WorldWideScience

Sample records for promising highly bioactive

  1. Exopolysaccharide from Ganoderma applanatum as a Promising Bioactive Compound with Cytostatic and Antibacterial Properties

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Błachowicz, Adriana; Wydrych, Jerzy; Polak, Jolanta; Jarosz-Wilkołazka, Anna; Kandefer-Szerszeń, Martyna

    2014-01-01

    A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS) was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL) may exhibit selective activity against tumor cells (cell lines SiHa) and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage). High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp.) were also detected for the investigated samples of GpEPS. PMID:25114920

  2. Immunotoxicity evaluation of novel bioactive composites in male mice as promising orthopaedic implants

    Directory of Open Access Journals (Sweden)

    Gehan T. El-Bassyouni

    2017-05-01

    Full Text Available Objective : In orthopaedics, novel bioactive composites are largely needed to improve the synthetic achievement of the implants. In this work, semiconducting metal oxides such as SiO 2 , TiO 2 , and ZrO 2 particles (Ps were used individually and in different ratios to obtain different biphasic composites. The immunotoxicity of these composites was tested to inspect the potential toxicity prior to their use in further medical applications. Materials and methods : In vitro mineralisation ability was inspected by soaking the composites in simulated body fluid (SBF. Additionally, in vivo experiments were performed consuming male mice using ISSR-PCR, micronucleus (MN test, comet assay, glutathione peroxidase activity, and determination of albumin, globulin, lymphocyte population, ALT, and AST levels. Several groups of adult male albino mice were treated with 100, 200, and 400 mg/kg body weight of SiO 2 , TiO 2 , and ZrO 2 -Ps in pure or mixed forms. Results : Our findings revealed that treatment of mice with low and medium doses of SiO 2 , TiO 2 , and ZrO 2 -Ps in pure or mixed form revealed values relatively similar to the control group. However, using 400 mg/kg especially from TiO 2 -Ps in genuine form or mixed with SiO 2 showed proliferation in the toxicity rates compared with the high dose of SiO 2 and ZrO 2 -Ps. Conclusions : The results suggest that TiO 2 composite induced in vivo toxicity, oxidative DNA damage, bargain of the antioxidant enzymes, and variations in the levels of albumin, globulin, lymphocyte population, ALT, and AST in a dose-dependent manner. However, SiO 2 , and ZrO 2 composites revealed a lower toxicity in mice compared with that of TiO 2 .

  3. Marine microorganisms as a promising and sustainable source of bioactive molecules.

    Science.gov (United States)

    Romano, G; Costantini, M; Sansone, C; Lauritano, C; Ruocco, N; Ianora, A

    2017-07-01

    There is an urgent need to discover new drug entities due to the increased incidence of severe diseases as cancer and neurodegenerative pathologies, and reducing efficacy of existing antibiotics. Recently, there is a renewed interest in exploring the marine habitat for new pharmaceuticals also thanks to the advancement in cultivation technologies and in molecular biology techniques. Microorganisms represent a still poorly explored resource for drug discovery. The possibility of obtaining a continuous source of bioactives from marine microorganisms, more amenable to culturing compared to macro-organisms, may be able to meet the challenging demands of pharmaceutical industries. This would enable a more environmentally-friendly approach to drug discovery and overcome the over-utilization of marine resources and the use of destructive collection practices. The importance of the topic is underlined by the number of EU projects funded aimed at improving the exploitation of marine organisms for drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy.

    Science.gov (United States)

    Raina, Komal; Kumar, Dileep; Agarwal, Rajesh

    2016-10-01

    Recently, there is a paradigm shift that the whole food-derived components are not 'idle bystanders' but actively participate in modulating aberrant metabolic and signaling pathways in both healthy and diseased individuals. One such whole food from Cucurbitaceae family is 'bitter melon' (Momordica charantia, also called bitter gourd, balsam apple, etc.), which has gained an enormous attention in recent years as an alternative medicine in developed countries. The increased focus on bitter melon consumption could in part be due to several recent pre-clinical efficacy studies demonstrating bitter melon potential to target obesity/type II diabetes-associated metabolic aberrations as well as its pre-clinical anti-cancer efficacy against various malignancies. The bioassay-guided fractionations have also classified the bitter melon chemical constituents based on their anti-diabetic or cytotoxic effects. Thus, by definition, these bitter melon constituents are at cross roads on the bioactivity parameters; they either have selective efficacy for correcting metabolic aberrations or targeting cancer cells, or have beneficial effects in both conditions. However, given the vast, though dispersed, literature reports on the bioactivity and beneficial attributes of bitter melon constituents, a comprehensive review on the bitter melon components and the overlapping beneficial attributes is lacking; our review attempts to fulfill these unmet needs. Importantly, the recent realization that there are common risk factors associated with obesity/type II diabetes-associated metabolic aberrations and cancer, this timely review focuses on the dual efficacy of bitter melon against the risk factors associated with both diseases that could potentially impact the course of malignancy to advanced stages. Furthermore, this review also addresses a significant gap in our knowledge regarding the bitter melon drug-drug interactions which can be predicted from the available reports on bitter melon

  5. Bioactive compounds fractionated from endophyte Streptomyces SUK 08 with promising ex-vivo antimalarial activity

    Directory of Open Access Journals (Sweden)

    Noraziah Mohamad Zin

    2017-12-01

    Full Text Available Objective: To determine ex vivo antimalarial activity and cytotoxicity of endophytic Streptomyces SUK 08 as well as the main core structure fractionated from its crude extract. Methods: The activities of SUK 08 crude extract were evaluated by using the Plasmodium lactate dehydrogenase assay and synchronization test against rodent malaria parasite Plasmodium berghei, instead of human malarial parasite Plasmodium falciparum. The cytotoxicity of the crude extract was determined by MTT assay. The crude extract was analyzed by thin-layer chromatography and gas chromatography–mass spectrophotometry. Results: The ethyl acetate crude extract showed very promising antimalarial activity with IC50 of 1.25 mg/mL. The synchronization tests showed that ethyl acetate extraction could inhibit all stages of the Plasmodium life cycle, but it was most effective at the Plasmodium ring stage. On the basis of a MTT assay on Chang Liver cells, ethyl acetate and ethanol demonstrated IC50 values of >1.0 mg/mL. The IC50 of parasitemia at 5% and 30% for this extract was lower than chloroquine. Thin-layer chromatography, with 1: 9 ratio of ethyl acetate: hexane, was used to isolate several distinct compounds. Based on gas chromatography–mass spectrophotometry analysis, three core structures were identified as cyclohexane, butyl propyl ester, and 2,3-heptanedione. Structurally, these compounds were similar to currently available antimalarial drugs. Conclusions: The results suggest that compounds isolated from Streptomyces SUK 08 are viable antimalarial drug candidates that require further investigations. Keywords: Butyl–propyl–ester, Cyclohexane, 2,3-Heptanedione, Endophyte, Streptomyces, Antimalarial

  6. SiO2-CaO-P2O5 Bioactive Glasses: A Promising Curcuminoids Delivery System

    Science.gov (United States)

    Nicolini, Valentina; Caselli, Monica; Ferrari, Erika; Menabue, Ledi; Lusvardi, Gigliola; Saladini, Monica; Malavasi, Gianluca

    2016-01-01

    In this paper, we report the study of the loading and the release of curcuminoids by bioactive glasses (BG) and mesoporous bioactive glasses (MBG). Through a detailed spectroscopic study, it was possible to determine the amount and the type of molecules released in water and in simulated body fluid (SBF). In particular, curcumin and K2T21 show a good ability to be released in di-keto and keto-enolic form, depending from the pH. However, after 24 h, the amount of pristine curcumin release is very low with a consequent increment of degradation products derived by curcuminoids. The presence of –OH groups on curcuminoids is a fundamental pre-requisite in order to obtain a high loading and release in polar solution such as water and SBF. The substrate on which we loaded the drugs does not seem to affect significantly the loading and the release of the drugs. The environment, instead, affects the release: for all the drugs, the release in SBF, buffered at pH of 7.4, is slightly worse than the release in water (basic pH values). PMID:28773414

  7. SiO2-CaO-P2O5 Bioactive Glasses: A Promising Curcuminoids Delivery System

    Directory of Open Access Journals (Sweden)

    Valentina Nicolini

    2016-04-01

    Full Text Available In this paper, we report the study of the loading and the release of curcuminoids by bioactive glasses (BG and mesoporous bioactive glasses (MBG. Through a detailed spectroscopic study, it was possible to determine the amount and the type of molecules released in water and in simulated body fluid (SBF. In particular, curcumin and K2T21 show a good ability to be released in di-keto and keto-enolic form, depending from the pH. However, after 24 h, the amount of pristine curcumin release is very low with a consequent increment of degradation products derived by curcuminoids. The presence of –OH groups on curcuminoids is a fundamental pre-requisite in order to obtain a high loading and release in polar solution such as water and SBF. The substrate on which we loaded the drugs does not seem to affect significantly the loading and the release of the drugs. The environment, instead, affects the release: for all the drugs, the release in SBF, buffered at pH of 7.4, is slightly worse than the release in water (basic pH values.

  8. A novel graded bioactive high adhesion implant coating

    International Nuclear Information System (INIS)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Stromme, Maria; Engqvist, Hakan

    2009-01-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 deg. C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 deg. C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  9. Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks.

    Science.gov (United States)

    Monteiro, João P; Alves, Marco G; Oliveira, Pedro F; Silva, Branca M

    2016-07-27

    Methylxanthines are a group of phytochemicals derived from the purine base xanthine and obtained from plant secondary metabolism. They are unobtrusively included in daily diet in common products as coffee, tea, energetic drinks, or chocolate. Caffeine is by far the most studied methylxanthine either in animal or epidemiologic studies. Theophylline and theobromine are other relevant methylxanthines also commonly available in the aforementioned sources. There are many disseminated myths about methylxanthines but there is increased scientific knowledge to discuss all the controversy and promise shown by these intriguing phytochemicals. In fact, many beneficial physiologic outcomes have been suggested for methylxanthines in areas as important and diverse as neurodegenerative and respiratory diseases, diabetes or cancer. However, there have always been toxicity concerns with methylxanthine (over)consumption and pharmacologic applications. Herein, we explore the structure-bioactivity relationships to bring light those enumerated effects. The potential shown by methylxanthines in such a wide range of conditions should substantiate many other scientific endeavors that may highlight their adequacy as adjuvant therapy agents and may contribute to the advent of functional foods. Newly designed targeted molecules based on methylxanthine structure may originate more specific and effective outcomes.

  10. Solutions for Failing High Schools: Converging Visions and Promising Models.

    Science.gov (United States)

    Legters, Nettie; Balfanz, Robert; McPartland, James

    Promising solutions to the failings of traditional comprehensive high schools were reviewed to identify basic principles and strategies for improving high schools nationwide. Selected research studies, policy documents, and promising high school programs were reviewed. The review revealed the following principles for helping high schools better…

  11. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  12. Expanding the Bioactive Chemical Space of Anthrabenzoxocinones through Engineering the Highly Promiscuous Biosynthetic Modification Steps.

    Science.gov (United States)

    Mei, Xianyi; Yan, Xiaoli; Zhang, Hui; Yu, Mingjia; Shen, Guangqing; Zhou, Linjun; Deng, Zixin; Lei, Chun; Qu, Xudong

    2018-01-19

    Anthrabenzoxocinones (ABXs) including (-)-ABXs and (+)-ABXs are a group of bacterial FabF-specific inhibitors with potent antimicrobial activity of resistant strains. Optimization of their chemical structures is a promising method to develop potent antibiotics. Through biosynthetic investigation, we herein identified and characterized two highly promiscuous enzymes involved in the (-)-ABX structural modification. The promiscuous halogenase and methyltransferase can respectively introduce halogen-modifications into various positions of the ABX scaffolds and methylation to highly diverse substrates. Manipulation of their activity in both of the (-)-ABXs and (+)-ABXs biosyntheses led to the generation of 14 novel ABX analogues of both enantiomers. Bioactivity assessment revealed that a few of the analogues showed significantly improved antimicrobial activity, with the C3-hydroxyl and chlorine substitutions critical for their activity. This study enormously expands the bioactive chemical space of the ABX family and FabF-specific inhibitors. The disclosed broad-selective biosynthetic machineries and structure-activity relationship provide a solid basis for further generation of potent antimicrobial agents.

  13. Sodium Is Not Essential for High Bioactivity of Glasses

    Science.gov (United States)

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S.; Wilson, Rory M.; Law, Robert V.; Hill, Robert G.; Karpukhina, Natalia

    2017-01-01

    This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO2-P2O5-CaO-CaF2 with 0 and 4.5 mol% CaF2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF2. The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31P and 19F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses. PMID:29271977

  14. Promising Therapeutics with Natural Bioactive Compounds for Improving Learning and Memory — A Review of Randomized Trials

    Directory of Open Access Journals (Sweden)

    Jin-Yong Choi

    2012-09-01

    Full Text Available Cognitive disorders can be associated with brain trauma, neurodegenerative disease or as a part of physiological aging. Aging in humans is generally associated with deterioration of cognitive performance and, in particular, learning and memory. Different therapeutic approaches are available to treat cognitive impairment during physiological aging and neurodegenerative or psychiatric disorders. Traditional herbal medicine and numerous plants, either directly as supplements or indirectly in the form of food, improve brain functions including memory and attention. More than a hundred herbal medicinal plants have been traditionally used for learning and memory improvement, but only a few have been tested in randomized clinical trials. Here, we will enumerate those medicinal plants that show positive effects on various cognitive functions in learning and memory clinical trials. Moreover, besides natural products that show promising effects in clinical trials, we briefly discuss medicinal plants that have promising experimental data or initial clinical data and might have potential to reach a clinical trial in the near future.

  15. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Mazatusziha Ahmad

    2012-01-01

    Full Text Available Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P precipitates on the composite surface as proven from SEM and XRD analysis.

  16. High-entropy bulk metallic glasses as promising magnetic refrigerants

    International Nuclear Information System (INIS)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao; Wang, Jun-Qiang; Li, Run-Wei; Inoue, Akihisa

    2015-01-01

    In this paper, the Ho 20 Er 20 Co 20 Al 20 RE 20 (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS M pk ) and refrigerant capacity (RC) reaches 15.0 J kg −1 K −1 and 627 J kg −1 at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS M pk and RC. In addition, the magnetic ordering temperature, ΔS M pk and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures

  17. A New Highly Bioactive Composite for Scaffold Applications: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Antonella Sola

    2011-01-01

    Full Text Available Hydroxyapatite (HA has been widely investigated as scaffolding material for bone tissue engineering, mainly for its excellent biocompatibility. Presently, there is an increasing interest in the composites of hydroxyapatite with bioactive glasses, with the aim to obtain systems with improved bioactivity or mechanical properties. Moreover, modifying the ratio between bioactive glass and hydroxyapatite results in the possibility of controlling the reaction rate of the composite scaffold in the human body. However, high temperature treatments are usually required in order to sinter HA-based composites, causing the bioactive glass to crystallize into a glass-ceramic, with possible negative effects on its bioactivity. In the present research work, a glass composition belonging to the Na2O-CaO-P2O5-SiO2 system, with a reduced tendency to crystallize, is applied to realize HA-based composites. The novel samples can be sintered at a relative low temperature (750 °C compared to the widely studied HA/45S5 Bioglass® composites. This fact greatly helps to preserve the amorphous nature of the glass, with excellent effects in terms of bioactivity, according to in vitro tests. As a first application, the obtained composites are also tested to realize highly porous scaffolds by means of the standard burning out method.

  18. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.

    Science.gov (United States)

    Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S

    2004-03-01

    HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.

  19. Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases—Promises, Perspectives, and Pitfalls

    Directory of Open Access Journals (Sweden)

    Anouk Kaulmann

    2016-01-01

    Full Text Available Inflammatory bowel diseases (IBDs are characterized by autoimmune and inflammation-related complications of the large intestine (ulcerative colitis and additional parts of the digestive tract (Crohn’s disease. Complications include pain, diarrhoea, chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially in Westernized countries, being as high as 1%. As prognosis is poor and medication often ineffective or causing side effects, additional preventive/adjuvant strategies are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-κB, Nrf-2, Jak/STAT, and MAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1β, and TNF-α, and boosting the bodies’ own antioxidant status (HO-1, SOD, and GPx. Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria, Akkermansia, short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary actions of polyphenols targeting IBD.

  20. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review.

    Science.gov (United States)

    Yan, Liang-Gong; He, Lang; Xi, Jun

    2017-09-02

    How to extract bioactive compounds safely and efficiently is one of the problems for the food and pharmaceutical industry. In recent years, several novel extraction techniques have been proposed. To pursue a more efficient method for industrial production, high intensity pulsed electric field (HIPEF) extraction technique has been developed. HIPEF extraction technique, which is based on the conventional pulsed electric field (PEF), provided higher electric field intensity and a special continuous extraction system, and it has confirmed less extraction time, higher extraction yield, and mild processing temperature. So this innovative technique is promising for application of industrial production. This review was devoted to introducing the recent achievement of HIPEF extraction technique, including novel HIPEF continuous extraction system, principles and mechanisms; the critical process factors influencing its performance applications; and comparison of HIPEF extraction with other extraction techniques. In the end, the defects and future trends of HIPEF extraction were also discussed.

  1. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  2. Effect of high pressure pasteurization on bacterial load and bioactivity of Echinacea purpurea.

    Science.gov (United States)

    Chen, Xiu-Min; Hu, Chun; Raghubeer, Errol; Kitts, David D

    2010-09-01

    High hydrostatic pressure (HHP) technology was applied to organic Echinacea purpurea (E. purpurea) roots and flowers to determine the feasibility of using this technology for cold herb pasteurization, to produce microbiologically safe and shelf-stable products for the natural health products (NHPs) industry. HHP significantly (P pasteurization process treatment to reduce microbial-contamination load while not adversely altering chemical and bioactive function of active constituents present in organic E. purpurea. Our study reports for the first time, the effectiveness of using high hydrostatic pressure (HHP) technology pressure to pasteurize E. purpurea root and flower, and the comparative retention of bioactive phytochemicals. Therefore, this technique can be used in food and natural health product industries to produce high-quality, microbiologically safe, and shelf-stable products.

  3. Evaluation of promising sweetpotato genotypes for high altitude ...

    African Journals Online (AJOL)

    The trials were set up to identify sweetpotato genotypes with adaptation to highland agroecologies with special reference to resistance to Ahemaria blight ... growth and at harvest, four genotypes and the local check, Magabari, bad high levels of resistance toA/Jemaria blight. Eight genotypes had total storage root yield ...

  4. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.

    Science.gov (United States)

    Zhu, Wen-Kun; Cong, Huai-Ping; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2015-09-09

    Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Classification of wine by determination of bioactive phenolic compounds using high resolution mass spectrometry

    OpenAIRE

    Ivanova, Violeta; Dimovska, Violeta; Mitrev, Sasa; Gulaboski, Rubin; Bogeva, Elena; Petruseva, Dragana; Causon, Tim; Hann, Stephan

    2016-01-01

    In this project proposal, metabolomic fingerprinting of wine samples will be examined using high performance liquid chromatography combined with ion mobility quadruple time-of-flight mass spectrometry (HPLC–IMS-QTOF-MS) for the first time. Bioactive compounds in wines from various red and white varieties produced in Macedonia and Austria from different wine regions and different vintages will be determined for the first time using a non-targeted fingerprinting approach on this analytical plat...

  6. Mechanical properties of bioactive glass putty formulations

    NARCIS (Netherlands)

    van Gestel, N.A.P.; Geurts, J.A.P.; Hulsen, D.J.W.; Hofmann, S.; Ito, K.; van Rietbergen, B.; Arts, J.J.C.

    2016-01-01

    Introduction: Bioactive glass (BAG) has been studied widely and seems to be a very promising biomaterial in regeneration of large bone defects and osteomyelitis treatment, because of its bone bonding and antibacterial properties[1]-[5]. Its high stiffness could potentially also enable mechanical

  7. House dust bioactivities predict skin prick test reactivity for children with high risk of allergy.

    Science.gov (United States)

    Kim, Haejin; Tse, Kevin; Levin, Linda; Bernstein, David; Reponen, Tiina; LeMasters, Grace; Lummus, Zana; Horner, Anthony A

    2012-06-01

    Although evidence suggests that ambient exposures to endotoxin and other immunostimulants during early life influence allergic risk, efforts to understand this host-environment relationship have been hampered by a paucity of relevant assays. These investigations determined whether parameters of house dust extract (HDE) bioactivity were predictive of allergen skin prick test (SPT) reactivity for infants at high risk of allergy participating in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). We conducted a nested case-control study, selecting 99 CCAAPS children who had positive SPT results to at least 1 aeroallergen at age 3 years and 101 subjects with negative SPT results. HDEs were prepared from dust samples collected from the subjects' homes at age 1 year. Murine splenocytes and bone marrow-derived dendritic cells were incubated with HDEs, and supernatant cytokine concentrations were determined by means of ELISA. Alternatively, bone marrow-derived dendritic cells were preincubated with HDEs, and then LPS-induced IL-6 responses were assessed. HDE endotoxin levels were determined by using the limulus amebocyte lysate assay. HDEs derived from the homes of children with positive (cases) and negative (control subjects) SPT results had similar bioactivities. However, when cases were considered in isolation, HDEs with higher levels of bioactivity were significantly associated with children who had lower numbers of positive SPT results. Analogous statistical analyses did not identify any association between HDE endotoxin levels and the aeroallergen sensitization profiles of children included in this study. HDE immunostimulatory activities predicted the aeroallergen sensitization status of CCAAPS subjects better than HDE endotoxin levels. These results provide the first published evidence that HDE bioassays have clinical relevance in predicting atopic risk. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All

  8. Highly-Bioreactive Silica-Based Mesoporous Bioactive Glasses Enriched with Gallium(III

    Directory of Open Access Journals (Sweden)

    Sandra Sanchez-Salcedo

    2018-03-01

    Full Text Available Beneficial effects in bone cell growth and antibacterial action are currently attributed to Ga3+ ions. Thus, they can be used to upgrade mesoporous bioactive glasses (MBGs, investigated for tissue engineering, whenever they released therapeutic amounts of gallium ions to the surrounding medium. Three gallium-enriched MBGs with composition (in mol % xSiO2–yCaO–zP2O5–5Ga2O3, being x = 70, y = 15, z = 10 for Ga_1; x = 80, y = 12, z = 3 for Ga_2; and x = 80, y = 15, z = 0 for Ga_3, were investigated and compared with the gallium-free 80SiO2–15CaO–5P2O5 MBG (B. 29Si and 31P MAS NMR analyses indicated that Ga3+ acts as network modifier in the glass regions with higher polymerization degree and as network former in the zones with high concentration of classical modifiers (Ca2+ ions. Ga_1 and Ga_2 exhibited a quick in vitro bioactive response because they were coated by an apatite-like layer after 1 and 3 days in simulated body fluid. Although we have not conducted biological tests in this paper (cells or bacteria, Ga_1 released high but non-cytotoxic amounts of Ga3+ ions in Todd Hewitt Broth culture medium that were 140 times higher than the IC90 of Pseudomonas aeruginosa bacteria, demonstrating its potential for tissue engineering applications.

  9. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration.

    Science.gov (United States)

    Akbari Dourbash, Fakhraddin; Alizadeh, Parvin; Nazari, Shahram; Farasat, Alireza

    2017-09-01

    The field of tissue engineering constantly calls for novel biomaterials that possess intrinsically multifunctional properties such as bioactivity, bioimaging ability and antibacterial properties. In this paper, poly (amido amine) generation 5/bioactive glass inorganic-organic hybrids have been developed through direct hybridization by 3-glycidoxypropyltrimethoxysilane (GPTMS) as coupling agent. Results indicated that the degree of covalent coupling by GPTMS and the weight percent of inorganic and organic constituents highly influence hybrids properties. It was found that nanoscale integration of inorganic and organic chains by GPTMS significantly endows hybrids with high thermal stability. Furthermore, hybrids exhibited photoluminescent ability (emission 400-600nm and 700nm) without incorporating of any organic dyes or quantum dots. In addition, hydrophilicity of our hybrids indicated good cell/material interaction. The biological apatite was formed on the surface of calcium containing hybrids when soaked in simulated body fluid (SBF) for 1week. Hybrids also showed linear biodegradation behavior in SBF that could be controlled by the degree of covalent crosslinking which was indicative of their stable biodegradation ability. High inherent antibacterial properties against Staphylococcus aureus was also observed from poly (amido amine)/silica hybrids. No adverse cytotoxicity for human gingival fibroblast cell lines (HGF) was detected after 4days. It is envisaged that our novel multifunctional hybrid system will confer intriguing potential in advancing the field of tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.

    Science.gov (United States)

    Kim, Soyeon; Baladandayuthapani, Veerabhadran; Lee, J Jack

    2017-06-01

    In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.

  11. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  12. Targeted metabolite profile of food bioactive compounds by Orbitrap high resolution mass spectrometry: The 'FancyTiles' approach

    NARCIS (Netherlands)

    Troise, A.D.; Ferracane, R.; Palermo, M.; Fogliano, V.

    2014-01-01

    In this paper a new targeted metabolic profile approach using Orbitrap high resolution mass spectrometry was described. For each foodmatrix various classes of bioactive compounds and some specificmetabolites of interest were selected on the basis of the existing knowledge creating an easy-to-read

  13. Effect of High Hydrostatic Pressure Processing Strategies on Retention of Antioxidant Phenolic Bioactives in Foods and Beverages – a Review

    Directory of Open Access Journals (Sweden)

    Tokuşoğlu Özlem

    2016-12-01

    Full Text Available Phenolic compounds, especially flavonoids have health-promoting benefits that play some important roles in foods as visual appearance, taste, aroma and represent an abundant antioxidant component of the human and animal diet. High hydrostatic pressure processing (HHPP conditions (300–700 MPa at moderate initial temperatures (around ambient are generally sufficient to inactivate vegetative pathogens for pasteurization processes, some enzymes, or spoilage organisms to extend the shelf-life. The aim of the review is to reveal the effect of high hydrostatic pressure processing strategies on the retention of antioxidant phenolic bioactives in foods and beverages. HHPP can increase extraction capacity of phenolic constituents, and ensure higher levels of preserved bioactive constituents. High pressure extraction (HPE can shorten processing times, provide higher extraction yields while having less negative effects on the structure and antioxidant activity of bioactive constituents. HPE enhances mass transfer rates, increases cell permeability, increases diffusion of phenolics and retains higher levels of bioactive compounds. Total phenolics in HHPP-treated foods were either unaffected or actually increased in concentration and/or extractability following treatment with high pressure.

  14. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing.

    Science.gov (United States)

    Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael

    2015-07-15

    Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications.

  15. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C

    2014-01-01

    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: basic principles and concepts underlying recent advances.

    Science.gov (United States)

    Kawase, Tomoyuki

    2015-05-01

    Over the past decade, platelet-rich plasma (PRP), a platelet-concentrated plasma fraction, has been widely investigated and applied to regenerative medicine. The clinical utility of PRP is supported by evidence that PRP contains high concentrations of platelet-related growth factors and normal concentrations of plasma-derived fibrinogen, both of which contribute synergistically to the regenerative process. Additionally, its superior cost-efficacy versus conventional therapies is attractive to many clinicians. However, current disadvantages of PRP include a relatively complicated preparation procedure and variable operator-dependent efficacy. An additional disadvantage is the use of bovine thrombin, an animal-derived biological, as a coagulant. Many of these disadvantages are overcome by recent advances in preparation procedures and devices; for example, Joseph Choukroun simplified the platelet-rich fibrin preparation procedure and improved handling efficiency without the aid of animal-derived factors. With advancements in cell processing technology, there has been a general shift in cell therapy from autologous to allogeneic treatment; however, autologous PRP therapy will not easily be replaced by allogeneic treatment in the near future. Therefore, to provide more predictable regenerative therapy outcomes using autologous PRP, further investigations should address developing a standardized procedure for PRP preparation to augment its efficacy and potency, independent of donor variability. We would then propose that operators and clinicians prepare PRP according to the standardized protocol and to carefully evaluate the clinical scenario (i.e., recipient factors comprising skeletal defects) to determine which factor(s) should be added to PRP preparations. This careful approach will lead to improved clinical outcomes for patients.

  17. Microencapsulation of Bioactive Principles with an Airless Spray-Gun Suitable for Processing High Viscous Solutions

    Directory of Open Access Journals (Sweden)

    Moreno Cocchietto

    2013-11-01

    Full Text Available Purpose: to design, assemble and test a prototype of a novel production plant, suitable for producing microparticles (MPs by processing highly viscous feed solutions (FSs. Methods: the prototype has been built using a commercial air compressor, a piston pump, an airless spray-gun, a customized air-treatment section, a timer, a rotating base, and a filtration section. Preliminary prototype parameter setting was carried out to individuate the best performing nozzle’s dimension, the nebulization timing, and the CaCl2 concentration in the gelation fluid. In addition, prototype throughput (1 L to 5 L and the range of practicable feed solution (FS viscosities were assayed. A set of four batches was prepared in order to characterize the MPs, in terms of mean particle size and distribution, flow properties, swelling, encapsulation efficiency and release. Results: according to a qualitative scoring, the large nozzle was suitable to nebulize FSs at a higher alginate concentration. Conversely, the small nozzle performed better in the processing of FSs with an alginate concentration up to 2% w/v. Only at the highest degree of viscosity, corresponding to 5% w/v of alginate, the FS processing was not technically possible. Among the CaCl2 concentrations considered, 15% w/v was recognized as the most versatile. The prototype appears to be convenient and suitable to grant a high yield starting from 2 L of FS. The flow behavior of the FSs assayed can be satisfactorily described with the Carreau-Yasuda equation and the throughput begins to slightly decrease for FSs at alginate concentrations exceeding 3% w/v. MP morphology was irregular with crumpled shape. The angle of repose indicates a good flowability and the release studies showed gastro-resistance and potential prolonged release applications. Conclusions: the novel prototype of production plant is suitable to process large amounts (2 L or more of FSs, characterized by a high viscosity, to produce MPs

  18. Microencapsulation of bioactive principles with an airless spray-gun suitable for processing high viscous solutions.

    Science.gov (United States)

    Cocchietto, Moreno; Blasi, Paolo; Lapasin, Romano; Moro, Chiara; Gallo, Davide; Sava, Gianni

    2013-11-19

    to design, assemble and test a prototype of a novel production plant, suitable for producing microparticles (MPs) by processing highly viscous feed solutions (FSs). the prototype has been built using a commercial air compressor, a piston pump, an airless spray-gun, a customized air-treatment section, a timer, a rotating base, and a filtration section. Preliminary prototype parameter setting was carried out to individuate the best performing nozzle's dimension, the nebulization timing, and the CaCl2 concentration in the gelation fluid. In addition, prototype throughput (1 L to 5 L) and the range of practicable feed solution (FS) viscosities were assayed. A set of four batches was prepared in order to characterize the MPs, in terms of mean particle size and distribution, flow properties, swelling, encapsulation efficiency and release. according to a qualitative scoring, the large nozzle was suitable to nebulize FSs at a higher alginate concentration. Conversely, the small nozzle performed better in the processing of FSs with an alginate concentration up to 2% w/v. Only at the highest degree of viscosity, corresponding to 5% w/v of alginate, the FS processing was not technically possible. Among the CaCl2 concentrations considered, 15% w/v was recognized as the most versatile. The prototype appears to be convenient and suitable to grant a high yield starting from 2 L of FS. The flow behavior of the FSs assayed can be satisfactorily described with the Carreau-Yasuda equation and the throughput begins to slightly decrease for FSs at alginate concentrations exceeding 3% w/v. MP morphology was irregular with crumpled shape. The angle of repose indicates a good flowability and the release studies showed gastro-resistance and potential prolonged release applications. the novel prototype of production plant is suitable to process large amounts (2 L or more) of FSs, characterized by a high viscosity, to produce MPs suitable for bioactive principle delivery.

  19. High-level expression and efficient purification of bioactive swollenin in Aspergillus oryzae.

    Science.gov (United States)

    Wang, Meihua; Cai, Jin; Huang, Lei; Lv, Zhengbin; Zhang, Yaozhou; Xu, Zhinan

    2010-11-01

    The bioactivity of swollenin is beneficial to cellulose decomposition by cellulase despite the lack of hydrolytic activity itself. In order to improve the productivity of swollenin, the effects of culture conditions on the expression level in recombinant Aspergillus oryzae were investigated systematically. With regard to the bioactivity of swollenin, glycerin and peanut meal were the optimal carbon or nitrogen source, respectively. The highest level production of swollenin (50 mg L(-1)) was attained after 88 h cultivation with the initial pH of 5.6 in the culture medium. Then the soluble swollenin was effectively purified from the cultural supernatant by ammonium sulfate precipitation and cationic exchange chromatography with recovery yield of 53.2%. The purified swollenin was fully bioactive due to its strong synergistic activity with cellulose.

  20. Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods.

    Science.gov (United States)

    Elez-Martínez, Pedro; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2009-05-01

    Novel non-thermal processing technologies such as high-intensity pulsed electric field (HIPEF) treatments may be applied to pasteurize plant-based liquid foods as an alternative to conventional heat treatments. In recent years, there has been an increasing interest in HIPEF as a way of preserving and extending the shelf-life of liquid products without the quality damage caused by heat treatments. However, less attention has been paid to the effects of HIPEF on minor constituents of these products, namely bioactive compounds. This review is a state-of-the-art update on the effects of HIPEF treatments on health-related compounds in plants of the Mediterranean diet such as fruit juices, and Spanish gazpacho. The relevance of HIPEF-processing parameters on retaining plant-based bioactive compounds will be discussed.

  1. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing.

    Science.gov (United States)

    Douglas, Timothy E L; Dziadek, Michal; Gorodzha, Svetlana; Lišková, Jana; Brackman, Gilles; Vanhoorne, Valérie; Vervaet, Chris; Balcaen, Lieve; Del Rosario Florez Garcia, Maria; Boccaccini, Aldo R; Weinhardt, Venera; Baumbach, Tilo; Vanhaecke, Frank; Coenye, Tom; Bačáková, Lucie; Surmeneva, Maria A; Surmenev, Roman A; Cholewa-Kowalska, Katarzyna; Skirtach, Andre G

    2018-06-01

    Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Improving low-performing high schools: searching for evidence of promise.

    Science.gov (United States)

    Fleischman, Steve; Heppen, Jessica

    2009-01-01

    Noting that many of the nation's high schools are beset with major problems, such as low student reading and math achievement, high dropout rates, and an inadequate supply of effective teachers, Steve Fleischman and Jessica Heppen survey a range of strategies that educators have used to improve low-performing high schools. The authors begin by showing how the standards-based school reform movement, together with the No Child Left Behind Act requirement that underperforming schools adopt reforms supported by scientifically based research, spurred policy makers, educators, and researchers to create and implement a variety of approaches to attain improvement. Fleischman and Heppen then review a number of widely adopted reform models that aim to change "business as usual" in low-performing high schools. The models include comprehensive school reform programs, dual enrollment and early college high schools, smaller learning communities, specialty (for example, career) academies, charter high schools, and education management organizations. In practice, say the authors, many of these improvement efforts overlap, defying neat distinctions. Often, reforms are combined to reinforce one another. The authors explain the theories that drive the reforms, review evidence of their reforms' effectiveness to date, and suggest what it will take to make them work well. Although the reforms are promising, the authors say, few as yet have solid evidence of systematic or sustained success. In concluding, Fleischman and Heppen emphasize that the reasons for a high school's poor performance are so complex that no one reform model or approach, no matter how powerful, can turn around low-performing schools. They also stress the need for educators to implement each reform program with fidelity to its requirements and to support it for the time required for success. Looking to the future, the authors suggest steps that decision makers, researchers, and sponsors of research can take to promote

  3. Promising high monetary rewards for future task performance increases intermediate task performance.

    Directory of Open Access Journals (Sweden)

    Claire M Zedelius

    Full Text Available In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly. Results showed that high (vs. low rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.

  4. Promising high monetary rewards for future task performance increases intermediate task performance.

    Science.gov (United States)

    Zedelius, Claire M; Veling, Harm; Bijleveld, Erik; Aarts, Henk

    2012-01-01

    In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.

  5. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  6. Investigation of bioactivity, biocompatibility and thermal behavior of sol–gel silica glass containing a high PEG percentage

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Renella, R.A.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Vecchio Ciprioti, S. [Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, Building RM017, I-00161 Rome (Italy)

    2016-04-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which contain 60 or 70 weight percentage of PEG, were synthesized by the sol–gel technique. The materials were characterized and subjected to various tests to assess their application in the biomedical field. The evaluation of their morphology by scanning electron microscopy (SEM) confirms the homogeneity of the samples on the nanometer scale. Fourier transform infrared spectroscopy (FT-IR) indicated that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds. This feature makes them class I hybrids. Simultaneous thermogravimetry/differential thermal analysis (TG/DTA) was used to investigate their thermal behavior and to establish the best temperatures for their pre-treatment. The fundamental properties that a material must have to be used in the biomedical field are biocompatibility and bioactivity. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid. This indicates that the materials are able to bond to bone tissue. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed by performing WST-8 cytotoxicity tests on fibroblast cell NIH 3T3 after 24 h of exposure. The cytotoxicity tests highlight that the cell viability is affected by the polymer percentage. The results showed that the synthesized materials were bioactive and biocompatible. Therefore, the results obtained are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at high PEG percentage • Chemical, thermal and morphological characterization of hybrid materials • Biological characterizations with WST-8 cytotoxicity tests • Bioactivity characterizations of hybrid materials with high PEG percentage.

  7. A Liposomal Formulation Able to Incorporate a High Content of Paclitaxel and Exert Promising Anticancer Effect

    Directory of Open Access Journals (Sweden)

    Pei Kan

    2011-01-01

    Full Text Available A liposome formulation for paclitaxel was developed in this study. The liposomes, composed of naturally unsaturated and hydrogenated phosphatidylcholines, with significant phase transition temperature difference, were prepared and characterized. The liposomes exhibited a high content of paclitaxel, which was incorporated within the segregated microdomains coexisting on phospholipid bilayer of liposomes. As much as 15% paclitaxel to phospholipid molar ratio were attained without precipitates observed during preparation. In addition, the liposomes remained stable in liquid form at 4∘C for at least 6 months. The special composition of liposomal membrane which could reduce paclitaxel aggregation could account for such a capacity and stability. The cytotoxicity of prepared paclitaxel liposomes on the colon cancer C-26 cell culture was comparable to Taxol. Acute toxicity test revealed that LD50 for intravenous bolus injection in mice exceeded by 40 mg/kg. In antitumor efficacy study, the prepared liposomal paclitaxel demonstrated the increase in the efficacy against human cancer in animal model. Taken together, the novel formulated liposomes can incorporate high content of paclitaxel, remaining stable for long-term storage. These animal data also demonstrate that the liposomal paclitaxel is promising for further clinical use.

  8. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  9. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    International Nuclear Information System (INIS)

    Shin, Hyeong-Moo; Ernstoff, Alexi; Csiszar, Susan A.

    2015-01-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models

  10. Fabrication and design of bioactive agent coated, highly-aligned electrospun matrices for nerve tissue engineering: Preparation, characterization and application

    Science.gov (United States)

    Lee, Sang Jin; Heo, Min; Lee, Donghyun; Heo, Dong Nyoung; Lim, Ho-Nam; Kwon, Il Keun

    2017-12-01

    In this study, we designed highly-aligned thermoplastic polycarbonate urethane (PCU) fibrous scaffolds coated with bioactive compounds, such as Poly-L-Lysine (PLL) and Poly-L-Ornithine (PLO), to enhance cellular adhesion and directivity. These products were characterized by scanning electron microscope (SEM) analysis which demonstrated that highly aligned fiber strands were formed without beads when coated onto a mandrel rotating at 1800 rpm. During in vitro cell test, PLO-coated, aligned PCU scaffolds were found to have significantly higher proliferation rates than PLL coated and bare PCU scaffolds. Interestingly, dental pulp stem cells (DPSCs) were observed to stretch along the longitudinal axis parallel to the cell direction on highly aligned scaffolds. These results clearly confirm that our strategy may suggest a useful paradigm by inducing neural tissue repair as a means to remodeling and healing of tissue for restorative procedures in neural tissue engineering.

  11. Characterization of new bioactive coatings of hydroxyapatite and TiO2 obtained by High-Velocity Oxy-Fuel

    International Nuclear Information System (INIS)

    Melero, H.; Fernandez, J.; Dosta, S.; Guilemany, J. M.

    2011-01-01

    Hydroxyapatite (Hap: Ca 1 0(PO 4 ) 6 OH 2 ) is a biocompatible and bioactive ceramic material widely used as a coating on metal surfaces (dental implants, hip replacements ...), but the low adhesion between Hap and the substrate, due to differences in thermal expansion coefficients of both (very important in thermal spraying because of the fast cooling of the coating, which can produce a lost of adherence), and the degradation of Hap, have been tried to be improved through the incorporation of TiO 2 to get a good combination of mechanical properties. Therefore, the objective of this project is to produce coatings of Hap 80% TiO 2 and 20% (by weight) on Ti6Al4V by High-Speed Thermal Spray (HVOF). The study of the microstructure has been carried out using scanning electron microscopy and characterization of the crystalline phases by X-ray diffraction and Raman spectrometry. The coatings adhesion has been measured by tensile tests according to ASTM C633-01 (2008), and their bioactivity also has been evaluated through its immersion in simulated body fluid (SBF), in order to measure their capacity to form an apatite layer on their surface. (Author) 26 refs.

  12. Seaweed Bioactivity

    DEFF Research Database (Denmark)

    Zaharudin, Nazikussabah Binti

    . In conclusion, two brown seaweeds, Laminaria digitata and Undaria pinnatifida, inhibited α-amylase and α-glucosidase activities due to their content of several bioactive components with a potential use for future functional foods. Their effects on the postprandial insulin response and the in vitro findings...

  13. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    International Nuclear Information System (INIS)

    Goudouri, O.M.; Theodosoglou, E.; Kontonasaki, E.; Will, J.; Chrissafis, K.; Koidis, P.; Paraskevopoulos, K.M.; Boccaccini, A.R.

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca 2 MgSi 2 O 7 ) and diopside (CaMgSi 2 O 6 ), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis of an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering

  14. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Theodosoglou, E. [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Will, J. [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Chrissafis, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, A.R. [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis of an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.

  15. Preparation of high bioactivity multilayered bone-marrow mesenchymal stem cell sheets for myocardial infarction using a 3D-dynamic system.

    Science.gov (United States)

    Wang, Yingwei; Zhang, Jianhua; Qin, Zixi; Fan, Zepei; Lu, Cheng; Chen, Baoxin; Zhao, Jupeng; Li, Xiaojuan; Xiao, Fei; Lin, Xi; Wu, Zheng

    2018-05-01

    Cell sheet techniques offer a promising future for myocardial infarction (MI) therapy; however, insufficient nutrition supply remains the major limitation in maintaining stem cell bioactivity in vitro. In order to enhance cell sheet mechanical strength and bioactivity, a decellularized porcine pericardium (DPP) scaffold was prepared by the phospholipase A2 method, and aspartic acid was used as a spacer arm to improve the vascular endothelial growth factor crosslink efficiency on the DPP scaffold. Based on this scaffold, multilayered bone marrow mesenchymal stem cell sheets were rapidly constructed, using RAD16-I peptide hydrogel as a temporary 3D scaffold, and cell sheets were cultured in either the 3D-dynamic system (DCcs) or the traditional static condition (SCcs). The multilayered structure, stem cell bioactivity, and ultrastructure of DCcs and SCcs were assessed. The DCcs exhibited lower apoptosis, lower differentiation, and an improved paracrine effect after a 48 h culture in vitro compared to the SCcs. Four groups were set to evaluate the cell sheet effect in rat MI model: sham group, MI control group, DCcs group, and SCcs group. The DCcs group improved cardiac function and decreased the infarcted area compared to the MI control group, while no significant improvements were observed in the SCcs group. Improved cell survival, angiogenesis, and Sca-1 + cell and c-kit + cell amounts were observed in the DCcs group. In conclusion, the DCcs maintained higher stem cell bioactivity by using the 3D-dynamic system to provide sufficient nutrition, and transplanting DCcs significantly improved the cardiac function and angiogenesis. This study provides an efficient method to prepare vascular endothelial growth factor covalent decellularized pericardium scaffold with aspartic acid, and a multilayered bone marrow mesenchymal stem cell (BMSC) sheet is constructed on it using a 3D-dynamic system. The dynamic nutrition supply showed a significant benefit on BMSC bioactivity

  16. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    Science.gov (United States)

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Characterization of High-Value Bioactives in Some Selected Varieties of Pakistani Rice (Oryza sativa L.)

