance organic thin-film transistors.

    Science.gov (United States)

    Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho

    2017-06-14

    We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al 2 O 3 ), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al 2 O 3 -deposited KPI film. After the surface treatment by ODPA/α-Al 2 O 3 , the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C 10 ), was increased. Ph-BTBT-C 10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C 10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm 2 V -1 s -1 to 1.26 ± 0.06 cm 2 V -1 s -1 , after the surface treatment. The surface treatment of α-Al 2 O 3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO 2 gate insulators.

  8. Improvements in the reliability of a-InGaZnO thin-film transistors with triple stacked gate insulator in flexible electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Mao [Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Tai, Ya-Hsiang [Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Chen, Kuan-Fu [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chiang, Hsiao-Cheng [Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Liu, Kuan-Hsien [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Lee, Chao-Kuei [Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Lin, Wei-Ting; Cheng, Chun-Cheng; Tu, Chun-Hao; Liu, Chu-Yu [Advanced Technology Research Center, AU Optronics Corp, Hsinchu, Taiwan (China)

    2015-11-30

    This study examined the impact of the low-temperature stacking gate insulator on the gate bias instability of a-InGaZnO thin film transistors in flexible electronics applications. Although the quality of SiN{sub x} at low process/deposition temperature is better than that of SiO{sub x} at similarly low process/deposition temperature, there is still a very large positive threshold voltage (V{sub th}) shift of 9.4 V for devices with a single low-temperature SiN{sub x} gate insulator under positive gate bias stress. However, a suitable oxide–nitride–oxide-stacked gate insulator exhibits a V{sub th} shift of only 0.23 V. This improvement results from the larger band offset and suitable gate insulator thickness that can effectively suppress carrier trapping behavior. - Highlights: • The cause of the bias instability for a low-temperature gate insulator is verified. • A triple-stacked gate insulator was fabricated. • A suitable triple stacked gate insulator shows only 0.23 V threshold voltage shift.

  9. Thin NbN film structures on SOI for SNSPD

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, Konstantin; Kurz, Stephan; Henrich, Dagmar; Hofherr, Matthias; Siegel, Michael [IMS, KIT, Karlsruhe (Germany); Semenov, Alexei; Huebers, Heinz-Wilhelm [DLR, Berlin (Germany)

    2012-07-01

    Superconducting Nanowire Single-Photon Detectors (SNSPD) made from ultra-thin NbN films on sapphire demonstrate almost 100% intrinsic detection efficiency (DE). However the system DE values is less than 10% mostly limited by a very low absorptance of NbN films thinner than 5 nm. Integration of SNSPD in Si photonic circuit is a promising way to overcome this problem. We present results on optimization of technology of thin NbN film nanostructures on SOI (Silicon on Insulator) substrate used in Si photonics technology. Superconducting and normal state properties of these structures important for SNSPD development are presented and discussed.

  10. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    Science.gov (United States)

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  11. Tc depression and superconductor-insulator transition in molybdenum nitride thin films

    Science.gov (United States)

    Ichikawa, F.; Makise, K.; Tsuneoka, T.; Maeda, S.; Shinozaki, B.

    2018-03-01

    We have studied that the Tc depression and the superconductor-insulator transition (SIT) in molybdenum nitride (MoN) thin films. Thin films were fabricated by reactive DC magnetron sputtering method onto (100) MgO substrates in the mixture of Ar and N2 gases. Several dozen MoN thin films were prepared in the range of 3 nm < thickness d < 60 nm. The resistance was measured by a DC four-probe technique. It is found that Tc decreases from 6.6 K for thick films with increase of the normal state sheet resistance {R}{{sq}}{{N}} and experimental data were fitted to the Finkel’stein formula using the bulk superconducting transition temperature Tc 0 = 6.45 K and the elastic scattering time of electron τ = 1.6 × 10‑16 s. From this analysis the critical sheet resistance Rc is found about 2 kΩ, which is smaller than the quantum sheet resistance R Q. This value of Rc is almost the same as those for 2D NbN films. The value of τ for MoN films is also the similar value for NbN films 1.0 × 10‑16 s, while Tc 0 is different from that for NbN films 14.85 K. It is indicated that the mechanism of SIT for MoN films is similar to that of NbN films, while the mean free path ℓ for MoN films is larger than that for NbN films.

  12. Fabrication of amorphous InGaZnO thin-film transistor with solution processed SrZrO3 gate insulator

    Science.gov (United States)

    Takahashi, Takanori; Oikawa, Kento; Hoga, Takeshi; Uraoka, Yukiharu; Uchiyama, Kiyoshi

    2017-10-01

    In this paper, we describe a method of fabrication of thin film transistors (TFTs) with high dielectric constant (high-k) gate insulator by a solution deposition. We chose a solution processed SrZrO3 as a gate insulator material, which possesses a high dielectric constant of 21 with smooth surface. The IGZO-TFT with solution processed SrZrO3 showed good switching property and enough saturation features, i.e. field effect mobility of 1.7cm2/Vs, threshold voltage of 4.8V, sub-threshold swing of 147mV/decade, and on/off ratio of 2.3×107. Comparing to the TFTs with conventional SiO2 gate insulator, the sub-threshold swing was improved by smooth surface and high field effect due to the high dielectric constant of SrZrO3. These results clearly showed that use of solution processed high-k SrZrO3 gate insulator could improve sub-threshold swing. In addition, the residual carbon originated from organic precursors makes TFT performances degraded.

  13. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  14. Thickness oscillations of the transport properties in n-type Bi{sub 2}Te{sub 3} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze Street, Kharkov 61002 (Ukraine); Budnik, A.V.; Sipatov, A.Yu.; Nashchekina, O.N. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze Street, Kharkov 61002 (Ukraine); Fedorov, A.G. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Dresselhaus, M.S.; Tang, S. [Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-11-02

    The dependences of the electrical conductivity, Seebeck coefficient and Hall coefficient on the thickness (d = 20–155 nm) of the n-type thin films grown on the glass substrates by the thermal evaporation in vacuum of the n-type Bi{sub 2}Te{sub 3} topological insulator crystals have been measured. It has been established that these dependences have an oscillatory character with a substantial amplitude. The obtained results are interpreted in terms of quantum size effects, taking into account the peculiar properties of the surface layers of the Bi{sub 2}Te{sub 3} films connected with the topological insulator nature of the bismuth telluride. - Highlights: • The thickness dependences of Bi{sub 2}Te{sub 3} thin films kinetic coefficients were obtained. • The dependences have oscillatory character with a substantial undamped amplitude. • The oscillation period increases with decreasing film thickness. • The oscillations are attributed to electron confinement in the film growth direction. • It is suggested that topological surface layer affects quantum processes in films.

  15. Absorption of surface acoustic waves by topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.

    2014-01-01

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies

  16. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate.

    Science.gov (United States)

    Kim, So-Jung; Jeon, Da-Bin; Park, Jung-Ho; Ryu, Min-Ki; Yang, Jong-Heon; Hwang, Chi-Sun; Kim, Gi-Heon; Yoon, Sung-Min

    2015-03-04

    Nonvolatile memory thin-film transistors (TFTs) fabricated on paper substrates were proposed as one of the eco-friendly electronic devices. The gate stack was composed of chicken albumen gate insulator and In-Ga-Zn-O semiconducting channel layers. All the fabrication processes were performed below 120 °C. To improve the process compatibility of the synthethic paper substrate, an Al2O3 thin film was introduced as adhesion and barrier layers by atomic layer deposition. The dielectric properties of biomaterial albumen gate insulator were also enhanced by the preparation of Al2O3 capping layer. The nonvolatile bistabilities were realized by the switching phenomena of residual polarization within the albumen thin film. The fabricated device exhibited a counterclockwise hysteresis with a memory window of 11.8 V, high on/off ratio of approximately 1.1 × 10(6), and high saturation mobility (μsat) of 11.5 cm(2)/(V s). Furthermore, these device characteristics were not markedly degraded even after the delamination and under the bending situration. When the curvature radius was set as 5.3 cm, the ION/IOFF ratio and μsat were obtained to be 5.9 × 10(6) and 7.9 cm(2)/(V s), respectively.

  17. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  18. Density functional study of BiSbTeSe{sub 2} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpourrad, Zahra; Abolhassani, Mohammadreza [Department of Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-08-15

    In this work, using density functional theory calculations, we have investigated the band topology of bulk BiSbTeSe{sub 2} and its thin film electronic properties in several thicknesses. It is one member of the quaternary compounds Bi{sub 2-x}Sb{sub x}Te{sub 3-y}Se{sub y} (BSTS) with the best intrinsic bulk insulating behavior. Based on our calculations we have found that a band inversion at Γ-point is induced when spin-orbit coupling is turned on, with an energy gap of about 0.318 eV. The film thickness has an effect on the surface states such that a gap opens at Dirac point in 6 quintuple-layers film and with decrease in thickness, the magnitude of the gap increases. The atomic contributions have been mapped out for the first few layers of thin films to demonstrate the surface states. The relative charge density has been calculated layer-wise and the penetration depth of the surface states into the bulk region is found to be about 2.5-3.5 quintuple layers, depending on the termination species of thin films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  20. Electromagnetic waves in a topological insulator thin film stack: helicon-like wave mode and photonic band structure.

    Science.gov (United States)

    Inoue, Jun-ichi

    2013-09-09

    We theoretically explore the electromagnetic modes specific to a topological insulator superlattice in which topological and conventional insulator thin films are stacked periodically. In particular, we obtain analytic formulas for low energy mode that corresponds to a helicon wave, as well as those for photonic bands. We illustrate that the system can be modeled as a stack of quantum Hall layers whose conductivity tensors alternately change signs, and then we analyze the photonic band structures. This subject is a natural extension of a previous study by Tselis et al., which took into consideration a stack of identical quantum Hall layers but their discussion was limited into a low energy mode. Thus we provide analytic formulas for photonic bands and compare their features between the two systems. Our central findings in the topological insulator superlattice are that a low energy mode corresponding to a helicon wave has linear dispersion instead of the conventional quadratic form, and that a robust gapless photonic band appears although the system considered has spacial periodicity. In addition, we demonstrate that the photonic bands agree with the numerically calculated transmission spectra.

  1. AC over-current characteristics of YBCO coated conductor with copper stabilizer layer considering insulation layer

    International Nuclear Information System (INIS)

    Du, H.-I.; Kim, M.-J.; Kim, Y.-J.; Lee, D.-H.; Han, B.-S.; Song, S.-S.

    2010-01-01

    Compared with the first-generation BSCCO wire, the YBCO thin-film wire boasts low material costs and high J c and superior magnetic-field properties, among other strengths. Meanwhile, the previous BSCCO wire material for superconducting cables has been researched on considerably with regard to its post-wire quenching characteristics during the application of an alternating over-current. In this regard, the promising YBCO thin-film wire has yet to be further researched on. Moreover, still lacking is research on the YBCO thin-film wire with insulating layers, which is essential in the manufacture of superconducting cables, along with the testing of the application of an alternating over-current to the wire. In this study, YBCO thin-film wires with copper-stabilizing layers were used in testing alternating over-current application according to the presence or absence of insulating layers and to the thickness of such layers, to examine the post-quenching wire resistance increase and quenching trends. The YBCO thin-film wire with copper-stabilizing layers has a critical temperature of 90 K and a critical current of 85 A rms . Moreover, its current application cycle is 5.5 cycles, and its applied currents are 354, 517, 712, and 915 A peak . These figures enabled the YBCO thin-film wires with copper-stabilizing layers to reach 90, 180, 250, and 300 K, respectively, in this study. These temperatures serve as a relative reference to examine the post-quenching wire properties following the application of an alternating over-current.

  2. Metal-insulator transition in SrTi{sub 1−x}V{sub x}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-11-25

    Epitaxial SrTi{sub 1−x}V{sub x}O{sub 3} (0 ≤ x ≤ 1) thin films were grown on (001)-oriented (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates using the pulsed electron-beam deposition technique. The transport study revealed a temperature driven metal-insulator transition (MIT) at 95 K for x = 0.67. The films with higher vanadium concentration (x > 0.67) were metallic corresponding to a Fermi liquid system. In the insulating phase (x < 0.67), the resistivity behavior was governed by Mott's variable range hopping mechanism. The possible mechanisms for the induced MIT are discussed, including the effects of electron correlation, lattice distortion, and Anderson localization.

  3. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  4. Optical conductivity of topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-01-01

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi 2 Se 3 -based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ 0 =e 2 /(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF

  5. Poly(4-vinylphenol gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2016-03-01

    Full Text Available A Microwave-Induction Heating (MIH scheme is proposed for the poly(4-vinylphenol (PVP gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  6. In-Ga-Zn-oxide thin-film transistors with Sb2TeOx gate insulators fabricated by reactive sputtering using a metallic Sb2Te target

    International Nuclear Information System (INIS)

    Cheong, Woo-Seok

    2011-01-01

    Using reactive sputtering, we made transparent amorphous Sb 2 TeO x thin films from a metallic Sb 2 Te target in an oxidizing atmosphere. In-Ga-Zn-oxide thin-film transistors (IGZO TFTs) with Sb 2 TeO x gate insulators deposited at room temperature showed a large hysteresis with a counter clockwise direction, which was caused by mobile charges in the gate insulators. The problems of the mobile charges was solved by using Sb 2 TeO x films formed at 250 .deg. C. After the IGZO TFT had been annealed at 200 .deg. C for 1 hour in an O 2 ambient, the mobility of the IGZO TFT was 22.41 cm 2 /Vs, and the drain current on-off ratio was ∼10 8 .

  7. Spin Seebeck effect in insulating epitaxial γ−Fe2O3 thin films

    Directory of Open Access Journals (Sweden)

    P. Jiménez-Cavero

    2017-02-01

    Full Text Available We report the fabrication of high crystal quality epitaxial thin films of maghemite (γ−Fe2O3, a classic ferrimagnetic insulating iron oxide. Spin Seebeck effect (SSE measurements in γ−Fe2O3/Pt bilayers as a function of sample preparation conditions and temperature yield a SSE coefficient of 0.5(1 μV/K at room temperature. Dependence on temperature allows us to estimate the magnon diffusion length in maghemite to be in the range of tens of nanometers, in good agreement with that of conducting iron oxide magnetite (Fe3O4, establishing the relevance of spin currents of magnonic origin in magnetic iron oxides.

  8. Improving the performance of organic thin film transistors formed on a vacuum flash-evaporated acrylate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Z., E-mail: ziqian.ding@materials.ox.ac.uk; Abbas, G. A.; Assender, H. E. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Morrison, J. J.; Sanchez-Romaguera, V.; Yeates, S. G. [School of Chemistry, University of Manchester, Manchester M13 9PL (United Kingdom); Taylor, D. M. [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2013-12-02

    A systematic investigation has been undertaken, in which thin polymer buffer layers with different ester content have been spin-coated onto a flash-evaporated, cross-linked diacrylate gate-insulator to form bottom-gate, top-contact organic thin-film transistors. The highest device mobilities, ∼0.65 cm{sup 2}/V s and ∼1.00 cm{sup 2}/V s for pentacene and dinaphtho[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene (DNTT), respectively, were only observed for a combination of large-grain (∼1–2 μm) semiconductor morphology coupled with a non-polar dielectric surface. No correlation was found between semiconductor grain size and dielectric surface chemistry. The threshold voltage of pentacene devices shifted from −10 V to −25 V with decreasing surface ester content, but remained close to 0 V for DNTT.

  9. Topological crystalline insulator PbxSn1-xTe thin films on SrTiO3 (001 with tunable Fermi levels

    Directory of Open Access Journals (Sweden)

    Hua Guo

    2014-05-01

    Full Text Available In this letter, we report a systematic study of topological crystalline insulator PbxSn1-xTe (0 < x < 1 thin films grown by molecular beam epitaxy on SrTiO3(001. Two domains of PbxSn1-xTe thin films with intersecting angle of α ≈ 45° were confirmed by reflection high energy diffraction, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy (ARPES. ARPES study of PbxSn1-xTe thin films demonstrated that the Fermi level of PbTe could be tuned by altering the temperature of substrate whereas SnTe cannot. An M-shaped valance band structure was observed only in SnTe but PbTe is in a topological trivial state with a large gap. In addition, co-evaporation of SnTe and PbTe results in an equivalent variation of Pb concentration as well as the Fermi level of PbxSn1-xTe thin films.

  10. Intrinsic conduction through topological surface states of insulating Bi{sub 2}Te{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Katharina; Becker, Christoph; Rata, Diana; Thalmeier, Peter; Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Swanson, Jesse [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of British Columbia, Vancouver (Canada)

    2015-07-01

    Topological insulators represent a new state of matter that open up new opportunities to create unique quantum particles. Many exciting experiments have been proposed by theory, yet, the main obstacle for their execution is material quality and cleanliness of the experimental conditions. The presence of tiny amounts of defects in the bulk or contaminants at the surface already mask these phenomena. We present the preparation, structural and spectroscopic characterisation of MBE-grown Bi{sub 2}Te{sub 3} thin films that are insulating in the bulk. Moreover, temperature dependent four-point-probe resistivity measurements of the Dirac states on surfaces that are intrinsically clean were conducted. The total amount of surface charge carries is in the order of 10{sup 12} cm{sup -2} and mobilities up to 4600 cm{sup 2}/Vs are observed. Importantly, these results are achieved by carrying out the preparation and characterisation all in-situ under ultra-high-vacuum conditions.

  11. The model of metal-insulator phase transition in vanadium oxide

    International Nuclear Information System (INIS)

    Vikhnin, V.S.; Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.

    2005-01-01

    Thermally induced metal-insulator phase transitions (PT) in VO 2 thin films are studied theoretically and experimentally. The hysteresis phenomena in the region of the transition for different type thin films were investigated. The phenomenological model of the PT is suggested. The charge transfer-lattice instability in VO 2 metallic phase is considered as basis of the first order metal-insulator PT in VO 2 . The charge transfer is treated as an order parameter

  12. Stability Study of Flexible 6,13-Bis(triisopropylsilylethynylpentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol/Yttrium Oxide Nanocomposite Gate Insulator

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Kwon

    2016-03-01

    Full Text Available We investigated the electrical and mechanical stability of flexible 6,13-bis(triisopropylsilylehtynylpentacene (TIPS-pentacene thin-film transistors (TFTs that were fabricated on polyimide (PI substrates using cross-linked poly(4-vinylphenol (c-PVP and c-PVP/yttrium oxide (Y2O3 nanocomposite films as gate insulators. Compared with the electrical characteristics of TIPS-pentacene TFTs with c-PVP insulators, the TFTs with c-PVP/Y2O3 nanocomposite insulators exhibited enhancements in the drain current and the threshold voltage due to an increase in the dielectric capacitance. In electrical stability experiments, a gradual decrease in the drain current and a negative shift in the threshold voltage occurred during prolonged bias stress tests, but these characteristic variations were comparable for both types of TFT. On the other hand, the results of mechanical bending tests showed that the characteristic degradation of the TIPS-pentacene TFTs with c-PVP/Y2O3 nanocomposite insulators was more critical than that of the TFTs with c-PVP insulators. In this study, the detrimental effect of the nanocomposite insulator on the mechanical stability of flexible TIPS-pentacene TFTs was found to be caused by physical adhesion of TIPS-pentacene molecules onto the rough surfaces of the c-PVP/Y2O3 nanocomposite insulator. These results indicate that the dielectric and morphological properties of polymeric nanocomposite insulators are significant when considering practical applications of flexible electronics operated at low voltages.

  13. High performance organic field-effect transistors with ultra-thin HfO2 gate insulator deposited directly onto the organic semiconductor

    International Nuclear Information System (INIS)

    Ono, S.; Häusermann, R.; Chiba, D.; Shimamura, K.; Ono, T.; Batlogg, B.

    2014-01-01

    We have produced stable organic field-effect transistors (OFETs) with an ultra-thin HfO 2 gate insulator deposited directly on top of rubrene single crystals by atomic layer deposition (ALD). We find that ALD is a gentle deposition process to grow thin films without damaging rubrene single crystals, as results these devices have a negligibly small threshold voltage and are very stable against gate-bias-stress, and the mobility exceeds 1 cm 2 /V s. Moreover, the devices show very little degradation even when kept in air for more than 2 months. These results demonstrate thin HfO 2 layers deposited by ALD to be well suited as high capacitance gate dielectrics in OFETs operating at small gate voltage. In addition, the dielectric layer acts as an effective passivation layer to protect the organic semiconductor

  14. Study of Ho-doped Bi{sub 2}Te{sub 3} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, S. E. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Collins-McIntyre, L. J.; Zhang, S. L.; Chen, Y. L.; Hesjedal, T., E-mail: Thorsten.Hesjedal@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Kellock, A. J.; Pushp, A.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Harris, J. S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-02

    Breaking time-reversal symmetry through magnetic doping of topological insulators has been identified as a key strategy for unlocking exotic physical states. Here, we report the growth of Bi{sub 2}Te{sub 3} thin films doped with the highest magnetic moment element Ho. Diffraction studies demonstrate high quality films for up to 21% Ho incorporation. Superconducting quantum interference device magnetometry reveals paramagnetism down to 2 K with an effective magnetic moment of ∼5 μ{sub B}/Ho. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact with Ho doping, consistent with the material's paramagnetic state. The large saturation moment achieved makes these films useful for incorporation into heterostructures, whereby magnetic order can be introduced via interfacial coupling.

  15. UV light induced insulator-metal transition in ultra-thin ZnO/TiO{sub x} stacked layer grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.; Kukreja, L. M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2016-08-28

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O{sub 2} and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ∼ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality

  16. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals.

    Science.gov (United States)

    Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P

    2013-12-01

    We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe2 single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

  17. High performance top-gated indium–zinc–oxide thin film transistors with in-situ formed HfO{sub 2} gate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang, E-mail: yang_song@brown.edu [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Zaslavsky, A. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 (United States); Paine, D.C. [School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 (United States)

    2016-09-01

    We report on top-gated indium–zinc–oxide (IZO) thin film transistors (TFTs) with an in-situ formed HfO{sub 2} gate dielectric insulator. Building on our previous demonstration of high-performance IZO TFTs with Al{sub 2}O{sub 3}/HfO{sub 2} gate dielectric, we now report on a one-step process, in which Hf is evaporated onto the 20 nm thick IZO channel, forming a partially oxidized HfO{sub x} layer, without any additional insulator in-between. After annealing in air at 300 °C, the in-situ reaction between partially oxidized Hf and IZO forms a high quality HfO{sub 2} gate insulator with a low interface trapped charge density N{sub TC} ~ 2.3 × 10{sup 11} cm{sup −2} and acceptably low gate leakage < 3 × 10{sup −7} A/cm{sup 2} at gate voltage V{sub G} = 1 V. The annealed TFTs with gate length L{sub G} = 50 μm have high mobility ~ 95 cm{sup 2}/V ∙ s (determined via the Y-function technique), high on/off ratio ~ 10{sup 7}, near-zero threshold voltage V{sub T} = − 0.02 V, and a subthreshold swing of 0.062 V/decade, near the theoretical limit. The on-current of our proof-of-concept TFTs is relatively low, but can be improved by reducing L{sub G}, indicating that high-performance top-gated HfO{sub 2}-isolated IZO TFTs can be fabricated using a single-step in-situ dielectric formation approach. - Highlights: • High-performance indium–zinc–oxide (IZO) thin film transistors (TFTs). • Single-step in-situ dielectric formation approach simplifies fabrication process. • During anneal, reaction between HfO{sub x} and IZO channel forms a high quality HfO{sub 2} layer. • Gate insulator HfO{sub 2} shows low interface trapped charge and small gate leakage. • TFTs have high mobility, near-zero threshold voltage, and a low subthreshold swing.

  18. Implant damage and redistribution of indium in indium-implanted thin silicon-on-insulator

    International Nuclear Information System (INIS)

    Chen Peng; An Zhenghua; Zhu Ming; Fu, Ricky K.Y.; Chu, Paul K.; Montgomery, Neil; Biswas, Sukanta

    2004-01-01

    The indium implant damage and diffusion behavior in thin silicon-on-insulator (SOI) with a 200 nm top silicon layer were studied for different implantation energies and doses. Rutherford backscattering spectrometry in the channeling mode (RBS/C) was used to characterize the implant damage before and after annealing. Secondary ion mass spectrometry (SIMS) was used to study the indium transient enhanced diffusion (TED) behavior in the top Si layer of the SOI structure. An anomalous redistribution of indium after relatively high energy (200 keV) and dose (1 x 10 14 cm -2 ) implantation was observed in both bulk Si and SOI substrates. However, there exist differences in these two substrates that are attributable to the more predominant out-diffusion of indium as well as the influence of the buried oxide layer in the SOI structure

  19. Harnessing the metal-insulator transition for tunable metamaterials

    Science.gov (United States)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  20. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  1. The inaccuracy of heat transfer characteristics of insulated and non-insulated circular duct while neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Hsien, T.-L.; Wong, K.-L.; Yu, S.-J.

    2009-01-01

    The non-insulated and insulated ducts are commonly applied in the industries and various buildings, because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations. Most heat transfer experts recognized from their own experiences that the heat radiation effect can be ignored due to the small temperature difference between insulated and non-insulated surface and surroundings. This paper studies in detail to check the inaccuracies of heat transfer characteristics non-insulated and insulated duct by comparing the results between considering and neglecting heat radiation effect. It is found that neglecting the heat radiation effect is likely to produce large errors of non-insulated and thin-insulated ducts in situations of ambient air with low external convection heat coefficients and larger surface emissivity, especially while the ambient air temperature is different from that of surroundings and greater internal fluid convection coefficients. It is also found in this paper that using greater duct surface emissivity can greatly improve the heat exchanger effect and using smaller insulated surface emissivity can obtain better insulation.

  2. High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight

    Science.gov (United States)

    Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang

    2018-01-01

    Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next

  3. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  4. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  6. Pentacene based thin film transistors with high-k dielectric Nd2O3 as a gate insulator

    International Nuclear Information System (INIS)

    Sarma, R.; Saikia, D.

    2010-01-01

    We have investigated the pentacene based Organic Thin Film Transistors (OTFTs) with high-k dielectric Nd 2 O 3 . Use of high dielectric constant (high-k) gate insulator Nd 2 O 3 reduces the threshold voltage and sub threshold swing of the OTFTs. The calculated threshold voltage -2.2V and sub-threshold swing 1V/decade, current ON-OFF ratio is 1.7 X 10 4 and mobility is 0.13cm 2 /V.s. Pentacene film is deposited on Nd 2 O 3 surface using two step deposition method. Deposited pentacene film is found poly crystalline in nature. (author)

  7. Bulk contribution to magnetotransport properties of low-defect-density Bi2Te3 topological insulator thin films

    Science.gov (United States)

    Ngabonziza, P.; Wang, Y.; Brinkman, A.

    2018-04-01

    An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.

  8. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  9. Quantum transport in new two-dimensional heterostructures: Thin films of topological insulators, phosphorene

    Science.gov (United States)

    Majidi, Leyla; Zare, Moslem; Asgari, Reza

    2018-06-01

    The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.

  10. Field-tuned superconductor-insulator transitions and Hall resistance in thin polycrystalline MoN films

    Science.gov (United States)

    Makise, Kazumasa; Ichikawa, Fusao; Asano, Takayuki; Shinozaki, Bunju

    2018-02-01

    We report on the superconductor-insulator transitions (SITs) of disordered molybdenum nitride (MoN) thin films on (1 0 0) MgO substrates as a function of the film thickness and magnetic fields. The T c of the superconducting MoN films, which exhibit a sharp superconducting transition, monotonically decreases as the normal state R sq increases with a decreasing film thickness. For several films with different thicknesses, we estimate the critical field H c and the product zν  ≃  0.6 of the dynamical exponent z and the correlation length exponent ν using a finite scaling analysis. The value of this product can be explained by the (2  +  1) XY model. We found that the Hall resistance ΔR xy (H) is maximized when the magnetic field satisfies H HP(T) \\propto |1  -  T/T C0| in the superconducting state and also in the normal states owning to the superconducting fluctuation corresponding to the ghost critical magnetic field. We measured the Hall conductivity δσ xy (H)  =  σ xy (H)  -  σ xyn and fit the Gaussian approximation theory for δσ xy (H) to the experimental data. Agreement between the data and the theory beyond H c suggests the survival of the Cooper pair in the insulating region of the SIT.

  11. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  12. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  13. Monolayer group-III monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators

    Science.gov (United States)

    Zhou, Si; Liu, Cheng-Cheng; Zhao, Jijun; Yao, Yugui

    2018-03-01

    Monolayer group-III monochalcogenides (MX, M = Ga, In; X = S, Se, Te), an emerging category of two-dimensional (2D) semiconductors, hold great promise for electronics, optoelectronics and catalysts. By first-principles calculations, we show that the phonon dispersion and Raman spectra, as well as the electronic and topological properties of monolayer MX can be tuned by oxygen functionalization. Chemisorption of oxygen atoms on one side or both sides of the MX sheet narrows or even closes the band gap, enlarges work function, and significantly reduces the carrier effective mass. More excitingly, InS, InSe, and InTe monolayers with double-side oxygen functionalization are 2D topological insulators with sizeable bulk gap up to 0.21 eV. Their low-energy bands near the Fermi level are dominated by the px and py orbitals of atoms, allowing band engineering via in-plane strains. Our studies provide viable strategy for realizing quantum spin Hall effect in monolayer group-III monochalcogenides at room temperature, and utilizing these novel 2D materials for high-speed and dissipationless transport devices.

  14. Defect design of insulation systems for photovoltaic modules

    Science.gov (United States)

    Mon, G. R.

    1981-01-01

    A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.

  15. Application of irradiation process for the production of thin wall wires

    International Nuclear Information System (INIS)

    Saito, E.

    1977-01-01

    The demand for thin wall crosslinked PVC or polyethylene insulated wires in Japan was about 15,000,000 dollars in value in 1975. Their annual sales in 1980 are estimated at about 40 million dollars which will account for approximately 20% of the sales of all thin wall thermoplastic insulated wires expected for the same year. A comparative study was made of the irradiation process and the chemical process for manufacture of wires with crosslinked PVC or polyethylene insulation. Having found the excellence of the irradiation process an accelerator (500 KeV, 65mA) was installed in 1973 and production was begun of several types of thin wall irradiation crosslinked PVC and polyethylene insulated wires ranging from 0.06 mm 2 to 2.0 mm 2 in the cross-sectional area of conductor, successfully putting them in extensive commercial application. This report compares the irradiation process and the chemical process, properties of several types of irradiation crosslinked PVC, and polyethylene insulated wires and their applications. (author)

  16. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Kamisaka, Hideyuki; Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-10-01

    The substitution of hydride anions (H-) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H--Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3-xHx (M = Cr, Ti, V). The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  17. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Directory of Open Access Journals (Sweden)

    Tsukasa Katayama

    2015-10-01

    Full Text Available The substitution of hydride anions (H− into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H−-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3−xHx (M = Cr, Ti, V. The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  18. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol) for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Wang, Shea-Jue; Hsia, Mao-Yuan; Lee, Win-Der; Huang, Bohr-Ran

    2017-01-01

    In this study, a proposed Microwave-Induction Heating (MIH) scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO) metal below the Poly(4-vinylphenol) (PVP) film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit) was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min) and low-power microwave-irradiation (50 W). PMID:28773101

  19. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2017-07-01

    Full Text Available In this study, a proposed Microwave-Induction Heating (MIH scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO metal below the Poly(4-vinylphenol (PVP film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min and low-power microwave-irradiation (50 W.

  20. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  1. Analysis of switching characteristics for negative capacitance ultra-thin-body germanium-on-insulator MOSFETs

    Science.gov (United States)

    Pi-Ho Hu, Vita; Chiu, Pin-Chieh

    2018-04-01

    The impact of device parameters on the switching characteristics of negative capacitance ultra-thin-body (UTB) germanium-on-insulator (NC-GeOI) MOSFETs is analyzed. NC-GeOI MOSFETs with smaller gate length (L g), EOT, and buried oxide thickness (T box) and thicker ferroelectric layer thickness (T FE) exhibit larger subthreshold swing improvements over GeOI MOSFETs due to better capacitance matching. Compared with GeOI MOSFETs, NC-GeOI MOSFETs exhibit better switching time due to improvements in effective drive current (I eff) and subthreshold swing. NC-GeOI MOSFET exhibits larger ST improvements at V dd = 0.3 V (-82.9%) than at V dd = 0.86 V (-9.7%), because NC-GeOI MOSFET shows 18.2 times higher I eff than the GeOI MOSFET at V dd = 0.3 V, while 2.5 times higher I eff at V dd = 0.86 V. This work provides the device design guideline of NC-GeOI MOSFETs for ultra-low power applications.