    Science.gov (United States)

    Zubair, Muhammad; Anwar, Farooq; Ashraf, Muhammad; Uddin, Md. Kamal

    2012-01-01

    The present study reports the composition and variation of fatty acids, sterols, tocopherols and γ-oryzanol among selected varieties namely Basmati Super, Basmati 515, Basmati 198, Basmati 385, Basmati 2000, Basmati 370, Basmati Pak, KSK-139, KS-282 and Irri-6 of Pakistani rice (Oryza sativa L). Oil content extracted with n-hexane from different varieties of brown rice seed (unpolished rice) ranged from 1.92% to 2.72%. Total fatty acid contents among rice varieties tested varied between 18240 and 25840 mg/kg brown rice seed. The rice tested mainly contained oleic (6841–10952 mg/kg) linoleic (5453–7874 mg/kg) and palmitic acid (3613–5489 mg/kg). The amounts of total phytosterols (GC and GC-MS analysis), with main contribution from β-sitosterol (445–656 mg/kg), campesterol (116–242 mg/kg), Δ5-avenasterol (89–178 mg/kg) and stigmasterol (75–180 mg/kg) were established to be 739.4 to 1330.4 mg/kg rice seed. The content of α-, γ- and δ-tocopherols as analyzed by HPLC varied from 39.0–76.1, 21.6–28.1 and 6.5–16.5 mg/kg rice seed, respectively. The amounts of different γ-oryzanol components (HPLC data), identified as cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, were in the range of 65.5–103.6, 140.2–183.1, 29.8–45.5 and 8.6–10.4 mg/kg rice seed, respectively. Overall, the concentration of these bioactives was higher in the Basmati rice cultivars showing their functional food superiority. In conclusion, the tested varieties of Pakistani rice, especially the Basmati cultivars, can provide best ingredients for functional foods. PMID:22605998

  18. Characterization of High-Value Bioactives in Some Selected Varieties of Pakistani Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Md. Kamal Uddin

    2012-04-01

    Full Text Available The present study reports the composition and variation of fatty acids, sterols, tocopherols and γ-oryzanol among selected varieties namely Basmati Super, Basmati 515, Basmati 198, Basmati 385, Basmati 2000, Basmati 370, Basmati Pak, KSK-139, KS-282 and Irri-6 of Pakistani rice (Oryza sativa L. Oil content extracted with n-hexane from different varieties of brown rice seed (unpolished rice ranged from 1.92% to 2.72%. Total fatty acid contents among rice varieties tested varied between 18240 and 25840 mg/kg brown rice seed. The rice tested mainly contained oleic (6841–10952 mg/kg linoleic (5453–7874 mg/kg and palmitic acid (3613–5489 mg/kg. The amounts of total phytosterols (GC and GC-MS analysis, with main contribution from β-sitosterol (445–656 mg/kg, campesterol (116–242 mg/kg, ∆5-avenasterol (89–178 mg/kg and stigmasterol (75–180 mg/kg were established to be 739.4 to 1330.4 mg/kg rice seed. The content of α-, γ- and δ-tocopherols as analyzed by HPLC varied from 39.0–76.1, 21.6–28.1 and 6.5–16.5 mg/kg rice seed, respectively. The amounts of different γ-oryzanol components (HPLC data, identified as cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, were in the range of 65.5–103.6, 140.2–183.1, 29.8–45.5 and 8.6–10.4 mg/kg rice seed, respectively. Overall, the concentration of these bioactives was higher in the Basmati rice cultivars showing their functional food superiority. In conclusion, the tested varieties of Pakistani rice, especially the Basmati cultivars, can provide best ingredients for functional foods.

  19. Formation of high-order oligomers is required for functional bioactivity of an African bat henipavirus surface glycoprotein.

    Science.gov (United States)

    Behner, Laura; Zimmermann, Louisa; Ringel, Marc; Weis, Michael; Maisner, Andrea

    2018-05-01

    Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic henipaviruses originating from fruit bats in Australia and Asia that can cause severe infections in livestock and humans. In recent years, also African bat henipaviruses were identified at the nucleic acid level. To assess their potential to replicate in non-bat species, several studies were performed to characterize the two surface glycoproteins required for virus entry and spread by cell-cell fusion. It has been shown that surface expression and fusion-helper function of the receptor-binding G protein of Kumasi virus (KV), the prototypic Ghanaian bat henipavirus, is reduced compared to other non-African henipavirus G proteins. Immunostainings and pulse-chase analysis revealed a delayed export of KV G from the ER. As defects in oligomerization of viral glycoproteins can be responsible for limited surface transport thereby restricting the bioactivity, we analyzed the oligomerization pattern of KV G. In contrast to HeV and NiV whose G proteins are known to be expressed at a dimer-tetramer ratio of 1:1, KV G almost exclusively formed stable tetramers or higher oligomers. KV G also showed less stringent requirements for defined stalk cysteines to form dimers and tetramers. Interestingly, any changes in the oligomeric forms negatively affected the fusion-helper activity although surface expression and receptor binding was unchanged. This clearly indicates that the formation of mostly higher oligomeric KV G forms is not a deficiency responsible for ER retention, but is rather a basic structural feature essential for the bioactivity of this African bat henipavirus glycoprotein. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Fuzzy promises

    DEFF Research Database (Denmark)

    Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas

    2012-01-01

    as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....

  1. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ingrid Richter

    2014-11-01

    Full Text Available Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds.

  2. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    Science.gov (United States)

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  3. Optimization of conditions to achieve high content of gamma amino butyric acid in germinated black rice, and changes in bioactivities

    Directory of Open Access Journals (Sweden)

    Chaiyavat CHAIYASUT

    Full Text Available Abstract The present study estimated the optimum germination conditions to achieve high content of Gamma-amino butyric acid (GABA and other phytochemicals in Thai black rice cultivar Kum Payao (BR. The Box–Behnken design of response surface methodology was employed to optimize the germination conditions. The changes in the GABA, phytochemical content, impact of salt, and temperature stress variation on phytochemical content, and stability of GABA were studied. The results showed that 12 h of soaking at pH 7, followed by 36 h of germination was the optimum condition to achieve maximum GABA content (0.2029 mg/g of germinated BR (GBR. The temperature (8 and 30 °C, and salt (50-200 mM NaCl content affected the phytochemicals of GBR, especially GABA, and anthocyanins. Obviously, the antioxidant capability, and enzyme (α-amylase and α-glucosidase inhibiting nature of BR was significantly (P < 0.001 increased after germination. The storage of GBR at 4 °C significantly, preserved the GABA content (∼80% for 45 days. Primarily, the current study revealed the changes in phytochemical content, and bioactivity of Thai black rice cr. Kum Payao during germination. More studies should be carried out on pharmacological benefits of GABA-rich GBR.

  4. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates.

    Science.gov (United States)

    Guan, Haining; Diao, Xiaoqin; Jiang, Fan; Han, Jianchun; Kong, Baohua

    2018-04-15

    Enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure conditions was studied and the effects of hydrolysis on antioxidant and antihypertensive activities were investigated. As observed, high hydrostatic pressure (80-300MPa) enhanced the hydrolytic efficiency of Corolase PP and decreased the surface hydrophobicity of the hydrolysates. Hydrolysates obtained at 200MPa for 4h had higher bioactivities (reducing power, ABTS radical-scavenging and ACE inhibitory activities). The molecular weight (MW) determination indicated that hydrolysis at high hydrostatic pressure could increase the production of small peptides (hydrostatic pressure combined with Corolase PP treatments could be used as a potential technology to produce bioactive peptides from soy protein isolate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration

    Science.gov (United States)

    Hughes, Chris

    2011-01-01

    In this presentation, an overview of the research being conducted by the ERA Project in Ultra High Bypass aircraft propulsion and in partnership with Pratt & Whitney with their Geared TurboFan (GTF) is given. The ERA goals are shown followed by a discussion of what areas need to be addressed on the engine to achieve the goals and how the GTF is uniquely qualified to meet the goals through a discussion of what benefits the cycle provides. The first generation GTF architecture is then shown highlighting the areas of collaboration with NASA, and the fuel burn, noise and emissions reductions possible based on initial static ground test and flight test data of the first GTF engine. Finally, a 5 year technology roadmap is presented focusing on Ultra High Bypass propulsion technology research areas that are being pursued and being planned by ERA and P&W under their GTF program.

  6. TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules.

    Science.gov (United States)

    Weishaupt, Ramon; Siqueira, Gilberto; Schubert, Mark; Tingaut, Philippe; Maniura-Weber, Katharina; Zimmermann, Tanja; Thöny-Meyer, Linda; Faccio, Greta; Ihssen, Julian

    2015-11-09

    Controlled and efficient immobilization of specific biomolecules is a key technology to introduce new, favorable functions to materials suitable for biomedical applications. Here, we describe an innovative and efficient, two-step methodology for the stable immobilization of various biomolecules, including small peptides and enzymes onto TEMPO oxidized nanofibrillated cellulose (TO-NFC). The introduction of carboxylate groups to NFC by TEMPO oxidation provided a high surface density of negative charges able to drive the adsorption of biomolecules and take part in covalent cross-linking reactions with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDAC) and glutaraldehyde (Ga) chemistry. Up to 0.27 μmol of different biomolecules per mg of TO-NFC could be reversibly immobilized by electrostatic interaction. An additional chemical cross-linking step prevented desorption of more than 80% of these molecules. Using the cysteine-protease papain as model, a highly active papain-TO-NFC conjugate was achieved. Once papain was immobilized, 40% of the initial enzymatic activity was retained, with an increase in kcat from 213 to >700 s(-1) for the covalently immobilized enzymes. The methodology presented in this work expands the range of application for TO-NFC in the biomedical field by enabling well-defined hybrid biomaterials with a high density of functionalization.

  7. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S. [CISE SpA, Milan (Italy); Crudeli, R. [ENEL SpA, Milan (Italy)

    1998-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  8. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S [CISE SpA, Milan (Italy); Crudeli, R [ENEL SpA, Milan (Italy)

    1999-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  9. Metronomic chemotherapy – promising therapeutical approach for recurrent/ refractory high risk tumours in children

    International Nuclear Information System (INIS)

    Deak, L.; Feketeova, J.; Haluskova, V.; Sencakova, I.; Jenco, I.; Oravkinova, I.

    2011-01-01

    Despite a great progress in the treatment of pediatric malignancies, the outcome of children with high risk refractory or relapsed tumours, as are some types of brain tumours or metastatic sarcomas, remain poor. In contrast to dose – intensified chemotherapy, utilizing „maximal tolerated doses“ of chemotherapy, the metronomic chemotherapy (MC) is based on chronic administration of significantly lower doses of chemotherapy in an uninterrupted manner, for prolonged periods. Because of different mechanism of action against conventional chemotherapy and no cross- resistance, this treatment modality is effective also in refractory and recurrent tumours. The predominant mechanism of action of MC is antiangiogenic. In last decades several studies confirmed the efficacy and low toxicity of this new treatment modality. It can be delivered on outpatient basis and is well tolerated even in heavily pretreated patients. The authors present an overview of studies on MC in pediatric oncology and their own experience. (author)

  10. Hybrid external fixation in high-energy elbow fractures: a modular system with a promising future.

    Science.gov (United States)

    Lerner, A; Stahl, S; Stein, H

    2000-12-01

    Severe, high-energy, periarticular elbow injuries producing a "floating joint" are a major surgical challenge. Their reconstruction and rehabilitation are not well documented. Therefore, the following reports our experience with treating such injuries caused by war wounds. Seven adults with compound open peri- and intra-articular elbow fractures were treated in hybrid ring tubular fixation frames. After debridement, bone stabilization, and neurovascular reconstructions, early controlled daily movements were started in the affected joint. These seven patients had together seven humeral, five radial, and six ulnar fractures. All fractures united at a median time of 180 days. No deep infection developed. The functional end results assessed by the Khalfayan functional score were excellent in two, good in one, and fair in four of these severely mangled upper extremities. None was amputated. The Mangled Extremity Severity Score has been shown to be unable to provide a reliable assessment for severe high-energy limb injuries surgically managed with the modular hybrid thin wire tubular external fixation system. This hybrid system is a very useful addition to the surgical armamentarium of orthopedic trauma surgeons. It both allows complex surgical reconstructions and reduces the incidence of deep infections in these heavily contaminated injuries. The hybrid circular (thin wire) external fixation system is very modular and may provide secure skeletal stabilization even in cases of severely comminuted juxta-articular fractures on both sides of the elbow joint (floating elbow) with severe damage to soft tissues. This fixation system allows individual fixation of forearm bone fractures, thus allowing the preservation of pronation-supination movements.

  11. Simultaneous Determination of Eight Bioactive Compounds in Dianthus superbus by High-performance Liquid Chromatography.

    Science.gov (United States)

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-05-01

    Dianthus superbus, one of traditional herbal medicine, is widely used to treat urethritis, carbuncles and carcinoma. A simultaneous determination method was established for controlling the quality of D. superbus using the eight compounds, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1), diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), vanillic acid (3), 4-hydroxyphenyl acetic acid (4), 4-methoxyphenyl acetic acid (5), (E)-4-methoxycinnamic acid (6), 3-methoxy-4-hydroxyphenylethanol (7), and methyl hydroferulate (8) isolated from D. superbus. This analysis method was developed using high performance liquid chromatography coupled with diode array detector with a Shishedo C18 column at a column temperature of 3°C. The mobile phase was composed of 0.1% trifluoroacetic acid in water and acetonitrile. The flow rate was 1 ml/min and detection wavelength was set at 205 nm and 280 nm. Validation was performed in order to demonstrate selectivity, accuracy and precision of the method. The calibration curves showed good linearity (R (2) > 0.99). The limits of detection and limits of quantification were within the ranges 0.0159-0.6205 μg/ml and 0.3210-1.8802 μg/ml, respectively. Moreover, the relative standard deviations of intra- and inter-day precision were both Dianthus superbus was established by high performance liquid chromatography-diode array detectorDeveloped analysis method is validated with linearity, precious and accuracyThe newly established method was successfully evaluated contents of eight compounds in 12 D. superbus samples (D.1.D.12) from various regions and compared. Abbreviations used: HPLC: High performance liquid chromatography, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation.

  12. High-throughput screening for bioactive components from traditional Chinese medicine.

    Science.gov (United States)

    Zhu, Yanhui; Zhang, Zhiyun; Zhang, Meng; Mais, Dale E; Wang, Ming-Wei

    2010-12-01

    Throughout the centuries, traditional Chinese medicine has been a rich resource in the development of new drugs. Modern drug discovery, which relies increasingly on automated high throughput screening and quick hit-to-lead development, however, is confronted with the challenges of the chemical complexity associated with natural products. New technologies for biological screening as well as library building are in great demand in order to meet the requirements. Here we review the developments in these techniques under the perspective of their applicability in natural product drug discovery. Methods in library building, component characterizing, biological evaluation, and other screening methods including NMR and X-ray diffraction are discussed.

  13. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Directory of Open Access Journals (Sweden)

    Miao Tan

    2017-08-01

    Full Text Available We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i the work function of the transparent conductive oxide layer, (ii the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si interface, (iii the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H layer, and (iv the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  14. Mini-tablets versus pellets as promising multiparticulate modified release delivery systems for highly soluble drugs.

    Science.gov (United States)

    Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y

    2015-07-05

    Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.

  15. Silicon homo-heterojunction solar cells: A promising candidate to realize high performance more stably

    Science.gov (United States)

    Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong

    2017-08-01

    We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.

  16. Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity

    Science.gov (United States)

    2015-01-01

    We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility. PMID:25314576

  17. Highly oxygenated lanostane-type triterpenoids and their bioactivity from the fruiting body of Ganoderma gibbosum.

    Science.gov (United States)

    Pu, De-Bing; Zheng, Xi; Gao, Jun-Bo; Zhang, Xing-Jie; Qi, Yan; Li, Xiao-Si; Wang, Yong-Mei; Li, Xiao-Nian; Li, Xiao-Li; Wan, Chun-Ping; Xiao, Wei-Lie

    2017-06-01

    Eight new highly oxygenated lanostane triterpenes, gibbosic acids A-H (1-8), along with three known ones (9-11), were isolated from the fruiting body of Ganoderma gibbosum. The structures of new isolates were assigned by NMR and HRESIMS experiments. The absolute configurations of 1 were further confirmed by single crystal X-ray diffraction data and computational ECD methods. Immunoregulatory effect and anti-inflammatory activities of these compounds were screened in murine lymphocyte proliferation assay and in lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages, respectively. Compound 2 exhibited immunostimulatory effect both in lymphocyte proliferation assay without any induction and ConA-induced mitogenic activity of T-lymphocyte, and the proportion of lymphocyte proliferation at the concentration of 0.1μM are 20.01% and 21.40%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Impact of high hydrostatic pressure and pasteurization on the structure and the extractability of bioactive compounds of persimmon “Rojo Brillante”.

    Science.gov (United States)

    Hernández-Carrión, M; Vázquez-Gutiérrez, J L; Hernando, I; Quiles, A

    2014-01-01

    Rojo Brillante is an astringent oriental persimmon variety with high levels of bioactive compounds such as soluble tannins, carotenoids, phenolic acids, and dietary fiber. The purpose of this study was to investigate the effects of high hydrostatic pressure (HHP) and pasteurization on the structure of the fruit and on the extractability of certain bioactive compounds. The microstructure was studied using light microscopy, transmission electron microscopy, and low temperature scanning electron microscopy, and certain physicochemical properties (carotenoid and total soluble tannin content, antioxidant activity, fiber content, color, and texture properties) were measured. The structural changes induced by HHP caused a rise in solute circulation in the tissues that could be responsible for the increased carotenoid level and the unchanged antioxidant activity in comparison with the untreated persimmon. In contrast, the changes that took place during pasteurization lowered the tannin content and antioxidant activity. Consequently, HHP treatment could improve the extraction of potentially bioactive compoundsxsts from persimmons. A high nutritional value ingredient to be used when formulating new functional foods could be obtained using HHP. © 2013 Institute of Food Technologists®

  19. Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling

    KAUST Repository

    Kremb, Stephan Georg

    2017-03-20

    Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies.

  20. Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling

    KAUST Repository

    Kremb, Stephan Georg; Mü ller, Constanze; Schmitt-Kopplin, Philippe; Voolstra, Christian R.

    2017-01-01

    Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies.

  1. Analysis of Bioactive Components of Oilseed Cakes by High-Performance Thin-Layer Chromatography-(Bioassay Combined with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Sue-Siang Teh

    2015-03-01

    Full Text Available Hemp, flax and canola seed cakes are byproducts of the plant oil extraction industry that have not received much attention in terms of their potential use for human food instead of animal feed. Thus, the bioactivity profiling of these oilseed cakes is of interest. For their effect-directed analysis, planar chromatography was combined with several (bioassays, namely 2,2-diphenyl-1-picrylhydrazyl scavenging, acetylcholine esterase inhibition, planar yeast estrogen screen, antimicrobial Bacillus subtilis and Aliivibrio fischeri assays. The streamlined high-performance thin-layer chromatography (HPTLC-bioassay method allowed the discovery of previously unknown bioactive compounds present in these oilseed cake extracts. In contrast to target analysis, the direct link to the effective compounds allowed comprehensive information with regard to selected effects. HPTLC-electrospray ionization-mass spectrometry via the elution-head based TLC-MS Interface was used for a first characterization of the unknown effective compounds. The demonstrated bioactivity profiling on the feed/food intake side may guide the isolation of active compounds for production of functional food or for justified motivation of functional feed/food supplements.

  2. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  3. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  4. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors.

    Science.gov (United States)

    Li, Gao-Ren; Feng, Zhan-Ping; Ou, Yan-Nan; Wu, Dingcai; Fu, Ruowen; Tong, Ye-Xiang

    2010-02-16

    MnO(2) as one of the most promising candidates for electrochemical supercapacitors has attracted much attention because of its superior electrochemical performance, low cost, and environmentally benign nature. In this Letter, we explored a novel route to prepare mesoporous MnO(2)/carbon aerogel composites by electrochemical deposition assisted by gas bubbles. The products were characterized by energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The MnO(2) deposits are found to have high purity and have a mesoporous structure that will optimize the electronic and ionic conductivity to minimize the total resistance of the system and thereby maximize the performance characteristics of this material for use in supercapacitor electrodes. The results of nitrogen adsorption-desorption experiments and electrochemical measurements showed that these obtained mesoporous MnO(2)/carbon aerogel composites had a large specific surface area (120 m(2)/g), uniform pore-size distribution (around 5 nm), high specific capacitance (515.5 F/g), and good stability over 1000 cycles, which give these composites potential application as high-performance supercapacitor electrode materials.

  5. Recent advances on bioactivities of black rice.

    Science.gov (United States)

    Dias, Aécio L de S; Pachikian, Barbara; Larondelle, Yvan; Quetin-Leclercq, Joëlle

    2017-11-01

    Black rice has been consumed for centuries in Asian countries such as China, Korea or Japan. Nowadays, extracts and derivatives are considered as beneficial functional foods because of their high content in several bioactive molecules such as anthocyanins, other phenolics and terpenoids. The purpose of this review is to summarize and discuss recent developments on black rice bioactivities. Some sterols and triterpenoids with potential anticancer properties already tested in vitro and in vivo have been isolated and identified from bran extracts of black rice. Protection against osteoporosis has been suggested for the first time for black rice extracts. Because of its antioxidant and anti-inflammatory properties, black rice also protects liver and kidney from injuries. One clinical study reported the interest of black rice in case of alcohol withdrawal. Several advances have been recently achieved on the understanding of the potential biological effects of black rice and its derivatives. They further confirm that black rice should be considered as a promising source of health-promoting functional foods targeting a large set of noninfectious diseases. However, more clinical studies are needed to support the findings highlighted in this review.

  6. Production of Poly(ε-Caprolactone)/Hydroxyapatite Composite Scaffolds with a Tailored Macro/Micro-Porous Structure, High Mechanical Properties, and Excellent Bioactivity.

    Science.gov (United States)

    Kim, Jong-Woo; Shin, Kwan-Ha; Koh, Young-Hag; Hah, Min Jin; Moon, Jiyoung; Kim, Hyoun-Ee

    2017-09-22

    We produced poro-us poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite scaffolds for bone regeneration, which can have a tailored macro/micro-porous structure with high mechanical properties and excellent in vitro bioactivity using non-solvent-induced phase separation (NIPS)-based 3D plotting. This innovative 3D plotting technique can create highly microporous PCL/HA composite filaments by inducing unique phase separation in PCL/HA solutions through the non-solvent-solvent exchange phenomenon. The PCL/HA composite scaffolds produced with various HA contents (0 wt %, 10 wt %, 15 wt %, and 20 wt %) showed that PCL/HA composite struts with highly microporous structures were well constructed in a controlled periodic pattern. Similar levels of overall porosity (~78 vol %) and pore size (~248 µm) were observed for all the PCL/HA composite scaffolds, which would be highly beneficial to bone tissue regeneration. Mechanical properties, such as ultimate tensile strength and compressive yield strength, increased with an increase in HA content. In addition, incorporating bioactive HA particles into the PCL polymer led to remarkable enhancements in in vitro apatite-forming ability.

  7. Bioactivity of Minor Milk Components

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh

    . In particular, 3-15% of very low birth weight preterm infants suffer from the most servere form of intestinal inflammation, known as necrotizing enterocolitis (NEC). This disease is incurable with a high mortality rate of 15-30%. Mother’s breast milk consists of different bioactive constituents...... of infant formula. Thereafter, bioactive milk components which were preserved in gently-processed infant formula were selected for further investigation of their immunomodulatory activity in cell and preterm pig models. We hope this project will contribute to the research on the development of new...

  8. Partially etched Ti3AlC2 as a promising high capacity Lithium-ion battery anode.

    Science.gov (United States)

    Chen, Xifan; Zhu, Yuanzhi; Zhu, Xiaoquan; Peng, Wenchao; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2018-06-25

    MXenes, a family of two-dimensional transition-metal carbide and nitride materials, are supposed to be the promising materials in energy storage because of the high electronic conductivity, hydrophilic surfaces and low diffusion barriers. MXenes are generally prepared by removing the "A" elements (A = Al, Si, Sn, etc.) from their corresponding MAX phases by using hydrofluoric acid (HF) and the other etching agents, despite the fact that these "A" elements usually have great volumetric and gravimetric capacities. Herein, we studied the etching progress of Ti3AlC2 and evaluated their anode performance in Lithium-ion batteries. We found that a partially etched sample (0.5h-peTi3C2Tx) showed much higher capacity (160 mA h g-1, 331.6 mA h cm-3 at 1C) when compared with the fully etched Ti3C2Tx (110 mA h g-1, 190.3 mA h cm-3 at 1C). Besides, a 99% capacity retention was observed even after 1000 cycles in the 0.5h-peTi3C2Tx anode. This interesting result can be explained, at least in part, by the alloying of the residue Al element during lithiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impact of high pressure processing on color, bioactive compounds, polyphenol oxidase activity, and microbiological attributes of pumpkin purée.

    Science.gov (United States)

    González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez

    2016-04-01

    Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée. © The Author(s) 2015.

  10. The Magnolia Bioactive Constituent 4-O-Methylhonokiol Protects against High-Fat Diet-Induced Obesity and Systemic Insulin Resistance in Mice

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhang

    2014-01-01

    Full Text Available Obesity is caused by a combination of both genetic and environmental risks. Disruption in energy balance is one of these risk factors. In the present study, the preventive effect on high-fat diet- (HFD- induced obesity and insulin resistance in mice by Magnolia bioactive constituent 4-O-methylhonokiol (MH was compared with Magnolia officinalis extract BL153. C57BL/6J mice were fed by normal diet or by HFD with gavage-administered vehicle, BL153, low-dose MH, and high-dose MH simultaneously for 24 weeks, respectively. Either MH or BL153 slightly inhibited body-weight gain of mice by HFD feeding although the food intake had no obvious difference. Body fat mass and the epididymal white adipose tissue weight were also mildly decreased by MH or BL153. Moreover, MH significantly lowered HFD-induced plasma triglyceride, cholesterol levels and activity of alanine transaminase (ALT, liver weight and hepatic triglyceride level, and ameliorated hepatic steatosis. BL153 only significantly reduced ALT and liver triglyceride level. Concurrently, low-dose MH improved HFD-induced hyperinsulinemia and insulin resistance. Furthermore, the infiltration of mast cells in adipose tissue was decreased in MH or in BL153 treatment. These results suggested that Magnolia bioactive constituent MH might exhibit potential benefits for HFD-induced obesity by improvement of lipid metabolism and insulin resistance.

  11. Fluorescent-magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis

    Science.gov (United States)

    Xie, Min; Hu, Jun; Wen, Cong-Ying; Zhang, Zhi-Ling; Xie, Hai-Yan; Pang, Dai-Wen

    2012-01-01

    Bead-based optical encoding or magnetic encoding techniques are promising in high-throughput multiplexed detection and separation of numerous species under complicated conditions. Therefore, a self-assembly strategy implemented in an organic solvent is put forward to fabricate fluorescent-magnetic dual-encoded nanospheres. Briefly, hydrophobic trioctylphosphine oxide-capped CdSe/ZnS quantum dots (QDs) and oleic acid-capped nano-γ-Fe2O3 magnetic particles are directly, selectively and controllably assembled on branched poly(ethylene imine)-coated nanospheres without any pretreatment, which is crucial to keep the high quantum yield of QDs and good dispersibility of γ-Fe2O3. Owing to the tunability of coating amounts of QDs and γ-Fe2O3 as well as controllable fluorescent emissions of deposited-QDs, dual-encoded nanospheres with different photoluminescent emissions and gradient magnetic susceptibility are constructed. Using this improved layer-by-layer self-assembly approach, deposition of hydrophobic nanoparticles onto hydrophilic carriers in organic media can be easily realized; meanwhile, fluorescent-magnetic dual-functional nanospheres can be further equipped with readable optical and magnetic addresses. The resultant fluorescent-magnetic dual-encoded nanospheres possess both the unique optical properties of QDs and the superparamagnetic properties of γ-Fe2O3, exhibiting good monodispersibility, huge encoding capacity and nanoscale particle size. Compared with the encoded microbeads reported by others, the nanometre scale of the dual-encoded nanospheres gives them minimum steric hindrance and higher flexibility.

  12. Synthesis and In Vitro Activity Assessment of Novel Silicon Oxycarbide-Based Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Isabel Gonzalo-Juan

    2016-11-01

    Full Text Available Novel bioactive glasses based on a Ca- and Mg-modified silicon oxycarbide (SiCaMgOC were prepared from a polymeric single-source precursor, and their in vitro activity towards hydroxyapatite mineralization was investigated upon incubating the samples in simulated body fluid (SBF at 37 °C. The as-prepared materials exhibit an outstanding resistance against devitrification processes and maintain their amorphous nature even after exposure to 1300 °C. The X-ray diffraction (XRD analysis of the SiCaMgOC samples after the SBF test showed characteristic reflections of apatite after only three days, indicating a promising bioactivity. The release kinetics of the Ca2+ and Mg2+ and the adsorption of H+ after immersion of SiCaMgOC in simulated body fluid for different soaking times were analyzed via optical emission spectroscopy. The results show that the mechanism of formation of apatite on the surface of the SiCaMgOC powders is similar to that observed for standard (silicate bioactive glasses. A preliminary cytotoxicity investigation of the SiOC-based bioactive glasses was performed in the presence of mouse embryonic fibroblasts (MEF as well as human embryonic kidney cells (HEK-293. Due to their excellent high-temperature crystallization resistance in addition to bioactivity, the Ca- and Mg-modified SiOC glasses presented here might have high potential in applications related to bone repair and regeneration.

  13. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  14. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material

    International Nuclear Information System (INIS)

    Qian, Tingting; Li, Jinhong; Min, Xin; Deng, Yong; Guan, Weimin; Ning, Lei

    2015-01-01

    Graphical abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCMs’ applications is not limited to low temperatures only. In the present study, three kinds of PCMs: polyethylene glycol (PEG), lithium nitrate, and sodium sulfate were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three kinds of PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. - Highlights: • Low-temperature PEG/diatomite was prepared. • Middle-temperature LiNO 3 /diatomite was prepared. • High-temperature Na 2 SO 4 /diatomite was prepared. - Abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCM’s application is not only limited to low temperatures. In this study, polyethylene glycol (PEG), lithium nitrate (LiNO 3 ), and sodium sulfate (Na 2 SO 4 ) were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. The maximum loads of PEG, LiNO 3 , and Na 2 SO 4 in diatomite powder could respectively reach 58%, 60%, and 65%, while PCM melts during the solid–liquid phase transformation. SEM, XRD, and FT-IR results indicated that PCMs were well dispersed into diatomite pores and no chemical changes took place during the heating and cooling process. The prepared fs-PCMs were quite stable in terms of thermal and chemical manner even after a 200-cycle of melting and freezing. The resulting composite fs-PCMs were promising candidates to

  15. High-Yield Production in Escherichia coli of Fungal Immunomodulatory Protein Isolated from Flammulina velutipes and Its Bioactivity Assay in Vivo

    Directory of Open Access Journals (Sweden)

    Shenkui Liu

    2013-01-01

    Full Text Available A fungal immunomodulatory protein isolated from Flammulina velutipes (FIP-fve has structural similarity to the variable region of the immunoglobulin heavy chain. In the present study, the recombinant bioactive FIP-fve protein with a His-tag in N-terminal of recombinant protein was expressed in transetta (DE3 at a high level under the optimized culturing conditions of 0.2 mM IPTG and 28 °C. The efficiency of the purification was improved with additional ultrasonication to the process of lysozyme lysis. The yield of the bioactive FIP-fve protein with 97.1% purity reached 29.1 mg/L with a large quantity for industrial applications. Enzyme-linked immunosorbent assay showed a maximum increase in interleukin-2 (IL-2 and gamma interferon (IFN-γ for the mice serum group of 5 mg/kg body mass (p < 0.01 with three doses of His-FIP-fve. However, the production of IL-4 had no apparent difference compared to the control.

  16. Biosurfactants: promising bioactive molecules for oral-related health applications.

    Science.gov (United States)

    Elshikh, Mohamed; Marchant, Roger; Banat, Ibrahim M

    2016-09-01

    Biosurfactants are naturally produced molecules that demonstrate potentially useful properties such as the ability to reduce surface tensions between different phases. Besides having similar properties to their artificial chemical counterparts, they are regarded as environmental friendly, biodegradable and less toxic, which make them desirable candidates for downstream applications. The structure-activity-related properties of the biosurfactants which are directly correlated with potency of the biosurfactants as antimicrobial agents, the ability of the biosurfactants to alter surface energies and their ability to increase bioavailability are particularly what attract researchers to exploit their potential use in the oral-related health applications. Current research into biosurfactant indicates significant future potential for use in cosmetic and therapeutic oral hygiene product formulations and related medical device treatments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Polyether ionophores-promising bioactive molecules for cancer therapy.

    Science.gov (United States)

    Huczyński, Adam

    2012-12-01

    The natural polyether ionophore antibiotics might be important chemotherapeutic agents for the treatment of cancer. In this article, the pharmacology and anticancer activity of the polyether ionophores undergoing pre-clinical evaluation are reviewed. Most of polyether ionophores have shown potent activity against the proliferation of various cancer cells, including those that display multidrug resistance (MDR) and cancer stem cells (CSC). The mechanism underlying the anticancer activity of ionophore agents can be related to their ability to form complexes with metal cations and transport them across cellular and subcellular membranes. Increasing evidence shows that the anticancer activity of polyether ionophores may be a consequence of the induction of apoptosis leading to apoptotic cell death, arresting cell cycle progression, induction of the cell oxidative stress, loss of mitochondrial membrane potential, reversion of MDR, synergistic anticancer effect with other anticancer drugs, etc. Continued investigation of the mechanisms of action and development of new polyether ionophores and their derivatives may provide more effective therapeutic drugs for cancer treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Development of On-Line High Performance Liquid Chromatography (HPLC)-Biochemical Detection Methods as Tools in the Identification of Bioactives

    Science.gov (United States)

    Malherbe, Christiaan J.; de Beer, Dalene; Joubert, Elizabeth

    2012-01-01

    Biochemical detection (BCD) methods are commonly used to screen plant extracts for specific biological activities in batch assays. Traditionally, bioactives in the most active extracts were identified through time-consuming bio-assay guided fractionation until single active compounds could be isolated. Not only are isolation procedures often tedious, but they could also lead to artifact formation. On-line coupling of BCD assays to high performance liquid chromatography (HPLC) is gaining ground as a high resolution screening technique to overcome problems associated with pre-isolation by measuring the effects of compounds post-column directly after separation. To date, several on-line HPLC-BCD assays, applied to whole plant extracts and mixtures, have been published. In this review the focus will fall on enzyme-based, receptor-based and antioxidant assays. PMID:22489144

  19. High-performance thin-layer chromatography linked with (bio)assays and mass spectrometry - a suited method for discovery and quantification of bioactive components? Exemplarily shown for turmeric and milk thistle extracts.

    Science.gov (United States)

    Taha, Mahmoud N; Krawinkel, Michael B; Morlock, Gertrud E

    2015-05-15

    Extraction parameters, chemical fingerprint, and the single compounds' activity levels were considered for the selection of active botanicals. For an initial survey, the total bioactivity (i.e., total reducing capacity, total flavonoids contents and free radical scavenging capacity) of 21 aqueous and 21 ethanolic plant extracts was investigated. Ethanolic extracts showed a higher yield and were further analyzed by HPTLC in detail to obtain fingerprints of single flavonoids and further bioactive components. Exemplarily shown for turmeric (Curcuma longa) and milk thistle (Silybum marianum), effect-directed analysis (EDA) was performed using three selected (bio)assays, the Aliivibrio fischeri bioassay, the Bacillus subtilis bioassay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH*) assay. As a proof of principle, the bioactive components found in the extracts were confirmed by HPTLC-MS. Bioassays in combination with planar chromatography directly linked to the known, single effective compounds like curcumin and silibinin. However, also some unknown bioactive components were discovered and exemplarily characterized, which demonstrated the strength of this kind of EDA. HPTLC-UV/Vis/FLD-EDA-MS could become a useful tool for selection of active botanicals and for the activity profiling of the active ingredients therein. The flexibility in effect-directed detections allows a comprehensive survey of effective ingredients in samples. This streamlined methodology comprised a non-targeted, effect-directed screening first, followed by a highly targeted characterization of the discovered bioactive compounds. HPTLC-EDA-MS can also be recommended for bioactivity profiling of food on the food intake side, as not only effective phytochemicals, but also unknown bioactive degradation products during food processing or contamination products or residues or metabolites can be detected. Thus, an efficient survey on potential food intake effects on wellness could be obtained. Having performed

  20. Development of implants composed of bioactive materials for bone repair

    Science.gov (United States)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  1. Mixed protocols: Multiple ratios of FSH and LH bioactivity using highly purified, human-derived FSH (BRAVELLE and highly purified hMG (MENOPUR are unaltered by mixing together in the same syringe

    Directory of Open Access Journals (Sweden)

    Raike Elizabeth

    2005-11-01

    Full Text Available Abstract Background The use of mixed or blended protocols, that utilize both FSH and hMG, for controlled ovarian hyperstimulation is increasing in use. To reduce the number of injections a patient must administer, many physicians instruct their patients to mix their FSH and hMG together to be given as a single injection. Therefore, the goal of this study was to definitively determine if the FSH and LH bioactivities of highly purified, human-derived FSH (Bravelle(R and highly purified hMG (Menopur(R were altered by reconstituting in 0.9% saline and mixing in the same syringe. Methods Bravelle(R and Menopur(R were reconstituted in 0.9% saline and mixed in a Becton Dickinson plastic syringe. The FSH and LH bioactivities of the products were determined after injecting female and male rats, respectively, with Bravelle(R, Menopur(R, or a mixture of Bravelle(R and Menopur(R. Ratios of FSH:LH activity tested were 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1 vial Bravelle(R: 3 vials of Menopur(R. Results There were no statistically significant changes in either FSH or LH bioactivity that occurred after mixing Bravelle(R with Menopur(R in the same syringe. The theoretical vs. actual FSH bioactivity for Bravelle(R and Menopur(R were 75 vs. 76.58 IU/mL and 75 vs. 76.0 IU/mL, respectively. For the 3 ratios of FSH:LH activity tested, 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1 vial Bravelle(R: 3 vials of Menopur(R tested, the theoretical vs. actual FSH bioactivities were 150 vs. 156.86 IU/mL, 300 vs. 308.69 IU/mL and 300 vs. 306.58 IU/mL, respectively. The theoretical vs. actual LH bioactivity for Menopur(R in the above mentioned ratios tested were 75 vs. 77.50 IU/mL. For the 3 ratios of FSH:LH activity tested, 150:75 IU (1 vial Bravelle(R: 1 vial Menopur(R, 300:75 IU (3 vials Bravelle(R: 1 vial Menopur(R or 300:225 IU (1

  2. Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process.

    Science.gov (United States)

    Zhao, Shan; Li, Yanbao; Li, Dongxu

    2011-02-01

    Mesoporous bioactive glasses (MBGs) of the CaO-SiO(2)-P(2)O(5) system containing relatively high P(2)O(5) contents (10-30 mol%) were prepared from a sol-gel. An evaporation-induced self-assembly (EISA) technique was used with poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (EO(20)-PO(70)-EO(20), P123) acting as a template. The structural, morphological and textural properties of MBGs were investigated by small-angle X-ray diffraction (SAXRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and a N(2) sorption/desorption technique. SAXRD and TEM results display the reduced long-range ordering of mesopores with increasing P(2)O(5) content. N(2) sorption/desorption analysis shows that all three samples exhibit a type IV isotherm with type H1 hysteresis loops, characteristic of independent cylindrical slim pore channels and this material has a Barret-Joyner-Halenda (BJH) model pore size of ~4 nm and BET specific surface area ~430 m(2)/g. NMR results indicate a more condensed framework for samples with 30 mol% P(2)O(5) than samples with 10 mol% P(2)O(5). For in vitro bioactivity tests where samples were soaked in simulated body fluid (SBF), samples with 30 mol% P(2)O(5) showed higher crystallinity than those with lower P(2)O(5) contents Silicon concentration increased in SBF solution during the soaking period, which indicates MBGs can be degradable in SBF solution.

  3. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  4. In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo L.

    2000-01-01

    Full Text Available Composites that can mimic the in vitro bioactive behavior of bioactive glasses were designed to fulfill two main features of bioactive glasses that are responsible for their high bond-to-bone rates: (1 capability of providing ions such as calcium and phosphate to the nearby environment and (2 ideal surface structure that allows fast heterogeneous precipitation of hydroxy-carbonate-apatite (HCA. The novel composites were prepared by incorporating bioactive glass particles into polymer matrices. The in vitro bioactivity test was performed by introducing samples into a buffered solution as well as into a simulated body fluid solution. FTIR was used to evaluate the kinetics of HCA (hydroxy-carbonate-apatite precipitation. The results showed that the obtained composites can supply ions, such as silicates and phosphates in rates and concentrations comparable or superior than bulk bioactive glasses. Moreover, the surface chemistry of the composites was altered to mimic the surface of bioactive glasses. It was demonstrated that the in vitro bioactivity of the composites was enhanced by chemically modifying polymer surfaces through the introduction of special alkoxysilane groups.

  5. Dehydrated olive-waste cake as a source of high value-added bioproduct: Drying kinetics, physicochemical properties, and bioactive compounds

    Directory of Open Access Journals (Sweden)

    Elsa Uribe

    2014-09-01

    Full Text Available Olive (Olea europaea L. oil processing produces significant amount of waste that can be utilized for the production of high value-added ingredients for various industrial applications. In this work, the effects of temperature on drying kinetics and quality indexes of the olive-waste cake during convective dehydration (40-90 °C were investigated. Results on effective moisture diffusivity, physicochemical parameters, fatty acid profile, total phenolic, flavonoid, and flavanol contents as well as antioxidant capacity are also reported. Most of the fatty acids increased their content with respect to control sample with a temperature increase, i.e. oleic and linoleic acids increased 48% and 43% at 70 and 40 °C, respectively. Total flavanol content increased with temperature (48-62 mg catechin equivalents [CTE] 100 g-1 DM except for 80 °C. Total phenolic and total flavonoid contents were highly correlated to antioxidant capacity (0.923 < r < 0.992, except for 70 and 80 °C, the rest of the samples maintained their initial antioxidant capacity by ORAC analysis. Thus, these parameters show that dried olive-waste cake has a high bioactive compounds with potential use as additives for the food or other industries.

  6. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbashev, A.R. [Department of Materials Science, Moscow State University, 119992 Moscow (Russian Federation); Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation); Kaul, A.R. [Department of Chemistry, Moscow State University, 119992 Moscow (Russian Federation); Sukhorukov, Yu.P. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation)

    2015-06-15

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr{sub 1–x}Sr{sub x}MnO{sub 3} and ferroelectric hexagonal LuMnO{sub 3} were grown on ZrO{sub 2}(Y{sub 2}O{sub 3}) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics.

  7. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    International Nuclear Information System (INIS)

    Akbashev, A.R.; Telegin, A.V.; Kaul, A.R.; Sukhorukov, Yu.P.

    2015-01-01

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr 1–x Sr x MnO 3 and ferroelectric hexagonal LuMnO 3 were grown on ZrO 2 (Y 2 O 3 ) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics

  8. Alkali-free bioactive glasses for bone regeneration

    OpenAIRE

    Kapoor, Saurabh

    2014-01-01

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tiss...

  9. SAME4HPC: A Promising Approach in Building a Scalable and Mobile Environment for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Rajasekar [ORNL

    2014-01-01

    In this paper, an architecture for building Scalable And Mobile Environment For High-Performance Computing with spatial capabilities called SAME4HPC is described using cutting-edge technologies and standards such as Node.js, HTML5, ECMAScript 6, and PostgreSQL 9.4. Mobile devices are increasingly becoming powerful enough to run high-performance apps. At the same time, there exist a significant number of low-end and older devices that rely heavily on the server or the cloud infrastructure to do the heavy lifting. Our architecture aims to support both of these types of devices to provide high-performance and rich user experience. A cloud infrastructure consisting of OpenStack with Ubuntu, GeoServer, and high-performance JavaScript frameworks are some of the key open-source and industry standard practices that has been adopted in this architecture.

  10. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    Science.gov (United States)

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

  12. Extraction of three bioactive diterpenoids from Andrographis paniculata: effect of the extraction techniques on extract composition and quantification of three andrographolides using high-performance liquid chromatography.

    Science.gov (United States)

    Kumar, Satyanshu; Dhanani, Tushar; Shah, Sonal

    2014-10-01

    Andrographis paniculata (Burm.f.) wall.ex Nees (Acanthaceae) or Kalmegh is an important medicinal plant finding uses in many Ayurvedic formulations. Diterpenoid compounds andrographolides (APs) are the main bioactive phytochemicals present in leaves and herbage of A. paniculata. The efficiency of supercritical fluid extraction (SFE) using carbon dioxide was compared with the solid-liquid extraction techniques such as solvent extraction, ultrasound-assisted solvent extraction and microwave-assisted solvent extraction with methanol, water and methanol-water as solvents. Also a rapid and validated reverse-phase high-performance liquid chromatography-diode array detection method was developed for the simultaneous determination of the three biologically active compounds, AP, neoandrographolide and andrograpanin, in the extracts of A. paniculata. Under the best SFE conditions tested for diterpenoids, which involved extraction at 60°C and 100 bar, the extractive efficiencies were 132 and 22 µg/g for AP and neoandrographolide, respectively. The modifier percentage significantly affected the extraction efficiency. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Quantitative Determination of Bioactive Constituents in Noni Juice by High-performance Liquid Chromatography with Electrospray Ionization Triple Quadrupole Mass Spectrometry.

    Science.gov (United States)

    Yan, Yongqiu; Lu, Yu; Jiang, Shiping; Jiang, Yu; Tong, Yingpeng; Zuo, Limin; Yang, Jun; Gong, Feng; Zhang, Ling; Wang, Ping

    2018-01-01

    Noni juice has been extensively used as folk medicine for the treatment of arthritis, infections, analgesic, colds, cancers, and diabetes by Polynesians for many years. Due to the lack of standard scientific evaluation methods, various kinds of commercial Noni juice with different quality and price were available on the market. To establish a sensitive, reliable, and accurate high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method for separation, identification, and simultaneous quantitative analysis of bioactive constituents in Noni juice. The analytes and eight batches of commercially available samples from different origins were separated and analyzed by the HPLC-ESI-MS/MS method on an Agilent ZORBAX SB-C 18 (150 mm × 4.6 mm i.d., 5 μm) column using a gradient elution of acetonitrile-methanol-0.05% glacial acetic acid in water (v/v) at a constant flow rate of 0.5 mL/min. Seven components were identification and all of the assay parameters were within the required limits. Components were within the correlation coefficient values ( R 2 ≥ 0.9993) at the concentration ranges tested. The precision of the assay method was high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometryThe presented method was successfully applied to the quality control of eight batches of commercially available samples of Noni juiceThis method is simple, sensitive, reliable, accurate, and efficient method with strong specificity, good precision, and high recovery rate and provides a reliable basis for quality control of Noni juice. Abbreviations used: HPLC-ESI-MS/MS: High-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry, LOD: Limit of detection, LOQ: Limit of quantitation, S/N: Signal-to-noise ratio, RSD: Relative standard deviations, DP: Declustering potential, CE: Collision energy, MRM: Multiple reaction monitoring, RT

  14. Ytterbium silicide (YbSi{sub 2}). A promising thermoelectric material with a high power factor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tanusilp, Sora-at; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); Nishide, Akinori [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Hayakawa, Jun [Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Kurosaki, Ken [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); JST, PRESTO, Kawaguchi, Saitama (Japan)

    2018-02-15

    Metal silicide-based thermoelectric (TE) materials have attracted attention in the past two decades, because they are less toxic, with low production cost and high chemical stability. Here, we study the TE properties of ytterbium silicide YbSi{sub 2} with a specific layered structure and the mixed valence state of Yb{sup 2+} and Yb{sup 3+}. YbSi{sub 2} exhibits large Seebeck coefficient, S, accompanied by high electrical conductivity, σ, leading to high power factor, S{sup 2}σ, of 2.2 mW m{sup -1} K{sup -2} at room temperature, which is comparable to those of state-of-the-art TE materials such as Bi{sub 2}Te{sub 3} and PbTe. Moreover, YbSi{sub 2} exhibits high Grueneisen parameter of 1.57, which leads to relatively low lattice thermal conductivity, κ{sub lat}, of 3.0 W m{sup -1} K{sup -1} at room temperature. The present study reveals that YbSi{sub 2} can be a good candidate of TE materials working near room temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Tripathi, Himanshu [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Hira, Sumit Kumar; Manna, Partha Pratim [Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India); Pyare, Ram; Singh, S.P. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} system. This work demonstrates that the substitution of SrO for SiO{sub 2} has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO{sub 2}. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  16. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    International Nuclear Information System (INIS)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; Singh, S.P.

    2016-01-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 system. This work demonstrates that the substitution of SrO for SiO 2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO 2 . The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  17. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica

    Energy Technology Data Exchange (ETDEWEB)

    Özarslan, Ali Can, E-mail: alicanozarslan@gmail.com; Yücel, Sevil, E-mail: syucel@yildiz.edu.tr

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. - Highlights: • Production of 3-D bioactive glass scaffolds from different silica sources • The effect of biosilica from rice hull ash on the bioactive glass scaffold • Sr additive impact on the bioactivity and biodegradability properties of scaffolds.

  18. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DEFF Research Database (Denmark)

    Shin, Hyeong-Moo; Ernstoff, Alexi; Arnot, Jon

    2015-01-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify....../oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models....

  19. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    Science.gov (United States)

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  20. Photons, photosynthesis, and high-performance computing: challenges, progress, and promise of modeling metabolism in green algae

    International Nuclear Information System (INIS)

    Chang, C H; Graf, P; Alber, D M; Kim, K; Murray, G; Posewitz, M; Seibert, M

    2008-01-01

    The complexity associated with biological metabolism considered at a kinetic level presents a challenge to quantitative modeling. In particular, the relatively sparse knowledge of parameters for enzymes with known kinetic responses is problematic. The possible space of these parameters is of high-dimension, and sampling of such a space typifies a combinatorial explosion of possible dynamic states. However, with sufficient quantitative transcriptomics, proteomics, and metabolomics data at hand, these challenges could be met by high-performance software with sampling, fitting, and optimization capabilities. With this in mind, we present the High-Performance Systems Biology Toolkit HiPer SBTK, an evolving software package to simulate, fit, and optimize metabolite concentrations and fluxes within the space of rate and binding parameters associated with detailed enzyme kinetic models. We present our chosen modeling paradigm for the formulation of metabolic pathway models, the means to address the challenge of representing such models in a precise and persistent fashion using the standardized Systems Biology Markup Language, and our second-generation model of H2-associated Chlamydomonas metabolism. Processing of such models for hierarchically parallelized simulation and optimization, job specification by the user through a GUI interface, software capabilities and initial scaling data, and the mapping of the computation to biological questions is also discussed. Moreover, we present near-term future software and model development goals

  1. The creation of a pedagogy of promise: Examples of educational excellence in high-stakes science classrooms

    Science.gov (United States)

    McCollough, Cherie A.

    The current reform movement in education has two forces that appear contradictory in nature. The first is an emphasis on rigor and accountability that is assessed through high-stakes testing. The second is the recommendation to have student centered approaches to teaching and learning, especially those that emphasize inquiry methodology and constructivist pedagogy. Literature reports that current reform efforts involving accountability through high-stakes tests are detrimental to student learning and are contradictory to student-centered teaching approaches. However, by focusing attention on those teachers who "teach against the grain" and raise the achievement levels of students from diverse backgrounds, instructional strategies and personal characteristics of exemplary teachers can be identified. This mixed-methods research study investigated four exemplary urban high school science teachers in high-stakes (TAKS) tested science classrooms. Classroom observations, teacher and student interviews, pre-/postcontent tests and the Constructivist Learning Environment Survey (CLES) (Johnson & McClure, 2004) provided the main data sources. The How People Learn (National Research Council, 2000) theoretical framework provided evidence of elements of inquiry-based, student-centered teaching. Descriptive case analysis (Yin, 1994) and quantitative analysis of pre/post tests and the CLES revealed the following results. First, all participating teachers included elements of learner-centeredness, knowledge-centeredness, assessment-centeredness and community-centeredness in their teaching as recommended by the National Research Council, (2000), thus creating student-centered classroom environments. Second, by establishing a climate of caring where students felt supported and motivated to learn, teachers managed tensions resulting from the incorporation of student-centered elements and the accountability-based instructional mandates outlined by their school district and state

  2. Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis

    DEFF Research Database (Denmark)

    Tafti, Mohsen Y.; Ballikaya, Sedat; Khachatourian, Adrine Malek

    2016-01-01

    of Cu2Se were synthesized. Powder samples and compacted pellets have been characterized in detail for their structural, microstructural and transport properties. α to β phase transition of Cu2Se was confirmed using temperature dependent X-ray powder diffraction and differential scanning calorimetry...... truncated morphology. Through a detailed investigation of different parameters in the compaction process, such as applied load, heating rate, and cooling profiles, pellets with preserved nanostructured grains were obtained. An applied load during the controlled cooling profile was demonstrated to have a big...... impact on the final thermoelectric efficiency of the consolidated pellets. A very high thermoelectric figure of merit (ZT) above 2 was obtained at 900 K for SPS-compacted Cu2Se nanopowders in the absence of the applied load during the controlled cooling step. The obtained ZT exceeds the state of the art...

  3. Root bioactivity of corn and sunflower as evaluated by 75Se-plant injection technique

    International Nuclear Information System (INIS)

    Haak, E.; Paltineanu, I.C.

    1982-01-01

    A tracer technique was used for root studies under field conditions on a chernozemic soil in Romania. 75 Se was injected at the stem base and radioassayed for its presence in soil profiles with a gammasond lowered to different depths. Based on the assumption that 75 Se is preferably transferred within the root system to active root tissue of injected plants, the root bioactivity was estimated for corn at the knee high stage and just before tasseling, and for sunflower at early maturing, the crops being subjected to different N-fertilization and irigation treatments. The pattern of root bioactivity varied with crop, time and treatment applied. The technique, which is briefly described, seems to be a promising tool for delineation of root response to variation with depth in the soil profile of moisture and nutrient status and as shown in this pilote investigation for delineation of effects of irrigation and N-fertilization. (Authors)

  4. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. © 2016 Wiley Periodicals, Inc.

  5. The ecological dynamics and trajectories of bioactive compounds in ...

    African Journals Online (AJOL)

    Result revealed seven bioactive compounds with anthraquinone totally absent from all the species in the four locations. The seven bioactive compounds were apparently more in the leaves than other parts of the plants. Among the four locations alkaloid, triterpene, glycoside, carbohydrate, flavonoid and tannin were high in ...

  6. Bio-prospecting of Plants and Marine Organisms in Saudi Arabia for New Potential Bioactivity

    KAUST Repository

    Hajjar, Dina A.

    2016-12-08

    The natural resources offer a unique opportunity for the discovery of active compounds, due to the complexity and biodiversity of their chemical structures. Natural resources have been used as medicines throughout human history. Saudi Arabia’s natural resources, for instance its terrestrial medicinal plants and the Red Sea sponges, have not been extensively investigated with regard to their biological activities. To better identify the diversity of compounds with bioactive potential, new techniques are also necessary in order to improve the drug discovery path. This study comprises three sections. The first section examines Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam) and Citrullus colocynthis (Hanzal); these herbal plants were screened for potential bioactivity using a newly developed pipeline based on a high-content screening technique. We report a new cell-based high-throughput phenotypic screening for the bio-prospecting of unknown natural products from Saudi Arabian plants, in order to reveal their biological activities. The second section investigates Avicennia marina plants, screened for reverse transcriptase anti-HIV bioactivity using biochemical assay. Image-based high-content screening with a set of cellular stains was used to investigate the phenotypic results of toxicity and cell cycle arrest. The third section considers the isolation of Actinomycetes from Red Sea Sponges. Actinomycetes bacterial isolates were tested for bioactivity against West Nile Virus NS3 Protease. Analytical chemical techniques such as liquid chromatography–mass spectrometry (LC-MS), gas chromatography–mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to gain more understanding of the possible chemical compounds responsible for this bioactivity. Overall, the aim of this work is to investigate the potential bioactive effect of several Saudi Arabian plants and Red Sea sponges against cancer cells and viral infections. Our study

  7. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA.

    Directory of Open Access Journals (Sweden)

    Annette M Hormann

    Full Text Available Bisphenol A (BPA is an endocrine disrupting environmental contaminant used in a wide variety of products, and BPA metabolites are found in almost everyone's urine, suggesting widespread exposure from multiple sources. Regulatory agencies estimate that virtually all BPA exposure is from food and beverage packaging. However, free BPA is applied to the outer layer of thermal receipt paper present in very high (∼20 mg BPA/g paper quantities as a print developer. Not taken into account when considering thermal paper as a source of BPA exposure is that some commonly used hand sanitizers, as well as other skin care products, contain mixtures of dermal penetration enhancing chemicals that can increase by up to 100 fold the dermal absorption of lipophilic compounds such as BPA. We found that when men and women held thermal receipt paper immediately after using a hand sanitizer with penetration enhancing chemicals, significant free BPA was transferred to their hands and then to French fries that were eaten, and the combination of dermal and oral BPA absorption led to a rapid and dramatic average maximum increase (Cmax in unconjugated (bioactive BPA of ∼7 ng/mL in serum and ∼20 µg total BPA/g creatinine in urine within 90 min. The default method used by regulatory agencies to test for hazards posed by chemicals is intra-gastric gavage. For BPA this approach results in less than 1% of the administered dose being bioavailable in blood. It also ignores dermal absorption as well as sublingual absorption in the mouth that both bypass first-pass liver metabolism. The elevated levels of BPA that we observed due to holding thermal paper after using a product containing dermal penetration enhancing chemicals have been related to an increased risk for a wide range of developmental abnormalities as well as diseases in adults.

  8. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA).

    Science.gov (United States)

    Hormann, Annette M; Vom Saal, Frederick S; Nagel, Susan C; Stahlhut, Richard W; Moyer, Carol L; Ellersieck, Mark R; Welshons, Wade V; Toutain, Pierre-Louis; Taylor, Julia A

    2014-01-01

    Bisphenol A (BPA) is an endocrine disrupting environmental contaminant used in a wide variety of products, and BPA metabolites are found in almost everyone's urine, suggesting widespread exposure from multiple sources. Regulatory agencies estimate that virtually all BPA exposure is from food and beverage packaging. However, free BPA is applied to the outer layer of thermal receipt paper present in very high (∼20 mg BPA/g paper) quantities as a print developer. Not taken into account when considering thermal paper as a source of BPA exposure is that some commonly used hand sanitizers, as well as other skin care products, contain mixtures of dermal penetration enhancing chemicals that can increase by up to 100 fold the dermal absorption of lipophilic compounds such as BPA. We found that when men and women held thermal receipt paper immediately after using a hand sanitizer with penetration enhancing chemicals, significant free BPA was transferred to their hands and then to French fries that were eaten, and the combination of dermal and oral BPA absorption led to a rapid and dramatic average maximum increase (Cmax) in unconjugated (bioactive) BPA of ∼7 ng/mL in serum and ∼20 µg total BPA/g creatinine in urine within 90 min. The default method used by regulatory agencies to test for hazards posed by chemicals is intra-gastric gavage. For BPA this approach results in less than 1% of the administered dose being bioavailable in blood. It also ignores dermal absorption as well as sublingual absorption in the mouth that both bypass first-pass liver metabolism. The elevated levels of BPA that we observed due to holding thermal paper after using a product containing dermal penetration enhancing chemicals have been related to an increased risk for a wide range of developmental abnormalities as well as diseases in adults.

  9. Holding Thermal Receipt Paper and Eating Food after Using Hand Sanitizer Results in High Serum Bioactive and Urine Total Levels of Bisphenol A (BPA)

    Science.gov (United States)

    Hormann, Annette M.; vom Saal, Frederick S.; Nagel, Susan C.; Stahlhut, Richard W.; Moyer, Carol L.; Ellersieck, Mark R.; Welshons, Wade V.; Toutain, Pierre-Louis; Taylor, Julia A.

    2014-01-01

    Bisphenol A (BPA) is an endocrine disrupting environmental contaminant used in a wide variety of products, and BPA metabolites are found in almost everyone’s urine, suggesting widespread exposure from multiple sources. Regulatory agencies estimate that virtually all BPA exposure is from food and beverage packaging. However, free BPA is applied to the outer layer of thermal receipt paper present in very high (∼20 mg BPA/g paper) quantities as a print developer. Not taken into account when considering thermal paper as a source of BPA exposure is that some commonly used hand sanitizers, as well as other skin care products, contain mixtures of dermal penetration enhancing chemicals that can increase by up to 100 fold the dermal absorption of lipophilic compounds such as BPA. We found that when men and women held thermal receipt paper immediately after using a hand sanitizer with penetration enhancing chemicals, significant free BPA was transferred to their hands and then to French fries that were eaten, and the combination of dermal and oral BPA absorption led to a rapid and dramatic average maximum increase (Cmax) in unconjugated (bioactive) BPA of ∼7 ng/mL in serum and ∼20 µg total BPA/g creatinine in urine within 90 min. The default method used by regulatory agencies to test for hazards posed by chemicals is intra-gastric gavage. For BPA this approach results in less than 1% of the administered dose being bioavailable in blood. It also ignores dermal absorption as well as sublingual absorption in the mouth that both bypass first-pass liver metabolism. The elevated levels of BPA that we observed due to holding thermal paper after using a product containing dermal penetration enhancing chemicals have been related to an increased risk for a wide range of developmental abnormalities as well as diseases in adults. PMID:25337790

  10. Nano-technology contributions towards the development of high performance radioisotope generators: The future promise to meet the continuing clinical demand.

    Science.gov (United States)

    Sakr, Tamer M; Nawar, Mohamed F; Fasih, T W; El-Bayoumy, S; Abd El-Rehim, H A

    2017-11-01

    Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A High-Protein Soybean Cultivar Contains Lower Isoflavones and Saponins but Higher Minerals and Bioactive Peptides than a Low-Protein Cultivar

    Science.gov (United States)

    Consumption of soybean products has increased considerably in the last few years, possibly due to the functional properties and the presence of bioactive compounds which bring health benefits to consumers. The process of germination has been shown to increase the concentration of a number of these ...

  12. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.

    Science.gov (United States)

    Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph

    2018-06-01

    The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    Science.gov (United States)

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  14. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.

    Science.gov (United States)

    Aguilar-Pérez, Fernando J; Vargas-Coronado, Rossana F; Cervantes-Uc, Jose M; Cauich-Rodríguez, Juan V; Covarrubias, Cristian; Pedram-Yazdani, Merhdad

    2016-04-01

    Composites of glutamine-based segmented polyurethanes with 5 to 25 wt.% bioactive glass nanoparticles were prepared, characterized, and their mineralization potential was evaluated in simulated body fluid. Biocompatibility with dental pulp stem cells was assessed by MTS to an extended range of compositions (1 to 25 wt.% of bioactive glass nanoparticles). Physicochemical characterization showed that composites retained many of the matrix properties, i.e. those corresponding to semicrystalline elastomeric polymers as they exhibited a glass transition temperature (Tg) between -41 and -36℃ and a melting temperature (Tm) between 46 and 49℃ in agreement with X-ray reflections at 23.6° and 21.3°. However, with bioactive glass nanoparticles addition, tensile strength and strain were reduced from 22.2 to 12.2 MPa and 667.2 to 457.8%, respectively with 25 wt.% of bioactive glass nanoparticles. Although Fourier transform infrared spectroscopy did not show evidence of mineralization after conditioning of these composites in simulated body fluid, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray microanalysis showed the formation of an apatite layer on the surface which increased with higher bioactive glass concentrations and longer conditioning time. Dental pulp stem cells proliferation at day 5 was improved in bioactive glass nanoparticles composites containing lower amounts of the filler (1-2.5 wt.%) but it was compromised at day 9 in composites containing high contents of nBG (5, 15, 25 wt.%). However, Runx2 gene expression was particularly upregulated for the dental pulp stem cells cultured with composites loaded with 15 and 25 wt.% of bioactive glass nanoparticles. In conclusion, low content bioactive glass nanoparticles and segmented polyurethanes composites deserve further investigation for applications such as guided bone regeneration membranes, where osteoconductivity is desirable but not a demanding mechanical performance. © The

  15. Elicited vs. voluntary promises

    NARCIS (Netherlands)

    Ismayilov, H.; Potters, Jan

    2017-01-01

    We set up an experiment with pre-play communication to study the impact of promise elicitation by trustors from trustees on trust and trustworthiness. When given the opportunity a majority of trustors solicits a promise from the trustee. This drives up the promise making rate by trustees to almost

  16. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  17. Bioactive technologies for hemocompatibility.

    Science.gov (United States)

    Tanzi, Maria Cristina

    2005-07-01

    The contact of any biomaterial with blood gives rise to multiple pathophysiologic defensive mechanisms such as activation of the coagulation cascade, platelet adhesion and activation of the complement system and leukocytes. The reduction of these events is of crucial importance for the successful clinical performance of a cardiovascular device. This can be achieved by improving the hemocompatibility of the device materials or by pharmacologic inhibition of the key enzymes responsible for the activation of the cascade reactions, or a combination of both. Different strategies have been developed during the last 20 years, and this article attempts to review the most significant, by dividing them into three main categories: bioinert or biopassive, biomimetic and bioactive strategies. With regard to bioactive strategies, particular attention is given to heparin immobilization and recent related technologies. References from both scientific literature and commercial sites are provided. Future development and studies are suggested.

  18. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Razavi, Mehdi [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Pothineni, Venkata Raveendra [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Rajadas, Jayakumar [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2015-05-30

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  19. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-01-01

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability

  20. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  1. Natural bioactive compounds: antibiotics | Dezfully | Journal of ...

    African Journals Online (AJOL)

    Antibiotics are powerful therapeutic agents that are produced by diverse living organisms. Over the last several decades, natural bioactive products particularly antibiotics have continued to play a significant role in drug discovery and has expanded the process for developing drugs with high degree of therapeutic index and ...

  2. Bioactive Lipids in Dairy Fat

    DEFF Research Database (Denmark)

    Hellgren, Lars; Nordby, Pernille

    2017-01-01

    Milk fat is the most important energy source for the newborn infant beside its important role as energy source, milk fat also contain a range of bioactive lipids, that potentially can modulate the immune response and metabolic regulation in the child. In this chapter we review the literature on b...... on bioactive dairy fatty acids: conjugated linoleic acid, branched chained and odd chained fatty acids, as well as bioactive complex lipids such as sphingomyelin and gangliosides....

  3. Bioactive glass/ZrO2 composites for orthopaedic applications

    International Nuclear Information System (INIS)

    Bellucci, D; Sola, A; Cannillo, V

    2014-01-01

    Binary biocomposites were realized by combining yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with a bioactive glass matrix. Few works are available regarding composites containing zirconia and a relatively high content of glass because the resulting samples are usually biocompatible but not bioactive after thermal treatment. In the present research, the promising properties of the new BG C a–K glass, with its low tendency to crystallize and high apatite-forming ability, allowed us to sinter the composites at a relatively low temperature with excellent effects in terms of bioactivity. In addition, it was possible to benefit from the good mechanical behaviour of Y-TZP, thus obtaining samples with microhardness values that were among the highest reported in the literature. After a detailed analysis regarding the thermal behaviour of the composite powders, the sintered bodies were fully characterized by means of x-ray diffraction, SEM equipped with EDS, density measurements, volumetric shrinkage determination, mechanical testing and in vitro evaluation in a simulated body fluid (SBF) solution. According to the experimental results, the presence of Y-TZP improved the mechanical performance. Meanwhile, the BG C a–K glass, which mainly preserved its amorphous structure after sintering, provided the composites with a good apatite-forming ability in SBF. (paper)

  4. Broad spectrum bioactive sunscreens.

    Science.gov (United States)

    Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim

    2008-11-03

    The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm.

  5. Keeping the Promise

    Science.gov (United States)

    Whissemore, Tabitha

    2016-01-01

    Since its launch in September 2015, Heads Up America has collected information on nearly 125 promise programs across the country, many of which were instituted long before President Barack Obama announced the America's College Promise (ACP) plan in 2015. At least 27 new free community college programs have launched in states, communities, and at…

  6. Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

    Science.gov (United States)

    Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.

    2016-12-01

    The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

  7. In vivo biological performance of a novel highly bioactive glass-ceramic (Biosilicate®): A biomechanical and histomorphometric study in rat tibial defects.

    Science.gov (United States)

    Granito, Renata N; Rennó, Ana Claudia; Ravagnani, Christian; Bossini, Paulo S; Mochiuti, Daniel; Jorgetti, Vanda; Driusso, Patricia; Peitl, Oscar; Zanotto, Edgar D; Parizotto, Nivaldo A; Oishi, Jorge

    2011-04-01

    This study aimed to investigate bone responses to a novel bioactive fully crystallized glass-ceramic of the quaternary system P(2)O(5)-Na(2)O-CaO-SiO(2) (Biosilicate®). Although a previous study demonstrated positive effects of Biosilicate® on in vitro bone-like matrix formation, its in vivo effect was not studied yet. Male Wistar rats (n = 40) with tibial defects were used. Four experimental groups were designed to compare this novel biomaterial with a gold standard bioactive material (Bioglass® 45S5), unfilled defects and intact controls. A three-point bending test was performed 20 days after the surgical procedure, as well as the histomorphometric analysis in two regions of interest: cortical bone and medullary canal where the particulate biomaterial was implanted. The biomechanical test revealed a significant increase in the maximum load at failure and stiffness in the Biosilicate® group (vs. control defects), whose values were similar to uninjured bones. There were no differences in the cortical bone parameters in groups with bone defects, but a great deal of woven bone was present surrounding Biosilicate® and Bioglass® 45S5 particulate. Although both bioactive materials supported significant higher bone formation; Biosilicate® was superior to Bioglass® 45S5 in some histomorphometric parameters (bone volume and number of osteoblasts). Regarding bone resorption, Biosilicate® group showed significant higher number of osteoclasts per unit of tissue area than defect and intact controls, despite of the non-significant difference in the osteoclastic surface as percentage of bone surface. This study reveals that the fully crystallized Biosilicate® has good bone-forming and bone-bonding properties. Copyright © 2011 Wiley Periodicals, Inc.

  8. Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop).

    Science.gov (United States)

    Bertelli, Davide; Brighenti, Virginia; Marchetti, Lucia; Reik, Anna; Pellati, Federica

    2018-06-01

    Humulus lupulus L. (hop) represents one of the most cultivated crops, it being a key ingredient in the brewing process. Many health-related properties have been described for hop extracts, making this plant gain more interest in the field of pharmaceutical and nutraceutical research. Among the analytical tools available for the phytochemical characterization of plant extracts, quantitative nuclear magnetic resonance (qNMR) represents a new and powerful technique. In this ambit, the present study was aimed at the development of a new, simple, and efficient qNMR method for the metabolite fingerprinting of bioactive compounds in hop cones, taking advantage of the novel ERETIC 2 tool. To the best of our knowledge, this is the first attempt to apply this method to complex matrices of natural origin, such as hop extracts. The qNMR method set up in this study was applied to the quantification of both prenylflavonoids and bitter acids in eight hop cultivars. The performance of this analytical method was compared with that of HPLC-UV/DAD, which represents the most frequently used technique in the field of natural product analysis. The quantitative data obtained for hop samples by means of the two aforementioned techniques highlighted that the amount of bioactive compounds was slightly higher when qNMR was applied, although the order of magnitude of the values was the same. The accuracy of qNMR was comparable to that of the chromatographic method, thus proving to be a reliable tool for the analysis of these secondary metabolites in hop extracts. Graphical abstract Graphical abstract related to the extraction and analytical methods applied in this work for the analysis of bioactive compounds in Humulus lupulus L. (hop) cones.

  9. Highly Luminescent 2D-Type Slab Crystals Based on a Molecular Charge-Transfer Complex as Promising Organic Light-Emitting Transistor Materials.

    Science.gov (United States)

    Park, Sang Kyu; Kim, Jin Hong; Ohto, Tatsuhiko; Yamada, Ryo; Jones, Andrew O F; Whang, Dong Ryeol; Cho, Illhun; Oh, Sangyoon; Hong, Seung Hwa; Kwon, Ji Eon; Kim, Jong H; Olivier, Yoann; Fischer, Roland; Resel, Roland; Gierschner, Johannes; Tada, Hirokazu; Park, Soo Young

    2017-09-01

    A new 2:1 donor (D):acceptor (A) mixed-stacked charge-transfer (CT) cocrystal comprising isometrically structured dicyanodistyrylbenzene-based D and A molecules is designed and synthesized. Uniform 2D-type morphology is manifested by the exquisite interplay of intermolecular interactions. In addition to its appealing structural features, unique optoelectronic properties are unveiled. Exceptionally high photoluminescence quantum yield (Φ F ≈ 60%) is realized by non-negligible oscillator strength of the S 1 transition, and rigidified 2D-type structure. Moreover, this luminescent 2D-type CT crystal exhibits balanced ambipolar transport (µ h and µ e of ≈10 -4 cm 2 V -1 s -1 ). As a consequence of such unique optoelectronic characteristics, the first CT electroluminescence is demonstrated in a single active-layered organic light-emitting transistor (OLET) device. The external quantum efficiency of this OLET is as high as 1.5% to suggest a promising potential of luminescent mixed-stacked CT cocrystals in OLET applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cellular internalization and morphological analysis after intravenous injection of a highly hydrophilic octahedral rhenium cluster complex - a new promising X-ray contrast agent.

    Science.gov (United States)

    Krasilnikova, Anna A; Solovieva, Anastasiya O; Trifonova, Kristina E; Brylev, Konstantin A; Ivanov, Anton A; Kim, Sung-Jin; Shestopalov, Michael A; Fufaeva, Maria S; Shestopalov, Alexander M; Mironov, Yuri V; Poveshchenko, Alexander F; Shestopalova, Lidia V

    2016-11-01

    The octahedral cluster compound Na 2 H 8 [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] has been shown to be highly radio dense, thus becoming a promising X-ray contrast agent. It was also shown that this compound had low cytotoxic effect in vitro, low acute toxicity in vivo and was eliminated rapidly from the body through the urinary tract. The present contribution describes a more detailed cellular internalization assay and morphological analysis after intravenous injection of this hexarhenium cluster compound at different doses. The median lethal dose (LD 50 ) of intravenously administrated compound was calculated (4.67 ± 0.69 g/kg). Results of the study clearly indicated that the cluster complex H n [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] n-10 was not internalized into cells in vitro and induced only moderate morphological alterations of kidneys at high doses without any changes in morphology of liver, spleen, duodenum, or heart of mice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Promise Zones for Applicants

    Data.gov (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  12. Comparative analysis of main bio-active components in the herb pair Danshen-Honghua and its single herbs by ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry.

    Science.gov (United States)

    Qu, Cheng; Pu, Zong-Jin; Zhou, Gui-Sheng; Wang, Jun; Zhu, Zhen-Hua; Yue, Shi-Jun; Li, Jian-Ping; Shang, Li-Li; Tang, Yu-Ping; Shi, Xu-Qin; Liu, Pei; Guo, Jian-Ming; Sun, Jing; Tang, Zhi-Shu; Zhao, Jing; Zhao, Bu-Chang; Duan, Jin-Ao

    2017-09-01

    A sensitive, reliable, and powerful ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry method was developed for simultaneous quantification of the 15 main bio-active components including phenolic acids and flavonoids within 13 min for the first time. The proposed method was first reported and validated by good linearity (r 2  > 0.9975), limit of detection (1.12-7.01 ng/mL), limit of quantification (3.73-23.37 ng/mL), intra- and inter-day precisions (RSD ≤ 1.92%, RSD ≤ 2.45%), stability (RSD ≤ 5.63%), repeatability (RSD ≤ 4.34%), recovery (96.84-102.12%), and matrix effects (0.92-1.02). The established analytical methodology was successfully applied to comparative analysis of main bio-active components in the herb pair Danshen-Honghua and its single herbs. Compared to the single herb, the content of most flavonoid glycosides was remarkably increased in their herb pair, and main phenolic acids were decreased, conversely. The content changes of the main components in the herb pair supported the synergistic effects on promoting blood circulation and removing blood stasis. The results provide a scientific basis and reference for the quality control of Danshen-Honghua herb pair and the drug interactions based on variation of bio-active components in herb pairs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F.; Reyes, Fernando; García, Luis A.; Blanco, Gloria

    2018-01-01

    A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to

  14. Bioactive compounds in seaweed; functional food applications and legislation

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Kraan, Stefan

    2011-01-01

    Seaweed is more than the wrap that keeps rice together in sushi. Seaweed biomass is already used for a wide range of other products in food, including stabilising agents. Biorefineries with seaweed as feedstock are attracting worldwide interest and include low-volume, high value-added products...... and vice versa. Scientific research on bioactive compounds in seaweed usually takes place on just a few species and compounds. This paper reviews worldwide research on bioactive compounds, mainly of nine genera or species of seaweed, which are also available in European temperate Atlantic waters, i...... described in this review. This applies either to the choice of high value-added bioactive products to be exploited in an available species or to the choice of seaweed species when a bioactive compound is desired. Data are presented in tables with species, effect and test organism (if present) with examples...

  15. Promising More Information

    Science.gov (United States)

    2003-01-01

    When NASA needed a real-time, online database system capable of tracking documentation changes in its propulsion test facilities, engineers at Stennis Space Center joined with ECT International, of Brookfield, Wisconsin, to create a solution. Through NASA's Dual-Use Program, ECT developed Exdata, a software program that works within the company's existing Promise software. Exdata not only satisfied NASA s requirements, but also expanded ECT s commercial product line. Promise, ECT s primary product, is an intelligent software program with specialized functions for designing and documenting electrical control systems. An addon to AutoCAD software, Promis e generates control system schematics, panel layouts, bills of material, wire lists, and terminal plans. The drawing functions include symbol libraries, macros, and automatic line breaking. Primary Promise customers include manufacturing companies, utilities, and other organizations with complex processes to control.

  16. Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials.

    Science.gov (United States)

    Popescu, R A; Magyari, K; Vulpoi, A; Trandafir, D L; Licarete, E; Todea, M; Ştefan, R; Voica, C; Vodnar, D C; Simon, S; Papuc, I; Baia, L

    2016-07-19

    In the present study our interest is focused on finding the efficiency of 60SiO2·(32 - x)CaO·8P2O5·xCuO (mol%) glass-ceramics, with 0 ≤ x ≤ 4 mol%, in terms of bioactivity, biocompatibility, antibacterial properties and cell viability in order to determine the most appropriate composition for their further use in in vivo trials. The sol-gel synthesized samples show a preponderantly amorphous structure with a few crystallization centers associated with the formation of an apatite and calcium carbonate crystalline phases. The Fourier Transform Infrared (FT-IR) spectra revealed slightly modified absorption bands due to the addition of copper oxide, while the information derived from the measurements performed by transmission electron microscopy, UV-vis and electron paramagnetic resonance spectroscopy showed the presence of ions and metallic copper species. X-Ray photoelectron spectroscopic analysis indicated the presence of copper metallic species, in a reduced amount, only on the sample surface with the highest Cu content. Regarding in vitro assessment of bioactivity, the results obtained by X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy, demonstrated the formation of a calcium phosphate layer on all investigated sample surfaces. The inhibitory effect of the investigated samples was more significant on the Pseudomonas aeruginosa than the Staphylococcus aureus strain, the sample with the lowest concentration of copper oxide (0.5 mol%) being also the most efficient in both bacterial cultures. This sample also exhibits a very good bactericidal activity, for the other samples it was necessary to use a higher quantity to inhibit and kill the bacterial species. The secondary structure of adsorbed albumin presents few minor changes, indicating the biocompatibility of the glass-ceramics. The cell viability assay shows a good proliferation rate on samples with 0.5 and 1.5 mol% CuO, although all glass-ceramic samples exhibited a good in vivo

  17. Simultaneous quantification of eight bioactive components of Houttuynia cordata and related Saururaceae medicinal plants by on-line high performance liquid chromatography-diode array detector-electrospray mass spectrometry.

    Science.gov (United States)

    Meng, Jiang; Leung, Kelvin Sze-Yin; Dong, Xiao-Ping; Zhou, Yi-Sheng; Jiang, Zhi-Hong; Zhao, Zhong-Zhen

    2009-12-01

    An on-line high performance liquid chromatography (HPLC)-diode array detector (DAD)-electrospray ionization mass spectrometry (ESI-MS) method has been developed to quantify simultaneously eight bioactive chemical components in Houttuynia cordata Thunb and related Saururaceae medicinal plants. Simultaneous separation of these eight compounds was achieved on a C(18) analytical column with gradient elution of acetonitrile and 0.2% acetic acid (v/v) at a flow rate of 0.6 mL/min and being detected at 280 nm. These eight compounds were completely separated within 90 min. Good linear regression relationship (r(2)>0.9978) within test ranges was shown in all calibration curves. Good repeatabilty for the quantification of these eight compounds in H.cordata was also demonstrated in this method, with intra- and inter-day variations less than 3.0%. The method established was successfully applied to quantify eight bioactive compounds in closely related species of H.cordata, which provides a new basis for quality assessment of H.cordata.

  18. Characterization of new bioactive coatings of hydroxyapatite and TiO{sub 2} obtained by High-Velocity Oxy-Fuel; Caracterizacion de nuevos recubrimientos biocompatibles de hidroxiapatita-TiO{sub 2} obtenidos mediante Proyeccion Termica de Alta Velocidad

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H.; Fernandez, J.; Dosta, S.; Guilemany, J. M.

    2011-07-01

    Hydroxyapatite (Hap: Ca{sub 1}0(PO{sub 4}){sub 6}OH{sub 2}) is a biocompatible and bioactive ceramic material widely used as a coating on metal surfaces (dental implants, hip replacements ...), but the low adhesion between Hap and the substrate, due to differences in thermal expansion coefficients of both (very important in thermal spraying because of the fast cooling of the coating, which can produce a lost of adherence), and the degradation of Hap, have been tried to be improved through the incorporation of TiO{sub 2} to get a good combination of mechanical properties. Therefore, the objective of this project is to produce coatings of Hap 80% TiO{sub 2} and 20% (by weight) on Ti6Al4V by High-Speed Thermal Spray (HVOF). The study of the microstructure has been carried out using scanning electron microscopy and characterization of the crystalline phases by X-ray diffraction and Raman spectrometry. The coatings adhesion has been measured by tensile tests according to ASTM C633-01 (2008), and their bioactivity also has been evaluated through its immersion in simulated body fluid (SBF), in order to measure their capacity to form an apatite layer on their surface. (Author) 26 refs.

  19. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs.

    Science.gov (United States)

    Nart, Viviane; Beringhs, André O'Reilly; França, Maria Terezinha; de Espíndola, Brenda; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2017-01-01

    Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form. Therefore, this paper aimed at developing sustained release mini-tablets containing the highly soluble drugs captopril and metformin hydrochloride. Carnauba wax was used as a lipid component in melt granulation, targeting the improvement of the drugs poor flowability and tabletability, as well as to sustain the drug release profiles in association with other excipients. To assist sustaining the drug release, Ethocel™ (EC) and Kollicoat® SR 30D associated with Opadry® II were employed as matrix-forming and reservoir-forming materials, respectively. The neat drugs, granules and the bulk formulations were evaluated for their angle of repose, compressibility index, Hausner ratio and tabletability. Mini-tablets were evaluated for their weight variation, hardness, friability, drug content and in-vitro drug release. The results indicated that melt granulation with carnauba wax improved the flow and the tabletability of the drugs, allowing the preparation of mini-tablets with adequate tensile strength under reduced compaction pressures. All mini-tablet formulations showed acceptable hardness (within the range of 1.16 to 3.93Kp) and friability (carnauba wax proved to be a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of soluble drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites.

    Science.gov (United States)

    Ji, Lijun; Wang, Wenjun; Jin, Duo; Zhou, Songtao; Song, Xiaoli

    2015-01-01

    Nanoparticles of bioactive glass (NBG) with a diameter of 50-90 nm were synthesized using the Stöber method. NBG/PCL composites with different NBG contents (0 wt.%, 10 wt.%, 20 wt.%, 30 wt.% and 40 wt.%) were prepared by a melt blending and thermal injection moulding technique, and characterized with XRD, FTIR, and SEM to study the effect of NBG on the mechanical properties and in vitro bioactivity of the NBG/PCL composites. In spite of the high addition up to 40 wt.%, the NBG could be dispersed homogeneously in the PCL matrix. The elastic modulus of the NBG/PCL composites was improved remarkably from 198±13 MPa to 851±43 MPa, meanwhile the tensile strength was retained in the range of 19-21.5 MPa. The hydrophilic property and degradation behavior of the NBG/PCL composites were also improved with the addition of the NBG. Moreover, the composites with high NBG content showed outstanding in vitro bioactivity after being immersed in simulated body fluid, which could be attributed to the excellent bioactivity of the synthesized NBG. Copyright © 2014. Published by Elsevier B.V.

  1. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  2. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-01-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  3. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-08-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  4. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.

    Science.gov (United States)

    Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L

    2012-01-01

    Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta

  5. Cerâmicas bioativas: estado da arte Bioactive ceramics: state of the arts

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2006-02-01

    Full Text Available Bioactive glasses undergo corrosion with leaching of alkaline ions when exposed to body fluids. This results in the spontaneous formation of a layer of hydroxyapatite (HA, the mineral component of natural bone, which in turn can induce bone growth in vivo. This paper describes the different types of bioactive glasses, the characterization methods currently used, and the main factors that influence their bioactivity. Nucleation and crystallization, the main mechanisms involved in the formation of hydroxyapatite, Ca10(PO46(OH2, are discussed as a function of the chemical composition and the reactivity of the surface of the material. Finally, promising applications are considered.