  2. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, A.; Zhilko, V.V.

    2006-01-01

    We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits.......We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits....

  3. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  4. Nanoscale electron transport at the surface of a topological insulator

    Science.gov (United States)

    Bauer, Sebastian; Bobisch, Christian A.

    2016-04-01

    The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.

  5. Vacuum insulation - Panel properties and building applications. HiPTI - High Performance Thermal Insulation - IEA/ECBCS Annex 39 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. (ed.)

    2005-12-15

    This paper takes a look at the properties of vacuum insulation panels (VIP) that have already been developed some time ago for use in appliances such as refrigerators and deep-freezers. Their insulation performance is a factor of five to ten times better than that of conventional insulation. The paper discusses the use of such panels in buildings to provide thin, highly-insulating constructions for walls, roofs and floors. The motivation for examining the applicability of high performance thermal insulation in buildings is discussed, including solutions where severe space limitations and other technical and aesthetic considerations exist. The use of nano-structured materials and laminated foils is examined and discussed. The questions arising from the use of such panels in buildings is discussed and the open questions and risks involved are examined. Finally, an outlook on the introduction of VIP technology is presented and quality assurance aspects are examined. This work was done within the framework of the Task 39 'High Performance Thermal Insulation' of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA.

  6. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  7. Periodic domain inversion in x-cut single-crystal lithium niobate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mackwitz, P., E-mail: peterm@mail.upb.de; Rüsing, M.; Berth, G.; Zrenner, A. [Department Physik, Universität Paderborn, 33095 Paderborn (Germany); Center for Optoelectronics and Photonics Paderborn, 33095 Paderborn (Germany); Widhalm, A.; Müller, K. [Department Physik, Universität Paderborn, 33095 Paderborn (Germany)

    2016-04-11

    We report the fabrication of periodically poled domain patterns in x-cut lithium niobate thin-film. Here, thin films on insulator have drawn particular attention due to their intrinsic waveguiding properties offering high mode confinement and smaller devices compared to in-diffused waveguides in bulk material. In contrast to z-cut thin film lithium niobate, the x-cut geometry does not require back electrodes for poling. Further, the x-cut geometry grants direct access to the largest nonlinear and electro-optical tensor element, which overall promises smaller devices. The domain inversion was realized via electric field poling utilizing deposited aluminum top electrodes on a stack of LN thin film/SiO{sub 2} layer/Bulk LN, which were patterned by optical lithography. The periodic domain inversion was verified by non-invasive confocal second harmonic microscopy. Our results show domain patterns in accordance to the electrode mask layout. The second harmonic signatures can be interpreted in terms of spatially, overlapping domain filaments which start their growth on the +z side.

  8. Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films

    International Nuclear Information System (INIS)

    Li Long-Long; Xu Wen

    2015-01-01

    We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi 2 Se 3 at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi 2 Se 3 -based TITFs as high-performance TE materials and devices. (paper)

  9. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  10. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    International Nuclear Information System (INIS)

    Nakahara, Yoshio; Kawa, Haruna; Yoshiki, Jun; Kumei, Maki; Yamamoto, Hiroyuki; Oi, Fumio; Yamakado, Hideo; Fukuda, Hisashi; Kimura, Keiichi

    2012-01-01

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol–gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 °C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol–gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: ► Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. ► The ultra-thin PSQ film could be cured at low temperatures of less than 120 °C. ► The PSQ film showed the almost perfect solubilization resistance to organic solvent. ► The surface of the PSQ film was very smooth at a nano-meter level. ► Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  11. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  12. Nanometric holograms based on a topological insulator material.

    Science.gov (United States)

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-05-18

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

  13. Load responsive multilayer insulation performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  14. Load responsive multilayer insulation performance testing

    International Nuclear Information System (INIS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI

  15. Andreev Reflection Spectroscopy of Nb-doped Bi2Se3 Topological Insulator

    Science.gov (United States)

    Kurter, C.; Finck, A. D. K.; Qiu, Y.; Huemiller, E.; Weis, A.; Atkinson, J.; Medvedeva, J.; Hor, Y. S.; van Harlingen, D. J.

    2015-03-01

    Doped topological insulators are speculated to realize p-wave superconductivity with unusual low energy quasiparticles, such as surface Andreev bound states. We present point contact spectroscopy of thin exfoliated flakes of Nb-doped Bi2Se3 where superconductivity persists up to ~ 1 K, compared to 3.2 K in bulk crystals. The critical magnetic field is strongly anisotropic, consistent with quasi-2D behavior. Andreev reflection measurements of devices with low resistance contacts result in prominent BTK-like behavior with an enhanced conductance plateau at low bias. For high resistance contacts, we observe a split zero bias conductance anomaly and additional features at the superconducting gap. Our results suggest that this material is a promising platform for studying topological superconductivity. We acknowledge support from Microsoft Project Q.

  16. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  17. The numerical model of multi-layer insulation with a defined wrapping pattern immersed in superfluid helium

    Science.gov (United States)

    Malecha, Ziemowit; Lubryka, Eliza

    2017-11-01

    The numerical model of thin layers, characterized by a defined wrapping pattern can be a crucial element of many computational problems related to engineering and science. A motivating example is found in multilayer electrical insulation, which is an important component of superconducting magnets and other cryogenic installations. The wrapping pattern of the insulation can significantly affect heat transport and the performance of the considered instruments. The major objective of this study is to develop the numerical boundary conditions (BC) needed to model the wrapping pattern of thin insulation. An example of the practical application of the proposed BC includes the heat transfer of Rutherford NbTi cables immersed in super-fluid helium (He II) across thin layers of electrical insulation. The proposed BC and a mathematical model of heat transfer in He II are implemented in the open source CFD toolbox OpenFOAM. The implemented mathematical model and the BC are compared in the experiments. The study confirms that the thermal resistance of electrical insulation can be lowered by implementing the proper wrapping pattern. The proposed BC can be useful in the study of new patterns for wrapping schemes. The work has been supported by statutory funds from Polish Ministry for Science and Higher Education for the year of 2017.

  18. Developing Topological Insulator Fiber Based Photon Pairs Source for Ultrafast Optoelectronic Applications

    Science.gov (United States)

    2016-04-01

    of a thin layer of topological insulator Bi2Se3 with the transmission of T = 50%. We apply magnetic field B=3 tesla normal to the sample and parallel...nonlinear induced by magnetic field in the Topological Insulator Bi2Se3 and Molybdenum Disulfide MoS2. The nonlinear effect is pulse broadening...Topological Insulator Q- Switched Erbium-Doped Fiber Laser”, IEEE J. Sel. Top. Quant. Electron., 20, 0900508 (2014). [2]. Shuqing Chen et al, “Stable Q

  19. Thickness dependent quantum oscillations of transport properties in topological insulator Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E. I.; Budnik, A. V.; Sipatov, A. Yu.; Nashchekina, O. N. [National Technical University “Kharkov Polytechnic Institute,” 21 Frunze St., Kharkov 61002 (Ukraine); Dresselhaus, M. S. [Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-02-02

    The dependences of the electrical conductivity, the Hall coefficient, and the Seebeck coefficient on the layer thickness d (d = 18−600 nm) of p-type topological insulator Bi{sub 2}Te{sub 3} thin films grown by thermal evaporation in vacuum on glass substrates were obtained at room temperature. In the thickness range of d = 18–100 nm, sustained oscillations with a substantial amplitude were revealed. The observed oscillations are well approximated by a harmonic function with a period Δd = (9.5 ± 0.5) nm. At d > 100 nm, the transport coefficients practically do not change as d is increased. The oscillations of the kinetic properties are attributed to the quantum size effects due to the hole confinement in the Bi{sub 2}Te{sub 3} quantum wells. The results of the theoretical calculations of Δd within the framework of a model of an infinitely deep potential well are in good agreement with the experimental results. It is suggested that the substantial amplitude of the oscillations and their sustained character as a function of d are connected with the topologically protected gapless surface states of Bi{sub 2}Te{sub 3} and are inherent to topological insulators.

  20. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  1. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki [Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581 (Japan); Fukumura, Tomoteru [CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Miyagi 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2015-10-15

    The substitution of hydride anions (H{sup −}) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoO{sub x}H{sub y} thin films via the topotactic hydride doping of brownmillerite SrCoO{sub 2.5} epitaxial thin films with CaH{sub 2}. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H{sup −}-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO{sub 3−x}H{sub x} (M = Cr, Ti, V). The SrCoO{sub x}H{sub y} thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  2. Insulated Wire Fed Floating Monopole Antenna for Coastal Monitoring

    Directory of Open Access Journals (Sweden)

    Z. M. Loni

    2018-04-01

    Full Text Available A thin, flexible, insulated wire submerged in seawater forms a coaxial cable which has attenuation at ultra-high frequency (UHF dependent on the operating frequency, the diameter of the insulating material and the diameter of the inner conductor. An extension of the insulated wire above the surface through a spherical float forms a monopole antenna. Attenuation through the wire depends on the conductivity and temperature of seawater. This paper reports the effect of electromagnetic (EM wave propagation at 433 MHz through insulated wires with different radii of the insulating material and inner conductor. The attenuation was calculated and measured in the range of 32-47 dB/m. The propagation from the monopole antenna to a fixed shore based receiver was measured to be approximately equal to 1 dB/m. The propagation measurements were compared with a shielded coaxial cable. Results show that the propagation range depends on the ratio of the insulation radius to conductor radius for insulated wire, however, a shielded coaxial cable showed no significant attenuation. The technique has applications in coastal wireless sensor networks where the water depth changes continually due to tide and wave motion.

  3. Spin-transport-phenomena in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias Klaus

    2012-07-19

    Assuming that one could deterministically inject, transport, manipulate, store and detect spin information in solid state devices, the well-established concepts of charge-based electronics could be transferred to the spin realm. This thesis explores the injection, transport, manipulation and storage of spin information in metallic conductors, semiconductors, as well as electrical insulators. On the one hand, we explore the spin-dependent properties of semiconducting zinc oxide thin films deposited via laser-molecular beam epitaxy (laser-MBE). After demonstrating that the zinc oxide films fabricated during this thesis have excellent structural, electrical, and optical properties, we investigate the spin-related properties by optical pump/probe, electrical injection/optical detection, and all electrical spin valve-based experiments. The two key results from these experiments are: (i) Long-lived spin states with spin dephasing times of 10 ns at 10 K related to donor bound excitons can be optically addressed. (ii) The spin dephasing times relevant for electrical transport-based experiments are {<=} 2 ns at 10 K and are correlated with structural quality. On the other hand we focus on two topics of current scientific interest: the comparison of the magnetoresistance to the magnetothermopower of conducting ferromagnets, and the investigation of pure spin currents generated in ferromagnetic insulator/normal metal hybrid structures. We investigate the magnetoresistance and magnetothermopower of gallium manganese arsenide and Heusler thin films as a function of external magnetic field orientation. Using a series expansion of the resistivity and Seebeck tensors and the inherent symmetry of the sample's crystal structure, we show that a full quantitative extraction of the transport tensors from such experiments is possible. Regarding the spin currents in ferromagnetic insulator/normal metal hybrid structures we studied the spin mixing conductance in yttrium iron garnet

  4. Hidden landscapes in thin film topological insulators: between order and disorder, 2D and 3D, normal and topological phases

    Science.gov (United States)

    Oh, Seongshik

    Topological insulator (TI) is one of the rare systems in the history of condensed matter physics that is initiated by theories and followed by experiments. Although this theory-driven advance helped move the field quite fast despite its short history, apparently there exist significant gaps between theories and experiments. Many of these discrepancies originate from the very fact that the worlds readily accessible to theories are often far from the real worlds that are available in experiments. For example, the very paradigm of topological protection of the surface states on Z2 TIs such as Bi2Se3, Bi2Te3, Sb2Te3, etc, is in fact valid only if the sample size is infinite and the crystal momentum is well-defined in all three dimensions. On the other hand, many widely studied forms of TIs such as thin films and nano-wires have significant confinement in one or more of the dimensions with varying level of disorders. In other words, many of the real world topological systems have some important parameters that are not readily captured by theories, and thus it is often questionable how far the topological theories are valid to real systems. Interestingly, it turns out that this very uncertainty of the theories provides additional control knobs that allow us to explore hidden topological territories. In this talk, I will discuss how these additional knobs in thin film topological insulators reveal surprising, at times beautiful, landscapes at the boundaries between order and disorder, 2D and 3D, normal and topological phases. This work is supported by Gordon and Betty Moore Foundation's EPiQS Initiative (GBMF4418).

  5. Ultra-thin films of polysilsesquioxanes possessing 3-methacryloxypropyl groups as gate insulator for organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshio; Kawa, Haruna [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan); Yoshiki, Jun [Division of Information and Electronic Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Kumei, Maki; Yamamoto, Hiroyuki; Oi, Fumio [Konishi Chemical IND. Co., LTD., 3-4-77 Kozaika, Wakayama 641-0007 (Japan); Yamakado, Hideo [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan); Fukuda, Hisashi [Division of Engineering for Composite Functions, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Kimura, Keiichi, E-mail: kkimura@center.wakayama-u.ac.jp [Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510 (Japan)

    2012-10-01

    Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups as an organic moiety of the side chain were synthesized by sol-gel condensation copolymerization of the corresponding trialkoxysilanes. The ultra-thin PSQ film with a radical initiator and a cross-linking agent was prepared by a spin-coating method, and the film was cured integrally at low temperatures of less than 120 Degree-Sign C through two different kinds of polymeric reactions, which were radical polymerization of vinyl groups and sol-gel condensation polymerization of terminated silanol and alkoxy groups. The obtained PSQ film showed the almost perfect solubilization resistance to acetone, which is a good solvent of PSQ before polymerization. It became clear by atomic force microscopy observation that the surface of the PSQ film was very smooth at a nano-meter level. Furthermore, pentacene-based organic field-effect transistor (OFET) with the PSQ film as a gate insulator showed typical p-channel enhancement mode operation characteristics and therefore the ultra-thin PSQ film has the potential to be applicable for solution-processed OFET systems. - Highlights: Black-Right-Pointing-Pointer Polysilsesquioxanes (PSQs) possessing 3-methacryloxypropyl groups were synthesized. Black-Right-Pointing-Pointer The ultra-thin PSQ film could be cured at low temperatures of less than 120 Degree-Sign C. Black-Right-Pointing-Pointer The PSQ film showed the almost perfect solubilization resistance to organic solvent. Black-Right-Pointing-Pointer The surface of the PSQ film was very smooth at a nano-meter level. Black-Right-Pointing-Pointer Pentacene-based organic field-effect transistor with the PSQ film was fabricated.

  6. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    Science.gov (United States)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  7. Deposition of SiC x H y O z thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance

    Science.gov (United States)

    Qing, XIE; Haofan, LIN; Shuai, ZHANG; Ruixue, WANG; Fei, KONG; Tao, SHAO

    2018-02-01

    Non-thermal plasma surface modification for epoxy resin (EP) to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulated transmission line. In this paper, a pulsed Ar dual dielectrics atmospheric-pressure plasma jet (APPJ) was used for SiC x H y O z thin film deposition on EP samples. The film deposition was optimized by varying the treatment time while other parameters were kept at constants (treatment distance: 10 mm, precursor flow rate: 0.6 l min-1, maximum instantaneous power: 3.08 kW and single pulse energy: 0.18 mJ). It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18% and 13% when the deposition time was 3 min, respectively. The flashover voltage reduced as treatment time increased. Moreover, all the surface conductivity, surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min. Other measurements, such as atomic force microscopy and scanning electron microscope for EP surface morphology, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions, optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms. The results indicated that the original organic groups (C-H, C-C, C=O, C=C) were gradually replaced by the Si containing inorganic groups (Si-O-Si and Si-OH). The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage. However, when the plasma treatment time was longer than 3 min, the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.

  8. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Wu, Di; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Geng, De-qiang [Jinan Jingzheng Electronics Co., Ltd., Jinan 250100 (China)

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  9. Tetradymites as thermoelectrics and topological insulators

    Science.gov (United States)

    Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin

    2017-10-01

    Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

  10. Conformally encapsulated multi-electrode arrays with seamless insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  11. Direct observation of the lattice precursor of the metal-to-insulator transition in V2O3 thin films by surface acoustic waves

    Science.gov (United States)

    Kündel, J.; Pontiller, P.; Müller, C.; Obermeier, G.; Liu, Z.; Nateprov, A. A.; Hörner, A.; Wixforth, A.; Horn, S.; Tidecks, R.

    2013-03-01

    A surface acoustic wave (SAW) delay line is used to study the metal-to-insulator (MI) transition of V2O3 thin films deposited on a piezoelectric LiNbO3 substrate. Effects contributing to the sound velocity shift of the SAW which are caused by elastic properties of the lattice of the V2O3 films when changing the temperature are separated from those originating from the electrical conductivity. For this purpose the electric field accompanying the elastic wave of the SAW has been shielded by growing the V2O3 film on a thin metallic Cr interlayer (coated with Cr2O3), covering the piezoelectric substrate. Thus, the recently discovered lattice precursor of the MI transition can be directly observed in the experiments, and its fine structure can be investigated.

  12. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    Science.gov (United States)

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  13. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbashev, A.R. [Department of Materials Science, Moscow State University, 119992 Moscow (Russian Federation); Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation); Kaul, A.R. [Department of Chemistry, Moscow State University, 119992 Moscow (Russian Federation); Sukhorukov, Yu.P. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation)

    2015-06-15

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr{sub 1–x}Sr{sub x}MnO{sub 3} and ferroelectric hexagonal LuMnO{sub 3} were grown on ZrO{sub 2}(Y{sub 2}O{sub 3}) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics.

  14. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    International Nuclear Information System (INIS)

    Akbashev, A.R.; Telegin, A.V.; Kaul, A.R.; Sukhorukov, Yu.P.

    2015-01-01

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr 1–x Sr x MnO 3 and ferroelectric hexagonal LuMnO 3 were grown on ZrO 2 (Y 2 O 3 ) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics

  15. Surface plasmon on topological insulator/dielectric interface enhanced ZnO ultraviolet photoluminescence

    Directory of Open Access Journals (Sweden)

    Zhi-Min Liao

    2012-06-01

    Full Text Available It has recently been predicted that the surface plasmons are allowed to exist on the interface between a topological insulator and vacuum. Surface plasmons can be employed to enhance the optical emission from various illuminants. Here, we study the photoluminescence properties of the ZnO/Bi2Te3 hybrid structures. Thin flakes of Bi2Te3, a typical three-dimensional topological insulator, were prepared on ZnO crystal surface by mechanical exfoliation method. The ultraviolet emission from ZnO was found to be enhanced by the Bi2Te3 thin flakes, which was attributed to the surface plasmon – photon coupling at the Bi2Te3/ZnO interface.

  16. First principles description of the insulator-metal transition in europium monoxide

    KAUST Repository

    Wang, Hao

    2012-02-01

    Europium monoxide, EuO, is a ferromagnetic insulator. Its electronic structure under pressure and doping is investigated by means of density functional theory. We employ spin polarized electronic structure calculations including onsite electron-electron interaction for the localized Eu 4f and 5d electrons. Our results show that under pressure the ferromagnetism is stable, both for hydrostatic and uniaxial pressure, while the compound undergoes an insulator-metal transition. The insulator-metal transition in O deficient and Gd doped EuO is reproduced for an impurity concentration of 6.25%. A 10 monolayer thick EuO(1 0 0) thin film is predicted to be an insulator with a narrow band gap of 0.08 eV. © 2011 Elsevier B.V. All rights reserved.

  17. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  18. Surface modification of polyimide gate insulators for solution-processed 2,7-didecyl[1]benzothieno[3,2-b][1]benzothiophene (C10-BTBT) thin-film transistors.

    Science.gov (United States)

    Jang, Kwang-Suk; Kim, Won Soo; Won, Jong-Myung; Kim, Yun-Ho; Myung, Sung; Ka, Jae-Won; Kim, Jinsoo; Ahn, Taek; Yi, Mi Hye

    2013-01-21

    The surface property of a polyimide gate insulator was successfully modified with an n-octadecyl side-chain. Alkyl chain-grafted poly(amic acid), the polyimide precursor, was synthesized using the diamine comonomer with an alkyl side-chain. By adding a base catalyst to the poly(amic acid) coating solution, the imidization temperature of the spin-coated film could be reduced to 200 °C. The 350 nm-thick polyimide film had a dielectric constant of 3.3 at 10 kHz and a leakage current density of less than 8.7 × 10(-10) A cm(-2), while biased from 0 to 100 V. To investigate the potential of the alkyl chain-grafted polyimide film as a gate insulator for solution-processed organic thin-film transistors (TFTs), we fabricated C(10)-BTBT TFTs. C(10)-BTBT was deposited on the alkyl chain-grafted polyimide gate insulator by spin-coating, forming a well-ordered crystal structure. The field-effect mobility and the on/off current ratio of the TFT device were measured to be 0.20-0.56 cm(2) V(-1) s(-1) and >10(5), respectively.

  19. Label-free electrical determination of trypsin activity by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Serr, Andreas; Wunderlich, Bernhard K; Bausch, Andreas R

    2007-10-08

    A silicon-on-insulator (SOI) based thin film resistor is employed for the label-free determination of enzymatic activity. We demonstrate that enzymes, which cleave biological polyelectrolyte substrates, can be detected by the sensor. As an application, we consider the serine endopeptidase trypsin, which cleaves poly-L-lysine (PLL). We show that PLL adsorbs quasi-irreversibly to the sensor and is digested by trypsin directly at the sensor surface. The created PLL fragments are released into the bulk solution due to kinetic reasons. This results in a measurable change of the surface potential allowing for the determination of trypsin concentrations down to 50 ng mL(-1). Chymotrypsin is a similar endopeptidase with a different specificity, which cleaves PLL with a lower efficiency as compared to trypsin. The activity of trypsin is analyzed quantitatively employing a kinetic model for enzyme-catalyzed surface reactions. Moreover, we have demonstrated the specific inactivation of trypsin by a serine protease inhibitor, which covalently binds to the active site of the enzyme.

  20. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  1. Radiation processing of polymer insulators as a method of improving their properties and performance

    International Nuclear Information System (INIS)

    Ivanov, V.S.; Migunova, L.I.; Kalinina, N.A.; Aleksandrov, G.N.

    1995-01-01

    Polymer insulators for electric apparatus and high-voltage overhead lines are promising for replacing porcelain and glass insulators. The possibility of application of radiation-chemical technology was showed by manufacture of rod-shaped polymer insulators. In this work, an ethylene and vinyl acetate copolymer was used as the polymer basis of the composition for insulators. By forming a three-dimensional network in polymer bulk radiation processing improves service properties of polymer insulators: shape and heat stability > 200 degree C and stability to tracking erosion > 200 h

  2. Unusual metal-insulator transition in disordered ferromagnetic films

    International Nuclear Information System (INIS)

    Muttalib, K.A.; Wölfle, P.; Misra, R.; Hebard, A.F.

    2012-01-01

    We present a theoretical interpretation of recent data on the conductance near and farther away from the metal-insulator transition in thin ferromagnetic Gd films of thickness b≈2-10 nm. For increasing sheet resistances a dimensional crossover takes place from d=2 to d=3 dimensions, since the large phase relaxation rate caused by scattering of quasiparticles off spin wave excitations renders the dephasing length L φ ≲b at strong disorder. The conductivity data in the various regimes obey fractional power-law or logarithmic temperature dependence. One observes weak localization and interaction induced corrections at weaker disorder. At strong disorder, near the metal-insulator transition, the data show scaling and collapse onto two scaling curves for the metallic and insulating regimes. We interpret this unusual behavior as proof of two distinctly different correlation length exponents on both sides of the transition.

  3. Thin film plasma coatings from dielectric free-flowing materials

    International Nuclear Information System (INIS)

    Timofeeva, L.A.; Katrich, S.A.; Solntsev, L.A.

    1994-01-01

    Fabrication of thin film plasma coatings from insulating free-flowing materials is considered. Molybdenum-tart ammonium coating of 3...5 μ thickness deposited on glassy carbon, aluminium, silicon, nickel, cast iron and steel substrates in 'Bulat-ZT' machine using insulating free-flowing materials cathod was found to form due to adsorption, absorption and dissuasion processes. The use of insulating free-flowing materials coatings allow to exclude pure metals cathods in plasma-plating process

  4. Electronic reconstruction at the interface between the Mott insulator LaVO{sub 3} and the band insulator SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Stuebinger, Martin; Gabel, Judith; Gagel, Philipp; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Akin to the well known oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) the formation of a conducting interface is found between the strongly correlated, polar Mott insulator LaV{sup 3+}O{sub 3} (LVO) and the non-polar band insulator STO. Since LaV{sup 3+}O{sub 3} tends to overoxidize to the thermodynamically more favourable LaV{sup 5+}O{sub 4} phase when exposed to air, a suitable passivation is required. Therefore, we have employed pulsed laser deposition thin film growth of LVO films with a crystalline LAO capping layer. In situ photoemission measurements of samples before and after being exposed to air show that the V oxidation state can indeed be stabilized by the LAO capping layer. By transport measurements, we identify an insulator-to-metal transition at a combined LAO/LVO overlayer thickness of 4 to 5 unit cells. With LVO being a Mott insulator, passivation by the LAO capping opens the opportunity to study a band-filling controlled Mott insulator to metal transition induced by a purely electrostatic mechanism without interfering overoxidation of the LVO film.

  5. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    Science.gov (United States)

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...high sound velocity — makes guiding acoustic waves difficult, motivating the use of soft chalcogenide glasses and partial or complete releases (removal

  6. Use of Several Thermal Analysis Techniques to Study the Cracking of an Nitrile Butadiene Rubber (NBR) Insulator on the Booster Separation Motor (BSM) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Two different vendor rubber formulations have been used to produce the silica-filled NBR insulators for the BSM used on both of the Solid Rocket Boosters (SRBs) of the Space Shuttle. A number of lots of the BSM insulator in 1998-99 exhibited surface cracks and/or crazing. Each insulator is bonded to the BSM aluminum aft closure with an epoxy adhesive. Induced insulator stresses from adhesive cure are likely greatest where the insulator/adhesive contour is the greatest, thus showing increased insulator surface cracking in this area. Thermal analysis testing by Dynamic Mechanical Analyzer (DMA) and Thermomechanical Analysis (TMA) was performed on one each of the two vendor BSM insulators previously bonded that exhibited the surface cracking. The TMA data from the film/fiber technique yielded the most meaningful results, with thin insulator surface samples containing cracks having roughly the same modulus (stiffness) as thin insulator bulk samples just underneath.

  7. Electronic structure and insulating gap in epitaxial VO2 polymorphs

    Directory of Open Access Journals (Sweden)

    Shinbuhm Lee

    2015-12-01

    Full Text Available Determining the origin of the insulating gap in the monoclinic V O2(M1 is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating V O2(A and V O2(B thin films to better understand the insulating phase of VO2. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO2 phases. By x-ray absorption and optical spectroscopy, we find that the shift of unoccupied t2g orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VO2 polymorphs. The distinct splitting of the half-filled t2g orbital is observed only in the M1 phase, widening the bandgap up to ∼0.6 eV. Our approach of comparing all three insulating VO2 phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO2.

  8. Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser

    Science.gov (United States)

    Kubo, Y.

    2018-01-01

    Field emission gun electron probe microanalysis (FEG-EPMA) in conjunction with wavelength-dispersive X-ray spectrometry using a low acceleration voltage (V acc) allows elemental analysis with sub-micrometre lateral spatial resolution (SR). However, this degree of SR does not necessarily meet the requirements associated with increasingly miniaturised devices. Another challenge related to performing FEG-EPMA with a low V acc is that the accuracy of quantitative analyses is adversely affected, primarily because low energy X-ray lines such as the L- and M-lines must be employed and due to the potential of line interference. One promising means of obtaining high SR with FEG-EPMA is to use thin samples together with high V acc values. This mini-review covers the basic principles of thin-sample FEG-EPMA and describes an application of this technique to the analysis of optical fibres. Outstanding issues related to this technique that must be addressed are also discussed, which include the potential for electron beam damage during analysis of insulating materials and the development of methods to use thin samples for quantitative analysis.

  9. Voltage-Controlled Spray Deposition of Multiwalled Carbon Nanotubes on Semiconducting and Insulating Substrates

    Science.gov (United States)

    Maulik, Subhodip; Sarkar, Anirban; Basu, Srismrita; Daniels-Race, Theda

    2018-05-01

    A facile, cost-effective, voltage-controlled, "single-step" method for spray deposition of surfactant-assisted dispersed carbon nanotube (CNT) thin films on semiconducting and insulating substrates has been developed. The fabrication strategy enables direct deposition and adhesion of CNT films on target samples, eliminating the need for substrate surface functionalization with organosilane binder agents or metal layer coatings. Spray coating experiments on four types of sample [bare silicon (Si), microscopy-grade glass samples, silicon dioxide (SiO2), and polymethyl methacrylate (PMMA)] under optimized control parameters produced films with thickness ranging from 40 nm to 6 μm with substantial surface coverage and packing density. These unique deposition results on both semiconducting and insulator target samples suggest potential applications of this technique in CNT thin-film transistors with different gate dielectrics, bendable electronics, and novel CNT-based sensing devices, and bodes well for further investigation into thin-film coatings of various inorganic, organic, and hybrid nanomaterials on different types of substrate.

  10. Scanning tunneling microscopy study of a newly proposed topological insulator ZrTe{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Timo; Gragnaniello, Luca; Fonin, Mikhail [Universitaet Konstanz (Germany); Autes, Gabriel; Berger, Helmuth; Yazyev, Oleg [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Manzoni, Giulia [Universita degli Studi di Trieste (Italy); Crepaldi, Alberto; Parmigiani, Fulvio [Elettra-Sincrotrone Trieste, Trieste (Italy)

    2016-07-01

    Topological insulators belong to a new kind of material class that posses robust gapless states inside the insulating bulk gap, which makes them promising candidates for achieving dissipationless transport devices. We present a Scanning tunneling microscopy (STM) and spectroscopy (STS) study on a layered material ZrTe{sub 5}, a promising candidate for a new topological insulator. The crystal structure could clearly be identified in topography images. STM measurements enabled direct imaging of standing waves at steps and defects. The standing waves show a clearly dispersive character. Furthermore STS measurements are in good agreement with density functional theory calculations and reveal Landau quantization with applied magnetic field. Comparison with data obtained by angle resolved photoemission spectroscopy allows for detailed insights into the electronic properties of this material.

  11. Improved cable insulation for superconducting magnets

    International Nuclear Information System (INIS)

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-01-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system

  12. Electrically tuned magnetic order and magnetoresistance in a topological insulator.

    Science.gov (United States)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Li, Kang; Zhang, Jinsong; Ou, Yunbo; Feng, Yang; Wang, Lili; Chen, Xi; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2014-09-15

    The interplay between topological protection and broken time reversal symmetry in topological insulators may lead to highly unconventional magnetoresistance behaviour that can find unique applications in magnetic sensing and data storage. However, the magnetoresistance of topological insulators with spontaneously broken time reversal symmetry is still poorly understood. In this work, we investigate the transport properties of a ferromagnetic topological insulator thin film fabricated into a field effect transistor device. We observe a complex evolution of gate-tuned magnetoresistance, which is positive when the Fermi level lies close to the Dirac point but becomes negative at higher energies. This trend is opposite to that expected from the Berry phase picture, but is intimately correlated with the gate-tuned magnetic order. The underlying physics is the competition between the topology-induced weak antilocalization and magnetism-induced negative magnetoresistance. The simultaneous electrical control of magnetic order and magnetoresistance facilitates future topological insulator based spintronic devices.