  6. Early detection and longitudinal monitoring of experimental primary and disseminated melanoma using [18F]ICF01006, a highly promising melanoma PET tracer

    International Nuclear Information System (INIS)

    Rbah-Vidal, Latifa; Vidal, Aurelien; Besse, Sophie; Audin, Laurent; Degoul, Francoise; Miot-Noirault, Elisabeth; Moins, Nicole; Auzeloux, Philippe; Chezal, Jean-Michel; Cachin, Florent; Bonnet, Mathilde; Askienazy, Serge; Dolle, Frederic

    2012-01-01

    Here, we report a new and rapid radiosynthesis of 18 F-N-[2-(diethylamino)ethyl]-6-fluoro-pyridine-3-carboxamide ([ 18 F]ICF01006), a molecule with a high specificity for melanotic tissue, and its evaluation in a murine model for early specific detection of pigmented primary and disseminated melanoma. [ 18 F]ICF01006 was synthesized using a new one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumour) or intravenous (lung colonies) injection of B16BL6 melanoma cells in C57BL/6J mice. The relevance and sensitivity of positron emission tomography (PET) imaging using [ 18 F]ICF01006 were evaluated at different stages of tumoural growth and compared to 18 F-fluorodeoxyglucose ([ 18 F]FDG). The fully automated radiosynthesis of [ 18 F]ICF01006 led to a radiochemical yield of 61 % and a radiochemical purity >99 % (specific activity 70-80 GBq/μmol; total synthesis time 42 min). Tumours were visualized before they were palpable as early as 1 h post-injection with [ 18 F]ICF01006 tumoural uptake of 1.64 ± 0.57, 3.40 ± 1.47 and 11.44 ± 2.67 percentage of injected dose per gram of tissue (%ID/g) at days 3, 5 and 14, respectively. [ 18 F]ICF01006 PET imaging also allowed detection of melanoma pulmonary colonies from day 9 after tumour cell inoculation, with a lung radiotracer accumulation correlated with melanoma invasion. At day 21, radioactivity uptake in lungs reached a value of 5.23 ± 2.08 %ID/g (versus 0.41 ± 0.90 %ID/g in control mice). In the two models, comparison with [ 18 F]FDG showed that both radiotracers were able to detect melanoma lesions, but [ 18 F]ICF01006 was superior in terms of contrast and specificity. Our promising results provide further preclinical data, reinforcing the excellent potential of [ 18 F]ICF01006 PET imaging for early specific diagnosis and follow-up of melanin-positive disseminated melanoma. (orig.)

  7. Nuclear energy: obstacles and promises

    International Nuclear Information System (INIS)

    Bacher, P.

    2003-01-01

    Nuclear energy has distinctive merits (sustainable resources, low costs, no greenhouse gases) but its development must overcome serious hurdles (fear of accidents, radio-phobia, waste management). The large unit size of present-day reactors is compatible only with large electrical grids, and involves a high capital cost. Taking into account these different factors, the paper outlines how nuclear energy may contribute to the reduction of greenhouse gases, and which are the most promising developments. (author)

  8. A new bio-active glass ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Suleman, M.; Hussain, K.; Shah, W.A.

    1995-01-01

    Since 1960 fine ceramics such as alumina have been used side by side with metallic materials for bone and joint replacement. They have high mechanical strength and are free from corrosion problem faced by metals. However they don't bond to the natural living bone and hence are called bio-inactive. This was followed by the development of bio-active glasses and glass-ceramics which bond to the natural bone but have low mechanical strength. In the present work a new bio-active glass-ceramic, based on CaO-SiO/sub 2/-P/sub 2/O/sub 3/-MgO composition, has been developed which has mechanical strength compared to that of a bio-inactive glass ceramic and also bonds strongly to the natural bone. X-ray diffraction analysis reveals wollastanite and apatite phases in the glass ceramic. A new bio-active cement has also been developed which can be used to join broken pieces of bone or by itself at a filler. (author)

  9. Human Milk Composition: Nutrients and Bioactive Factors

    Science.gov (United States)

    Ballard, Olivia; Morrow, Ardythe L.

    2013-01-01

    Synopsis The composition of human milk is the biologic norm for infant nutrition. Human milk also contains many hundreds to thousands of distinct bioactive molecules that protect against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Some of these molecules, e.g., lactoferrin, are being investigated as novel therapeutic agents. A dynamic, bioactive fluid, human milk changes in composition from colostrum to late lactation, and varies within feeds, diurnally, and between mothers. Feeding infants with expressed human milk is increasing. Pasteurized donor milk is now commonly provided to high risk infants and most mothers in the U.S. express and freeze their milk at some point in lactation for future infant feedings. Many milk proteins are degraded by heat treatment and freeze-thaw cycles may not have the same bioactivity after undergoing these treatments. This article provides an overview of the composition of human milk, sources of its variation, and its clinical relevance. PMID:23178060

  10. Bioactive Glasses: Where Are We and Where Are We Going?

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2018-03-01

    Full Text Available Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  11. Bioactive Glasses: Where Are We and Where Are We Going?

    Science.gov (United States)

    Baino, Francesco; Hamzehlou, Sepideh; Kargozar, Saeid

    2018-03-19

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  12. Bioactive alkaloids from marine sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Majik, M.S.

    lines while kuanoniamine C was less potent but showed high selectivity toward the estrogen dependent breast cancer cell line (Kijjoa et. al., 2007). Recently, Davis’s and coworkers, reported two new cytotoxici- ty peridoacridine alkaloids viz... 10 sponge, Trachycladus laevispirulifer. Excitingly, it displayed promising selective cytotoxicity against a panel of human cancer cell lines. 12.3.1. BISINDOLE ALKALOIDS Bis-indole alkaloids, consisting of two indole moieties...

  13. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    International Nuclear Information System (INIS)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-01-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO 2 –Na 2 O–CaO–P 2 O 5 –FeO–Fe 2 O 3 and contains magnetite (Fe 3 O 4 ) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests show hydroxyapatite precipitates

  14. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  15. Antibacterial and cytotoxic bioactivity of marine Actinobacteria from Loreto Bay National Park, Mexico

    OpenAIRE

    Cardoso-Martínez, Faviola; Becerril-Espinosa, Amayaly; Barrila-Ortíz, Celso; Torres-Beltrán, Mónica; Ocampo-Alvarez, Héctor; Iñiguez-Martínez, Ana M.; Soria-Mercado, Irma E.

    2015-01-01

    Abstract Production of bioactive compounds is intimately linked to the ecology of the producing organisms. Taking this into account, the objective of this study was to evaluate the bioactive properties of isolated Actinobacteria from sea sediments of a high biodiversity zone; under the hypothesis that the ecological characteristics of this site stimulate the presence of unique and bioactive strains that can be screened for new compounds with antibiotic and anticancer properties. The elected z...

  16. Bioactive composite for keratoprosthesis skirt.

    Science.gov (United States)

    Laattala, Kaisa; Huhtinen, Reeta; Puska, Mervi; Arstila, Hanna; Hupa, Leena; Kellomäki, Minna; Vallittu, Pekka K

    2011-11-01

    In this study, the fabrication and properties of a synthetic keratoprosthesis skirt for use in osteo-odonto-keratoprosthesis (OOKP) surgery are discussed. In the search for a new material concept, bioactive glass and polymethyl methacrylate (PMMA)-based composites were prepared. Three different bioactive glasses (i.e. 45S5, S53P4 and 1-98) and one slowly resorbing glass, FL107, with two different forms (i.e. particles and porous glass structures) were employed in the fabrication of specimens. In in vitro studies, the dissolution behaviour in simulated aqueous humour, compressive properties, and pore formation of the composites were investigated. According to the results, FL107 dissolved very slowly (2.4% of the initial glass content in three weeks); thus, the pore formation of the FL107 composite was also observed to be restricted. The dissolution rates of the bioactive glass-PMMA composites were greater (12%-17%). These faster dissolving bioactive glass particles caused some porosity on the outermost surfaces of the composite. The slight surface porosity was also confirmed by a decrease in compressive properties. During six weeks' in vitro dissolution, the compressive strength of the test specimens containing particles decreased by 22% compared to values in dry conditions (90-107 MPa). These results indicate that the bioactive composites could be stable synthetic candidates for a keratoprosthesis skirt in the treatment of severely damaged or diseased cornea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassyouni, Gehan T.; Beherei, Hanan H. [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre (NRC), Dokki, Cairo (Egypt); Kenawy, Sayed H. [Ceramics Dept., National Research Centre (NRC), Dokki, Cairo (Egypt)

    2016-06-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  18. Fabrication and bioactivity behavior of HA/bioactive glass composites in the presence of calcium hexaboride

    International Nuclear Information System (INIS)

    El-Bassyouni, Gehan T.; Beherei, Hanan H.; Mohamed, Khaled R.; Kenawy, Sayed H.

    2016-01-01

    In the current study, composites were prepared using both the synthesized nano-sized hydroxyapatite (HA), bioactive glass (BG) powders (obtained by the traditional melt-quenching route) together with the purchased nano-sized calcium hexaboride (CB) with different ratios and were fired at 1250 °C. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy; scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM) techniques and compressive strength. The mechanical testing was to designate the role of the CB in improving the mechanical property of the prepared composites. In vitro bioactivity of the prepared composites was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °°C for 10 days. The effect of different ratios of the three components (CB, HA & BG) on the bioactivity properties was assessed to explore the possibility of enhancing such property to perform in vitro imitations of in vivo conditions in the future. It can be pointed out that the Si-HA content in the composition showed outstanding in vitro bioactivity than pure hydroxyapatite which could be attributed to the excellent bioactivity of the synthesized composites. - Highlights: • The prepared of nano-composites containing CB, HA and BG powders were achieved. • The addition of CB powder enhanced the compressive strength for all the composites. • The composites containing high BG and CB contents improved formation of bone-like apatite layer.

  19. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Science.gov (United States)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  20. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, H.T. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Huang, L.F. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lu, P.S.; Chang, H.F. [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, I.L., E-mail: 84004@cch.org.tw [Department of Orthopaedic Surgery, Chang-Hua Christian Hospital, Changhua 500, Taiwan (China)

    2010-06-15

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO{sub 2}-CaO-P{sub 2}O{sub 5} mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  1. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, H.T.; Huang, L.F.; Lu, P.S.; Chang, H.F.; Chang, I.L.

    2010-01-01

    The main objective of the present study was to determine the effect of thermal treatment procedures (calcination temperature, heating rate and duration time) on the synthesis of SiO 2 -CaO-P 2 O 5 mesoporous bioactive glass scaffolds. This is accomplished by thermogravimetric analyses, Fourier transform infrared (FTIR) absorption spectra, X-ray diffraction (XRD) and by analysis of nitrogen adsorption/desorption isotherms. In vitro bioactivity can also be assessed by the cytotoxic effect of the glasses on the NIH-3T3 cell line, and by characterization of MC-3T3-E1 cell attachment.

  2. [Experience with the use of the bio-active stent coated with titanium nitric oxide compared with zotarolimus-eluting stent: experience of a unit medical high specialty].

    Science.gov (United States)

    Garcia-Gutierrez, Juan C; Palacios-Rodríguez, Juan M; Cordova-Correa, Horacio G; Becerra-Laguna, Carlos A; López-López, Hugo A; Salinas Aragón, Miguel A; García-Bonilla, Jorge

    2016-01-01

    The use of coronary stents in coronary angioplasty has evolved dramatically in its design, type materials, polymers, and a variety of drugs, the use of coronary stents covered nitric oxide have shown satisfactory results in practice, however compared to the results reported drug-eluting stents, there is little information. The aim of this study was to compare clinical outcomes of a stainless steel stent Bioactive nitric oxide coated titanium (BAS) and a drug-eluting stent zotarolimus (DES) in daily clinical practice. A retrospective, analytical, descriptive and comparative study aimed at evaluating the safety and efficacy of two devices with different characteristics in our population. The primary endpoints were: death, acute infarction (AMI), and re intervention injury Treated (RLT). A total of 759 patients were included in the study which was performed angioplasty to a single vessel. Were divided into two arms 382 with DES and 377 patients with BAS, the one year follow up was carried in 95%. After this follow-up period, primary points (cardiovascular death, myocardial infarction, TLR and stent thrombosis) for arm DES vs BAS; 9.5% vs 8.5% P=NS but with shorter periods of dual antiplatelet therapy for arm BAS 6.9±4.1 vs 11.1±2.5 months DES P=.0001. The results were independent of the clinical syndrome of presentation. After one year of follow no statistically significant difference in major clinical events, there was a trend in favour of BAS vs SM with respect to revascularization of the target lesion without reaching statistical significance. Copyright © 2015 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  3. Research on the biological activity and doxorubicin release behavior in vitro of mesoporous bioactive SiO2-CaO-P2O5 glass nanospheres

    Science.gov (United States)

    Wang, Xiang; Wang, Gen; Zhang, Ying

    2017-10-01

    Mesoporous bioactive glass (MBG) nanospheres have been synthesized by a facile method of sacrificing template using cetyl trimethyl ammonium bromide (CTAB) as surfactant. The prepared MBG nanospheres possess high specific surface area (632 m2 g-1) as well as uniform size (∼100 nm). In addition, MBG nanospheres exhibited a quick in vitro bioactive response in simulated body fluids (SBF) and excellent bioactivity of inducing hydroxyapatite (HA) forming on the surface of MBG nanospheres. Furthermore, MBG nanospheres can sustain release of doxorubicin (DOX) with a higher encapsulation efficiency (63.6%) and show distinct degradation in PBS by releasing Si and Ca ions. The encapsulation efficiency and DOX release of MBG nanospheres could be controlled by mesoporous structure and local pH environment. The greater surface area and pore volumes of prepared MBG nanospheres are conducive to bioactive response and drug release in vitro. The amino groups in DOX can be easily protonated at acidic medium to become positively charged NH+3, which allow these drug molecules to be desorbed from the surface of MBG nanospheres via electrostatic effect. Therefore, the synthesized MBG nanospheres have a pH-sensitive drug release capability. In addition, the cytotoxicity of MBG nanospheres was assessed using a cell counting kit-8 (CCK-8), and results showed that the synthesized MBG nanospheres had no significant cytotoxicity to MC3T3 cells. These all indicated that as-prepared MBG nanospheres are promising candidates for bone tissue engineering.

  4. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  5. Promising change, delivering continuity

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Sungusia, Eliezeri; Mabele, Mathew Bukhi

    2017-01-01

    REDD+ is an ambition to reduce carbon emissions from deforestation and forest degradation in the Global South. This ambition has generated unprecedented commitment of political support and financial funds for the forest-development sector. Many academics and people-centered advocacy organizations...... have conceptualized REDD+ as an example of ‘‘green grabbing” and have voiced fears of a potential global rush for land and trees. In this paper we argue that, in practice and up until now, REDD+ resembles longstanding dynamics of the development and conservation industry, where the promise of change...... becomes a discursive commodity that is constantly reproduced and used to generate value and appropriate financial resources. We thus argue for a re-conceptualization of REDD+ as a conservation fad within the broader political economy of development and conservation. We derive this argument from a study...

  6. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  7. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  8. Initial boost release of transforming growth factor-β3 and chondrogenesis by freeze-dried bioactive polymer scaffolds.

    Science.gov (United States)

    Krüger, Jan Philipp; Machens, Isabel; Lahner, Matthias; Endres, Michaela; Kaps, Christian

    2014-12-01

    In cartilage regeneration, bio-activated implants are used in stem and progenitor cell-based microfracture cartilage repair procedures. Our aim was to analyze the chondrogenic potential of freeze-dried resorbable polymer-based polyglycolic acid (PGA) scaffolds bio-activated with transforming growth factor-β3 (TGFB3) on human subchondral mesenchymal progenitor cells known from microfracture. Progenitor cells derived from femur heads were cultured in the presence of freeze-dried TGFB3 in high-density pellet culture and in freeze-dried TGFB3-PGA scaffolds for chondrogenic differentiation. Progenitor cell cultures in PGA scaffolds as well as pellet cultures with and without continuous application of TGFB3 served as controls. Release studies showed that freeze-dried TGFB3-PGA scaffolds facilitate a rapid, initial boost-like release of 71.5% of TGFB3 in the first 10 h. Gene expression analysis and histology showed induction of typical chondrogenic markers like type II collagen and formation of cartilaginous tissue in TGFB3-PGA scaffolds seeded with subchondral progenitor cells and in pellet cultures stimulated with freeze-dried TGFB3. Chondrogenic differentiation in freeze-dried TGFB3-PGA scaffolds was comparable to cultures receiving TGFB3 continuously, while non-stimulated controls did not show chondrogenesis during prolonged culture for 14 days. These results suggest that bio-activated, freeze-dried TGFB3-PGA scaffolds have chondrogenic potential and are a promising tool for stem cell-mediated cartilage regeneration.

  9. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    Science.gov (United States)

    Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.

    2013-07-01

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  10. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, L. A. [University of Erlangen-Nuremberg Medical Center, Department of Plastic and Hand Surgery (Germany); Hild, N.; Mohn, D.; Stark, W. J. [ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering (Switzerland); Hoppe, A. [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany); Gbureck, U. [University of Wuerzburg, Department for Functional Materials in Medicine and Dentistry (Germany); Horch, R. E.; Kneser, U. [University of Erlangen-Nuremberg Medical Center, Department of Plastic and Hand Surgery (Germany); Boccaccini, A. R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany)

    2013-07-15

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 {mu}g/cm Superscript-Two (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 {mu}g/cm Superscript-Two , Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  11. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    International Nuclear Information System (INIS)

    Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.

    2013-01-01

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30–35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes

  12. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  13. Bioactivity characterization of Lactobacillus strains isolated from dairy products

    Science.gov (United States)

    Haghshenas, Babak; Nami, Yousef; Haghshenas, Minoo; Abdullah, Norhafizah; Rosli, Rozita; Radiah, Dayang; Yari Khosroushahi, Ahmad

    2015-01-01

    This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. PMID:26219634

  14. Physicochemical, microbiological and sensory evaluation of a bioactive food blend

    Directory of Open Access Journals (Sweden)

    Rosângela dos Santos Ferreira

    2014-09-01

    Full Text Available The potential of functional foods to decrease the risks of chronic non-communicable diseases has motivated the development of products with beneficial effects on fat and carbohydrate metabolism. The present study aimed at analyzing the physicochemical, microbiological, and sensory properties of a bioactive food blend developed to help the nutritional therapy provided to hypolipidemic and hyperglycemic patients with HIV/AIDS treated with antiretroviral therapy. The food blend was evaluated for moisture, protein, carbohydrate, fats, fixed mineral residue, total fiber content, and fatty acid composition, according to the standards established by the Instituto Adolfo Lutz. Food safety was assessed by microbiological analyses for Bacillus cereus, Salmonella spp, and coliforms. Sensory acceptance and intention to purchase were also evaluated. The food blend showed good nutritional potential, with low atherogenicity and thrombogenicity indexes, good macronutrient balance, and high energy value. The adoption of Good Manufacturing Practices (GMP resulted in a product suitable for consumption. With respect to sensory aspects, the food blend showed satisfactory indexes of acceptability and promising marketing potential.

  15. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, EEM; Akkerman, [No Value; Koulman, A; Kamermans, P; Reith, H; Barbosa, MJ; Sipkema, D; Wijffels, RH

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  16. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, E.E.M.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; Wijffels, R.H.

    2003-01-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  17. Bioactive glasses potential biomaterials for future therapy

    CERN Document Server

    Kaur, Gurbinder

    2017-01-01

    This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.

  18. Bio-actives and Drug

    Indian Academy of Sciences (India)

    Bio-actives. have an effect on or elicit a response from living tissue. Refer to a substance that can be acted upon by a living organism or by an extract from a living organism. are constituents in foods or dietary supplements, other than those needed to meet basic nutritional needs, that are responsible for changes in health ...

  19. Identification of Bioactive Agents and Immunomodulatory Factors from Seashells of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Arezoo Najafi

    2010-09-01

    Full Text Available Background: Research in marine pharmacology will promise new bioactive agents. The marine bioenvironment is the unique resource for bioactive agents that could not be found in terrestrial organisms. Methods: A total of known 611 seashells species in the Persian Gulf were investigated for synonymy in OBIS database. Then, all the species, including their synonymy were searched in PubMed database to find their isolated bioactive agents. Results: From 611 known seashells in the Persian Gulf, 172 genera/species had bioactive compounds. Bioactive agents were isolated and purified for 16 genera/ species. The crude or purified extracts from these seashells had immunomodulatory effects (6 seashells, anti-toxicologic effects (4 seashells, analgesic (1 seashell, cardiotonic and vasoactive agents (2 seashells, hypolipidemic agents (4 seashells, anti-osteoporotic and osteoblastic agents (2 seashells and anti-dermatitis effect (1 seashell. Conclusion: The known seashells from the Persian Gulf have bioactive and immunomodulatory compounds and increase in the efforts to isolate these agents will promise a treasure for novel anti-infective agents.

  20. Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Lorenzo Drago

    2018-02-01

    Full Text Available Bone defects caused by trauma or pathological events are major clinical and socioeconomic burdens. Thus, the efforts of regenerative medicine have been focused on the development of non-biodegradable materials resembling bone features. Consequently, the use of bioactive glass as a promising alternative to inert graft materials has been proposed. Bioactive glass is a synthetic silica-based material with excellent mechanical properties able to bond to the host bone tissue. Indeed, when immersed in physiological fluids, bioactive glass reacts, developing an apatite layer on the granule’s surface, playing a key role in the osteogenesis process. Moreover, the contact of bioactive glass with biological fluids results in the increase of osmotic pressure and pH due to the leaching of ions from granules’ surface, thus making the surrounding environment hostile to microbial growth. The bioactive glass antimicrobial activity is effective against a wide selection of aerobic and anaerobic bacteria, either in planktonic or sessile forms. Furthermore, bioglass is able to reduce pathogens’ biofilm production. For the aforementioned reasons, the use of bioactive glass might be a promising solution for the reconstruction of bone defects, as well as for the treatment and eradication of bone infections, characterized by bone necrosis and destruction of the bone structure.

  1. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity.

    Science.gov (United States)

    Ye, Xiaotong; Leeflang, Sander; Wu, Chengtie; Chang, Jiang; Zhou, Jie; Huan, Zhiguang

    2017-10-27

    Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  2. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity

    Directory of Open Access Journals (Sweden)

    Xiaotong Ye

    2017-10-01

    Full Text Available Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM, having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  3. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production.

    Science.gov (United States)

    Koirala, Niranjan; Thuan, Nguyen Huy; Ghimire, Gopal Prasad; Thang, Duong Van; Sohng, Jae Kyung

    2016-05-01

    Among the natural products, flavonoids have been particularly attractive, highly studied and become one of the most important promising agent to treat cancer, oxidant stress, pathogenic bacteria, inflammations, cardio-vascular dysfunctions, etc. Despite many promising roles of flavonoids, expectations have not been fulfilled when studies were extended to the in vivo condition, particularly in humans. Instability and very low oral bioavailability of dietary flavonoids are the reasons behind this. Researches have demonstrated that the methylation of these flavonoids could increase their promise as pharmaceutical agents leading to novel applications. Methylation of the flavonoids via theirs free hydroxyl groups or C atom dramatically increases their metabolic stability and enhances the membrane transport, leading to facilitated absorption and highly increased oral bioavailability. In this paper, we concentrated on analysis of flavonoid methoxides including O- and C-methoxide derivatives in aspect of structure, bioactivities and description of almost all up-to-date O- and C-methyltransferases' enzymatic characteristics. Furthermore, modern biological approaches for synthesis and production of flavonoid methoxides using metabolic engineering and synthetic biology have been focused and updated up to 2015. This review will give a handful information regarding the methylation of flavonoids, methyltransferases and biotechnological synthesis of the same. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hirashima, Fabiana K.; Sabato, Susy F., E-mail: fmayumi@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lanfer-Marquez, Ursula M., E-mail: lanferum@usp.br [Universidade de Sao Paulo (FCF/USP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    2015-07-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  5. Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.

    Science.gov (United States)

    Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R

    2012-12-18

    The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

  6. Minimally processed mixed salad submitted to gamma radiation: effects on bioactive compounds

    International Nuclear Information System (INIS)

    Hirashima, Fabiana K.; Sabato, Susy F.; Lanfer-Marquez, Ursula M.

    2015-01-01

    High consumption of fruits and vegetables has been associated with a lowered incidence of oxidative stress-related diseases due to the presence of bioactive structures. Minimally processed products are a growing segment in food retail establishments because it is associated with practicality and convenience without significantly altering fresh-like characteristics. Low-dose of gamma radiation in combination with minimal processes has shown to be a promising strategy for extending shelf life and maintaining the organoleptic quality of fruits and vegetables. The objective of this study was to evaluate the levels of phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical scavenging and Oxygen Radical Absorbance Capacity (ORAC) method in minimally processed mixed salad before and after different radiation doses. Samples of minimally processed mixed salad (with green and red cabbage and carrot) were purchased at local supermarket and irradiated with doses of 0.5, 1.0, 2.0 and 3.0 kGy. Phenolic compounds, flavonoids, proanthocyanidins and antioxidant activity by DPPH• and ORAC were analyzed on the same extract prepared with MeOH. The results showed that bioactive compounds levels and antioxidant activity decreased significantly (p<0.05) with an increasing on radiation dose. Gamma-rays may affect these compounds and can cause degradation or oxidation, which can explain the drop on levels. Although the radiation has affected the bioactive contents, the process seems to be interesting to maintaining organoleptic characteristics and provide microbiological security at doses up to 2.0 kGy, according to studies conducted by our research group. (author)

  7. High-performance Thin-layer Chromatographic-densitometric Quantification and Recovery of Bioactive Compounds for Identification of Elite Chemotypes of Gloriosa superba L. Collected from Sikkim Himalayas (India).

    Science.gov (United States)

    Misra, Ankita; Shukla, Pushpendra Kumar; Kumar, Bhanu; Chand, Jai; Kushwaha, Poonam; Khalid, Md; Singh Rawat, Ajay Kumar; Srivastava, Sharad

    2017-10-01

    Gloriosa superba L. (Colchicaceae) is used as adjuvant therapy in gout for its potential antimitotic activity due to high colchicine(s) alkaloids. This study aimed to develop an easy, cheap, precise, and accurate high-performance thin-layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L. and to identify its elite chemotype(s) from Sikkim Himalayas (India). The HPTLC chromatographic method was developed using mobile phase of chloroform: acetone: diethyl amine (5:4:1) at λ max of 350 nm. Five germplasms were collected from targeted region, and on morpho-anatomical inspection, no significant variation was observed among them. Quantification data reveal that content of colchicine ( R f : 0.72) and gloriosine ( R f : 0.61) varies from 0.035%-0.150% to 0.006%-0.032% (dry wt. basis). Linearity of method was obtained in the concentration range of 100-400 ng/spot of marker(s), exhibiting regression coefficient of 0.9987 (colchicine) and 0.9983 (gloriosine) with optimum recovery of 97.79 ± 3.86 and 100.023% ± 0.01%, respectively. Limit of detection and limit of quantification were analyzed, respectively, as 6.245, 18.926 and 8.024, 24.316 (ng). Two germplasms, namely NBG-27 and NBG-26, were found to be elite chemotype of both the markers. The developed method is validated in terms of accuracy, recovery, and precision studies as per the ICH guidelines (2005) and can be adopted for the simultaneous quantification of colchicine and gloriosine in phytopharmaceuticals. In addition, this study is relevant to explore the chemotypic variability in metabolite content for commercial and medicinal purposes. An easy, cheap, precise, and accurate high performance thin layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L.Five germplasms were collected from targeted region, and on morpho anatomical

  8. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.-M. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, L.; Kantiranis, N. [Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lazaridis, N.K. [Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K.; Chatzistavrou, X. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M., E-mail: kpar@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  9. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    International Nuclear Information System (INIS)

    Goudouri, O.-M.; Kontonasaki, E.; Papadopoulou, L.; Kantiranis, N.; Lazaridis, N.K.; Chrissafis, K.; Chatzistavrou, X.; Koidis, P.; Paraskevopoulos, K.M.

    2014-01-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  10. Effects of co-medicated drugs on cyclophosphamide bioactivation in human liver microsomes

    NARCIS (Netherlands)

    de Jonge, Milly E.; Huitema, Alwin D. R.; van Dam, Selma M.; Rodenhuis, Sjoerd; Beijnen, Jos H.

    2005-01-01

    The alkylating agent cyclophosphamide (CP) is a prodrug requiring cytochrome P-450-mediated bioactivation to form the active 4-hydroxycyclophosphamide (4OHCP). Modifications in the rate of CP bioactivation may have implications for the effectiveness of CP therapy, especially in high-dose regimens.

  11. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  12. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  13. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  14. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  15. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    Science.gov (United States)

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-10-30

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.

  16. Antimalarial benzoheterocyclic 4-aminoquinolines: Structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies.

    Science.gov (United States)

    Ongarora, Dennis S B; Strydom, Natasha; Wicht, Kathryn; Njoroge, Mathew; Wiesner, Lubbe; Egan, Timothy J; Wittlin, Sergio; Jurva, Ulrik; Masimirembwa, Collen M; Chibale, Kelly

    2015-09-01

    A novel class of benzoheterocyclic analogues of amodiaquine designed to avoid toxic reactive metabolite formation was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant) and NF54 (sensitive) strains of the malaria parasite Plasmodium falciparum. Structure-activity relationship studies led to the identification of highly promising analogues, the most potent of which had IC50s in the nanomolar range against both strains. The compounds further demonstrated good in vitro microsomal metabolic stability while those subjected to in vivo pharmacokinetic studies had desirable pharmacokinetic profiles. In vivo antimalarial efficacy in Plasmodium berghei infected mice was evaluated for four compounds, all of which showed good activity following oral administration. In particular, compound 19 completely cured treated mice at a low multiple dose of 4×10mg/kg. Mechanistic and bioactivation studies suggest hemozoin formation inhibition and a low likelihood of forming quinone-imine reactive metabolites, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nutraceuticals and Bioactive Components from Fish for Dyslipidemia and Cardiovascular Risk Reduction

    Directory of Open Access Journals (Sweden)

    Giulia Chiesa

    2016-06-01

    Full Text Available Cardiovascular disease remains the most common health problem in developed countries, and residual risk after implementing all current therapies is still high. Permanent changes in lifestyle may be hard to achieve and people may not always be motivated enough to make the recommended modifications. Emerging research has explored the application of natural food-based strategies in disease management. In recent years, much focus has been placed on the beneficial effects of fish consumption. Many of the positive effects of fish consumption on dyslipidemia and heart diseases have been attributed to n-3 polyunsaturated fatty acids (n-3 PUFAs, i.e., EPA and DHA; however, fish is also an excellent source of protein and, recently, fish protein hydrolysates containing bioactive peptides have shown promising activities for the prevention/management of cardiovascular disease and associated health complications. The present review will focus on n-3 PUFAs and bioactive peptides effects on cardiovascular disease risk factors. Moreover, since considerable controversy exists regarding the association between n-3 PUFAs and major cardiovascular endpoints, we have also reviewed the main clinical trials supporting or not this association.

  18. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering.

    Science.gov (United States)

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Brown, Justin L; Krogman, Nicholas R; Weikel, Arlin L; Allcock, Harry R; Laurencin, Cato T

    2010-01-01

    The long-term goal of this work is to develop biomimetic polymer-based systems for bone regeneration that both allow for neutral pH degradation products and have the ability to nucleate bonelike apatite. In this study, the etheric biodegradable polyphosphazene, poly[(50%ethyl glycinato)(50%methoxyethoxyethoxy)phosphazene] (PNEG(50)MEEP(50)) was blended with poly(lactide-co-glycolide) PLAGA and studied their ability to produce high-strength degradable biomaterials with bioactivity. Accordingly, two blends with weight ratios of PNEG(50)MEEP(50) to PLAGA 25:75 (BLEND25) and 50:50 (BLEND50) were fabricated using a mutual solvent approach. Increases in PNEG(50)MEEP(50) content in the blend system resulted in decreased elastic modulus of 779 MPa when compared with 1684 MPa (PLAGA) as well as tensile strength 7.9 MPa when compared with 25.7 MPa (PLAGA). However, the higher PNEG(50)MEEP(50) content in the blend system resulted in higher Ca/P atomic ratio of the apatite layer 1.35 (BLEND50) when compared with 0.69 (BLEND25) indicating improved biomimicry. Furthermore, these blends supported primary rat osteoblast adhesion and proliferation with an enhanced phenotypic expression when compared with PLAGA. These findings establish the suitability of PNEG(50)MEEP(50)-PLAGA biodegradable blends as promising bioactive materials for orthopedic applications.

  19. In Situ Caging of Biomolecules in Graphene Hybrids for Light Modulated Bioactivity.

    Science.gov (United States)

    Cheng, Gong; Han, Xiao-Hui; Hao, Si-Jie; Nisic, Merisa; Zheng, Si-Yang

    2018-01-31

    Remote and noninvasive modulation of protein activity is essential for applications in biotechnology and medicine. Optical control has emerged as the most attractive approach owing to its high spatial and temporal resolutions; however, it is challenging to engineer light responsive proteins. In this work, a near-infrared (NIR) light-responsive graphene-silica-trypsin (GST) nanoreactor is developed for modulating the bioactivity of trypsin molecules. Biomolecules are spatially confined and protected in the rationally designed compartment architecture, which not only reduces the possible interference but also boosts the bioreaction efficiency. Upon NIR irradiation, the photothermal effect of the GST nanoreactor enables the ultrafast in situ heating for remote activation and tuning of the bioactivity. We apply the GST nanoreactor for remote and ultrafast proteolysis of proteins, which remarkably enhances the proteolysis efficiency and reduces the bioreaction time from the overnight of using free trypsin to seconds. We envision that this work not only provides a promising tool of ultrafast and remotely controllable proteolysis for in vivo proteomics in study of tissue microenvironment and other biomedical applications but also paves the way for exploring smart artificial nanoreactors in biomolecular modulation to gain insight in dynamic biological transformation.

  20. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    Science.gov (United States)

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  1. Diethylglyoxal bis(guanylhydrazone): a novel highly potent inhibitor of S-adenosylmethionine decarboxylase with promising properties for potential chemotherapeutic use.

    Science.gov (United States)

    Elo, H; Mutikainen, I; Alhonen-Hongisto, L; Laine, R; Jänne, J

    1988-07-01

    Diethylglyoxal bis(guanylhydrazone) (DEGBG), a novel analog of the antileukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) was synthesized. It was found to be the most powerful inhibitor of yeast S-adenosylmethionine decarboxylase (AdoMetDC) so far studied (Ki approx. 9 nM). This property, together with the finding that the compound is a weaker inhibitor of intestinal diamine oxidase than are MGBG and its glyoxal, ethylglyoxal and ethylmethylglyoxal analogs, makes the compound a promising candidate as a polyamine antimetabolite for chemotherapy studies. DEGBG was also found to potentiate the antiproliferative effect of the ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine against mouse L1210 leukemia cells in vitro. DEGBG increased several-fold the intracellular putrescine concentration of cultured L1210 cells, just as MGBG and its ethylglyoxal analog are known to do. The results strongly suggest that DEGBG is worth further studies. Combined with previous studies, they also made possible the construction of some empirical rules concerning the structure-activity relationships of bis(guanylhydrazone) type inhibitors of AdoMetDC. The identity of DEGBG was confirmed by a single-crystal X-ray analysis and by 1H- and 13C-NMR spectroscopy. It consisted of the same isomer as MGBG and several of its analogs are known to consist of.

  2. Screening bioactive quality control markers of QiShenYiQi dripping pills based on the relationship between the ultra-high performance liquid chromatography fingerprint and vascular protective activity.

    Science.gov (United States)

    Zhuo, Limeng; Peng, Jingjing; Zhao, Yunli; Li, Dongxiang; Xie, Xiuman; Tong, Ling; Yu, Zhiguo

    2017-10-01

    Traditional Chinese medicine consists of complex phytochemical constituents. Selecting appropriate analytical markers of traditional Chinese medicine is a critical step in quality control. Currently, the combination of fingerprinting and efficacy evaluation is considered as a useful method for screening active ingredients in complex mixtures. This study was designed to develop an orthogonal partial least squares model for screening bioactive quality control markers of QishenYiqi dripping pills based on the fingerprint-efficacy relationship. First, the chemical fingerprints of 49 batches of QishenYiqi dripping pill samples were established by ultra-high performance liquid chromatography coupled with a photodiode array detector. Second, ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was exploited to systematically investigate the 36 copossessing fingerprint components in QishenYiqi dripping pills. The vascular protective activity of QishenYiqi dripping pills was determined by using a cell counting kit-8 assay. Finally, fingerprint-efficacy relationship was established by orthogonal partial least squares model. The results indicated that ten components exhibited strong correlation with vascular protective activity, and these were preliminarily screened as quality control markers. The present study provided a novel idea for the study of the pharmacodynamic material basis and quality evaluation of QishenYiqi dripping pills. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultrasound/microwave-assisted extraction and comparative analysis of bioactive/toxic indole alkaloids in different medicinal parts of Gelsemium elegans Benth by ultra-high performance liquid chromatography with MS/MS.

    Science.gov (United States)

    Li, Yu; Zeng, Rong-Jie; Lu, Qing; Wu, Shui-Sheng; Chen, Jian-Zhong

    2014-02-01

    Indole alkaloids are the main bioactive/toxic components in Gelsemium elegans Benth. To determine the distribution and contents of indole alkaloids in its different medicinal parts, a novel and rapid method using ultra-high performance LC (UPLC) with MS/MS has been established and validated with an optimized ultrasound/microwave-assisted extraction method. Four constituents, namely, humantenidine, humantenmine, gelsemine, and koumine, were simultaneously determined in 6 min. Chromatographic separation was achieved on an ultra-high performance LC BEH C18 column with a gradient mobile phase consisting of methanol and water (containing 0.1% formic acid both in methanol and water) at a flow rate of 0.3 mL/min. The detection was performed on a triple quadrupole electrospray MS/MS by positive ion multiple-reaction monitoring mode. All the analytes showed good linearity (r ≥ 0.9934) within a concentration range from 0.1-25 μg/mL with a LOQ of 25-50 ng/mL. The overall intra- and intervariations of four components were <4.7% with an accuracy of 97.3-101.3%. The analysis results showed that there were remarkable differences in the distribution and contents of four chemical markers in the roots, stems, and leaves of G. elegans Benth. The findings can provide necessary and meaningful information for the rational utilization of its resources. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bioactive glass 45S5 from diatom biosilica

    Directory of Open Access Journals (Sweden)

    Luqman A. Adams

    2017-12-01

    Full Text Available A major draw-back to large scale production of bioactive glasses is the high cost of the standard silica precursor, usually tetraethyl orthosilicate (TEOS. The current study describes a novel sol–gel preparation of 45S5 bioactive glass using diatom biosilica from cultured cells of the diatom, Aulacoseira granulata as substitute to TEOS. The glass formed was characterized using mechanical tester, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDX, X-ray diffraction (XRD and Fourier transform infrared (FTIR spectroscopy. Results showed that the glass possessed a compressive strength of 3.75 ± 0.18 and formed carbonated hydroxyapatite (HCA within 7 days in simulated body fluid (SBF, attributable to good surface chemistry. The performance of the glass was compared with that of those formed using TEOS. Diatom biosilica could be a potential economically friendly starting material for large scale fabrication of bioactive glasses.

  5. The promise of downlink MU-MIMO for high-capacity next generation mobile broadband networks based on IEEE 802.16 m

    Directory of Open Access Journals (Sweden)

    Papathanassiou Apostolos

    2011-01-01

    Full Text Available Abstract The dramatic increase of the demand for mobile broadband services poses stringent requirements on the performance evolution of currently deployed mobile broadband networks, such as Mobile WiMAX Release 1 and 3GPP LTE Release 8. Although the combination of single-user multiple-input multiple-output (SU-MIMO and orthogonal frequency division multiple access (OFDMA provide the appropriate technologies for improving the downlink performance of third generation (3G code division multiple access (CDMA-based mobile radio systems and, thus, address the current mobile internet requirements, a fundamental paradigm shift is required to cope with the constantly increasing mobile broadband data rate and spectral efficiency requirements. Among the different technologies available for making the paradigm shift from current to next-generation mobile broadband networks, multiuser MIMO (MU-MIMO constitutes the most promising technology because of its significant performance improvement advantages. In this article, we analyze the performance of MU-MIMO under a multitude of deployment scenarios and system parameters through extensive system-level simulations which are based on widely used system-level evaluation methodologies. The target mobile broadband system used in the simulations is IEEE 802.16 m which was recently adopted by ITU-R as an IMT-Advanced technology along with 3GPP LTE-Advanced. The results provide insights into different aspects of MU-MIMO with respect to system-level performance, parameter sensitivity, and deployment scenarios, and they can be used by the mobile broadband network designer for maximizing the benefits of MU-MIMO in a scenario with specific deployment requirements and goals.

  6. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries

    Science.gov (United States)

    Deng, Shengjue; Luo, Zhibin; Liu, Yating; Lou, Xiaoming; Lin, Chunfu; Yang, Chao; Zhao, Hua; Zheng, Peng; Sun, Zhongliang; Li, Jianbao; Wang, Ning; Wu, Hui

    2017-09-01

    Ti2Nb10O29 has recently been reported as a promising anode material for lithium-ion batteries. However, its poor electronic conductivity and insufficient Li+-ion diffusion coefficient significantly limit its rate capability. To tackle this issue, a strategy combining nanosizing and crystal-structure modification is employed. Ti2Nb10O29-x mesoporous microspheres with a sphere-size range of 0.5-4 μm are prepared by a one-step solvothermal method followed by thermal treatment in N2. These Ti2Nb10O29-x mesoporous microspheres exhibit primary nanoparticles, a large specific surface area (22.9 m2 g-1) and suitable pore sizes, leading to easy electron/Li+-ion transport and good interfacial reactivity. Ti2Nb10O29-x shows a defective shear ReO3 crystal structure with O2- vacancies and an increased unit cell volume, resulting in its increased Li+-ion diffusion coefficient. Besides Ti4+ and Nb5+ ions, Ti2Nb10O29-x comprises Nb4+ ions with unpaired 4d electrons, which significantly increase its electronic conductivity. As a result of these improvements, the Ti2Nb10O29-x mesoporous microspheres reveal superior electrochemical performances in term of large reversible specific capacity (309 mAh g-1 at 0.1 C), outstanding rate capability (235 mAh g-1 at 40 C) and durable cyclic stability (capacity retention of 92.1% over 100 cycles at 10 C).

  7. Health System Advance Care Planning Culture Change for High-Risk Patients: The Promise and Challenges of Engaging Providers, Patients, and Families in Systematic Advance Care Planning.

    Science.gov (United States)

    Reidy, Jennifer; Halvorson, Jennifer; Makowski, Suzana; Katz, Delila; Weinstein, Barbara; McCluskey, Christine; Doering, Alex; DeCarli, Kathryn; Tjia, Jennifer

    2017-04-01

    The success of a facilitator-based model for advance care planning (ACP) in LaCrosse, Wisconsin, has inspired health systems to aim for widespread documentation of advance directives, but limited resources impair efforts to replicate this model. One promising strategy is the development of interactive, Internet-based tools that might increase access to individualized ACP at minimal cost. However, widespread adoption and implementation of Internet-based ACP efforts has yet to be described. We describe our early experiences in building a systematic, population-based ACP initiative focused on health system-wide deployment of an Internet-based tool as an adjunct to a facilitator-based model. With the sponsorship of our healthcare system's population health leadership, we engaged a diverse group of clinical stakeholders as champions to design an Internet-based ACP tool and facilitate local practice change. We describe how we simultaneously began to train clinicians in ACP conversations, engage patients and health system employees in thinking about ACP, redesign clinic workflows to accommodate ACP discussions, and integrate the Internet-based tool into the electronic medical record (EMR). Over 18 months, our project engaged two subspecialty clinics in a systematic ACP process and began work with a large primary care practice with a large Medicare Accountable Care Organization at-risk population. Overall, 807 people registered at the Internet site and 85% completed ACPs. We learned that changing culture and systems to promote ACP requires a comprehensive vision with simultaneous, interconnected strategies targeting patient education, clinician training, EMR documentation, and community awareness.

  8. Let Them Eat Promises

    Science.gov (United States)

    Duggan, Thomas

    1972-01-01

    Article suggests books and films, as well as newspapers, which senior high-school students who will be voting in 1972 for the first time can study to broaden their understanding of the political parties and the electoral process. School and class activities relevant to the presidential election are also detailed. (PD)

  9. Low voltage operation of electro-absorption modulator promising for high-definition 3D imaging application using a three step asymmetric coupled quantum well structure

    International Nuclear Information System (INIS)

    Na, Byung Hoon; Ju, Gun Wu; Cho, Yong Chul; Lee, Yong Tak; Choi, Hee Ju; Jeon, Jin Myeong; Lee, Soo Kyung; Park, Yong Hwa; Park, Chang Young

    2015-01-01

    In this paper, we propose a transmission type electro-absorption modulator (EAM) operating at 850 nm having low operating voltage and high absorption change with low insertion loss using a novel three step asymmetric coupled quantum well (3 ACQW) structure which can be used as an optical image shutter for high-definition (HD) three dimensional (3D) imaging. Theoretical calculations show that the exciton red shift of 3 ACQW structure is more than two times larger than that of rectangular quantum well (RQW) structure while maintaining high absorption change. The EAM having coupled cavities with 3 ACQW structure shows a wide spectral bandwidth and high amplitude modulation at a bias voltage of only -8V, which is 41% lower in operating voltage than that of RQW, making the proposed EAM highly attractive as an optical image shutter for HD 3D imaging applications

  10. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  11. Quinazoline derivatives: synthesis and bioactivities

    OpenAIRE

    Wang, Dan; Gao, Feng

    2013-01-01

    Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reac...

  12. The asynchronous rapid single-flux quantum electronics ─ a promising alternative for the development of high-performance digital circuits

    Directory of Open Access Journals (Sweden)

    S. Terzieva

    2008-05-01

    Full Text Available In this paper, we investigate the application of the asynchronous logic approach for the realization of ultra high-speed digital electronics with high complexity. We evaluate the possible physical, technological, and schematical origins of restrictions limiting such an application, and propose solutions for their overcoming. Although our considerations are based on the rapid single-flux quantum technique, the conclusions derived can be generalized about any type of digital information coding.

  13. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  14. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  15. Revealing the local properties of beta-HP4N7, a promising candidate for high pressure synthesis of new materials

    Czech Academy of Sciences Publication Activity Database

    Morales-García, A.; del Corro, Elena

    2015-01-01

    Roč. 2, č. 4 (2015), č. článku 045904. ISSN 2053-1591 Institutional support: RVO:61388955 Keywords : initio molecular-dynamics * high pressure * qtaim * phase transition * local properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.968, year: 2015

  16. High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: α-glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae)

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Moresco, Henrique H.; Tahtah, Yousof

    2015-01-01

    , and therefore improved drug leads or functional foods containing α-glucosidase inhibitors are needed for management of blood glucose. In this study, leaves of Myrcia palustris were investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC–HRMS–SPE–NMR. This led to identification...

  17. Dithienylpyrrole- and Tris[4-(2-thienylphenyl]amine-Containing Copolymers as Promising Anodic Layers in High-Contrast Electrochromic Devices

    Directory of Open Access Journals (Sweden)

    Tzi-Yi Wu

    2018-04-01

    Full Text Available Three dithienylpyrrole- and tris[4-(2-thienylphenyl]amine-containing copolymers (P(MPS-co-TTPA, P(MPO-co-TTPA, and P(ANIL-co-TTPA were deposited on indium tin oxide (ITO surfaces using electrochemical polymerization. Spectroelectrochemical characterizations of polymer films revealed that P(MPS-co-TTPA film was light olive green, greyish-green, bluish grey, and grey in neutral state, intermediate state, oxidized state, and highly oxidized state, respectively, whereas P(MPO-co-TTPA film was green moss, foliage green, dark greyish-green, and bluish-grey in neutral state, intermediate state, oxidized state, and highly oxidized state, respectively. The ΔTmax of P(MPS-co-TTPA film at 964 nm, P(MPO-co-TTPA film at 914 nm, and P(ANIL-co-TTPA film at 960 nm were 67.2%, 60.7%, and 67.1%, respectively, and the coloration efficiency (η of P(MPS-co-TTPA film at 964 nm, P(MPO-co-TTPA film at 914 nm, and P(ANIL-co-TTPA film at 960 nm were calculated to be 260.3, 176.6, and 230.8 cm2 C−1, respectively. Dual type complementary colored electrochromic devices (ECDs were constructed using P(MPS-co-TTPA, P(MPO-co-TTPA, or P(ANIL-co-TTPA as anodic copolymer layer and PProDOT-Et2 as cathodic polymer layer. P(MPO-co-TTPA/PProDOT-Et2 ECD revealed high ΔT (55.1% and high η (766.5 cm2 C−1 at 580 nm. Moreover, P(MPS-co-TTPA/PProDOT-Et2, P(MPO-co-TTPA/PProDOT-Et2, and P(ANIL-co-TTPA/PProDOT-Et2 ECDs showed satisfactory long-term cycling stability and optical memory.

  18. Promising pesticide results

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: Virotec Global Solutions has announced what it believes is the first successful destruction of intractable organochlorine pesticide contamination in industrial wastewater. Dichlorodiphenyltrichloroethane, otherwise known as DDT, is one of the most intractable and persistent chemical compounds known to man. In February remediation specialist Virotec reported it had been successful in reducing DDT contaminant levels. In addition to destroying DDT in wastewater, Virotec showed its ViroFlow Technology can reduce levels of two DDT metabolites (or breakdown products), DDD and DDE, along with an organo-phosphate insecticide called chlorpyrifos. Virotec was commissioned by a large pesticide and fertiliser company to find a way of using its ViroFlow suite of products to reliably reduce high levels of pesticides and heavy metals from wastewater and stormwater at an industrial site. “Along with our strategic partner Green Shadows Commercial from Tasmania, we were able to successfully reduce DDT from 108 parts per billion to under two parts per billion in industrial wastewater using a combination of ozofractionation and ElectroBind reagent,” said business development manager Gisela Barros. “In addition, we were successful in demonstrating similar reductions in Dichlorodiphenyldichloroethane (DDD) from 15.2 parts per billion to under 0.5 parts per billion, and Dichlorodiphenyldichloroethylene (DDE) from one part per billion to under accurate to around 0.5 parts per billion.” The level of detection for pesticides was 0.5 parts per billion (ppb). In addition, ViroFlow reduced chlorpyrifos from 7,972 ppb to 6.4 ppb, arsenic (a key ingredient in pesticide composition) from 0.13 parts per million (ppm) to 0.002 ppm, and zinc from 0.35 ppm to less than 0.005 ppm. “The significance of these findings cannot be overstated,” Barros said. “DDT and its metabolites are among the most persistent and toxic contaminants to be found in soil and groundwater and

  19. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  20. Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage.

    Science.gov (United States)

    Barba, Francisco J; Esteve, Maria J; Frigola, Ana

    2010-09-22

    Variations in levels of antioxidant compounds (ascorbic acid, total phenolics, and total carotenoids), total antioxidant capacity, and color changes in a vegetable (tomato, green pepper, green celery, onion, carrot, lemon, and olive oil) beverage treated by high hydrostatic pressure (HHP) were evaluated in this work. The effects of HHP treatment, four different pressures (100, 200, 300, and 400 MPa) and four treatment times for each pressure (from 120 to 540 s) were compared with those of thermal treatment (90-98 °C for 15 and 21 s). High pressure treatment retained significantly more ascorbic acid in the vegetable beverage than thermal treatment. However, no significant changes in total phenolics were observed between HHP treated and thermally processed vegetable beverage and unprocessed beverage. Color changes (a*, b*, L, chroma, h°, and ΔE) were less for pressurized beverage than thermally treated samples compared with unprocessed beverage.

  1. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  2. Layered titanates with fibrous nanotopographic features as reservoir for bioactive ions to enhance osteogenesis

    Science.gov (United States)

    Song, Xiaoxia; Tang, Wei; Gregurec, Danijela; Yate, Luis; Moya, Sergio Enrique; Wang, Guocheng

    2018-04-01

    In this study, an osteogenic environment was constructed on Ti alloy implants by in-situ formation of nanosized fibrous titanate, Na2Ti6O13, loaded with bioactive ions, i.e. Sr, Mg and Zn, to enhance surface bioactivity. The bioactive ions were loaded by ion exchange with sodium located at inter-layer positions between the TiO6 slabs, and their release was not associated with the degradation of the structural unit of the titanate. In-vitro cell culture experiments using MC3T3-E1 cells proved that both bioactive ions and nanotopographic features are critical in promoting osteogenic differentiation of the cells. It was found that the osteogenic functions of the titanate can be modulated by the type and amount of ions incorporated. This study points out that nanosized fibrous titanate formed on the Ti alloy can be a promising reservoir for bioactive ions. The major advantage of this approach over other alternatives for bioactive ion delivery using degradable bioceramic coatings is its capacity of maintaining the structural integrity of the coating and thus avoiding structural deterioration and potential mechanical failure.

  3. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution: A promising analytical tool in (paleo)limnology.

    Science.gov (United States)

    Tolu, Julie; Gerber, Lorenz; Boily, Jean-François; Bindler, Richard

    2015-06-23

    Molecular-level chemical information about organic matter (OM) in sediments helps to establish the sources of OM and the prevalent degradation/diagenetic processes, both essential for understanding the cycling of carbon (C) and of the elements associated with OM (toxic trace metals and nutrients) in lake ecosystems. Ideally, analytical methods for characterizing OM should allow high sample throughput, consume small amounts of sample and yield relevant chemical information, which are essential for multidisciplinary, high-temporal resolution and/or large spatial scale investigations. We have developed a high-throughput analytical method based on pyrolysis-gas chromatography/mass spectrometry and automated data processing to characterize sedimentary OM in sediments. Our method consumes 200 μg of freeze-dried and ground sediment sample. Pyrolysis was performed at 450°C, which was found to avoid degradation of specific biomarkers (e.g., lignin compounds, fresh carbohydrates/cellulose) compared to 650°C, which is in the range of temperatures commonly applied for environmental samples. The optimization was conducted using the top ten sediment samples of an annually resolved sediment record (containing 16-18% and 1.3-1.9% of total carbon and nitrogen, respectively). Several hundred pyrolytic compound peaks were detected of which over 200 were identified, which represent different classes of organic compounds (i.e., n-alkanes, n-alkenes, 2-ketones, carboxylic acids, carbohydrates, proteins, other N compounds, (methoxy)phenols, (poly)aromatics, chlorophyll and steroids/hopanoids). Technical reproducibility measured as relative standard deviation of the identified peaks in triplicate analyses was 5.5±4.3%, with 90% of the RSD values within 10% and 98% within 15%. Finally, a multivariate calibration model was calculated between the pyrolytic degradation compounds and the sediment depth (i.e., sediment age), which is a function of degradation processes and changes in OM

  4. Bioactive content, hepatoprotective and antioxidant activities of ...

    African Journals Online (AJOL)

    Bioactive content, hepatoprotective and antioxidant activities of whole plant extract of Micromeria fruticosa (L) Druce ssp Serpyllifolia F Lamiaceae against Carbon tetrachloride-induced hepatotoxicity in mice.

  5. Bioactivity evolution of the surface functionalized bioactive glasses.

    Science.gov (United States)

    Magyari, Klára; Baia, Lucian; Vulpoi, Adriana; Simon, Simion; Popescu, Octavian; Simon, Viorica

    2015-02-01

    The formation of a calcium phosphate layer on the surface of the SiO2 -CaO-P2 O5 glasses after immersion in simulated body fluid (SBF) generally demonstrates the bioactivity of these materials. Grafting of the surface by chemical bonding can minimize the structural changes in protein adsorbed on the surface. Therefore, in this study our interest was to evaluate the bioactivity and blood biocompatibility of the SiO2 -CaO-P2 O5 glasses after their surface modification by functionalization with aminopropyl-triethoxysilane and/or by fibrinogen. It is shown that the fibrinogen adsorbed on the glass surfaces induces a growing of the apatite-like layer. It is also evidenced that the protein content from SBF influences the growth of the apatite-like layer. Furthermore, the good blood compatibility of the materials after fibrinogen and bovine serum albumin adsorption is proved from the assessment of the β-sheet-β-turn ratio. © 2014 Wiley Periodicals, Inc.

  6. High throughput HPLC-ESI(-)-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation.

    Science.gov (United States)

    Kotapati, Srikanth; Esades, Amanda; Matter, Brock; Le, Chap; Tretyakova, Natalia

    2015-11-05

    1,3-Butadiene (BD) is an important industrial and environmental carcinogen present in cigarette smoke, automobile exhaust, and urban air. The major urinary metabolites of BD in humans are 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 4-(N-acetyl-L-cystein-S-yl)-1,2,3-trihydroxybutyl mercapturic acid (THBMA), which are formed from the electrophilic metabolites of BD, 3,4-epoxy-1-butene (EB), hydroxymethyl vinyl ketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), respectively. In the present work, a sensitive high-throughput HPLC-ESI(-)-MS/MS method was developed for simultaneous quantification of MHBMA and DHBMA in small volumes of human urine (200 μl). The method employs a 96 well Oasis HLB SPE enrichment step, followed by isotope dilution HPLC-ESI(-)-MS/MS analysis on a triple quadrupole mass spectrometer. The validated method was used to quantify MHBMA and DHBMA in urine of workers from a BD monomer and styrene-butadiene rubber production facility (40 controls and 32 occupationally exposed to BD). Urinary THBMA concentrations were also determined in the same samples. The concentrations of all three BD-mercapturic acids and the metabolic ratio (MHBMA/(MHBMA+DHBMA+THBMA)) were significantly higher in the occupationally exposed group as compared to controls and correlated with BD exposure, with each other, and with BD-hemoglobin biomarkers. This improved high throughput methodology for MHBMA and DHBMA will be useful for future epidemiological studies in smokers and occupationally exposed workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Protocol for a randomised controlled trial of a school based cognitive behaviour therapy (CBT intervention to prevent depression in high risk adolescents (PROMISE

    Directory of Open Access Journals (Sweden)

    Sayal Kapil

    2010-11-01

    Full Text Available Abstract Background Depression in adolescents is a significant problem that impairs everyday functioning and increases the risk of severe mental health disorders in adulthood. Relatively few adolescents with depression are identified and referred for treatment indicating the need to investigate alternative preventive approaches. Study Design A pragmatic cluster randomised controlled trial evaluating the effectiveness of a school based prevention programme on symptoms of depression in "high risk" adolescents (aged 12-16. The unit of allocation is year groups (n = 28 which are assigned to one of three conditions: an active intervention based upon cognitive behaviour therapy, attention control or treatment as usual. Assessments will be undertaken at screening, baseline, 6 months and 12 months. The primary outcome measure is change on the Short Mood and Feeling Questionnaire at 12 months. Secondary outcome measures will assess changes in negative thoughts, self esteem, anxiety, school connectedness, peer attachment, alcohol and substance misuse, bullying and self harm. Discussion As of August 2010, all 28 year groups (n = 5023 had been recruited and the assigned interventions delivered. Final 12 month assessments are scheduled to be completed by March 2011. Trial Registration ISRCTN19083628

  8. Citrobacter amalonaticus phytase on the cell surface of Pichia pastoris exhibits high pH stability as a promising potential feed supplement.

    Science.gov (United States)

    Li, Cheng; Lin, Ying; Huang, Yuanyuan; Liu, Xiaoxiao; Liang, Shuli

    2014-01-01

    Phytase expressed and anchored on the cell surface of Pichia pastoris avoids the expensive and time-consuming steps of protein purification and separation. Furthermore, yeast cells with anchored phytase can be used as a whole-cell biocatalyst. In this study, the phytase gene of Citrobacter amalonaticus was fused with the Pichia pastoris glycosylphosphatidylinositol (GPI)-anchored glycoprotein homologue GCW61. Phytase exposed on the cell surface exhibits a high activity of 6413.5 U/g, with an optimal temperature of 60°C. In contrast to secreted phytase, which has an optimal pH of 5.0, phytase presented on the cell surface is characterized by an optimal pH of 3.0. Moreover, our data demonstrate that phytase anchored on the cell surface exhibits higher pH stability than its secreted counterpart. Interestingly, our in vitro digestion experiments demonstrate that phytase attached to the cell surface is a more efficient enzyme than secreted phytase.

  9. Targeting high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance analysis with high-resolution radical scavenging profiles - bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Nyberg, Nils; Tejesvi, Mysore V.

    2013-01-01

    The high-resolution radical scavenging profile of an extract of the endophytic fungus Penicillium namyslowskii was used to target analysis by high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HPLC...... NMR probe designed for 1.7-mm NMR tubes. To further explore the potential of the above HPLC-HRMS-SPE-NMR platform for analysis of endophytic extracts, six peaks displaying no radical scavenging activity were also analyzed. This allowed unambiguous identification of six metabolites, i...... and griseofulvin, directly from crude extract via HPLC-HRMS-SPE-NMR. Dechlorodehydrogriseofulvin was reported for the first time from nature....

  10. Promising Long-Term Health-Related Quality of Life After High-Dose-Rate Brachytherapy Boost for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Wahlgren, Thomas; Nilsson, Sten; Lennernaes, Bo; Brandberg, Yvonne

    2007-01-01

    Purpose: To explore the long-term general and disease-specific health-related quality of life (HRQOL) >5 years after combined radiotherapy for localized prostate cancer, including a high-dose-rate brachytherapy boost and hormonal deprivation therapy. Methods and Materials: Of 196 eligible patients with localized prostate cancer (Stage T1-T3a) consecutively treated with curative radiotherapy at our institution between June 1998 and August 2000, 182 (93%) completed the European Organization for Research and Treatment of Cancer Quality of Life questionnaires QLQ-C30 and QLQ-PR25, including specific questions on fecal incontinence >5 years after treatment in September 2005. A comparison with age-matched normative data was done, as well as a longitudinal analysis using HRQOL data from a previous study. Results: The analysis included 158 nonrecurrent patients. Comparisons made with normative data showed that physical and role functioning were significantly better statistically and social functioning was significantly worse. Diarrhea and sleep disturbances were more pronounced and pain less pronounced than in a normal male population. The longitudinal analysis of disease-specific HRQOL showed that urinary urgency and erectile problems persisted 5 years after treatment, and nocturia and hormonally dependent symptoms had declined significantly, with a statistically significant difference. Fecal incontinence was recognized by 25% of patients, of whom 80% considered it a minor problem. Conclusion: More than 5 years after combined radiotherapy, irritative urinary problems and erectile dysfunction remain concerns, although severe bowel disturbance and fecal incontinence seem to be minor problems. Longitudinally, a decline mainly in hormonally dependent symptoms was seen. Minor differences in general HRQOL compared with normative data were observed, possibly including 'response shift' effects

  11. Development and validation of a rapid high performance liquid chromatography - photodiode array detection method for estimation of a bioactive compound wedelolactone in extracts of Eclipta alba

    Directory of Open Access Journals (Sweden)

    Satyanshu Kumar

    2013-03-01

    Full Text Available Following optimization of extraction, separation and analytical conditions, a rapid, sensitive and simple reverse-phase high performance liquid chromatography-photo diode array (HPLC-PDA method has been developed for the identification and quantification of wedelolactone in different extracts of Eclipta alba. The separation of wedelolactone was achieved on a C18 column using the solvent system consisting of a mixture of methanol: water: acetic acid (95: 5: 0.04 as a mobile phase in isocratic elution mode followed by photo diode array detection at 352 nm. The developed method was validated as per the guidelines of the International Conference on Harmonization (ICH. Calibration curve presented good linear regression (r²>0.998 within the test range and the maximum relative standard deviation (RSD, % values for intra-day assay were found to be 0.15, 1.30 and 1.1 for low (5 µg/mL, medium (20 µg/mL and high (80 µg/mL concentrations of wedelolactone. For inter-day assay the maximum RSD (% values were found to be 2.83, 1.51 and 2.06 for low, medium and high concentrations, respectively. Limit of detection (LOD and limit of quantification (LOQ were calculated to be 2 and 5 µg/mL respectively. Analytical recovery of wedelolactone was greater than 95%. Wedelolactone in different extracts of Eclipta alba was identified and quantified using the developed HPLC method. The validated HPLC method allowed precise quantitative analysis of wedelolactone in Eclipta. alba extracts.Desenvolveu-se método rápido, sensível e simples de Cromatografia Líquida de Alta Eficiência em fase reversa, utilizando-se arranjo de fotodiodo (HPLC-PDA, visando à separação, extração e às condições analíticas para a identificação e quantificação de wedelolactona em diferentes extratos de Eclipta alba. A separação de wedelolactona foi efetuada por meio de uma coluna C18, utilizando mistura de metanol:água:ácido acético (95:5:0.04 como fase móvel, em sistema de

  12. High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: α-Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae).

    Science.gov (United States)

    Wubshet, Sileshi G; Moresco, Henrique H; Tahtah, Yousof; Brighente, Inês M C; Staerk, Dan

    2015-08-01

    Type 2 diabetes (T2D) is an endocrine metabolic disease with a worldwide prevalence of more than 8%, and an expected increase close to 50% in the next 15-20years. T2D is associated with severe and life-threatening complications like retinopathy, neuropathy, nephropathy, and cardiovascular diseases, and therefore improved drug leads or functional foods containing α-glucosidase inhibitors are needed for management of blood glucose. In this study, leaves of Myrcia palustris were investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of casuarinin, myricetin 3-O-β-d-(6″-galloyl)galactopyranoside, kaempferol 3-O-β-d-galactopyranoside, myricetin, and quercetin as α-glucosidase inhibitors. In addition, four acetylated ellagic acid rhamnosides, i.e., 4-O-(2″,4″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, 4-O-(2″,3″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, 4-O-(3″,4″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, and 4-O-(2″,3″,4″-O-triacetyl-α-l-rhamnopyranosyl)ellagic acid were identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Quantitative Analysis of Bioactive Compounds In Extract and Fraction of Star Fruit (Averrhoa carambola L. Leaves Using High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Nanang Yunarto

    2017-05-01

    Full Text Available Starfruit (Averrhoa carambola L. is potential as raw material for medicine, native in tropic areas, including Indonesia. According to other study report, starfruit leaves containing flavonoids apigenin and quercetin as potential anti-inflammatory and anticancer agents. The raw material for the drug in Indonesia mostly obtained through imports from other countries. In order to support the independence of traditional medicine raw materials, it is important to standardize the quality of traditional medicine raw materials, in this case is star fruit leaves by High Performance Liquid Chromatography (HPLC method. The sample used is star fruit leaves extract obtained from maceration process using ethanol 70%; water fraction, ethyl acetate and hexane fractions obtained from fractionation process of the ethanolic extract. Physical parameters analyzed in sample include appearance, color, odor, taste, extract yield, water content, loss of drying, total ash content, residual solvent. Chemical parameters analyzed include apigenin and quercetin contents. The results shows that star fruit leaves used in this study meet the standards of Indonesian Herbal Pharmacopoeia with highest apigenin and quercetin content are in ethyl acetate fraction.

  14. Sol-gel derived manganese-releasing bioactive glass as a therapeutical approach for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Barrioni, B.R.; Oliveira, A.C.; Leite, M.F.; Pereira, M.M. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2016-07-01

    Full text: Bioactive glasses (BG) have been highlighted in tissue engineering, due to their high bioactivity and biocompatibility, being potential materials for bone tissue repair. Its composition is variable and quite flexible, allowing the incorporation of therapeutic metallic ions, which has been regarded as a promising approach in the development of BG with superior properties for tissue engineering. These ions can be released in a controlled manner during the dissolution process of the glass, having the advantage of being released at the exactly implant site where they are needed, thus optimizing the therapeutic efficacy and reducing undesired side effects in the patient. Among several ions that have been studied, Manganese (Mn) has been shown to favor osteogenic differentiation. Besides, this ion is also a cofactor for several enzymes involved in remodeling of extracellular matrix, presenting an important role in cell adhesion. Therefore, it is very important to study the Mn role in the BG network and its influence on the glass bioactivity. In this context, new bioactive glass compositions derived from the 58S (60%SiO2-36%CaO-4%P2O5, mol%) were synthesized in this work, using the sol-gel method, by the incorporation of Mn into their structure. FTIR and Raman spectra showed the presence of typical BG chemical groups, whereas the amorphous structure typical of these materials was confirmed by XRD analysis, which also indicated that the Mn incorporation in the glass network was well succeeded, as its precursor did not recrystallize. The role of Mn in the glass network was also evaluated by XPS. The influence of Mn on carbonated hydroxyapatite layer formation after different periods of immersion of the BG powder in Simulated Body Fluid was evaluated using zeta potential, SEM, EDS and FTIR, whereas the controlled ion release was measured through ICP-OES. MTT assay revealed that Mn-containing BG showed no cytotoxic effect on cell culture. All these results indicate

  15. Sol-gel derived manganese-releasing bioactive glass as a therapeutical approach for bone tissue engineering

    International Nuclear Information System (INIS)

    Barrioni, B.R.; Oliveira, A.C.; Leite, M.F.; Pereira, M.M.

    2016-01-01

    Full text: Bioactive glasses (BG) have been highlighted in tissue engineering, due to their high bioactivity and biocompatibility, being potential materials for bone tissue repair. Its composition is variable and quite flexible, allowing the incorporation of therapeutic metallic ions, which has been regarded as a promising approach in the development of BG with superior properties for tissue engineering. These ions can be released in a controlled manner during the dissolution process of the glass, having the advantage of being released at the exactly implant site where they are needed, thus optimizing the therapeutic efficacy and reducing undesired side effects in the patient. Among several ions that have been studied, Manganese (Mn) has been shown to favor osteogenic differentiation. Besides, this ion is also a cofactor for several enzymes involved in remodeling of extracellular matrix, presenting an important role in cell adhesion. Therefore, it is very important to study the Mn role in the BG network and its influence on the glass bioactivity. In this context, new bioactive glass compositions derived from the 58S (60%SiO2-36%CaO-4%P2O5, mol%) were synthesized in this work, using the sol-gel method, by the incorporation of Mn into their structure. FTIR and Raman spectra showed the presence of typical BG chemical groups, whereas the amorphous structure typical of these materials was confirmed by XRD analysis, which also indicated that the Mn incorporation in the glass network was well succeeded, as its precursor did not recrystallize. The role of Mn in the glass network was also evaluated by XPS. The influence of Mn on carbonated hydroxyapatite layer formation after different periods of immersion of the BG powder in Simulated Body Fluid was evaluated using zeta potential, SEM, EDS and FTIR, whereas the controlled ion release was measured through ICP-OES. MTT assay revealed that Mn-containing BG showed no cytotoxic effect on cell culture. All these results indicate

  16. The potential of Nigerian bioactive plants for controlling gastrointestinal nematode infection in livestock.

    Science.gov (United States)

    Ademola, Isaiah Oluwafemi

    2016-12-01

    Bioactive compounds from marine and terrestrial organisms have been used extensively in the treatment of many diseases in both their natural form and as templates for synthetic modifications. This review summarizes present knowledge about anthelmintic effects of the extracts of bioactive plants in Nigeria against helminth parasites of ruminants. Plants traditionally used in livestock production are discussed. The main focus is hinged on in vitro and in vivo activities of secondary plant metabolites against nematodes of livestock. This review provides insight into preliminary studies of medicinal plants, which can be investigated further to discover promising molecules in the search for novel anthelmintic drugs and nutraceuticals.

  17. Bioactivity and Functionality of Bonghwa Sweetfish

    International Nuclear Information System (INIS)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-01

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  18. Bioactivity and Functionality of Bonghwa Sweetfish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Lee, Ju Woon; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Sung, Nak Yun; Jeong, Pil Mun

    2010-04-15

    - Smoked sweetfish had higher contents of calories, carbohydrate, protein, fat sodium, and calcium than unsmoked sweetfish - DHA and EPA which are omega-3 fatty acid and have therapeutic effects on arthritis and high blood pressure - Proteins and peptide from sweetfish had various bioactivities such as antioxidation, hypertensive, especially for antiinflammatory, and whitening effects. However no anticancer effect was observed - The proteins and peptide suppressed nitric oxide and cytokines (a-TNF, IL-6, IL-1 beta), and prostaglandin (PGE2) productions, and mRNA related iNOS and cyclooxygenase (COX-2), which are related to inflammation - The proteins and peptide prevented tyrosinase formation, which is related formation of melanin, and also showed preventive effects of melanin synthesis, antioxidation and anti-aging effects. Thus, the proteins and peptides from sweetfish may be useful source for cosmetics

  19. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  20. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives

    Directory of Open Access Journals (Sweden)

    Laura Salvia-Trujillo

    2016-01-01

    Full Text Available The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.

  1. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate-Bioglass® composite coating on stainless steel: mechanical properties and in-vitro bioactivity assessment.

    Science.gov (United States)

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R

    2014-07-01

    PVA reinforced alginate-bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate-Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata cultivated in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Daniela PRIORI

    2016-01-01

    Full Text Available Abstract The objective of this work was to evaluate the genetic variability for the synthesis of bioactive compounds and minerals in pumpkin (Cucurbita moschata landraces. Total phenolic compounds, carotenoids, antioxidant activity and minerals were evaluated in 10 accessions of Cucurbita moschata landraces from the Genebank of Embrapa Temperate Agriculture (Pelotas - RS, Brazil. Twenty plants of each accession were cultivated in the field during the spring/summer of 2013/2014. After harvesting of mature fruits, the seeds were discarded and opposite longitudinal portions of the pulp were manually prepared for analysis of the bioactive compounds. For the determination of minerals, pumpkin samples were frozen in plastic bags, and after freeze-dried and milled. All analysis were performed in triplicate. The data obtained showed high genetic variability for the synthesis of phenolic compounds, carotenoids, antioxidant activity and minerals. The accessions C52, C81, C267 e C389 showed high levels of antioxidants and minerals, being recommended for use in pumpkin breeding programs. The accessions C52 and C389 are promising, especially because they present the highest levels of total carotenoids.

  4. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata cultivated in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Daniela PRIORI

    Full Text Available Abstract The objective of this work was to evaluate the genetic variability for the synthesis of bioactive compounds and minerals in pumpkin (Cucurbita moschata landraces. Total phenolic compounds, carotenoids, antioxidant activity and minerals were evaluated in 10 accessions of Cucurbita moschata landraces from the Genebank of Embrapa Temperate Agriculture (Pelotas - RS, Brazil. Twenty plants of each accession were cultivated in the field during the spring/summer of 2013/2014. After harvesting of mature fruits, the seeds were discarded and opposite longitudinal portions of the pulp were manually prepared for analysis of the bioactive compounds. For the determination of minerals, pumpkin samples were frozen in plastic bags, and after freeze-dried and milled. All analysis were performed in triplicate. The data obtained showed high genetic variability for the synthesis of phenolic compounds, carotenoids, antioxidant activity and minerals. The accessions C52, C81, C267 e C389 showed high levels of antioxidants and minerals, being recommended for use in pumpkin breeding programs. The accessions C52 and C389 are promising, especially because they present the highest levels of total carotenoids.

  5. Political Reputations and Campaign Promises

    OpenAIRE

    Aragones, Enriqueta; Palfrey, Thomas R.; Postlewaite, Andrew

    2006-01-01

    We analyze conditions under which candidates' reputations may affect voters' beliefs over what policy will be implemented by the winning candidate of an election. We develop a model of repeated elections with complete information in which candidates are purely ideological. We analyze an equilibrium in which voters' strategies involve a credible threat to punish candidates who renege on their campaign promises and in which all campaign promises are believed by voters and honored by candidates....

  6. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    Science.gov (United States)

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  7. Bioactive Components in The Meat and Their Functional Properties: A Literature Study

    Directory of Open Access Journals (Sweden)

    Khothibul Umam Al Awwaly

    2017-03-01

    Full Text Available Consumer awareness in meat and meat products is generally recognized as a good source of food, with high biological value protein, B group vitamins, minerals and minor elements like several other bioactive compounds that are beneficial to the human body. But in many cases, a processing error is affecting the bioactive compounds of functional foods and consumer impression are relatively negative to some levels of substances in meat such as fat, cholesterol, saturated fatty acids, salt and other substances, which however also involves a diseases of western society such as cardiovascular diseases, respiratory, carcinogenesis, obesity, impaired immune system and accelerate the aging process. Hence there is a need for adequate information related to favorable nutritional value of meat that has not been widely disclosed. Bioactive components in the meat can be anserin, karnosin and bioactive peptides. The generation of bioactive components in the meat in the form of bioactive peptides can be done in three ways: (1 aging or storage of meat, (2 meat fermentation, and (3 the enzyme treatment. Functional properties of bioactive components in meat varies greatly as an antioxidant, antihypertensive, antimicrobial, anticancer and immunomodulatory.

  8. Enantioselectivity of mass spectrometry: challenges and promises.

    Science.gov (United States)

    Awad, Hanan; El-Aneed, Anas

    2013-01-01

    With the fast growing market of pure enantiomer drugs and bioactive molecules, new chiral-selective analytical tools have been instigated including the use of mass spectrometry (MS). Even though MS is one of the best analytical tools that has efficiently been used in several pharmaceutical and biological applications, traditionally MS is considered as a "chiral-blind" technique. This limitation is due to the MS inability to differentiate between two enantiomers of a chiral molecule based merely on their masses. Several approaches have been explored to assess the potential role of MS in chiral analysis. The first approach depends on the use of MS-hyphenated techniques utilizing fast and sensitive chiral separation tools such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled to MS detector. More recently, several alternative separation techniques have been evaluated such as supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC); the latter being a hybrid technique that combines the efficiency of CE with the selectivity of LC. The second approach is based on using the MS instrument solely for the chiral recognition. This method depends on the behavioral differences between enantiomers towards a foreign molecule and the ability of MS to monitor such differences. These behavioral differences can be divided into three types: (i) differences in the enantiomeric affinity for association with the chiral selector, (ii) differences of the enantiomeric exchange rate with a foreign reagent, and (iii) differences in the complex MS dissociation behaviors of the enantiomers. Most recently, ion mobility spectrometry was introduced to qualitatively and quantitatively evaluate chiral compounds. This article provides an overview of MS role in chiral analysis by discussing MS based methodologies and presenting the challenges and promises associated with each approach. © 2013 Wiley Periodicals, Inc.

  9. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment

    International Nuclear Information System (INIS)

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R.

    2014-01-01

    PVA reinforced alginate–bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate–Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications. - Highlights: • PVA reinforced alginate–bioactive glass composite coating on stainless steel produced by EPD • The co-deposition mechanism was experimentally confirmed. • Homogeneous and compact coating microstructure obtained by the addition of PVA • Improved adhesion strength of PVA reinforced coatings confirmed qualitatively and quantitatively • Controlled degradation rate and rapid HA forming ability of PVA-containing coatings in SBF

  10. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R., E-mail: aldo.boccaccini@ww.uni-erlangen.de

    2014-07-01

    PVA reinforced alginate–bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate–Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications. - Highlights: • PVA reinforced alginate–bioactive glass composite coating on stainless steel produced by EPD • The co-deposition mechanism was experimentally confirmed. • Homogeneous and compact coating microstructure obtained by the addition of PVA • Improved adhesion strength of PVA reinforced coatings confirmed qualitatively and quantitatively • Controlled degradation rate and rapid HA forming ability of PVA-containing coatings in SBF.

  11. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    Science.gov (United States)

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Promising Compilation to ARMv8 POP

    OpenAIRE

    Podkopaev, Anton; Lahav, Ori; Vafeiadis, Viktor

    2017-01-01

    We prove the correctness of compilation of relaxed memory accesses and release-acquire fences from the "promising" semantics of [Kang et al. POPL'17] to the ARMv8 POP machine of [Flur et al. POPL'16]. The proof is highly non-trivial because both the ARMv8 POP and the promising semantics provide some extremely weak consistency guarantees for normal memory accesses; however, they do so in rather different ways. Our proof of compilation correctness to ARMv8 POP strengthens the results of the Kan...

  13. Effectiveness of Bioactive Food Components in Experimental Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Emília Hijová

    2009-01-01

    Full Text Available The aim of the present study was the evaluation of possible protective effects of selected bioactive food components in experimental N,N-dimethylhydrazine (DMH-induced colon carcinogenesis. Wistar albino rats (n = 92 were fed a high fat diet or conventional laboratory diet. Two weeks after the beginning of the trial, DMH injections were given to six groups of rats at the dose of 20 mg/kg b.w. twice weekly. The activity of bacterial enzymes in faeces and serum bile acid concentrations were determined. High fat diet, DMH injections, and their combination significantly increased the activies of β-galactosidase, β-glucuronidase, and α-glucosidase (p p < 0.001, as well as the bile acid concentration compared to the group at the highest risk. The protective effects of selected bioactive food components in experimentally induced colon carcinogenesis allow for their possible use in cancer prevention or treatment.

  14. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars

    Directory of Open Access Journals (Sweden)

    Damhan S. Scully

    2016-11-01

    Full Text Available Conventional coffee brewing techniques generate vast quantities of spent espresso grounds (SEGs rich in lignocellulose and valuable bioactives. These bioactive compounds can be exploited as a nutraceutical or used in a range of food products, while breakdown of lignocellulose generates metabolizable sugars that can be used for the production of various high-value products such as biofuels, amino acids and enzymes. Response surface methodology (RSM was used to optimize the enzymatic saccharification of lignocellulose in SEGs following a hydrothermal pretreatment. A maximum reducing sugar yield was obtained at the following optimized hydrolysis conditions: 4.97 g of pretreated SEGs, 120 h reaction time, and 1246 and 250 µL of cellulase and hemicellulase, respectively. Industrially important sugars (glucose, galactose and mannose were identified as the principal hydrolysis products under the studied conditions. Total flavonoids (p = 0.0002, total polyphenols (p = 0.03 and DPPH free-radical scavenging activity (p = 0.004 increased significantly after processing. A 14-fold increase in caffeine levels was also observed. This study provides insight into SEGs as a promising source of industrially important sugars and polyphenols.

  15. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  16. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...... by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties...... of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed....

  17. Nutrients and bioactive substances in aquatic organisms

    International Nuclear Information System (INIS)

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  18. Bioactivities and Health Benefits of Wild Fruits

    Directory of Open Access Journals (Sweden)

    Ya Li

    2016-08-01

    Full Text Available Wild fruits are exotic or underutilized. Wild fruits contain many bioactive compounds, such as anthocyanins and flavonoids. Many studies have shown that wild fruits possess various bioactivities and health benefits, such as free radical scavenging, antioxidant, anti-inflammatory, antimicrobial, and anticancer activity. Therefore, wild fruits have the potential to be developed into functional foods or pharmaceuticals to prevent and treat several chronic diseases. In the present article, we review current knowledge about the bioactivities and health benefits of wild fruits, which is valuable for the exploitation and utilization of wild fruits.

  19. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Nikpour, Parisa; Salimi-Kenari, Hamed; Fahimipour, Farahnaz; Rabiee, Sayed Mahmood; Imani, Mohammad; Dashtimoghadam, Erfan; Tayebi, Lobat

    2018-06-15

    A series of nanocomposite scaffolds comprised of dextran (Dex) and sol-gel derived bioactive glass ceramic nanoparticles (nBGC: 0-16 (wt%)) were fabricated as bioactive scaffolds for bone tissue engineering. Scanning electron microscopy showed Dex/nBGC scaffolds were consisting of a porous 3D microstructure with an average pore size of 240 μm. Energy-dispersive x-ray spectroscopy illustrated nBGC nanoparticles were homogenously distributed within the Dex matrix at low nBGC content (2 wt%), while agglomeration was observed at higher nBGC contents. It was found that the osmotic pressure and nBGC agglomeration at higher nBGC contents leads to increased water uptake, then reduction of the compressive modulus. Bioactivity of Dex/nBGC scaffolds was validated through apatite formation after submersion in the simulated body fluid. Dex/nBGC composite scaffolds were found to show improved human osteoblasts (HOBs) proliferation and alkaline phosphatase (ALP) activity with increasing nBGC content up to 16 (wt%) over two weeks. Owing to favorable physicochemical and bioactivity properties, the Dex/nBGC composite hydrogels can be offered as promising bioactive scaffolds for bone tissue engineering applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network

    OpenAIRE

    Vaezi, Mohammad; Yang, Shoufeng

    2015-01-01

    Polyetheretherketone (PEEK) is a high-performance thermoplastic biomaterial which is currently used in a variety of biomedical orthopaedic applications. It has comparable tensile and compressive strength to cortical bone with favourable biocompatibility. However, natural grade PEEK-OPTIMA has shown insufficient bioactivity and limited bone integration. Bioactive PEEK composites (e.g., PEEK/calcium phosphates or Bioglass) and porous PEEK have been used to improve bone-implant interface of PEEK...

  1. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste

    OpenAIRE

    Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion

    2015-01-01

    The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene,...

  2. Phytochemicals and bioactivity in wild German and Roman chamomiles infusions

    OpenAIRE

    Guimarães, Rafaela; Barros, Lillian; Calhelha, Ricardo C.; Carvalho, Ana Maria; Queiroz, Maria João R.P.; Ferreira, Isabel C.F.R.

    2013-01-01

    Natural matrices represent a rich source of biologically active compounds and are an example of molecular diversity, with recognized potential in drug discovery. In the present work, the infusions of Matricaria recutita L. (German chamomile) and Chamaemelum nobile L. (Roman chamomile) were submitted to an analysis of phenolic compounds and evaluation of bioactivity. Phenolic compounds were characterized by reversed-phase high performance liquid chromatography coupled to diode a...

  3. Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity

    Science.gov (United States)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2013-06-01

    Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

  4. Mastering JavaScript promises

    CERN Document Server

    Hussain, Muzzamil

    2015-01-01

    This book is for all the software and web engineers wanting to apply the promises paradigm to their next project and get the best outcome from it. This book also acts as a reference for the engineers who are already using promises in their projects and want to improve their current knowledge to reach the next level. To get the most benefit from this book, you should know basic programming concepts, have a familiarity with JavaScript, and a good understanding of HTML.