  13. Spin-dependent Peltier effect in 3D topological insulators

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard

    2013-03-01

    The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.

  14. Spin-transfer torque generated by a topological insulator

    KAUST Repository

    Mellnik, A. R.

    2014-07-23

    Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron\\' s spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi 2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications. © 2014 Macmillan Publishers Limited. All rights reserved.

  15. Effects of Structural and Electronic Disorder in Topological Insulator Sb2Te3 Thin Films

    Science.gov (United States)

    Korzhovska, Inna

    Topological quantum matter is a unique and potentially transformative protectorate against disorder-induced backscattering. The ultimate disorder limits to the topological state, however, are still not known - understanding these limits is critical to potential applications in the fields of spintronics and information processing. In topological insulators spin-orbit interaction and time-reversal-symmetry invariance guarantees - at least up to a certain disorder strength - that charge transport through 2D gapless Dirac surface states is robust against backscattering by non-magnetic disorder. Strong disorder may destroy topological protection and gap out Dirac surface states, although recent theories predict that under severe electronic disorder a quantized topological conductance might yet reemerge. Very strong electronic disorder, however, is not trivial to install and quantify, and topological matter under such conditions thus far has not been experimentally tested. This thesis addresses the behavior of three-dimensional (3D) topological insulator (TI) films in a wide range of structural and electronic disorder. We establish strong positional disorder in thin (20-50 nm) Sb2Te 3 films, free of extrinsic magnetic dopants. Sb 2Te3 is a known 2nd generation topological insulator in the low-disorder crystalline state. It is also a known phase-change material that undergoes insulator-to-metal transition with the concurrent orders of magnitude resistive drop, where a huge range of disorder could be controllably explored. In this work we show that even in the absence of magnetic dopants, disorder may induce spin correlations detrimental to the topological state. Chapter 1 contains a brief introduction to the topological matter and describes the role played by disorder. This is followed by theory considerations and a survey of prior experimental work. Next we describe the motivation for our experiments and explain the choice of the material. Chapter 2 describes deposition

  16. Tests on irradiated magnet-insulator materials

    International Nuclear Information System (INIS)

    Schmunk, R.E.; Miller, L.G.; Becker, H.

    1983-01-01

    Fusion-reactor coils, located in areas where they will be only partially shielded, must be fabricated from materials which are as resistant to radiation as possible. They will probably incorporate resistive conductors with either water or cryogenic cooling. Inorganic insulators have been recommended for these situations, but the possibility exists that some organic insulators may be usuable as well. Results were previously reported for irradiation and testing of three glass reinforced epoxies: G-7, G-10, and G-11. Thin disks of these materials, nominally 0.5 mm thick by 11.1 mm diameter, were tested in compressive fatigue, a configuration and loading which represents reasonably well the magnet environment. In that work G-10 was shown to withstand repeated loading to moderately high stress levels without failure, and the material survived better at liquid nitrogen temperature than at room temperature

  17. Structural and electrical properties of Ge(111) films grown on Si(111) substrates and application to Ge(111)-on-Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, K., E-mail: sawano@tcu.ac.jp [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan); Hoshi, Y.; Kubo, S. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan); Arimoto, K.; Yamanaka, J.; Nakagawa, K. [Center for Crystal Science and Technology, University of Yamanashi, 7 Miyamae-cho, Kofu (Japan); Hamaya, K. [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka (Japan); Miyao, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka (Japan); Shiraki, Y. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo (Japan)

    2016-08-31

    Structural and electrical properties of a Ge(111) layer directly grown on a Si(111) substrate are studied. Via optimized two-step growth manner, we form a high-quality relaxed Ge layer, where strain-relieving dislocations are confined close to a Ge/Si interface. Consequently, a density of holes, which unintentionally come from crystal defects, is highly suppressed below 4 × 10{sup 16} cm{sup −3}, which leads to significantly high hole Hall mobility exceeding 1500 cm{sup 2}/Vs at room temperature. By layer transfer of the grown Ge layer, we also fabricate a Ge(111)-on-Insulator, which is a promising template for high-performance Ge-based electronic and photonic devices. - Highlights: • A high-quality Ge layer is epitaxially grown on a Si(111) by two-step growth manner. • Growth conditions, such as growth temperatures, are optimized. • Very high hole mobility is obtained from Ge(111) grown on Si(111). • High-quality thin Ge-on-Insulator with (111) orientation is obtained.

  18. Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized Raman spectroscopy: effect of blending TIPS-pentacene with insulating polymer.

    Science.gov (United States)

    James, David T; Kjellander, B K Charlotte; Smaal, Wiljan T T; Gelinck, Gerwin H; Combe, Craig; McCulloch, Iain; Wilson, Richard; Burroughes, Jeremy H; Bradley, Donal D C; Kim, Ji-Seon

    2011-12-27

    We report thin-film morphology studies of inkjet-printed single-droplet organic thin-film transistors (OTFTs) using angle-dependent polarized Raman spectroscopy. We show this to be an effective technique to determine the degree of molecular order as well as to spatially resolve the orientation of the conjugated backbones of the 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pentacene) molecules. The addition of an insulating polymer, polystyrene (PS), does not disrupt the π-π stacking of the TIPS-Pentacene molecules. Blending in fact improves the uniformity of the molecular morphology and the active layer coverage within the device and reduces the variation in molecular orientation between polycrystalline domains. For OTFT performance, blending enhances the saturation mobility from 0.22 ± 0.05 cm(2)/(V·s) (TIPS-Pentacene) to 0.72 ± 0.17 cm(2)/(V·s) (TIPS-Pentacene:PS) in addition to improving the quality of the interface between TIPS-Pentacene and the gate dielectric in the channel, resulting in threshold voltages of ∼0 V and steep subthreshold slopes.

  19. Effect of Sr doping on LaTiO3 thin films

    International Nuclear Information System (INIS)

    Vilquin, B.; Kanki, T.; Yanagida, T.; Tanaka, H.; Kawai, T.

    2005-01-01

    We report on the electric properties of La 1-x Sr x TiO 3 (0 ≤ x ≤ 0.5) thin films fabricated by pulsed laser deposition method. Crystallographic measurement of the thin films showed the epitaxial c-axis perovskite structure. The electric property of LaTiO 3 thin film, which is a typical Mott insulative material in bulk, showed insulative behaviour, while the Sr-doped films showed metallic conduction suffering electron-electron scattering. Below x = 0.1, the major carrier type was identified to be hole, and switched to electron with further increasing Sr-doping above x = 0.15. In fact, the switching from p-type to n-type for La 1-x Sr x TiO 3 thin films is first demonstrated in this study. The transition suggests that effective Coulomb gap vanishes due to over-additional Sr doping

  20. Thin Client Architecture: The Promise and the Problems.

    Science.gov (United States)

    Machovec, George S.

    1997-01-01

    Describes thin clients, a networking technology that allows organizations to provide software applications over networked workstations connected to a central server. Topics include corporate settings; major advantages, including cost effectiveness and increased computer security; problems; and possible applications for large public and academic…

  1. Insulated InP (100) semiconductor by nano nucleus generation in pure water

    Science.gov (United States)

    Ghorab, Farzaneh; Es'haghi, Zarrin

    2018-01-01

    Preparation of specified designs on optoelectronic devices such as Light-Emitting Diodes (LEDs) and Laser Diodes (LDs) by using insulated thin films is very important. InP as one of those semiconductors which is used as optoelectronic devices, have two different kinds of charge carriers as n-InP and p-InP in the microelectronic industry. The surface preparation of this kind of semiconductor can be accomplished with individually chemical, mechanical, chemo - mechanical and electrochemical methods. But electrochemical method can be suitably replaced instead of the other methods, like CMP (Chemical Mechanical Polishing), because of the simplicity. In this way, electrochemically formation of insulated thin films by nano nucleus generation on semiconductor (using constant current density of 0.07 mA /cm2) studied in this research. Insulated nano nucleus generation and their growth up to thin film formation on semiconductor single crystal (100), n-InP, inpure water (0.08 µs/cm,25°c) characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Four-point probe and Styloprofilometer techniques. The SEM images show active and passive regions on the n-InP surface and not uniform area on p-InP surface by passing through the passive condition. So the passive regions were nonuniform, and only the active regions were uniform and clean. The various semiconducting behavior in electrochemical condition, studied and compared with structural specification of InP type group (III-V).

  2. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  3. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    Science.gov (United States)

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  4. Microscopic Void Detection for Predicting Remaining Life in Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Avila, Steven M.

    2003-01-01

    A reliable method of testing for remaining life in electric cable insulation has continued to elude the nuclear industry as it seeks to extend the life and license of its nuclear stations. Until recently, a trendable, measurable electrical property has not been found, and unexpected cable failures continue to be reported. Most reliable approaches to date rely on monitoring mechanical properties, which are assumed to degrade faster than the insulation's electrical properties. This paper introduces a promising technique based on void characterization, which is dependent on an electrical property related to dielectric strength. A relationship between insulation void characteristics (size and density) and the onset of partial discharge is known to exist. A similar relationship can be shown between void characteristics and unacceptable leakage currents (another typical cable failure criterion). For low-voltage cables, it is believed void content can be correlated to mechanical property degradation.This paper will report on an approach for using void information, research results showing the existence of trendable void characteristics in commonly used electric insulation materials, and techniques for detecting the voids (both laboratory- and field-based techniques). Acoustical microscopy was found to be potentially more suitable than conventional ultrasound for nondestructive in situ detection and monitoring of void characteristics in jacketed multiconductor insulation while ignoring the jacket. Also, optical and scanning electron microscope techniques will play an essential role in establishing the database necessary for continued development and implementation of this promising technique

  5. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  6. Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite

    Science.gov (United States)

    Kolhatkar, Gitanjali; Boucherif, Abderraouf; Rahim Boucherif, Abderrahim; Dupuy, Arthur; Fréchette, Luc G.; Arès, Richard; Ruediger, Andreas

    2018-04-01

    We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.

  7. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach

    International Nuclear Information System (INIS)

    Guerfi, Y; Doucet, J B; Larrieu, G

    2015-01-01

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness. (paper)

  8. Analysis of promising sustainable renovation concepts

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Tommerup, Henrik M.; Svendsen, Svend

    This report focuses on analyses of the most promising existing sustainable renovation concepts, i.e. full-service concepts and technical concepts, for single-family houses. As a basis for the analyses a detailed building stock analysis was carried out. Furthermore, as a basis a general working...... method for proposals on package solutions for sustainable renovation was described. The method consists of four steps, going from investigation of the house to proposal for sustainable renovation, detailed planning and commissioning after renovation. It could be used by teams of consultants...... of the building envelope and the electricity required to run the system. Positive impact on the indoor environment can be expected. Thermal comfort will be improved by insulation and air-tightness measures that will increase surface temperatures and reduce draught from e.g. badly insulated windows. A ventilation...

  9. Processing and performance of organic insulators as a gate layer in ...

    Indian Academy of Sciences (India)

    Abstract. Fabrication of organic thin film transistor (OTFT) on flexible substrates is a challenge, because of its low softening temperature, high roughness and flexible nature. Although several organic dielectrics have been used as gate insulator, it is difficult to choose one in absence of a comparative study covering ...

  10. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  11. Individual Magnetic Molecules on Ultrathin Insulating Surfaces

    Science.gov (United States)

    El Hallak, Fadi; Warner, Ben; Hirjibehedin, Cyrus

    2012-02-01

    Single molecule magnets have attracted ample interest because of their exciting magnetic and quantum properties. Recent studies have demonstrated that some of these molecules can be evaporated on surfaces without losing their magnetic properties [M. Mannini et al., Nature 468, 417, (2010)]. This remarkable progress enhances the chances of real world applications for these molecules. We present STM imaging and spectroscopy data on iron phthalocyanine molecules deposited on Cu(100) and on a Cu2N ultrathin insulating surface. These molecules have been shown to display a large magnetic anisotropy on another thin insulating surface, oxidized Cu(110) [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)]. By using a combination of elastic and inelastic electron tunnelling spectroscopy, we investigate the binding of the molecules to the surface and the impact that the surface has on their electronic and magnetic properties.

  12. Dimensional crossover and cold-atom realization of topological Mott insulators

    Science.gov (United States)

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-02-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers.

  13. Transport and screen blockage characteristics of reflective metallic insulation materials

    International Nuclear Information System (INIS)

    Brocard, D.N.

    1984-01-01

    In the event of a LOCA within a nuclear power plant, it is possible for insulation debris to be generated by the break jet. Such debris has the potential for PWR sump screen (or BWR RHR suction inlet) blockage and thus can affect the long-term recirculation capability. In addition to the variables of break jet location and orientation, the types and quantities of debris which could be generated are dependent on the insulation materials employed. This experimental investigation was limited to reflective metallic insulation and components thereof. The study was aimed at determining the flow velocities needed to transport the insulation debris to the sump screens and the resulting modes of screen blockage. The tests revealed that thin metallic foils (0.0025 in. and 0.004 in.) could transport at low flow velocities, 0.2 to 0.5 ft/sec. Thicker foils (0.008 in.) transported at higher velocities, 0.4 to 0.8 ft/sec, and as fabricated half cylinder insulation units required velocities in excess of 1.0 ft/sec for transport. The tests also provided information on screen blockage patterns that showed blockage could occur at the lower portion of the screen as foils readily flipped on the screen when reaching it

  14. Processing and performance of organic insulators as a gate layer in ...

    Indian Academy of Sciences (India)

    Fabrication of organic thin film transistor (OTFT) on flexible substrates is a challenge, because of its low softening temperature, high roughness and flexible nature. Although several organic dielectrics have been used as gate insulator, it is difficult to choose one in absence of a comparative study covering processing of ...

  15. Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films.

    Science.gov (United States)

    Mukherjee, Anamitra; Cole, William S; Woodward, Patrick; Randeria, Mohit; Trivedi, Nandini

    2013-04-12

    We show that applying strain on half-doped manganites makes it possible to tune the system to the proximity of a metal-insulator transition and thereby generate a colossal magnetoresistance (CMR) response. This phase competition not only allows control of CMR in ferromagnetic metallic manganites but can be used to generate CMR response in otherwise robust insulators at half-doping. Further, from our realistic microscopic model of strain and magnetotransport calculations within the Kubo formalism, we demonstrate a striking result of strain engineering that, under tensile strain, a ferromagnetic charge-ordered insulator, previously inaccessible to experiments, becomes stable.

  16. Radiation transmission type pipe wall thinning detection device and measuring instruments utilizing ionizing radiation

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2009-01-01

    We developed the device to detect thinning of pipe thorough heat insulation in Power Plant, etc, even while the plant is under operation. It is necessary to test many parts of many pipes for pipe wall thinning management, but it is difficult within a limited time of the routine test. This device consists of detector and radiation source, which can detect the pipe (less than 500 mm in external diameter, less than 50 mm in thickness) with 1.6%-reproducibility (in a few-minutes measurement), based on the attenuation rate. Operation is easy and effective without removing the heat insulation. We will expand this thinning detection system, and contribute the safety of the Plant. (author)

  17. Field effect of screened charges: electrical detection of peptides and proteins by a thin-film resistor.

    Science.gov (United States)

    Lud, Simon Q; Nikolaides, Michael G; Haase, Ilka; Fischer, Markus; Bausch, Andreas R

    2006-02-13

    For many biotechnological applications the label-free detection of biomolecular interactions is becoming of outstanding importance. In this Article we report the direct electrical detection of small peptides and proteins by their intrinsic charges using a biofunctionalized thin-film resistor. The label-free selective and quantitative detection of small peptides and proteins is achieved using hydrophobized silicon-on-insulator (SOI) substrates functionalized with lipid membranes that incorporate metal-chelating lipids. The response of the nanometer-thin conducting silicon film to electrolyte screening effects is taken into account to determine quantitatively the charges of peptides. It is even possible to detect peptides with a single charge and to distinguish single charge variations of the analytes even in physiological electrolyte solutions. As the device is based on standard semiconductor technologies, parallelization and miniaturization of the SOI-based biosensor is achievable by standard CMOS technologies and thus a promising basis for high-throughput screening or biotechnological applications.

  18. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  19. Microscopic effects of Dy doping in the topological insulator Bi2Te3

    Science.gov (United States)

    Duffy, L. B.; Steinke, N.-J.; Krieger, J. A.; Figueroa, A. I.; Kummer, K.; Lancaster, T.; Giblin, S. R.; Pratt, F. L.; Blundell, S. J.; Prokscha, T.; Suter, A.; Langridge, S.; Strocov, V. N.; Salman, Z.; van der Laan, G.; Hesjedal, T.

    2018-05-01

    Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI's exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive. Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.

  20. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration

    Science.gov (United States)

    Zhang, Liping; Sawchuk, Alexander A.

    2001-12-01

    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  1. Fabrication and characterization of NiO based metal-insulator-metal diode using Langmuir-Blodgett method for high frequency rectification

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2018-04-01

    Thin film metal-insulator-metal (MIM) diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM) diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB) technique. The nickel stearate (NiSt) LB precursor film was deposited on glass, silicon (Si), ITO glass and gold coated silicon substrates. The photodesorption (UV exposure) and the thermodesorption (annealing at 100 °C and 350 °C) methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO) film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni) on the NiO film, all on a gold (Au) plated silicon (Si) substrate. The current (I)-voltage (V) characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ˜100 ohms (at a bias voltage of 0.60 V), and the rectification ratio was about 22 (for a signal voltage of ±200 mV). At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.

  2. Measurements of the Secondary Electron Emission of Some Insulators

    CERN Document Server

    Bozhko, Y.; Hilleret, N.

    2013-01-01

    Charging up the surface of an insulator after beam impact can lead either to reverse sign of field between the surface and collector of electrons for case of thick sample or appearance of very high internal field for thin films. Both situations discard correct measurements of secondary electron emission (SEE) and can be avoided via reducing the beam dose. The single pulse method with pulse duration of order of tens microseconds has been used. The beam pulsing was carried out by means of an analog switch introduced in deflection plate circuit which toggles its output between "beam on" and "beam off" voltages depending on level of a digital pulse. The error in measuring the beam current for insulators with high value of SEE was significantly reduced due to the use for this purpose a titanium sample having low value of the SEE with DC method applied. Results obtained for some not coated insulators show considerable increase of the SEE after baking out at 3500C what could be explained by the change of work functi...

  3. Evaluation of unencapsulated ceramic monolithic and MOS thin-film capacitors (25 to 3000C)

    International Nuclear Information System (INIS)

    Nance, W.R.

    1982-01-01

    Several commercial monolithic ceramic and thin-film MOS chip capacitors were evaluated for use in high temperature (300 0 C) geothermal instrumentation. Characteristics of the commonly used dielectric materials (NPO, X7R, BX) and temperature dependence of the insulation resistance are briefly discussed. Some ceramic capacitors with NPO dielectric materials had insulation resistances above 10 megohms at 300 0 C and less than 2% change in capacitance from 25 0 C to 300 0 C, while the X7R and BX dielectric materials exhibited insulation resistances below 10 megohm and changes in capacitance greater then 50%. The thin-film capacitors showed good stability at 300 0 C. However, during aging, bonds and bond pads presented a problem causing intermittently open circuits for some of the devices

  4. Tunneling probe of fluctuating superconductivity in disordered thin films

    Science.gov (United States)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  5. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Vanderlan, Michael [ORNL; Atchley, Jerald Allen [ORNL

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  6. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  7. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  8. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  9. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  10. Light extraction from GaN-based LED structures on silicon-on-insulator substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, S.; Teo, S.L.; Lin, V.K.X.; Chen, M.F. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 117602 (Singapore); Dadgar, A.; Krost, A. [Institut fuer Exerimentelle Physik, Otto-von Guericke Universitaet Magdeburg, Universitaetsplatz 1, 39016 Magdeburg (Germany); AZZURRO Semiconductors AG, Universitaetsplatz 1, 39016 Magdeburg (Germany); Christen, J. [Institut fuer Exerimentelle Physik, Otto-von Guericke Universitaet Magdeburg, Universitaetsplatz 1, 39016 Magdeburg (Germany)

    2010-01-15

    Nano-patterning of GaN-based devices is a promising technology in the development of high output power devices. Recent researches have been focused on the realization of two-dimensional (2D) photonic crystal (PhC) structure to improve light extraction efficiency and to control the direction of emission. In this study, we have demonstrated improved light extraction from green light emitting diode (LED) structures on thin silicon-on-insulator (SOI) substrates using surface nanopatterning. Scanning electron microscopy (SEM) is used to probe the size, shape, and etch depth of nano-patterns on the LED surfaces. Different types of nanopatterns were created by e-beam lithography and inductively coupled plasma etching. The LED structures after post processing are studied by photoluminescence (PL) measurements. The GaN nanophotonic structures formed by ICP etching led to more than five-fold increase in the intensity of the green emission. The improved light extraction is due to the combination of SOI substrate reflectivity and photonic structures on top GaN LED surfaces. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Pipe-CUI-profiler: a portable nucleonic system for detecting corrosion under insulation (CUI) of steel pipes

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Rasif Mohd Zain; Roslan Yahya

    2003-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. A portable nucleonic system that can be used to detect CUI without the need to remove the insulation materials, has been developed. The system is based on dual-beam gamma-ray absorption technique. It is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibre-glass or calcium silicate insulation to thicknesses of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting insulated pipes. This paper describes the new nucleonic system that has been developed. This paper describes the basic principle of the system and outlines its performance. (Author)

  12. Ultrathin nanoporous membranes for insulator-based dielectrophoresis

    Science.gov (United States)

    Mukaibo, Hitomi; Wang, Tonghui; Perez-Gonzalez, Victor H.; Getpreecharsawas, Jirachai; Wurzer, Jack; Lapizco-Encinas, Blanca H.; McGrath, James L.

    2018-06-01

    Insulator-based dielectrophoresis (iDEP) is a simple, scalable mechanism that can be used for directly manipulating particle trajectories in pore-based filtration and separation processes. However, iDEP manipulation of nanoparticles presents unique challenges as the dielectrophoretic force ({F}{{D}{{E}}{{P}}}) exerted on the nanoparticles can easily be overshadowed by opposing kinetic forces. In this study, a molecularly thin, SiN-based nanoporous membrane (NPN) is explored as a breakthrough technology that enhances {F}{{D}{{E}}{{P}}}. By numerically assessing the gradient of the electric field square ({{\

  13. Ultrafast terahertz spectroscopy study of a Kondo insulating thin-film Sm B6 : Evidence for an emergent surface state

    Science.gov (United States)

    Zhang, Jingdi; Yong, Jie; Takeuchi, Ichiro; Greene, Richard L.; Averitt, Richard D.

    2018-04-01

    We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound Sm B6 , a prototype Kondo insulator. Temperature-dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ˜T*=20 K , well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20 K) suggests the emergence of a surface state with an effective electron mass of 0.1 me . The conductivity dynamics following optical excitation is also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20 K, indicative of another channel opening up in the low-energy electrodynamics. Taken together, these results are consistent with the onset of a surface state well below the crossover temperature (100 K) after long-range coherence of the f -electron Kondo lattice is established.

  14. Micro-architecture embedding ultra-thin interlayer to bond diamond and silicon via direct fusion

    Science.gov (United States)

    Kim, Jong Cheol; Kim, Jongsik; Xin, Yan; Lee, Jinhyung; Kim, Young-Gyun; Subhash, Ghatu; Singh, Rajiv K.; Arjunan, Arul C.; Lee, Haigun

    2018-05-01

    The continuous demand on miniaturized electronic circuits bearing high power density illuminates the need to modify the silicon-on-insulator-based chip architecture. This is because of the low thermal conductivity of the few hundred nanometer-thick insulator present between the silicon substrate and active layers. The thick insulator is notorious for releasing the heat generated from the active layers during the operation of devices, leading to degradation in their performance and thus reducing their lifetime. To avoid the heat accumulation, we propose a method to fabricate the silicon-on-diamond (SOD) microstructure featured by an exceptionally thin silicon oxycarbide interlayer (˜3 nm). While exploiting the diamond as an insulator, we employ spark plasma sintering to render the silicon directly fused to the diamond. Notably, this process can manufacture the SOD microarchitecture via a simple/rapid way and incorporates the ultra-thin interlayer for minute thermal resistance. The method invented herein expects to minimize the thermal interfacial resistance of the devices and is thus deemed as a breakthrough appealing to the current chip industry.

  15. Vacuum insulation panels for building applications: A review and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Baetens, Ruben [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Laboratory of Building Physics, Department of Civil Engineering, Catholic University of Leuven (KUL), BE-3001 Heverlee (Belgium); Jelle, Bjoern Petter [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Thue, Jan Vincent [Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Tenpierik, Martin J. [Faculty of Architecture, Urbanism and Building Sciences, Delft University of Technology, Julianalaan 134, 2628 BL Delft (Netherlands); Grynning, Steinar; Uvsloekk, Sivert [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Gustavsen, Arild [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway)

    2010-02-15

    Vacuum insulation panels (VIPs) are regarded as one of the most promising high performance thermal insulation solutions on the market today. Thermal performances three to six times better than still-air are achieved by applying a vacuum to an encapsulated micro-porous material, resulting in a great potential for combining the reduction of energy consumption in buildings with slim constructions. However, thermal bridging due to the panel envelope and degradation of thermal performance through time occurs with current technology. Furthermore, VIPs cannot be cut on site and the panels are fragile towards damaging. These effects have to be taken into account for building applications as they may diminish the overall usability and thermal performance. This paper is as far as the authors know the first comprehensive review on VIPs. Properties, requirements and possibilities of foil encapsulated VIPs for building applications are studied based on available literature, emphasizing thermal bridging and degradation through time. An extension is made towards gas-filled panels and aerogels, showing that other high performance thermal insulation solutions do exist. Combining the technology of these solutions and others may lead to a new leap forward. Feasible paths beyond VIPs are investigated and possibilities such as vacuum insulation materials (VIMs) and nano insulation materials (NIMs) are proposed. (author)

  16. Arc damage characteristics of inter-anode insulators in MHD generator

    International Nuclear Information System (INIS)

    Kato, Ken; Takano, Kiyonami

    1990-01-01

    The inter-anode arc caused by a Hall field is driven by a magnetic field into the anode-wall in an MHD generator, which limits the lifetime and performance of the generator. The arc damage to inter-anode insulators of an MHD generator has been studied experimentally, in order to obtain basic data for the design of the inter-anode insulation. The experiment was conducted using a pair of electrodes with an insulator between them. Arc currents was supplied from a DC power source and magnetic field was applied perpendicular to the arc current. Experimental parameters are the insulator thickness, arc current, magnetic field and insulator materials. Quartz glass, boron nitride, magnesia, alumina, silicon carbide, silicon nitride etc. were tested and evaluated. The following conclusions are evident from the experiments. Boron nitride and quartz glass are the most promising inter-anode insulators. Boron nitride has a higher arc voltage and longer cutting time than quartz glass, and it is the best material. Cutting time is approximately proportional to the -0.4 th power of the magnetic field. Loss of insulator is approximately proportional to the 0.7 th power of the arc current. The arc voltage increases linearly with the inter anode gap length. It also increases with magnetic field, but decreases with increase of arc current. An equation which approximates to such relations of arc voltage versus inter-anode gap length, arc current and magnetic field has been obtained. The standard deviation of the error of this equation is 12 % for boron nitride and 15 % for quartz glass. (author)

  17. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse Cedex 04 (France); Spiegel, Y.; Torregrosa, F. [IBS, Rue G Imbert Prolongée, ZI Peynier-Rousset, 13790 Peynier (France); Normand, P.; Dimitrakis, P.; Kapetanakis, E. [NCSRD, Terma Patriarchou Gregoriou, 15310 Aghia Paraskevi (Greece); Sahu, B. S.; Slaoui, A. [ICube, 23 Rue du Loess, 67037 Strasbourg Cedex 2 (France)

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  18. Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Wunderlich, Bernhard K; Klitzing, Regine V; Bausch, Andreas R

    2007-03-27

    The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.

  19. Atomically Thin Al2O3 Films for Tunnel Junctions

    Science.gov (United States)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  20. Influence of different propellant systems on ablation of EPDM insulators in overload state

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang; Xu, Tuanwei

    2018-04-01

    This study examines the propellants used in full-scale solid rocket motors (SRM) and investigates how insulator ablation is affected by two propellant formulations (A and B) during flight overload conditions. An experimental study, theoretical analysis, and numerical simulations were performed to discover the intrinsic causes of insulator ablation rates from the perspective of lab-scaled ground-firing tests, the decoupling of thermochemical ablation, and particle erosion. In addition, the difference in propellant composition, and the insulator charring layer microstructure were analyzed. Results reveal that the degree of insulator ablation is positively correlated with the propellant burn rate, particle velocity, and aggregate concentrations during the condensed phase. A lower ratio of energetic additive material in the AP oxidizer of the propellant is promising for the reduction in particle size and increase in the burn rate and pressure index. However, the overall higher velocity of a two-phase flow causes severe erosion of the insulation material. While the higher ratio of energetic additive to the AP oxidizer imparts a smaller ablation rate to the insulator (under lab-scale test conditions), the slag deposition problem in the combustion chamber may cause catastrophic consequences for future large full-scale SRM flight experiments.

  1. New Light on the Metal-Insulator Transition in VO2: A Terahertz Perspective

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Fischer, Bernd M.; Thoman, Andreas

    2005-01-01

    We investigate the metal-insulator (MI) transition in vanadium dioxide (VO2), thin films with Terahertz Time-Domains Spectroscopy (THz-TDS). The capability of detecting both amplitude and phase of the transmission characteristics as the phase of the transmitted THz signal switches at a markedly...

  2. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte-insulator-semiconductor for pH detection and urea biosensing.

    Science.gov (United States)

    Pan, Tung-Ming; Lin, Jian-Chi; Wu, Min-Hsien; Lai, Chao-Sung

    2009-05-15

    For high sensitive pH sensing, an electrolyte-insulator-semiconductor (EIS) device with Nd(2)TiO(5) thin layers fabricated on Si substrates by means of reactive sputtering and the subsequent post-deposition annealing (PDA) treatment was proposed. In this work, the effect of thermal annealing (600, 700, 800, and 900 degrees C) on the structural characteristics of Nd(2)TiO(5) thin layer was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The observed structural properties were then correlated with the resulting pH sensing performances. For enzymatic field-effect-transistors-based urea biosensing, a hybrid configuration of the proposed Nd(2)TiO(5) thin layer with urease-immobilized alginate film attached was established. Within the experimental conditions investigated, the EIS device with the Nd(2)TiO(5) thin layer annealed at 800 degrees C exhibited a higher pH detection sensitivity of 57.2 mV/pH, a lower hysteresis voltage of 2.33 mV, and a lower drift rate of 1.80 mV/h compared to those at other annealing temperatures. These results are attributed to the formation of a thinner low-k interfacial layer at the oxide/Si interface and the higher surface roughness occurred at this annealing temperature. Furthermore, the presented urea biosensor was also proved to be able to detect urea with good linearity (R(2)=0.99) and reasonable sensitivity of 9.52 mV/mM in the urea concentration range of 3-40 mM. As a whole, the present work has provided some fundamental data for the use of Nd(2)TiO(5) thin layer for EIS-based pH detection and the extended application for biosensing.

  3. Top-gate pentacene-based organic field-effect transistor with amorphous rubrene gate insulator

    Science.gov (United States)

    Hiroki, Mizuha; Maeda, Yasutaka; Ohmi, Shun-ichiro

    2018-02-01

    The scaling of organic field-effect transistors (OFETs) is necessary for high-density integration and for this, OFETs with a top-gate configuration are required. There have been several reports of damageless lithography processes for organic semiconductor or insulator layers. However, it is still difficult to fabricate scaled OFETs with a top-gate configuration. In this study, the lift-off process and the device characteristics of the OFETs with a top-gate configuration utilizing an amorphous (α) rubrene gate insulator were investigated. We have confirmed that α-rubrene shows an insulating property, and its extracted linear mobility was 2.5 × 10-2 cm2/(V·s). The gate length and width were 10 and 60 µm, respectively. From these results, the OFET with a top-gate configuration utilizing an α-rubrene gate insulator is promising for the high-density integration of scaled OFETs.

  4. Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...