  5. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes

    Directory of Open Access Journals (Sweden)

    Muna Ali Abdalla

    2018-05-01

    Full Text Available South Africa has a long history and strong belief in traditional herbal medicines. Using ethnobotanical knowledge as a lead, a large number of South African medicinal plants have been discovered to possess a wide spectrum of pharmacological properties. In this review, bioprospecting of endophytes is highlighted by following the advantages of the ethnomedicinal approach together with identifying unique medicinal plants where biological activity may be due to endophytes. This review focuses on the current status of South African medicinal plants to motivate the research community to harness the benefits of ethnobotanical knowledge to investigate the presence of endophytic microbes from the most potent South African medicinal plants. The potential chemical diversity and subsequent putative medicinal value of endophytes is deserving of further research. A timely and comprehensive review of literature on recently isolated endophytes and their metabolites was conducted. Worldwide literature from the last 2 years demonstrating the importance of ethnobotanical knowledge as a useful approach to discover endophytic microbes was documented. Information was obtained from scientific databases such as Pubmed, Scopus, Scirus, Google Scholar, Dictionary of Natural Products, Chemical Abstracts Services, official websites, and scientific databases on ethnomedicines. Primary sources such as books, reports, dissertations, and thesises were accessed where available. Recently published information on isolated endophytes with promising bioactivity and their bioactive natural products worldwide (2015-2017 was summarized. The potential value of South African medicinal plants as sources of endophytes is discussed. The insights provided through this study indicate that medicinal plants in South Africa are highly under-investigated sources of potentially useful endophytic microbes. New approaches may be used by medicinal plant scientists for further exploration of natural

  6. Alkali-free bioactive glasses for bone regeneration =

    Science.gov (United States)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  7. The Stability of Bioactive Compounds in Spaceflight Foods

    Science.gov (United States)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature

  8. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  9. Influence of sodium content on the properties of bioactive glasses for use in air abrasion

    International Nuclear Information System (INIS)

    Farooq, Imran; Brauer, Delia S; Hill, Robert G; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz

    2013-01-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO 2 –P 2 O 5 –CaO–CaF 2 –Na 2 O) with low sodium content (0 to 10 mol% Na 2 O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na 2 O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. (paper)

  10. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    Science.gov (United States)

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  11. Synthesis and bioactive evaluations of novel benzotriazole ...

    Indian Academy of Sciences (India)

    Synthesis and bioactive evaluations of novel benzotriazole compounds as ... School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, .... −3 mol/L) was prepared by dissolving its solid in doubly distilled water.

  12. Dihydroresveratrol Type Dihydrostilbenoids: Chemical Diversity, Chemosystematics, and Bioactivity.

    Science.gov (United States)

    Vitalini, Sara; Cicek, Serhat S; Granica, Sebastian; Zidorn, Christian

    2018-01-01

    Dihydrostilbenoids, a diverse class of natural products differing from stilbenoids by the missing double bond in the ethylene chain linking the aromatic moieties, have been reported from fungi, mosses, ferns, and flowering plants. Occurrence, structure, and bioactivity of naturally occurring dihydroresveratrol type dihydrostilbenoids are discussed in this review. A Reaxys database search for dihydroresveratrol derivatives with possible substitutions on all atoms, but excluding non-natural products and compounds featuring additional rings involving the ethyl connecting chain, was performed. Structures include simple dihydroresveratrol derivatives, compounds substituted with complex side chains composed of acyl moieties and sugars, and compounds containing polycyclic cores attached to dihydrostilbenoid units. Dihydrostilbenoids have a wide spectrum of bioactivities ranging from expectable antioxidant and anti-inflammatory activities to interesting neuroprotective and anticancer activity. The anticancer activity in particular is very pronounced for some plant-derived dihydrostilbenoids and makes them interesting lead compounds for drug development. Apart from some reports on dihydroresveratrol derivatives as phytoalexins against plant-pathogenic fungi, only very limited information is available on the ecological role of these compounds for the organisms producing them. Dihydrostilbenoids are a class of natural products possessing significant biological activities; their scattered but not ubiquitous occurrence throughout the kingdoms of plants and fungi is not easily explained. We are convinced that future studies will identify new sources of dihydrostilbenoids, and we hope that the present review will inspire such studies and will help in directing such efforts to suitable source organisms and towards promising bioactivities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas

    DEFF Research Database (Denmark)

    Vynne, Nikolaj Grønnegaard

    -associated strains were significantly more likely to possess stable antibacterial activity and be pigmented. Pseudoalteromonas strains are known as prolific producers of bioactive secondary metabolites; hence screening the global strain collection for production of novel antibiotics was initiated. Novel quinolone...... of regulatory compounds involved in cell to cell signaling within some strains of the species P. luteoviolacea. Since such mechanisms are known to govern antibiotic production in some bacteria, this was investigated. A quorum sensing system controlling a putative novel biosynthetic pathway with high homology......The purpose of this Ph.D. project was to evaluate a global collection of marine Pseudoalteromonas bacteria as a source of novel bioactive compounds, and to investigate the distribution and production of such compounds among different species within the Pseudoalteromonas genus. The strain collection...

  14. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  15. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2018-06-01

    Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.

  16. Polymerization kinetics of experimental bioactive composites containing bioactive glass.

    Science.gov (United States)

    Par, Matej; Tarle, Zrinka; Hickel, Reinhard; Ilie, Nicoleta

    2018-06-21

    To investigate the polymerization kinetics and the degree of conversion (DC) of experimental resin composites with varying amount of bioactive glass 45S5 (BG). Experimental resin composites based on a photo-curable Bis-GMA/TEGDMA resin system were prepared. The composite series contained 0, 5, 10, 20, and 40 wt% of BG and reinforcing fillers up to the total filler amount of 70 wt%. Composite specimens were light cured with 1,219 mW/cm 2 for 20 or 40 s and their DC was monitored during 5 min at the data collection rate of 2 s -1 using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The 5-min DC values for experimental composites were in the range of 42.4-55.9% and 47.3-57.9% for curing times of 20 and 40 s, respectively. The differences in the 5-min DC between curing times of 20 s or 40 s became more pronounced in materials with higher BG amount. Within both curing times, a decreasing trend of the 5-min DC values was observed with the increasing percentage of BG fillers. The maximum polymerization rate also decreased consistently with the increasing BG amount. Unsilanized BG fillers showed a dose-dependent inhibitory effect on polymerization rate and the DC. Extending the curing time from 20 to 40 s showed a limited potential to improve the DC of composites with higher BG amount. The observed inhibitory effect of BG fillers on the polymerization of resin composites may have a negative influence on mechanical properties and biocompatibility. Copyright © 2018. Published by Elsevier Ltd.

  17. Bioactivities of Traditional Medicinal Plants in Alexandria.

    Science.gov (United States)

    Elansary, Hosam O; Szopa, Agnieszka; Kubica, Paweł; Ekiert, Halina; Ali, Hayssam M; Elshikh, Mohamed S; Abdel-Salam, Eslam M; El-Esawi, Mohamed; El-Ansary, Diaa O

    2018-01-01

    In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus , Brassica juncea , and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus ; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii . Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis , pods of S. alexandrina , and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases.

  18. Bioactivities of Traditional Medicinal Plants in Alexandria

    Directory of Open Access Journals (Sweden)

    Hosam O. Elansary

    2018-01-01

    Full Text Available In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus, Brassica juncea, and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii. Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis, pods of S. alexandrina, and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases.

  19. Bioactivities of Traditional Medicinal Plants in Alexandria

    Science.gov (United States)

    Szopa, Agnieszka; Kubica, Paweł; Ekiert, Halina; Elshikh, Mohamed S.; Abdel-Salam, Eslam M.; El-Ansary, Diaa O.

    2018-01-01

    In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus, Brassica juncea, and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii. Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis, pods of S. alexandrina, and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases. PMID:29636772

  20. In vivo bone regeneration using a novel porous bioactive composite

    Energy Technology Data Exchange (ETDEWEB)

    Xie En [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Hu Yunyu [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China)], E-mail: orth1@fmmn.edu.cn; Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Bai Xuedong; Li Dan [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ren Li [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Zhang Ziru [Foreign Languages School, Northwest University Xi' an (China)

    2008-11-15

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  1. In vivo bone regeneration using a novel porous bioactive composite

    International Nuclear Information System (INIS)

    Xie En; Hu Yunyu; Chen Xiaofeng; Bai Xuedong; Li Dan; Ren Li; Zhang Ziru

    2008-01-01

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications

  2. Marine actinomycetes: an ongoing source of novel bioactive metabolites.

    Science.gov (United States)

    Subramani, Ramesh; Aalbersberg, William

    2012-12-20

    Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1-2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50-55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents

    Science.gov (United States)

    Viladomiu, Monica; Hontecillas, Raquel; Lu, Pinyi; Bassaganya-Riera, Josep

    2013-01-01

    Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases. PMID:23737845

  4. Design and characterization of protein-quercetin bioactive nanoparticles

    Directory of Open Access Journals (Sweden)

    Leng Xiaojing

    2011-05-01

    Full Text Available Abstract Background The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA, lysozyme (Lys, or myoglobin (Mb used to load hydrophobic drugs such as quercetin (Q and other flavonoids. Results Induced by dimethyl sulfoxide (DMSO, BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated. Conclusions BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.

  5. The promise of cyborg intelligence.

    Science.gov (United States)

    Brown, Michael F; Brown, Alexander A

    2017-03-01

    Yu et al. (2016) demonstrated that algorithms designed to find efficient routes in standard mazes can be integrated with the natural processes controlling rat navigation and spatial choices, and they pointed out the promise of such "cyborg intelligence" for biorobotic applications. Here, we briefly describe Yu et al.'s work, explore its relevance to the study of comparative cognition, and indicate how work involving cyborg intelligence would benefit from interdisciplinary collaboration between behavioral scientists and engineers.

  6. Freedom: A Promise of Possibility.

    Science.gov (United States)

    Bunkers, Sandra Schmidt

    2015-10-01

    The idea of freedom as a promise of possibility is explored in this column. The core concepts from a research study on considering tomorrow (Bunkers, 1998) coupled with humanbecoming community change processes (Parse, 2003) are used to illuminate this notion. The importance of intentionality in human freedom is discussed from both a human science and a natural science perspective. © The Author(s) 2015.

  7. Perpendicular recording: the promise and the problems

    International Nuclear Information System (INIS)

    Wood, Roger; Sonobe, Yoshiaki; Jin Zhen; Wilson, Bruce

    2001-01-01

    Perpendicular recording has long been advocated as a means of achieving the highest areal densities. In particular, in the context of the 'superparamagnetic limit', perpendicular recording with a soft underlayer promises several key advantages. These advantages include a higher coercivity, thicker media that should permit smaller diameter grains and higher signal-to-noise ratio. Also, the sharper edge-writing will facilitate recording at very high track densities (lower bit aspect ratio). Recent demonstrations of the technology have shown densities comparable with the highest densities reported for longitudinal recording. This paper further examines the promise that perpendicular recording will deliver an increase in areal density two to eight times higher than that achievable with longitudinal recording. There are a number of outstanding issues but the key challenge is to create a low-noise medium with a coercivity that is high and is much larger than the remanent magnetization

  8. Bioactive natural products from Chinese marine flora and fauna.

    Science.gov (United States)

    Zhou, Zhen-Fang; Guo, Yue-Wei

    2012-09-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail.

  9. Plasma spraying of bioactive glass-ceramics containing bovine bone

    Directory of Open Access Journals (Sweden)

    Annamária Dobrádi

    2017-06-01

    Full Text Available Natural bone derived glass-ceramics are promising biomaterials for implants. However, due to their price and weak mechanical properties they are preferably applied as coatings on load bearing implants. This paper describes result obtained by plasma spraying of bioactive glass-ceramics containing natural bone onto selected implant materials, such as stainless steel, alumina, and titanium alloy. Adhesion of plasma sprayed coating was tested by computed X-ray tomography and SEM of cross sections. The results showed defect free interface between the coating and substrate, without cracks or gaps. Dissolution rate of the coating in simulated body fluid (SBF was readily controlled by the bone additives (phase composition, as well as microstructure. The SBF treatment of the plasma sprayed coating did not influence the boundary between the coating and substrate.

  10. Saponins from seeds of Genus Camellia: Phytochemistry and bioactivity.

    Science.gov (United States)

    Guo, Na; Tong, Tuantuan; Ren, Ning; Tu, Youying; Li, Bo

    2018-05-01

    Camellia seeds have been traditionally used as oil raw materials in Asia, and are known for a wide spectrum of applications. Oleanane-type triterpene saponins are the major specialised metabolites in Camellia seeds, and more than seventy saponins have been isolated and characterized. These natural compounds have caught much attention due to their various biological and pharmacological activities, including modulation of gastrointestinal system, anti-cancer, anti-inflammation, anti-microorganism, antioxidation, neuroprotection, hypolipidemic effects, foaming and detergence, as well as helping the accumulation of pollutants by plants. These compounds have a promising application in medicine, agriculture, industry and environmental protection. The present paper summarized the information from current publications on Camellia seed saponins, with a focus on the advances made in chemical structures, determination methods, bioactivities and toxicity. We hope this article will stimulate further investigations on these compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Antibacterial effects and dissolution behavior of six bioactive glasses.

    Science.gov (United States)

    Zhang, Di; Leppäranta, Outi; Munukka, Eveliina; Ylänen, Heimo; Viljanen, Matti K; Eerola, Erkki; Hupa, Mikko; Hupa, Leena

    2010-05-01

    Dissolution behavior of six bioactive glasses was correlated with the antibacterial effects of the same glasses against sixteen clinically important bacterial species. Powdered glasses (<45 microm) were immersed in simulated body fluid (SBF) for 48 h. The pH in the solution inside the glass powder was measured in situ with a microelectrode. After 2, 4, 27, and 48 h, the pH and concentration of ions after removing the particles and mixing the SBF were measured with a normal glass pH electrode and ICP-OES. The bacteria were cultured in broth with the glass powder for up to 4 days, after which the viability of the bacteria was determined. The antibacterial effect of the glasses increased with increasing pH and concentration of alkali ions and thus with increased dissolution tendency of the glasses, but it also depended on the bacterium type. The changes in the concentrations of Si, Ca, Mg, P, and B ions in SBF did not show statistically significant influence on the antibacterial property. Bioactive glasses showed strong antibacterial effects for a wide selection of aerobic bacteria at a high sample concentration (100 mg/mL). The antibacterial effects increased with glass concentration and a concentration of 50 mg/mL (SA/V 185 cm(-1)) was required to generate the bactericidal effects. Understanding the dissolution mechanisms of bioactive glasses is essential when assessing their antibacterial effects. Copyright 2009 Wiley Periodicals, Inc.

  13. Bioactive compounds of fresh and dehydrated green pepper

    Directory of Open Access Journals (Sweden)

    Ana Marinho do Nascimento

    2017-07-01

    Full Text Available Pepper Capsicum annuum L., belongs to the Solanaceae family, which contains approximately 31 species. Bioactive compounds also known as phytochemicals are chemical and biochemical components that are present in most fruits and vegetables. The objective of the present study was to verify if the bioactive compounds of the green pepper remain after being submitted to the drying process. The experiment was conducted in a completely randomized design with 2 treatments and 5 replicates. Green peppers were used from the (Economic Center of Supply Corporation of the city of Patos, Paraíba. The peppers were packed in plastic boxes and transported to the Laboratory of Chemistry, Biochemistry and Food Analysis of the Federal University of Campina Grande, Campus Pombal. Where they were selected, washed and sanitized. After that, the minimum processing was done and the drying was carried out in a circulation oven at 60 ºC. At the end of the drying, the samples were crushed and sieved. After this process, the analyzes of ascorbic acid, chlorophylls, carotenoids, anthocyanin flavonoids and phenolic compounds. It was found that there was a significant difference between treatments. The bioactive properties of green pepper were not lost after the heat treatment. Some phytochemicals as ascorbic acid, carotenoids and phenolic compounds were concentrated. Therefore the loss of water during the drying process increased the concentration of the bioactive compounds of dehydrated pepper, the product obtained with this method exhibited high levels of phytochemicals, the use of drying may be an alternative to prolong the shelf life of the vegetable.

  14. Neutral atom beam technique enhances bioactivity of PEEK

    International Nuclear Information System (INIS)

    Khoury, Joseph; Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C.

    2013-01-01

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants

  15. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Mozafari, Masoud, E-mail: mmozafari@aut.ac.ir [Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied [Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2010-12-15

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO{sub 2}-CaO-P{sub 2}O{sub 5} system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 {mu}m and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  16. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    Science.gov (United States)

    Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

    2010-12-01

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  17. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    International Nuclear Information System (INIS)

    Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

    2010-01-01

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2 -CaO-P 2 O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  18. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  19. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    Science.gov (United States)

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.

  20. Are lithium niobate (LiNbO{sub 3}) and lithium tantalate (LiTaO{sub 3}) ferroelectrics bioactive?

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Paula Maria, E-mail: paula.vilarinho@ua.pt; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO{sub 3} and LiTaO{sub 3} is reported. The formation of apatite-like structures on the surface of LiNbO{sub 3} and LiTaO{sub 3} powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed. - Highlights: • LiNbO{sub 3} and LiTaO{sub 3} are bioactive ferroelectrics. • Cauliflower apatite type structures indicative of in-vitro bioactivity of LiNbO{sub 3} and LiTaO{sub 3.} • Negative surface charges anchor Ca{sup 2+} to which PO{sub 4}{sup 3−} attracts forming apatite structure nuclei. • Use of ferroelectrics as platforms for tissue growth in situ or ex situ is new and holds great promise.

  1. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  2. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Bafandeh, Mohammad Reza, E-mail: mr.bafandeh@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Gharahkhani, Raziyeh; Fathi, Mohammad Hossein [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  3. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  4. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK).

    Science.gov (United States)

    Ren, Yufu; Sikder, Prabaha; Lin, Boren; Bhaduri, Sarit B

    2018-04-01

    Polyetheretherketone (PEEK) with great thermal and chemical stability, desirable mechanical properties and promising biocompatibility is being widely used as orthopedic and dental implant materials. However, the bioinert surface of PEEK can hinder direct osseointegration between the host tissue and PEEK based implants. The important signatures of this paper are as follows. First, we report for the formation of osseointegrable amorphous magnesium phosphate (AMP) coating on PEEK surface using microwave energy. Second, coatings consist of nano-sized AMP particles with a stacked thickness of 800nm. Third, coatings enhance bioactivity in-vitro and induce significantly high amount of bone-like apatite coating, when soaked in simulated body fluid (SBF). Fourth, the as-deposited AMP coatings present no cytotoxicity effects and are beneficial for cell adhesion at early stage. Finally, the high levels of expression of osteocalcin (OCN) in cells cultured on AMP coated PEEK samples indicate that AMP coatings can promote new bone formation and hence osseointegration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  6. Microencapsulation of bioactives for food applications.

    Science.gov (United States)

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  7. Synthesis and characterization of TEP-EDTA-regulated bioactive hydroxyapatite

    Science.gov (United States)

    Haders, Daniel Joseph, II

    Hydroxyapatite (HA), Ca10(PO4)6(OH) 2, the stoichiometric equivalent of the ceramic phase of bone, is the preferred material for hard tissue replacement due to its bioactivity. However, bioinert metals are utilized in load-bearing orthopedic applications due to the poor mechanical properties of HA. Consequently, attention has been given to HA coatings for metallic orthopedic implants to take advantage of the bioactivity of HA and the mechanical properties of metals. Commercially, the plasma spray process (PS-HA) is the method most often used to deposit HA films on metallic implants. Since its introduction in the 1980's, however, concerns have been raised about the consequences of PS-HA's low crystallinity, lack of phase purity, lack of film-substrate chemical adhesion, passivation properties, and difficulty in coating complex geometries. Thus, there is a need to develop inexpensive reproducible next-generation HA film deposition techniques, which deposit high crystallinity, phase pure, adhesive, passivating, conformal HA films on clinical metallic substrates. The aim of this dissertation was to intelligently synthesize and characterize the material and biological properties of HA films on metallic substrates synthesized by hydrothermal crystallization, using thermodynamic phase diagrams as the starting point. In three overlapping interdisciplinary studies the potential of using ethylenediamine-tetraacetic acid/triethyl phosphate (EDTA/TEP) doubly regulated hydrothermal crystallization to deposit HA films, the TEP-regulated, time-and-temperature-dependent process by which films were deposited, and the bioactivity of crystallographically engineered films were investigated. Films were crystallized in a 0.232 molal Ca(NO3)2-0.232 molal EDTA-0.187 molal TEP-1.852 molal KOH-H2O chemical system at 200°C. Thermodynamic phase diagrams demonstrated that the chosen conditions were expected to produce Ca-P phase pure HA, which was experimentally confirmed. EDTA regulation of

  8. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guohou [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Dong, Hua [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China)

    2013-10-15

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. {sup 29}Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and

  9. Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility.

    Science.gov (United States)

    De Caluwé, T; Vercruysse, C W J; Ladik, I; Convents, R; Declercq, H; Martens, L C; Verbeeck, R M H

    2017-04-01

    Glass ionomer cements (GICs) are a subject of research because of their inferior mechanical properties, despite their advantages such as fluoride release and direct bonding to bone and teeth. Recent research aims to improve the bioactivity of the GICs and thereby improve mechanical properties on the long term. In this study, two types of bioactive glasses (BAG) (45S5F and CF9) are combined with GICs to evaluate the physico-chemical properties and biocompatibility of the BAG-GIC combinations. The effect of the addition of Al 3+ to the BAG composition and the use of smaller BAG particles on the BAG-GIC properties was also investigated. Conventional aluminosilicate glass (ASG) and (modified) BAG were synthesized by the melt method. BAG-GIC were investigated on setting time, compressive strength and bioactivity. Surface changes were evaluated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), EDS and PO 4 3- -and Ca 2+ uptake in SBF. Biocompatibility of selected BAG-GICs was determined by a direct toxicity assay. The addition of BAG improves the bioactivity of the GIC, which can be observed by the formation of an apatite (Ap) layer, especially in CF9-containing GICs. More BAG leads to more bioactivity but decreases strength. The addition of Al 3+ to the BAG composition improves strength, but decreases bioactivity. BAGs with smaller particle sizes have no effect on bioactivity and decrease strength. The formation of an Ap layer seems beneficial to the biocompatibility of the BAG-GICs. Bioactive GICs may have several advantages over conventional GICs, such as remineralization of demineralized tissue, adhesion and proliferation of bone- and dental cells, allowing integration in surrounding tissue. CF9 BAG-GIC combinations containing maximum 10mol% Al 3+ are most promising, when added in ≤20wt% to a GIC. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Microbial biotransformation of bioactive flavonoids.

    Science.gov (United States)

    Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo

    2015-01-01

    The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at

  11. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    Directory of Open Access Journals (Sweden)

    Sarah J Higginbotham

    Full Text Available Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG against a human breast cancer cell line (MCF-7 and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

  12. Service Users perspectives in PROMISE and research.

    Science.gov (United States)

    Rae, Sarah

    2017-09-01

    Since its inception in 2013, PROMISE (PROactive Management of Integrated Services and Environments) has been supporting service users and staff at the Cambridgeshire and Peterborough NHS Foundation Trust (CPFT) on a journey to reduce reliance on force. The author's own personal experiences led to the founding of PROMISE and illustrates how individual experiences can influence a patient to lead change. Coproduction is actively embedded in PROMISE. Patients have been meaningfully involved because they are innovators and problem solvers who bring an alternative viewpoint by the very nature of their condition. A patient is more than just a person who needs to be 'fixed' they are individuals with untapped skills and added insight. There have been 2 separate Patient Advisory Groups (PAGs) since the project was first established. The first Patient Advisory Group was recruited to work with the PROMISE researchers on a study which used a participatory qualitative approach. Drawing on their lived experience and different perspectives the PAG was instrumental in shaping the qualitative study, including the research questions. Their active involvement helped to ensure that that the study was sensitively designed, methodologically robust and ethically sound. The 2 nd PAG was formed in 2016 to give the project an overall steer. Patients in this group contributed to the work on the 'No' Audit and reviewed several CPFT policies such as the Seclusion and Segregation policy which has impacted on frontline practice. They also made a significant contribution to the study design for a funding application that was submitted by the PROMISE team to the National Institute for Health Research (NIHR). Both PAGs were supported by funding from East of England Collaboration for Leadership in Applied Health Research and Care (CLAHRC EoE) and were influential in different ways. An evaluation of the 2 nd PAG which was conducted in June 2017 showed very high satisfaction levels. The free text

  13. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Chiara eLauritano

    2016-05-01

    Full Text Available Marine microalgae are considered a potentially new and valuable source of biologically active molecules for applications in the food industry as well as in the pharmaceutical, nutraceutical and cosmetic sectors. They can be easily cultured, have short generation times and enable an environmentally-friendly approach to drug discovery by overcoming problems associated with the over-utilization of marine resources and the use of destructive collection practices. In this study, 21 diatoms, 7 dinoflagellates and 4 flagellate species were grown in three different culturing conditions and the corresponding extracts were tested for possible antioxidant, anti-inflammatory, anticancer, anti-diabetes, antibacterial and anti-biofilm activities. In addition, for two diatoms we also tested two different clones to disclose diversity in clone bioactivity. Six diatom species displayed specific anti-inflammatory, anticancer (blocking human melanoma cell proliferation and anti-biofilm (against the bacteria Staphylococcus epidermidis activities whereas, none of the other microalgae were bioactive against the conditions tested for. Furthermore, none of the 6 diatom species tested were toxic on normal human cells. Culturing conditions (i.e. nutrient starvation conditions greatly influenced bioactivity of the majority of the clones/species tested. This study denotes the potential of diatoms as sources of promising bioactives for the treatment of human pathologies.

  14. Structure, bioactivity, and synthesis of methylated flavonoids.

    Science.gov (United States)

    Wen, Lingrong; Jiang, Yueming; Yang, Jiali; Zhao, Yupeng; Tian, Miaomiao; Yang, Bao

    2017-06-01

    Methylated flavonoids are an important type of natural flavonoid derivative with potentially multiple health benefits; among other things, they have improved bioavailability compared with flavonoid precursors. Flavonoids have been documented to have broad bioactivities, such as anticancer, immunomodulation, and antioxidant activities, that can be elevated, to a certain extent, by methylation. Understanding the structure, bioactivity, and bioavailability of methylated flavonoids, therefore, is an interesting topic with broad potential applications. Though methylated flavonoids are widely present in plants, their levels are usually low. Because developing efficient techniques to produce these chemicals would likely be beneficial, we provide an overview of their chemical and biological synthesis. © 2017 New York Academy of Sciences.

  15. MFTF-progress and promise

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) has been in construction at Lawrence Livermore National Laboratory (LLNL) for 3 years, and most of the major subsystems are nearing completion. Recently, the scope of this project was expanded to meet new objectives, principally to reach plasma conditions corresponding to energy break-even. To fulfill this promise, the single-cell minimum-B mirror configuration will be replaced with a tandem mirror configuration (MFTF-B). The facility must accordingly be expanded to accomodate the new geometry. This paper briefly discusses the status of the major MFTF subsystems and describes how most of the technological objectives of MFTF will be demonstrated before we install the additional systems necessary to make the tandem. It also summarizes the major features of the expanded facility

  16. The promising opportunity of dismantlement

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Civil engineering, mechanics and waste conditioning companies are thriving around the market of nuclear facilities dismantlement which is promised to a huge development in the coming decade. This paper presents a map of the opportunities of the dismantlement market throughout Europe (research and power reactors, fuel fabrication plants, spent fuel reprocessing plants) and a cost estimation of a given dismantling work with respect to the different steps of the work. In France a small core of about twenty companies is involved in nuclear dismantlement but the French market is also looking towards foreign specialists of this activity. The British market is also targeted by the French companies but for all the actors the technological or commercial advance gained today will be determining for the future markets. (J.S.)

  17. Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy?

    Science.gov (United States)

    Sousa, Flávia; Castro, Pedro; Fonte, Pedro; Kennedy, Patrick J; Neves-Petersen, Maria Teresa; Sarmento, Bruno

    2017-10-01

    Over the past two decades, therapeutic antibodies have demonstrated promising results in the treatment of a wide array of diseases. However, the application of antibody-based therapy implies multiple administrations and a high cost of antibody production, resulting in costly therapy. Another disadvantage inherent to antibody-based therapy is the limited stability of antibodies and the low level of tissue penetration. The use of nanoparticles as delivery systems for antibodies allows for a reduction in antibody dosing and may represent a suitable alternative to increase antibody stability Areas covered: We discuss different nanocarriers intended for the delivery of antibodies as well as the corresponding encapsulation methods. Recent developments in antibody nanoencapsulation, particularly the possible toxicity issues that may arise from entrapment of antibodies into nanocarriers, are also assessed. In addition, this review will discuss the alterations in antibody structure and bioactivity that occur with nanoencapsulation. Expert opinion: Nanocarriers can protect antibodies from degradation, ensuring superior bioavailability. Encapsulation of therapeutic antibodies may offer some advantages, including potential targeting, reduced immunogenicity and controlled release. Furthermore, antibody nanoencapsulation may aid in the incorporation of the antibodies into the cells, if intracellular components (e.g. intracellular enzymes, oncogenic proteins, transcription factors) are to be targeted.

  18. Vγ9Vδ2 T cells as a promising innovative tool for immunotherapy of hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Serena Meraviglia

    2011-12-01

    Full Text Available The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.

  19. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food.

    Science.gov (United States)

    Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K

    2018-01-01

    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.

  20. Surface coated polyurethane with improved bioactivity and cytocompatability

    CSIR Research Space (South Africa)

    Chetty, AS

    2006-02-01

    Full Text Available Polyurethane (PU) may be suitable for various implant applications; however, it lacks bioactivity. Bioactivity allows for direct tissue attachment at the bio- interface, enabling implant fixation while preventing fibrous encapsulation. To impart...

  1. Bioactive glass-based scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Will, J.; Gerhardt, L.C.; Boccaccini, A.R.

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate

  2. Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion.

    Science.gov (United States)

    Jin, Yan; Yu, Yang; Qi, Yanxia; Wang, Fangjun; Yan, Jiaze; Zou, Hanfa

    2016-06-01

    This study investigated the relationship between peptide profiles and the bioactivity character of yogurt in simulated gastrointestinal trials. A total of 250, 434 and 466 peptides were identified by LC-MS/MS analyses of yogurt, gastric digest and pancreatic digest. Forty peptides of yogurt survived in gastrointestinal digestion. κ-CN and β-CN contributed the diversity of peptides during the fermentation process and gastrointestinal digestion, respectively. The favorite of κ-CN by lactic acid bacteria complemented gut digestion by hydrolyzing κ-CN, the low abundance milk proteins. The potential bioactivities were evaluated by in vitro ACE and DPP-IV inhibition assays. The ACE inhibition rate of the pancreatic digests was ~4 - and ~2 - fold greater than that of yogurt and the gastric digests. The ACE inhibitory peptides generated during gastrointestinal digestion improved the ACE inhibitory activity of the gastric and pancreatic digests. The DPP-IV inhibition rate of the pancreatic digest was ~6 - and ~3 - fold greater than that of yogurt and the gastric digest. The numbers of potential DPP-IV inhibitory peptides were positively correlated to the DPP-IV inhibitory activity of the gastric and pancreatic digests. The present study describes the characters and bioactivities of peptides from yogurt in a simulated gastrointestinal digestion. The number of peptides identified from yogurt and gastrointestinal digests by LC-MS/MS increased in the simulated gastrointestinal trials. The in vitro ACE and DPP-IV inhibition bioactivities revealed that the bioactivity of yogurt was enhanced during gastrointestinal digestion. The correlation between peptides and bioactivity in vitro indicated that not only the peptides amount but also the proportion of peptides with high bioactivities contributed to increased bioactivity during gastrointestinal digestion. The study of peptides identified from yogurt and digests revealed that the number of released peptides was not determined

  3. Accelerated bone ingrowth by local delivery of Zinc from bioactive ...

    African Journals Online (AJOL)

    2015-10-19

    Oct 19, 2015 ... Aims: This study aims to evaluate in vivo the performance therapy of zinc-doped bioactive glass (BG-Zn) and ... Keywords: zinc metallic ion; bioactive glass; osteoporosis; trabecular bone architecture; mechanical property; oxidative stress ..... Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface.

  4. Investigation of bioactivity and cell effects of nano-porous sol–gel derived bioactive glass film

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhijun, E-mail: mokuu@zju.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Ji, Huijiao [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Hu, Xiaomeng [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Teng, Yu [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Chen, Weibo [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Qiu, Jianrong, E-mail: qjr@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhang, Ming, E-mail: zhangming201201@126.com [College of Life Science, Zhejiang University, Hangzhou, 310028 (China)

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol–gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  5. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    Science.gov (United States)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  6. Bioactive compounds in lipid fractions of pumpkin (Cucurbita sp) seeds for use in food.

    Science.gov (United States)

    Veronezi, Carolina Médici; Jorge, Neuza

    2012-06-01

    Seeds are considered to be agro-industrial residues, which can be used as source of macronutrients and/or raw material for extraction of vegetable oils, since they present great quantities of bioactive compounds. This study aimed to characterize the lipid fractions and the seeds of pumpkin (Cucurbita sp) varieties Nova Caravela, Mini Paulista, Menina Brasileira, and Moranga de Mesa aiming at using them in food. The chemical composition of the seeds was performed according to the official methods of American Oil Chemists' Society and Association of Official Analytical Chemists. Total carotenoids and phenolic compounds were determined by spectrophotometry, while the levels of tocopherols were analyzed by high efficiency liquid chromatography. It was noted that the seeds contain high amounts of macronutrients that are essential for the functioning of the human organism. As to total carotenoids, Mini Paulista and Menina Brasileira pumpkin varieties presented significant amounts, 26.80 and 26.03 μg/g, respectively. Mini Paulista and Nova Caravela pumpkin varieties showed high amounts of total phenolic compounds in the lipid fractions and in the seeds. It was also found that γ-tocopherol is the isomer that stood out in the lipid fractions and in the seeds, mainly in Menina Brasileira. Finally, the consumption of these seeds and use of lipid fractions provide the supply of large quantities of compounds that are beneficial for health and that may be potentially used in food, besides representing an alternative to better use of agro-industrial residues. Bioactive compounds, besides presenting basic nutritional functions, provide metabolic and physiological health benefits when consumed as part of the usual diet. Therefore, there is a growing interest in vegetable oils of special composition, such as the ones extracted from fruit seeds. The seeds of Cucurbita sp are shown to be promising sources of oils, and especially the Cucurbita moschata and maxima species have not yet

  7. Encapsulation for preservation of functionality and targeted delivery of bioactive food components

    NARCIS (Netherlands)

    de Vos, Paul; Faas, Marijke M.; Spasojevic, Milica; Sikkema, Jan

    There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive

  8. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  9. Microstructures, hardness and bioactivity of hydroxyapatite coatings

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-10-01

    Full Text Available Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal...

  10. Marine bioactives and potential application in sports.

    Science.gov (United States)

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  11. Bioactive Compounds And Encapsulation Of Yanang ( Tiliacora ...

    African Journals Online (AJOL)

    Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability ...

  12. Extraction, Isolation And Characterization Of Bioactive Compounds ...

    African Journals Online (AJOL)

    Natural products from medicinal plants, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug leads because of the ... The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays, chromatographic ...

  13. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much

  14. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  15. In vitro study of nano-sized zinc doped bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Yi-Fan; Alshemary, Ammar Z.; Akram, Muhammad [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM skudai, Johor Darul Ta' zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, 81310 UTMJohor Bahru (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor DarulTa' zim (Malaysia)

    2013-01-15

    Surface reactivity in physiological fluid has been linked to bioactivity of a material. Past research has shown that bioactive glass containing zinc has the potential in bone regeneration field due to its enhanced bioactivity. However, results from literature are always contradictory. Therefore, in this study, surface reactivity of bioactive glass containing zinc was evaluated through the study of morphology and composition of apatite layer formed after immersion in simulated body fluid (SBF). Nano-sized bioactive glass with 5 and 10 mol% zinc were synthesized through quick alkali sol-gel method. The synthesized Zn-bioglass was characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometer (EDX), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FTIR). Samples after SBF immersion were characterized using scanning electron microscope (SEM) and EDX. Morphological study through SEM showed the formation of spherical apatite particles with Ca/P ratio closer to 1.67 on the surface of 5 mol% Zn-bioglass. Whereas, the 10 mol% Zn-bioglass samples induced the formation of flake-like structure of calcite in addition to the spherical apatite particles with much higher Ca/P ratio. Our results suggest that the higher Zn content increases the bioactivity through the formation of bone-bonding calcite as well as the spherical apatite particles. -- Highlights: Black-Right-Pointing-Pointer Nano-sized bioactive glasses were synthesized through quick alkali sol-gel method. Black-Right-Pointing-Pointer 5 and 10 mol% Zn-bioglass induced the formation of spherical particles in SBF test. Black-Right-Pointing-Pointer 10 mol% Zn-bioglass also induced the formation of flake-like structure. Black-Right-Pointing-Pointer The flake-like structure is calcium carbonate; spherical particles are apatite. Black-Right-Pointing-Pointer High Zn contents negatively influence the chemical composition of the apatite layer.

  16. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo

    Science.gov (United States)

    Qi, Xin; Pei, Peng; Zhu, Min; Du, Xiaoyu; Xin, Chen; Zhao, Shichang; Li, Xiaolin; Zhu, Yufang

    2017-02-01

    In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the effect of CSH/MBG scaffolds on bone regeneration in vivo. The in vitro results showed that CSH/MBG scaffolds stimulated the adhesion, proliferation, alkaline phosphatase (ALP) activity and osteogenesis-related gene expression of hBMSCs. In vivo results showed that CSH/MBG scaffolds could significantly enhance new bone formation in calvarial defects compared to CSH scaffolds. Thus 3D printed CSH/MBG scaffolds would be promising candidates for promoting bone regeneration.

  17. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds.

    Science.gov (United States)

    Hu, Yichen; Zhang, Jinming; Zou, Liang; Fu, Chaomei; Li, Peng; Zhao, Gang

    2017-06-01

    Chenopodium quinoa, a promising nutraceutical cereal, has attracted increasing research interest, yet its polysaccharides remains to get few systematic studies. In this study, we employed orthogonal experimental design to optimize the ultrasound-assisted extraction process for highest yield of C. quinoa polysaccharides. A novel C. quinoa polysaccharide (CQP) fraction with high content and low molecular weight (8852Da) was subsequently purified by column chromatography, constituted by galacturonic acid and glucose monosaccharides. The purified CQP exhibited significantly antioxidant effect against DPPH + and ABTS + , with even higher efficiency than some other reported polysaccharides. Moreover, CQP could promote the RAW264.7 macrophage proliferation, while suppress the nitri oxide production on inflammatory RAW264.7 macrophage in a dose- and time-dependent manner. In view of the pathological correlation of free radical, inflammation and carcinogenesis, the anticancer effect of CQP was further investigated on human liver cancer SMMC 7721 and breast cancer MCF-7 cells. Interestingly, CQP displayed cytotoxicity against cancer cells, while none proliferation inhibition on normal cells. These results suggest that the bioactive polysaccharide from C. quinoa provided the promising potential as a natural antioxidant, immune-regulating and anticancer candidate for food and even drug application. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review

    Directory of Open Access Journals (Sweden)

    N. A. P. van Gestel

    2015-01-01

    Full Text Available Nowadays, S53P4 bioactive glass is indicated as a bone graft substitute in various clinical applications. This review provides an overview of the current published clinical results on indications such as craniofacial procedures, grafting of benign bone tumour defects, instrumental spondylodesis, and the treatment of osteomyelitis. Given the reported results that are based on examinations, such as clinical examinations by the surgeons, radiographs, CT, and MRI images, S53P4 bioactive glass may be beneficial in the various reported applications. Especially in craniofacial reconstructions like mastoid obliteration and orbital floor reconstructions, in grafting bone tumour defects, and in the treatment of osteomyelitis very promising results are obtained. Randomized clinical trials need to be performed in order to determine whether bioactive glass would be able to replace the current golden standard of autologous bone usage or with the use of antibiotic containing PMMA beads (in the case of osteomyelitis.

  19. Comparison of bioactive components in pressurized and pasteurized longan juices fortified with encapsulated Lactobacillus casei 01

    Science.gov (United States)

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2012-06-01

    In this study, longan juice was subjected to a high pressure of 500 MPa for 30 min and compared with a juice pasteurized at 90°C/2 min. Probiotic Lactobacillus casei 01 was fortified into both juices and the shelf life of these products was studied. Their bioactive components such as ascorbic acid, gallic acid and ellagic acid were analyzed by High Performance Liquid Chromatography (HPLC). Total phenolic compounds and 2,2-Diphenyl-1-picrythydrazyl radical-scavenging activity were determined by colorimetric and spectrophotometric methods. It was found that the pressurized longan juice retained higher amounts of bioactive compounds than the pasteurized juice. In terms of storage stability, bioactive compounds in both processed juices decreased according to the increase in storage time. The survivability of probiotic L. casei 01 in both processed juices declined from 9 to 6 log CFU/mL after 4 weeks of storage.

  20. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  1. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, Eleana, E-mail: kont@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, Konstantinos, E-mail: hrisafis@physics.auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, Labrini, E-mail: lambrini@geo.auth.gr [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, Petros, E-mail: pkoidis@dent.auth.gr [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, Aldo R., E-mail: a.boccaccini@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, SW7 2AZ London (United Kingdom); Paraskevopoulos, Konstantinos M., E-mail: kpar@auth.gr [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

  2. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...

  3. Managing hypertension: relevant biomarkers and combating bioactive compounds

    Directory of Open Access Journals (Sweden)

    Bryan Singharaj

    2017-06-01

    Full Text Available Hypertension is one of the most common chronic diseases which affects many people who belong to a higher age range. The standard definition that is offered to the general public has a minimum age of 18 years to be diagnosed with hypertension. Many studies have been conducted in the hopes of finding consistent data that provides information on the biomarkers of hypertension and effective forms of treatment. However, there is a tendency for skewed data due to the ineffectiveness of diagnosing hypertension, due to variability in technique or even negligence. Interestingly, research has indicated that there are connections to certain biomarkers of hypertension. However,the results have been deemed inconclusive. Moreover, the results provide promising data for future studies that have an emphasis on biomarkers. The biomarkers that have been consistently brought to researchers’ attention include the following: circulating C-reactive protein (CRP, plasminogen activator inhibitor-1 (PAI-1, urinary albumin:creatinine ratio (UACR, and aldosterone:renin ratio (ARR. These four biomarkers have become the foundation of multiple hypertension studies, even though the only formal conclusion drawn from these studies is that there is a wide range of variables that have some kind of influence on hypertension. More recently, treatment options for hypertension have increasingly become an emphasis for studies, with research predicting that nutrition plays a key role in the managing of diseases. Furthermore, the role of bioactive compounds has gained traction in hypertension research, being loosely correlated to managing specific biomarkers. Ultimately, these correlations to bioactive compounds like antioxidants would demonstrate that certain functional foods have the capacity to help treat hypertension. The modality is to find an alternative option for managing or treating hypertension through natural sources of food or food products fortified with ingredients to

  4. In vitro study of manganese-doped bioactive glasses for bone regeneration

    International Nuclear Information System (INIS)

    Miola, Marta; Brovarone, Chiara Vitale; Maina, Giovanni; Rossi, Federica; Bergandi, Loredana; Ghigo, Dario; Saracino, Silvia; Maggiora, Marina; Canuto, Rosa Angela; Muzio, Giuliana; Vernè, Enrica

    2014-01-01

    A glass belonging to the system SiO 2 –P 2 O 5 –CaO–MgO–Na 2 O–K 2 O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm 2 (μg of glass powders/cm 2 of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). - Highlights: • Novel bioactive glasses doped with manganese were prepared. • Mn-doped bioactive glasses were not cytotoxic towards human MG-63 osteoblasts. • The Mn introduction promotes the expression of ALP and bone morphogenetic proteins. • Mn-doped glass may be a promising material for bone regeneration procedures

  5. Status and promise of fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [National Energy Technology Lab., Pittsburgh, PA (United States). Dept. of Energy

    2001-09-01

    The niche or early entry market penetration by ONSI and its phosphoric acid fuel cell technology has proven that fuel cells are reliable and suitable for premium power and other opportunity fuel niche market applications. Now, new fuel cell technologies - solid oxide fuel cells, molten carbonate fuel cells, and polymer electrolyte fuel cells - are being developed for near-term distributed generation shortly after 2003. Some of the evolving fuel cell systems are incorporating gas turbines in hybrid configurations. The combination of the gas turbine with the fuel cell promises to lower system costs and increase efficiency to enhance market penetration. Market estimates indicate that significant early entry markets exist to sustain the initially high cost of some distributed generation technologies. However, distributed generation technologies must have low introductory first cost, low installation cost, and high system reliability to be viable options in competitive commercial and industrial markets. In the long-term, solid state fuel cell technology with stack costs under $100/kilowatt (kW) promises deeper and wider market penetration in a range of applications including a residential, auxillary power, and the mature distributed generation markets. The solid state energy conversion alliance (SECA) with its vision for fuel cells in 2010 was recently formed to commercialize solid state fuel cells and realize the full potential of the fuel cell technology. Ultimately, the SECA concept could lead to megawatt-size fuel-cell systems for commercial and industrial applications and Vision 21 fuel cell turbine hybrid energy plants in 2015. (orig.)