  5. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  6. Trial fabrication and preliminary characterization of electrical insulator for liquid metal system

    International Nuclear Information System (INIS)

    Nakamichi, Masaru; Kawamura, Hiroshi; Oyamada, Rokuro

    1995-03-01

    In the design of the liquid metal blanket, MHD pressure drop is one of critical issues. Ceramic coating on the surface of structural material is considered as an electrical insulator to reduce the MHD pressure drop. Ceramic coating such as Y 2 O 3 is a promising electrical insulator due to its high electrical resistivity and good compatibility with liquid lithium. This report describes the trial fabrication and preliminary characterization of electrical insulator for a design study of the liquid metal system. From the results of trial fabrication and preliminary characterization, it is concluded that densified atmospheric plasma spray Y 2 O 3 coating with 410SS undercoating between 316SS substrate and Y 2 O 3 coating is suitable for Y 2 O 3 coating fabrication. (author)

  7. Growth of semi-insulating InP through nuclear doping

    International Nuclear Information System (INIS)

    Aliyev, M.I; Rashidova, Sh.Sh; Huseynli, M.A.

    2012-01-01

    Full text : Semi-insulating semiconductors are widely used in so-called dielectronics. Dielectric devices have quick response, good frequency characteristics, a low noise level, low sensitivity to temperature changes, etc. One of the most promising semiconductor materials is InP. At present annealing and doping are commonly used techniques to grow semi-insulating InP. The aim of this work was to grow semi-insulating InP through nuclear doping (by irradiation with gamma-quanta). InP single crystals were obtained by Czochralski method. Specimens were irradiated with doses of 10kGr at room temperature. Electrical conductivity and Hall effect were measured before and after irradiation in the temperature range 77 to 320K. After irradiation reduction in electrical conductivity was observed. This fact can be associated with formation of M-centers in positively threefold charged states of vacancy and antisite defects. Under irradiation first Ini interstitial atoms and phosphorus vacancies form. Further, the Ini atoms occupy the phosphorus vacancies. As a result there appear InP antiste defects, which along with indium vacancies form V I nI n p + In p + + complexes of the acceptor type. These complexes turn out to be traps for charge carriers and electrical conductivity of irradiated InP are sharply reduced to semi-insulating specimens

  8. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  9. Two-phase behavior in strained thin films of hole-doped manganites

    OpenAIRE

    Biswas, Amlan; Rajeswari, M.; Srivastava, R. C.; Li, Y. H.; Venkatesan, T.; Greene, R. L.; Millis, A. J.

    1999-01-01

    We present a study of the effect of biaxial strain on the electrical and magnetic properties of thin films of manganites. We observe that manganite films grown under biaxial compressive strain exhibit island growth morphology which leads to a non-uniform distribution of the strain. Transport and magnetic properties of these films suggest the coexistence of two different phases, a metallic ferromagnet and an insulating antiferromagnet. We suggest that the high strain regions are insulating whi...

  10. Growth and characterization of semi-insulating carbon-doped/undoped GaN multiple-layer buffer

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Won, Chul-Ho; Kang, Hee-Sung; Kim, Young-Jo; Kang, In Man; Lee, Jung-Hee; Kim, Yong Tae

    2015-01-01

    We have proposed a new semi-insulating GaN buffer layer, which consists of multiple carbon-doped and undoped GaN layer. The buffer layer showed sufficiently good semi-insulating characteristics, attributed to the depletion effect between the carbon-doped GaN and the undoped GaN layers, even though the thickness of the carbon-doped GaN layer in the periodic structure was designed to be very thin to minimize the total carbon incorporation into the buffer layer. The AlGaN/AlN/GaN heterostructure grown on the proposed buffer exhibited much better electrical and structural properties than that grown on the conventional thick carbon-doped semi-insulating GaN buffer layer, confirmed by Hall measurement, x-ray diffraction, and secondary ion mass spectrometry. The fabricated device also showed excellent buffer breakdown characteristics. (paper)

  11. Thermal Properties of Algerian Diatomite, Study of the Possibility to Its Use in the Thermal Insulation

    Science.gov (United States)

    Hamdi, Boualem; Hamdi, Safia

    The chemical and physical properties of a Algerian diatomite were given before and after heat treatment and chemical with an aim of a use in the heat insulation of constructions. The preliminary results obtained showed that this material is extremely porous (porosity >70 %), characterized of a low density and a very low thermal conductivity. These promising properties support the use of this local material in the thermal insulation.

  12. Experimental and numerical study of heat transfer across insulation wall of a refrigerated integral panel van

    International Nuclear Information System (INIS)

    Glouannec, Patrick; Michel, Benoit; Delamarre, Guillaume; Grohens, Yves

    2014-01-01

    This paper presents an experimental and numerical design study of an insulation wall for refrigerated vans. The thermophysical properties of the insulating multilayer panel, the external environment impact (solar irradiation, temperature, etc.) and durability are taken into account. Different tools are used to characterize the thermal performances of the insulation walls and the thermal properties of the insulation materials are measured. In addition, an experiment at the wall scale is carried out and a 2D FEM model of heat and mass transfer within the wall is formulated. Three configurations are studied with this design approach. Multilayer insulation walls containing reflective multi-foil insulation, aerogel and phase change materials (PCM) are tested. Promising results are obtained with these materials, especially the reduction of peak heat transfer and energy consumption during the daytime period. Furthermore, the major influence of solar irradiation is highlighted as it can increase the peak heat transfer crossing the insulation wall by up to 43%. Nevertheless, we showed that the use of reflective multi-foil insulation and aerogel layers allowed decreasing this impact by 27%. - Highlights: • A design study of an insulation wall for a refrigerated van is carried out. • Experimental and numerical studies of multilayer insulation walls are performed. • The major influence of solar irradiation is highlighted. • New insulation materials (reflective multi-foil, aerogel and PCM) are tested

  13. Study on characteristics of a double-conductible channel organic thin-film transistor with an ultra-thin hole-blocking layer

    International Nuclear Information System (INIS)

    Guang-Cai, Yuan; Zheng, Xu; Su-Ling, Zhao; Fu-Jun, Zhang; Xue-Yan, Tian; Xu-Rong, Xu; Na, Xu

    2009-01-01

    The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a BCP interlayer was inserted into the middle of the pentacene active layer. This paper obtains a fire-new transport mode of an OTFT device with double-conductible channels. The accumulation and transfer of the hole carriers are limited by the BCP interlayer in the vertical region of the channel. A huge amount of carriers is located not only at the interface between pentacene and the gate insulator, but also at the two interfaces of pentacene/BCP interlayer and pentacene/gate insulator, respectively. The results suggest that the BCP interlayer may be useful to adjust the hole accumulation and transfer, and can increase the hole mobility and output current of OTFTs. The TC-OTFTs with a BCP interlayer at V DS = −20 V showed excellent hole mobility μFE and threshold voltage V TH of 0.58 cm 2 /(V·s) and −4.6 V, respectively

  14. Deposition of metal chalcogenide thin films by successive ionic layer

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  15. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    NARCIS (Netherlands)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm

  16. Absorbed Dose Distributions in Small Copper Wire Insulation due to Multiple-Sided Irradiations by 0.4 MeV Electrons

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.; Pedersen, Walther Batsberg

    1979-01-01

    When scanned electron beams are used to crosslink polymeric insulation of wire and cable, an important goal is to achieve optimum uniformity of absorbed dose distributions. Accurate measurements of dose distributions in a plastic dosimeter simulating a typical insulating material (polyethylene......) surrounding a copper wire core show that equal irradiations from as few as four sides give approximately isotropy and satisfactorily uniform energy depositions around the wire circumference. Electron beams of 0.4 MeV maximum energy were used to irradiate wires having a copper core of 1.0 mm dia....... and insulation thicknesses between 0.4 and 0.8 mm. The plastic dosimeter simulating polyethylene insulations was a thin radiochromic polyvinyl butyral film wrapped several times around the copper wire, such that when unwrapped and analyzed optically on a scanning microspectrophotometer, high-resolution radial...

  17. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jumpei; Oka, Daichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [University of Tsukuba Tandem Accelerator Complex (UTTAC), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan)

    2015-12-07

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO{sub x}N{sub y}) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO{sub x}N{sub y} thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO{sub x}N{sub y} thin films monotonically decreased from the order of 10{sup 5} Ω cm to 10{sup −4} Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO{sub x}N{sub y} phase, which has not yet been reported in Co{sup 2+}/Co{sup 3+} mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO{sub x}N{sub y} phase, on the 10{sup −3} Ω cm order, may have originated from the intermediate spin state of Co{sup 3+} stabilized by the lowered crystal field symmetry of the CoO{sub 6−n}N{sub n} octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO{sub x}N{sub y} films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides.

  18. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    International Nuclear Information System (INIS)

    Takahashi, Jumpei; Oka, Daichi; Hirose, Yasushi; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya; Nakao, Shoichiro; Harayama, Isao; Sekiba, Daiichiro

    2015-01-01

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO x N y ) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO x N y thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO x N y thin films monotonically decreased from the order of 10 5  Ω cm to 10 −4  Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO x N y phase, which has not yet been reported in Co 2+ /Co 3+ mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO x N y phase, on the 10 −3  Ω cm order, may have originated from the intermediate spin state of Co 3+ stabilized by the lowered crystal field symmetry of the CoO 6−n N n octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO x N y films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides

  19. Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3

    Science.gov (United States)

    Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.

    2018-05-01

    The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.

  20. Interaction of slow highly-charged ions with metals and insulators

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    2007-01-01

    Interaction of slow highly charged ions with insulator as well as metallic surfaces is discussed. In addition to the usual flat surface targets, studies with thin foils having a multitude of straight holes of ∼100 nm in diameter (micro-capillary foil) are introduced, which provide various unique information on the above surface interaction. In the case of an insulator micro-capillary foil, a so-called guiding effect was observed, where slow highly charged ions can transmit through the capillary tunnel keeping their initial charge state even when the capillary axis is tilted against the incident beam. A similar guiding effect has recently been found for slow highly-charged ions transmitted through a single tapered glass capillary. In both cases, the guiding effects are expected to be governed by a self-organized charging and discharging of the inner-wall of the insulator capillary. One of the prominent features of this guiding effect with the tapered capillary is the formation of a nano-size beam, which can be applied in various fields of science including surface nano-modification/analysis, nano-surgery of living cells, etc

  1. Long-ranged interactions in thin TiN films at the superconductor-insulator transition?

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeldner, Klaus; Strunk, Christoph [Institute for Experimental and Applied Physics, University of Regensburg (Germany); Baturina, Tatyana [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk (Russian Federation)

    2015-07-01

    We measured IV-characteristics and magnetoresistance of square TiN-films in the vicinity of the disorder-tuned superconductor-insulator transition (SIT) for different sizes (5 μm to 240 μm). While the films are superconducting at zero magnetic field, at finite fields a SIT occurs. The resistance shows thermally activated behaviour on both sides of the SIT. Deep in the superconducting regime the activation energy grows linear with the sample size as expected for a size-independent critical current density. Closer to the SIT the activation energy becomes clearly size independent. On the insulating side the magnetoresistance maximum and the activation energy both grow logarithmically with sample size which is consistent with a size-limited charge BKT (Berezinskii-Kosterlitz-Thouless) scenario. In order to test for the presence of long-ranged interactions in our films, we investigate the influence of a topgate. It is expected to screen the possible long-ranged interactions as the distance of the film to the gate is much shorter than the electrostatic screening length deduced from the size-dependent activation energy.

  2. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  3. Photo-induced insulator-metal transition in Pr0.6Ca0.4MnO3 thin films grown by pulsed laser deposition: Effect of thickness dependent structural and transport properties

    Science.gov (United States)

    Elovaara, Tomi; Huhtinen, Hannu; Majumdar, Sayani; Paturi, Petriina

    2016-09-01

    We report photo-induced colossal magnetoresistive insulator-metal transition (IMT) in Pr0.6Ca0.4MnO3 thin films under much reduced applied magnetic field. The colossal effect was studied as a function of film thickness and thus with variable structural properties. Thorough structural, magnetic and magnetotransport characterization under light shows that the highest effect on the transition field can be obtained in the thinnest film (38 nm). However, due to the substrate induced strain of this film the required magnetic field for IMT is quite high. The best crystalline properties of the 110 nm film lead to the lowest IMT field under light and 109% change in resistance at 10 K. With increasing thickness, the film properties start to move more toward the bulk material and, hence, IMT is no more observed under the applied field of 9 T. Our results indicate that for obtaining large photo-induced CMR, the best epitaxial quality of thin films is essential.

  4. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  5. A flexible Li-ion battery with design towards electrodes electrical insulation

    Science.gov (United States)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  6. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  7. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  8. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  9. Thermic insulation in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaon, G. (Ambassade de France a New York (USA)); Atlas, O. (Illinois Institute of Technology, Chicago, (USA))

    1984-01-30

    At present, thermic insulation accounts for 13% of the savings which have been made and this percentage should increase substantially in the future. The ideal insulation material must have low thermic conductivity, but also be light, have a low dilatation coefficient, good mechanical resistance and be fireproof and non-toxic. Rock wool and above all glass wool have the major portion in the insulation market with about 75% of the total. The prospects for an increase in sales are average: 6 to 7% per year until 1990 with a stabilization or a decrease after this date. Production is concentrated in the hands of about ten producers. The insulation with a cellulose base -with the addition of a combustion inhibitor, usually borax- represent about 15% of the market. Manufacturers are numerous and the production units are small. Any serious evaluation of the future of this product is difficult to make. However, it should be noted that combustion inhibition is one of the main factors of success of this product and constitutes a relatively active field of research. Perlite and vermiculite have a marginal part of the market which is concentrated in the hands of a few dozen producers. Their future seems promising and their production should double between now and the end of the century. There is also the field of plastics which has to be considered and notably polystyrene, polyurethanes and polyisocyanates. These can be injected and moulded in situ. To the extent that toxicity studies can definitively conclude that they are not harmful (urea-formol resins have just been prohibited), their future is brillant and their growth rate could reach about 200% per year. The big chemical and pharmaceutical companies are interested in these products and their portion of the market can rapidly go beyond their present 6 to 8%.

  10. Current-voltage relation for thin tunnel barriers: Parabolic barrier model

    DEFF Research Database (Denmark)

    Hansen, Kim; Brandbyge, Mads

    2004-01-01

    We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant...

  11. Photovoltaics: tests of thin-film technologies. 6 thin-film technologies in 3 different BIPV modes compared in a real outdoor performance test; PV-ThinFilmTest. 6 thin-film technologies in 3 different BIPV modes compared in a real outdoor performance test

    Energy Technology Data Exchange (ETDEWEB)

    Frei, R.; Meier, Ch.

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a comparison made between six types of thin-film, building-integrated photovoltaic (BIPV) technologies used in three different modes of building-integration. More than 450 thin-film modules including amorphous silicon and CIS technologies were monitored. Each type of module was installed in three different modes: inclined (20{sup o}), flat with free back air flow, and flat with thermal back insulation. The performance of these commercially available thin-film BIPV systems was monitored using an extensive monitoring program. Additionally, three mono-crystalline PV arrays allowed direct comparison of the technologies. The results of the monitoring work are presented and further work to be done is discussed, including the monitoring of possible long-term degradation.

  12. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  13. Improved cable insulation for superconducting magnets

    International Nuclear Information System (INIS)

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-01-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/Fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where wires in neighboring turns crossed one another and where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system

  14. Industrial production of insulators using isostatic compaction method

    Energy Technology Data Exchange (ETDEWEB)

    Drugoveiko, O.P.; Ermolaeva, L.V.; Koren' , M.G.; Kreimer, B.D.; Panichev, G.I.; Ponomarev, A.P.; Rutkovskii, V.N.

    1985-07-01

    The process of shaping ceramic products from powders using isostatic compaction method is finding increasing industrial application. The production of electrical-engineering porcelain using isostatic compaction method is, according to the authors, a promising direction since this method permits one to obtain large and complex shaped products having uniform density distribution. The authors introduce an automatic isostatic compaction line at the ''Proletarii'' Factory for the production of the IOS-110-20000UKhL, T1 type insulators having the described dimensions. According to the technological process developed at the ''Elektrokeramika'' Production Complex, insulators were manufactured on the isostatic compaction line from the G-33 mass. Presspowder having a moisture content of 0.3-0.6% and a particle size of 90-160 micrometers was obtained in a spray dryer using disk spraying. The authors studied saturability by moisture of the powder obtained.

  15. Surface Thermal Insulation and Pipe Cooling of Spillways during Concrete Construction Period

    Directory of Open Access Journals (Sweden)

    Wang Zhenhong

    2014-01-01

    Full Text Available Given that spillways adopt a hydraulic thin concrete plate structure, this structure is difficult to protect from cracks. The mechanism of the cracks in spillways shows that temperature stress is the major reason for cracks. Therefore, an effective way of preventing cracks is a timely and reasonable temperature-control program. Studies show that one effective prevention method is surface thermal insulation combined with internal pipe cooling. The major factors influencing temperature control effects are the time of performing thermal insulation and the ways of internal pipe cooling. To solve this problem, a spillway is taken as an example and a three-dimensional finite element program and pipe cooling calculation method are adopted to conduct simulation calculation and analysis on the temperature fields and stress fields of concretes subject to different temperature-control programs. The temperature-control effects are then compared. Optimization results show that timely and reasonable surface thermal insulation and water-flowing mode can ensure good temperature-control and anticrack effects. The method has reference value for similar projects.

  16. Opportunities in chemistry and materials science for topological insulators and their nanostructures

    KAUST Repository

    Kong, Desheng

    2011-10-24

    Electrical charges on the boundaries of topological insulators favour forward motion over back-scattering at impurities, producing low-dissipation, metallic states that exist up to room temperature in ambient conditions. These states have the promise to impact a broad range of applications from electronics to the production of energy, which is one reason why topological insulators have become the rising star in condensed-matter physics. There are many challenges in the processing of these exotic materials to use the metallic states in functional devices, and they present great opportunities for the chemistry and materials science research communities. © 2011 Macmillan Publishers Limited. All rights reserved.

  17. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  18. Operating method of amorphous thin film semiconductor element

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi

    1988-05-31

    The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)

  19. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  20. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  1. Improvement in negative bias illumination stress stability of In-Ga-Zn-O thin film transistors using HfO2 gate insulators by controlling atomic-layer-deposition conditions

    Science.gov (United States)

    Na, So-Yeong; Kim, Yeo-Myeong; Yoon, Da-Jeong; Yoon, Sung-Min

    2017-12-01

    The effects of atomic layer deposition (ALD) conditions for the HfO2 gate insulators (GI) on the device characteristics of the InGaZnO (IGZO) thin film transistors (TFTs) were investigated when the ALD temperature and Hf precursor purge time were varied to 200, 225, and 250 °C, and 15 and 30 s, respectively. The HfO2 thin films showed low leakage current density of 10-8 A cm-2, high dielectric constant of over 20, and smooth surface roughness at all ALD conditions. The IGZO TFTs using the HfO2 GIs showed good device characteristics such as a saturation mobility as high as 11 cm2 V-1 s-1, a subthreshold swing as low as 0.10 V/dec, and all the devices could be operated at a gate voltage as low as  ±3 V. While there were no marked differences in transfer characteristics and PBS stabilities among the fabricated devices, the NBIS instabilities could be improved by increasing the ALD temperature for the formation of HfO2 GIs by reducing the oxygen vacancies within the IGZO channel.

  2. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  3. Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy.

    Science.gov (United States)

    Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon

    2015-12-23

    We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.

  4. Topological Crystalline Insulators and Dirac Octets in Anti-perovskites

    OpenAIRE

    Hsieh, Timothy H.; Liu, Junwei; Fu, Liang

    2014-01-01

    We predict a new class of topological crystalline insulators (TCI) in the anti-perovskite material family with the chemical formula A$_3$BX. Here the nontrivial topology arises from band inversion between two $J=3/2$ quartets, which is described by a generalized Dirac equation for a "Dirac octet". Our work suggests that anti-perovskites are a promising new venue for exploring the cooperative interplay between band topology, crystal symmetry and electron correlation.

  5. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  6. Ideology of a multiparametric system for estimating the insulation system of electric machines on the basis of absorption testing methods

    Science.gov (United States)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.

  7. Insulated electrocardiographic electrodes. [without paste electrolyte

    Science.gov (United States)

    David, R. M.; Portnoy, W. A. (Inventor)

    1975-01-01

    An integrated system is disclosed including an insulated electrode and an impedance transformer which can be assembled in a small plastic housing and used for the acquisition of electrocardiographic data. The electrode may be employed without a paste electrolyte and may be attached to the body for extended usage without producing skin reaction. The electrode comprises a thin layer of suitable nontoxic dielectric material preferably deposited by radio frequency sputtering onto a conductive substrate. The impedance transformer preferably comprises an operational amplifier having an FET input stage connected in the unity gain configuration which provides a very low lower cut-off frequency, a high input impedance with a very small input bias current, a low output impedance, and a high signal-to-noise ratio.

  8. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  9. Silver nanoparticle formation in thin oxide layer on silicon by silver-negative-ion implantation for Coulomb blockade at room temperature

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Arai, Nobutoshi; Matsumoto, Takuya; Ueno, Kazuya; Gotoh, Yasuhito; Adachi, Kouichiro; Kotaki, Hiroshi; Ishikawa, Junzo

    2004-01-01

    Formation of silver nanoparticles formed by silver negative-ion implantation in a thin SiO 2 layer and its I-V characteristics were investigated for development single electron devices. In order to obtain effective Coulomb blockade phenomenon at room temperature, the isolated metal nanoparticles should be in very small size and be formed in a thin insulator layer such as gate oxide on the silicon substrate. Therefore, conditions of a fine particles size, high particle density and narrow distribution should be controlled at their formation without any electrical breakdown of the thin insulator layer. We have used a negative-ion implantation technique with an advantage of 'charge-up free' for insulators, with which no breakdown of thin oxide layer on Si was obtained. In the I-V characteristics with Au electrode, the current steps were observed with a voltage interval of about 0.12 V. From the step voltage the corresponded capacitance was calculated to be 0.7 aF. In one nanoparticle system, this value of capacitance could be given by a nanoparticle of about 3 nm in diameter. This consideration is consistent to the measured particle size in the cross-sectional TEM observation. Therefore, the observed I-V characteristics with steps are considered to be Coulomb staircase by the Ag nanoparticles

  10. Use of Insulated Covers over Product Crates to Reduce Losses in Amaranth during Shipping Delays

    Directory of Open Access Journals (Sweden)

    Lizanne Wheeler

    2015-12-01

    Full Text Available Amaranth is a leafy vegetable with high nutrient content which is sensitive to temperature and low relative humidity. Delays in shipment to market may result in significant losses, therefore improved packaging to minimize mechanical damage and reduce moisture loss are desirable. Amaranth was stored in three types of consumer packages, bunches, clamshells and thin plastic bags, within vented plastic crates. Pallet loads were either covered with insulated material or not, while awaiting transportation. Results indicated covering pallets improved the color and overall quality while reducing weight loss and wilting. Covered crates had a “good” (7.6/9.0 overall quality while uncovered averaged 5.5/9.0 or “moderate” quality. There were significant differences in consumer package type, with the bagged amaranth having almost “excellent” quality (8.8/9.0 compared to “good-fair” quality in clamshells (6.2/9.0 and “poor-fair” quality in the control bunches (4.7/9.0. Amaranth stored in thin plastic bags was better in quality and color, with less weight loss and wilting, however, temperatures at the end of six hours of storage were higher and this may lead to microbial growth. Storage of amaranth in thin bags or clamshell packages, within plastic crates covered with insulated pallet covers while awaiting shipping resulted in improved overall quality and color.

  11. Thin-film VO2 submillimeter-wave modulators and polarizers

    International Nuclear Information System (INIS)

    Fan, J.C.C.; Fetterman, H.R.; Bachner, F.J.; Zavracky, P.M.; Parker, C.D.

    1977-01-01

    Submillimeter-wave modulators and switchable polarizers have been fabricated from VO 2 thin films deposited on sapphire substrates. By passing electric current pulses through elements made from these films, the films can be thermally cycled through the insulator-to-metal transition that occurs in VO 2 at about 65 degreeC. In the insulating state, the films are found to have negligible effect on the transmission at submillimeter wavelengths, while above the phase transition the transmission is strongly reduced by the free-electron effects characteristic of a metal. Other possible applications of such switchable VO 2 elements include variable bandpass filters and diffraction grating beam-steering devices

  12. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    Directory of Open Access Journals (Sweden)

    Kuan Lu

    2016-02-01

    Full Text Available A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL at low frequencies (⩽500Hz was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial’s structure is like a sandwich with a thin (thickness=0.25mm lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM. The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  13. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    Science.gov (United States)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  14. Spin-orbit torque in a thin film of the topological insulator Bi2Se3: Crossover from the ballistic to diffusive regime

    Science.gov (United States)

    Ren, Y. J.; Deng, W. Y.; Geng, H.; Shen, R.; Shao, L. B.; Sheng, L.; Xing, D. Y.

    2017-12-01

    The spin-orbit torque provides an efficient method for switching the direction of a magnetization by using an electric field. Owing to the spin-orbit coupling, when an electric field is applied, a nonequilibrium spin density is generated, which exerts a torque on the local magnetization. Here, we investigate the spin-orbit torque in a thin film of topological insulator \\text{Bi}2\\text{Se}3 based upon a Boltzmann equation, with proper boundary conditions, which is applicable from the ballistic regime to the diffusive regime. It is shown that due to the spin-momentum interlocking of the electron surface states, the magnitude of the field-like torque is simply in linear proportion to the longitudinal electrical current. For a fixed electric field, the spin-orbit torque is proportional to the sample length in the ballistic limit, and saturates to a constant in the diffusive limit. The dependence of the torque on the magnetization direction and exchange coupling strength is also studied. Our theory may offer useful guidance for experimental investigations of the spin-orbit torque in finite-size systems.

  15. Impact Verification of Aerogel Insulation Paint on Historic Brick Facades

    Science.gov (United States)

    Ganobjak, Michal; Kralova, Eva

    2017-10-01

    Increasing the sustainability of existing buildings is being motivated by reduction of their energy demands. It is the above all the building envelope and its refurbishment by substitution or addition of new materials that makes the opportunity for reduction of energy consumption. A special type of refurbishment is conservation of historical buildings. Preservation of historic buildings permits also application of innovative methods and materials in addition to the original materials if their effects are known and the gained experience ensures their beneficial effect. On the market, there are new materials with addition of silica aerogel in various forms of products. They are also potentially useful in conservation of monuments. However, the effects of aerogel application in these cases are not known. For refurbishment is commercially available additional transparent insulation paint - Nansulate Clear Coat which is containing aerogel and can be used for structured surfaces such as bricks. A series of experiments examined the thermo-physical manifestation of an ultra-thin insulation coating of Nansulate Clear Coat containing silica aerogel on a brick facade. The experiments of active and passive thermography have observed effects of application on the small-scale samples of the brick façade of a protected historical building. Through a series of experiments were measured thermal insulation effect and influence on the aesthetic characteristics such as change in colour and gloss. The treated samples were compared to a reference. Results have shown no thermal-insulating manifestation of the recommended three layers of insulation paint. The three layers recommended by the manufacturer did not significantly affect the appearance of the brick facade. Color and gloss were not significantly changed. Experiments showed the absence of thermal insulation effect of Nansulate transparent triple coating. The thermal insulation effect could likely be reached by more layers of

  16. Incorporating double copies of a chromatin insulator into lentiviral vectors results in less viral integrants

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Jakobsson, Johan; Rosenqvist, Nina

    2009-01-01

    BACKGROUND: Lentiviral vectors hold great promise as gene transfer vectors in gene therapeutic settings. However, problems related to the risk of insertional mutagenesis, transgene silencing and positional effects have stalled the use of such vectors in the clinic. Chromatin insulators are boundary...

  17. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Young, Chadwin D.; Bersuker, Gennadi; Hussain, Muhammad Mustafa

    2015-01-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard

  18. Effect of thermal insulation on the electrical characteristics of NbOx threshold switches

    Science.gov (United States)

    Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio

    2018-02-01

    Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.

  19. Diodes based on semi-insulating CdTe crystals with Mo/MoO{sub x} contacts for X- and γ-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maslyanchuk, O.; Kulchynsky, V.; Solovan, M. [Chernivtsi National University, Chernivtsi (Ukraine); Gnatyuk, V. [Institute of Semiconductor Physics, NAS of Ukraine, Kyiv (Ukraine); Potiriadis, C. [Greek Atomic Energy Commission, Attiki (Greece); Kaissas, I. [Greek Atomic Energy Commission, Attiki (Greece); Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki (Greece); Brus, V. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2017-03-15

    This paper reports on the possible applications of molybdenum oxide (Mo/MoO{sub x}) contacts in combination with semi-insulating CdTe crystals. The electrical contacts to p-type Cl-doped CdTe crystals were formed by the deposition of molybdenum oxide and pure molybdenum thin films by the DC reactive magnetron sputtering. Electrical properties of the prepared Mo-MoO{sub x}/p-CdTe/MoO{sub x}-Mo surface-barrier structures were investigated at different temperatures. It is shown that the rapid growth of the reverse current with increasing bias voltage higher than 10 V is caused by the space-charge limited currents. Spectrometric properties of the Mo-MoO{sub x}/p-CdTe/MoO{sub x}-Mo structures have been also analyzed. It is revealed that the developed heterojunction has shown promising characteristics for its practical application in X- and γ-ray radiation detector fabrication. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  1. Orientation-dependent physical properties of layered perovskite La{sub 1.3}Sr{sub 1.7}Mn{sub 2}O{sub 7} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Li-Wei; Guo, Bing; Chen, Chang-Le, E-mail: chenchl@nwpu.edu.cn; Luo, Bing-Cheng; Dong, Xiang-Lei; Jin, Ke-Xin

    2017-04-01

    In this paper, the resistivity and magnetization of orientation-engineered layered perovskite La{sub 1.3}Sr{sub 1.7}Mn{sub 2}O{sub 7} epitaxial thin films have been investigated. Epitaxial thin films were deposited on single-crystalline LaAlO{sub 3} (LAO) (001), (110) and (111) substrates by pulse laser deposition (PLD) technique. It is found that only the (100)-oriented thin film performs insulator behavior, whereas the (110) and (111)-oriented thin films exhibit obvious metal-insulator transition at 70 K and between 85 and 120 K, respectively. Moreover, the same spin freezing temperature and different spin-glass-like transition temperatures have been observed in various oriented films. The observed experimental results were discussed according to the electron-transport mechanism and spin dynamics.

  2. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    Science.gov (United States)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C.; van der Zant, H. S. J.

    2016-07-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10-4 G0 (1 G0 = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  3. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  4. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  5. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    Science.gov (United States)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  6. SF6-alternative gases for application in gas-insulated switchgear

    Science.gov (United States)

    Li, Xingwen; Zhao, Hu; Murphy, Anthony B.

    2018-04-01

    The environmental problems caused by greenhouse gases have received unprecedented attention. Sulfur hexafluoride (SF6), which is the preferred gas for use in gas-insulated switchgear (circuit breakers, disconnect switches, etc. for high-voltage electrical circuits), has a very high global warming potential, and there is a large international effort to find alternative gases. Recently, this effort has made important progress, with promising alternative gases being identified and tested. An overview, in particular the current state of the art, of the study of SF6-alternative gases is presented in the paper. The review focuses on the application of the SF6-alternative gases in gas-insulated switchgear, with detailed analysis of calculations and measurements of their basic physical properties, dielectric strengths, and arc-quenching capabilities. Finally, a discussion of and perspectives on current research and future research directions are presented.

  7. Molecular dewetting on insulators

    International Nuclear Information System (INIS)

    Burke, S A; Topple, J M; Gruetter, P

    2009-01-01

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C 60 on alkali halides, and the technologically important system of pentacene on SiO 2 . These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure. (topical review)

  8. Molecular dewetting on insulators.

    Science.gov (United States)

    Burke, S A; Topple, J M; Grütter, P

    2009-10-21

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C(60) on alkali halides, and the technologically important system of pentacene on SiO(2). These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure.

  9. Strain-enhanced optical absorbance of topological insulator films

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    Topological insulator films are promising materials for optoelectronics due to a strong optical absorption and a thickness-dependent band gap of the topological surface states. They are superior candidates for photodetector applications in the THz-infrared spectrum, with a potential performance...... thickness, the surface-state band gap, and thereby the optical absorption, can be effectively tuned by the application of uniaxial strain epsilon(zz), leading to a divergent band-edge absorbance for epsilon(zz) greater than or similar to 6%. Shear strain breaks the crystal symmetry and leads...

  10. Labeling and advertising of home insulation. Final staff report to the Federal Trade Commission and proposed trade regulation rule (16 CFR Part 460)

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    Because insulation is a very difficult product for uniformed consumers to evaluate, there has been broad support for a rule requiring disclosure of information facilitating choices among insulation products. With information that the Recommended Rule will require, consumers will be able to compare the thermal properties of various types of insulation and make the best purchases. The FTC undertook this rulemaking effort and proposed a Rule on November 18, 1977. Hearings were conducted. Approximately 50 witnesses representing insulation manufacturers, contractors, trade associations, consumer and environmental groups, and state and Federal government agencies attended. As the record shows, without the Rule, some insulation industry members have failed to base R-value claims on tests or have extrapolated values from too-thin samples. Neither labels nor ads disclose R values; most do not explain R value; and the industry is not telling consumers about factors that often reduce insulation R values. Consumers are seldom told about performance characteristics of individual types of insulation. They are not advised that insulation is not always a good investment, or that their money might be more wisely spent on other conservation measures. The Rule addresses all of these problems. All aspects of the insulation industry and some consumer characteristics are summarized. (MCW)

  11. Thermal conductivity: recent developments on insulating and new materials; La conductivite thermique: developpements recents sur les isolants et les materiaux nouveaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop organized by the thermo-kinetics section of the French society of thermal engineers deals with recent developments concerning insulating, dielectric and composite materials. The seven papers presented during this workshop concern the methods and results of thermal conductivity measurements performed in these materials and the possible applications of these materials in aerospace industry (carbon foams, ceramic-based composite materials), civil engineering (glazing materials, aerogels), power electronics (dielectric thin films, ceramics), and in other industries (heat resistant and thermal insulating materials). (J.S.)

  12. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  13. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  14. Characterization of Si sub 1 sub - sub x Ge sub x thin films prepared by sputtering

    CERN Document Server

    Noguchi, T

    2000-01-01

    By bombarding solid targets, we deposited Si sub 1 sub - sub x Ge sub x thin films by sputtering without using inflammable CVD (chemical vapor deposition) gases. After the B sup + -implanted Si sub 1 sub - sub x Ge sub x films were thermally annealed, they were characterized. As the content of Ge increased, the refractive index increased and the band edge narrowed. The higher the annealing temperature, the lower the resistivity. For Si sub 1 sub - sub x Ge sub x films with a high Ge content (X approx 0.5), the flat-band voltage of the gate deduced from C-V curve was adjusted to the middle point between p sup + and n sup + polySi gates. Boron-doped SiGe films are promising gate materials for MOS (metal oxide semiconductor) and SOI (silicon on insulator) transistors driven at low driving voltage.

  15. Resistance switching in epitaxial SrCoOx thin films

    Science.gov (United States)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-08-01

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO3 (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO2.5) and conducting perovskite (SrCoO3-δ) depending on the oxygen content. The current-voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoOx thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO2.5.

  16. Resistance switching in epitaxial SrCoOx thin films

    International Nuclear Information System (INIS)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-01-01

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO 3 (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO 2.5 ) and conducting perovskite (SrCoO 3−δ ) depending on the oxygen content. The current–voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoO x thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO 2.5

  17. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer

    International Nuclear Information System (INIS)

    Yoon, Sung-Min; Yang, Shin-Hyuk; Ko Park, Sang-Hee; Jung, Soon-Won; Cho, Doo-Hee; Byun, Chun-Won; Kang, Seung-Youl; Hwang, Chi-Sun; Yu, Byoung-Gon

    2009-01-01

    Poly(vinylidene fluoride trifluoroethylene) and ZnO were employed for nonvolatile memory thin film transistors as ferroelectric gate insulator and oxide semiconducting channel layers, respectively. It was proposed that the thickness of the ZnO layer be carefully controlled for realizing the lower programming voltage, because the serially connected capacitor by the formation of a fully depleted ZnO channel had a critical effect on the off programming voltage. The fabricated memory transistor with Al/P(VDF-TrFE) (80 nm)/Al 2 O 3 (4 nm)/ZnO (5 nm) exhibits encouraging behaviour such as a memory window of 3.8 V at the gate voltage of -10 to 12 V, and 10 7 on/off ratio, and a gate leakage current of 10 -11 A.

  18. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    Science.gov (United States)

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  19. Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.

  20. Surface, interface and thin film characterization of nano-materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Kobayashi, Keisuke

    2005-01-01

    From the results of studies in the nanotechnology support project of the Ministry of Education, Culture, Sports, Science and Technology of Japan, several investigations on the surface, interface and thin film characterization of nano-materials are described; (1) the MgB 2 thin film by X-ray diffraction, (2) the magnetism of the Pt thin film on a Co film by X-ray magnetic circular dichroism measurement, (3) the structure and physical properties of oxygen molecules absorbed in a micro hole of the cheleted polymer crystal by the direct observation in X-ray powder diffraction, and (4) the thin film gate insulator with a large dielectric constant, thermally treated HfO 2 /SiO 2 /Si, by X-ray photoelectron spectroscopy. (M.H.)

  1. Neutron and gamma irradiation effects on organic insulating materials for fusion magnets

    International Nuclear Information System (INIS)

    Maurer, W.

    1985-10-01

    Available low-temperature neutron and gamma irradiation data for organic insulating materials are collected and compared with room temperature data. Only the most promising polymers in terms of mechanical strength for magnet insulation are taken into account. For characterization and comparison of different materials the 75% dose is used, i.e. the dose, where the mechanical strength is reduced by 25%, and 75% is retained. For room temperature special prepared polyimide and epoxy materials reinforced with glass fibre retained 75% of the mechanical strength up to a dose of 7x10 7 Gy. For 5 K irradiation the best epoxy material retained the 75% dose up to 1x10 7 Gy, the best polyimide material up to 1x10 8 Gy. (orig.) [de

  2. Remote plasma deposition of textured zinc oxide with focus on thin film solar cell applications : material properties, plasma processes and film growth

    NARCIS (Netherlands)

    Groenen, R.

    2005-01-01

    Simultaneously possessing transparency in the visible region, close to that of insulators, and electrical conductivity, close to that of metals, transparent conducting oxide (TCO) thin films form a highly attractive class of materials for a wide variety of applications like thin film solar cells,

  3. Performance investigation of heat insulation solar glass for low-carbon buildings

    International Nuclear Information System (INIS)

    Cuce, Erdem; Young, Chin-Huai; Riffat, Saffa B.

    2014-01-01

    Highlights: • U-value of HISG is found to be 1.10 W/m 2 K. • Maximum temperature difference is achieved by HISG with 12.70 °C. • HISG provides two times better insulation than standard double glazed windows. • HISG generates over 40 W electricity from a glazing surface of 0.66 m 2 . • 100% of UV in incoming solar radiation is absorbed by HISG. - Abstract: Heat insulation solar glass (HISG), which has been recently developed by Professor Chin-Huai Young in Taiwan is an extraordinary glazing technology for low/zero carbon buildings. HISG differs from traditional glazing technologies with its ability of producing electricity. It also offers some additional features such as thermal insulation, sound insulation, self-cleaning and energy saving. In this work, thermal insulation, power generation and optical performance of HISG are experimentally investigated. Thermal insulation performance of HISG is analysed through standardized co-heating test methodology, and the results are compared with different traditional double glazed window samples. For the power generation and optical performance of HISG, two samples (air filled HISG and Argon filled HISG) are experimentally investigated in real and simulated operating conditions. The results indicate that both configurations show similar performance in terms of power generation. Under a solar intensity of 850 W/m 2 , over 40 W electrical power is achieved from HISG samples with a glazing area of 0.66 m 2 . Performance of samples under solar simulator is not found to be promising due to the absence of UV and IR parts in the artificial light source. In terms of thermal insulation ability, HISG is also found to be attractive. The average U-value of HISG is determined to be 1.10 W/m 2 K, which is two times better than standard double glazed windows. Some simulation results for two different cities (Taipei, Taiwan and Nottingham, UK) demonstrating the energy saving potential of HISG are also presented

  4. Luminescence properties of ZnO layers grown on Si-on-insulator substrates

    International Nuclear Information System (INIS)

    Kumar, Bhupendra; Gong, Hao; Vicknesh, S.; Chua, S. J.; Tripathy, S.

    2006-01-01

    The authors report on the photoluminescence properties of polycrystalline ZnO thin films grown on compliant silicon-on-insulator (SOI) substrates by radio frequency magnetron sputtering. The ZnO thin films on SOI were characterized by micro-Raman and photoluminescence (PL) spectroscopy. The observation of E 2 high optical phonon mode near 438 cm -1 in the Raman spectra of the ZnO samples represents the wurtzite crystal structure. Apart from the near-band-edge free exciton (FX) transition around 3.35 eV at 77 K, the PL spectra of such ZnO films also showed a strong defect-induced violet emission peak in the range of 3.05-3.09 eV. Realization of such ZnO layers on SOI would be useful for heterointegration with SOI-based microelectronics and microelectromechanical systems

  5. Lateral topological crystalline insulator heterostructure

    Science.gov (United States)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  6. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  7. ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing

    International Nuclear Information System (INIS)

    Liu, Y.; Li, Y.; Zeng, H.

    2013-01-01

    ZnO-based transparent conductive thin films have attracted much attention as a promising substitute material to the currently used indium-tin-oxide thin films in transparent electrode applications. However, the detailed function of the dopants, acting on the electrical and optical properties of ZnO-based transparent conductive thin films, is not clear yet, which has limited the development and practical applications of ZnO transparent conductive thin films. Growth conditions such as substrate type, growth temperature, and ambient atmosphere all play important roles in structural, electrical, and optical properties of films. This paper takes a panoramic view on properties of ZnO thin films and reviews the very recent works on new, efficient, low-temperature, and high-speed deposition technologies. In addition, we highlighted the methods of producing ZnO-based transparent conductive film on flexible substrate, one of the most promising and rapidly emerging research areas. As optimum-processing-parameter conditions are being obtained and their influencing mechanism is becoming clear, we can see that there will be a promising future for ZnO-based transparent conductive films.

  8. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  9. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  10. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  11. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Muthusubramanian, N.; Zant, H. S. J. van der [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Galan, E.; Maity, C.; Eelkema, R.; Grozema, F. C. [Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft (Netherlands)

    2016-07-04

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al{sub 2}O{sub 3} thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the range of 1 to 10{sup −4} G{sub 0} (1 G{sub 0} = 77 μS), where single-molecule conductances are commonly observed. The insulated devices were used to measure the conductance of an amphiphilic oligophenylene ethynylene derivative in deionized water.

  12. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  13. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  14. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  15. Electronic Structure of the Metastable Epitaxial Rock-Salt SnSe {111} Topological Crystalline Insulator

    Directory of Open Access Journals (Sweden)

    Wencan Jin

    2017-10-01

    Full Text Available Topological crystalline insulators have been recently predicted and observed in rock-salt structure SnSe {111} thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation has a reduced surface energy and is thus a preferred configuration. In this paper, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, is used to demonstrate that a rock-salt SnSe {111} thin film epitaxially grown on Bi_{2}Se_{3} has a stable Sn-terminated surface. These observations are supported by low-energy electron diffraction (LEED intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe {111} thin film has undergone a surface structural relaxation of the interlayer spacing between the Sn and Se atomic planes. In sharp contrast to the Se-terminated counterpart, the observed Dirac surface state in the Sn-terminated SnSe {111} thin film is shown to yield a high Fermi velocity, 0.50×10^{6}  m/s, which suggests a potential mechanism of engineering the Dirac surface state of topological materials by tuning the surface configuration.

  16. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  17. Fabrication of AlN thin films on different substrates at ambient temperature

    CERN Document Server

    Cai, W X; Wu, P H; Yang, S Z; Ji, Z M

    2002-01-01

    Aluminium nitride (AlN) is very useful as a barrier in superconductor-insulator-superconductor (SIS) device or as an insulating layer in many other applications. At ambient temperature, we deposit AlN thin films onto different substrates (such as MgO, LaAlO sub 3 and Si) by using radio-frequency magnetron sputtering and pure Al target. X-ray diffraction (XRD) and PHI-scan patterns show that the films grown on MgO substrates are excellent epitaxial films with (101) orientation of a hexagonal lattice. A possible structure of the interface between the film and the substrate is suggested and discussed.

  18. Nonvolatile Solid-State Charged-Polymer Gating of Topological Insulators into the Topological Insulating Regime

    Science.gov (United States)

    Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.

    2018-04-01

    We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.

  19. An Ultra-Efficient Nonlinear Platform: AlGaAs-On-Insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    The combination of nonlinear and integrated photonics enables applications including optical signal processing, multi-wavelength lasers, metrology, spectroscopy, and quantum information science. Silicon-on-insulator (SOI) has emerged as a promising platform [1, 2] due to its high material...... nonlinearity and its compatibility with the CMOS industry. However, silicon suffers two-photon absorption (TPA) in the telecommunication wavelength band around 1.55 µm, which hampers its applications. Different platforms have been proposed to avoid TPA in the telecom wavelength range such as Si3N4 and Hydex [3...... a nonlinear index (n2) on the order of 10−17 W/m2 and a high refractive index (n ≈3.3), a large transparency window (from near- to mid-infrared), and the ability to engineer the material bandgap to mitigate TPA [5]. In this presentation, we introduce AlGaAson-insulator (AlGaAsOI) platform which combines both...

  20. Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates

    Science.gov (United States)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-01

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  1. Measurement errors for thermocouples attached to thin plates

    International Nuclear Information System (INIS)

    Sobolik, K.B.; Keltner, N.R.; Beck, J.V.

    1989-01-01

    This paper discusses Unsteady Surface Element (USE) methods which are applied to a model of a thermocouple wire attached to a thin disk. Green's functions are used to develop the integral equations for the wire and the disk. The model can be used to evaluate transient and steady state responses for many types of heat flux measurement devices including thin skin calorimeters and circular foil (Gardon) head flux gauges. The model can accommodate either surface or volumetric heating of the disk. The boundary condition at the outer radius of the disk can be either insulated or constant temperature. Effect on the errors of geometrical and thermal factors can be assessed. Examples are given

  2. Quantum spin Hall effect in IV-VI topological crystalline insulators

    Science.gov (United States)

    Safaei, S.; Galicka, M.; Kacman, P.; Buczko, R.

    2015-06-01

    We envision that the quantum spin Hall effect should be observed in (111)-oriented thin films of SnSe and SnTe topological crystalline insulators. Using a tight-binding approach supported by first-principles calculations of the band structures, we demonstrate that in these films the energy gaps in the two-dimensional band spectrum depend in an oscillatory fashion on the layer thickness. These results as well as the calculated topological invariant indexes and edge state spin polarizations show that for films ˜20-40 monolayers thick a two-dimensional topological insulator phase appears. In this range of thicknesses in both SnSe and SnTe, (111)-oriented films edge states with Dirac cones with opposite spin polarization in their two branches are obtained. While in the SnTe layers a single Dirac cone appears at the projection of the {\\boldsymbol{}}\\bar{Γ } point of the two-dimensional Brillouin zone, in the SnSe (111)-oriented layers three Dirac cones at {\\boldsymbol{}}\\bar{M} points projections are predicted.

  3. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  4. Insulator-metal transition in substrate-independent VO2 thin film for phase-change devices.

    Science.gov (United States)

    Taha, Mohammad; Walia, Sumeet; Ahmed, Taimur; Headland, Daniel; Withayachumnankul, Withawat; Sriram, Sharath; Bhaskaran, Madhu

    2017-12-20

    Vanadium has 11 oxide phases, with the binary VO 2 presenting stimuli-dependent phase transitions that manifest as switchable electronic and optical features. An elevated temperature induces an insulator-to-metal transition (IMT) as the crystal reorients from a monoclinic state (insulator) to a tetragonal arrangement (metallic). This transition is accompanied by a simultaneous change in optical properties making VO 2 a versatile optoelectronic material. However, its deployment in scalable devices suffers because of the requirement of specialised substrates to retain the functionality of the material. Sensitivity to oxygen concentration and larger-scale VO 2 synthesis have also been standing issues in VO 2 fabrication. Here, we address these major challenges in harnessing the functionality in VO 2 by demonstrating an approach that enables crystalline, switchable VO 2 on any substrate. Glass, silicon, and quartz are used as model platforms to show the effectiveness of the process. Temperature-dependent electrical and optical characterisation is used demonstrating three to four orders of magnitude in resistive switching, >60% chromic discrimination at infrared wavelengths, and terahertz property extraction. This capability will significantly broaden the horizon of applications that have been envisioned but remained unrealised due to the lack of ability to realise VO 2 on any substrate, thereby exploiting its untapped potential.

  5. Studies of electronic and magnetic properties of LaVO3 thin film

    Science.gov (United States)

    Jana, Anupam; Karwal, Sharad; Choudhary, R. J.; Phase, D. M.

    2018-04-01

    We have investigated the electronic and magnetic properties of pulsed laser deposited Mott insulator LaVO3 (LVO) thin film. Structural characterization revels the single phase [00l] oriented LVO thin film. Enhancement of out of plane lattice parameter indicates the compressively strained LVO film. Electron spectroscopic studies demonstrate that vanadium is present in V3+ state. An energy dispersive X-ray spectroscopic study ensures the stoichiometric growth of the film. Very smooth surface is observed in scanning electron micrograph. Colour mapping for elemental distribution reflect the homogeneity of LVO film. The bifurcation between zero-field-cooled and Field-cooled curves clearly points towards the weak ferromagnetic phase presence in compressively strained LVO thin film. A finite value of coercivity at 300 K reflects the possibility of room temperature ferromagnetism of LVO thin film.

  6. On the sound insulation of acoustic metasurface using a sub-structuring approach

    Science.gov (United States)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-08-01

    The feasibility of using an acoustic metasurface (AMS) with acoustic stop-band property to realize sound insulation with ventilation function is investigated. An efficient numerical approach is proposed to evaluate its sound insulation performance. The AMS is excited by a reverberant sound source and the standardized sound reduction index (SRI) is numerically investigated. To facilitate the modeling, the coupling between the AMS and the adjacent acoustic fields is formulated using a sub-structuring approach. A modal based formulation is applied to both the source and receiving room, enabling an efficient calculation in the frequency range from 125 Hz to 2000 Hz. The sound pressures and the velocities at the interface are matched by using a transfer function relation based on ;patches;. For illustration purposes, numerical examples are investigated using the proposed approach. The unit cell constituting the AMS is constructed in the shape of a thin acoustic chamber with tailored inner structures, whose stop-band property is numerically analyzed and experimentally demonstrated. The AMS is shown to provide effective sound insulation of over 30 dB in the stop-band frequencies from 600 to 1600 Hz. It is also shown that the proposed approach has the potential to be applied to a broad range of AMS studies and optimization problems.

  7. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing.

    Science.gov (United States)

    Luo, Hu; Yin, Shaohui; Zhang, Guanhua; Liu, Chunhui; Tang, Qingchun; Guo, Meijian

    2017-10-01

    Ion-beam-thinning is a well-established sample preparation technique for transmission electron microscopy (TEM), but tedious procedures and labor consuming pre-thinning could seriously reduce its efficiency. In this work, we present a simple pre-thinning technique by using magnetorheological (MR) polishing to replace manual lapping and dimpling, and demonstrate the successful preparation of electron-transparent single crystal silicon samples after MR polishing and single-sided ion milling. Dimples pre-thinned to less than 30 microns and with little mechanical surface damage were repeatedly produced under optimized MR polishing conditions. Samples pre-thinned by both MR polishing and traditional technique were ion-beam thinned from the rear side until perforation, and then observed by optical microscopy and TEM. The results show that the specimen pre-thinned by MR technique was free from dimpling related defects, which were still residual in sample pre-thinned by conventional technique. Nice high-resolution TEM images could be acquired after MR polishing and one side ion-thinning. MR polishing promises to be an adaptable and efficient method for pre-thinning in preparation of TEM specimens, especially for brittle ceramics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Selenide isotope generator for the Galileo Mission: SIG thermal insulation evaluaion tests

    International Nuclear Information System (INIS)

    1979-06-01

    Since the SIG program required the use of very high performance thermal insulation materials in rather severe thermal and environmental conditions, a thorough screening and testing program was performed. Several types of materials were included in the preliminary survey. Most promising were oxide and carbonaceous fibrous insulations, oxide and carbonaceous foamed materials, and multilayer materials with both powder and cloth spacers. The latter were only viable for the vacuum option. In all, over one hundred materials from more than sixty manufacturers were evaluated from literature and manufacturers' data. The list was pared to eighteen candidates in seven basic types, i.e., fibrous microporous SiO 2 , fibrous SiO 2 /Al 2 O 3 , fibrous ZrO 2 , fibrous carbon, foamed SiO 2 , foamed carbon, and multilayer. Test results are presented

  9. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  10. Analyses of desorbed H2O with temperature programmed desorption technique in sol-gel derived HfO2 thin films

    International Nuclear Information System (INIS)

    Shimizu, H.; Nemoto, D.; Ikeda, M.; Nishide, T.

    2009-01-01

    Hafnium oxide (HfO 2 ) is a promising material for the gate insulator in highly miniaturized silicon (Si) ultra-large-scale-integration (ULSI) devices (32 nm and beyond). In the field chemistry, a sol-gel processing has been used to fabricate HfO 2 thin film with the advantages of low cost, relative simplicity, and easy control of the composition of the layers formed. Temperature-programmed desorption (TPD) has been used not only for analyzing adsorbed gases on the surfaces of bulk sol-gel-derived HfO 2 of sol-gel-derived HfO 2 thin film fired at 350, 450, 550 and 700 deg C in sol-gel derived HfO 2 films in air is investigated using TPD, and also the material characterization of HfO 2 thin films is evaluated by X-ray diffraction (XRD) method. The dielectric constant of the films was also estimated using the capacitance-voltage (C-V) method. TPD is essentially a method of analyzing desorped gases from samples heated by infra-red light as a function of temperature under vacuum conditions using a detector of quadruple mass spectroscopy (QMS). Sol-gel-derived HfO 2 films were fabricated on 76-mm-diameter Si(100) wafers as follows. Hafnia sol solutions were prepared by dissolving HfCl 4 in NH 4 OH solution, followed by the of HCOOH. (author)

  11. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  12. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  13. A pile-up phenomenon during arsenic diffusion in silicon-on-insulator structures formed by oxygen implantation

    Science.gov (United States)

    Normand, P.; Tsoukalas, D.; Guillemot, N.; Chenevier, P.

    1989-10-01

    Arsenic diffusion in silicon-on-insulator formed by deep oxygen implantation is studied by secondary ion mass spectroscopy and speading resistance measurements. An enhanced diffusivity as well as a pile-up phenomenon are observed in the thin silicon layer. The McNabb and Foster equations [Trans. TMS-AIME 22, 618 (1963)] for diffusion with trapping are solved in order to simulate this last effect.

  14. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  15. Towards in-situ tem analysis of PLD Pb(Zr,Ti)O3 thin film membranes

    NARCIS (Netherlands)

    Sardan Sukas, Ö.; Berenschot, Johan W.; de Boer, Meint J.; Nguyen, Duc Minh; van Zalk, M.; Abelmann, Leon

    2011-01-01

    In this paper, a novel technique for fabricating Transmission Electron Microscopy (TEM) chips for investigating structural and piezoelectric properties of Pulse Laser Deposited (PLD) Lead Zirconium Titanate (PZT) thin films is presented. The method involves silicon-on-insulator (SOI) wafer

  16. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui

    2013-02-21

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  17. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui; Xiao, Jiang; Manchon, Aurelien; Maekawa, Sadamichi

    2013-01-01

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  18. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    International Nuclear Information System (INIS)

    Abdullah, J.; Yahya, R.

    2007-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented

  19. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    Science.gov (United States)

    Abdullah, J.; Yahya, R.

    2007-05-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.

  20. ESTIMATION OF INSULATOR CONTAMINATIONS BY MEANS OF REMOTE SENSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    G. Han

    2016-06-01

    Full Text Available The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD, digital elevation model (DEM, land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data. Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  1. The Effect of Shell Thickness, Insulation and Casting Temperature on Defects Formation During Investment Casting of Ni-base Turbine Blades

    Directory of Open Access Journals (Sweden)

    Raza M.

    2015-12-01

    Full Text Available Turbine blades have complex geometries with free form surface. Blades have different thickness at the trailing and leading edges as well as sharp bends at the chord-tip shroud junction and sharp fins at the tip shroud. In investment casting of blades, shrinkage at the tip-shroud and cord junction is a common casting problem. Because of high temperature applications, grain structure is also critical in these castings in order to avoid creep. The aim of this work is to evaluate the effect of different process parameters, such as, shell thickness, insulation and casting temperature on shrinkage porosity and grain size. The test geometry used in this study was a thin-walled air-foil structure which is representative of a typical hot-gas-path rotating turbine component. It was observed that, in thin sections, increased shell thickness helps to increase the feeding distance and thus avoid interdendritic shrinkage. It was also observed that grain size is not significantly affected by shell thickness in thin sections. Slower cooling rate due to the added insulation and steeper thermal gradient at metal mold interface induced by the thicker shell not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections.

  2. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  3. Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions

    International Nuclear Information System (INIS)

    Khan, G.R.; Kandasami, A.; Bhat, B.A.

    2016-01-01

    Swift Heavy Ion (SHI) irradiation with 200 MeV Ag 9+ -ion beam at ion fluences of 1E11, 5E11, 1E12, and 5E12 for tuning of electrical transport properties of VO 2 thin films fabricated by so–gel technique on alumina substrates has been demonstrated in the present paper. The point defects created by SHI irradiation modulate metal to insulator phase transition temperature, carrier concentration, carrier mobility, electrical conductivity, and Seebeck coefficient of VO 2 thin films. The structural properties of the films were characterized by XRD and Raman spectroscopy and crystallite size was found to decrease upon irradiation. The atomic force microscopy revealed that the surface roughness of specimens first decreased and then increased with increasing fluence. Both resistance as well as Seebeck coefficient measurements demonstrated that all the samples exhibit metal–insulator phase transition and the transition temperatures decreases with increasing fluence. Hall effect measurements exhibited that carrier concentration increased continuously with increasing fluence which resulted in an increase of electrical conductivity by several orders of magnitude in the insulating phase. Seebeck coefficient in insulating phase remained almost constant in spite of an increase in the electrical conductivity by several orders of magnitude making SHI irradiation an alternative stratagem for augmentation of thermoelectric performance of the materials. The carrier mobility at room temperature decreased up to the beam fluence of 5E11 and then started increasing whereas Seebeck coefficient in metallic state first increased with increasing ion beam fluence up to 5E11 and thereafter decreased. Variation of these electrical transport parameters has been explained in detail. - Highlights: • Thermoelectric properties of VO 2 thin films enhance upon SHI irradiation. • Structural properties show that crystallite size decrease upon SHI irradiation. • Metal–insulator phase

  4. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  5. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  6. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  7. Thin layer settling - a promising method for purifying industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Perevalov, V G; Kolokhmatova, N M; Malkina, I I; Smyslov, A I

    1979-01-01

    Proposed for removing oil and suspended substances from waste waters is a thin layer, tubular settler, whose elements are made from polyethylene pipes. The operational effectiveness of the settler on the average is 90-95%, the duration of the purification is 10-11 min, which is 1/12 of that in the most common and contemporary oil traps. The volume of the settler structure with this productivity may be reduced by 12 times.

  8. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator

    Science.gov (United States)

    Kandala, Abhinav; Richardella, Anthony; Kempinger, Susan; Liu, Chao-Xing; Samarth, Nitin

    2015-01-01

    When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2−xTe3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer–Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization. PMID:26151318

  9. Growth of conductive HfO{sub 2-x} thin films by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Kleebe, Hans-Joachim [Institut fuer Angewandte Geowissenschaften, TU Darmstadt (Germany)

    2009-07-01

    Thin films of oxygen deficient hafnium oxide were grown on single crystal c-cut and r-cut sapphire substrates by reactive molecular beam epitaxy. The oxidation conditions during growth were varied within a wide range using RF-activated oxygen. Hafnium oxide thin films were characterized using X-ray diffraction, resistivity measurements ({rho}-T) and transmission electron microscopy (TEM). The results show a dramatic increase in conductivity of the deposited oxygen deficient hafnium oxide thin films with decreasing oxidation conditions during growth. The electrical properties of deficient hafnium oxide thin films varied from insulating over semiconducting to conducting. X-ray diffraction data as well as TEM data rule out the possibility of conductivity due to metallic hafnium.

  10. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  11. Topotactic Metal-Insulator Transition in Epitaxial SrFeOx Thin Films.

    Science.gov (United States)

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; Kim, Minu; Kang, Tae Dong; Lee, Jaekwang; Roh, Seulki; Jung, In-Ho; Hwang, Jungseek; Kim, Sung Wng; Noh, Tae Won; Ohta, Hiromichi; Choi, Woo Seok

    2017-10-01

    Topotactic phase transformation enables structural transition without losing the crystalline symmetry of the parental phase and provides an effective platform for elucidating the redox reaction and oxygen diffusion within transition metal oxides. In addition, it enables tuning of the emergent physical properties of complex oxides, through strong interaction between the lattice and electronic degrees of freedom. In this communication, the electronic structure evolution of SrFeO x epitaxial thin films is identified in real-time, during the progress of reversible topotactic phase transformation. Using real-time optical spectroscopy, the phase transition between the two structurally distinct phases (i.e., brownmillerite and perovskite) is quantitatively monitored, and a pressure-temperature phase diagram of the topotactic transformation is constructed for the first time. The transformation at relatively low temperatures is attributed to a markedly small difference in Gibbs free energy compared to the known similar class of materials to date. This study highlights the phase stability and reversibility of SrFeO x thin films, which is highly relevant for energy and environmental applications exploiting the redox reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. TI--CR--AL--O thin film resistors

    Science.gov (United States)

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  13. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    International Nuclear Information System (INIS)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    FeCo epitaxial films were prepared on MgO(111), SrTiO 3 (111), and Al 2 O 3 (0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110) bcc films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO 3 and Al 2 O 3 substrates include FeCo(111) bcc crystal in addition to the FeCo(110) bcc crystals with NW and KS relationships. The FeCo(111) bcc crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110) bcc and FeCo(111) bcc crystals formed on the insulating substrates are in agreement with those of the bulk Fe 50 Co 50 (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  14. In-Plane Impedance Spectroscopy measurements in Vanadium Dioxide thin films

    Science.gov (United States)

    Ramirez, Juan; Patino, Edgar; Schmidt, Rainer; Sharoni, Amos; Gomez, Maria; Schuller, Ivan

    2012-02-01

    In plane Impedance Spectroscopy measurements have been done in Vanadium Dioxide thin films in the range of 100 Hz to 1 MHz. Our measurements allows distinguishing between the resistive and capacitive response of the Vanadium Dioxide films across the metal-insulator transition. A non ideal RC behavior was found in our thin films from room temperature up to 334 K. Around the MIT, an increase of the total capacitance is observed. A capacitor-network model is able to reproduce the capacitance changes across the MIT. Above the MIT, the system behaves like a metal as expected, and a modified equivalent circuit is necessary to describe the impedance data adequately.

  15. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  16. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  17. Ultra thin metallic coatings to control near field radiative heat transfer

    Science.gov (United States)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  18. Demonstration of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with silicon-oxy-nitride as the gate insulator

    International Nuclear Information System (INIS)

    Balachander, K.; Arulkumaran, S.; Egawa, T.; Sano, Y.; Baskar, K.

    2005-01-01

    AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs) were fabricated with plasma enhanced chemical vapor deposited silicon oxy-nitride (SiON) as an insulating layer. The compositions of SiON thin films were confirmed using X-ray photoelectron spectroscopy. The fabricated MOSHEMTs exhibited a very high saturation current density of 1.1 A/mm coupled with high positive operational gate voltage up to +7 V. The MOSHEMTs also exhibited four orders of low gate leakage current and high forward-on voltage when compared with the conventional HEMTs. The drain current collapse using gate pulse measurements showed only a negligible difference in the saturation current density revealing the drastic improvement in passivation of the surface states due to the high quality of dielectric thin films deposited. Thus, based on the improved direct-current operation, SiON can be considered to be a potential gate oxide comparable with other dielectric insulators

  19. Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures

    Science.gov (United States)

    Xiao, Di; Jiang, Jue; Shin, Jae-Ho; Wang, Wenbo; Wang, Fei; Zhao, Yi-Fan; Liu, Chaoxing; Wu, Weida; Chan, Moses H. W.; Samarth, Nitin; Chang, Cui-Zu

    2018-02-01

    The "magnetoelectric effect" arises from the coupling between magnetic and electric properties in materials. The Z2 invariant of topological insulators (TIs) leads to a quantized version of this phenomenon, known as the topological magnetoelectric (TME) effect. This effect can be realized in a new topological phase called an "axion insulator" whose surface states are all gapped but the interior still obeys time reversal symmetry. We demonstrate such a phase using electrical transport measurements in a quantum anomalous Hall (QAH) sandwich heterostructure, in which two compositionally different magnetic TI layers are separated by an undoped TI layer. Magnetic force microscopy images of the same sample reveal sequential magnetization reversals of the top and bottom layers at different coercive fields, a consequence of the weak interlayer exchange coupling due to the spacer. When the magnetization is antiparallel, both the Hall resistance and Hall conductance show zero plateaus, accompanied by a large longitudinal resistance and vanishing longitudinal conductance, indicating the realization of an axion insulator state. Our findings thus show evidence for a phase of matter distinct from the established QAH state and provide a promising platform for the realization of the TME effect.

  20. Evaluation of mechanical and thermal properties of insulation materials for HTS power devices at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyung Seop; Diaz, Mark Angelo [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of)

    2017-06-15

    In superconducting power devices including power cables in which high temperature superconducting (HTS) tapes are utilized, a reliable electrical insulation should be achieved for its maximum performance. For an efficient design of HTS superconducting devices, a comparative evaluation of the mechanical and thermal propperties for various insulation materials at cryogenic temperatures is required. Especially, in the process of the property evaluation of the sheet-shaped insulation materials, anisotropy according to the machining direction should be considered because the mechanical and thermal properties are significantly influenced by the sample orientation. In this study, the cryogenic thermal and mechanical properties of various insulation material sheets such as PPLP, Cryoflex, Teflon, and Kapton were determined considering sample orientation. All samples tested at cryogenic temperature showed significantly higher tensile strength as compared with that of room temperature. The ultimate tensile strength at both temperature conditions significantly depended upon the sample orientation. The thermal properties of the insulation materials exhibited a slight difference among samples depending on the orientation: for the PPLP and Cryoflex, the CD orientation showed larger thermal contraction up to 77 K as compared to the MD one. MD samples in PPLP and Cryoflex showed a lower CTE and thermal contraction which made it more promising as an insulation material due to its comparable CTE with HTS CC tapes.

  1. Thermographic identification of wetted insulation on pipelines in the arctic oilfields

    Science.gov (United States)

    Miles, Jonathan J.; Dahlquist, A. L.; Dash, L. C.

    2006-04-01

    Steel pipes used at Alaskan oil-producing facilities to transport production crude, gas, and injection water between well house and drill site manifold building, and along cross-country lines to and from central processing facilities, must be insulated in order to protect against the severely cold temperatures that are common during the arctic winter. A problem inherent with this system is that the sealed joints between adjacent layers of the outer wrap will over time degrade and can allow water to breach the system and migrate into and through the insulation. The moisture can ultimately interact with the steel pipe and trigger external corrosion which, if left unchecked, can lead to pipe failure and spillage. A New Technology Evaluation Guideline prepared for ConocoPhillips Alaska, Inc. in 2001 is intended to guide the consideration of new technologies for pipeline inspection in a manner that is safer, faster, and more cost-effective than existing techniques. Infrared thermography (IRT) was identified as promising for identification of wetted insulation regions given that it offers the means to scan a large area quickly from a safe distance, and measure the temperature field associated with that area. However, it was also recognized that there are limiting factors associated with an IRT-based approach including instrument sensitivity, cost, portability, functionality in hostile (arctic) environments, and training required for proper interpretation of data. A methodology was developed and tested in the field that provides a technique to conduct large-scale screening for wetted regions along insulated pipelines. The results of predictive modeling analysis and testing demonstrate the feasibility under certain condition of identifying wetted insulation areas. The results of the study and recommendations for implementation are described.

  2. Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, D. B. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics; Roach, W. M. [College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science; Clavero, C. [College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science; Reece, C. E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lukaszew, R. A. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics; College of William and Mary, Williamsburg, VA (United States). Dept. of Applied Science

    2013-02-05

    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ~500 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [ Appl. Phys. Lett. 88 012511 (2006)] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  3. VIP A B C. Vacuum Insulation Panels Applied in Building Constructions

    Energy Technology Data Exchange (ETDEWEB)

    Tenpierik, M.J.

    2010-02-01

    Due to sustainability and due to international treaties, it is desired and required to reduce greenhouse gas emissions drastically. One contributor to these emissions is the burning of fossil fuels for generating power and electricity to be used in and for buildings. Buildings and building-related processes are responsible for about 40% of the primary energy consumption in the European Union. More than half of this energy is applied for heating systems in dwellings and commercial buildings. The European Union therefore has laid down new energy performance requirements for buildings in the European Directive on the Energy Performance of Buildings. Moreover, a reduction of energy losses of buildings during their occupational phase is important for facilitating the implementation of sustainable energy sources in the built environment. Increasing the insulation value of the envelope of buildings may contribute to this reduction of primary energy use. Two strategies can be followed. The first strategy is to increase the thickness of the thermal insulation layer. Until recently, this strategy has primarily been adopted. If, however, German or Swiss Passivhaus standard is applied, the thickness of this insulation layer would increase to beyond 30 cm, resulting in very thick building enclosures. The second, more innovative, strategy for reducing energy losses through the building skin would be the application of more effective thermal insulators. One such more effective thermal insulator is a vacuum insulation panel, abbreviated as VIP. A VIP consists of an open-celled core material which is evacuated and then tightly sealed into a barrier envelope to maintain this vacuum. The vacuum inside the pores of the core material reduces the thermal conductivity of the product significantly, as a result of which the thickness of the insulation layer can be reduced to obtain a certain performance. This reduction of thickness is among the most promising features for large

  4. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  5. The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials.

    Science.gov (United States)

    Pourrahimi, Amir Masoud; Olsson, Richard T; Hedenqvist, Mikael S

    2018-01-01

    Recent progress in the development of polyethylene/metal-oxide nanocomposites for extruded high-voltage direct-current (HVDC) cables with ultrahigh electric insulation properties is presented. This is a promising technology with the potential of raising the upper voltage limit in today's underground/submarine cables, based on pristine polyethylene, to levels where the loss of energy during electric power transmission becomes low enough to ensure intercontinental electric power transmission. The development of HVDC insulating materials together with the impact of the interface between the particles and the polymer on the nanocomposites electric properties are shown. Important parameters from the atomic to the microlevel, such as interfacial chemistry, interfacial area, and degree of particle dispersion/aggregation, are discussed. This work is placed in perspective with important work by others, and suggested mechanisms for improved insulation using nanoparticles, such as increased charge trap density, adsorption of impurities/ions, and induced particle dipole moments are considered. The effects of the nanoparticles and of their interfacial structures on the mechanical properties and the implications of cavitation on the electric properties are also discussed. Although the main interest in improving the properties of insulating polymers has been on the use of nanoparticles, leading to nanodielectrics, it is pointed out here that larger microscopic hierarchical metal-oxide particles with high surface porosity also impart good insulation properties. The impact of the type of particle and its inherent properties (purity and conductivity) on the nanocomposite dielectric and insulating properties are also discussed based on data obtained by a newly developed technique to directly observe the charge distribution on a nanometer scale in the nanocomposite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    OpenAIRE

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm to test the suppression of leakage currents in deionized water and phosphate buffered saline. Junctions coated with a 15 nm thick oxide layer yielded atomically sharp electrodes and negligible conductance counts in the ra...

  7. Novel load responsive multilayer insulation with high in-atmosphere and on-orbit thermal performance

    Science.gov (United States)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2012-04-01

    Aerospace cryogenic systems require lightweight, high performance thermal insulation to preserve cryopropellants both pre-launch and on-orbit. Current technologies have difficulty meeting all requirements, and advances in insulation would benefit cryogenic upper stage launch vehicles, LH2 fueled aircraft and ground vehicles, and provide capabilities for sub-cooled cryogens for space-borne instruments and orbital fuel depots. This paper reports the further development of load responsive multilayer insulation (LRMLI) that has a lightweight integrated vacuum shell and provides high thermal performance both in-air and on-orbit. LRMLI is being developed by Quest Product Development and Ball Aerospace under NASA contract, with prototypes designed, built, installed and successfully tested. A 3-layer LRMLI blanket (0.63 cm thick, 77 K cold, 295 K hot) had a measured heat leak of 6.6 W/m2 in vacuum and 40.6 W/m2 in air at one atmosphere. In-air LRMLI has an 18× advantage over Spray On Foam Insulation (SOFI) in heat leak per thickness and a 16× advantage over aerogel. On-orbit LRMLI has a 78× lower heat leak than SOFI per thickness and 6× lower heat leak than aerogel. The Phase II development of LRMLI is reported with a modular, flexible, thin vacuum shell and improved on-orbit performance. Structural and thermal analysis and testing results are presented. LRMLI mass and thermal performance is compared to SOFI, aerogel and MLI over SOFI.

  8. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  9. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  10. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  11. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  12. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  13. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  14. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  15. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  16. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  17. RHEED transmission mode and pole figures thin film and nanostructure texture analysis

    CERN Document Server

    Wang, Gwo-Ching

    2014-01-01

    This unique book covers the fundamental principle of electron diffraction, basic instrumentation of RHEED, definitions of textures in thin films and nanostructures, mechanisms and control of texture formation, and examples of RHEED transmission mode measurements of texture and texture evolution of thin films and nanostructures. Also presented is a new application of RHEED in the transmission mode called RHEED pole figure technique that can be used to monitor the texture evolution in thin film growth and nanostructures and is not limited to single crystal epitaxial film growth. Details of the construction of RHEED pole figures and the interpretation of observed pole figures are presented.  Materials covered include metals, semiconductors, and thin insulators. This book also: Presents a new application of RHEED in the transmission mode Introduces a variety of textures from metals, semiconductors, compound semiconductors, and their characteristics in RHEED pole figures Provides examples of RHEED measurements o...

  18. Quenching of superconductivity in disordered thin films by phase fluctuations

    International Nuclear Information System (INIS)

    Hebard, A.F.; Palaanen, M.A.

    1992-01-01

    The amplitude Ψ 0 and phase Φ of the superconducting order parameter in thin-film systems are affected differently by disorder and dimensionality. With increasing disorder superconducting long range order is quenched in sufficiently thin films by physical processes driven by phase fluctuations. This occurs at both the zero-field vortex-antivortex unbinding transition and at the zero-temperature magnetic-field-tuned superconducting-insulating transition. At both of these transitions Ψ 0 is finite and constant, vanishing only when temperature, disorder, and/or magnetic field are increased further. Experimental results on amorphous-composite InO x films are presented to illustrate these points and appropriate comparisons are made to other experimental systems. (orig.)

  19. Resistance switching in epitaxial SrCoO{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk, E-mail: cu-jung@hufs.ac.kr [Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Kim, Yeon Soo; Park, Bae Ho [Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 143-791 (Korea, Republic of); Jeong, Huiseong; Park, Ji-Yong [Department of Physics and Division of Energy System Research, Ajou University, Suwon 443-749 (Korea, Republic of); Cho, Myung Rae; Park, Yun Daniel [Department of Physics and Astronomy and Center for Subwavelength Optics, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Woo Seok [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Dong-Wook [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Jin, Hyunwoo; Lee, Suyoun [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong [Department of Material Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-08-11

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO{sub 3} (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO{sub 2.5}) and conducting perovskite (SrCoO{sub 3−δ}) depending on the oxygen content. The current–voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoO{sub x} thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO{sub 2.5}.

  20. Controlling phase separation in vanadium dioxide thin films via substrate engineering

    Science.gov (United States)

    Gilbert Corder, Stephanie N.; Jiang, Jianjuan; Chen, Xinzhong; Kittiwatanakul, Salinporn; Tung, I.-Cheng; Zhu, Yi; Zhang, Jiawei; Bechtel, Hans A.; Martin, Michael C.; Carr, G. Lawrence; Lu, Jiwei; Wolf, Stuart A.; Wen, Haidan; Tao, Tiger H.; Liu, Mengkun

    2017-10-01

    The strong electron-lattice interactions in correlated electron systems provide unique opportunities for altering the material properties with relative ease and flexibility. In this Rapid Communication, we use localized strain control via a focused-ion-beam patterning of Ti O2 substrates to demonstrate that one can selectively engineer the insulator-to-metal transition temperature, the fractional component of the insulating and metallic phases, and the degree of optical anisotropy down to the length scales of the intrinsic phase separation in V O2 thin films without altering the quality of the films. The effects of localized strain control on the strongly correlated electron system are directly visualized by state-of-the-art IR near-field imaging and spectroscopy techniques and x-ray microdiffraction measurements.

  1. Optimization of synthesis protocols to control the nanostructure and the morphology of metal oxide thin films for memristive applications

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, G., E-mail: giacomo.baldi@cnr.it; Bosi, M.; Attolini, G.; Berzina, T.; Mosca, R.; Ponraj, J. S.; Iannotta, S. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Giusti, G.; Nozar, P.; Toccoli, T.; Verucchi, R. [IMEM-CNR Institute, Via alla Cascata 56/C, Povo – I-38123 Trento (Italy); Collini, C.; Lorenzelli, L. [FBK Bruno Kessler Foundation, Via Sommarive 18, I-38123 Trento (Italy)

    2015-03-10

    We propose a multi-technique approach based on in-vacuum synthesis of metal oxides to optimize the memristive properties of devices that use a metal oxide thin film as insulating layer. Pulsed Microplasma Cluster Source (PMCS) is based on supersonic beams seeded by clusters of the metal oxide. Nanocrystalline TiO{sub 2} thin films can be grown at room temperature, controlling the oxide stoichiometry from titanium metal up to a significant oxygen excess. Pulsed Electron beam Deposition (PED) is suitable to grow crystalline thin films on large areas, a step towards producing device arrays with controlled morphology and stoichiometry. Atomic Layer Deposition (ALD) is a powerful technique to grow materials layer-by-layer, finely controlling the chemical and structural properties of the film up to thickness of 50-80 nm. We will present a few examples of metal-insulator-metal structures showing a pinched hysteresis loop in their current-voltage characteristic. The structure, stoichiometry and morphology of the metal oxide layer, either aluminum oxide or titanium dioxide, is investigated by means of scanning electron microscopy (SEM) and by Raman scattering.

  2. Electrical properties of thermally evaporated nickel-dimethylglyoxime thin films

    Science.gov (United States)

    Dakhel, A. A.; Ali-Mohamed Ahmed, Y.

    2005-06-01

    Thin Bis-(dimethylglyoximato)nickel(II) [Ni(DMG)2] films of amorphous and crystalline structures were prepared by vacuum deposition on Si (P) substrates. The films were characterised by X-ray fluorescence and X-ray diffraction. The constructed Al/Ni(DMG)2/Si(P) metal-insulator-semiconductor devices were characterised by the measurement of the gate-voltage dependence of their capacitance and ac conductance, from which the surface states density Dit of insulator/semiconductor interface and the density of the fixed charges in the oxide were determined. The ac electrical conduction and dielectric properties of the Ni(DMG)2-Silicon structure were studied at room temperature. The data of the ac measurements of the annealed films follow the correlated barrier-hopping CBH mode, from which the fundamental absorption bandgap, the minimum hopping distance, and other parameters of the model were determined.

  3. Diamond logic inverter with enhancement-mode metal-insulator-semiconductor field effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. W., E-mail: liu.jiangwei@nims.go.jp [International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Liao, M. Y.; Imura, M. [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Watanabe, E.; Oosato, H. [Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Koide, Y., E-mail: koide.yasuo@nims.go.jp [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Center of Materials Research for Low Carbon Emission, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-08-25

    A diamond logic inverter is demonstrated using an enhancement-mode hydrogenated-diamond metal-insulator-semiconductor field effect transistor (MISFET) coupled with a load resistor. The gate insulator has a bilayer structure of a sputtering-deposited LaAlO{sub 3} layer and a thin atomic-layer-deposited Al{sub 2}O{sub 3} buffer layer. The source-drain current maximum, extrinsic transconductance, and threshold voltage of the MISFET are measured to be −40.7 mA·mm{sup −1}, 13.2 ± 0.1 mS·mm{sup −1}, and −3.1 ± 0.1 V, respectively. The logic inverters show distinct inversion (NOT-gate) characteristics for input voltages ranging from 4.0 to −10.0 V. With increasing the load resistance, the gain of the logic inverter increases from 5.6 to as large as 19.4. The pulse response against the high and low input voltages shows the inversion response with the low and high output voltages.

  4. Effects of insulation on potted superconducting coils

    International Nuclear Information System (INIS)

    Zeller, A.F.; DeKamp, J.C.; Magsig, C.T.; Nolen, J.A.; McInturff, A.D.

    1989-01-01

    Test coils using identical wire but with either Formvar or Polyesterimid insulation were fabricated to determine the effects of insulation on training behavior. It was found that the type of insulation did not affect the training behavior. While considerable attention has been paid to epoxy formulations used for superconducting coils, little study has been devoted to the effects of the wire insulation on training behavior. If the insulation does not bind well with the epoxy, the wires will not be held securely in place, and training will be required to make the coil operate at its design limit. In fact, the coil may never reach its design current, showing considerable degredation. Conversely, if the epoxy-insulation reaction is to soften or weaken the insulation, then shorts and/or training may result. The authors have undertaken a study of the effects of the insulation on potted coils wet wound with Stycast 2850 FT epoxy. The wire was insulated with one of two insulting varnishes: Formvar (a polyvinyl formal resin) or Polyesterimid (a phenolic resin). Formvar is the standard insulation in the United States while Polyesterimid the European standard

  5. Vacuum foil insulation system

    International Nuclear Information System (INIS)

    Hanson, J.P.; Sabolcik, R.E.; Svedberg, R.C.

    1976-01-01

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly. The insulation is for an implantable nuclear powered artificial heart

  6. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  7. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  8. DOUBLE BOSS SCULPTURED DIAPHRAGM EMPLOYED PIEZORESISTIVE MEMS PRESSURE SENSOR WITH SILICON-ON-INSULATOR (SOI

    Directory of Open Access Journals (Sweden)

    D. SINDHANAISELVI

    2017-07-01

    Full Text Available This paper presents the detailed study on the measurement of low pressure sensor using double boss sculptured diaphragm of piezoresistive type with MEMS technology in flash flood level measurement. The MEMS based very thin diaphragms to sense the low pressure is analyzed by introducing supports to achieve linearity. The simulation results obtained from Intellisuite MEMS CAD design tool show that very thin diaphragms with rigid centre or boss give acceptable linearity. Further investigations on very thin diaphragms embedded with piezoresistor for low pressure measurement show that it is essential to analyse the piezoresistor placement and size of piezoresistor to achieve good sensitivity. A modified analytical modelling developed in this study for double boss sculptured diaphragm results were compared with simulated results. Further the enhancement of sensitivity is analyzed using non uniform thickness diaphragm and Silicon-On-Insulator (SOI technique. The simulation results indicate that the double boss square sculptured diaphragm with SOI layer using 0.85μm thickness yields the higher voltage sensitivity, acceptable linearity with Small Scale Deflection.

  9. For progress in natural science: Materials international investigations of structural phase transformation and THz properties across metal–insulator transition in VO2/Al2O3 epitaxial films

    Directory of Open Access Journals (Sweden)

    Mengmeng Yang

    2015-10-01

    Full Text Available Vanadium dioxide (VO2 epitaxial thin films on (0001-oriented Al2O3 substrates were prepared using radio frequency (RF magnetron sputtering techniques. To study the metal-insulator-transition (MIT mechanism and extend the applications of VO2 epitaxial films at terahertz (THz band, temperature-dependent X-ray diffraction (XRD and THz time domain spectroscopy of the VO2 epitaxial films were performed. Both the lattice constants and THz transmission exhibited a similar and sharp transition that was similar to that observed for the electrical resistance. Consequently, the MIT of the VO2/Al2O3 epitaxial films should be co-triggered by the structural phase transition and electronic transition. Moreover, the very large resistance change (on the order of ~103 and THz response (with a transmission modulation ratio of ~87% in the VO2/Al2O3 epitaxial heterostructures are promising for electrical switch and electro-optical device applications.

  10. INSUL, Calculation of Thermal Insulation of Various Materials Immersed in He

    International Nuclear Information System (INIS)

    Kinkead, A.N.; Pitchford, B.E.

    1977-01-01

    1 - Nature of the physical problem solved: Performance of thermal insulation immersed in helium. 2 - Method of solution: Mineral fibre, metal fibre and metallic multi-layer foils are studied. An approximate analysis for performance evaluation of multi-layer insulation in vertical gas spaces including the regime between fully suppressed natural convection and that for which an accepted power relationship applies is included

  11. Quantum Monte Carlo study of the superconductor-insulator transition in the dual vortex representation

    Science.gov (United States)

    Khan, Hasan; Gazit, Snir; Randeria, Mohit; Trivedi, Nandini

    The superconductor-insulator transition (SIT) in two dimensions is a paradigm for quantum criticality that has been observed experimentally in Josephson junction arrays, superconducting thin films, and cold atoms trapped in an optical lattice. The conventional picture of the transition is in terms of the condensation of bosonic degrees of freedom (Cooper pairs in superconductors). Interestingly, the transition has a dual description, where the insulating phase is a Bose condensate of vortices. We study the SIT numerically by means of a large-scale quantum Monte Carlo (QMC) simulation in the vortex representation. This provides direct access to both the boson and vortex degrees of freedom and allows us to numerically test the duality and quantify deviations from self-duality. Our main focus is on critical properties such as the vortex and the boson phase stiffness. We compare our results to previous studies in the bosonic representation. We acknowledge support from Grant DOE-BES DE-FG02-07ER46423 (HK, NT).

  12. Modification and structuring of conducting polymer films on insulating substrates by ion beam treatment

    International Nuclear Information System (INIS)

    Asmus, T.; Wolf, Gerhard K.

    2000-01-01

    Besides the commonly used procedures of UV-, X-ray and electron beam lithography, surface structuring by ion beam processes represents an alternative route to receive patterns in the nanometre-micrometre scale. In this work we focused on changes of surface properties of the polymer materials induced by ion irradiation and on reproducing hexagonal and square patterns in the micrometre scale. To achieve a better understanding of modification and structuring of insulating and conducting polymers by ion beam treatment we investigated effects of 14 keV Ar + bombardment on thin films of doped conducting polyethoxithiophene (PEOT) and polyethylenedioxithiophene (PEDT) on polyethersulfone (PES) as insulating substrate within the fluence range from 10 14 to 10 17 ions/cm 2 . Changes of surface properties like wettability, solubility, topology and electrochemical behaviour have been studied by contact angle technique, AFM/LFM, cyclovoltammetry and electrochemical microelectrode. By irradiation through copper masks structured patterns were achieved. These patterns can be converted by galvanic or electroless copper deposition in structured metal layers

  13. Integrated Multilayer Insulation

    Science.gov (United States)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  14. ASRM case insulation design and development

    Science.gov (United States)

    Bell, Matthew S.; Tam, William F. S.

    1992-10-01

    This paper describes the achievements made on the Advanced Solid Rocket Motor (ASRM) case insulation design and development program. The ASRM case insulation system described herein protects the metal case and joints from direct radiation and hot gas impingement. Critical failure of solid rocket systems is often traceable to failure of the insulation design. The wide ranging accomplishments included the development of a nonasbestos insulation material for ASRM that replaced the existing Redesigned Solid Rocket Motor (RSRM) asbestos-filled nitrile butadiene rubber (NBR) along with a performance gain of 300 pounds, and improved reliability of all the insulation joint designs, i.e., segmented case joint, case-to-nozzle and case-to-igniter joint. The insulation process development program included the internal stripwinding process. This process advancement allowed Aerojet to match to exceed the capability of other propulsion companies.

  15. Spin accumulation in disordered topological insulator ultrathin films

    Science.gov (United States)

    Siu, Zhuo Bin; Ho, Cong Son; Tan, Seng Ghee; Jalil, Mansoor B. A.

    2017-08-01

    Topological insulator (TI) ultrathin films differ from the more commonly studied semi-infinite bulk TIs in that the former possess both top and bottom surfaces where the surface states localized at different surfaces can couple to one another across the finite thickness of the film. In the presence of an in-plane magnetization, the TI thin films display two distinct phases depending on which of the inter-surface coupling or the magnetization is stronger. In this work, we consider a Bi2Se3 TI thin film system with an in-plane magnetization and numerically calculate the resulting spin accumulation on both surfaces of the film due to an in-plane electric field to linear order. We describe a numerical scheme for performing the Kubo formula calculation in which we include impurity scattering and vertex corrections. We find that the sums of the spin accumulation over the two surfaces in the in-plane direction perpendicular to the magnetization and in the out of plane direction are antisymmetric in Fermi energy around the charge neutrality point and are non-vanishing only when the symmetry between the top and bottom TI surfaces is broken. The impurity scattering, in general, diminishes the magnitude of the spin accumulation.

  16. Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    Science.gov (United States)

    Beringer, D. B.; Roach, W. M.; Clavero, C.; Reece, C. E.; Lukaszew, R. A.

    2013-02-01

    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ˜50MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)APPLAB0003-695110.1063/1.2162264] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  17. Roughness analysis applied to niobium thin films grown on MgO(001 surfaces for superconducting radio frequency cavity applications

    Directory of Open Access Journals (Sweden)

    D. B. Beringer

    2013-02-01

    Full Text Available This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ∼50  MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006APPLAB0003-695110.1063/1.2162264] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  18. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yokoyama, Masaaki [Kaneka Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Kaneka Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan)

    2014-07-21

    The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{sup 12 }cm{sup −2}, and the hole mobility was up to 6.5 cm{sup 2} V{sup −1} s{sup −1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  19. Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer

    International Nuclear Information System (INIS)

    Trinh, Thanh Thuy; Nguyen, Van Duy; Ryu, Kyungyul; Jang, Kyungsoo; Lee, Wonbeak; Baek, Seungshin; Raja, Jayapal; Yi, Junsin

    2011-01-01

    An amorphous InGaZnO film fabricated by radio frequency magnetron sputtering in only an Ar-reactive gas shows high conductivity, and a thin-film transistors (TFTs)-based IGZO active layer expresses a poor on/off current ratio with a high off current and high subthreshold swing (SS). This paper presents the post-annealing effects on IGZO thin films to compensate the oxygen deficiencies in films as well as on TFT devices to reduce the densities of the interface trap between the active layer and insulator. The ratio of oxygen vacancies over total of oxygen (O 2 /O tot ) in IGZO estimated by the XPS measurement shows that they significantly diminish from 24.75 to 17.68% when increasing the temperature treatment to 350 °C, which is related to the enhancement in resistivity of IGZO. The TFT characteristics of IGZO treated in air at 350 °C show a high I ON /I OFF ratio of ∼1.1 × 10 7 , a high field-effect mobility of 7.48 cm 2 V −1 s −1 , and a low SS of 0.41 V dec −1 . The objective of this paper is to achieve a successful reduction in the interface trap density, ΔD it , which has been reduced about 3.1 × 10 12 cm −2 eV −1 and 2.0 × 10 12 cm −2 eV −1 for the 350 and 200 °C treatment samples compared with the as-deposited one. The resistivity of the IGZO films can be adjusted to the appropriate value that can be used for TFT applications by controlling the treatment temperature

  20. Electronic transport in bismuth selenide in the topological insulator regime

    Science.gov (United States)

    Kim, Dohun

    The 3D topological insulators (TIs) have an insulating bulk but spin-momentum coupled metallic surface states stemming from band inversion due to strong spin-orbit interaction, whose existence is guaranteed by the topology of the band structure of the insulator. While the STI surface state has been studied spectroscopically by e.g. photoemission and scanned probes, transport experiments have failed to demonstrate clear signature of the STI due to high level of bulk conduction. In this thesis, I present experimental results on the transport properties of TI material Bi2Se3 in the absence of bulk conduction (TI regime), achieved by applying novel p-type doping methods. Field effect transistors consisting of thin (thickness: 5-17 nm) Bi2Se3 are fabricated by mechanical exfoliation of single crystals, and a combination of conventional dielectric (300 nm thick SiO2) and electrochemical or chemical gating methods are used to move the Fermi energy through the surface Dirac point inside bulk band gap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be 60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se 3, which will have implications for topological electronic devices operating at room temperature. Along with semi-classical Boltzmann transport, I also discuss 2D weak anti-localization (WAL) behavior of the topological surface states. By investigating gate-tuned WAL behavior in thin (5-17 nm) TI films, I show that WAL in the TI regime is extraordinarily sensitive to the hybridization induced quantum mechanical tunneling between top and bottom topological surfaces, and interplay of phase coherence

  1. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  2. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  3. Experimental Investigation of Zinc Antimonide Thin Film Thermoelectric Element over Wide Range of Operating Conditions

    DEFF Research Database (Denmark)

    Mirhosseini, Mojtaba; Rezania, Alireza; Blichfeld, Anders B.

    2017-01-01

    flows in plane with the thin film. At first, the effect of applying different temperatures at the hot side of the specimen is investigated to reach steady state in an open circuit analysis. Then, the study focuses on performance and stability analysis of the thermoelectric element operating under......Zinc antimonide compounds are among the most efficient thermoelectric (TE) materials with exceptional low thermal conductivity at moderate temperatures up to 350 °C. This study aims to evaluate the performance of a zinc antimonide thin film TE deposited on an insulating substrate, while the heat...

  4. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  5. Oxygen stoichiometry of LaTiO{sub 3} thin films studied by in-situ photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Scheiderer, Philipp; Goessmann, Alex; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2015-07-01

    As in the famous oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) a two dimensional electron system is found at the interface between the strongly correlated Mott insulator LaTi{sup 3+}O{sub 3} and the band insulator STO. The stabilization of LaTi{sup 3+}O{sub 3} requires strong reducing growth conditions since the thermodynamically stable bulk phase is the oxygen rich La{sub 2}Ti{sup 4+}{sub 2}O{sub 7}. Therefore, we have systematically studied the impact of the oxygen background atmosphere on LaTi{sup 3+}O{sub 3} thin film growth by PLD. Reflection high-energy diffraction intensity oscillations of the specular spot indicate a layer by layer growth mode for thin films, which merges into the formation of islands for thicker films. In-situ photoemission measurements enables us to determine the oxidation state of Ti indicating excess or lack of oxygen present in the prepared samples. Our experiments show that even for films grown in vacuum, strong oxygen excess is present probably due to oxygen out-diffusion from the STO substrate. We find that an LAO buffer layer serves as an effective barrier for this process. The spectral weight of the lower Hubbard band, being a characteristic feature for the Mott insulating phase, is found to scale inversely with the amount of excess oxygen.

  6. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  7. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  8. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  9. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  10. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university.

    Science.gov (United States)

    Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  11. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university

    Science.gov (United States)

    Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  12. Handleable shapes of thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J. T.

    1989-01-17

    Handleable and machineable shapes of thermal insulation material are made by compacting finely divided thermal insulation material into the cells of a reinforcing honeycomb insulation material into the cells of a reinforcing honeycomb structure. The finely divided thermal insulation material may be, for example, silica aerogel, pyrogenic silica, carbon black, silica gel, volatilised silica, calcium silicate, vermiculate or perlite, or finely divided metal oxides such as alumina or titania. The finely divided thermal insulation material may include an infra-red opacifier and/or reinforcing fibres. The reinforcing honeycomb structure may be made from, for example, metals such as aluminium foil, inorganic materials such as ceramics, organic materials such as plastics materials, woven fabrics or paper. A rigidiser may be employed. The shapes of thermal insulation material are substantially rigid and may be machines, for example by mechanical or laser cutting devices, or may be formed, for example by rolling, into curved or other shaped materials. 12 figs.

  13. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  14. Tunable metal-insulator transition in Nd{sub 1−x}Y{sub x}NiO{sub 3} (x = 0.3, 0.4) perovskites thin film at near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Tao; Qi, Zeming, E-mail: zmqi@ustc.edu.cn; Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Zhang, Guobin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Wang, Yu [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204 (China); Liu, Miao [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-07-13

    Metal-insulator transition (MIT) occurs due to the charge disproportionation and lattice distortions in rare-earth nickelates. Existing studies revealed that the MIT behavior of rare-earth nickelates is fairly sensitive to external stress/pressure, suggesting a viable route for MIT strain engineering. Unlike applying extrinsic strain, the MIT can also be modulated by through rare-earth cation mixing, which can be viewed as intrinsic quantum stress. We choose Nd{sub 1−X}Y{sub X}NiO{sub 3} (x = 0.3, 0.4) perovskites thin films as a prototype system to exhibit the tunable sharp MIT at near room temperature. By adjusting Y concentration, the transition temperature of the thin films can be changed within the range of 340–360 K. X-ray diffraction, X-ray absorption fine structure (XAFS), and in situ infrared spectroscopy are employed to probe the structural and optical property variation affected by composition and temperature. The infrared transmission intensity decreases with temperature across the MIT, indicating a pronounced thermochromic effect. Meanwhile, the XAFS result exhibits that the crystal atomistic structure changes accompanying with the Y atoms incorporation and MIT phase transition. The heavily doped Y atoms result in the pre-edge peak descent and Ni-O bond elongation, suggesting an enhanced charge disproportionation effect and the weakening of hybridization between Ni-3d and O-2p orbits.

  15. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  16. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  17. Thermally tunable VO2-SiO2 nanocomposite thin-film capacitors

    Science.gov (United States)

    Sun, Yifei; Narayanachari, K. V. L. V.; Wan, Chenghao; Sun, Xing; Wang, Haiyan; Cooley, Kayla A.; Mohney, Suzanne E.; White, Doug; Duwel, Amy; Kats, Mikhail A.; Ramanathan, Shriram

    2018-03-01

    We present a study of co-sputtered VO2-SiO2 nanocomposite dielectric thin-film media possessing continuous temperature tunability of the dielectric constant. The smooth thermal tunability is a result of the insulator-metal transition in the VO2 inclusions dispersed within an insulating matrix. We present a detailed comparison of the dielectric characteristics of this nanocomposite with those of a VO2 control layer and of VO2/SiO2 laminate multilayers of comparable overall thickness. We demonstrated a nanocomposite capacitor that has a thermal capacitance tunability of ˜60% between 25 °C and 100 °C at 1 MHz, with low leakage current. Such thermally tunable capacitors could find potential use in applications such as sensing, thermal cloaks, and phase-change energy storage devices.

  18. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    Science.gov (United States)

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  19. Observation of large low field magnetoresistance in ramp-edge tunneling junctions based on doped manganite ferromagnetic electrodes and a SrTiO{sub 3} insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, C.; Jia, Q.X.; Fan, Y.; Hundley, M.F.; Reagor, D.W.; Hawley, M.E.; Peterson, D.E.

    1998-07-01

    The authors report the fabrication of ferromagnet-insulator-ferromagnet junction devices using a ramp-edge geometry based on (La{sub 0.7}Sr{sub 0.3})MnO{sub 3} ferromagnetic electrodes and a SrTiO{sub 3} insulator. The multilayer thin films were deposited using pulsed laser deposition and the devices were patterned using photolithography and ion milling. As expected from the spin-dependent tunneling, the junction magnetoresistance depends on the relative orientation of the magnetization in the electrodes. The maximum junction magnetoresistance (JMR) of 30% is observed below 300 Oe at low temperatures (T < 100 K).

  20. Fluorinated copper-phthalocyanine-based n-type organic field-effect transistors with a polycarbonate gate insulator

    International Nuclear Information System (INIS)

    Sethuraman, Kunjithapatham; Kumar, Palanisamy; Santhakumar, Kannappan; Ochiai, Shizuyasu; Shin, Paikkyun

    2012-01-01

    Fluorinated copper-phthalocyanine (F 16 CuPc) thin films were prepared by using a vacuum evaporation technique and were applied to n-type organic field-effect transistors (OFETs) as active channel layers combined with a spin-coated polycarbonate thin-film gate insulator. The output characteristics of the resulting n-type OFET devices with bottom-gate/bottom-contact structures were investigated to evaluate the performances such as the field effect mobility (μ FE ), the on/off current ratio (I on/off ), and the threshold voltage (V th ). A relatively high field effect mobility of 6.0 x 10 -3 cm 2 /Vs was obtained for the n-type semiconductor under atmospheric conditions with an on/off current ratio of 1 x 10 4 and a threshold voltage of 5 V. The electron mobility of the n-type semiconductor was found to depend strongly on the growth temperature of the F 16 CuPc thin films. X-ray diffraction profiles showed that the crystallinity and the orientation of the F 16 CuPc on a polycarbonate thin film were enhanced with increasing growth temperature. Atomic force microscopy studies revealed various surface morphologies of the active layer. The field effect mobility of the F 16 CuPc-OFET was closely related to the crystallinity and the orientation of the F 16 CuPc thin film.

  1. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  2. Ultrathin Topological Insulator Bi 2 Se 3 Nanoribbons Exfoliated by Atomic Force Microscopy

    KAUST Repository

    Hong, Seung Sae; Kundhikanjana, Worasom; Cha, Judy J.; Lai, Keji; Kong, Desheng; Meister, Stefan; Kelly, Michael A.; Shen, Zhi-Xun; Cui, Yi

    2010-01-01

    Ultrathin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se 3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (>50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultrathin nanoribbons, showing drastic difference in sheet resistance between 1-2 QLs and 4-5 QLs. Transport measurement carried out on an exfoliated (>5 QLs) Bi2Se3 device shows nonmetallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (>50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states. © 2010 American Chemical Society.

  3. Ultrathin Topological Insulator Bi 2 Se 3 Nanoribbons Exfoliated by Atomic Force Microscopy

    KAUST Repository

    Hong, Seung Sae

    2010-08-11

    Ultrathin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se 3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (>50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultrathin nanoribbons, showing drastic difference in sheet resistance between 1-2 QLs and 4-5 QLs. Transport measurement carried out on an exfoliated (>5 QLs) Bi2Se3 device shows nonmetallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (>50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states. © 2010 American Chemical Society.

  4. Application of electron-chemical curing in the production of thin composite materials

    International Nuclear Information System (INIS)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V.

    1993-01-01

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author)

  5. Process insulation. Isolation thermique des equipements

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    A manual is presented to assist managers and operating personnel to recognize industrial energy management opportunities, and provides mathematical equations, general information on proven techniques and technology, and examples. It deals with process insulation, focusing on the insulation of mechanical systems such as piping, process vessels, equipment, and ductwork. The manual describes the effects of insulation materials; commonly encountered types of insulation, coverings and protective finishes as well as common applications; energy management opportunities, divided into housekeeping, low cost, and retrofit; and includes worked examples of each. Includes glossary. 17 figs., 8 tabs.

  6. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  7. Labeling and advertising of home insulation

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This staff report, prepared by the F.T.C.'s Bureau of Consumer Protection for Commission review, includes recommendations as to the final form of a trade regulation rule relating to the labeling and advertising of home insulation. Because of marketing abuses which accompanied the rising demand for home insulation, there has been broad support for a rule requiring information disclosures to help purchasers of home insulation to make an informed decision. The Commission, to provide such rule as quickly as possible, undertook its rulemaking proceeding under its new expedited rulemaking procedure. The rule was proposed on November 18, 1977, and, following a two-month period for written comments, four weeks of hearings were held in Washington, D.C. in February 1978. The record, contributed to by a variety of interests, shows that consumers do not know how to shop for home insulation. The staff-recommended rule, among other things, would require that insulation be tested and R-values (a measure of insulation's ability to retain heat) disclosed on labels and in advertising. To facilitate comparison shopping, the industry would also be required to furnish consumers with fact sheets describing, on a product-to-product basis, factors that can reduce the R-value of insulation.

  8. Attic Retrofits Using Nail-Base Insulated Panels

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, David [Home Innovation Research Labs; Kochkin, Vladimir [Home Innovation Research Labs

    2018-03-26

    This project developed and demonstrated a roof/attic energy retrofit solution using nail-base insulated panels for existing homes where traditional attic insulation approaches are not effective or feasible. Nail-base insulated panels (retrofit panels) consist of rigid foam insulation laminated to one face of a wood structural panel. The prefabricated panels are installed above the existing roof deck during a reroofing effort.

  9. High performance thermal insulation systems (HiPTI). Vacuum insulated products (VIP). Proceedings of the international conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.; Bertschinger, H.

    2001-07-01

    These are the proceedings of the International Conference and Workshop held at EMPA Duebendorf, Switzerland, in January 2001. The papers presented at the conference's first day included contributions on the role of high-performance insulation in energy efficiency - providing an overview of available technologies and reviewing physical aspects of heat transfer and the development of thermal insulation as well as the state of the art of glazing technologies such as high-performance and vacuum glazing. Also, vacuum-insulated products (VIP) with fumed silica, applications of VIP systems in technical building systems, nanogels, VIP packaging materials and technologies, measurement of physical properties, VIP for advanced retrofit solutions for buildings and existing and future applications for advanced low energy building are discussed. Finally, research and development concerning VIP for buildings are reported on. The workshops held on the second day covered a preliminary study on high-performance thermal insulation materials with gastight porosity, flexible pipes with high performance thermal insulation, evaluation of modern insulation systems by simulation methods as well as the development of vacuum insulation panels with a stainless steel envelope.

  10. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  11. Development of electrically insulating coatings for service in a lithium environment

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.; Wieder, S.

    2000-01-01

    Several experiments were conducted to develop electrically insulating CaO coatings on a V-4Cr-4Ti alloy for application in an Li environment. The coatings were developed by vapor phase transport external to Li, and also in-situ in an Li-Ca environment at elevated temperature. In the vapor phase study, several geometrical arrangements were examined to obtain a uniform coating of Ca on the specimens, which were typically coupons measuring 5 to 10 x 5 x 1 mm. After Ca deposition from the vapor phase, the specimens were oxidized in a high-purity argon environment at 600 C to convert the deposited metal into oxide. The specimens exhibited insulating characteristics after this oxidation step. Several promising coated specimens were then exposed to high-purity Li at 500 C for 48--68 h to determine coating integrity. Microstructural characteristics of the coatings were evaluated by scanning electron microscopy and energy-dispersive X-ray analysis. Electrical resistances of the coatings were measured by a two-probe method between room temperature and 700 C before and after exposure to Li

  12. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    Science.gov (United States)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  13. Status of magnetically-insulated power transmission theory

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Jr, C W [Sandia Labs., Albuquerque, NM (United States)

    1997-12-31

    The theory of magnetically-insulated power flow has improved dramatically over the last two decades. Theoretical improvements included a complete general kinetic theory that involved distributions of electrons based on quasi-conserved canonical variables and was used to study flow stability and to analyze simulations and pulsers with voltage adders. The status of theory at this time allowed us to understand many features of these flows, but did not allow detailed analysis for design and data interpretation. Recent theoretical advances have drastically changed this situation. Two recent static models based on layered flows have allowed us to understand and to improve power coupling in voltage adders, current adders, plasma opening switches and in systems where the vacuum impedance varies along the flow. A dynamic model based upon electrons flowing in one or more thin layers has permitted detailed self-consistent time-dependent calculations which include electron flow. This model accurately predicts experimental and simulation data. (author). 3 figs.

  14. Design of Chern insulating phases in honeycomb lattices

    Science.gov (United States)

    Pickett, Warren E.; Lee, Kwan-Woo; Pentcheva, Rossitza

    2018-06-01

    The search for robust examples of the magnetic version of topological insulators, referred to as quantum anomalous Hall insulators or simply Chern insulators, so far lacks success. Our groups have explored two distinct possibilities based on multiorbital 3d oxide honeycomb lattices. Each has a Chern insulating phase near the ground state, but materials parameters were not appropriate to produce a viable Chern insulator. Further exploration of one of these classes, by substituting open shell 3d with 4d and 5d counterparts, has led to realistic prediction of Chern insulating ground states. Here we recount the design process, discussing the many energy scales that are active in participating (or resisting) the desired Chern insulator phase.

  15. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  16. Dielectric and Insulating Technology 2006 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  17. Electrical properties of resistive switches based on Ba1-χSrχTiO3 thin films prepared by RF co-sputtering

    International Nuclear Information System (INIS)

    Marquez H, A.; Hernandez R, E.; Zapata T, M.; Guillen R, J.; Cruz, M. P.; Calzadilla A, O.; Melendez L, M.

    2010-01-01

    In this work, was proposed the use of Ba 1-χ Sr χ TiO 3 (0≤x≤1) thin films for the construction of metal-insulator-metal heterostructures; and their great potential for the development of non-volatile resistance memories (ReRAM) is shown. The deposition of Ba 1-χ Sr χ TiO 3 thin films was done by the RF co-sputtering technique using two magnetron sputtering cathodes with BaTiO 3 and SrTiO 3 targets. The chemical composition (x parameter) in the deposited Ba 1-χ Sr χ TiO 3 thin films was varied through the RF powder applied to the targets. The constructed metal-insulator-metal heterostructures were Al/Ba 1-χ Sr χ TiO 3 /nichrome. The I-V measurements of the heterostructures showed that their hysteretic characteristics change depending on the Ba/Sr ratio of the Ba 1-χ Sr χ TiO 3 thin films; the Ba/Sr ratio was determined by employing the energy dispersive spectroscopy; Sem micrographs showed that Ba 1-χ Sr χ TiO 3 thin films were uniform without cracks or pinholes. Additionally, the analysis of the X-ray diffraction results indicated the substitutional incorporation of Sr into the BaTiO 3 lattice and the obtainment of crystalline films for the entire range of the x values. (Author)

  18. Improvements to the electrical insulation resistance of high quality magnesia insulated cables

    International Nuclear Information System (INIS)

    Mauger, R.A.; Goodings, A.

    1984-03-01

    Mineral insulated signal cables for nuclear reactor instrumentation schemes have to meet stringent electrical insulation requirements at high temperatures. This report discusses the factors which influence the attainment of this objective and the way in which it has been reached under industrial manufacturing conditions. It emphasises the importance of moisture and gives details of the improvements achieved as a result of moisture reduction. (author)

  19. Characterization of thin films using local magneometer

    CERN Document Server

    Katyan N.

    2016-01-01

    SIS nanocomposite (Superconductor/Insulator/Superconductor) could improve efficiency of accelerating cavities. The SRF multilayers concept focuses on the enhancement of HC1 using thin layers (d~λ). The use of thin layers makes it easier to avoid avalanche penetration of vortices in case of local defects. Several layers are needed in order to attenuate the external field to values below Nb HC1, decoupled using dielectric layers. We don’t know yet how the predicted properties evolve in realistic conditions; hence it seems reasonable to do their optimization. Two parameters need to be measured to study their behavior in cavity operating conditions: HC1 and Rs surface resistance (especially residual). For that purpose two instruments were developed in Saclay and in Orsay. A local magnetometer allows measuring the vortex penetration on samples without the orientation and edge effects encountered in SQUID magnetometers. Its operating conditions range from 2-40 K, with field up to 150 mT, and upgradation to highe...

  20. Effect of Coercive Voltage and Charge Injection on Performance of a Ferroelectric-Gate Thin-Film Transistor

    Directory of Open Access Journals (Sweden)

    P. T. Tue

    2013-01-01

    Full Text Available We adopted a lanthanum oxide capping layer between semiconducting channel and insulator layers for fabrication of a ferroelectric-gate thin-film transistor memory (FGT which uses solution-processed indium-tin-oxide (ITO and lead-zirconium-titanate (PZT film as a channel layer and a gate insulator, respectively. Good transistor characteristics such as a high “on/off” current ratio, high channel mobility, and a large memory window of 108, 15.0 cm2 V−1 s−1, and 3.5 V were obtained, respectively. Further, a correlation between effective coercive voltage, charge injection effect, and FGT’s memory window was investigated. It is found that the charge injection from the channel to the insulator layer, which occurs at a high electric field, dramatically influences the memory window. The memory window’s enhancement can be explained by a dual effect of the capping layer: (1 a reduction of the charge injection and (2 an increase of effective coercive voltage dropped on the insulator.

  1. Atomically Thin Mica Flakes and Their Application as Ultrathin Insulating Substrates for Graphene

    NARCIS (Netherlands)

    Castellanos-Gomez, Andres; Wojtaszek, Magdalena; Tombros, Nikolaos; Agrait, Nicolas; van Wees, Bart J.; Rubio-Bollinger, Gabino; Agraït, Nicolás

    2011-01-01

    By mechanical exfoliation, it is possible to deposit atomically thin mica flakes down to single-monolayer thickness on SiO(2)/Si wafers. The optical contrast of these mica flakes on top of a SiO(2)/Si substrate depends on their thickness, the illumination wavelength, and the SiO(2) substrate

  2. Estimation of carrier mobility at organic semiconductor/insulator interface using an asymmetric capacitive test structure

    Directory of Open Access Journals (Sweden)

    Rajesh Agarwal

    2016-04-01

    Full Text Available Mobility of carriers at the organic/insulator interface is crucial to the performance of organic thin film transistors. The present work describes estimation of mobility using admittance measurements performed on an asymmetric capacitive test structure. Besides the advantage of simplicity, it is shown that at low frequencies, the measured capacitance comes from a large area of channel making the capacitance-voltage characteristics insensitive to contact resistances. 2-D numerical simulation and experimental results obtained with Pentacene/Poly(4-vinyphenol system are presented to illustrate the operation and advantages of the proposed technique.

  3. Foam insulated transfer line test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation's resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system's thermal behavior can be refined by data from the heated piping loop

  4. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  5. Light-induced ultrafast phase transitions in VO2 thin film

    International Nuclear Information System (INIS)

    Lysenko, S.; Rua, A.J.; Vikhnin, V.; Jimenez, J.; Fernandez, F.; Liu, H.

    2006-01-01

    Vanadium dioxide shows a passive and reversible change from a monoclinic insulator phase to a metallic tetragonal rutile structure when the sample temperature is close to and over 68 deg. C. As a kind of functional material, VO 2 thin films deposited on fused quartz substrates were successfully prepared by the pulsed laser deposition (PLD) technique. With laser illumination at 400 nm on the obtained films, the phase transition (PT) occurred. The observed light-induced PT was as fast as the laser pulse duration of 100 fs. Using a femtosecond laser system, the relaxation processes in VO 2 were studied by optical pump-probe spectroscopy. Upon a laser excitation an instantaneous response in the transient reflectivity and transmission was observed followed by a relatively longer relaxation process. The alteration is dependent on pump power. The change in reflectance reached a maximum value at a pump pulse energy between 7 and 14 mJ/cm 2 . The observed PT is associated with the optical interband transition in VO 2 thin film. It suggests that with a pump laser illuminating on the film, excitation from the d θ,ε - state of valence band to the unoccupied excited mixed d θ,ε -π* - state of the conduction band in the insulator phase occurs, followed by a resonant transition to an unoccupied excited mixed d θ,ε -π* - state of the metallic phase band

  6. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi

    2009-01-01

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport

  7. Optimization design for SST-1 Tokamak insulators

    International Nuclear Information System (INIS)

    Zhang Yuanbin; Pan Wanjiang

    2012-01-01

    With the help of ANSYS FEA technique, high voltage and cryogenic proper- ties of the SST-1 Tokamak insulators were obtained, and the structure of the insulators was designed and modified by taking into account the simulation results. The simulation results indicate that the optimization structure has better high voltage insulating property and cryogenic mechanics property, and also can fulfill the qualification criteria of the SST-1 Tokamak insulators. (authors)

  8. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  9. Transparent, high mobility InGaZnO thin films deposited by PLD

    International Nuclear Information System (INIS)

    Suresh, Arun; Gollakota, Praveen; Wellenius, Patrick; Dhawan, Anuj; Muth, John F.

    2008-01-01

    Transparent oxide semiconductor, InGaZnO, thin films were prepared by pulsed laser deposition at room temperature. The carrier concentration was found to vary by several orders of magnitude from insulating to 10 19 carriers/cm 3 depending on the oxygen partial pressure during deposition. Hall mobilities as high as 16 cm 2 /V s were observed. This is approximately an order of magnitude higher than the mobility of amorphous silicon and indicates that InGaO 3 (ZnO) x with x ≤ 5 may be suitable for transparent, thin film transistor applications. Post-deposition annealing was found to strongly influence the carrier concentration while annealing effects on the electron mobility was less influential

  10. Transport of Dirac fermions on the surface of strong topological insulator and graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Arijit

    2012-06-14

    In this dissertation I study electronic transport through Dirac Fermions on the surface of strong topological insulator and graphene. I start by reviewing the physics of topological insulator and graphene and the low energy effective theory for the electronic states of the surface of a 3D strong topological insulator and graphene. Using this theory the electronic structure of the surface states of strong topological insulators of geometries with large surface to bulk ratio like nanowire and thin film are obtained. Then the energy spectrum and the spin-parity structure of the eigenstates for a finite size topological insulator quantum dot of the shape of a nanotube are considered. Numerical calculations show that even at the lowest energy scales, the ''spin-surface locking'' is broken, that is, the spin direction in a topologically protected surface mode is not locked to the surface. The calculations also show the existence of ''zero-momentum'' modes, and sub-gap states localized near the ''caps'' of the dot. Both the energy spectrum and the spin texture of the eigenstates are basically reproduced from an analytical surface Dirac fermion description. The results are compared to microscopic calculations using a tight-binding model for a strong topological insulator in a finite-length nanowire geometry, which shows qualitative similarity. Then, a theoretical study of electron-phonon scattering effects in thin films made of a strong topological insulator is presented. Phonons are modeled by isotropic elastic continuum theory with stress-free boundary conditions, and the interaction with the helical surface Dirac fermions is mediated by the deformation potential. The temperature-dependent electrical resistivity ρ(T) and the quasi-particle decay rate Γ(T) observable in photo-emission are computed numerically. The low and high-temperature power laws for both quantities are obtained analytically. Detailed

  11. Plasma etching to enhance the surface insulating stability of alumina for fusion applications

    Directory of Open Access Journals (Sweden)

    M. Malo

    2016-12-01

    Full Text Available A significant increase in the surface electrical conductivity of alumina, considered one of the most promising insulating materials for numerous applications in fusion devices, has been observed during ion bombardment in vacuum due to oxygen loss by preferential sputtering. Although this is expected to cause serious limitations to insulating components functionality, recent studies showed it is possible to restore the damaged lattice by oxygen reincorporation during thermal treatments in air. These studies also revealed a correlation between conductivity and ion beam induced luminescence, which is being used to monitor surface electrical conductivity degradation and help qualify the post irradiation recovery. Work now carried out for Wesgo alumina considers oxygen implantation and plasma etching as additional methods to improve recovered layer depth and quality. Both conductivity and luminescence results indicate the potential use of plasma etching not only for damage recovery, but also as a pre-treatment to enhance material stability during irradiation.

  12. Slab edge insulating form system and methods

    Science.gov (United States)

    Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  13. Colossal magnetoresistance and phase separation in manganite thin films

    Science.gov (United States)

    Srivastava, M. K.; Agarwal, V.; Kaur, A.; Singh, H. K.

    2017-05-01

    In the present work, polycrystalline Sm0.55Sr0.45MnO3 thin films were prepared on LSAT (001) single crystal substrates by ultrasonic nebulized spray pyrolysis technique. The X-ray diffraction θ-2θ scan reveals that these films (i) have very good crystallinity, (ii) are oriented along out-of-plane c-direction, and (iii) are under small tensile strain. The impact of oxygen vacancy results into (i) higher value of paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition temperature, i.e., TC/TIM, (ii) sharper PMI-FMM transition, (iii) higher value of magnetization and magnetic saturation moment, and (iv) higher value of magnetoresistance (˜99%). We suggest here that oxygen vacancy favors FMM phase while oxygen vacancy annihilation leads to antiferromagnetic-charge ordered insulator (AFM-COI) phase. The observed results have been explained in context of phase separation (PS) caused by different fractions of the competing FMM and AFM-COI phases.

  14. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  15. Development of insulating coatings for liquid metal blankets

    International Nuclear Information System (INIS)

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  16. A study on the barrier effect with respect to the condition of solid insulation materials in GN{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Seok; Mo, Young Kyu; Lee, On You; Kim, Jun Il; Bang, Seung Min; Kang, Jong O; Kang, Hyoung Ku [Dept. of Electrical Engineering, Korea National University of Transportation, Chungju (Korea, Republic of); Nam, Seo Ho [Dept. of Electrical and Electronic Engineering, Applied Superconductivity Lab., Yonsei University, Seoul (Korea, Republic of)

    2015-03-15

    High voltage superconducting apparatuses have been developed presently around the world under AC and DC sources. In order to improve electrical reliability of superconducting apparatuses with AC and DC networks, a study on the DC as well as the AC electrical breakdown characteristics of cryogenic insulations should be conducted for developing a high voltage superconducting apparatus. Recently, a sub-cooled liquid nitrogen cooling system is known to be promising method for developing a high voltage superconducting apparatus. A sub-cooled liquid nitrogen cooling system uses gaseous nitrogen to control the pressure and enhance the dielectric characteristics. However, the dielectric characteristics of gaseous nitrogen are not enough to satisfy the grade of insulation for a high voltage superconducting apparatus. In this case, the application of solid insulating barriers is regarded as an effective method to reinforce the dielectric characteristics of a high voltage superconducting apparatus. In this paper, it is dealt with a barrier effect on the DC and AC dielectric characteristics of gaseous nitrogen with respect to the position and number of solid insulating barriers. As results, the DC and AC electrical breakdown characteristics by various barrier effects is verified.

  17. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Costeux, Stephane [Dow Chemical Company, Midland, MI (United States); Bunker, Shanon [Dow Chemical Company, Midland, MI (United States)

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  18. Epitaxial stabilization of ultra thin films of electron doped manganites

    Energy Technology Data Exchange (ETDEWEB)

    Middey, S., E-mail: smiddey@uark.edu; Kareev, M.; Meyers, D.; Liu, X.; Cao, Y.; Tripathi, S.; Chakhalian, J. [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Yazici, D.; Maple, M. B. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Ryan, P. J.; Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-05-19

    Ultra-thin films of the electron doped manganite La{sub 0.8}Ce{sub 0.2}MnO{sub 3} were grown in a layer-by-layer growth mode on SrTiO{sub 3} (001) substrates by pulsed laser interval deposition. High structural quality and surface morphology were confirmed by a combination of synchrotron based x-ray diffraction and atomic force microscopy. Resonant X-ray absorption spectroscopy measurements confirm the presence of Ce{sup 4+} and Mn{sup 2+} ions. In addition, the electron doping signature was corroborated by Hall effect measurements. All grown films show a ferromagnetic ground state as revealed by both dc magnetization and x-ray magnetic circular dichroism measurements and remain insulating contrary to earlier reports of a metal-insulator transition. Our results hint at the possibility of electron-hole asymmetry in the colossal magnetoresistive manganite phase diagram akin to the high-T{sub c} cuprates.

  19. Plastic Materials for Insulating Applications.

    Science.gov (United States)

    Wang, S. F.; Grossman, S. J.

    1987-01-01

    Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)

  20. Incipient 2D Mott insulators in extreme high electron density, ultra-thin GdTiO3/SrTiO3/GdTiO3 quantum wells

    Science.gov (United States)

    Allen, S. James; Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler; Chen, Ru; Balents, Leon; Stemmer, Susanne

    2013-03-01

    By reducing the number of SrO planes in a GdTiO3 /SrTiO3/ GdTiO3 quantum well heterostructure, an electron gas with ~ fixed 2D electron density can be driven close to the Mott metal insulator transition - a quantum critical point at ~1 electron per unit cell. A single interface between the Mott insulator GdTiO3 and band insulator SrTiO3 has been shown to introduce ~ 1/2 electron per interface unit cell. Two interfaces produce a quantum well with ~ 7 1014 cm-2 electrons: at the limit of a single SrO layer it may produce a 2D magnetic Mott insulator. We use temperature and frequency dependent (DC - 3eV) conductivity and temperature dependent magneto-transport to understand the relative importance of electron-electron interactions, electron-phonon interactions, and surface roughness scattering as the electron gas is compressed toward the quantum critical point. Terahertz time-domain and FTIR spectroscopies, measure the frequency dependent carrier mass and scattering rate, and the mid-IR polaron absorption as a function of quantum well thickness. At the extreme limit of a single SrO plane, we observe insulating behavior with an optical gap substantially less than that of the surrounding GdTiO3, suggesting a novel 2D Mott insulator. MURI program of the Army Research Office - Grant No. W911-NF-09-1-0398

  1. Mechanical characterization of zeolite low dielectric constant thin films by nanoindentation

    International Nuclear Information System (INIS)

    Johnson, Mark; Li Zijian; Wang Junlan; Ya, Yushan

    2007-01-01

    With semiconductor technologies continuously pushing the miniaturization limits, there is a growing interest in developing novel low dielectric constant materials to replace the traditional dense SiO 2 insulators. In order to survive the multi-level integration process and provide reliable material and structure for the desired integrated circuits (IC) functions, the new low-k materials have to be mechanically strong and stable. Therefore the material selection and mechanical characterization are vital for the successful development of next generation low-k dielectrics. A new class of low-k materials, nanoporous pure-silica zeolite, is prepared in thin films using IC compatible spin coating process and characterized using depth sensing nanoindentation technique. The elastic modulus of the zeolite thin films is found to be significantly higher than that of other low-k materials with similar porosity and dielectric constants. Correlations between the mechanical, microstructural and electrical properties of the thin films are discussed in detail

  2. Application of electron-chemical curing in the production of thin composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V. (Polyrad Research and Production Co., Moscow (Russian Federation))

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author).

  3. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    Directory of Open Access Journals (Sweden)

    Christopher J. Sarabalis

    2016-10-01

    Full Text Available We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W−1m−1 for backward and forward Brillouin scattering, respectively.

  4. Strain effects in topological insulators: Topological order and the emergence of switchable topological interface states in Sb2Te3/Bi2Te3 heterojunctions

    Science.gov (United States)

    Aramberri, H.; Muñoz, M. C.

    2017-05-01

    We investigate the effects of strain on the topological order of the Bi2Se3 family of topological insulators by ab initio first-principles methods. Strain can induce a topological phase transition and we present the phase diagram for the 3D topological insulators, Bi2Te3 , Sb2Te3 , Bi2Se3 , and Sb2Se3 , under combined uniaxial and biaxial strain. Their phase diagram is universal and shows metallic and insulating phases, both topologically trivial and nontrivial. In particular, uniaxial tension can drive the four compounds into a topologically trivial insulating phase. We propose a Sb2Te3/Bi2Te3 heterojunction in which a strain-induced topological interface state arises in the common gap of this normal insulator-topological insulator heterojunction. Unexpectedly, the interface state is confined in the topologically trivial subsystem and is physically protected from ambient impurities. It can be switched on or off by means of uniaxial strain and therefore Sb2Te3 /Bi2Te3 heterojunctions provide a topological system which hosts tunable robust helical interface states with promising spintronic applications.

  5. Insulation Progress since the Mid-1950s

    Science.gov (United States)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  6. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    Science.gov (United States)

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  7. Reflecting variable opening insulating panel

    International Nuclear Information System (INIS)

    Nungesser, W.T.

    1976-01-01

    A description is given of a reflecting variable opening insulating panel assembly, comprising a static panel assembly of reflecting insulation sheets forming a cavity along one side of the panel and a movable panel opening out by sliding from the cavity of the static panel, and a locking device for holding the movable panel in a position extending from the cavity of the static panel. This can apply to a nuclear reactor of which the base might require maintenance and periodical checking and for which it is desirable to have available certain processes for the partial dismantling of the insulation [fr

  8. Electrical breakdown studies with Mycalex insulators

    International Nuclear Information System (INIS)

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-01-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures

  9. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    Science.gov (United States)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-09-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

  10. Topological insulators/superconductors: Potential future electronic materials

    International Nuclear Information System (INIS)

    Hor, Y. S.

    2014-01-01

    A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb x Bi 2 Se 3 is shown to be a superconductor with T c ∼ 3.2 K, which could be a potential candidate for a topological superconductor

  11. All-solution-processed flexible thin film piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sung Yun; Kim, Sunyoung; Kim, Kyongjun [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Ju-Hyuck; Kim, Sang-Woo [SKKU Advanced Institute of Nanotechnology, School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Youn Sang [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of)

    2012-11-27

    An all-solution-processed flexible thin film piezoelectric nanogenerator is demonstrated using reactive zinc hydroxo-condensation and a screen-printing method. The highly elastic thin film allows the piezoelectric energy to be generated through the mechanical rolling and muscle stretching of the piezoelectric unit. This flexible all solution-processed nanogenerator is promising for use in future energy harvesters such as wearable human patches and mobile electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Sheath insulator final test report, TFE Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  13. Sheath insulator final test report, TFE Verification Program

    International Nuclear Information System (INIS)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications

  14. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  15. Vacuum maintenance in vacuum insulation panels exemplified with a staggered beam VIP

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae-Sung; Jang, Choong Hyo; Jung, Haeyong; Song, Tae-Ho [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Guseong-dong 373-1, Yuseong-gu, Daejeon (Korea, Republic of)

    2010-05-15

    Thermal insulation performance of a vacuum insulation panel (VIP) is highly dependent on the inner pressure of the VIP. Long-term vacuum maintenance characteristics are investigated in this study for a VIP with an example of polymer staggered beam structure as the core material. Various gas sources deteriorating the vacuum level in the VIP are investigated based on theoretical models and experiments. Gas permeation occurring through heat-sealed flanges and pinholes in the barrier envelope is the largest gas leakage source. The calculated gas permeation rate is in accordance with the experimental result. To reduce these permeations, a three-side sealing envelope and double enveloping are proposed. Outgassing from the core material and inner surface of the envelope is also critical. It is significantly reduced by a baking pre-treatment in vacuum. When the estimated total gas load exceeds the allowable limit within a few years, a getter material may be applied. Double enveloping structure with a getter is promising as it ensures a lifetime of more than 20 years. (author)

  16. Quantum anomalous Hall effect and topological phase transition in two-dimensional antiferromagnetic Chern insulator NiOsCl6

    Science.gov (United States)

    Yang, Wei-Wei; Li, Lei; Zhao, Jing-Sheng; Liu, Xiao-Xiong; Deng, Jian-Bo; Tao, Xiao-Ma; Hu, Xian-Ru

    2018-05-01

    By doing calculations based on density functional theory, we predict that the two-dimensional anti-ferromagnetic (AFM) NiOsCl6 as a Chern insulator can realize the quantum anomalous Hall (QAH) effect. We investigate the magnetocrystalline anisotropy energies in different magnetic configurations and the Néel AFM configuration is proved to be ground state. When considering spin–orbit coupling (SOC), this layered material with spins perpendicular to the plane shows properties as a Chern insulator characterized by an inversion band structure and a nonzero Chern number. The nontrivial band gap is 37 meV and the Chern number C  =  ‑1, which are induced by a strong SOC and AFM order. With strong SOC, the NiOsCl6 system performs a continuous topological phase transition from the Chern insulator to the trivial insulator upon the increasing Coulomb repulsion U. The critical U c is indicated as 0.23 eV, at which the system is in a metallic phase with . Upon increasing U, the E g reduces linearly with C  =  ‑1 for 0    U c . At last we analysis the QAH properties and this continuous topological phase transition theoretically in a two-band model. This AFM Chern insulator NiOsCl6 proposes not only a promising way to realize the QAH effect, but also a new material to study the continuous topological phase transition.

  17. Metal-Insulator Phase Transition in thin VO2 films: A Look from the Far Infrared Side

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Fischer, B. M.; Thoman, A.

    Vanadium dioxide (VO2) displays a well-known metal-insulator (MI) transition at atemperature of 68oC. The MI transition in VO2 has been studied extensively by a widerange of optical, electrical, structural, and magnetic measurements. In spite of this there isstill some controversy about the nature...... temperature hysteresis of the far-infrared transmission through thethin film with temperature. Interestingly the temperature-dependent transmissionamplitude shows a markedly different switching temperature than the transmission phase.This effect has not been observed before, and is very important...

  18. Influence of the vacuum interface on the charge distribution in V2O3 thin films

    KAUST Repository

    Schwingenschlögl, Udo

    2009-09-22

    The electronic structure of V2O3 thin films is studied by means of the augmented spherical wave method as based on density functional theory and the local density approximation. We establish that the effects of charge redistribution, induced by the vacuum interface, in such films are restricted to a very narrow surface layer of ≈15 Å thickness. As a consequence, charge redistribution can be ruled out as a source of the extraordinary thickness dependence of the metal–insulator transition observed in V2O3 thin films of ~100–1000 Å thickness.

  19. Thermo-Insulation Properties Of Hemp-Based Products

    Directory of Open Access Journals (Sweden)

    Lekavicius V.

    2015-02-01

    Full Text Available As known, many multi-purpose plants can be used in different industries. This research is focused on the possibilities to utilize hemp as feedstock for thermal insulation products. The most advantageous features of hemp insulation are associated with health and environmental safety. The thermal conductivity of commercially available hemp insulation products is comparable with that of other fibrous insulation materials; however, it is possible to develop new products that could be more efficient in terms of cost and due to other important features.

  20. Dielectric and Insulating Technology 2004 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of DEIS activites. DEIS activiteis are basically based on the activites of 8-10 investigation committees’ under DEIS committee. Recent DEIS activites are categlized into three functions in this article and remarkable activity or trend of each category is mentioned. Those are activities on insulation diagnosis (AI application and asset management), activities on new insulation technology for power tansmission (high Tc super conducting cable insulation and all solid sinulated substation), and activities on new insulating materials (Nanocomposite).

  1. Fast optical detecting media based on semiconductor nanostructures for recording images obtained using charges of free photocarriers

    International Nuclear Information System (INIS)

    Kasherininov, P. G.; Tomasov, A. A.; Beregulin, E. V.

    2011-01-01

    Available published data on the properties of optical recording media based on semiconductor structures are reviewed. The principles of operation, structure, parameters, and the range of application for optical recording media based on MIS structures formed of photorefractive crystals with a thick layer of insulator and MIS structures with a liquid crystal as the insulator (the MIS LC modulators), as well as the effect of optical bistability in semiconductor structures (semiconductor MIS structures with nanodimensionally thin insulator (TI) layer, M(TI)S nanostructures). Special attention is paid to recording media based on the M(TI)S nanostructures promising for fast processing of highly informative images and to fabrication of optoelectronic correlators of images for noncoherent light.

  2. Corrosion-under-insulation (CUI) guidelines

    CERN Document Server

    Staff, European Federation of Corrosion; Winnik, S

    2014-01-01

    Corrosion under insulation (CUI) refers to the external corrosion of piping and vessels that occurs underneath externally clad/jacketed insulation as a result of the penetration of water. By its very nature CUI tends to remain undetected until the insulation and cladding/jacketing is removed to allow inspection or when leaks occur. CUI is a common problem shared by the refining, petrochemical, power, industrial, onshore and offshore industries. The European Federation of Corrosion (EFC) Working Parties WP13 and WP15 have worked to provide guidelines on managing CUI together with a number of major European refining, petrochemical and offshore companies including BP, Chevron-Texaco, Conoco-Phillips, ENI, Exxon-Mobil, IFP, MOL, Scanraff, Statoil, Shell, Total and Borealis. The guidelines within this document are intended for use on all plants and installations that contain insulated vessels, piping and equipment. The guidelines cover a risk-based inspection methodology for CUI, inspection techniques (including n...

  3. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  4. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  5. Insulation systems of the building construtions

    Directory of Open Access Journals (Sweden)

    Rumiantcev Boris

    2016-01-01

    Full Text Available Constructions of the exterior insulation and decoration combines materials of different functionality and constructive solutions allows to these materials to demonstrate their efficiency to the great extent. Fire safety of buildings is mandatory requirement for building systems. Some insulating material may belong to the group of combustible, but their use in structures so as to minimize the risk of fire. On the other hand, there are special designs, in which non-flammable insulation acts as a flame retardant barrier. In the article carried systematization of construction systems used in the flat and pitched roof during the insulation and wall covering and facades. Taking into account the experience of leading firms were considered the application features of using exterior finish systems: construction solutions, requirements for materials and recommendations about the installation these systems.The article deals with the construction ventilated roofing system of two types: flat roof and pitched roof seam. In the first case, the ventilation system is created using milled insulation boards in the second - by a ventilated gap. In both cases the natural convection of air in the air cavities. Ensuring operational stability insulation is laid on the stages of production of heat-insulating materials. It is important: firstly responsible execution of all process operations associated with providing regulatory properties of materials and secondly, the performance of additional operations associated with the produc-tion of materials, working in a specific design. An example of a material whose properties can modify for a particular application, are milled mineral wool (with air channels for systems of ventilated flat roof.

  6. Electrical resistivity of ferrimagnetic magnetite thin film

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Yogi, A.; Kaurav, N.; Gupta, R.P.; Phase, D.M.

    2006-01-01

    We have grown Fe 3 O 4 (III) epitaxial film on Al 2 O 3 (0001) substrate by pulsed laser deposition, with thickness of 130 nm. X-ray diffraction studies of magnetite show the spinel cubic structure of film with preferential (III) orientation. The electrical resistivity measurement demonstrates that the properties of thin film of magnetite are basically similar to those of bulk magnetite and clearly shows semiconductor-insulator transition at Verwey transition temperature (≅140 K). We have found higher Verwey transition temperature when compared with earlier reports on similar type of system. Possible causes for increase in transition temperature are discussed. (author)

  7. Intrinsic and extrinsic permeability of ferromagnetic thin films and multilayers for frequency dependence: comparison between theory and experiment

    International Nuclear Information System (INIS)

    Berthault, A.; Durbin, F.; Russat, J.

    1992-01-01

    Soft ferromagnetic thin films are attractive materials for read/write head applications because they exhibit a high magnetic permeability in the hundred MHz range. By contrast, due to their low electrical resistivity, their processability at higher frequency is somewhat limited. Using Maxwell equations and the geometry of the processed material, we have developed a theoretical model of the frequency-dependent magnetic permeability useful for multilayers design. We have distinguished different cases: - extrinsic (measured) vs intrinsic permeability in magnetic thin films and magnetic-insulator multilayers, - intrinsic vs extrinsic permeability in magnetic thin films, computes by the Newton iterative method. Using the well-know Landau-Lifshitz model for high frequency permeability, we have compared experimental and theoretical results. (orig.)

  8. Electric polarization switching in an atomically thin binary rock salt structure

    Science.gov (United States)

    Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    2018-01-01

    Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.

  9. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  10. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    Science.gov (United States)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  11. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    International Nuclear Information System (INIS)

    De Filippo, E.; Lanzano, G.; Cardella, G.; Amorini, F.; Geraci, E.; Grassi, L.; Politi, G.; La Guidara, E.; Lombardo, I.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-01-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  12. Thickness dependent properties of CMR Manganite thin films on lattice mismatched substrates: Distinguishing Strain and Interface Effects

    Science.gov (United States)

    Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh

    2007-03-01

    Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.

  13. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  14. Electrical characterization of thin SOI wafers using lateral MOS transient capacitance measurements

    International Nuclear Information System (INIS)

    Wang, D.; Ueda, A.; Takada, H.; Nakashima, H.

    2006-01-01

    A novel electrical evaluation method was proposed for crystal quality characterization of thin Si on insulator (SOI) wafers, which was done by measurement of minority carrier generation lifetime (τ g ) using transient capacitance method for lateral metal-oxide-semiconductor (MOS) capacitor. The lateral MOS capacitors were fabricated on three kinds of thin SOI wafers. The crystal quality difference among these three wafers was clearly shown by the τ g measurement results and discussed from a viewpoint of SOI fabrication. The series resistance influence on the capacitance measurement for this lateral MOS capacitor was discussed in detail. The validity of this method was confirmed by comparing the intensities of photoluminescence signals due to electron-hole droplet in the band-edge emission

  15. High Performance Infrared Plasmonic Metamaterial Absorbers and Their Applications to Thin-film Sensing

    KAUST Repository

    Yue, Weisheng

    2016-04-07

    Plasmonic metamaterial absorbers (PMAs) have attracted considerable attention for developing various sensing devices. In this work, we design, fabricate and characterize PMAs of different geometrical shapes operating in mid-infrared frequencies, and explore the applications of the PMAs as sensor for thin films. The PMAs, consisting of metal-insulator-metal stacks with patterned gold nanostructured surfaces (resonators), demonstrated high absorption efficiency (87 to 98 %) of electromagnetic waves in the infrared regime. The position and efficiency of resonance absorption are dependent on the shape of the resonators. Furthermore, the resonance wavelength of PMAs was sensitive to the thin film coated on the surface of the PMAs, which was tested using aluminum oxide (Al2O3) as the film. With increase of the Al2O3 thickness, the position of resonance absorption shifted to longer wavelengths. The dependence of the resonant wavelength on thin film thickness makes PMAs a suitable candidate as a sensor for thin films. Using this sensing strategy, PMAs have potential as a new method for thin film detection and in situ monitoring of surface reactions. © 2016 Springer Science+Business Media New York

  16. High Performance Infrared Plasmonic Metamaterial Absorbers and Their Applications to Thin-film Sensing

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Han, Jiaguang; Li, Jingqi; Guo, Zaibing; Tan, Hua; Zhang, Xixiang

    2016-01-01

    Plasmonic metamaterial absorbers (PMAs) have attracted considerable attention for developing various sensing devices. In this work, we design, fabricate and characterize PMAs of different geometrical shapes operating in mid-infrared frequencies, and explore the applications of the PMAs as sensor for thin films. The PMAs, consisting of metal-insulator-metal stacks with patterned gold nanostructured surfaces (resonators), demonstrated high absorption efficiency (87 to 98 %) of electromagnetic waves in the infrared regime. The position and efficiency of resonance absorption are dependent on the shape of the resonators. Furthermore, the resonance wavelength of PMAs was sensitive to the thin film coated on the surface of the PMAs, which was tested using aluminum oxide (Al2O3) as the film. With increase of the Al2O3 thickness, the position of resonance absorption shifted to longer wavelengths. The dependence of the resonant wavelength on thin film thickness makes PMAs a suitable candidate as a sensor for thin films. Using this sensing strategy, PMAs have potential as a new method for thin film detection and in situ monitoring of surface reactions. © 2016 Springer Science+Business Media New York

  17. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films

    Science.gov (United States)

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-03-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu1 - x Fe x O3 - δ epitaxial thin films ( x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu1 - x Fe x O3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR ( 36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies ( δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr1 - x La x )(Ru1 - x Fe x )O3. These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu1 - x Fe x O3 - δ thin films.

  18. Field evaluation of reflective insulation in south east Asia

    Science.gov (United States)

    Teh, Khar San; Yarbrough, David W.; Lim, Chin Haw; Salleh, Elias

    2017-12-01

    The objective of this research was to obtain thermal performance data for reflective insulations in a South East Asia environment. Thermal resistance data (RSI, m2 ṡ K/W) for reflective insulations are well established from 1-D steady-state tests, but thermal data for reflective insulation in structures like those found in South East Asia are scarce. Data for reflective insulations in South East Asia will add to the worldwide database for this type of energy-conserving material. RSI were obtained from heat flux and temperature data of three identical structures in the same location. One unit did not have insulation above the ceiling, while the second and third units were insulated with reflective insulation with emittance less than 0.05. RSI for the uninsulated test unit varied from 0.37 to 0.40 m2 ṡ K/W. RSI for a single-sheet reflective insulation (woven foil) varied from 2.15 to 2.26 m2 ṡ K/W, while bubble-foil insulation varied from 2.69 to 3.09 m2 ṡ K/W. The range of RSI values resulted from differences in the spacing between the reflective insulation and the roof. In addition, the reflective insulation below the roof lowered attic temperatures by as much as 9.7° C. Reductions in ceiling heat flux of 80 to 90% relative to the uninsulated structure, due to the reflective insulation, were observed.

  19. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Goldberg, L. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Jacobson, R. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  20. Analysis of tensile strain enhancement in Ge nano-belts on an insulator surrounded by dielectrics

    International Nuclear Information System (INIS)

    Lu Wei-Fang; Li Cheng; Huang Shi-Hao; Lin Guang-Yang; Wang Chen; Yan Guang-Ming; Huang Wei; Lai Hong-Kai; Chen Song-Yan

    2013-01-01

    Ge nano-belts with large tensile strain are considered as one of the promising materials for high carrier mobility metal—oxide—semiconductor transistors and efficient photonic devices. In this paper, we design the Ge nano-belts on an insulator surrounded by Si 3 N 4 or SiO 2 for improving their tensile strain and simulate the strain profiles by using the finite difference time domain (FDTD) method. The width and thickness parameters of Ge nano-belts on an insulator, which have great effects on the strain profile, are optimized. A large uniaxial tensile strain of 1.16% in 50-nm width and 12-nm thickness Ge nano-belts with the sidewalls protected by Si 3 N 4 is achieved after thermal treatments, which would significantly tailor the band gap structures of Ge-nanobelts to realize the high performance devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Stress-Dependent Voltage Offsets From Polymer Insulators Used in Rock Mechanics and Material Testing

    Science.gov (United States)

    Carlson, G. G.; Dahlgren, Robert; Gray, Amber; Vanderbilt, V. C.; Freund, F.; Johnston, M. J.; Dunson, C.

    2013-01-01

    Dielectric insulators are used in a variety of laboratory settings when performing experiments in rock mechanics, petrology, and electromagnetic studies of rocks in the fields of geophysics,material science, and civil engineering. These components may be used to electrically isolate geological samples from the experimental equipment, to perform a mechanical compliance function between brittle samples and the loading equipment, to match ultrasonic transducers, or perform other functions. In manyexperimental configurations the insulators bear the full brunt of force applied to the sample but do not need to withstand high voltages, therefore the insulators are often thin sheets of mechanically tough polymers. From an instrument perspective, transduction from various types of mechanical perturbation has beenqualitatively compared for a number of polymers [1, 2] and these error sources are readily apparent duringhigh-impedance measurements if not mitigated. However even when following best practices, a force dependent voltage signal still remains and its behavior is explored in this presentation. In this experimenttwo thin sheets (0.25 mm) of high-density polyethylene (HDPE) were set up in a stack, held alternatelybetween three aluminum bars; this stack was placed on the platen of a 60T capacity hydraulic testingmachine. The surface area, A, over which the force is applied to the PE sheets in this sandwich is roughly 40 square cm, each sheet forming a parallel-plate capacitor having roughly 320 pF [3], assuming therelative dielectric permittivity of PE is approximately 2.3. The outer two aluminum bars were connected to the LO input ofthe electrometer and the central aluminum bar was connected to the HI input of a Keithley model 617 electrometer. Once the stack is mechanically well-seated with no air gaps, the voltage offset is observed tobe a linear function of the baseline voltage for a given change in applied force. For a periodically appliedforce of 66.7 kN the

  2. Application of electron accelerator for thin film in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto; Darsono, Dadang

    2004-01-01

    Electron accelerator is widely used for the crosslinking of wire and cable insulation, the treatment of heat shrinkable products, precuring of tire components, and the sterilization of medical products. Research and development the use of electron accelerator for thin film in Indonesia covered radiation curing of surface coating, crosslinking of poly (butylenes succinate), crosslinking of wire, cable and heat shrinkable, sterilization of wound dressing, and prevulcanization of tire. In general, comparing with conventional method, electron beam processing have some advantages, such as, less energy consumption, much higher production rate, processing ability at ambient temperature and environmental friendly. Indonesia has a great potential to develop the application of electron accelerator, due to the remarkable growth industrial sector, the abundant of natural resources and the increasing demand of the high quality products. This paper describes the activities concerning with R and D, and application of electron accelerator for processing of thin film. (author)

  3. A charge inverter for III-nitride light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Geng, Chong; Xu, Shu [Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401 (China); Demir, Hilmi Volkan, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey); Sun, Xiao Wei, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronic Engineering, College of Engineering, South University of Science and Technology, 1088 Xue-Yuan Road, Nanshan, Shenzhen, Guangdong 518055 (China)

    2016-03-28

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  4. A charge inverter for III-nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO 2 insulator layer on the p + -GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p + -GaN and SiO 2 insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO 2 layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p + -GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm 2 LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  5. Specific heat measurement set-up for quench condensed thin superconducting films.

    Science.gov (United States)

    Poran, Shachaf; Molina-Ruiz, Manel; Gérardin, Anne; Frydman, Aviad; Bourgeois, Olivier

    2014-05-01

    We present a set-up designed for the measurement of specific heat of very thin or ultra-thin quench condensed superconducting films. In an ultra-high vacuum chamber, materials of interest can be thermally evaporated directly on a silicon membrane regulated in temperature from 1.4 K to 10 K. On this membrane, a heater and a thermometer are lithographically fabricated, allowing the measurement of heat capacity of the quench condensed layers. This apparatus permits the simultaneous thermal and electrical characterization of successively deposited layers in situ without exposing the deposited materials to room temperature or atmospheric conditions, both being irreversibly harmful to the samples. This system can be used to study specific heat signatures of phase transitions through the superconductor to insulator transition of quench condensed films.

  6. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators

    Science.gov (United States)

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.

    2018-02-01

    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  7. Role of solvent environments in single molecule conductance used insulator-modified mechanically controlled break junctions

    Science.gov (United States)

    Muthusubramanian, Nandini; Maity, Chandan; Galan Garcia, Elena; Eelkema, Rienk; Grozema, Ferdinand; van der Zant, Herre; Kavli Institute of Nanoscience Collaboration; Department of Chemical Engineering Collaboration

    We present a method for studying the effects of polar solvents on charge transport through organic/biological single molecules by developing solvent-compatible mechanically controlled break junctions of gold coated with a thin layer of aluminium oxide using plasma enhanced atomic layer deposition (ALD). The optimal oxide thickness was experimentally determined to be 15 nm deposited at ALD operating temperature of 300°C which yielded atomically sharp electrodes and reproducible single-barrier tunnelling behaviour across a wide conductance range between 1 G0 and 10-7 G0. The insulator protected MCBJ devices were found to be effective in various solvents such as deionized water, phosphate buffered saline, methanol, acetonitrile and dichlorobenzene. The yield of molecular junctions using such insulated electrodes was tested by developing a chemical protocol for synthesizing an amphipathic form of oligo-phenylene ethynylene (OPE3-PEO) with thioacetate anchoring groups. This work has further applications in studying effects of solvation, dipole orientation and other thermodynamic interactions on charge transport. Eu Marie Curie Initial Training Network (ITN). MOLECULAR-SCALE ELECTRONICS: ``MOLESCO'' Project Number 606728.

  8. Review of thin film superconductivity

    International Nuclear Information System (INIS)

    Kihlstrom, K.E.

    1989-01-01

    Advances in thin film superconductivity are critical to the success of many proposed applications. The authors review several of the prominent techniques currently used to produce thin films of the high temperature superconductors including electron beam co-deposition, sputtering (both multiple and composite source configurations) and laser ablation. The authors look at the relevant parameters for each and evaluate the advantages and disadvantages of each technique. In addition, promising work on in situ oxidation is discussed. Also addressed are efforts to find optimum substrate materials and substrate buffer layers for various applications. The current state of the art for T c , J c and H c2 is presented for the yttrium, bismuth, and thallium compounds

  9. Measure Guideline. Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  10. Interaction between a pair of gypsy insulators or between heterologous gypsy and Wari insulators modulates Flp site-specific recombination in Drosophila melanogaster.

    Science.gov (United States)

    Krivega, Margarita; Savitskaya, Ekaterina; Krivega, Ivan; Karakozova, Marina; Parshikov, Aleksander; Golovnin, Anton; Georgiev, Pavel

    2010-08-01

    Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. An Flp technology was used to examine interactions between Drosophila gypsy and Wari insulators in somatic and germ cells. The gypsy insulator consists of 12 binding sites for the Su(Hw) protein, while the endogenous Wari insulator, located on the 3' side of the white gene, is independent from the Su(Hw) protein. Insertion of the gypsy but not Wari insulator between FRT sites strongly blocks recombination between Flp dimers bound to FRT sites located on the same chromatid (recombination in cis) or in sister chromatids (unequal recombination in trans). At the same time, the interaction between Wari and gypsy insulators regulates the efficiency of Flp-mediated recombination. Thus, insulators may have a role in controlling interactions between distantly located protein complexes (not only those involved in transcriptional gene regulation) on the same chromosome or on sister chromatids in somatic and germ cells. We have also found that the frequency of Flp-mediated recombination between FRT sites is strongly dependent on the relative orientation of gypsy insulators. Taken together, our results indicate that the interactions between insulators can be visualized by Flp technology and that insulators may be involved in blocking undesirable interactions between proteins at the two-chromatid phase of the cell cycle.

  11. High sensitivity thermal sensors on insulating diamond

    Energy Technology Data Exchange (ETDEWEB)

    Job, R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Denisenko, A.V. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Zaitsev, A.M. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Melnikov, A.A. [Belarussian State Univ., Minsk (Belarus). HEII and FD; Werner, M. [VDI/VDE-IT, Teltow (Germany); Fahrner, W.R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices

    1996-12-15

    Diamond is a promising material to develop sensors for applications in harsh environments. To increase the sensitivity of diamond temperature sensors the effect of thermionic hole emission (TE) over an energetic barrier formed in the interface between highly boron-doped p-type and intrinsic insulating diamond areas has been suggested. To study the TE of holes a p-i-p diode has been fabricated and analyzed by electrical measurements in the temperature range between 300 K and 700 K. The experimental results have been compared with numerical simulations of its electrical characteristics. Based on a model of the thermionic emission of carriers into an insulator it has been suggested that the temperature sensitivity of the p-i-p diode on diamond is strongly affected by the re-emission of holes from a group of donor-like traps located at a level of 0.7-1.0 eV above the valence band. The mechanism of thermal activation of the current includes a spatial redistribution of the potential, which results in the TE regime from a decrease of the immobilized charge of the ionized traps within the i-zone of the diode and the correspondent lowering of the forward biased barrier. The characteristics of the p-i-p diode were studied with regard to temperature sensor applications. The temperature coefficient of resistance (TCR=-0.05 K{sup -1}) for temperatures above 600 K is about four times larger than the maximal attainable TCR for conventional boron-doped diamond resistors. (orig.)

  12. Separation of top and bottom surface conduction in Bi2Te3 thin films

    International Nuclear Information System (INIS)

    Yu Xinxin; He Liang; Lang Murong; Jiang Wanjun; Kou Xufeng; Tang Jianshi; Huang Guan; Wang, Kang L; Xiu Faxian; Liao Zhiming; Zou Jin; Wang Yong; Zhang Peng

    2013-01-01

    Quantum spin Hall (QSH) systems are insulating in the bulk with gapless edges or surfaces that are topologically protected and immune to nonmagnetic impurities or geometric perturbations. Although the QSH effect has been realized in the HgTe/CdTe system, it has not been accomplished in normal 3D topological insulators. In this work, we demonstrate a separation of two surface conductions (top/bottom) in epitaxially grown Bi 2 Te 3 thin films through gate dependent Shubnikov–de Haas (SdH) oscillations. By sweeping the gate voltage, only the Fermi level of the top surface is tuned while that of the bottom surface remains unchanged due to strong electric field screening effects arising from the high dielectric constant of Bi 2 Te 3 . In addition, the bulk conduction can be modulated from n- to p-type with a varying gate bias. Our results on the surface control hence pave a way for the realization of QSH effect in topological insulators which requires a selective control of spin transports on the top/bottom surfaces. (paper)

  13. Modeling of Dynamic Responses in Building Insulation

    Directory of Open Access Journals (Sweden)

    Anna Antonyová

    2015-10-01

    Full Text Available In this research a measurement systemwas developedfor monitoring humidity and temperature in the cavity between the wall and the insulating material in the building envelope. This new technology does not disturb the insulating material during testing. The measurement system can also be applied to insulation fixed ten or twenty years earlier and sufficiently reveals the quality of the insulation. A mathematical model is proposed to characterize the dynamic responses in the cavity between the wall and the building insulation as influenced by weather conditions.These dynamic responses are manifested as a delay of both humidity and temperature changes in the cavity when compared with the changes in the ambient surrounding of the building. The process is then modeled through numerical methods and statistical analysis of the experimental data obtained using the new system of measurement.

  14. Nanoimprint lithography of light trapping patterns in sol-gel coatings for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Heijna, M.; Loffler, J.; Van Aken, B.B.; Soppe, W.J. [ECN Solar Energy, Petten (Netherlands); Borg, H.; Peeters, P. [OM and T, Eindhoven (Netherlands)

    2008-04-15

    For thin-film silicon solar cells, light trapping schemes are of uppermost importance to harvest all available sunlight. Typically, randomly textured TCO front layers are used to scatter the light diffusively in p-i-n cells on glass. Here, we investigate methods to texture the back contact with both random and periodic textures, for use in n-i-p cells on opaque foil. We applied an electrically insulating SiOx-polymer coating on a stainless steel substrate, and textured this barrier layer by nanoimprint. On this barrier layer the back contact is deposited for further use in the solar cell stack. Replication of masters with various random and periodic patterns was tested, and, using scanning electron microscopy, replicas were found to compare well with the originals. Masters with U-grooves of various sub micrometer widths have been used to investigate the optimal dimensions of regular patterns for light trapping in the silicon layers. Angular reflection distributions were measured to evaluate the light scattering properties of both periodic and random patterns. Diffraction gratings show promising results in scattering the light to specific angles, enhancing the total internal reflection in the solar cell.

  15. Electrical insulator requirements for mirror fusion reactors

    International Nuclear Information System (INIS)

    Condit, R.H.; Van Konynenburg, R.A.

    1977-01-01

    The requirements for mirror fusion electrical insulators are discussed. Insulators will be required at the neutral beam injectors, injector power supplies, direct converters, and superconducting magnets. Insulators placed at the neutral beam injectors will receive the greatest radiation exposure, 10 14 to 10 16 neutrons/m 2 .s and 0.3 to 3 Gy/s (10 5 to 10 6 R/h) of gamma rays, with shielding. Direct converter insulators may receive the highest temperature (up to 1300 0 K), but low voltage holding requirements. Insulators made from organic materials (e.g., plastics) for the magnet coils may be satisfactory. Immediate conductivity increases of all insulators result from gamma irradiation. With an upper limit to gamma flux exposures of 300 Gy/s in a minimally shielded region, the conductivity could reach 10 -6 S/m. Damage from neutron irradiation may not be serious during several years' exposure. Surface changes in ceramics at the neutral beam injector may be serious. The interior of the injector will contain atomic hydrogen, and sputtering may transfer material away from or onto the ceramic insulators. Unknown and potentially damaging interactions between irradiation, electric fields, temperature gradients, cycling of temperature, surface and joint reactions, sputtering, polarization, and electrotransport in the dielectrics are of concern. Materials research to deal with these problems is needed

  16. Measure Guideline: Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  17. On-surface synthesis on a bulk insulator surface

    Science.gov (United States)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic

  18. 49 CFR 236.527 - Roadway element insulation resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  19. Synthesis of thin films by the pyrosol process

    Directory of Open Access Journals (Sweden)

    Tucić Aleksandar

    2002-01-01

    Full Text Available Among many aerosol routes, the Pyrosol process, due to its simplicity, low cost and quality of obtained films, represents a promising technique for the synthesis of thin films. The pyrosol process is based on the transport and pyrolysls of an aerosol of processor solution, generated in an ultrasonic atomizer, on a heated substrate. The theoretical principles of the pyrosol process are presented in this paper, as well as the influence of some synthesis parameters on the deposition of SnO2 thin films.

  20. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.