  6. Silicon Utilizing Microbial Bioactivities in the Biosphere

    Science.gov (United States)

    Sen, M. M.; Das, S.

    2012-12-01

    potential as a source of biomass for the production of biofuels, due to their high growth rates and high cellular lipid content. Petroleum pollutant degradation can also be done by these organisms-Achanthes minutissima has degradable effects involving petroleum hydocarbons. Stephanopyxis turris a silicon utilizing organism releases a blend of chlorinated C8 hydrocarbons. This adds a fundamentally new pathway to the limited set of halogenating enzymatic activities known from nature. Many silicon utilizing organisms can produce PUFA from saturated fatty acids which ultimately produce many important bioactive chemicals like hormosirene, finaverrene, heptadienal, dietyopterene, cystophorene, decadienal. Trienoic acid, octadiene and many other important agents. Similarly terpenoid biosynthetic pathway is activated by them with formation of diterpenoids, sesterpenoids, triterpenoids and sterols.

  7. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  8. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  9. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity

    DEFF Research Database (Denmark)

    Hesse, D.; Sellebjerg, F.; Sorensen, P.S.

    2009-01-01

    BACKGROUND: In patients with multiple sclerosis (MS), neutralizing antibodies (NAbs) appearing during treatment with interferon (IFN) beta reduce or in high concentrations abolish bioactivity and therapeutic efficacy. In vivo MxA induction by IFNbeta is used as a marker of biologic response....... Lack of MxA in vivo response in patients with multiple sclerosis with NAbs is a reliable marker of a completely blocked biologic response to IFNbeta, with no indication of residual bioactivity Udgivelsesdato: 2009/8/4...

  10. Surface Modification of Porous Titanium Granules for Improving Bioactivity.

    Science.gov (United States)

    Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab

    The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.

  11. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    Science.gov (United States)

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S.P., E-mail: spsinghceram@gmail.com

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1 − X) SiO{sub 2−}–24.3 Na{sub 2}O–26.9 CaO–2.6 P{sub 2}O{sub 5}, where X = 0, 0.4, 0.8, 1.2 and 1.6 mol% of BaO was chosen and melted in an electric furnace at 1400 ± 5 °C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. - Highlights: • In vitro bioactivity of soda-lime–baria-phospho-silicate glass was investigated. • HCA formed on surface of glasses was confirmed by XRD, SEM and FTIR spectrometry. • Mechanical properties of glasses were found to increase with barium addition. • Hemolysis showed that 1.2 mol% BaO bioactive glass exhibited better biocompatibility. • Barium substituted bioactive glasses can be used as bone implants.

  13. Thiocarbamates from Moringa oleifera Seeds Bioactive against Virulent and Multidrug-Resistant Vibrio Species

    Science.gov (United States)

    de Sousa, Oscarina Viana; Hofer, Ernesto; Mafezoli, Jair; Barbosa, Francisco Geraldo

    2017-01-01

    Prospect of antibacterial agents may provide an alternative therapy for diseases caused by multidrug-resistant bacteria. This study aimed to evaluate the in vitro bioactivity of Moringa oleifera seed extracts against 100 vibrios isolated from the marine shrimp Litopenaeus vannamei. Ethanol extracts at low (MOS-E) and hot (MOS-ES) temperature are shown to be bioactive against 92% and 90% of the strains, respectively. The most efficient Minimum Inhibitory Concentration (MIC) levels of MOS-E and MOS-ES against a high percentage of strains were 32 µg mL−1. Bioguided screening of bioactive compounds showed that the ethyl acetate fraction from both extracts was the only one that showed antibacterial activity. Vibriocidal substances, niazirine and niazimicine, were isolated from the aforementioned fraction through chromatographic fractionation. PMID:28770224

  14. Bioactive peptides: production, health effects and application as natural supplements for functional foods production

    Directory of Open Access Journals (Sweden)

    S. Mirdamadi

    2017-05-01

    Full Text Available Bioactive peptides, are inactive components within the structure of the protein and when they are released by enzymatic hydrolysis, show different physiological functions. Recently, the identification and characterization of bioactive peptides derived from plant and animal sources and different microorganisms is highly regarded. They are produced during enzymatic hydrolysis by gastrointestinal enzymes or enzymes extracted from microorganisms and plants or by proteolytic starter cultures during fermentation process and exhibit different activities including: opioid, mineral binding, immunomodulatory, antioxidant, antimicrobial, anti-inflammatory, chlosterol lowering and so on. Take advantage of bioactive peptides as components of health is related to bio stability assurance, bioavailability and safety of them. The use of computer-based techniques and the use of various databases completed in laboratory studies,  have provided the possibility of studying the mechanisms of action of different peptides.

  15. Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process.

    Science.gov (United States)

    Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong

    2014-11-01

    Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).

  16. An overview of the effects of thermal processing on bioactive glasses

    Directory of Open Access Journals (Sweden)

    Bellucci D.

    2010-01-01

    Full Text Available Bioglass® 45S5 is widely used in biomedical applications due to its ability to bond to bone and even to soft tissues. The sintering ability of Bioglass® powders is a key factor from a technological point of view, since its govern the production of advanced devices, ranging from highly porous scaffolds to functionalized coatings. Unfortunately this particular glass composition is prone to crystallize at the temperature required for sintering and this may impair the bioactivity of the original glass. For these reasons, a prerequisite to tailor the fabrication of Bioglass®-derived implants is to understand the interaction between sintering, crystallization and bioactivity. In this work the structural transformations which occur during the heat treatment of Bioglass® are reviewed and a special attention is paid to the sintering and crystallization processes. Moreover the bioactivity of the final glass-ceramics is discussed and some alternative glass formulations are reported.

  17. Osseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo

    Directory of Open Access Journals (Sweden)

    Ma R

    2016-11-01

    Full Text Available Rui Ma,1,2 Zhifeng Yu,1 Songchao Tang,3 Yongkang Pan,3 Jie Wei,3 Tingting Tang1 1Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi Province, People’s Republic of China; 3Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China Abstract: Polyetheretherketone (PEEK exhibits appropriate biomechanical strength as well as good biocompatibility and stable chemical properties but lacks bioactivity and cannot achieve highly efficient osseointegration after implantation. Incorporating bioceramics into the PEEK matrix is a feasible approach for improving its bioactivity. In this study, nanohydroxyapatite (n-HA and nano-calcium silicate (n-CS were separately incorporated into PEEK to prepare n-HA/PEEK and n-CS/PEEK biocomposites, respectively, using a compounding and injection-molding technique, and the in vitro degradation characteristics were evaluated. Discs with a diameter of 8 mm were inserted in 8 mm full-thickness cranial defects in rabbits for 4 and 8 weeks, and implantation of pure PEEK was used as the control. Three-dimensional microcomputed tomography, histological analysis, fluorescence microscopy of new bone formation, and scanning electron microscopy were used to evaluate the osseointegration performance at the bone/implant interface. The results of the in vitro degradation study demonstrated that degradation of n-CS on the surface of n-CS/PEEK could release Ca and Si ions and form a porous structure. In vivo tests revealed that both n-CS/PEEK and n-HA/PEEK promoted osseointegration at the bone/implant interface compared to PEEK

  18. Bioactive Compounds in Functional Meat Products.

    Science.gov (United States)

    Pogorzelska-Nowicka, Ewelina; Atanasov, Atanas G; Horbańczuk, Jarosław; Wierzbicka, Agnieszka

    2018-01-31

    Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional constituents were chosen: (i) fatty acids; (ii) minerals; (iii) vitamins; (iv) plant antioxidants; (v) dietary fibers; (vi) probiotics and (vii) bioactive peptides. Each of them is discussed in term of their impact on human health as well as some quality attributes of the final products.

  19. Bioactive lipids in kidney physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  20. Microgreens: Production, shelf life, and bioactive components.

    Science.gov (United States)

    Mir, Shabir Ahmad; Shah, Manzoor Ahmad; Mir, Mohammad Maqbool

    2017-08-13

    Microgreens are emerging specialty food products which are gaining popularity and increased attention nowadays. They are young and tender cotyledonary leafy greens that are found in a pleasing palette of colors, textures, and flavors. Microgreens are a new class of edible vegetables harvested when first leaves have fully expanded and before true leaves have emerged. They are gaining popularity as a new culinary ingredient. They are used to enhance salads or as edible garnishes to embellish a wide variety of other dishes. Common microgreens are grown mainly from mustard, cabbage, radish, buckwheat, lettuce, spinach, etc. The consumption of microgreens has nowadays increased due to higher concentrations of bioactive components such as vitamins, minerals, and antioxidants than mature greens, which are important for human health. However, they typically have a short shelf life due to rapid product deterioration. This review aimed to evaluate the postharvest quality, potential bioactive compounds, and shelf life of microgreens for proper management of this specialty produce.

  1. Nanoencapsulation of bioactive compounds for food applications

    OpenAIRE

    Sessa, Mariarenata

    2012-01-01

    2010 - 2011 The increase in dietary-intake-related illnesses, such as obesity, cardiovascular diseases, hypertension, diabetes and cancer, have made in recent years the development of health-and-wellness promoting foods a priority of the food industry. Clinical studies have demonstrated tangible health benefits that may be derived from the intake of bioactive compounds. However many difficulties are associated with their inclusion in food matrices, due to a very low solubility in water and...

  2. Bioactive Compounds in Functional Meat Products

    OpenAIRE

    Ewelina Pogorzelska-Nowicka; Atanas G. Atanasov; Jarosław Horbańczuk; Agnieszka Wierzbicka

    2018-01-01

    Meat and meat products are a good source of bioactive compounds with positive effect on human health such as vitamins, minerals, peptides or fatty acids. Growing food consumer awareness and intensified global meat producers competition puts pressure on creating new healthier meat products. In order to meet these expectations, producers use supplements with functional properties for animal diet and as direct additives for meat products. In the presented work seven groups of key functional cons...

  3. Secondary metabolites and bioactivities of Myrtus communis

    OpenAIRE

    Mahmoud I Nassar; El-Sayed A Aboutabl; Rania F Ahmed; Ezzel-Din A El-Khrisy; Khaled M Ibrahim; Amany A Sleem

    2010-01-01

    Background: Myrtus species are characterized by the presence of phenolic acids, flavonoids, tannins, volatile oils and fatty acids. They are remedies for variety of ailments. This study therefore investigated medicinal effects of Myrtus communis L. Methods: Bioactivity studies of Myrtus communis L. leaves were carried out on volatile oil, 7% methanol and aqueous extracts and the isolated compounds myricetin 3-O-β-glucopyranoside, myricetin 3-O-∝-rhamnopyranoside and gallic acid. Results: Dete...

  4. Analysis of commercial and public bioactivity databases.

    Science.gov (United States)

    Tiikkainen, Pekka; Franke, Lutz

    2012-02-27

    Activity data for small molecules are invaluable in chemoinformatics. Various bioactivity databases exist containing detailed information of target proteins and quantitative binding data for small molecules extracted from journals and patents. In the current work, we have merged several public and commercial bioactivity databases into one bioactivity metabase. The molecular presentation, target information, and activity data of the vendor databases were standardized. The main motivation of the work was to create a single relational database which allows fast and simple data retrieval by in-house scientists. Second, we wanted to know the amount of overlap between databases by commercial and public vendors to see whether the former contain data complementing the latter. Third, we quantified the degree of inconsistency between data sources by comparing data points derived from the same scientific article cited by more than one vendor. We found that each data source contains unique data which is due to different scientific articles cited by the vendors. When comparing data derived from the same article we found that inconsistencies between the vendors are common. In conclusion, using databases of different vendors is still useful since the data overlap is not complete. It should be noted that this can be partially explained by the inconsistencies and errors in the source data.

  5. Development of bioactive materials for glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-09-01

    Full Text Available Glioblastoma is the most common and deadly human brain cancers. Unique barriers hinder the drug delivering pathway due to the individual position of glioblastoma, including blood-brain barrier and blood-brain tumor barrier. Numerous bioactive materials have been exploited and applied as the transvascular delivery carriers of therapeutic drugs. They promote site-specific accumulation and long term release of the encapsulated drugs at the tumor sites and reduce side effects with systemic delivery. And the delivery systems exhibit a certain extent of anti-glioblastoma effect and extend the median survival time. However, few of them step into the clinical trials. In this review, we will investigate the recent studies of bioactive materials for glioblastoma chemotherapy, including the inorganic materials, lipids and polymers. These bioactive materials construct diverse delivery vehicles to trigger tumor sites in brain intravenously. Herein, we exploit their functionality in drug delivery and discuss the deficiency for the featured tumors, to provide guidance for establishing optimized therapeutic drug formulation for anti-glioblastoma therapy and pave the way for clinical application.

  6. Nanotech: propensity in foods and bioactives.

    Science.gov (United States)

    Kuan, Chiu-Yin; Yee-Fung, Wai; Yuen, Kah-Hay; Liong, Min-Tze

    2012-01-01

    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.

  7. Adhesive Bioactive Coatings Inspired by Sea Life.

    Science.gov (United States)

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  8. Ultrasound assisted extraction of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Helena Drmić

    2010-01-01

    Full Text Available Many novel and innovative techniques are nowadays researched and explored in order to replace or improve classical, thermal processing technologies. One of newer technique is technique of minimal food processing, under what we assume ultrasound processing. Ultrasound technology can be very useful for minimal food processing because transmission of acoustic energy through product is fast and complete, which allows reduction in total processing time, and therefore lower energy consumption. Industrial processing is growing more and more waste products, and in desire of preservation of global recourses and energy efficiency, several ways of active compounds extraction techniques are now explored. The goal is to implement novel extraction techniques in food and pharmaceutical industry as well in medicine. Ultrasound assisted extraction of bioactive compounds offers increase in yield, and reduction or total avoiding of solvent usage. Increase in temperature of treatment is controlled and restricted, thereby preserving extracted bioactive compounds. In this paper, several methods of ultrasound assisted extraction of bioactive compounds from plant materials are shown. Ultrasound can improve classic mechanisms of extraction, and thereby offer novel possibilities of commercial extraction of desired compounds. Application of sonochemistry (ultrasound chemistry is providing better yield in desired compounds and reduction in treatment time.

  9. Okinawan Subtropical Plants as a Promising Resource for Novel Chemical Treasury.

    Science.gov (United States)

    Matsunami, Katsuyoshi; Otsuka, Hideaki

    2018-01-01

    The Okinawa Islands are a crescent-shaped archipelago and their natural forests hold a huge variety of unique subtropical plants with relatively high endemism. We have performed phytochemical study on Okinawan subtropical plants for many years. In this review, we describe our recent research progress on the isolation of new compounds and their various bioactivities.

  10. Synthetic biology and its promises

    Directory of Open Access Journals (Sweden)

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.

  11. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; García Moreno, Pedro Jesús; Mendes, Ana Carina Loureiro

    2018-01-01

    or in the gastrointestinal tract. For that purpose, efficient encapsulation of the compounds may be required. Spray drying is one of the most commonly used encapsulation techniques in the food industry, but it uses high temperature, which can lead to decomposition of the bioactive compounds. Recently, alternative...

  12. Formation of carrageenan-CaCO{sub 3} bioactive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Lucas F.B.; Maniglia, Bianca C.; Pereira, Lourivaldo S.; Tapia-Blácido, Delia R.; Ramos, Ana P., E-mail: anapr@ffclrp.usp.br

    2016-01-01

    The high biocompatibility and resorbability of polymeric membranes have encouraged their use to manufacture medical devices. Here, we report on the preparation of membranes consisting of carrageenan, a naturally occurring sulfated polysaccharide that forms helical structures in the presence of calcium ions. We incorporated CaCO{sub 3} particles into the membranes to enhance their bioactivity and mechanical properties. Infrared spectroscopy and X-ray diffraction data confirmed CaCO{sub 3} incorporation into the polymeric matrix. We tested the bioactivity of the samples by immersing them in a solution that mimics the ionic composition and pH of the human body fluid. The hybrid membranes generated hydroxyapatite, as attested by X-ray diffraction data. Scanning electron and atomic force microscopies aided investigation of membrane topography before and after CaCO{sub 3} deposition. The wettability and surface free energy, evaluated by contact angle measures, increased in the presence of CaCO{sub 3} particles. These parameters are important for membrane implantation in the body. Moreover, membrane stiffness was up to 110% higher in the presence of the inorganic particles, as revealed by Young's modulus. - Highlights: • Hybrid kappa and iota carrageenan-CaCO{sub 3} membranes were formed. • The hybrid membrane's origin hydroxyapatite after exposure to simulated body fluid • The carrageenan's specificity to bind Ca{sup 2+} ions tailors the surface properties.

  13. Bioprospecting for bioactives from seaweeds: potential, obstacles and alternatives

    Directory of Open Access Journals (Sweden)

    Renato C. Pereira

    2012-06-01

    Full Text Available Seaweeds are potential sources of high biotechnological interest due to production of a great diversity of compounds exhibiting a broad spectrum of biological activities. On the other hand, there is an urgent need for management options for a sustainable approach to the use of marine organisms as a source of bioactive compounds. This review discusses the bioprospection for bioactive seaweed compounds as pharmaceuticals and antifouling agents, encompassing their potential and possible obstacles and alternatives. In spite of their potential, research on pharmaceuticals and antifouling agents from seaweeds includes mainly the search for molecules that exhibit these biological activities, but lacks of consideration of fundamental and limiting aspects such as the development of alternatives to sustainable supply. However, for the complete development of pharmaceuticals and antifouling compounds in Brazil, marine bioprospection should be more comprehensive, associating the search for molecules with an analysis of their supply. In this way, it is possible to promote sustainable development and conservation of biodiversity, as well as to assert the economic development of Brazil.

  14. Bioprospecting for bioactives from seaweeds: potential, obstacles and alternatives

    Directory of Open Access Journals (Sweden)

    Renato C. Pereira

    2012-08-01

    Full Text Available Seaweeds are potential sources of high biotechnological interest due to production of a great diversity of compounds exhibiting a broad spectrum of biological activities. On the other hand, there is an urgent need for management options for a sustainable approach to the use of marine organisms as a source of bioactive compounds. This review discusses the bioprospection for bioactive seaweed compounds as pharmaceuticals and antifouling agents, encompassing their potential and possible obstacles and alternatives. In spite of their potential, research on pharmaceuticals and antifouling agents from seaweeds includes mainly the search for molecules that exhibit these biological activities, but lacks of consideration of fundamental and limiting aspects such as the development of alternatives to sustainable supply. However, for the complete development of pharmaceuticals and antifouling compounds in Brazil, marine bioprospection should be more comprehensive, associating the search for molecules with an analysis of their supply. In this way, it is possible to promote sustainable development and conservation of biodiversity, as well as to assert the economic development of Brazil.

  15. Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.

    Science.gov (United States)

    Janicka, Małgorzata

    2014-08-01

    Different liquid chromatography techniques, including reversed-phase liquid chromatography on Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester columns and micellar liqud chromatography with a Purosphere RP-8e column and using buffered sodium dodecyl sulfate-acetonitrile as the mobile phase, were applied to study the lipophilic properties of 15 newly synthesized phenoxyacetic and carbamic acid derivatives, which are potential herbicides. Chromatographic lipophilicity descriptors were used to extrapolate log k parameters (log kw and log km) and log k values. Partitioning lipophilicity descriptors, i.e., log P coefficients in an n-octanol-water system, were computed from the molecular structures of the tested compounds. Bioactivity descriptors, including partition coefficients in a water-plant cuticle system and water-human serum albumin and coefficients for human skin partition and permeation were calculated in silico by ACD/ADME software using the linear solvation energy relationship of Abraham. Principal component analysis was applied to describe similarities between various chromatographic and partitioning lipophilicities. Highly significant, predictive linear relationships were found between chromatographic parameters and bioactivity descriptors. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  17. From promising preaching to piloting the promise and teaching what is promising in planning practice

    CSIR Research Space (South Africa)

    Van Huyssteen, E

    2008-08-01

    Full Text Available into a trap of formulating reductionistic solutions to sustainability challenges. Worse, is to assume the ‘high ground’ in promoting a dictatorship of the Green Elite with sweeping calls to ‘ridicule and silence all voices of dissent’, 20 EXPLORING...

  18. Biomolecular simulations on petascale: promises and challenges

    International Nuclear Information System (INIS)

    Agarwal, Pratul K; Alam, Sadaf R

    2006-01-01

    Proteins work as highly efficient machines at the molecular level and are responsible for a variety of processes in all living cells. There is wide interest in understanding these machines for implications in biochemical/biotechnology industries as well as in health related fields. Over the last century, investigations of proteins based on a variety of experimental techniques have provided a wealth of information. More recently, theoretical and computational modeling using large scale simulations is providing novel insights into the functioning of these machines. The next generation supercomputers with petascale computing power, hold great promises as well as challenges for the biomolecular simulation scientists. We briefly discuss the progress being made in this area

  19. Halopentacenes: Promising Candidates for Organic Semiconductors

    International Nuclear Information System (INIS)

    Gong-He, Du; Zhao-Yu, Ren; Ji-Ming, Zheng; Ping, Guo

    2009-01-01

    We introduce polar substituents such as F, Cl, Br into pentacene to enhance the dissolubility in common organic solvents while retaining the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene for comparison, are successively calculated by density functional theory. The results indicate that halopentacenes have rather small reorganization energies (< 0.2 eV), and when the substituents are in position 2 or positions 2 and 9, they are polarity molecules. Thus we conjecture that they can easily be dissolved in common organic solvents, and are promising candidates for organic semiconductors. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  20. EFFECTS OF INCORPORATING NATURAL MINERALS ON PRODUCTION AND BIOACTIVITY OF BIOACTIVE GLASS CERAMICS

    Directory of Open Access Journals (Sweden)

    Franco Matias Stabile

    2016-07-01

    Full Text Available Two glass-ceramics composition were produced from natural minerals. Quartzes and feldspars were pre-selected on the basis of their purities studied by X-ray diffraction (XRD and chemical analysis. Prepared compositions of glasses precursors were two different theoretical leucite (KAlSi₂O₆ /Bioglass 45S5 (L/Bg ratios. Transformations of raw materials mixtures and glass precursors were studied by differential thermal analyses. On the basis of thermal analysis results, glass ceramics were produced and characterized by XRD. Glass-ceramics were composed of two major crystalline phases, leucite and sodium calcium silicate. Bioactivity tests were performed submerging the glass-ceramics into simulated body fluid (SBF for different periods (1, 5 and 10 days. Bioactive behavior was monitored by XRD and scanning electron microscopy (SEM. Studied samples were found to be bioactive, in which hydroxyapatite layer was developed within 5 days of contact with SBF.

  1. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    Science.gov (United States)

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  2. Bioactivity and properties of a dental adhesive functionalized with polyhedral oligomeric silsesquioxanes (POSS) and bioactive glass.

    Science.gov (United States)

    Rizk, Marta; Hohlfeld, Lisa; Thanh, Loan Tao; Biehl, Ralf; Lühmann, Nicole; Mohn, Dirk; Wiegand, Annette

    2017-09-01

    This study aimed to analyze the effect of infiltrating a commercial adhesive with nanosized bioactive glass (BG-Bi) particles or methacryl-functionalized polyhedral oligomeric silsesquioxanes (POSS) on material properties and bioactivity. An acetone-based dental adhesive (Solobond Plus adhesive, VOCO GmbH, Cuxhaven, Germany) was infiltrated with nanosized bioactive glass particles (0.1 or 1wt%), or with monofunctional or multifunctional POSS particles (10 or 20wt%). Unfilled adhesive served as control. Dispersion and hydrodynamic radius of the nanoparticles were studied by dynamic light scattering. Set specimens were immersed for 28days in artificial saliva at 37°C, and surfaces were mapped for the formation of calcium phospate (Ca/P) precipitates (scanning electron microscopy/energy-dispersive X-ray spectroscopy). Viscosity (rheometry) and the structural characteristic of the networks were studied, such as degree of conversion (FTIR spectroscopy), sol fraction and water sorption. POSS particles showed a good dispersion of the particles for both types of particles being smaller than 3nm, while the bioactive glass particles had a strong tendency to agglomerate. All nanoparticles induced the formation of Ca/P precipitates. The viscosity of the adhesive was not or only slightly increased by POSS particle addition but strongly increased by the bioactive glass particles. The degree of conversion, water sorption and sol fraction showed a maintained or improved network structure and properties when filled with BG-Bi and multifunctional POSS, however, less polymerization was found when loading a monofunctional POSS. Multifunctional POSS may be incorporated into dental adhesives to provide a bioactive potential without changing material properties adversely. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Martina [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Corazzari, Ingrid [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Centro Interdipartimentale “G. Scansetti” per lo studio degli amianti e di altri particolati nocivi, Via Pietro Giuria 9, 10125 Torino (Italy); Prenesti, Enrico [Università degli Studi di Torino, Department of Chemistry, Via Pietro Giuria 7, Torino 10125 (Italy); Bertone, Elisa [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Vernè, Enrica, E-mail: enrica.verne@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy); Ferraris, Sara [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, C.so Duca degli Abruzzi 24, Torino 10129 (Italy)

    2016-03-30

    Graphical abstract: - Highlights: • Surface functionalization of bioactive glass with biomolecules has been optimized. • Biomolecules are present and active on the glass surface after functionalization. • Biomolecules affect deposition kinetics and morphology of hydroxyapatite. • Free radical scavenging activity is seen for the first time on bioactive glasses. - Abstract: Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H{sub 2}O{sub 2} highlighting scavenging activity of the bioactive glass.

  4. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine

    OpenAIRE

    Parsaeimehr, Ali; Sun, Zhilan; Dou, Xiao; Chen, Yi-Feng

    2015-01-01

    Background Photoautotrophic microalgae are a promising avenue for sustained biodiesel production, but are compromised by low yields of biomass and lipids at present. We are developing a chemical approach to improve microalgal accumulation of feedstock lipids as well as high-value alpha-linolenic acid which in turn might provide a driving force for biodiesel production. Results We demonstrate the effectiveness of the small bioactive molecule ?acetylcholine? on accumulation of biomass, total li...

  5. Bioactivity evaluation of commercial calcium phosphate-based bioceramics for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Borrós, S.; Mas, A.

    2016-11-01

    Calcium phosphate-based bioceramics constitute a great promise for bone tissue engineering as they chemically resemble to mammalian bone and teeth. Their use is a viable alternative for bone regeneration as it avoids the use of autografts and allografts, which usually involves immunogenic reactions and patient’s discomfort. This work evolves around the study of the bioactivity potential of different commercially available bone substitutes based in calcium phosphate through the characterization of their ionic exchangeability when immersed in simulated body fluid (SBF). (Author)

  6. The Correlation of Pore Size and Bioactivity of Spray-Pyrolyzed Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chou

    2017-05-01

    Full Text Available SiO2–CaO–P2O5-based mesoporous bioactive glasses (MBGs were synthesized by spray pyrolysis in this study. Three commonly used non-ionic tri-block copolymers (L121, P123, and F127 with various lengths of hydrophilic chains were applied as structural templates to achieve different pore sizes. A mesoporous structure was observed in each as-prepared specimen, and the results showed that the L121-treated MBG had the largest pore size. The results of bioactivity tests indicated that the growth of hydroxyapatite is related to the pore size of the materials.

  7. Vernonia condensata Baker (Asteraceae): A Promising Source of Antioxidants

    Science.gov (United States)

    da Silva, Jucélia Barbosa; Temponi, Vanessa dos Santos; Gasparetto, Carolina Miranda; Fabri, Rodrigo Luiz; Aragão, Danielle Maria de Oliveira; Pinto, Nícolas de Castro Campos; Ribeiro, Antônia; Scio, Elita; Del-Vechio-Vieira, Glauciemar; de Sousa, Orlando Vieira

    2013-01-01

    The present study evaluated the antioxidant potential of Vernonia condensata Baker (Asteraceae). Dried and powdered leaves were exhaustively extracted with ethanol by static maceration followed by partition to obtain the hexane, dichloromethane, ethyl acetate, and butanol fractions. Total phenols and flavonoids contents were determined through spectrophotometry and flavonoids were identified by HPLC-DAD system. The antioxidant activity was assessed by DPPH radical scavenging activity, TLC-bioautography, reducing power of Fe+3, phosphomolybdenum, and TBA assays. The total phenolic content and total flavonoids ranged from 0.19 to 23.11 g/100 g and from 0.13 to 4.10 g/100 g, respectively. The flavonoids apigenin and luteolin were identified in the ethyl acetate fraction. The IC50 of DPPH assay varied from 4.28 to 75.10 µg/mL and TLC-bioautography detected the antioxidant compounds. The reducing power of Fe+3 was 19.98 to 336.48 μg/mL, while the reaction with phosphomolybdenum ranged from 13.54% to 32.63% and 56.02% to 135.00% considering ascorbic acid and rutin as reference, respectively. At 30 mg/mL, the ethanolic extract and fractions revealed significant effect against lipid peroxidation. All these data sustain that V. condensata is an important and promising source of bioactive substances with antioxidant activity. PMID:24489987

  8. Characterization of bioactive mixtures oligogalacturonidos

    International Nuclear Information System (INIS)

    Mederos Torres, Yuliem; Hormaza Montenegro, Josefa; Reynaldo Escobar, Ines; Montesino Sequi, Raquel

    2011-01-01

    Oligogalacturonides are pectic oligosaccharides composed of lineal chains of D-galacturonic acid, linked by α (1-4) glycosidic linkage. Oligogalacturonides' mixtures are obtained by enzymatic hydrolysis of pectins of diverse vegetal species. These oligosaccharides unchain a diverse biological activity in plants, which depends mainly on their polymerization degrees. The National Institute of Agricultural Science has a patent technology at national scale that lets to obtain a mixture of oligogalacturonides with different polymerization degree. In this work is presented the characterization of oligogalacturonides by spectrophotometric analysis attending to their uronic acids, reductor sugars, and neutral sugars content. Also the chromatographic profile of samples in study is obtained, using the derivatization with 2-aminobenzamide label and the separation by high pH anion exchange chromatography. It is achieved the separation of at least eight galacturonic acid oligomers with a variable degree of polymerization. On the other hand, the analysis by Fourier transform-infrared spectroscopy (FT-IR) showed that mixtures were composed by galacturonic acid salts. Results indicated that starting from two pectic acids with different characteristics, mixtures of oligogalacturonides of similar chemical composition could be obtained, but they differ in the proportion that they are presented

  9. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm

    Directory of Open Access Journals (Sweden)

    Marcos Guilherme da Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM. HF at 250 μg/mL and 400 μg/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P0.05. In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.

  10. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galvão, Lívia Câmara de Carvalho; Bueno-Silva, Bruno; Ikegaki, Masaharu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250  μ g/mL and 400  μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.

  11. The Incorporation of Strontium to Improve Bone-Regeneration Ability of Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Sonia Fiorilli

    2018-04-01

    Full Text Available Over the recent years, mesoporous bioactive glasses (MBGs gained interest as bone regeneration systems, due to their excellent bioactivity and ability to release therapeutic molecules. In order to improve the bone regeneration ability of MBGs, the incorporation of Sr2+ ions, due to its recognized pro-osteogenenic potential, represents a very promising strategy. In this study, MBGs based on the SiO2–CaO system and containing different percentages (2 and 4 mol % of strontium were prepared by two synthesis methods, in the form of microspheres and nanoparticles. Sr-containing MBGs were characterized by FE-SEM, XRD and N2 adsorption/desorption analysis. The in vitro bioactivity in SBF resulted excellent. The assessment of fibroblast cell (line L929 viability showed that Sr-containing MBGs were biocompatible both in form of micro- and nanoparticles. The osteogenic response of osteoblast-like SAOS-2 cells was investigated by analysing the expression of GAPDH, COL1a1, RANKL, SPARC, OPG and ALPL genes, as cell differentiation markers. The results indicate that the incorporation of Sr into MBG is beneficial for bone regeneration as promotes a pro-osteogenic effect, paving the way to the design of advanced devices enabled by these nanocarriers also in combination with drug release, for the treatment of bone pathologies, particularly in patients with osteoporosis.

  12. Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite

    Science.gov (United States)

    Bonadio, T. G. M.; Sato, F.; Medina, A. N.; Weinand, W. R.; Baesso, M. L.; Lima, W. M.

    2013-06-01

    In this work, we investigate the bioactivity and structural properties of nanostructured bulk composites that are composed of Nb2O5 and natural hydroxyapatite (HAp) and are produced by mechanical alloying and powder metallurgy. X-ray diffraction and Raman spectroscopy data showed that the milling process followed by a heat treatment at 1000 °C induced chemical reactions along with the formation of the CaNb2O6, PNb9O25 and Ca3(PO4)2 phases. Rietveld refinement indicated significant changes in each phase weight fraction as a function of HAp concentration. These changes influenced the in vitro bioactivity of the material. XRD and FTIR analyses indicated that the composites exhibited bioactivity characteristics by forming a carbonated apatite layer when the composites were immersed in a simulated body fluid. The formed layers had a maximum thickness of 13 μm, as measured by confocal Raman spectroscopy and as confirmed by scanning electron microscopy. The results of this work suggest that the tested bulk composites are promising biomaterials for use in implants.

  13. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula.

    Science.gov (United States)

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling; Wang, Yun

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components.

  14. Two Voriconazole salts: Syntheses, crystal structures, solubility and bioactivities

    Science.gov (United States)

    Tang, Gui-Mei; Wang, Yong-Tao

    2018-01-01

    Two Voriconazole salts, namely, (H2FZ)2+·2(Cl-) (1) and (HFZ)+·NO3- (2) (FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) have been obtained through the reaction of Voriconazole, hydrochloric acid and nitrate acid, respectively. They were structurally characterized by FT-IR, elemental analyses (EA), single crystal X-ray diffraction, and thermogravimetric analysis (TGA). A variety of hydrogen bonds (Osbnd H⋯N, Nsbnd H⋯Cl/O, Csbnd H⋯N/OF/Cl) were observed in the compounds 1 and 2, through which a 3D supramolecular architecture is generated. Both two salts 1 and 2 show the promising bioactivities against Aspergillus species (Aspergillus niger, Aspergillus terreus, Aspergillus fumigatus and Aspergillus flavus) and Candida ones (Candida albicans, Candida krusei, Candida glabrata and Cryptococcus neoformans), which is obviously more excellent than that of FZ. Additionally, the solubility of two salts is considerably higher than that of the drug Voriconazole.

  15. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xu [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Huang, Wenhai [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Zhang, Yadong, E-mail: zhangyadong6@126.com [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping [Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092 (China); Pan, Haobo, E-mail: hb.pan@siat.ac.cn [Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120 (China); Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340 (United States)

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8 ± 2 MPa to 31 ± 2 MPa) as the ratio of glass particles to chitosan solution increased (from 1.0 g ml{sup −1} to 2.5 g ml{sup −1}). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12 weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. - Highlights: • New class of injectable bone cement composed of bioactive borate glass particles and chitosan bonding phase was created. • The cement is biocompatible and bioactive, and has a much lower temperature increase during setting than PMMA cement. • The cement has a more controllable degradation rate and higher strength over a longer time than calcium sulfate cement. • The cement showed a better ability to heal bone defects than calcium sulfate over a twelve-week implantation period.

  16. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.

  17. StraPep: a structure database of bioactive peptides

    Science.gov (United States)

    Wang, Jian; Yin, Tailang; Xiao, Xuwen; He, Dan; Xue, Zhidong; Jiang, Xinnong; Wang, Yan

    2018-01-01

    Abstract Bioactive peptides, with a variety of biological activities and wide distribution in nature, have attracted great research interest in biological and medical fields, especially in pharmaceutical industry. The structural information of bioactive peptide is important for the development of peptide-based drugs. Many databases have been developed cataloguing bioactive peptides. However, to our knowledge, database dedicated to collect all the bioactive peptides with known structure is not available yet. Thus, we developed StraPep, a structure database of bioactive peptides. StraPep holds 3791 bioactive peptide structures, which belong to 1312 unique bioactive peptide sequences. About 905 out of 1312 (68%) bioactive peptides in StraPep contain disulfide bonds, which is significantly higher than that (21%) of PDB. Interestingly, 150 out of 616 (24%) bioactive peptides with three or more disulfide bonds form a structural motif known as cystine knot, which confers considerable structural stability on proteins and is an attractive scaffold for drug design. Detailed information of each peptide, including the experimental structure, the location of disulfide bonds, secondary structure, classification, post-translational modification and so on, has been provided. A wide range of user-friendly tools, such as browsing, sequence and structure-based searching and so on, has been incorporated into StraPep. We hope that this database will be helpful for the research community. Database URL: http://isyslab.info/StraPep PMID:29688386

  18. Fruit and cereal bioactives: sources, chemistry, and applications

    National Research Council Canada - National Science Library

    Tokusoglu, Ozlem; Hall, Clifford, III

    2011-01-01

    .... It provides detailed information on both beneficial bioactives such as phenolics, flavonoids, tocols, carotenoids, phytosterols, and avenanthramides and toxicant compounds including mycotoxins...

  19. Bioactivity of flours of seeds of leguminous crops Pisum sativum ...

    African Journals Online (AJOL)

    Bioactivity of flours of seeds of leguminous crops Pisum sativum, Phaseolus vulgaris and Glycine max used as botanical insecticides against Sitophilus oryzae Linnaeus (Coleoptera: Curculionidae) on sorghum grains.

  20. Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction.

    Science.gov (United States)

    Liu, Yu-Jie; Mo, Xue-Lin; Tang, Xiao-Zhang; Li, Jiang-Hua; Hu, Mei-Bian; Yan, Dan; Peng, Wei; Wu, Chun-Jie

    2017-06-09

    In this study, the ultrasound-assisted extraction of polysaccharides (PSA) from Pinelliae Rhizoma Praeparatum Cum Alumine (PRPCA) was optimized by response surface methodology (RSM). The structural characteristics of PSA were analyzed by UV-vis spectroscopy, infrared spectroscopy, scanning electron microscopy, high performance gel permeation chromatography and high performance liquid chromatography, respectively. In addition, antioxidant and antimicrobial activities of PSA were studied by different in vitro assays. Results indicated that the optimal extraction conditions were as follows: the ratio of water to raw of 30 mL/g, extraction time of 46.50 min, ultrasonic temperature of 72.00 °C, and ultrasonic power of 230 W. Under these conditions, the obtained PSA yield (13.21 ± 0.37%) was closely agreed with the predicted yield by the model. The average molecular weights of the PSA were estimated to be 5.34 × 10³ and 6.27 × 10⁵ Da. Monosaccharide composition analysis indicated that PSA consisted of mannose, galactose uronic acid, glucose, galactose, arabinose with a molar ratio of 1.83:0.55:75.75:1.94:0.45. Furthermore, PSA exhibited moderate antioxidant and antibacterial activities in vitro. Collectively, this study provides a promising strategy to obtain bioactive polysaccharides from processed products of herbal medicines.

  1. Peptidome characterization and bioactivity analysis of donkey milk.

    Science.gov (United States)

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2015-04-24

    protocol, thus they can be obtained from cleavage specificities other than trypsin's, which is the main proteolytic enzyme employed in proteomic experiments. For this reason, in the end, database search will not be effective for identification of these peptides, thus the need to provide different workflows for peptide analysis. In the work presented in this paper this issue is considered for the first time for the analysis of the peptides isolated in donkey milk samples, which have been chosen for its nutritional interest. This study provides additional knowledge on this milk, already characterized by traditional proteomics studies and peptidomic studies after simulated digestion. This type of study is not just a description of the naturally occurring peptidome of a sample, but also represents a starting point to discover and characterize those naturally occurring peptides responsible for the observed bioactivities of biological samples, as in the case of donkey milk, which would remain uncharacterized by other approaches. In this paper an analytical protocol was described for the efficient isolation and purification of peptides in donkey milk, assessing the effect of the purification protocol on the final identifications. Purified peptide samples were also checked to empirically elucidate any ACE inhibitory or antioxidant activity. Finally, the peptidomic results were also further mined by a bioinformatic-driven approach for bioactive peptide identification in the donkey milk samples. In our opinion, the main strengths of this study are related to the improved analytical workflow (either as purification protocol comparison or analytical platform development) which provides a high number of identified peptides, for which the biological significance as potential bioactive peptides has also been investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Tough and strong porous bioactive glass-PLA composites for structural bone repair.

    Science.gov (United States)

    Xiao, Wei; Zaeem, Mohsen Asle; Li, Guangda; Bal, B Sonny; Rahaman, Mohamed N

    2017-08-01

    Bioactive glass scaffolds have been used to heal small contained bone defects but their application to repairing structural bone is limited by concerns about their mechanical reliability. In the present study, the addition of an adherent polymer layer to the external surface of strong porous bioactive glass (13-93) scaffolds was investigated to improve their toughness. Finite element modeling (FEM) of the flexural mechanical response of beams composed of a porous glass and an adherent polymer layer predicted a reduction in the tensile stress in the glass with increasing thickness and elastic modulus of the polymer layer. Mechanical testing of composites with structures similar to the models, formed from 13-93 glass and polylactic acid (PLA), showed trends predicted by the FEM simulations but the observed effects were considerably more dramatic. A PLA layer of thickness -400 µm, equal to -12.5% of the scaffold thickness, increased the load-bearing capacity of the scaffold in four-point bending by ~50%. The work of fracture increased by more than 10,000%, resulting in a non-brittle mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture shown to be conducive to bone infiltration, could provide optimal implants for healing structural bone defects.

  3. [Bread from the bioactivated wheat grain with the raised nutrition value].

    Science.gov (United States)

    Ponomareva, E I; Alekhina, N N; Bakaeva, I A

    2016-01-01

    Bread from the bioactivated grain of wheat differs in high content of dietary fibers, minerals and vitamins compared to traditional types of bread, but, despite this, it has low protein and lysine content. The aim of the study was the development of bread with the raised nutritional value from the bioactivated wheat grain by use of flour from cake of wheat germ (6.5%). It has been established that the flour from wheat germ has protein biological value (77.4%) and the amino acid score according to lysine (100.3%) above 12 and 40.5%, respectively, compared with those from bioactivated wheat. During calculation of nutritive, biological and energy value of products from the bioactivated wheat grain it is revealed that the biological value of bread from wheat germ flour slightly exceeded the biological value of the bread without its addition and amounted to 70.80%, due to a high protein content and a balanced amino acid composition. The protein content in the test sample of bakery products was 19.0% higher than the control, phosphorus - 13.0%, zinc - 50.0%.

  4. Bioactive compounds: historical perspectives, opportunities, and challenges.

    Science.gov (United States)

    Patil, Bhimanagouda S; Jayaprakasha, G K; Chidambara Murthy, K N; Vikram, Amit

    2009-09-23

    Mom's conventional wisdom of eating fruits and vegetables to lead a healthy life has evolved with scientific, fact-finding research during the past four decades due to advances in science of "Foods for Health". Epidemiological and prospective studies have demonstrated the vital role of fruits, vegetables, and nuts in reducing the risk of cancer and cardiovascular diseases. In recent years, several meta-analyses strongly suggested that by adding one serving of fruits and vegetables to daily diet, the risk of cardiovascular diseases will be decreased up to 7%. The multidisciplinary and partnership efforts of agriculture and medical scientists across the globe stimulated interest in establishing certain interdisciplinary centers and institutes focusing on "Foods for Health". While the consumption of various healthy foods continues, several questions about toxicity, bioavailability, and food-drug interactions of bioactive compounds are yet to be fully understood on the basis of scientific evidence. Recent research on elucidation of the molecular mechanisms to understand the "proof of the concept" will provide the perfect answer when consumers are ready for a "consumer-to-farm" rather than the current "farm-to-consumer" approach. The multidisciplinary research and educational efforts will address the role of healthy foods to improve eye, brain, and heart health while reducing the risk of cancer. Through this connection, this review is an attempt to provide insight and historical perspectives on some of the bioactive compounds from the day of discovery to their current status. The bioactive compounds discussed in this review are flavonoids, carotenoids, curcumin, ascorbic acid, and citrus limonoids.

  5. Bioactivity of Neem (Azadirachta indica) callus extract

    International Nuclear Information System (INIS)

    Ahmed, I.M.

    2008-04-01

    This study was conducted in order to explore the possibility of utilizing plant tissue culture techniques for production of secondary metabolites from callus culture of Azadirachta indica (Neem) and to investigate the bioactivity of the established callus extract in comparison with the extract from the intact leaves. The presence of secondary metabolites in the extracts was detected by Thin Layer Chromatography (TLC). Both the callus and leaf extracts eluted five fraction of compounds and it were observed that callus extract had a good resolution. various extract concentration (5.10. and 20 mg/ml) were determined for the rate and extent of inhibition kinetics against staphylococcus aureus. Escherichia coli, and candida albicans. Results showed that callus extract of A. indica wiped out all viable cells of C. albicans within 18 hours and the subsequent concentration 5 and 10 mg/ m1 retard the growth after 24 h. A higher concentration of 20 mg/ ml had the same effect on S. aureus after 6 h and the E. coli cells were completely inhibited by the extracts after 24 h. Similar kinetics were showed by leaf extract but in slight rate as compared to the callus extract. In general both extract posses antimicrobial activity with notable efficient rates. For assaying of the inhibitory effect on some phyto pathogens the effect of different concentrations of the callus and leaf extracts on the radial growth of Drechslera rostrata. Fusarium oxysporum and Alterneria alternata were in vitro assessed. Obvious inhibitory effect was observed on the mycelia radial growth of the three treated fungi. The level of inhibition increased with the increase of te extract concentration. The maximum inhibitory effect (84%) was recorded with Drechslera rostrata when inoculated in media contain 20 mg/ ml of callus while the inhibition rate of mycelia growth of the same species reaches 61% when inoculated in a medium contain the same concentration of the neem leaf extract. The subsequent

  6. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  7. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass.

    Science.gov (United States)

    Pourhaghgouy, Masoud; Zamanian, Ali; Shahrezaee, Mostafa; Masouleh, Milad Pourbaghi

    2016-01-01

    Chitosan based nanocomposite scaffolds were prepared by freeze casting method through blending constant chitosan concentration with different portions of synthesized bioactive glass nanoparticles (BGNPs). Transmission Electron Microscopy (TEM) image showed that the particles size of bioactive glass (64SiO2.28CaO.8P2O5) prepared by sol-gel method was approximately less than 20 nm. Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD) analysis showed proper interfacial bonding between BGNPs and chitosan polymers. Scanning Electron Microscopy (SEM) images depicted a unidirectional structure with homogenous distribution of BGNPs among chitosan matrix associated with the absence of pure chitosan scaffold's wall pores after addition of only 10 wt.% BGNPs. As the BGNP content increased from 0 to 50 wt.%, the compressive strength and compressive module values increased from 0.034 to 0.419 MPa and 0.41 to 10.77 MPa, respectively. Biodegradation study showed that increase in BGNP content leads to growth of weight loss amount. The in vitro biomineralization studies confirmed the bioactive nature of all nanocomposites. Amount of 30 wt.% BGNPs represented the best concentration for absorption capacity and bioactivity behaviors. Copyright © 2015. Published by Elsevier B.V.

  8. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S P

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1-X) SiO2--24.3 Na2O-26.9 CaO-2.6 P2O5, where X=0, 0.4, 0.8, 1.2 and 1.6mol% of BaO was chosen and melted in an electric furnace at 1400±5°C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    Science.gov (United States)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  10. Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Ri-Ming Huang

    2014-12-01

    Full Text Available Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds.

  11. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhensheng [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Yang Xiaozhan [Chongqing University of Technology, School of Optoelectronic Information (China); Guo Hongfeng [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China); Yang Xiaochao; Sun Lili [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Dong Shiwu, E-mail: shiwudong@gmail.com [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China)

    2012-09-15

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO{sub 2} porous ceramics were also prepared as a control. After sintered at 1,000 Degree-Sign C with a pressureless sintering method, the particle size of the pure TiO{sub 2} and TiO{sub 2}/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 {mu}m. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO{sub 2}/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO{sub 2} ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO{sub 2}/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO{sub 2} ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  12. Glucagon Decreases IGF-1 Bioactivity in Humans, Independently of Insulin, by Modulating Its Binding Proteins.

    Science.gov (United States)

    Sarem, Zeinab; Bumke-Vogt, Christiane; Mahmoud, Ayman M; Assefa, Biruhalem; Weickert, Martin O; Adamidou, Aikatarini; Bähr, Volker; Frystyk, Jan; Möhlig, Matthias; Spranger, Joachim; Lieske, Stefanie; Birkenfeld, Andreas L; Pfeiffer, Andreas F H; Arafat, Ayman M

    2017-09-01

    Depending on its lipolytic activity, glucagon plays a promising role in obesity treatment. Glucagon-induced growth hormone (GH) release can promote its effect on lipid metabolism, although the underlying mechanisms have not been well-defined. The present study highlights the glucagon effect on the GH/insulinlike growth factor 1 (IGF-1)/IGF-binding protein (IGFBP) axis in vivo and in vitro, taking into consideration insulin as a confounding factor. In a double-blind, placebo-controlled study, we investigated changes in GH, IGFBP, and IGF-1 bioactivity after intramuscular glucagon administration in 13 lean controls, 11 obese participants, and 13 patients with type 1 diabetes mellitus (T1DM). The effect of glucagon on the transcription factor forkhead box protein O1 (FOXO1) translocation, the transcription of GH/IGF-1 system members, and phosphorylation of protein kinase B (Akt) was further investigated in vitro. Despite unchanged total IGF-1 and IGFBP-3 levels, glucagon decreased IGF-1 bioactivity in all study groups by increasing IGFBP-1 and IGFBP-2. The reduction in IGF-1 bioactivity occurred before the glucagon-induced surge in GH. In contrast to the transient increase in circulating insulin in obese and lean participants, no change was observed in those with T1DM. In vitro, glucagon dose dependently induced a substantial nuclear translocation of FOXO1 in human osteosarcoma cells and tended to increase IGFBP-1 and IGFBP-2 gene expression in mouse primary hepatocytes, despite absent Akt phosphorylation. Our data point to the glucagon-induced decrease in bioactive IGF-1 levels as a mechanism through which glucagon induces GH secretion. This insulin-independent reduction is related to increased IGFBP-1 and IGFBP-2 levels, which are most likely mediated via activation of the FOXO/mTOR (mechanistic target of rapamycin) pathway. Copyright © 2017 Endocrine Society

  13. Development of a novel bioactive glass for air-abrasion to selectively remove orthodontic adhesives.

    Science.gov (United States)

    Taha, Ayam A; Hill, Robert G; Fleming, Padhraig S; Patel, Mangala P

    2018-05-01

    To develop a novel, bioactive glass for removing residual orthodontic adhesive via air-abrasion, following bracket debonding, and to evaluate its effectiveness against a proprietary bioactive glass 45S5(Sylc™)-air-abrasion, and a slow-speed tungsten carbide (TC) bur. Three glasses were prepared and their bioactivity was proved. One novel glass (QMAT3) was selected due to its appropriate hardness, lower than that of enamel/45S5(Sylc™). Sixty extracted human premolars were randomly assigned to adhesive removal using: (a) QMAT3-air-abrasion, (b) 45S5(Sylc™)-air-abrasion, and (c) TC bur, which were further subdivided (n = 10) based on the adhesive used (Transbond XT™ or Fuji Ortho LC™). Enamel roughness was assessed using scanning electron microscopy (SEM) and non-contact profilometry before bracket bonding, after removing residual adhesive following bracket debonding and after polishing. QMAT3 formed apatite faster (6 h) than 45S5(Sylc™) (24 h) in Tris solution. QMAT3-air-abrasion gave the lowest enamel roughness (Ra) after removing the adhesives. SEM images showed a pitted, roughened enamel surface in the TC bur group and to a lesser extent with 45S5(Sylc™), while a virtually smooth surface without any damage was observed in the QMAT3-air-abrasion group. The time taken for adhesive removal with QMAT3 was comparable to 45S5(Sylc™) but was twice as long with the TC bur. QMAT3-air-abrasion is a promising technique for selective removal of adhesives without inducing tangible enamel damage. A novel bioactive glass has been developed as an alternative to the use of TC burs for orthodontic adhesive removal.

  14. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.

    Science.gov (United States)

    Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine

    2013-07-01

    Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion

  15. Fructose-Coated Nanodiamonds: Promising Platforms for Treatment of Human Breast Cancer.

    Science.gov (United States)

    Zhao, Jiacheng; Lai, Haiwang; Lu, Hongxu; Barner-Kowollik, Christopher; Stenzel, Martina H; Xiao, Pu

    2016-09-12

    Well-defined carboxyl end-functionalized glycopolymer Poly(1-O-methacryloyl-2,3:4,5-di-O-isopropylidene-β-d-fructopyranose) (Poly(1-O-MAipFru)62) has been prepared via reversible addition-fragmentation chain transfer polymerization and grafted onto the surface of amine-functionalized nanodiamonds via a simple conjugation reaction. The properties of the nanodiamond-polymer hybrid materials ND-Poly(1-O-MAFru)62 are investigated using infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, and transmission electron microscopy. The dispersibility of the nanodiamonds in aqueous solutions is significantly improved after the grafting of the glycopolymer. More interestingly, the cytotoxicity of amine-functionalized nanodiamonds is significantly decreased after decoration with the glycopolymer even at a high concentration (125 μg/mL). The nanodiamonds were loaded with doxorubicin to create a bioactive drug delivery carrier. The release of doxorubicin was faster in media of pH 5 than media of pH 7.4. The nanodiamond drug delivery systems with doxorubicin are used to treat breast cancer cells in 2D and 3D models. Although the 2D cell culture results indicate that all nanodiamonds-doxorubicin complexes are significantly less toxic than free doxorubicin, the glycopolymer-coated nanodiamonds-doxorubicin show higher cytotoxicity than free doxorubicin in the 3D spheroids after treatment for 8 days. The enhanced cytotoxicity of Poly(1-O-MAFru)62-ND-Dox in 3D spheroids may result from the sustained drug release and deep penetration of these nanocarriers, which play a role as a "Trojan Horse". The massive cell death after 8-day incubation with Poly(1-O-MAFru)62-ND-Dox demonstrates that glycopolymer-coated nanodiamonds can be promising platforms for breast cancer therapy.

  16. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.

    Science.gov (United States)

    Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

    2012-02-01

    Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment. Copyright © 2011 Wiley Periodicals, Inc.

  17. Tennessee Promise: A Response to Organizational Change

    Science.gov (United States)

    Littlepage, Ben; Clark, Teresa; Wilson, Randal; Stout, Logan

    2018-01-01

    Community colleges in Tennessee, either directly or indirectly, experienced unprecedented change as a result of Tennessee Promise. The present study explored how student support service administrators at three community colleges responded to organizational change as a result of the Tennessee Promise legislation. Investigators selected community…

  18. Recent Updates in Melanocyte Function: The Use of Promising Bioactive Compounds for the Treatment of Hypopigmentary Disorders.

    Science.gov (United States)

    Ali, Sharique A; Naaz, Ishrat; Zaidi, Kamal Uddin; Ali, Ayesha S

    2017-01-01

    Skin pigmentation is a broadly appearing phenomenon in nature which plays an important task of determining the appearance and biology of all vertebrates including human beings. Skin color is a crucial attribute, determined by the synthesis of melanin pigment within melanocytes by the process of melanogenesis and is regulated by many extrinsic as well as intrinsic factors. Tyrosinase catalyzes the key step of melanogenesis, dysfunction of tyrosinase leads to reduce melanin production which results in severe clinical and aesthetical problems of hypopigmentation. Therefore, the regulation of melanin production is an important strategy in the treatment of abnormal skin pigmentation for cosmetic and medicinal purpose. The present review covers the various aspects of mammalian melanocyte biology which will help in the identification of key regulators of melanogenesis from pharmaceutical and pharmacological point of view. Further sections of the review focus on the dysfunctions of melanogenic pathways, which result in severe clinical and aesthetical problems of hypopigmentation. We have also attempted to highlight the ability of available scientifically validated plant extracts to naturally enhance melanin synthesis in order to cure hypopigmentation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration.

    Science.gov (United States)

    Shi, Pujie; Wang, Qun; Yu, Cuiping; Fan, Fengjiao; Liu, Meng; Tu, Maolin; Lu, Weihong; Du, Ming

    2017-07-01

    Lactoferrin (LF) has been recently recognized as a promising new novel bone growth factor for the beneficial effects on bone cells and promotion of bone growth. Currently, it has been attracted wide attention in bone regeneration as functional food additives or a potential bioactive protein in bone tissue engineering. The present study investigated the possibility that hydroxyapatite (HAP) particles, a widely used bone substitute material for high biocompatibility and osteoconductivity, functionalized with lactoferrin as a composite material are applied to bone tissue engineering. Two kinds of hydroxyapatite samples with different sizes, including nanorods and microspheres particles, were functionalized with lactoferrin molecules, respectively. A detailed characterization of as-prepared HAP-LF complex is presented, combining thermal gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). Zeta potential and the analysis of electrostatic surface potential of lactoferrin were carried to reveal the mechanism of adsorption. The effects of HAP-LF complex on MC3T3-E1 osteoblast proliferation and morphology were systematically evaluated at different culture time. Interestingly, results showed that cell viability of HAP-LF group was significantly higher than HAP group indicating that the HAP-LF can improve the biocompatibility of HAP, which mainly originated from a combination of HAP-LF interaction. These results indicated that hydroxyapatite particles can work as a controlled releasing carrier of lactoferrin successfully, and lactoferrin showed better potentiality on using in the field of bone regeneration by coupling with hydroxyapatite. This study would provide a new biomaterial and might offer a new insight for enhancement of bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Abol Hassan

    2015-04-01

    Full Text Available Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.

  2. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease

    Science.gov (United States)

    Vergara-Jimenez, Marcela; Almatrafi, Manal Mused

    2017-01-01

    Moringa Oleifera (MO), a plant from the family Moringacea is a major crop in Asia and Africa. MO has been studied for its health properties, attributed to the numerous bioactive components, including vitamins, phenolic acids, flavonoids, isothiocyanates, tannins and saponins, which are present in significant amounts in various components of the plant. Moringa Oleifera leaves are the most widely studied and they have shown to be beneficial in several chronic conditions, including hypercholesterolemia, high blood pressure, diabetes, insulin resistance, non-alcoholic liver disease, cancer and overall inflammation. In this review, we present information on the beneficial results that have been reported on the prevention and alleviation of these chronic conditions in various animal models and in cell studies. The existing limited information on human studies and Moringa Oleifera leaves is also presented. Overall, it has been well documented that Moringa Oleifera leaves are a good strategic for various conditions associated with heart disease, diabetes, cancer and fatty liver. PMID:29144438

  3. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease

    Directory of Open Access Journals (Sweden)

    Marcela Vergara-Jimenez

    2017-11-01

    Full Text Available Moringa Oleifera (MO, a plant from the family Moringacea is a major crop in Asia and Africa. MO has been studied for its health properties, attributed to the numerous bioactive components, including vitamins, phenolic acids, flavonoids, isothiocyanates, tannins and saponins, which are present in significant amounts in various components of the plant. Moringa Oleifera leaves are the most widely studied and they have shown to be beneficial in several chronic conditions, including hypercholesterolemia, high blood pressure, diabetes, insulin resistance, non-alcoholic liver disease, cancer and overall inflammation. In this review, we present information on the beneficial results that have been reported on the prevention and alleviation of these chronic conditions in various animal models and in cell studies. The existing limited information on human studies and Moringa Oleifera leaves is also presented. Overall, it has been well documented that Moringa Oleifera leaves are a good strategic for various conditions associated with heart disease, diabetes, cancer and fatty liver.

  4. Meat and meat products as a source of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Alfonso Totosaus

    2016-12-01

    Full Text Available Meat is a high protein content food, with great nutritional and biological value. Meat protein hydrolysis begins with the muscle to meat conversion, during meat ageing. After slaughter, endogen enzymes are responsible of meat softening since myofibrillar anchorage proteins are degraded. Protein hydrolysis continues during food preparation. When meat reaches the stomach, pepsin is the first enzyme to interact. As the food travel trough out gastrointestinal tract, pancreatic enzymes degraded the remained protein and the peptidases made the final proteolysis process. The small proteins or peptides are the absorbed to the circulatory system and distributed to the rest of the body. Bioactive peptides activity of meat and meat products is anti-hypertensive mainly, where histidine, carnosine and anserine are the main peptides identified. Another peptide with anti-oxidant activity is glutathione. The content depends on animal species.

  5. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease.

    Science.gov (United States)

    Vergara-Jimenez, Marcela; Almatrafi, Manal Mused; Fernandez, Maria Luz

    2017-11-16

    Moringa Oleifera ( MO ), a plant from the family Moringacea is a major crop in Asia and Africa. MO has been studied for its health properties, attributed to the numerous bioactive components, including vitamins, phenolic acids, flavonoids, isothiocyanates, tannins and saponins, which are present in significant amounts in various components of the plant. Moringa Oleifera leaves are the most widely studied and they have shown to be beneficial in several chronic conditions, including hypercholesterolemia, high blood pressure, diabetes, insulin resistance, non-alcoholic liver disease, cancer and overall inflammation. In this review, we present information on the beneficial results that have been reported on the prevention and alleviation of these chronic conditions in various animal models and in cell studies. The existing limited information on human studies and Moringa Oleifera leaves is also presented. Overall, it has been well documented that Moringa Oleifera leaves are a good strategic for various conditions associated with heart disease, diabetes, cancer and fatty liver.

  6. Bioactive Polymeric Materials for Tissue Repair

    Directory of Open Access Journals (Sweden)

    Diane R. Bienek

    2017-01-01

    Full Text Available Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.

  7. Angiogenesis stimulated by novel nanoscale bioactive glasses

    International Nuclear Information System (INIS)

    Mao, Cong; Chen, Xiaofeng; Miao, Guohou; Lin, Cai

    2015-01-01

    The ability of biomaterials to induce rapid vascular formation is critical in tissue regeneration. Combining recombinant angiogenic growth factors with bioengineered constructs have proven to be difficult due to several issues, including the instability of recombinant proteins, the need for sustained delivery and the dosage of factors. New formulations of bioactive glass, 58S nanosized bioactive glass (58S-NBG), have been reported to enhance wound healing in animal models better than the first generation of 45S5 Bioglass. Therefore, we investigated the effects of extracts of 58S-NBG and 80S-NBG on cultures of human umbilical vein endothelial cells (HUVECs). Cell viability was assessed by MTS assay. In vitro angiogenesis was measured using an ECM gel tube formation assay, and levels of mRNAs for five angiogenic related genes were measured by qRT-PCR. Extracts of 58S-NBG and 80S-NBG stimulated the proliferation of HUVECs, accelerated cell migration, up-regulated expression of the vascular endothelial growth factor, basic fibroblast growth factor, their receptors, and endothelial nitric oxide synthase, resulting in enhanced tube formation in vitro. The enhanced angiogenic response correlated with increased levels of Ca and Si in the extracts of 58S-NBG and 80S-NBG. The ability of 58S-NBG and 80S-NBG to stimulate angiogenesis in vitro provides alternative approaches for stimulating neovascularization of tissue-engineered constructs. (paper)

  8. Bioactive endophytes warrant intensified exploration and conservation.

    Science.gov (United States)

    Smith, Stephen A; Tank, David C; Boulanger, Lori-Ann; Bascom-Slack, Carol A; Eisenman, Kaury; Kingery, David; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Ma, Cong; Moore, Emily; Schorn, Michelle A; Vekhter, Daniel; Nunez, Percy V; Strobel, Gary A; Donoghue, Michael J; Strobel, Scott A

    2008-08-25

    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value. We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive. The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  9. Bioactive endophytes warrant intensified exploration and conservation.

    Directory of Open Access Journals (Sweden)

    Stephen A Smith

    2008-08-01

    Full Text Available A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value.We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive.The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  10. Bioactive Peptides in Animal Food Products

    Directory of Open Access Journals (Sweden)

    Marzia Albenzio

    2017-05-01

    Full Text Available Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  11. Preparation of radiolabeled bioactive asbestos fibers

    Energy Technology Data Exchange (ETDEWEB)

    Tewson, T J; Francsechini, M P; Scheule, R K; Holian, A [Texas Univ., Houston, TX (USA). Health Science Center

    1991-01-01

    We have developed an efficient procedure to radiolabel asbestos fibers while retaining the bioactivity of the fibers. The fibers are labeled with {sup 68}Ge. The {sup 68}Ge decays into {sup 68}Ga, which then can be detected by its characteristic positron emission. Both chrysotile and crocidolite asbestos, a serpentine and an amphibole, respectively, were radiolabeled successfully. Mild reaction conditions and short reaction times were found under which {similar to}90% of the added {sup 68}Ge and {sup 68}Ga bound to the fibers. The radiolabel was retained even after washing the fibers extensively with physiologic buffers. The effects of the labeling on the bioactivity of the fibers were evaluated in an in vitro assay using guinea pig alveolar macrophages as a target cell. Labeled chrysotile fibers were found to retain >95% of their ability to stimulate these cells. The labeling procedure described in this study should be useful in preparing labeled fibers to investigate both in vitro and in vivo phenomena. (author).

  12. Relationship of Mycotoxins Accumulation and Bioactive Components Variation in Ginger after Fungal Inoculation

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    2017-06-01

    Full Text Available Ginger has got increasing worldwide interests due to its extensive biological activities, along with high medical and edible values. But fungal contamination and mycotoxin residues have brought challenges to its quality and safety. In the present study, the relationship of content of mycotoxins accumulation and bioactive components variation in ginger after infection by toxigenic fungi were investigated for the first time to elucidate the influence of fungal contamination on the inherent quality of ginger. After being infected by Aspergillus flavus and Aspergillus carbonarius for different periods, the produced mycotoxins was determined by an immunoaffinity column clean-up based ultra-fast liquid chromatography coupled with tandem mass spectrometry, and the main bioactive components in ginger were analyzed by ultra performance liquid chromatography-photodiode array detection. The results showed that consecutive incubation of ginger with A. flavus and A. carbonarius within 20 days resulted in the production and accumulation of aflatoxins (especially AFB1 and ochratoxin A, as well as the constant content reduction of four bioactive components, which were confirmed through the scanning electron microscope images. Significantly negative correlation was expressed between the mycotoxins accumulation and bioactive components variation in ginger, which might influence the quality and safety of it. Furthermore, a new compound was detected after inoculation for 6 days, which was found in our study for the first time.

  13. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.

    Science.gov (United States)

    Raphel, Jordan; Parisi-Amon, Andreina; Heilshorn, Sarah

    2012-10-07

    Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.

  14. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein.

    Science.gov (United States)

    Hall, Felicia; Johnson, Philip E; Liceaga, Andrea

    2018-10-01

    Food-derived bioactive peptides have gained attention for their role in preventing chronic diseases. Edible insects are viable sources of bioactive peptides owing to their high protein content and sustainable production. In this study, whole crickets (Gryllodes sigillatus) were alcalase-hydrolyzed to a degree of hydrolysis (DH) ranging from 15 to 85%. Antioxidant activity, angiotensin converting enzyme (ACE), and dipeptidyl peptidase-4 (DPP-IV)- inhibition of the cricket protein hydrolysates (CPH) were evaluated before and after simulated gastrointestinal digestion (SGD). Antioxidant activity was similar among CPH, whereas ACE and DPP-IV inhibition was greater (p < 0.05) in CPH with 60-85% DH. Bioactivity improved after SGD. CPH allergenicity was evaluated using human shrimp-allergic sera. All sera positively reacted to tropomyosin in the unhydrolyzed cricket and CPH with 15-50% DH, whereas 60-85% DH showed no reactivity. In conclusion, CPH (60-85% DH) had the greatest bioactive potential and lowest reactivity to tropomyosin, compared with other CPH and the unhydrolyzed control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Composition of amino acids and bioactive amines in common wines of Brazil

    Directory of Open Access Journals (Sweden)

    Bruna Carla Agustini

    2014-10-01

    Full Text Available Since most consumed wines in Brazil are common wines and since their representativeness is not accounted for in scientific research, current study quantifies bioactive amines and their precursors in Brazilian sweet and dry common wines, correlates the formation of amines with physical and chemical parameters and clusters studied areas by their amine and amino acid contents. Forty-seven wine samples varying in type, color and origin were analyzed simultaneously for seventeen amino acids, ammonium ion and five bioactive amines by reversed-phase high performance liquid chromatography and ultraviolet detection after the derivation phase. Physical and chemical analyses comprised titratable acidity, pH, organic acids, sugar and alcohol contents. Sweet wines had lower concentrations of amino acids and bioactive amines. Dry white wines had higher amino acid contents when compared to those in dry red wines. Since multivariate data analysis confirmed similarities between the studied regions, their unity as potential viniculture area was reinforced. Amine levels in Brazilian common wines were reported for the first time and results reinforced the importance of bioactive amines quantification and the use of suitable vinification practices to reduce their formation.

  17. Bioactivity Improvement of Olea europaea Leaf Extract Biotransformed by Wickerhamomyces anomalus Enzymes.

    Science.gov (United States)

    Palmeri, Rosa; Restuccia, Cristina; Monteleone, Julieta Ines; Sperlinga, Elisa; Siracusa, Laura; Serafini, Mauro; Finamore, Alberto; Spagna, Giovanni

    2017-06-01

    Olive leaves represent a quantitatively significant by-product of agroindustry. They are rich in phenols, mainly oleuropein, which can be hydrolyzed into several bioactive compounds, including hydroxytyrosol. In this study, water extract from olive leaves 'Biancolilla' was analyzed for polyphenol profile, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and protective effect on differentiated Caco-2 cells. The efficacy of two enzymatic treatments in promoting the release of bioactive phenols was investigated: a) enzymatic extract from Wickerhamomyces anomalus, characterized by β-glucosidase and esterase activities; b) commercial β-glucosidase. Composition and bioactivity of the resulting extracts were compared. The results showed that the yeast-treated extract presented hydroxytyrosol content and DPPH radical scavenging activity comparable to those obtained using commercial β-glucosidase; however, it was showed the additional presence of hydroxycinnamic acids. In experiments on Caco-2 cells, the leaf extracts promoted the recovery of cell membrane barrier at different minimum effective concentrations. The high specificity of W. anomalus enzymatic extract may represent an effective tool for the release of bioactive phenols from olive by-products.

  18. Preparation and biocompatibility of poly (methyl methacrylate reinforced with bioactive particles

    Directory of Open Access Journals (Sweden)

    Pereira Marivalda de Magalhães

    2003-01-01

    Full Text Available Calcium phosphates and bioactive glasses have been used in many biomedical applications for more than 30 years due basically to their bioactive behavior. However, ceramics are too brittle for applications that require high levels of toughness and easy processability. In this work, a biphasic calcium phosphate (BCP and a bioactive glass composition (BG were combined with polymers to produce composites with tailorable properties and processability. The BCP particles were synthesized by a precipitation technique. The BG particles were produced by sol-gel processing. The BCP particles were treated with a silane agent to improve the compatibility between particles and the polymer matrix. Dense samples were produced by hot pressing (200 °C a mixture of 30 wt.% of particles in poly (methyl methacrylate. The samples produced were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Mechanical properties were evaluated by a three point bending test. Samples were also submitted to in vitro bioactivity test and in vivo toxicity test. Results showed that the production of the composites was successfully achieved, yielding materials with particles well dispersed within the matrices. Evaluation of the in vivo inflammatory response showed low activity levels for all composites although composites with silane treated BCP particles led to milder inflammatory responses than composites with non-treated particles.

  19. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    Science.gov (United States)

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  20. Fat-soluble bioactive components in colored rice varieties.

    Science.gov (United States)

    Minatel, Igor Otavio; Han, Sang-Ik; Aldini, Giancarlo; Colzani, Mara; Matthan, Nirupa R; Correa, Camila Renata; Fecchio, Denise; Yeum, Kyung-Jin

    2014-10-01

    Bioactive components in rice vary depending on the variety and growing condition. Fat-soluble components such as γ-oryzanol, tocopherols, tocotrienols, carotenoids, and fatty acids were analyzed in brown, sugary brown, red, and black rice varieties using established high-performance liquid chromatography (HPLC) and GC methodologies. In addition, these colored rice varieties were further analyzed using a high-resolution liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) (LTQ-Orbitrap XL) to identify the [M-H](-) ions of γ-oryzanol, ranging from m/z 573.3949 to 617.4211. The highest content of tocopherols (α-, 1.5; γ-, 0.5 mg/100 g) and carotenoids (lutein 244; trans-β carotene 25 μg/100 g) were observed in black rice; tocotrienols (α-, 0.07; γ-, 0.14 mg/100 g) in red rice, and γ-oryzanol (115 mg/100 g) in sugary brown rice. In all colored rice varieties, the major fatty acids were palmitic (16:0), oleic (18:1n-9), and linoleic (18:2n-6) acids. When the γ-oryzanol components were further analyzed by LC-MS/MS, 3, 10, 8, and 8 triterpene alcohols or sterol ferulates were identified in brown, sugary brown, red, and black rice varieties, respectively. Such structural identification can lead to the elucidation of biological function of each component at the molecular level. Consumption of colored rice rich in beneficial bioactive compounds may be a useful dietary strategy for achieving optimal health.

  1. Bioactivity response of Ta_1_-_xO_x coatings deposited by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Almeida Alves, C.F.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft–hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar + O_2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. - Highlights: • Ta_1_-_xO_x coatings were deposited by reactive DC magnetron sputtering. • Amorphous oxide phases were achieved with higher oxygen amounts. • Contact angles progressively diminished, with increasing oxygen content. • Ta oxide surface

  2. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform

    Directory of Open Access Journals (Sweden)

    Ramasamy S

    2014-12-01

    Full Text Available Sakthivel Ramasamy,1 Devasier Bennet,1 Sanghyo Kim1,2 1Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea; 2Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea Abstract: This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. Keywords: screening of bioactive agents, impedance-based cell

  3. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride.

    Science.gov (United States)

    Daryaei, A; Jones, E E; Ghazalibiglar, H; Glare, T R; Falloon, R E

    2016-04-01

    The goal was to determine the effect of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride LU132 against Rhizoctonia solani. The incubation temperatures of 20, 25 or 30°C were assessed on the production of T. atroviride conidia under constant light over a 25 and 50 days periods. The resulting conidia were also studied for germination and bioactivity. Conidium production was maximum at 25°C after 20 days. The second peak of conidium production occurred at 45-50 days. Incubation at 25°C after 15 days showed optimum production of T. atroviride LU132. Conidia produced at 30°C gave the greatest germination and bioactivity in comparison with incubation at 20 or 25°C. This study indicates that the temperature at which conidia of T. atroviride are produced affects germination and bioactivity. Formulations based on production of the high conidia yield may not result in optimal bioactivity and there is a trade-off between quantity and quality of T. atroviride LU132 conidia. Conidium production was shown to be a continuous process, and increased under a dark/light regime. This is the first report of bimodal conidium production in a Trichoderma biological control agent (BCA), which is likely to be on 20 days cycle, and is dependent on colony age rather than abiotic factors. Conidia produced after 15 days are likely to be the most suitable for use in commercial production of this strain as a BCA. Most studies on Trichoderma-based BCA have only shown the effect of culture conditions on the high conidia yield regardless of conidium quality. This study is the first report on conidium quality affected by principal culture conditions for Trichoderma biological control formulations. © 2016 The Society for Applied Microbiology.

  4. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    Science.gov (United States)

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  5. Bioactivity and chemical ecology of some intertidal animals

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Shirwaikar, P.

    stream_size 7 stream_content_type text/plain stream_name Bioactive_Com_Mar_Org_1991_29.pdf.txt stream_source_info Bioactive_Com_Mar_Org_1991_29.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  6. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  7. calcium sulphate hemihydrate and bioactive glass composites for ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 2. In vitro bioactivity evaluation of α -calcium sulphate hemihydrate and bioactive glass composites for their potential use in bone regeneration. YANYAN ZHENG CHENGDONG XIONG DUJUAN ZHANG LIFANG ZHANG. Volume 41 Issue 2 April 2018 Article ID ...

  8. Indication of bioactive candidates among body volatiles of ...

    African Journals Online (AJOL)

    Gregarious adult locusts are believed to release many bioactive volatiles from their bodies for the mediation of their biological characteristics. The determination of these bioactive body volatiles can contribute to the development of new, environmentally benign methods of locust control. An important locust, Locusta ...

  9. Bioactive Peptides in Milk Products. | Tirelli | Journal of Food ...

    African Journals Online (AJOL)

    Some peptides produced in vitro or in vivo by enzymatic hydrolysis of caseins and whey protein can affect some biological functions of the body and therefore they are called bioactive peptides. In this paper the physiological significance of bioactive peptides is reviewed and the analytical methods for their purification and ...

  10. Nutrient reference values for bioactives: new approaches needed?

    DEFF Research Database (Denmark)

    Biesalski, Hans Konrad; Erdman Jr., John W.; Hathcock, John

    2013-01-01

    Nutrients can be classified as either "essential" or "non-essential," the latter are also termed bioactive substances. Whereas the absence of essential nutrients from the diet results in overt deficiency often times with moderate to severe physiological decrements, the absence of bioactive substa...

  11. Icariin-Loaded TiO2 Nanotubes for Regulation of the Bioactivity of Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-01-01

    Full Text Available To explore the effects of icariin on the biocompatibility of dental implants, icariin- (ICA- loaded TiO2 nanotubes were fabricated on Ti substrates via anodic oxidation and physical absorption. The surface characteristics of the specimens were monitored by field emission scanning electron microscopy (FE-SEM, X-ray diffractometry (XRD, contact angle measurements (CA, and high-pressure liquid chromatography. Additionally, the activities of bone marrow cells, such as cytoskeletal, proliferative activities, mineralization, and osteogenesis-related gene expression on the substrates were investigated in detail. The characterization results demonstrated that ICA-loaded TiO2 nanotubes were successfully fabricated and the hydrophilicity of these TiO2 nanotubes was significantly higher than that of the pure Ti groups. The results also showed that ICA-loaded TiO2 nanotubes might not have enhanced effects on cell proliferation and ALP expression. However, it seemed to significantly promote differentiation of bone marrow cells, demonstrated by enhancing the formation of mineralized nodule and the upregulation of the gene expression such as OC, BSP, OPN, and COL-1. The results indicated that ICA-loaded TiO2 nanotubes can modulate bioactivity of bone marrow cells, which is promising for potential applications in the orthopedics field.

  12. Bioavailability of curcumin: problems and promises.

    Science.gov (United States)

    Anand, Preetha; Kunnumakkara, Ajaikumar B; Newman, Robert A; Aggarwal, Bharat B

    2007-01-01

    Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.

  13. Financial Technology: The Promise of Blockchain

    OpenAIRE

    Demary, Markus; Demary, Vera

    2017-01-01

    Digitization affects all sectors of the economy. A new and possibly disruptive digital technology is the blockchain, a decentralized ledger, which seems to offer great promise for many financial and business applications.

  14. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    Science.gov (United States)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a

  15. The promise of innovation: Nuclear energy horizons

    International Nuclear Information System (INIS)

    Mourogov, V.

    2003-01-01

    The 21st century promises the most open, competitive, and globalized markets in human history, as well as the most rapid pace of technological change ever. For nuclear energy, as any other, that presents challenges. Though the atom now supplies a good share of world electricity, its share of total energy is relatively small, anywhere from four to six per cent depending on how it is calculated. And, while energy is most needed in the developing world, four of every five nuclear plants are in industrialized countries. Critical problems that need to be overcome are well known - high capital costs for new plants, and concerns over proliferation risks and safety, (including safety of waste disposal) stand high among them. The IAEA and other programmes are confronting these problems through ambitious initiatives involving both industrialized and developing countries. They include the collaborative efforts known as the Generation-IV International Forum (GIF) and the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). They use ideas, results and the best experiences from today's research and development tools and advanced types of nuclear energy systems to meet tomorrow's challenges. Though the market often decides the fate of new initiatives, the market is not always right for the common good. Governments, and the people that influence them, play an indispensable role in shaping progress in energy fields for rich and poor countries alike. They shoulder the main responsibilities for fundamental science, basic research, and long-term investments. For energy in particular, government investment and support will prove instrumental in the pace of innovation toward long-term options that are ready to replace limited fossil fuel supplies, and respond to the growing premium put on clean energy alternatives. Yet governments cannot go it alone. The challenges are too diverse and complex, and public concerns - about proliferation or safety - go beyond

  16. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Mary de Fátima Guedes dos Santos

    2015-09-01

    Full Text Available The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g−1, total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g−1, and anthocyanins in bacaba (80.76 mg·100g−1. As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC (194.67 µM·Trolox·g−1, 2,2-diphenyl-1-picrylhydrazyl (DPPH (47.46 g·pulp·g−1 DPPH, and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits.

  17. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds.

    Science.gov (United States)

    Dos Santos, Mary de Fátima Guedes; Mamede, Rosa Virginia Soares; Rufino, Maria do Socorro Moura; de Brito, Edy Sousa; Alves, Ricardo Elesbão

    2015-09-07

    The Amazon region has many sources of fruits, especially native ones not yet explored, but which have some potential for use, as is the case with certain palms. The objective of this study was to evaluate the content of bioactive compounds and total antioxidant capacities of fruits from native palms from the Brazilian Amazon. The fruits of five palm species (bacaba, buriti, inajá, pupunha, and tucumã) were evaluated for levels of ascorbic acid, anthocyanins, yellow flavonoids, total carotenoids, and total extractable polyphenols, as well as the total antioxidant capacities. The fruits had high contents of extractable total polyphenols, especially bacaba and tucumã (941.56 and 158.98 mg of galic acid·100g(-1)), total carotenoids in the case of tucumã and buriti (7.24 and 4.67 mg·100g(-1)), and anthocyanins in bacaba (80.76 mg·100g(-1)). As for the antioxidant capacity, bacaba had the highest total antioxidant activity by the Oxygen Radical Antioxidant Capacity (ORAC) (194.67 µM·Trolox·g(-1)), 2,2-diphenyl-1-picrylhydrazyl (DPPH) (47.46 g·pulp·g(-1) DPPH), and β-carotene/linoleic acid (92.17% Oxidation Inhibition (O.I) methods. Bacaba phenolic profile revealed the presence of cyanidin-3-O-rutinoside and other flavonoids. The palm fruits studied can be considered good sources of bioactive compounds, some containing higher amounts than that of commonly consumed fruits. Total extractable polyphenols and anthocyanins were directly correlated to antioxidant activity in these fruits.

  18. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  19. Bioactive and Antibacterial Coatings Based on Zein/Bioactive Glass Composites by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Nima Meyer

    2018-01-01

    Full Text Available This study investigated the electrophoretic deposition (EPD of the natural polymer zein combined with bioactive glass (BG particles. Through the deposition of various BG compositions, namely 45S5 BG and Cu-doped BG, this work sought to demonstrate the ability of the films to potentiate the formation of hydroxyapatite (HA in contact with simulated body fluid (SBF. Following incubation in SBF, the physical and chemical surface properties of the EPD films were evaluated using different characterization techniques. The formation of HA at the surface of the coatings following immersion in SBF was confirmed using Fourier transform infrared spectroscopy (FTIR. The results demonstrated HA formation in all coatings after seven days of immersion in SBF. Coating morphology and degradation of the zein films were characterized using environmental scanning electron microscopy (ESEM. The results confirmed EPD as a very convenient room temperature technique for production of ion releasing, bioactive, and antibacterial coatings for potential application in orthopedics.

  20. Study on antiviral activities, drug-likeness and molecular docking of bioactive compounds of Punica granatum L. to Herpes simplex virus - 2 (HSV-2).

    Science.gov (United States)

    Arunkumar, Jagadeesan; Rajarajan, Swaminathan

    2018-03-28

    Herpes simplex virus - 2 (HSV-2) causes lifelong persisting infection in the immunocompromised host and intermittent in healthy individuals with high morbidity in neonatals and also increase the transmission of HIV. Acyclovir is widely used drug to treat HSV-2 infection but it unable to control viral latency and recurrent infection and prolonged usage lead to drug resistance. Plant-based bioactive compounds are the lead structural bio-molecules play an inevitable role as a potential antiviral agent with reduced toxicity. Therefore, there is an urgent need to develop anti-HSV-2 bioactive molecules to prevent viral resistance and control of latent infection. Punica granatum fruit is rich in major bioactive compounds with potential antimicrobial properties. Hence, we evaluated the anti-HSV-2 efficacy of lyophilized extracts and bioactive compounds isolated from fruit peel of P. granatum. As a result, ethanolic peel extract showed significant inhibition at 62.5 μg/ml. Hence, the fruit peel ethanolic extract was subjected for the isolation of bioactive compounds isolation by bioactivity-guided fractionation. Among isolated bioactive compounds, punicalagin showed 100% anti-HSV-2 activity at 31.25 μg/ml with supportive evidence of desirable in silico ADMET properties and strong interactions to selected protein targets of HSV-2 by docking analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Bioactive Triterpenes from the Fungus Piptoporus betulinus

    Directory of Open Access Journals (Sweden)

    Zeyad Alresly

    2016-01-01

    Full Text Available Phytochemical investigation of the ethyl acetate extract of the fruiting bodies from the basidiomycete Piptoporus betulinus led to the isolation of a new bioactive lanostane triterpene identified as 3 b -acetoxy-16-hydroxy-24-oxo-5α-lanosta-8- ene-21-oic acid (1. In addition, ten known triterpenes, polyporenic acid A (5, polyporenic acid C (4, three derivatives of polyporenic acid A (8, 10, 11, betulinic acid (3, betulin (2, ergosterol peroxide (6, 9,11-dehydroergosterol peroxide (7, and fomefficinic acid (9, were also isolated from the fungus. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against a fungal strain. The new triterpene and some of the other compounds showed antimicrobial activity against Gram-positive bacteria.

  2. Bioactive substances of the Techirghiol therapeutic mud

    Directory of Open Access Journals (Sweden)

    Mihail Hoteteu

    2018-02-01

    Full Text Available The study aims to characterize Techirghiol's sapropelic mud both by determining the organic and inorganic composition of the constituent phases and by isolating some compounds of humic substances. The distribution between the solid and liquid phases of the peloid of the Ca2+, Mg2+, Fe3+cations, PO43- anion, bioactive compounds of the protein, lipid and carbohydrate classes as well as the phosphatase activity of Techirghiol sapropelic mud are analyzed. The mud is fractionated using the pH and solvent polarity variation and is spectrophotometrically characterized based on absorption in the wavelength range 340-700 nm humic acids and fulvic acids differentiated on the basis of solubility and molecular mass.

  3. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  4. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart.