WorldWideScience

Sample records for promising drug candidate

  1. Natural Flavonoids as Promising Analgesic Candidates: A Systematic Review.

    Science.gov (United States)

    Xiao, Xiao; Wang, Xiaoyu; Gui, Xuan; Chen, Lu; Huang, Baokang

    2016-11-01

    Due to the chemical structural diversity and various analgesic mechanisms, an increasing number of studies indicated that some flavonoids from medicinal plants could be promising candidates for new natural analgesic drugs, which attract high interests of advanced users and academic researchers. The aim of this systematic review is to report flavonoids and its derivatives as new analgesic candidates based on the pharmacological evidences. Sixty-four papers were found concerning the potential analgesic activity of 46 flavonoids. In this case, the evidence for analgesic activity of flavonoids and total flavonoids was investigated. Meanwhile, the corresponding analgesic mechanism of flavonoids was discussed by generalizing and analyzing the current publications. Based on this review, the conclusion can be drawn that some flavonoids are promising candidates for painful conditions and deserve particular attention in further research and development. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  2. Zeolites: promising candidates for drug delivery systems (DDSs)

    OpenAIRE

    Vilaça, Natália; Amorim, Ricardo; Baltazar, Fátima; Fonseca, António Manuel; Neves, Isabel C.

    2012-01-01

    [Excerpt] The aim of controlled drug delivery systems (DDSs) is to administer the necessary amount of drug safely and effectively to specific sites in the human body and to regulate the temporal drug profile for maximum therapeutic benefits.[1] Zeolites are crystalline aluminosilicates solids with very regular microporous structures and they have been recently considered for medical use due to their biological properties and stability in biological environments.[1,2] The large variety in ...

  3. In vitro production of huperzine A, a promising drug candidate for Alzheimer's disease.

    Science.gov (United States)

    Ma, Xiaoqiang; Gang, David R

    2008-07-01

    Alzheimer's disease (AD) is growing in impact on human health. With no known cure, AD is one of the most expensive diseases in the world to treat. Huperzine A (HupA), a anti-AD drug candidate from the traditional Chinese medicine Qian Ceng Ta (Huperzia serrata), has been shown to be a powerful and selective inhibitor of acetylcholinesterase and has attracted widespread attention because of its unique pharmacological activities and low toxicity. As a result, HupA is becoming an important lead compound for drugs to treat AD. HupA is obtained naturally from very limited and slowly growing natural resources, members of the Huperziaceae. Unfortunately, the content of HupA is very low in the raw plant material. This has led to strong interest in developing sources of HupA. We have developed a method to propagate in vitro tissues of Phlegmariurus squarrosus, a member of the Huperziaceae, that produce high levels of HupA. The in vitro propagated tissues produce even higher levels of HupA than the natural plant, and may represent an excellent source for HupA.

  4. Salicytamide: a New Anti-inflammatory Designed Drug Candidate.

    Science.gov (United States)

    Guedes, Karen Marinho Maciel; Borges, Rosivaldo Santos; Fontes-Júnior, Enéas Andrade; Silva, Andressa Santa Brigida; Fernandes, Luanna Melo Pereira; Cartágenes, Sabrina Carvalho; Pinto, Ana Carla Godinho; Silva, Mallone Lopes; Queiroz, Luana Melo Diogo; Vieira, José Luís Fernandes; Sousa, Pergentino José Cunha; Maia, Cristiane Socorro Ferraz

    2018-04-13

    Salicytamide is a new drug developed through molecular modelling and rational drug design by the molecular association of paracetamol and salicylic acid. This study was conducted to assess the acute oral toxicity, antinociceptive, and antioedematogenic properties of salicytamide. Acute toxicity was based on the OECD 423 guidelines. Antinociceptive properties were investigated using the writhing, hot plate and formalin tests in Swiss mice. Antioedematogenic properties were evaluated using the carrageenan-induced paw oedema model and croton oil-induced dermatitis in Wistar rats. Salicytamide did not promote behavioural changes or animal deaths during acute oral toxicity evaluation. Furthermore, salicytamide exhibited peripheral antinociceptive activity as evidenced by the reduction in writhing behaviour (ED50 = 4.95 mg/kg) and licking time in the formalin test's inflammatory phase. Also, salicytamide elicited central antinociceptive activity on both hot plate test and formalin test's neurogenic phase. Additionally, salicytamide was effective in reducing carrageenan or croton oil-induced oedema formation. Overall, we have shown that salicytamide, proposed here as a new NSAID candidate, did not induce oral acute toxicity and elicited both peripheral antinociceptive effects (about 10-25 times more potent than its precursors in the writhing test) and antioedematogenic properties. Salicytamide also presented central antinociceptive activity, which seems to be mediated through opioid-independent mechanisms. These findings reveal salicytamide as a promising antinociceptive/antioedematogenic drug candidate.

  5. Halopentacenes: Promising Candidates for Organic Semiconductors

    International Nuclear Information System (INIS)

    Gong-He, Du; Zhao-Yu, Ren; Ji-Ming, Zheng; Ping, Guo

    2009-01-01

    We introduce polar substituents such as F, Cl, Br into pentacene to enhance the dissolubility in common organic solvents while retaining the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene for comparison, are successively calculated by density functional theory. The results indicate that halopentacenes have rather small reorganization energies (< 0.2 eV), and when the substituents are in position 2 or positions 2 and 9, they are polarity molecules. Thus we conjecture that they can easily be dissolved in common organic solvents, and are promising candidates for organic semiconductors. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  6. Promising new vaccine candidates against Campylobacter in broilers.

    Directory of Open Access Journals (Sweden)

    Marine Meunier

    Full Text Available Campylobacter is the leading cause of human bacterial gastroenteritis in the European Union. Birds represent the main reservoir of the bacteria, and human campylobacteriosis mainly occurs after consuming and/or handling poultry meat. Reducing avian intestinal Campylobacter loads should impact the incidence of human diseases. At the primary production level, several measures have been identified to reach this goal, including vaccination of poultry. Despite many studies, however, no efficient vaccine is currently available. We have recently identified new vaccine candidates using the reverse vaccinology strategy. This study assessed the in vivo immune and protective potential of six newly-identified vaccine antigens. Among the candidates tested on Ross broiler chickens, four (YP_001000437.1, YP_001000562.1, YP_999817.1, and YP_999838.1 significantly reduced cecal Campylobacter loads by between 2 and 4.2 log10 CFU/g, with the concomitant development of a specific humoral immune response. In a second trial, cecal load reductions results were not statistically confirmed despite the induction of a strong immune response. These vaccine candidates need to be further investigated since they present promising features.

  7. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin

    2007-01-01

    is particularly problematic in medical contexts because biofilm-associated bacteria are particularly hard to eradicate. Several promising candidate drugs that target bacterial adhesion and biofilm formation are being developed. Some of these might be valuable weapons for fighting infectious diseases in the future...... formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation...

  8. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  9. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor

    Directory of Open Access Journals (Sweden)

    María Martínez-Hoyos

    2016-06-01

    Full Text Available Despite being one of the first antitubercular agents identified, isoniazid (INH is still the most prescribed drug for prophylaxis and tuberculosis (TB treatment and, together with rifampicin, the pillars of current chemotherapy. A high percentage of isoniazid resistance is linked to mutations in the pro-drug activating enzyme KatG, so the discovery of direct inhibitors (DI of the enoyl-ACP reductase (InhA has been pursued by many groups leading to the identification of different enzyme inhibitors, active against Mycobacterium tuberculosis (Mtb, but with poor physicochemical properties to be considered as preclinical candidates. Here, we present a series of InhA DI active against multidrug (MDR and extensively (XDR drug-resistant clinical isolates as well as in TB murine models when orally dosed that can be a promising foundation for a future treatment.

  10. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites.

    Science.gov (United States)

    Kevin Ii, Dion A; Meujo, Damaris Af; Hamann, Mark T

    2009-02-01

    As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics.

  11. A strategy to find novel candidate anti-Alzheimer's disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants.

    Science.gov (United States)

    Chen, Bi-Wen; Li, Wen-Xing; Wang, Guang-Hui; Li, Gong-Hua; Liu, Jia-Qian; Zheng, Jun-Juan; Wang, Qian; Li, Hui-Juan; Dai, Shao-Xing; Huang, Jing-Fei

    2018-01-01

    screening of anti-AD drugs. In this work, we established networks to systematically study the connections among natural compounds, approved drugs, TCM plants and AD target proteins with the goal of identifying promising drug candidates. We hope that our study will facilitate in-depth research for the treatment of AD in Chinese medicine.

  12. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  13. Candidate biomarkers for the diagnosis and prognosis of drug-induced liver injury: An international collaborative effort.

    Science.gov (United States)

    Church, Rachel J; Kullak-Ublick, Gerd A; Aubrecht, Jiri; Bonkovsky, Herbert L; Chalasani, Naga; Fontana, Robert J; Goepfert, Jens C; Hackman, Frances; King, Nicholas M P; Kirby, Simon; Kirby, Patrick; Marcinak, John; Ormarsdottir, Sif; Schomaker, Shelli J; Schuppe-Koistinen, Ina; Wolenski, Francis; Arber, Nadir; Merz, Michael; Sauer, John-Michael; Andrade, Raul J; van Bömmel, Florian; Poynard, Thierry; Watkins, Paul B

    2018-01-22

    Current blood biomarkers are suboptimal in detecting drug-induced liver injury (DILI) and predicting its outcome. We sought to characterize the natural variabilty and performance characteristics of fourteen promising DILI biomarker candidates. Serum or plasma from multiple cohorts of healthy volunteers (n=192 and =81), subjects who safely took potentially hepatotoxic drugs without adverse effects (n=55 and =92) and DILI patients (n=98, =28, and =143) were assayed for microRNA-122 (miR-122), glutamate dehydrogenase (GLDH), total keratin 18 (K18), caspase cleaved K18 (ccK18), glutathione S-transferase alpha (GSTα), alpha fetoprotein (AFP), arginase-1 (ARG1), osteopontin (OPN), sorbitol dehydrogenase (SDH), fatty acid binding protein (FABP1), cadherin-5 (CDH5), macrophage colony stimulating factor receptor (MCSFR), paraoxonase 1 (PON1, normalized to prothrombin protein), and leucocyte cell-derived chemotaxin-2 (LECT2). Most candidate biomarkers were significantly altered in DILI cases compared to healthy volunteers. GLDH correlated more closely with gold standard alanine aminotransferase (ALT) than miR-122 and there was a surprisingly wide inter- and intra-individual variability of miR-122 levels among the healthy volunteers. Serum K18, OPN, and MCSFR levels were most strongly associated with liver-related death or transplant within 6 months of DILI-onset. Prediction of prognosis among DILI patients using Model for End-stage Liver Disease (MELD) was improved by incorporation of K18 and MCSFR levels. GLDH appears to be more useful than miR-122 in identifying DILI patients. K18, OPN and MCSFR are promising candidates for prediction of prognosis during an acute DILI event. Serial assessment of these biomarkers in large prospective studies will help further delineate their role in DILI diagnosis and management. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  14. Metabolomics-based promising candidate biomarkers and pathways in Alzheimer's disease.

    Science.gov (United States)

    Kang, Jian; Lu, Jingli; Zhang, Xiaojian

    2015-05-01

    Pathologically, loss of synapses and neurons, extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) are observed in the brains of patients with Alzheimer's disease (AD). These features are associated with changes Aβ (amyloid β) 40, Aβ42, total tau and phosphorylated tau (p-tau), which are as definitely biomarkers for severe AD state. However, biomarkers for effectively diagnosing AD in the pre-clinical state for directing therapeutic strategies are lacking. Metabolic profiling as a powerful tool to identify new biomarkers is receiving increasing attention in AD. This review will focus on metabolomics-based detection of promising candidate biomarkers and pathways in AD to facilitate the discovery of new medicines and disease pathways.

  15. Prediction methods and databases within chemoinformatics: emphasis on drugs and drug candidates

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Jorgensen, FS; Brunak, Søren

    2005-01-01

    about drugs and drug candidates, and of databases with relevant properties. Access to experimental data and numerical methods for selecting and utilizing these data is crucial for developing accurate predictive in silico models. Many interesting predictive methods for classifying the suitability......MOTIVATION: To gather information about available databases and chemoinformatics methods for prediction of properties relevant to the drug discovery and optimization process. RESULTS: We present an overview of the most important databases with 2-dimensional and 3-dimensional structural information...... of chemical compounds as potential drugs, as well as for predicting their physico-chemical and ADMET properties have been proposed in recent years. These methods are discussed, and some possible future directions in this rapidly developing field are described....

  16. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia

    DEFF Research Database (Denmark)

    Marstrand, T T; Borup, R; Willer, A

    2010-01-01

    regulation, and (ii) the identification of candidate drugs and drug targets for therapeutic interventions. Significantly, our study provides a conceptual framework that can be applied to any subtype of AML and cancer in general to uncover novel information from published microarray data sets at low cost...

  17. Microencapsulation: A promising technique for controlled drug delivery.

    Science.gov (United States)

    Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G

    2010-07-01

    MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.

  18. Drug efficiency: a new concept to guide lead optimization programs towards the selection of better clinical candidates.

    Science.gov (United States)

    Braggio, Simone; Montanari, Dino; Rossi, Tino; Ratti, Emiliangelo

    2010-07-01

    As a result of their wide acceptance and conceptual simplicity, drug-like concepts are having a major influence on the drug discovery process, particularly in the selection of the 'optimal' absorption, distribution, metabolism, excretion and toxicity and physicochemical parameters space. While they have an undisputable value when assessing the potential of lead series or in evaluating inherent risk of a portfolio of drug candidates, they result much less useful in weighing up compounds for the selection of the best potential clinical candidate. We introduce the concept of drug efficiency as a new tool both to guide the drug discovery program teams during the lead optimization phase and to better assess the developability potential of a drug candidate.

  19. Promising Practices in Drug Treatment: Findings from Southeast Asia

    Science.gov (United States)

    Libretto, Salvatore; Nemes, Susanna; Namur, Jenny; Garrett, Gerald; Hess, Lauren; Kaplan, Linda

    2005-01-01

    In a study to evaluate the drug treatment and aftercare efforts sponsored by the State Department's International Narcotics and Law Enforcement Affairs Bureau, residential Therapeutic Community (TC) treatment programs in three countries in Southeast Asia--Malaysia, Singapore, and Thailand--were examined to identify promising practices and to…

  20. Political Reputations and Campaign Promises

    OpenAIRE

    Aragones, Enriqueta; Palfrey, Thomas R.; Postlewaite, Andrew

    2006-01-01

    We analyze conditions under which candidates' reputations may affect voters' beliefs over what policy will be implemented by the winning candidate of an election. We develop a model of repeated elections with complete information in which candidates are purely ideological. We analyze an equilibrium in which voters' strategies involve a credible threat to punish candidates who renege on their campaign promises and in which all campaign promises are believed by voters and honored by candidates....

  1. Drug repurposing: a systematic approach to evaluate candidate oral neuroprotective interventions for secondary progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Hanna M Vesterinen

    Full Text Available To develop and implement an evidence based framework to select, from drugs already licenced, candidate oral neuroprotective drugs to be tested in secondary progressive multiple sclerosis.Systematic review of clinical studies of oral putative neuroprotective therapies in MS and four other neurodegenerative diseases with shared pathological features, followed by systematic review and meta-analyses of the in vivo experimental data for those interventions. We presented summary data to an international multi-disciplinary committee, which assessed each drug in turn using pre-specified criteria including consideration of mechanism of action.We identified a short list of fifty-two candidate interventions. After review of all clinical and pre-clinical evidence we identified ibudilast, riluzole, amiloride, pirfenidone, fluoxetine, oxcarbazepine, and the polyunsaturated fatty-acid class (Linoleic Acid, Lipoic acid; Omega-3 fatty acid, Max EPA oil as lead candidates for clinical evaluation.We demonstrate a standardised and systematic approach to candidate identification for drug rescue and repurposing trials that can be applied widely to neurodegenerative disorders.

  2. PPARγ Ligand as a Promising Candidate for Colorectal Cancer Chemoprevention: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    2010-01-01

    Full Text Available Activating synthetic ligands for peroxisome proliferator-activated receptor gamma (PPARγ, such as pioglitazone, are commonly used to treat persons with diabetes mellitus with improvement of insulin resistance. Several reports have clearly demonstrated that PPARγ ligands could inhibit colorectal cancer cell growth and induce apoptosis. Meanwhile, aberrant crypt foci (ACF have come to be established as a biomarker of the risk of CRC in azoxymethane-treated mice and rats. In humans, ACF can be detected using magnifying colonoscopy. Previously, CRC and adenoma were used as a target for chemopreventive agents, but it needs a long time to evaluate, however, ACF can be a surrogate marker of CRC even for a brief period. In this clinical study, we investigated the chemopreventive effect of pioglitazone on the development of human ACF as a surrogate marker of CRC. Twenty-nine patients were divided into two groups, 20 were in the endoscopically normal control group and 9 were in the pioglitazone (15 mg/day group, and ACF and adenoma were examined before and after 1-month treatment. The number of ACF was significantly decreased (5.8±1.1 to 3.3±2.3 after 1 month of pioglitazone treatment, however, there was no significant change in the number of crypts/ACF or in the number and size of adenomas. Pioglitazone may have a clinical application as a cancer-preventive drug. This investigation is just a pilot study, therefore, further clinical studies are needed to show that the PPARγ ligand may be a promising candidate as a chemopreventive agent for colorectal carcinogenesis.

  3. Organotin(IV) Carboxylates as Promising Potential Drug Candidates in the Field of Cancer Chemotherapy.

    Science.gov (United States)

    Sirajuddin, Muhammad; Ali, Saqib

    2016-01-01

    Medicinal inorganic chemistry plays an important role in exploring the properties of metal ions for the designing of new drugs. The field has been stimulated by the success of cis-platin, the world best selling anticancer drug and platinum complexes with reduced toxicity, oral activity and activity against resistant tumors are currently on clinical trial. The use of cis-platin is, however, severely limited by its toxic side-effects. This has stimulated chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. The discovery of new non-covalent interactions with the classical target, DNA, was the first developing step in the treatment of cancer. The use of organometallic compounds as a medicine is very common now a days because it offers potential advantages over the more common organic-based drugs. In this article we have highlighted the anticancer activity of the organotin(IV) carboxylates published in the last few years (from 2008 to 2016). In most cases they present lower IC50 values than those of cisplatin, which indicates their high activity against the cancer cell lines. The summarized data reveal that every year new organotin(IV) carboxylate complexes are synthesized with the aim of new anticancer agent with much better results than the than the corresponding activity of cis-platin or other clinically approved drugs. In addition to the advantages of high activity, compared to the platinum compound, tin complexes are much cheaper. Thus by using organotin carboxylate for clinical medicine, cost reduction, dosage reduction and effect enhancement will be reached. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Menahydroquinone-4 Prodrug: A Promising Candidate Anti-Hepatocellular Carcinoma Agent.

    Science.gov (United States)

    Enjoji, Munechika; Watase, Daisuke; Matsunaga, Kazuhisa; Kusuda, Mariko; Nagata-Akaho, Nami; Karube, Yoshiharu; Takata, Jiro

    2015-07-22

    Recently, new therapeutics have been developed for hepatocellular carcinoma (HCC). However, the overall survival rate of HCC patients is still unsatisfactory; one of the reasons for this is the high frequency of recurrence after radical treatment. Consequently, to improve prognosis, it will be important to develop a novel anti-tumor agent that is especially effective against HCC recurrence. For clinical application, long-term safety, together with high anti-tumor efficacy, is desirable. Recent studies have proposed menahydroquinone-4 1,4-bis- N,N -dimethylglycinate hydrochloride (MKH-DMG), a prodrug of menahydroquinone-4 (MKH), as a promising candidate for HCC treatment including the inhibition of recurrence; MKH-DMG has been shown to achieve good selective accumulation of MKH in tumor cells, resulting in satisfactory inhibition of cell proliferation in des-γ-carboxyl prothrombin (DCP)-positive and DCP-negative HCC cell lines. In a spleen-liver metastasis mouse model, MKH-DMG has been demonstrated to have anti-proliferation and anti-metastatic effects in vivo . The characteristics of MKH-DMG as a novel anti-HCC agent are presented in this review article.

  5. Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases.

    Science.gov (United States)

    Noguchi, Noriko

    2016-04-01

    Ebselen is an organoselenium compound with glutathione peroxidase (GPx)-like hydroperoxide reducing activity. Moreover, ebselen has its own unique reactivity, with functions that GPx does not have, since it reacts with many kinds of thiols other than glutathione. Ebselen may affect the thioredoxin systems, through which it may contribute to regulation of cell function. With high reactivity toward thiols, hydroperoxides, and peroxynitrite, ebselen has been used as a useful tool in research on cellular redox mechanisms. Unlike α-tocopherol, ebselen does not scavenge lipid peroxyl radicals, which is another advantage of ebselen for use as a research tool in comparison with radical scavenging antioxidants. Selenium is not released from the ebselen molecule, which explains the low toxicity of ebselen. To further understand the mechanism of cellular redox biology, it should be interesting to compare the effects of ebselen with that of selenoprotein P, which supplies selenium to GPx. New medical applications of ebselen as a drug candidate for human diseases such as cancer and diabetes mellitus as well as brain stroke and ischemia will be expected. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering.

    Science.gov (United States)

    Labib, Gihan

    2018-01-01

    Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.

  7. Pharmacology of biosimilar candidate drugs in rheumatology: a literature review.

    Science.gov (United States)

    Araújo, F; Cordeiro, I; Teixeira, F; Gonçalves, J; Fonseca, J E

    2014-01-01

    To review current evidence concerning pharmacology of biosimilar candidates to be used in rheumatology. A PubMed search up to August 2013 was performed using relevant search terms to include all studies assessing pharmacological properties of biosimilar candidates to be used in rheumatology. Data on study characteristics, type of intervention, pharmacokinetics (PK), pharmacodynamics (PD) and bioequivalence ratios was extracted. Of 280 articles screened, 5 fulfilled our inclusion criteria. Two trials, PLANETAS and PLANETRA, compared CT-P13 and infliximab in patients with active ankylosing spondylitis and rheumatoid arthritis, respectively. PK bioequivalence was demonstrated in the phase 1 PLANETAS trial by highly comparable area under the curve (AUC) and maximum drug concentrations (Cmax), whose geometric mean ratios fell between the accepted bioequivalence range of 80-125%. Equivalence in efficacy and safety was demonstrated in the phase 3 PLANETRA trial. Two phase 1 trials comparing etanercept biosimilar candidates TuNEX and HD203 in healthy volunteers showed a high degree of similarity in AUC and Cmax, with respective geometric mean ratios between PK bioequivalence range. The last included trial referred to GP2013, a rituximab biosimilar candidate, which demonstrated PK and PD bioequivalence to reference product in three different dosing regimens in cynomolgus monkeys. Infliximab, etanercept and rituximab biosimilar candidates have demonstrated PK bioequivalence in the trials included in this review. CT-P13 has recently been approved for use in the European market and the remaining biosimilar candidates are currently being tested in patients with rheumatoid arthritis.

  8. Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates.

    Science.gov (United States)

    Lauschke, Volker M; Hendriks, Delilah F G; Bell, Catherine C; Andersson, Tommy B; Ingelman-Sundberg, Magnus

    2016-12-19

    The liver is an organ with critical importance for drug treatment as the disposition and response to a given drug is often determined by its hepatic metabolism. Patient-specific factors can entail increased susceptibility to drug-induced liver injury, which constitutes a major risk for drug development programs causing attrition of promising drug candidates or costly withdrawals in postmarketing stages. Hitherto, mainly animal studies and 2D hepatocyte systems have been used for the examination of human drug metabolism and toxicity. Yet, these models are far from satisfactory due to extensive species differences and because hepatocytes in 2D cultures rapidly dedifferentiate resulting in the loss of their hepatic phenotype and functionality. With the increasing comprehension that 3D cell culture systems more accurately reflect in vivo physiology, in the recent decade more and more research has focused on the development and optimization of various 3D culture strategies in an attempt to preserve liver properties in vitro. In this contribution, we critically review these developments, which have resulted in an arsenal of different static and perfused 3D models. These systems include sandwich-cultured hepatocytes, spheroid culture platforms, and various microfluidic liver or multiorgan biochips. Importantly, in many of these models hepatocytes maintain their phenotype for prolonged times, which allows probing the potential of newly developed chemical entities to cause chronic hepatotoxicity. Moreover, some platforms permit the investigation of drug action in specific genetic backgrounds or diseased hepatocytes, thereby significantly expanding the repertoire of tools to detect drug-induced liver injuries. It is concluded that the development of 3D liver models has hitherto been fruitful and that systems are now at hand whose sensitivity and specificity in detecting hepatotoxicity are superior to those of classical 2D culture systems. For the future, we highlight the

  9. Semantic Web Ontology and Data Integration: a Case Study in Aiding Psychiatric Drug Repurposing.

    Science.gov (United States)

    Liang, Chen; Sun, Jingchun; Tao, Cui

    2015-01-01

    There remain significant difficulties selecting probable candidate drugs from existing databases. We describe an ontology-oriented approach to represent the nexus between genes, drugs, phenotypes, symptoms, and diseases from multiple information sources. We also report a case study in which we attempted to explore candidate drugs effective for bipolar disorder and epilepsy. We constructed an ontology incorporating knowledge between the two diseases and performed semantic reasoning tasks with the ontology. The results suggested 48 candidate drugs that hold promise for further breakthrough. The evaluation demonstrated the validity our approach. Our approach prioritizes the candidate drugs that have potential associations among genes, phenotypes and symptoms, and thus facilitates the data integration and drug repurposing in psychiatric disorders.

  10. Advertising and drugs: a world of images and promises

    Directory of Open Access Journals (Sweden)

    Jurema Barros Dantas

    2010-11-01

    Full Text Available The aim of this article is to discuss the relation between the contemporary use and advertising of pharmaceutical drugs based on the so-called culture of consumption. We discuss advertising as a means of strengthening the belief in the power of these drugs, presenting them as a synthesis of science and technology to promote health and well being and, particularly, as a quick solution for typical problems of the contemporary world. The obligation to buy the latest medicines is becoming a symbol of social affirmation as well as the only way to weaken our daily problems. Using a logic of consumption as ownership, we create, with the help of advertising, a world of promises concerning immediate solutions, easily sold through on line shopping, supermarkets, department stores and shopping centers. We discuss this set of contemporary practices and values which are turning our way of life into a disposable product.   Keywords: advertising; consumption; pharmaceutical drugs.

  11. Evaluation of Pterin, a Promising Drug Candidate from Cyanide Degrading Bacteria.

    Science.gov (United States)

    Mahendran, Ramasamy; Thandeeswaran, Murugesan; Kiran, Gopikrishnan; Arulkumar, Mani; Ayub Nawaz, K A; Jabastin, Jayamanoharan; Janani, Balraj; Anto Thomas, Thomas; Angayarkanni, Jayaraman

    2018-06-01

    Pterin is a member of the compounds known as pteridines. They have the same nucleus of 2-amino-4-hydroxypteridine (pterin); however, the side-chain is different at the position 6, and the state of oxidation of the ring may exist in different form viz. tetrahydro, dihydro, or a fully oxidized form. In the present study, the microorganisms able to utilize cyanide, and heavy metals have been tested for the efficient production of pterin compound. The soil samples contaminated with cyanide and heavy metals were collected from Salem steel industries, Tamil Nadu, India. Out of 77 isolated strains, 40 isolates were found to utilize sodium cyanate as nitrogen source at different concentrations. However, only 13 isolates were able to tolerate maximum concentration (60 mM) of sodium cyanate and were screened for pterin production. Among the 13 isolates, only 1 organism showed maximum production of pterin, and the same was identified as Bacillus pumilus SVD06. The compound was extracted and purified by preparative high-performance liquid chromatography and analyzed by UV/visible, FTIR, and fluorescent spectrum. The antioxidant property of the purified pterin compound was determined by cyclic voltammetry. In addition, antimicrobial activity of pterin was also studied which was substantiated by antagonistic activity against Escherichia coli, and Pseudomonas aeruginosa. Besides that the pterin compound was proved to inhibit the formation of biofilm. The extracted pterin compounds could be proposed further not only for antioxidant and antimicrobial but also for its potency to aid as anticancer and psychotic drugs in future.

  12. Progress and promise for the MDMA drug development program.

    Science.gov (United States)

    Feduccia, Allison A; Holland, Julie; Mithoefer, Michael C

    2018-02-01

    Pharmacotherapy is often used to target symptoms of posttraumatic stress disorder (PTSD), but does not provide definitive treatment, and side effects of daily medication are often problematic. Trauma-focused psychotherapies are more likely than drug treatment to achieve PTSD remission, but have high dropout rates and ineffective for a large percentage of patients. Therefore, research into drugs that might increase the effectiveness of psychotherapy is a logical avenue of investigation. The most promising drug studied as a catalyst to psychotherapy for PTSD thus far is 3,4-methylenedioxymethamphetamine (MDMA), commonly known as the recreational drug "Ecstasy." MDMA stimulates the release of hormones and neurochemicals that affect key brain areas for emotion and memory processing. A series of recently completed phase 2 clinical trials of MDMA-assisted psychotherapy for treatment of PTSD show favorable safety outcomes and large effect sizes that warrant expansion into multi-site phase 3 trials, set to commence in 2018. The nonprofit sponsor of the MDMA drug development program, the Multidisciplinary Association for Psychedelic Studies (MAPS), is supporting these trials to explore whether MDMA, administered on only a few occasions, can increase the effectiveness of psychotherapy. Brain imaging techniques and animal models of fear extinction are elucidating neural mechanisms underlying the robust effects of MDMA on psychological processing; however, much remains to be learned about the complexities of MDMA effects as well as the complexities of PTSD itself.

  13. Anti-Aging Drugs - Prospect of Longer Life?

    Science.gov (United States)

    Klimova, Blanka; Novotny, Michal; Kuca, Kamil

    2017-11-29

    Aging is a natural part of human life. However, recent discoveries indicate that pharmacological approaches used for the improvement and possibly, for the delay of the aging process, might shed a new light on this topic. This might obviously contribute to the extension of the active life of older people and maintenance of their quality of life, which could consequently reduce both social and economic burden of each country, especially the developed ones. The purpose of this study is to explore pharmacological discoveries which may help to the delay or improvement of the aging process. More specifically, the authors focus on three anti-aging drugs candidates: metformin, rapamycin and resveratrol and one anti-aging component NAD+ precursors whose randomized control trials on animals have appeared to provide some efficacy in this respect and they seem to be promising in the aging process of human beings. This was done by conducting a literature review of available sources describing the issue of aging process with special focus on those anti-aging drug candidates. The results of this study indicate that promising anti-aging candidates seem to be metformin, especially as far as cardiovascular or cancer mortality is concerned, and NAD+ precursors since they appear to promote better organ function, increased physical resistance, disease resistance and prolonged life expectancy. There is a call for more longitudinal clinical trials, which would prove the efficacy of the promising anti-aging drugs candidates in humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making.

    Science.gov (United States)

    Dambach, Donna M; Misner, Dinah; Brock, Mathew; Fullerton, Aaron; Proctor, William; Maher, Jonathan; Lee, Dong; Ford, Kevin; Diaz, Dolores

    2016-04-18

    Discovery toxicology focuses on the identification of the most promising drug candidates through the development and implementation of lead optimization strategies and hypothesis-driven investigation of issues that enable rational and informed decision-making. The major goals are to [a] identify and progress the drug candidate with the best overall drug safety profile for a therapeutic area, [b] remove the most toxic drugs from the portfolio prior to entry into humans to reduce clinical attrition due to toxicity, and [c] establish a well-characterized hazard and translational risk profile to enable clinical trial designs. This is accomplished through a framework that balances the multiple considerations to identify a drug candidate with the overall best drug characteristics and provides a cogent understanding of mechanisms of toxicity. The framework components include establishing a target candidate profile for each program that defines the qualities of a successful candidate based on the intended therapeutic area, including the risk tolerance for liabilities; evaluating potential liabilities that may result from engaging the therapeutic target (pharmacology-mediated or on-target) and that are chemical structure-mediated (off-target); and characterizing identified liabilities. Lead optimization and investigation relies upon the integrated use of a variety of technologies and models (in silico, in vitro, and in vivo) that have achieved a sufficient level of qualification or validation to provide confidence in their use. We describe the strategic applications of various nonclinical models (established and new) for a holistic and integrated risk assessment that is used for rational decision-making. While this review focuses on strategies for small molecules, the overall concepts, approaches, and technologies are generally applicable to biotherapeutics.

  15. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders.

    Science.gov (United States)

    Ivachtchenko, Alexandre V; Lavrovsky, Yan; Okun, Ilya

    2016-05-25

    Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2-2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41-3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer's disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis.

  16. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?

    Science.gov (United States)

    Gopalakrishnan, Ranganath; Frolov, Andrey I; Knerr, Laurent; Drury, William J; Valeur, Eric

    2016-11-10

    Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.

  17. Potential drug development candidates for human soil-transmitted helminthiases.

    Directory of Open Access Journals (Sweden)

    Piero Olliaro

    2011-06-01

    Full Text Available Few drugs are available for soil-transmitted helminthiasis (STH; the benzimidazoles albendazole and mebendazole are the only drugs being used for preventive chemotherapy as they can be given in one single dose with no weight adjustment. While generally safe and effective in reducing intensity of infection, they are contra-indicated in first-trimester pregnancy and have suboptimal efficacy against Trichuris trichiura. In addition, drug resistance is a threat. It is therefore important to find alternatives.We searched the literature and the animal health marketed products and pipeline for potential drug development candidates. Recently registered veterinary products offer advantages in that they have undergone extensive and rigorous animal testing, thus reducing the risk, cost and time to approval for human trials. For selected compounds, we retrieved and summarised publicly available information (through US Freedom of Information (FoI statements, European Public Assessment Reports (EPAR and published literature. Concomitantly, we developed a target product profile (TPP against which the products were compared.The paper summarizes the general findings including various classes of compounds, and more specific information on two veterinary anthelmintics (monepantel, emodepside and nitazoxanide, an antiprotozoal drug, compiled from the EMA EPAR and FDA registration files.Few of the compounds already approved for use in human or animal medicine qualify for development track decision. Fast-tracking to approval for human studies may be possible for veterinary compounds like emodepside and monepantel, but additional information remains to be acquired before an informed decision can be made.

  18. Repurposing of Aspirin and Ibuprofen as Candidate Anti-Cryptococcus Drugs

    Science.gov (United States)

    Ogundeji, Adepemi O.; Pohl, Carolina H.

    2016-01-01

    The usage of fluconazole and amphotericin B in clinical settings is often limited by, among other things, drug resistance development and undesired side effects. Thus, there is a constant need to find new drugs to better manage fungal infections. Toward this end, the study described in this paper considered the repurposing of aspirin (acetylsalicylic acid) and ibuprofen as alternative drugs to control the growth of cryptococcal cells. In vitro susceptibility tests, including a checkerboard assay, were performed to assess the response of Cryptococcus neoformans and Cryptococcus gattii to the above-mentioned anti-inflammatory drugs. Next, the capacity of these two drugs to induce stress as well as their mode of action in the killing of cryptococcal cells was determined. The studied fungal strains revealed a response to both aspirin and ibuprofen that was dose dependent, with ibuprofen exerting greater antimicrobial action. More importantly, the MICs of these drugs did not negatively (i) affect growth or (ii) impair the functioning of macrophages; rather, they enhanced the ability of these immune cells to phagocytose cryptococcal cells. Ibuprofen was also shown to act in synergy with fluconazole and amphotericin B. The treatment of cryptococcal cells with aspirin or ibuprofen led to stress induction via activation of the high-osmolarity glycerol (HOG) pathway, and cell death was eventually achieved through reactive oxygen species (ROS)-mediated membrane damage. The presented data highlight the potential clinical application of aspirin and ibuprofen as candidate anti-Cryptococcus drugs. PMID:27246782

  19. Identification of new candidate drugs for lung cancer using chemical-chemical interactions, chemical-protein interactions and a K-means clustering algorithm.

    Science.gov (United States)

    Lu, Jing; Chen, Lei; Yin, Jun; Huang, Tao; Bi, Yi; Kong, Xiangyin; Zheng, Mingyue; Cai, Yu-Dong

    2016-01-01

    Lung cancer, characterized by uncontrolled cell growth in the lung tissue, is the leading cause of global cancer deaths. Until now, effective treatment of this disease is limited. Many synthetic compounds have emerged with the advancement of combinatorial chemistry. Identification of effective lung cancer candidate drug compounds among them is a great challenge. Thus, it is necessary to build effective computational methods that can assist us in selecting for potential lung cancer drug compounds. In this study, a computational method was proposed to tackle this problem. The chemical-chemical interactions and chemical-protein interactions were utilized to select candidate drug compounds that have close associations with approved lung cancer drugs and lung cancer-related genes. A permutation test and K-means clustering algorithm were employed to exclude candidate drugs with low possibilities to treat lung cancer. The final analysis suggests that the remaining drug compounds have potential anti-lung cancer activities and most of them have structural dissimilarity with approved drugs for lung cancer.

  20. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs.

    Science.gov (United States)

    Sudhakar, Yajaman; Kuotsu, Ketousetuo; Bandyopadhyay, A K

    2006-08-10

    Rapid developments in the field of molecular biology and gene technology resulted in generation of many macromolecular drugs including peptides, proteins, polysaccharides and nucleic acids in great number possessing superior pharmacological efficacy with site specificity and devoid of untoward and toxic effects. However, the main impediment for the oral delivery of these drugs as potential therapeutic agents is their extensive presystemic metabolism, instability in acidic environment resulting into inadequate and erratic oral absorption. Parenteral route of administration is the only established route that overcomes all these drawbacks associated with these orally less/inefficient drugs. But, these formulations are costly, have least patient compliance, require repeated administration, in addition to the other hazardous effects associated with this route. Over the last few decades' pharmaceutical scientists throughout the world are trying to explore transdermal and transmucosal routes as an alternative to injections. Among the various transmucosal sites available, mucosa of the buccal cavity was found to be the most convenient and easily accessible site for the delivery of therapeutic agents for both local and systemic delivery as retentive dosage forms, because it has expanse of smooth muscle which is relatively immobile, abundant vascularization, rapid recovery time after exposure to stress and the near absence of langerhans cells. Direct access to the systemic circulation through the internal jugular vein bypasses drugs from the hepatic first pass metabolism leading to high bioavailability. Further, these dosage forms are self-administrable, cheap and have superior patient compliance. Developing a dosage form with the optimum pharmacokinetics is a promising area for continued research as it is enormously important and intellectually challenging. With the right dosage form design, local environment of the mucosa can be controlled and manipulated in order to

  1. A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials

    Science.gov (United States)

    Eleuteri, C.; Olla, S.; Veroni, C.; Umeton, R.; Mechelli, R.; Romano, S.; Buscarinu, Mc.; Ferrari, F.; Calò, G.; Ristori, G.; Salvetti, M.; Agresti, C.

    2017-04-01

    There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds’ activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan.

  2. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening

    Directory of Open Access Journals (Sweden)

    Pothineni VR

    2016-04-01

    Full Text Available Venkata Raveendra Pothineni,1 Dhananjay Wagh,1 Mustafeez Mujtaba Babar,1 Mohammed Inayathullah,1 David Solow-Cordero,2 Kwang-Min Kim,1 Aneesh V Samineni,1 Mansi B Parekh,1 Lobat Tayebi,3 Jayakumar Rajadas1 1Biomaterials and Advanced Drug Delivery Laboratory, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, 2Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA, 3Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA Abstract: Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%–20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved that were screened are Library of Pharmacologically Active Compounds (LOPAC1280, the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150

  3. Imaging biomarkers as surrogate endpoints for drug development

    International Nuclear Information System (INIS)

    Richter, Wolf S.

    2006-01-01

    The employment of biomarkers (including imaging biomarkers, especially PET) in drug development has gained increasing attention during recent years. This has been partly stimulated by the hope that the integration of biomarkers into drug development programmes may be a means to increase the efficiency and effectiveness of the drug development process by early identification of promising drug candidates - thereby counteracting the rising costs of drug development. More importantly, however, the interest in biomarkers for drug development is the logical consequence of recent advances in biosciences and medicine which are leading to target-specific treatments in the framework of ''personalised medicine''. A considerable proportion of target-specific drugs will show effects in subgroups of patients only. Biomarkers are a means to identify potential responders, or patient subgroups at risk for specific side-effects. Biomarkers are used in early drug development in the context of translational medicine to gain information about the drug's potential in different patient groups and disease states. The information obtained at this stage is mainly important for designing subsequent clinical trials and to identify promising drug candidates. Biomarkers in later phases of clinical development may - if properly validated - serve as surrogate endpoints for clinical outcomes. Regulatory agencies in the EU and the USA have facilitated the use of biomarkers early in the development process. The validation of biomarkers as surrogate endpoints is part of FDA's ''critical path initiative''. (orig.)

  4. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery....

  5. Preclinical quantitative MicroPET imaging in evaluation of neuroprotective drug candidates

    International Nuclear Information System (INIS)

    Son, Ji Yeon; Kim, Yu Kyeong; Kim, Ji Sun; Lee, Byung Chul; Kim, Kyeong Min; Choi, Tae Hyun; Cheon, Gi Jeong; Lee, Won Woo; Kim, Sang Eun

    2007-01-01

    Using in vivo molecular imaging with microPET/SPECT has been expected to facilitate drug discovery and development. In this study, we applied quantitative microPET to the preclinical evaluation of the effects of two neuroprotective drug candidates to the nigrostriatal dopaminergic neuronal damage. Fifteen SD rats were divided into three groups. The rats of each group were orally administrated one of neuroprotective candidate; NeuProtec (100mg/kg bid) and SureCero (10mg/kg, qd) or normal saline (0.1ml, qd) for 3 weeks. 6-OHDA was sterotactically placed to the right striatum on eighth day after starting while continuing the medication for additional 14 days. [ 124 I]FP-ClT PET scans were obtained using microPET R4 scanner. The behavioral test by amphetamine-induced rotation and the histological examination after thyrosine hydroxylase (TH) immunohistochemical staining were performed. Different uptake in the lesioned striatum among the groups were demonstrated on [ 124 I]FP-CIT PET images. The rats with NeuProtec showed higher binding in the lesion than controls. No differences were observed in SureCere groups. The FP-CIT uptake in the lesioned striatum was well correlated with the % reduction of TH(+) cells (rho =0.73, p=0.025), and also correlated with rotation test (rho =0.79, p=0.001) [ 124 I]FP-CIT animal PET depicted the neuroprotective effects of NeuProtec to the 6-OHDA neurotoxicity in the rat striatum. No demonstrable effect of SureCero might indicate that inadequate dosage was used in this study. MicroPET imaging with small animal could be a great tool in preclinical evaluation of drug efficacy

  6. Plants’ Natural Products as Alternative Promising Anti-Candida Drugs

    Science.gov (United States)

    Soliman, Sameh; Alnajdy, Dina; El-Keblawy, Ali A.; Mosa, Kareem A.; Khoder, Ghalia; Noreddin, Ayman M.

    2017-01-01

    Candida is a serious life-threatening pathogen, particularly with immunocompromised patients. Candida infections are considered as a major cause of morbidity and mortality in a broad range of immunocompromised patients. Candida infections are common in hospitalized patients and elderly people. The difficulty to eradicate Candida infections is owing to its unique switch between yeast and hyphae forms and more likely to biofilm formations that render resistance to antifungal therapy. Plants are known sources of natural medicines. Several plants show significant anti-Candida activities and some of them have lower minimum inhibitory concentration, making them promising candidates for anti-Candida therapy. However, none of these plant products is marketed for anti-Candida therapy because of lack of sufficient information about their efficacy, toxicity, and kinetics. This review revises major plants that have been tested for anti-Candida activities with recommendations for further use of some of these plants for more investigation and in vivo testing including the use of nanostructure lipid system. PMID:28989245

  7. Natural products as promising drug candidates for the treatment of Alzheimer's disease: molecular mechanism aspect.

    Science.gov (United States)

    Ansari, Niloufar; Khodagholi, Fariba

    2013-07-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder to date, with no curative or preventive therapy. Histopathological hallmarks of AD include deposition of β-amyloid plaques and formation of neurofibrillary tangles. Extent studies on pathology of the disease have made important discoveries regarding mechanism of disease and potential therapeutic targets. Many cellular changes including oxidative stress, disruption of Ca2+ homeostasis, inflammation, metabolic disturbances, and accumulation of unfolded/misfolded proteins can lead to programmed cell death in AD. Despite intensive research, only five approved drugs are available for the management of AD. Hence, there is a need to look at alternative therapies. Use of natural products and culinary herbs in medicine has gained popularity in recent years. Several natural substances with neuroprotective effects have been widely studied. Most of these compounds have remarkable antioxidant properties and act mainly by scavenging free radical species. Some of them increase cell survival and improve cognition by directly affecting amyloidogenesis and programmed cell death pathways. Further studies on these natural products and their mechanism of action, parallel with the use of novel pharmaceutical drug design and delivery techniques, enable us to offer an addition to conventional medicine. This review discussed some natural products with potential neuroprotective properties against Aβ with respect to their mechanism of action.

  8. The promises and pitfalls of retrieval-extinction procedures in preventing relapse to drug seeking

    Directory of Open Access Journals (Sweden)

    Gavan P McNally

    2013-03-01

    Full Text Available Relapse to drug seeking after treatment or a period of abstinence remains a fundamental challenge for drug users. The retrieval – extinction procedure offers promise in augmenting the efficacy of exposure based treatment for drug use and for protecting against relapse to drug seeking. Preceding extinction training with a brief retrieval or reminder trial, retrieval – extinction training, has been shown to reduce reinstatement of extinguished drug seeking in animal models and also to produce profound and long lasting decrements in cue-induced craving in human heroin users. However, the mechanisms that mediate these effects of retrieval - extinction training are unclear. Moreover, under some circumstances, the retrieval – extinction procedure can significantly increase vulnerability to reinstatement in animal models.

  9. Oral administration of drugs with hypersensitivity potential induces germinal center hyperplasia in secondary lymphoid organ/tissue in Brown Norway rats, and this histological lesion is a promising candidate as a predictive biomarker for drug hypersensitivity occurrence in humans

    International Nuclear Information System (INIS)

    Tamura, Akitoshi; Miyawaki, Izuru; Yamada, Toru; Kimura, Juki; Funabashi, Hitoshi

    2013-01-01

    It is important to evaluate the potential of drug hypersensitivity as well as other adverse effects during the preclinical stage of the drug development process, but validated methods are not available yet. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using Brown Norway (BN) rats. As representative drugs with hypersensitivity potential in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals by examinations including observation of clinical signs, hematology, determination of serum IgE levels, histology, and flow cytometric analysis. Skin rashes were not observed in any animals treated with these drugs. Increases in the number of circulating inflammatory cells and serum IgE level did not necessarily occur in the animals treated with these drugs. However, histological examination revealed that germinal center hyperplasia was commonly induced in secondary lymphoid organs/tissues in the animals treated with these drugs. In cytometric analysis, changes in proportions of lymphocyte subsets were noted in the spleen of the animals treated with PHT or CBZ during the early period of administration. The results indicated that the potential of drug hypersensitivity was identified in BN rat by performing histological examination of secondary lymphoid organs/tissues. Data obtained herein suggested that drugs with hypersensitivity potential in humans gained immune reactivity in BN rat, and the germinal center hyperplasia induced by administration of these drugs may serve as a predictive biomarker for drug hypersensitivity occurrence. - Highlights: • We tested Brown Norway rats as a candidate model for predicting drug hypersensitivity. • The allergic drugs did not induce skin rash, whereas D-penicillamine did so in the rats. • Some of allergic drugs increased

  10. Oral administration of drugs with hypersensitivity potential induces germinal center hyperplasia in secondary lymphoid organ/tissue in Brown Norway rats, and this histological lesion is a promising candidate as a predictive biomarker for drug hypersensitivity occurrence in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Akitoshi, E-mail: akitoshi-tamura@ds-pharma.co.jp; Miyawaki, Izuru; Yamada, Toru; Kimura, Juki; Funabashi, Hitoshi

    2013-08-15

    It is important to evaluate the potential of drug hypersensitivity as well as other adverse effects during the preclinical stage of the drug development process, but validated methods are not available yet. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using Brown Norway (BN) rats. As representative drugs with hypersensitivity potential in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals by examinations including observation of clinical signs, hematology, determination of serum IgE levels, histology, and flow cytometric analysis. Skin rashes were not observed in any animals treated with these drugs. Increases in the number of circulating inflammatory cells and serum IgE level did not necessarily occur in the animals treated with these drugs. However, histological examination revealed that germinal center hyperplasia was commonly induced in secondary lymphoid organs/tissues in the animals treated with these drugs. In cytometric analysis, changes in proportions of lymphocyte subsets were noted in the spleen of the animals treated with PHT or CBZ during the early period of administration. The results indicated that the potential of drug hypersensitivity was identified in BN rat by performing histological examination of secondary lymphoid organs/tissues. Data obtained herein suggested that drugs with hypersensitivity potential in humans gained immune reactivity in BN rat, and the germinal center hyperplasia induced by administration of these drugs may serve as a predictive biomarker for drug hypersensitivity occurrence. - Highlights: • We tested Brown Norway rats as a candidate model for predicting drug hypersensitivity. • The allergic drugs did not induce skin rash, whereas D-penicillamine did so in the rats. • Some of allergic drugs increased

  11. Proteomic candidate biomarkers of drug-induced nephrotoxicity in the rat.

    Directory of Open Access Journals (Sweden)

    Rodney Rouse

    Full Text Available Improved biomarkers of acute nephrotoxicity are coveted by the drug development industry, regulatory agencies, and clinicians. In an effort to identify such biomarkers, urinary peptide profiles of rats treated with two different nephrotoxins were investigated. 493 marker candidates were defined that showed a significant response to cis-platin comparing a cis-platin treated cohort to controls. Next, urine samples from rats that received three consecutive daily doses of 150 or 300 mg/kg gentamicin were examined. 557 potential biomarkers were initially identified; 108 of these gentamicin-response markers showed a clear temporal response to treatment. 39 of the cisplatin-response markers also displayed a clear response to gentamicin. Of the combined 147 peptides, 101 were similarly regulated by gentamicin or cis-platin and 54 could be identified by tandem mass spectrometry. Most were collagen type I and type III fragments up-regulated in response to gentamicin treatment. Based on these peptides, classification models were generated and validated in a longitudinal study. In agreement with histopathology, the observed changes in classification scores were transient, initiated after the first dose, and generally persistent over a period of 10-20 days before returning to control levels. The data support the hypothesis that gentamicin-induced renal toxicity up-regulates protease activity, resulting in an increase in several specific urinary collagen fragments. Urinary proteomic biomarkers identified here, especially those common to both nephrotoxins, may serve as a valuable tool to investigate potential new drug candidates for the risk of nephrotoxicity.

  12. Viral induced oxidative and inflammatory response in Alzheimer's disease pathogenesis with identification of potential drug candidates: A systematic review using systems biology approach.

    Science.gov (United States)

    Talwar, Puneet; Gupta, Renu; Kushwaha, Suman; Agarwal, Rachna; Saso, Luciano; Kukreti, Shrikant; Kukreti, Ritushree

    2018-04-19

    Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug-Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein-Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate

    Directory of Open Access Journals (Sweden)

    Miguel Angel Moreno

    2014-12-01

    Full Text Available Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs.

  14. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.

    Science.gov (United States)

    Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta

    2014-06-01

    Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy.

    Science.gov (United States)

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Majidi, Jafar

    2018-09-01

    Over the recent decades, the use of antibody-drug conjugates (ADCs) has led to a paradigm shift in cancer chemotherapy. Antibody-based treatment of various human tumors has presented dramatic efficacy and is now one of the most promising strategies used for targeted therapy of patients with a variety of malignancies, including hematological cancers and solid tumors. Monoclonal antibodies (mAbs) are able to selectively deliver cytotoxic drugs to tumor cells, which express specific antigens on their surface, and has been suggested as a novel category of agents for use in the development of anticancer targeted therapies. In contrast to conventional treatments that cause damage to healthy tissues, ADCs use mAbs to specifically attach to antigens on the surface of target cells and deliver their cytotoxic payloads. The therapeutic success of future ADCs depends on closely choosing the target antigen, increasing the potency of the cytotoxic cargo, improving the properties of the linker, and reducing drug resistance. If appropriate solutions are presented to address these issues, ADCs will play a more important role in the development of targeted therapeutics against cancer in the next years. We review the design of ADCs, and focus on how ADCs can be exploited to overcome multiple drug resistance (MDR). © 2018 Wiley Periodicals, Inc.

  16. Anti-chemokine small molecule drugs: a promising future?

    Science.gov (United States)

    Proudfoot, Amanda E I; Power, Christine A; Schwarz, Matthias K

    2010-03-01

    Chemokines have principally been associated with inflammation due to their role in the control of leukocyte migration, but just over a decade ago chemokine receptors were also identified as playing a pivotal role in the entry of the HIV virus into cells. Chemokines activate seven transmembrane G protein-coupled receptors, making them extremely attractive therapeutic targets for the pharmaceutical industry. Although there are now a large number of molecules targeting chemokines and chemokine receptors including neutralizing antibodies in clinical trials for inflammatory diseases, the results to date have not always been positive, which has been disappointing for the field. These failures have often been attributed to redundancy in the chemokine system. However, other difficulties have been encountered in drug discovery processes targeting the chemokine system, and these will be addressed in this review. In this review, the reader will get an insight into the hurdles that have to be overcome, learn about some of the pitfalls that may explain the lack of success, and get a glimpse of the outlook for the future. In 2007, the FDA approved maraviroc, an inhibitor of CCR5 for the prevention of HIV infection, the first triumph for a small-molecule drug acting on the chemokine system. The time to market, 11 years from discovery of CCR5, was fast by industry standards. A second small-molecule drug, a CXCR4 antagonist for hematopoietic stem cell mobilization, was approved by the FDA at the end of 2008. The results of a Phase III trial with a CCR9 inhibitor for Crohn's disease are also promising. This could herald the first success for a chemokine receptor antagonist as an anti-inflammatory therapeutic and confirms the importance of chemokine receptors as a target class for anti-inflammatory and autoimmune diseases.

  17. Use of Preclinical Drug vs. Food Choice Procedures to Evaluate Candidate Medications for Cocaine Addiction.

    Science.gov (United States)

    Banks, Matthew L; Hutsell, Blake A; Schwienteck, Kathryn L; Negus, S Stevens

    2015-06-01

    Drug addiction is a disease that manifests as an inappropriate allocation of behavior towards the procurement and use of the abused substance and away from other behaviors that produce more adaptive reinforcers (e.g. exercise, work, family and social relationships). The goal of treating drug addiction is not only to decrease drug-maintained behaviors, but also to promote a reallocation of behavior towards alternative, nondrug reinforcers. Experimental procedures that offer concurrent access to both a drug reinforcer and an alternative, nondrug reinforcer provide a research tool for assessment of medication effects on drug choice and behavioral allocation. Choice procedures are currently the standard in human laboratory research on medications development. Preclinical choice procedures have been utilized in biomedical research since the early 1940's, and during the last 10-15 years, their use for evaluation of medications to treat drug addiction has increased. We propose here that parallel use of choice procedures in preclinical and clinical studies will facilitate translational research on development of medications to treat cocaine addiction. In support of this proposition, a review of the literature suggests strong concordance between preclinical effectiveness of candidate medications to modify cocaine choice in nonhuman primates and rodents and clinical effectiveness of these medications to modify either cocaine choice in human laboratory studies or metrics of cocaine abuse in patients with cocaine use disorder. The strongest evidence for medication effectiveness in preclinical choice studies has been obtained with maintenance on the monoamine releaser d -amphetamine, a candidate agonist medication for cocaine use analogous to use of methadone to treat heroin abuse or nicotine formulations to treat tobacco dependence.

  18. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.

    Science.gov (United States)

    Meanwell, Nicholas A

    2011-09-19

    The development of small molecule drug candidates from the discovery phase to a marketed product continues to be a challenging enterprise with very low success rates that have fostered the perception of poor productivity by the pharmaceutical industry. Although there have been significant advances in preclinical profiling that have improved compound triaging and altered the underlying reasons for compound attrition, the failure rates have not appreciably changed. As part of an effort to more deeply understand the reasons for candidate failure, there has been considerable interest in analyzing the physicochemical properties of marketed drugs for the purpose of comparing with drugs in discovery and development as a means capturing recent trends in drug design. The scenario that has emerged is one in which contemporary drug discovery is thought to be focused too heavily on advancing candidates with profiles that are most easily satisfied by molecules with increased molecular weight and higher overall lipophilicity. The preponderance of molecules expressing these properties is frequently a function of increased aromatic ring count when compared with that of the drugs launched in the latter half of the 20th century and may reflect a preoccupation with maximizing target affinity rather than taking a more holistic approach to drug design. These attributes not only present challenges for formulation and absorption but also may influence the manifestation of toxicity during development. By providing some definition around the optimal physicochemical properties associated with marketed drugs, guidelines for drug design have been developed that are based largely on calculated parameters and which may readily be applied by medicinal chemists as an aid to understanding candidate quality. The physicochemical properties of a molecule that are consistent with the potential for good oral absorption were initially defined by Lipinski, with additional insights allowing further

  19. β-secretase inhibitor; a promising novel therapeutic drug in AD

    Directory of Open Access Journals (Sweden)

    Kelly Willemijn Menting

    2014-07-01

    Full Text Available Alzheimer’s disease (AD and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO, a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ CSF levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, BACE1 inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.

  20. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  1. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases.

    Science.gov (United States)

    Allarakhia, Minna

    2013-01-01

    Repurposing has the objective of targeting existing drugs and failed, abandoned, or yet-to-be-pursued clinical candidates to new disease areas. The open-source model permits for the sharing of data, resources, compounds, clinical molecules, small libraries, and screening platforms to cost-effectively advance old drugs and/or candidates into clinical re-development. Clearly, at the core of drug-repurposing activities is collaboration, in many cases progressing beyond the open sharing of resources, technology, and intellectual property, to the sharing of facilities and joint program development to foster drug-repurposing human-capacity development. A variety of initiatives under way for drug repurposing, including those targeting rare and neglected diseases, are discussed in this review and provide insight into the stakeholders engaged in drug-repurposing discovery, the models of collaboration used, the intellectual property-management policies crafted, and human capacity developed. In the case of neglected tropical diseases, it is suggested that the development of human capital be a central aspect of drug-repurposing programs. Open-source models can support human-capital development through collaborative data generation, open compound access, open and collaborative screening, preclinical and possibly clinical studies. Given the urgency of drug development for neglected tropical diseases, the review suggests elements from current repurposing programs be extended to the neglected tropical diseases arena.

  2. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    Science.gov (United States)

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  3. Medicinal benefits of marine invertebrates: sources for discovering natural drug candidates.

    Science.gov (United States)

    De Zoysa, Mahanama

    2012-01-01

    Marine invertebrates are one of the major groups of organisms, which could be diversified under the major taxonomic groups of Porifera, Cnidaria, Mollusca, Arthropoda, Echinodermata, and many other minor phyla. To date, range of medicinal benefits and a significant number of marine natural products (MNPs) have been discovered from marine invertebrates. Seafood diet from edible marine invertebrates such as mollusks and crustaceans has been linked with various medicinal benefits to improve human health. Among marine invertebrates, spongers from phylum Porifera is the most dominant group responsible for discovering large number of MNPs, which have been used as template to develop therapeutic drugs. MNPs isolated from invertebrates have shown wide range of therapeutic properties including antimicrobial, antioxidant, antihypertensive, anticoagulant, anticancer, anti-inflammatory, wound healing and immune modulator, and other medicinal effects. Therefore, marine invertebrates are rich sources of chemical diversity and health benefits for developing drug candidates, cosmetics, nutritional supplements, and molecular probes that can be supported to increase the healthy life span of human. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Repurposing drugs for the treatment and control of helminth infections

    Directory of Open Access Journals (Sweden)

    Gordana Panic

    2014-12-01

    Full Text Available Helminth infections are responsible for a considerable public health burden, yet the current drug armamentarium is small. Given the high cost of drug discovery and development, the high failure rates and the long duration to develop novel treatments, drug repurposing circumvents these obstacles by finding new uses for compounds other than those they were initially intended to treat. In the present review, we summarize in vivo and clinical trial findings testing clinical candidates and marketed drugs against schistosomes, food-borne trematodes, soil-transmitted helminths, Strongyloides stercoralis, the major human filariases lymphatic filariasis and onchocerciasis, taeniasis, neurocysticercosis and echinococcosis. While expanding the applications of broad-spectrum or veterinary anthelmintics continues to fuel alternative treatment options, antimalarials, antibiotics, antiprotozoals and anticancer agents appear to be producing fruitful results as well. The trematodes and nematodes continue to be most investigated, while cestodal drug discovery will need to be accelerated. The most clinically advanced drug candidates include the artemisinins and mefloquine against schistosomiasis, tribendimidine against liver flukes, oxantel pamoate against trichuriasis, and doxycycline against filariasis. Preclinical studies indicate a handful of promising future candidates, and are beginning to elucidate the broad-spectrum activity of some currently used anthelmintics. Challenges and opportunities are further discussed.

  5. Has molecular imaging delivered to drug development?

    Science.gov (United States)

    Murphy, Philip S.; Patel, Neel; McCarthy, Timothy J.

    2017-10-01

    Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies. Specific benefits of molecular imaging in this setting (compared to blood and tissue sampling) include non-invasiveness and the ability to survey the whole body temporally. These methods have been adopted primarily for neuroscience drug development, catalysed by the inability to access the brain compartment by other means. If we believe molecular imaging is a technology platform able to underpin clinical drug development, why is it not adopted further to enable earlier decisions? This article considers current drug development needs, progress towards integration of molecular imaging into studies, current impediments and proposed models to broaden use and increase impact. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  6. Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds

    Science.gov (United States)

    Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Síntia; Thiago Jucá Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco

    2013-01-01

    Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822

  7. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds.

    Directory of Open Access Journals (Sweden)

    Debmalya Barh

    Full Text Available Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC for most of the pathogenic Vibrio strains. Two targets (uppP and yajC are novel to Vibrio, and two targets (uppP and ompU can be used to develop both drugs and vaccines (dual targets against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species.

  8. Promise and deceit: pharmakos, drug replacement therapy, and the perils of experience.

    Science.gov (United States)

    Meyers, Todd

    2014-06-01

    The problem of lying as a feature of medication compliance has been well documented in anthropological and clinical literatures. Yet the role of the lie-its destabilizing effects on the continuity of drug treatment and therapy, as a technology of drug misuse, or as a way to understand the neuro-chemical processes of treatment (pharmacotherapy "tricking" or lying to the brain)-has been less considered, particularly in the context of opioid replacement therapy. The following paper is set against the backdrop of a three-year study of adolescents receiving a relatively new drug (buprenorphine) for the treatment of opiate dependency inside and outside of highly monitored treatment environments in the United States. Lies give order not only to the experience of addiction but also to the experience of therapy as well. In order to better understand this ordering of experience, the paper puts the widely discussed conceptual duality of the pharmakon (healing and poison) in conversation with a perilously overlooked subject in the critical study of pharmacotherapy, namely the pharmakos or the personification of sacrifice. The paper demonstrates how the patient-subject comes to represent therapeutic promise by allowing for the possibility of (and often performing) deceit.

  9. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) AGONISTS AS PROMISING NEW MEDICATIONS FOR DRUG ADDICTION: PRECLINICAL EVIDENCE

    Science.gov (United States)

    Foll, Bernard Le; Ciano, Patricia Di; Panlilio, Leigh V.; Goldberg, Steven R.; Ciccocioppo, Roberto

    2013-01-01

    This review examines the growing literature on the role of peroxisome proliferator-activated receptors (PPARs) in addiction. There are two subtypes of PPAR receptors that have been studied in addiction: PPAR-α and PPAR-γ. The role of each PPAR subtype in common models of addictive behavior, mainly pre-clinical models, is summarized. In particular, studies are reviewed that investigated the effects of PPAR-α agonists on relapse, sensitization, conditioned place preference, withdrawal and drug intake, and effects of PPAR-γ agonists on relapse, withdrawal and drug intake. Finally, studies that investigated the effects of PPAR agonists on neural pathways of addiction are reviewed. Taken together this preclinical data indicates that PPAR agonists are promising new medications for drug addiction treatment. PMID:23614675

  10. Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system

    Directory of Open Access Journals (Sweden)

    Virginie eBonnamain

    2012-04-01

    Full Text Available Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other affections of the central nervous system (CNS like Parkinson and Huntington diseases, multiple sclerosis or stroke. If cell replacement therapy already went through clinical trials for some of these diseases using fetal human neuroblasts, several important limitations led to the search for alternative cell sources that would be more suitable for intracerebral transplantation. Taking into account logistical and ethical issues linked to the use of tissue derived from human fetuses, and the immunologically special status of the CNS allowing the occurrence of deleterious immune reactions, Neural Stem/Progenitor Cells (NSPCs appear as an interesting cell source candidate. In addition to their ability for replacing cell populations lost during the pathological events, NSPCs also display surprising therapeutic effects of neuroprotection and immunomodulation. A better knowledge of the mechanisms involved in these specific characteristics will hopefully lead in the future to a successful use of NSPCs in regenerative medicine for CNS affections.

  11. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    Science.gov (United States)

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-04

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.

  12. New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future.

    Science.gov (United States)

    Lienhardt, Christian; Raviglione, Mario; Spigelman, Mel; Hafner, Richard; Jaramillo, Ernesto; Hoelscher, Michael; Zumla, Alimuddin; Gheuens, Jan

    2012-05-15

    For the first time in 40 years, a portfolio of promising new compounds for the treatment of tuberculosis is on the horizon. The introduction of new drugs in combination treatment for all forms of tuberculosis raises several issues related to patients' access to novel treatments, programmatic feasibility, cost effectiveness, and implications for monitoring and surveillance, particularly with regard to the development of drug resistance. Particular attention should be given to the identification of optimal drug combination(s) for the treatment of all forms of tuberculosis, particularly in high-risk and vulnerable groups, such as human immunodeficiency virus-coinfected persons and children, and to the rational use of new drugs. Addressing these issues adequately requires the establishment of clear guidelines to assist countries in the development of policies for the proper use of tuberculosis drugs in a way that guarantees access to best treatments for all those in need and avoids inappropriate use of new drugs. After a description of these various challenges, we present activities that will be carried out by the World Health Organization in collaboration with key stakeholders for the development of policy guidelines for optimal treatment of tuberculosis.

  13. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections.

    Science.gov (United States)

    Lembo, David; Donalisio, Manuela; Civra, Andrea; Argenziano, Monica; Cavalli, Roberta

    2018-01-01

    Viral infections represent a public health problem and one of the leading causes of global mortality. Nanomedicine strategies can be considered a powerful tool to enhance the effectiveness of antiviral drugs, often associated with solubility and bioavailability issues. Consequently, high doses and frequent administrations are required, resulting in adverse side effects. To overcome these limitations, various nanomedicine platforms have been designed. Areas covered: This review focuses on the state of the art of organic-based nanoparticles for the delivery of approved antivirals. A brief description of the main characteristics of nanocarriers is followed by an overview of the most promising research addressing the treatment of most important viral infections. Expert opinion: The activity of antiviral drugs could be improved with nanomedicine formulations. Indeed, nanoparticles can affect the fate of the encapsulated drugs, allowing controlled release kinetics, enhanced bioavailability, modified pharmacokinetics, and reduced side effects. In addition, the physicochemical properties of nanocarriers can enable their capability to target specific sites and to interact with virus structures. In this regard, nanomedicines can be considered an opportunity to enhance the therapeutic index of antivirals. Efficacy, safety, and manufacturing issues need to be carefully assessed to bring this promising approach to the clinic.

  14. ASASSN-16dt and ASASSN-16hg: Promising candidate period bouncers

    Science.gov (United States)

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Taguchi, Kenta; Wakamatsu, Yasuyuki; Hambsch, Franz-Josef; Monard, Berto; Myers, Gordon; Dvorak, Shawn; Starr, Peter; Brincat, Stephen M.; de Miguel, Enrique; Ulowetz, Joseph; Itoh, Hiroshi; Stone, Geoff; Nogami, Daisaku

    2018-04-01

    We present optical photometry of superoutbursts that occurred in 2016 of two WZ Sge-type dwarf novae (DNe), ASASSN-16dt and ASASSN-16hg. Their light curves showed a dip in brightness between the first plateau stage with no ordinary superhumps (or early superhumps) and the second plateau stage with ordinary superhumps. We find that the dip is produced by the slow evolution of the 3 : 1 resonance tidal instability and that it would likely be observed in low mass-ratio objects. An estimated mass ratio (q ≡ M2/M1) from the period of developing (stage A) superhumps [0.06420(3) d] was 0.036(2) in ASASSN-16dt. Additionally, its superoutburst has many properties similar to those in other low-q WZ Sge-type DNe: long-lasting stage-A superhumps, small superhump amplitudes, long delay of ordinary-superhump appearances, and a slow decline rate in the plateau stage with superhumps. Its very small mass ratio and observational characteristics suggest that this system is one of the best candidates for a period bouncer—a binary accounting for the missing population of post-period minimum cataclysmic variables. Although it is not clearly verified due to the lack of detection of stage-A superhumps, ASASSN-16hg might be a possible candidate for period bouncers on the basis of the morphology of its light curves and the small superhump amplitudes. Many outburst properties of period bouncer candidates would originate from the small tidal effects of their secondary stars.

  15. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.

    Science.gov (United States)

    Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-06-11

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development. Copyright © 2014, American Association for the Advancement of Science.

  16. The Promise of Neuroprotective Agents in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Judith ePotashkin

    2011-11-01

    Full Text Available Parkinson’s Disease is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available.

  17. Reinforcing the membrane-mediated mechanism of action of the anti-tuberculosis candidate drug thioridazine with molecular simulations

    DEFF Research Database (Denmark)

    Kopec, Wojciech; Khandelia, Himanshu

    2014-01-01

    Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various propose......-membrane interactions, and reinforce the wider, emerging view of action of many small, bioactive compounds....... mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations...

  18. Novel and Efficient Synthesis of the Promising Drug Candidate Discodermolide

    Science.gov (United States)

    2010-02-01

    of its production may require its wide use as a livestock antibiotic , a market that seems to have disappeared. Therefore, as a purely practical...building block 9. Thus, chiral syn, anti stereotriad building blocks, useful for the preparation of polypropionate antibiotics , may be efficiently accessed... antibiotics that are used in human and veterinary medicine. In this paper, we illustrate the potential of a deconstruction-reconstruction strategy for the

  19. Mutagenic potential of Cordia ecalyculata alone and in association with Spirulina maxima for their evaluation as candidate anti-obesity drugs.

    Science.gov (United States)

    Araldi, R P; Rechiutti, B M; Mendes, T B; Ito, E T; Souza, E B

    2014-07-07

    Obesity is one of the most important nutritional disorders, and can be currently considered as an epidemic. Although there are few weight reduction drugs available on the market, some new drug candidates have been proposed, including Cordia ecalyculata, a Brazilian plant with anorectic properties, and Spirulina maxima, a cyanobacterium with antioxidant and anti-genotoxic activity. In this study, we evaluated the mutagenic potential of C. ecalyculata at doses of 150, 300, and 500 mg/kg alone and in association with S. maxima at doses of 75, 150, and 250 mg/kg, respectively, through an in vivo micronucleus test, using mice of both sexes, and an in vitro micronucleus test and comet assay, using human peripheral blood. For all tests, cyclophosphamide was used as a positive control. The results showed that treatment of 300 mg/kg C. ecalyculata and the combination treatment of 500 mg/kg C. ecalyculata with 250 mg/kg S. maxima resulted in anorectic effects. The mutagenic tests did not reveal any clastogenic or genotoxic activity for any treatment, indicating that these candidates could be marketed as weight-reduction drugs. Moreover, the drugs contain chemo-preventive substances that can protect against tumorigenesis, which has been associated with obesity.

  20. The promise of N-acetylcysteine in neuropsychiatry.

    Science.gov (United States)

    Berk, Michael; Malhi, Gin S; Gray, Laura J; Dean, Olivia M

    2013-03-01

    N-Acetylcysteine (NAC) targets a diverse array of factors germane to the pathophysiology of multiple neuropsychiatric disorders including glutamatergic transmission, the antioxidant glutathione, neurotrophins, apoptosis, mitochondrial function, and inflammatory pathways. This review summarises the areas where the mechanisms of action of NAC overlap with known pathophysiological elements, and offers a précis of current literature regarding the use of NAC in disorders including cocaine, cannabis, and smoking addictions, Alzheimer's and Parkinson's diseases, autism, compulsive and grooming disorders, schizophrenia, depression, and bipolar disorder. There are positive trials of NAC in all these disorders, and although many of these require replication and are methodologically preliminary, this makes it one of the most promising drug candidates in neuropsychiatric disorders. The efficacy pattern of NAC interestingly shows little respect for the current diagnostic systems. Its benign tolerability profile, its action on multiple operative pathways, and the emergence of positive trial data make it an important target to investigate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. In vitro resistance profile of the candidate HIV-1 microbicide drug dapivirine.

    Science.gov (United States)

    Schader, Susan M; Oliveira, Maureen; Ibanescu, Ruxandra-Ilinca; Moisi, Daniela; Colby-Germinario, Susan P; Wainberg, Mark A

    2012-02-01

    Antiretroviral-based microbicides may offer a means to reduce the sexual transmission of HIV-1. Suboptimal use of a microbicide may, however, lead to the development of drug resistance in users that are already, or become, infected with HIV-1. In such cases, the efficacy of treatments may be compromised since the same (or similar) antiretrovirals used in treatments are being developed as microbicides. To help predict which drug resistance mutations may develop in the context of suboptimal use, HIV-1 primary isolates of different subtypes and different baseline resistance profiles were used to infect primary cells in vitro in the presence of increasing suboptimal concentrations of the two candidate microbicide antiretrovirals dapivirine (DAP) and tenofovir (TFV) alone or in combination. Infections were ongoing for 25 weeks, after which reverse transcriptase genotypes were determined and scrutinized for the presence of any clinically recognized reverse transcriptase drug resistance mutations. Results indicated that suboptimal concentrations of DAP alone facilitated the emergence of common nonnucleoside reverse transcriptase inhibitor resistance mutations, while suboptimal concentrations of DAP plus TFV gave rise to fewer mutations. Suboptimal concentrations of TFV alone did not frequently result in the development of resistance mutations. Sensitivity evaluations for stavudine (d4T), nevirapine (NVP), and lamivudine (3TC) revealed that the selection of resistance as a consequence of suboptimal concentrations of DAP may compromise the potential for NVP to be used in treatment, a finding of potential relevance in developing countries.

  2. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments.

    Science.gov (United States)

    Astashkina, Anna; Grainger, David W

    2014-04-01

    Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Curcumin, a potential therapeutic candidate for retinal diseases.

    Science.gov (United States)

    Wang, Lei-Lei; Sun, Yue; Huang, Kun; Zheng, Ling

    2013-09-01

    Curcumin, the major extraction of turmeric, has been widely used in many countries for centuries both as a spice and as a medicine. In the last decade, researchers have found the beneficial effects of curcumin on multiple disorders are due to its antioxidative, anti-inflammatory, and antiproliferative properties, as well as its novel function as an inhibitor of histone aectyltransferases. In this review, we summarize the recent progress made on studying the beneficial effects of curcumin on multiple retinal diseases, including diabetic retinopathy, glaucoma, and age-related macular degeneration. Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biochemical Markers for Osteoarthritis: Is There any Promising Candidate?

    Directory of Open Access Journals (Sweden)

    Elif Aydın

    2016-04-01

    Full Text Available Osteoarthritis (OA is the most common degenerative joint disease. OA affects millions of individuals each year and becoming the most important cause of pain in geriatric population. Progressive destruction of articular cartilage is one of the prominent features of the disease. The diagnosis of OA is generally based on clinical and radiographical findings, which are insufficient to determine early-stage OA and predict disease course. There is a need for biomarkers that help clinicians early diagnose, assess disease activity, predict prognosis and monitor response to therapy. There are a growing number of publications regarding candidate markers in this field. The aim of this paper was to review recent studies on biochemical markers that reflect cartilage, synovial and bone turnover and their clinical use in patients with OA.

  5. Trafficking of drug candidates relevant for sports drug testing: detection of non-approved therapeutics categorized as anabolic and gene doping agents in products distributed via the Internet.

    Science.gov (United States)

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Schänzer, Wilhelm

    2011-05-01

    Identifying the use of non-approved drugs by cheating athletes has been a great challenge for doping control laboratories. This is due to the additional complexities associated with identifying relatively unknown and uncharacterized compounds and their metabolites as opposed to known and well-studied therapeutics. In 2010, the prohibited drug candidates and gene doping substances AICAR and GW1516, together with the selective androgen receptor modulator (SARM) MK-2866 were obtained by the Cologne Doping Control Laboratory from Internet suppliers and their structure, quantity, and formulation elucidated. All three compounds proved authentic as determined by liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry and comparison to reference material. While AICAR was provided as a colourless powder in 100 mg aliquots, GW1516 was obtained as an orange/yellow suspension in water/glycerol (150 mg/ml), and MK-2866 (25 mg/ml) was shipped dissolved in polyethylene glycol (PEG) 300. In all cases, the quantified amounts were considerably lower than indicated on the label. The substances were delivered via courier, with packaging identifying them as containing 'amino acids' and 'green tea extract', arguably to circumvent customs control. Although all of the substances were declared 'for research only', their potential misuse in illicit performance-enhancement cannot be excluded; moreover sports drug testing authorities should be aware of the facile availability of black market copies of these drug candidates. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Using Metabolomics to Investigate Biomarkers of Drug Addiction.

    Science.gov (United States)

    Ghanbari, Reza; Sumner, Susan

    2018-02-01

    Drug addiction has been associated with an increased risk for cancer, psychological complications, heart, liver, and lung disease, as well as infection. While genes have been identified that can mark individuals at risk for substance abuse, the initiation step of addiction is attributed to persistent metabolic disruptions occurring following the first instance of narcotic drug use. Advances in analytical technologies can enable the detection of thousands of signals in body fluids and excreta that can be used to define biochemical profiles of addiction. Today, these approaches hold promise for determining how exposure to drugs, in the absence or presence of other environmentally relevant factors, can impact human metabolism. We posit that these can lead to candidate biomarkers of drug dependence, treatment, withdrawal, or relapse. Copyright © 2017. Published by Elsevier Ltd.

  7. Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    Plasma protein binding (PPB) has vital importance in the characterization of drug distribution in the systemic circulation. Unfavorable PPB can pose a negative effect on clinical development of promising drug candidates. The drug distribution properties should be considered at the initial phases of the drug design and development. Therefore, PPB prediction models are receiving an increased attention. In the current study, we present a systematic approach using Support vector machine, Artificial neural network, k- nearest neighbor, Probabilistic neural network, Partial least square and Linear discriminant analysis to relate various in vitro and in silico molecular descriptors to a diverse dataset of 736 drugs/drug-like compounds. The overall accuracy of Support vector machine with Radial basis function kernel came out to be comparatively better than the rest of the applied algorithms. The training set accuracy, validation set accuracy, precision, sensitivity, specificity and F1 score for the Suprort vector machine was found to be 89.73%, 89.97%, 92.56%, 87.26%, 91.97% and 0.898, respectively. This model can potentially be useful in screening of relevant drug candidates at the preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Neuraminidase inhibitor R-125489 - A promising drug for treating influenza virus: Steered molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Binh Khanh [Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City (Viet Nam); Li, Mai Suan, E-mail: masli@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2011-07-08

    Highlights: {yields} We study binding affinity of R-125489 and its prodrug CS-8958 to neuraminidase of pathogenic influenza viruses by molecular dynamics simulations. {yields} It is shown that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. {yields} We predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus. {yields} The high correlation between theoretical and experimental data implies that SMD is a very promising tool for drug design. -- Abstract: Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral agents binding is still missing. We address this gap in our knowledge by applying steered molecular dynamics (SMD) simulations to different subtypes of seasonal and highly pathogenic influenza viruses. We show that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. Based on results obtained by SMD and the molecular mechanics-Poisson-Boltzmann surface area method, we predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus as its binding affinity does not vary much across these systems. The high correlation level between theoretically determined rupture forces and experimental data on binding energies for the large number of systems studied here implies that SMD is a promising tool for drug design.

  9. Neuraminidase inhibitor R-125489 - A promising drug for treating influenza virus: Steered molecular dynamics approach

    International Nuclear Information System (INIS)

    Mai, Binh Khanh; Li, Mai Suan

    2011-01-01

    Highlights: → We study binding affinity of R-125489 and its prodrug CS-8958 to neuraminidase of pathogenic influenza viruses by molecular dynamics simulations. → It is shown that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. → We predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus. → The high correlation between theoretical and experimental data implies that SMD is a very promising tool for drug design. -- Abstract: Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral agents binding is still missing. We address this gap in our knowledge by applying steered molecular dynamics (SMD) simulations to different subtypes of seasonal and highly pathogenic influenza viruses. We show that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. Based on results obtained by SMD and the molecular mechanics-Poisson-Boltzmann surface area method, we predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus as its binding affinity does not vary much across these systems. The high correlation level between theoretically determined rupture forces and experimental data on binding energies for the large number of systems studied here implies that SMD is a promising tool for drug design.

  10. Identifying problematic drugs based on the characteristics of their targets.

    Science.gov (United States)

    Lopes, Tiago J S; Shoemaker, Jason E; Matsuoka, Yukiko; Kawaoka, Yoshihiro; Kitano, Hiroaki

    2015-01-01

    Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60-70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  11. Identifying problematic drugs based on the characteristics of their targets

    Directory of Open Access Journals (Sweden)

    Tiago Jose eDa Silva Lopes

    2015-09-01

    Full Text Available Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60%¬–70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  12. Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer's disease.

    Science.gov (United States)

    Hiremathad, Asha; Keri, Rangappa S; Esteves, A Raquel; Cardoso, Sandra M; Chaves, Sílvia; Santos, M Amélia

    2018-03-25

    Alzheimer's disease (AD) is a severe age-dependent neurodegenerative disorder affecting millions of people, with no cure so far. The current treatments only achieve some temporary amelioration of the cognition symptoms. The main characteristics of the patient brains include the accumulation of amyloid plaques and neurofibrillary tangles (outside and inside the neurons) but also cholinergic deficit, increased oxidative stress and dyshomeostasis of transition metal ions. Considering the multi-factorial nature of AD, we report herein the development of a novel series of potential multi-target directed drugs which, besides the capacity to recover the cholinergic neurons, can also target other AD hallmarks. The novel series of tacrine-hydroxyphenylbenzimidazole (TAC-BIM) hybrid molecules has been designed, synthesized and studied for their multiple biological activities. These agents showed improved AChE inhibitory activity (IC 50 in nanomolar range), as compared with the single drug tacrine (TAC), and also a high inhibition of self-induced- and Cu-induced-Aβ aggregation (up to 75%). They also present moderate radical scavenging activity and metal chelating ability. In addition, neuroprotective studies revealed that all these tested compounds are able to inhibit the neurotoxicity induced by Aβ and Fe/AscH(-) in neuronal cells. Hence, for this set of hybrids, structure-activity relationships are discussed and finally it is highlighted their real promising interest as potential anti-AD drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385.

    Directory of Open Access Journals (Sweden)

    Zhiyun Wang

    2010-11-01

    Full Text Available This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009 established that moderate strength static magnetic field (SMF exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A(2A receptor (A(2AR in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD.SMF reproduced several responses elicited by ZM241385, a selective A(2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A(2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A(2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth.When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders.

  14. Pharmacogenetics in drug regulation: promise, potential and pitfalls

    Science.gov (United States)

    Shah, Rashmi R

    2005-01-01

    Pharmacogenetic factors operate at pharmacokinetic as well as pharmacodynamic levels—the two components of the dose–response curve of a drug. Polymorphisms in drug metabolizing enzymes, transporters and/or pharmacological targets of drugs may profoundly influence the dose–response relationship between individuals. For some drugs, although retrospective data from case studies suggests that these polymorphisms are frequently associated with adverse drug reactions or failure of efficacy, the clinical utility of such data remains unproven. There is, therefore, an urgent need for prospective data to determine whether pre-treatment genotyping can improve therapy. Various regulatory guidelines already recommend exploration of the role of genetic factors when investigating a drug for its pharmacokinetics, pharmacodynamics, dose–response relationship and drug interaction potential. Arising from the global heterogeneity in the frequency of variant alleles, regulatory guidelines also require the sponsors to provide additional information, usually pharmacogenetic bridging data, to determine whether data from one ethnic population can be extrapolated to another. At present, sponsors explore pharmacogenetic influences in early clinical pharmacokinetic studies but rarely do they carry the findings forward when designing dose–response studies or pivotal studies. When appropriate, regulatory authorities include genotype-specific recommendations in the prescribing information. Sometimes, this may include the need to adjust a dose in some genotypes under specific circumstances. Detailed references to pharmacogenetics in prescribing information and pharmacogenetically based prescribing in routine therapeutics will require robust prospective data from well-designed studies. With greater integration of pharmacogenetics in drug development, regulatory authorities expect to receive more detailed genetic data. This is likely to complicate the drug evaluation process as well as

  15. The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase.

    Science.gov (United States)

    Gallant, Joseph P; Lima-Cordón, Raquel Asunción; Justi, Silvia A; Monroy, Maria Carlota; Viola, Toni; Stevens, Lori

    2018-04-21

    Rational drug design creates innovative therapeutics based on knowledge of the biological target to provide more effective and responsible therapeutics. Chagas disease, endemic throughout Latin America, is caused by Trypanosoma cruzi, a protozoan parasite. Current therapeutics are problematic with widespread calls for new approaches. Researchers are using rational drug design for Chagas disease and one target receiving considerable attention is the T. cruzi trans-sialidase protein (TcTS). In T. cruzi, trans-sialidase catalyzes the transfer of sialic acid from a mammalian host to coat the parasite surface membrane and avoid immuno-detection. However, the role of TcTS in pathology variance among and within genetic variants of the parasite is not well understood despite numerous studies. Previous studies reported the crystalline structure of TcTS and the TS protein structure in other trypanosomes where the enzyme is often inactive. However, no study has examined the role of natural selection in genetic variation in TcTS. To understand the role of natural selection in TcTS DNA sequence and protein variation, we examined a 471 bp portion of the TcTS gene from 48 T. cruzi samples isolated from insect vectors. Because there may be multiple parasite genotypes infecting one insect and there are multiple copies of TcTS per parasite genome, all 48 sequences had multiple polymorphic bases. To resolve these polymorphisms, we examined cloned sequences from two insect vectors. The data are analyzed to understand the role of natural selection in shaping genetic variation in TcTS and interpreted in light of the possible role of TcTS as a drug target. The analysis highlights negative or purifying selection on three amino acids previously shown to be important in TcTS transfer activity. One amino acid in particular, Tyr342, is a strong candidate for a drug target because it is under negative selection and amino acid substitutions inactivate TcTS transfer activity. Chagas disease

  16. In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever

    Science.gov (United States)

    Toepak, E. P.; Tambunan, U. S. F.

    2017-02-01

    Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.

  17. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meili; Zhao, Tingting; Liu, Yanping; Wang, Qianqian; Xing, Shanshan; Li, Lei; Wang, Longgang [Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004 (China); Liu, Lanxiang [The First Hospital of Qinhuangdao, No. 258 Cultural Road, Qinhuangdao 066000 (China); Gao, Dawei, E-mail: dwgao@ysu.edu.cn [Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004 (China)

    2017-02-01

    There are tremendous challenges on antitumor and its therapeutic drugs, and preparation of highly efficient nano-vehicles represents one of the novel topics in antitumor pharmaceutical field. Herein, the novel chitosan-coated ursolic acid (UA) liposome (CS-UA-L) was efficiently prepared with highly tumor targeting, drug controlled release and low side-effect. The CS-UA-L was uniformly spherical particles with diameter of ~ 130 nm, and the size was more easily trapped into the tumor tissues. Chitosan modification can make liposomes carrying positive charges, which were inclined to combine with the negative charges on the surface of tumor cells, and then the CS-UA-L could release UA rapidly at pH 5.0 comparing with pH 7.4. Meanwhile, the CS-UA-L exhibited obvious anti-proliferative effect (76.46%) on HeLa cells and significantly antitumor activity (61.26%) in mice bearing U14 cervical cancer. The tumor tissues of CS-UA-L treated mice had enhanced cell apoptosis, extensive necrosis and low cell proliferation activity. These results demonstrated that the multifunctional CS-UA-L allowed a precision treatment for localized tumor, and reducing the total drug dose and side-effect, which hold a great promise in new safe and effective tumor therapy. - Graphical abstract: Schematic diagram representing the principle of synthesis of CS-UA-L and pH-triggered sequential UA release after treatment on tumor bearing mouse. - Highlights: • The novel chitosan-coated ursolic acid liposomes (CS-UA-L) were successfully prepared. • CS-UA-L possessed sensitive pH-response, which could release UA rapidly at pH 5.0 comparing with pH 7.4. • CS-UA-L exhibited obvious anti-proliferative effect (76.46%) on HeLa cells than UA and UA-L. • CS-UA-L suppressed tumor growth more efficiently than those with UA and UA-L in mice bearing U14 cervical cancer. • The CS-UA-L allow for precision treatment of the tumor and potential to reduce the total drug dose and side-effect.

  18. Mucoadhesive microspheres: a promising tool in drug delivery.

    Science.gov (United States)

    Patil, Sanjay B; Sawant, Krutika K

    2008-10-01

    Mucoadhesive polymers have recently gained interest among pharmaceutical scientists as a means of improving drug delivery by promoting the residence time and contact time of the dosage form with the mucous membranes. Mucoadhesion is the process whereby synthetic and natural polymers adhere to mucosal surfaces in the body. If these materials are then incorporated into pharmaceutical formulations, drug absorption by mucosal cells may be enhanced or the drug will be released at the site for an extended period of time. Microspheres, in general, have the potential to be used for targeted and controlled release drug delivery; however, coupling of mucoadhesive properties to microspheres has additional advantages like, a much more intimate contact with the mucus layer, efficient absorption and enhanced bioavailability of the drugs due to a high surface to volume ratio. The present review describes the potential applications of mucoadhesive microspheres as a novel carrier system to improve drug delivery by various routes of administration like buccal, oral, nasal, ocular, vaginal and rectal, either for systemic or for local effects. The mucoadhesive polymers, methods of preparation of microspheres and their in vitro and in vivo evaluation are also described.

  19. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Directory of Open Access Journals (Sweden)

    María Losada-Echeberría

    2017-11-01

    Full Text Available Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs and epidermal growth factor receptor 2 (HER2. Tumors with none of these receptors are classified as triple negative breast cancer (TNBC and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.

  20. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Science.gov (United States)

    Herranz-López, María; Micol, Vicente

    2017-01-01

    Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation. PMID:29112149

  1. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    Science.gov (United States)

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  2. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans.

    Science.gov (United States)

    Fujiwara, Ryoichi; Yoda, Emiko; Tukey, Robert H

    2018-02-01

    More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  3. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.

    Science.gov (United States)

    Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika

    2017-01-01

    Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries

  4. Static Magnetic Field Exposure Reproduces Cellular Effects of the Parkinson's Disease Drug Candidate ZM241385

    Science.gov (United States)

    Wang, Zhiyun; Che, Pao-Lin; Du, Jian; Ha, Barbara; Yarema, Kevin J.

    2010-01-01

    Background This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A2A receptor (A2AR) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD). Methodology and Principal Findings SMF reproduced several responses elicited by ZM241385, a selective A2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth. Conclusions and Significance When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders. PMID:21079735

  5. Large-scale computational drug repositioning to find treatments for rare diseases.

    Science.gov (United States)

    Govindaraj, Rajiv Gandhi; Naderi, Misagh; Singha, Manali; Lemoine, Jeffrey; Brylinski, Michal

    2018-01-01

    Rare, or orphan, diseases are conditions afflicting a small subset of people in a population. Although these disorders collectively pose significant health care problems, drug companies require government incentives to develop drugs for rare diseases due to extremely limited individual markets. Computer-aided drug repositioning, i.e., finding new indications for existing drugs, is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Structure-based matching of drug-binding pockets is among the most promising computational techniques to inform drug repositioning. In order to find new targets for known drugs ultimately leading to drug repositioning, we recently developed e MatchSite, a new computer program to compare drug-binding sites. In this study, e MatchSite is combined with virtual screening to systematically explore opportunities to reposition known drugs to proteins associated with rare diseases. The effectiveness of this integrated approach is demonstrated for a kinase inhibitor, which is a confirmed candidate for repositioning to synapsin Ia. The resulting dataset comprises 31,142 putative drug-target complexes linked to 980 orphan diseases. The modeling accuracy is evaluated against the structural data recently released for tyrosine-protein kinase HCK. To illustrate how potential therapeutics for rare diseases can be identified, we discuss a possibility to repurpose a steroidal aromatase inhibitor to treat Niemann-Pick disease type C. Overall, the exhaustive exploration of the drug repositioning space exposes new opportunities to combat orphan diseases with existing drugs. DrugBank/Orphanet repositioning data are freely available to research community at https://osf.io/qdjup/.

  6. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  7. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Marie-Claude N. Laffitte

    2016-09-01

    Full Text Available Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV. CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.

  8. The role of the anaesthetised guinea-pig in the preclinical cardiac safety evaluation of drug candidate compounds

    International Nuclear Information System (INIS)

    Marks, Louise; Borland, Samantha; Philp, Karen; Ewart, Lorna; Lainée, Pierre; Skinner, Matthew; Kirk, Sarah; Valentin, Jean-Pierre

    2012-01-01

    Despite rigorous preclinical and clinical safety evaluation, adverse cardiac effects remain a leading cause of drug attrition and post-approval drug withdrawal. A number of cardiovascular screens exist within preclinical development. These screens do not, however, provide a thorough cardiac liability profile and, in many cases, are not preventing the progression of high risk compounds. We evaluated the suitability of the anaesthetised guinea-pig for the assessment of drug-induced changes in cardiovascular parameters. Sodium pentobarbitone anaesthetised male guinea-pigs received three 15 minute intravenous infusions of ascending doses of amoxicillin, atenolol, clonidine, dobutamine, dofetilide, flecainide, isoprenaline, levosimendan, milrinone, moxifloxacin, nifedipine, paracetamol, verapamil or vehicle, followed by a 30 minute washout. Dose levels were targeted to cover clinical exposure and above, with plasma samples obtained to evaluate effect/exposure relationships. Arterial blood pressure, heart rate, contractility function (left ventricular dP/dt max and QA interval) and lead II electrocardiogram were recorded throughout. In general, the expected reference compound induced effects on haemodynamic, contractility and electrocardiographic parameters were detected confirming that all three endpoints can be measured accurately and simultaneously in one small animal. Plasma exposures obtained were within, or close to the expected clinical range of therapeutic plasma levels. Concentration–effect curves were produced which allowed a more complete understanding of the margins for effects at different plasma exposures. This single in vivo screen provides a significant amount of information pertaining to the cardiovascular risk of drug candidates, ultimately strengthening strategies addressing cardiovascular-mediated compound attrition and drug withdrawal. -- Highlights: ► Evaluation of the anaesthetised guinea-pig to determine cardiac liability. ► Haemodynamic

  9. Drug Repositioning: An Opportunity to Develop Novel Treatments for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Clive Ballard

    2013-10-01

    Full Text Available Alzheimer’s Disease (AD is the most common cause of dementia, affecting approximately two thirds of the 35 million people worldwide with the condition. Despite this, effective treatments are lacking, and there are no drugs that elicit disease modifying effects to improve outcome. There is an urgent need to develop and evaluate more effective pharmacological treatments. Drug repositioning offers an exciting opportunity to repurpose existing licensed treatments for use in AD, with the benefit of providing a far more rapid route to the clinic than through novel drug discovery approaches. This review outlines the current most promising candidates for repositioning in AD, their supporting evidence and their progress through trials to date. Furthermore, it begins to explore the potential of new transcriptomic and microarray techniques to consider the future of drug repositioning as a viable approach to drug discovery.

  10. Drug repurposing to target Ebola virus replication and virulence using structural systems pharmacology.

    Science.gov (United States)

    Zhao, Zheng; Martin, Che; Fan, Raymond; Bourne, Philip E; Xie, Lei

    2016-02-18

    The recent outbreak of Ebola has been cited as the largest in history. Despite this global health crisis, few drugs are available to efficiently treat Ebola infections. Drug repurposing provides a potentially efficient solution to accelerating the development of therapeutic approaches in response to Ebola outbreak. To identify such candidates, we use an integrated structural systems pharmacology pipeline which combines proteome-scale ligand binding site comparison, protein-ligand docking, and Molecular Dynamics (MD) simulation. One thousand seven hundred and sixty-six FDA-approved drugs and 259 experimental drugs were screened to identify those with the potential to inhibit the replication and virulence of Ebola, and to determine the binding modes with their respective targets. Initial screening has identified a number of promising hits. Notably, Indinavir; an HIV protease inhibitor, may be effective in reducing the virulence of Ebola. Additionally, an antifungal (Sinefungin) and several anti-viral drugs (e.g. Maraviroc, Abacavir, Telbivudine, and Cidofovir) may inhibit Ebola RNA-directed RNA polymerase through targeting the MTase domain. Identification of safe drug candidates is a crucial first step toward the determination of timely and effective therapeutic approaches to address and mitigate the impact of the Ebola global crisis and future outbreaks of pathogenic diseases. Further in vitro and in vivo testing to evaluate the anti-Ebola activity of these drugs is warranted.

  11. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Taylor, David J; Parsons, Christine E; Han, Haiyong; Jayaraman, Arul; Rege, Kaushal

    2011-01-01

    Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells

  12. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  13. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  14. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  15. Drug Repositioning for Effective Prostate Cancer Treatment.

    Science.gov (United States)

    Turanli, Beste; Grøtli, Morten; Boren, Jan; Nielsen, Jens; Uhlen, Mathias; Arga, Kazim Y; Mardinoglu, Adil

    2018-01-01

    Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-κB inhibition, Wnt/β-Catenin pathway inhibition, DNMT1 inhibition, and GSK-3β inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.

  16. West Nile Virus Drug Discovery

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2013-12-01

    Full Text Available The outbreak of West Nile virus (WNV in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.

  17. Investigational drugs in early development for treating dengue infection.

    Science.gov (United States)

    Beesetti, Hemalatha; Khanna, Navin; Swaminathan, Sathyamangalam

    2016-09-01

    Dengue has emerged as the most significant arboviral disease of the current century. A drug for dengue is an urgent unmet need. As conventional drug discovery efforts have not produced any promising clinical candidates, there is a shift toward re-positioning pre-existing drugs for dengue to fast-track dengue drug development. This article provides an update on the current status of recently completed and ongoing dengue drug trials. All dengue drug trials described in this article were identified from a list of >230 trials that were returned upon searching the World Health Organization's International Clinical Trials Registry Platform web portal using the search term 'dengue' on December 31(st), 2015. None of the handful of drugs tested so far has yielded encouraging results. Early trial experience has served to emphasize the challenge of drug testing in the short therapeutic time window available, the need for tools to predict 'high-risk' patients early on and the limitations of the existing pre-clinical model systems. Significant investment of efforts and resources is a must before the availability of a safe, effective and inexpensive dengue drug becomes a reality. Currently, supportive fluid therapy remains the only option available for dengue treatment.

  18. Update on the Clinical Development of Candidate Malaria Vaccines

    National Research Council Canada - National Science Library

    Ballou, W. R; Arevalo-Herrera, Myriam; Carucci, Daniel; Richie, Thomas L; Corradin, Giampietro; Diggs, Carter; Druilhe, Pierre; Giersing, Birgitte K; Saul, Allan; Heppner, D. G

    2004-01-01

    ... powerful driver for stimulating clinical development of candidate vaccines for malaria. This new way forward promises to greatly increase the likelihood of bringing a safe and effective vaccine to licensure...

  19. RNA-Seq reveals seven promising candidate genes affecting the proportion of thick egg albumen in layer-type chickens.

    Science.gov (United States)

    Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen

    2017-12-22

    Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.

  20. Predicting biopharmaceutical performance of oral drug candidates - Extending the volume to dissolve applied dose concept.

    Science.gov (United States)

    Muenster, Uwe; Mueck, Wolfgang; van der Mey, Dorina; Schlemmer, Karl-Heinz; Greschat-Schade, Susanne; Haerter, Michael; Pelzetter, Christian; Pruemper, Christian; Verlage, Joerg; Göller, Andreas H; Ohm, Andreas

    2016-05-01

    The purpose of the study was to experimentally deduce pH-dependent critical volumes to dissolve applied dose (VDAD) that determine whether a drug candidate can be developed as immediate release (IR) tablet containing crystalline API, or if solubilization technology is needed to allow for sufficient oral bioavailability. pH-dependent VDADs of 22 and 83 compounds were plotted vs. the relative oral bioavailability (AUC solid vs. AUC solution formulation, Frel) in humans and rats, respectively. Furthermore, in order to investigate to what extent Frel rat may predict issues with solubility limited absorption in human, Frel rat was plotted vs. Frel human. Additionally, the impact of bile salts and lecithin on in vitro dissolution of poorly soluble compounds was tested and data compared to Frel rat and human. Respective in vitro - in vivo and in vivo - in vivo correlations were generated and used to build developability criteria. As a result, based on pH-dependent VDAD, Frel rat and in vitro dissolution in simulated intestinal fluid the IR formulation strategy within Pharmaceutical Research and Development organizations can be already set at late stage of drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Candidate cave entrances on Mars

    Science.gov (United States)

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  2. The role of the anaesthetised guinea-pig in the preclinical cardiac safety evaluation of drug candidate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Louise, E-mail: louise.marks@astrazeneca.com [Safety Assessment UK, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG (United Kingdom); Borland, Samantha; Philp, Karen; Ewart, Lorna; Lainée, Pierre; Skinner, Matthew [Safety Assessment UK, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG (United Kingdom); Kirk, Sarah [Innovative Medicines, Discovery Sciences, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG (United Kingdom); Valentin, Jean-Pierre [Safety Assessment UK, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG (United Kingdom)

    2012-09-01

    Despite rigorous preclinical and clinical safety evaluation, adverse cardiac effects remain a leading cause of drug attrition and post-approval drug withdrawal. A number of cardiovascular screens exist within preclinical development. These screens do not, however, provide a thorough cardiac liability profile and, in many cases, are not preventing the progression of high risk compounds. We evaluated the suitability of the anaesthetised guinea-pig for the assessment of drug-induced changes in cardiovascular parameters. Sodium pentobarbitone anaesthetised male guinea-pigs received three 15 minute intravenous infusions of ascending doses of amoxicillin, atenolol, clonidine, dobutamine, dofetilide, flecainide, isoprenaline, levosimendan, milrinone, moxifloxacin, nifedipine, paracetamol, verapamil or vehicle, followed by a 30 minute washout. Dose levels were targeted to cover clinical exposure and above, with plasma samples obtained to evaluate effect/exposure relationships. Arterial blood pressure, heart rate, contractility function (left ventricular dP/dt{sub max} and QA interval) and lead II electrocardiogram were recorded throughout. In general, the expected reference compound induced effects on haemodynamic, contractility and electrocardiographic parameters were detected confirming that all three endpoints can be measured accurately and simultaneously in one small animal. Plasma exposures obtained were within, or close to the expected clinical range of therapeutic plasma levels. Concentration–effect curves were produced which allowed a more complete understanding of the margins for effects at different plasma exposures. This single in vivo screen provides a significant amount of information pertaining to the cardiovascular risk of drug candidates, ultimately strengthening strategies addressing cardiovascular-mediated compound attrition and drug withdrawal. -- Highlights: ► Evaluation of the anaesthetised guinea-pig to determine cardiac liability.

  3. USING STELLAR DENSITIES TO EVALUATE TRANSITING EXOPLANETARY CANDIDATES

    International Nuclear Information System (INIS)

    Tingley, B.; Deeg, H. J.; Bonomo, A. S.

    2011-01-01

    One of the persistent complications in searches for transiting exoplanets is the low percentage of the detected candidates that ultimately prove to be planets, which significantly increases the load on the telescopes used for the follow-up observations to confirm or reject candidates. Several attempts have been made at creating techniques that can pare down candidate lists without the need of additional observations. Some of these techniques involve a detailed analysis of light curve characteristics; others estimate the stellar density or some proxy thereof. In this paper, we extend upon this second approach, exploring the use of independently calculated stellar densities to identify the most promising transiting exoplanet candidates. We use a set of CoRoT candidates and the set of known transiting exoplanets to examine the potential of this approach. In particular, we note the possibilities inherent in the high-precision photometry from space missions, which can detect stellar asteroseismic pulsations from which accurate stellar densities can be extracted without additional observations.

  4. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Dajun D. Sun

    2014-02-01

    Full Text Available Water-insoluble materials containing amorphous solid dispersions (ASD are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate (PHEMA can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  5. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  6. In Silico Chemogenomics Drug Repositioning Strategies for Neglected Tropical Diseases.

    Science.gov (United States)

    Andrade, Carolina Horta; Neves, Bruno Junior; Melo-Filho, Cleber Camilo; Rodrigues, Juliana; Silva, Diego Cabral; Braga, Rodolpho Campos; Cravo, Pedro Vitor Lemos

    2018-03-08

    Only ~1% of all drug candidates against Neglected Tropical Diseases (NTDs) have reached clinical trials in the last decades, underscoring the need for new, safe and effective treatments. In such context, drug repositioning, which allows finding novel indications for approved drugs whose pharmacokinetic and safety profiles are already known, is emerging as a promising strategy for tackling NTDs. Chemogenomics is a direct descendent of the typical drug discovery process that involves the systematic screening of chemical compounds against drug targets in high-throughput screening (HTS) efforts, for the identification of lead compounds. However, different to the one-drug-one-target paradigm, chemogenomics attempts to identify all potential ligands for all possible targets and diseases. In this review, we summarize current methodological development efforts in drug repositioning that use state-of-the-art computational ligand- and structure-based chemogenomics approaches. Furthermore, we highlighted the recent progress in computational drug repositioning for some NTDs, based on curation and modeling of genomic, biological, and chemical data. Additionally, we also present in-house and other successful examples and suggest possible solutions to existing pitfalls. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Structure-activity relationship analysis of cytotoxic cyanoguanidines: selection of CHS 828 as candidate drug

    Directory of Open Access Journals (Sweden)

    Gullbo Joachim

    2009-06-01

    Full Text Available Abstract Background N-(6-(4-chlorophenoxyhexyl-N'-cyano-N''-4-pyridyl guanidine (CHS 828 is the first candidate drug from a novel group of anti-tumour agents – the pyridyl cyanoguanidines, shown to be potent compounds interfering with cellular metabolism (inhibition of nicotinamide phosphoribosyl transferase and NF-κB signalling. Substituted cyanoguanidines are also found in anti-hypertensive agents such as the potassium channel opener pinacidil (N-cyano-N'-(4-pyridyl-N''-(1,2,2-trimethylpropylguanidine and histamine-II receptor antagonists (e.g. cimetidine, N-cyano-N'-methyl-N''-[2-[[(5-methylimidazol-4-yl]methyl]thio]ethylguanidine. In animal studies, CHS 828 has shown very promising activity, and phase I and II studies resulted in further development of a with a water soluble prodrug. Findings To study the structural requirements for cyanoguanidine cytotoxicity a set of 19 analogues were synthesized. The cytotoxic effects were then studied in ten cell lines selected for different origins and mechanisms of resistance, using the fluorometric microculture cytotoxicity assay (FMCA. The compounds showed varying cytotoxic activity even though the dose-response curves for some analogues were very shallow. Pinacidil and cimetidine were found to be non-toxic in all ten cell lines. Starting with cyanoguanidine as the crucial core it was shown that 4-pyridyl substitution was more efficient than was 3-pyridyl substitution. The 4-pyridyl cyanoguanidine moiety should be linked by an alkyl chain, optimally a hexyl, heptyl or octyl chain, to a bulky end group. The exact composition of this end group did not seem to be of crucial importance; when the end group was a mono-substituted phenyl ring it was shown that the preferred position was 4-substitution, followed by 3- and, finally, 2-substitution as the least active. Whether the substituent was a chloro, nitro or methoxy substituent seemed to be of minor importance. Finally, the activity patterns in the

  8. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential.

    Science.gov (United States)

    Janero, David R

    2014-08-01

    Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.

  9. Microfluidic cell culture systems for drug research.

    Science.gov (United States)

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  10. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-01-01

    Full Text Available Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1 protection of the loaded drug from the harsh environment of the GI tract, (2 release of the drug in a controlled manner at target sites, (3 prolongation of the residence time in the gut by mucoadhesion, and (4 inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.

  11. New Zealand’s Drug Development Industry

    Directory of Open Access Journals (Sweden)

    Christopher Carswell

    2013-09-01

    Full Text Available The pharmaceutical industry’s profitability depends on identifying and successfully developing new drug candidates while trying to contain the increasing costs of drug development. It is actively searching for new sources of innovative compounds and for mechanisms to reduce the enormous costs of developing new drug candidates. There is an opportunity for academia to further develop as a source of drug discovery. The rising levels of industry outsourcing also provide prospects for organisations that can reduce the costs of drug development. We explored the potential returns to New Zealand (NZ from its drug discovery expertise by assuming a drug development candidate is out-licensed without clinical data and has anticipated peak global sales of $350 million. We also estimated the revenue from NZ’s clinical research industry based on a standard per participant payment to study sites and the number of industry-sponsored clinical trials approved each year. Our analyses found that NZ’s clinical research industry has generated increasing foreign revenue and appropriate policy support could ensure that this continues to grow. In addition the probability-based revenue from the out-licensing of a drug development candidate could be important for NZ if provided with appropriate policy and financial support.

  12. Identification and development of a promising novel mumps vaccine candidate strain.

    Science.gov (United States)

    Liang, Yan; Ma, Shaohui; Liu, Longding; Zhao, Hongling; Wang, Lichun; Jiang, Li; Xie, Zhongping; Dong, Chenghong; Li, Qihan

    2010-12-01

    Mumps epidemics are usually caused by airborne transmission of mumps virus (MuV) and have high morbidity in non-immunized children. Epidemiological studies in many regions of China show that the genotype F viral strain is the most prevalent. However, the genotype A strain is currently used to prepare vaccines. Regional epidemiological MuV data suggest a significant application for the development of live attenuated mumps vaccines targeting specific genotypes. This article reports the isolation and culture of a genotype F MuV candidate strain that could be used to prepare a live attenuated mumps vaccine. This strain is shown to have good immunological efficacy and stability in neurovirulence evaluations. This work should facilitate the implementation of mumps vaccination in mainland China by targeting the most prevalent MuV genotype, genotype F. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  13. Magnetic nanoparticles for local drug delivery using magnetic implants

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Pacheco, Rodrigo [Instituto Universitario de Investigacion en Nanociencia de Aragon (INA), Universidad de Zaragoza, Edif. Inter. II, 50009 Zaragoza (Spain); Marquina, Clara [Instituto de Ciencia de Materiales de Aragon (ICMA), CSIC-Universidad de Zaragoza, Facultad de Ciencias, 50009 Zaragoza (Spain); Gabriel Valdivia, J. [Instituto Universitario de Investigacion en Nanociencia de Aragon (INA), Universidad de Zaragoza, Edif. Inter. II, 50009 Zaragoza (Spain); Hospital Clinico Universitario ' Lozano Blesa' , Avda Gomez Laguna, 50009 Zaragoza (Spain)] (and others)

    2007-04-15

    Magnetic nanoparticles are good candidates used for the targeted delivery of anti-tumor agents. They can be concentrated on a desired region, reducing collateral effects and improving the efficiency of the chemotherapy. We propose a method in which permanent magnets are implanted by laparoscopic technique directly in the affected organ. This method proposes the use of FeC nanoparticles, which are loaded with doxorubicin and injected intravenously. The particles, once attracted to the magnet, release the drug at the tumor region. This method seems to be more promising and effective than that based on the application of external magnetic fields.

  14. Magnetic nanoparticles for local drug delivery using magnetic implants

    International Nuclear Information System (INIS)

    Fernandez-Pacheco, Rodrigo; Marquina, Clara; Gabriel Valdivia, J.

    2007-01-01

    Magnetic nanoparticles are good candidates used for the targeted delivery of anti-tumor agents. They can be concentrated on a desired region, reducing collateral effects and improving the efficiency of the chemotherapy. We propose a method in which permanent magnets are implanted by laparoscopic technique directly in the affected organ. This method proposes the use of FeC nanoparticles, which are loaded with doxorubicin and injected intravenously. The particles, once attracted to the magnet, release the drug at the tumor region. This method seems to be more promising and effective than that based on the application of external magnetic fields

  15. A Promising Approach to Provide Appropriate Colon Target Drug Delivery Systems of Vancomycin HCL: Pharmaceutical and Microbiological Studies

    Directory of Open Access Journals (Sweden)

    Kadria A. Elkhodairy

    2014-01-01

    Full Text Available Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10–60% of tablet weight of guar gum (F1–F6 were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6–F20 were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6–8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.

  16. A promising approach to provide appropriate colon target drug delivery systems of vancomycin HCL: pharmaceutical and microbiological studies.

    Science.gov (United States)

    Elkhodairy, Kadria A; Afifi, Samar A; Zakaria, Azza S

    2014-01-01

    Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10-60% of tablet weight of guar gum (F1-F6) were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6-F20) were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT) values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA) isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6-8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.

  17. The effect of network biology on drug toxicology

    DEFF Research Database (Denmark)

    Gautier, Laurent; Taboureau, Olivier; Audouze, Karine Marie Laure

    2013-01-01

    Introduction: The high failure rate of drug candidates due to toxicity, during clinical trials, is a critical issue in drug discovery. Network biology has become a promising approach, in this regard, using the increasingly large amount of biological and chemical data available and combining...... it with bioinformatics. With this approach, the assessment of chemical safety can be done across multiple scales of complexity from molecular to cellular and system levels in human health. Network biology can be used at several levels of complexity. Areas covered: This review describes the strengths and limitations...... of network biology. The authors specifically assess this approach across different biological scales when it is applied to toxicity. Expert opinion: There has been much progress made with the amount of data that is generated by various omics technologies. With this large amount of useful data, network...

  18. Twenty years on: the impact of fragments on drug discovery.

    Science.gov (United States)

    Erlanson, Daniel A; Fesik, Stephen W; Hubbard, Roderick E; Jahnke, Wolfgang; Jhoti, Harren

    2016-09-01

    After 20 years of sometimes quiet growth, fragment-based drug discovery (FBDD) has become mainstream. More than 30 drug candidates derived from fragments have entered the clinic, with two approved and several more in advanced trials. FBDD has been widely applied in both academia and industry, as evidenced by the large number of papers from universities, non-profit research institutions, biotechnology companies and pharmaceutical companies. Moreover, FBDD draws on a diverse range of disciplines, from biochemistry and biophysics to computational and medicinal chemistry. As the promise of FBDD strategies becomes increasingly realized, now is an opportune time to draw lessons and point the way to the future. This Review briefly discusses how to design fragment libraries, how to select screening techniques and how to make the most of information gleaned from them. It also shows how concepts from FBDD have permeated and enhanced drug discovery efforts.

  19. In silico fragment-based drug design.

    Science.gov (United States)

    Konteatis, Zenon D

    2010-11-01

    In silico fragment-based drug design (FBDD) is a relatively new approach inspired by the success of the biophysical fragment-based drug discovery field. Here, we review the progress made by this approach in the last decade and showcase how it complements and expands the capabilities of biophysical FBDD and structure-based drug design to generate diverse, efficient drug candidates. Advancements in several areas of research that have enabled the development of in silico FBDD and some applications in drug discovery projects are reviewed. The reader is introduced to various computational methods that are used for in silico FBDD, the fragment library composition for this technique, special applications used to identify binding sites on the surface of proteins and how to assess the druggability of these sites. In addition, the reader will gain insight into the proper application of this approach from examples of successful programs. In silico FBDD captures a much larger chemical space than high-throughput screening and biophysical FBDD increasing the probability of developing more diverse, patentable and efficient molecules that can become oral drugs. The application of in silico FBDD holds great promise for historically challenging targets such as protein-protein interactions. Future advances in force fields, scoring functions and automated methods for determining synthetic accessibility will all aid in delivering more successes with in silico FBDD.

  20. Predicting drug?drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge

    OpenAIRE

    Takeda, Takako; Hao, Ming; Cheng, Tiejun; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    Drug?drug interactions (DDIs) may lead to adverse effects and potentially result in drug withdrawal from the market. Predicting DDIs during drug development would help reduce development costs and time by rigorous evaluation of drug candidates. The primary mechanisms of DDIs are based on pharmacokinetics (PK) and pharmacodynamics (PD). This study examines the effects of 2D structural similarities of drugs on DDI prediction through interaction networks including both PD and PK knowledge. Our a...

  1. Drug susceptibility testing in microaerophilic parasites: Cysteine strongly affects the effectivities of metronidazole and auranofin, a novel and promising antimicrobial

    Directory of Open Access Journals (Sweden)

    David Leitsch

    2017-12-01

    Full Text Available The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia annually cause hundreds of millions of human infections which are treated with antiparasitic drugs. Metronidazole is the most often prescribed drug but also other drugs are in use, and novel drugs with improved characteristics are constantly being developed. One of these novel drugs is auranofin, originally an antirheumatic which has been relabelled for the treatment of parasitic infections. Drug effectivity is arguably the most important criterion for its applicability and is commonly assessed in susceptibility assays using in vitro cultures of a given pathogen. However, drug susceptibility assays can be strongly affected by certain compounds in the growth media. In the case of microaerophilic parasites, cysteine which is added in large amounts as an antioxidant is an obvious candidate because it is highly reactive and known to modulate the toxicity of metronidazole in several microaerophilic parasites.In this study, it was attempted to reduce cysteine concentrations as far as possible without affecting parasite viability by performing drug susceptibility assays under strictly anaerobic conditions in an anaerobic cabinet. Indeed, T. vaginalis and E. histolytica could be grown without any cysteine added and the cysteine concentration necessary to maintain G. lamblia could be reduced to 20%. Susceptibilities to metronidazole were found to be clearly reduced in the presence of cysteine. With auranofin the protective effect of cysteine was extreme, providing protection to concentrations up to 100-fold higher as observed in the absence of cysteine. With three other drugs tested, albendazole, furazolidone and nitazoxanide, all in use against G. lamblia, the effect of cysteine was less pronounced. Oxygen was found to have a less marked impact on metronidazole and auranofin than cysteine but bovine bile which is standardly used in growth media for G

  2. Buckyballs meet Viral Nanoparticles – Candidates for Biomedicine

    Science.gov (United States)

    Steinmetz, Nicole F.; Hong, Vu; Spoerke, Erik D.; Lu, Ping; Breitenkamp, Kurt; Finn, M.G.; Manchester, Marianne

    2009-01-01

    Fullerenes such as C60 show promise as functional components in several emerging technologies. For biomedical applications, C60 has been used in gene- and drug-delivery vectors, as imaging agents, and as photosensitizers in cancer therapy. A major drawback of C60 for bioapplications is its insolubility in water. To overcome this limitation, we covalently attached C60 derivatives to Cowpea mosaic virus and bacteriophage Qβ virus-like particles, as examples of naturally occurring viral nanoparticle (VNP) structures that have been shown to be promising candidates for biomedicine. Two different labeling strategies were employed, giving rise to water-soluble and stable VNP-C60 and VNP-PEG-C60 conjugates. Samples were characterized using a combination of transmission electron microscopy, scanning transmission electron microscopy (STEM), gel electrophoresis, size-exclusion chromatography, dynamic light scattering, and western blotting. “Click” chemistry bioconjugation using a PEG-modified propargyl-O-PEG-C60 derivative gave rise to high loadings of fullerene on the VNP surface, indicated by the imaging of individual C60 units by STEM. The cellular uptake of dye-labeled VNP-PEG-C60 complexes in a human cancer cell line was found by confocal microscopy to be robust, showing that cell internalization was not inhibited by the attached C60 units. These results open the door for the development of novel therapeutic devices with potential applications in photo-activated tumor therapy. PMID:19904938

  3. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  4. Monoclonal antibody form and function: manufacturing the right antibodies for treating drug abuse.

    Science.gov (United States)

    Peterson, Eric; Owens, S Michael; Henry, Ralph L

    2006-05-26

    Drug abuse continues to be a major national and worldwide problem, and effective treatment strategies are badly needed. Antibodies are promising therapies for the treatment of medical problems caused by drug abuse, with several candidates in preclinical and early clinical trials. Monoclonal antibodies can be designed that have customized affinity and specificity against drugs of abuse, and because antibodies can be designed in various forms, in vivo pharmacokinetic characteristics can be tailored to suit specific clinical applications (eg, long-acting for relapse prevention, or short-acting for overdose). Passive immunization with antibodies against drugs of abuse has several advantages over active immunization, but because large doses of monoclonal antibodies may be needed for each patient, efficient antibody production technology is essential. In this minireview we discuss some of the antibody forms that may be effective clinical treatments for drug abuse, as well as several current and emerging production systems that could bridge the gap from discovery to patient use.

  5. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  6. A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning.

    Science.gov (United States)

    Sun, Yahui; Hameed, Pathima Nusrath; Verspoor, Karin; Halgamuge, Saman

    2016-12-05

    Drug repositioning can reduce the time, costs and risks of drug development by identifying new therapeutic effects for known drugs. It is challenging to reposition drugs as pharmacological data is large and complex. Subnetwork identification has already been used to simplify the visualization and interpretation of biological data, but it has not been applied to drug repositioning so far. In this paper, we fill this gap by proposing a new Physarum-inspired Prize-Collecting Steiner Tree algorithm to identify subnetworks for drug repositioning. Drug Similarity Networks (DSN) are generated using the chemical, therapeutic, protein, and phenotype features of drugs. In DSNs, vertex prizes and edge costs represent the similarities and dissimilarities between drugs respectively, and terminals represent drugs in the cardiovascular class, as defined in the Anatomical Therapeutic Chemical classification system. A new Physarum-inspired Prize-Collecting Steiner Tree algorithm is proposed in this paper to identify subnetworks. We apply both the proposed algorithm and the widely-used GW algorithm to identify subnetworks in our 18 generated DSNs. In these DSNs, our proposed algorithm identifies subnetworks with an average Rand Index of 81.1%, while the GW algorithm can only identify subnetworks with an average Rand Index of 64.1%. We select 9 subnetworks with high Rand Index to find drug repositioning opportunities. 10 frequently occurring drugs in these subnetworks are identified as candidates to be repositioned for cardiovascular diseases. We find evidence to support previous discoveries that nitroglycerin, theophylline and acarbose may be able to be repositioned for cardiovascular diseases. Moreover, we identify seven previously unknown drug candidates that also may interact with the biological cardiovascular system. These discoveries show our proposed Prize-Collecting Steiner Tree approach as a promising strategy for drug repositioning.

  7. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    Science.gov (United States)

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  8. Campaigning on behalf of the party? Party constraints on candidate campaign personalisation

    DEFF Research Database (Denmark)

    Bøggild, Troels; Pedersen, Helene Helboe

    2017-01-01

    This article analyses what makes political candidates run a party-focused or personalised election campaign. Prior work shows that candidates face incentives from voters and the media to personalise their campaign rhetoric and promises at the expense of party policy. This has raised concerns about...... that party control over the candidate nomination process and campaign financing constrains most political candidates in following electoral incentives for campaign personalisation. Using candidate survey data from the 2009 EP election campaign in 27 countries, we show how candidates from parties in which...... party officials exerted greater control over the nomination process and campaign finances were less likely to engage in personalised campaigning at the expense of the party programme. The findings imply that most parties, as central gatekeepers and resource suppliers, hold important control mechanisms...

  9. Sortase A: an ideal target for anti-virulence drug development.

    Science.gov (United States)

    Cascioferro, Stella; Totsika, Makrina; Schillaci, Domenico

    2014-12-01

    Sortase A is a membrane enzyme responsible for the anchoring of surface-exposed proteins to the cell wall envelope of Gram-positive bacteria. As a well-studied member of the sortase subfamily catalysing the cell wall anchoring of important virulence factors to the surface of staphylococci, enterococci and streptococci, sortase A plays a critical role in Gram-positive bacterial pathogenesis. It is thus considered a promising target for the development of new anti-infective drugs that aim to interfere with important Gram-positive virulence mechanisms, such as adhesion to host tissues, evasion of host defences, and biofilm formation. The additional properties of sortase A as an enzyme that is not required for Gram-positive bacterial growth or viability and is conveniently located on the cell membrane making it more accessible to inhibitor targeting, constitute additional reasons reinforcing the view that sortase A is an ideal target for anti-virulence drug development. Many inhibitors of sortase A have been identified to date using high-throughput or in silico screening of compound libraries (synthetic or natural), and while many have proved useful tools for probing the action model of the enzyme, several are also promising candidates for the development into potent inhibitors. This review is focused on the most promising sortase A inhibitor compounds that are currently in development as leads towards a new class of anti-infective drugs that are urgently needed to help combat the alarming increase in antimicrobial resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cytolysin a expressing E. coli a promising candidate for imageable therapeutic probe

    International Nuclear Information System (INIS)

    Nguyen, Vu Hong; Phan, Thuy Xuan; Hong, Yeoung Jin; Min, Jung Joon

    2007-01-01

    Using bacteria for cancer treatment has a long history. Discovery of optical reporter genes consisting of fluorescent and luminescent protein facilitates the monitor of bacteria in vivo, non-invasively and repeatedly. E. coli, the natural enteric bacteria possessing capacity of tumor-targeting ability, seems to be suitable candidate for cancer treatment. In this study, we established the strain light-emitting E. coli for diagnostic purpose and Cytolysin A (Cly A) expressing E. coli for therapeutic purpose. E. coli (MG1655, wild type strain) was transformed plasmid pUC19 carrying lux gene to create the light expressing bacteria and test the tumor targeting-capacity by injecting the bacteria into CT26-tumor bearing mice via tail vein. On the other hand, for therapeutic purpose, plasmid containing Cly A gene, which is encoded for a pore-forming protein toxin, was introduced into E. coli. The toxicity of Cly A was evaluated in vitro by inoculating the bacteria with various cultured cancer cell lines. On the other hand, to test the therapeutic effect, the bacteria were injected intratumorally and intravenously into s.c.CT26-bearing as well as CT26-lung metastasized Balb/c mice. In vivo imaging data showed that the E. coli strains selectively located in the tumor. The in vitro result showed that the number of death cells were significantly higher in the samples containing E. coli expressing Cly A (E. coli Cly A) compared with the samples containing wild type strain. The growth of tumors was repressed in mice injected with either E. coli Cly A (significantly) or wild type E. coli (mildly), while tumors in no treatment group still grew fast. Furthermore, the tumors inoculated with E. coli cly A were necrotized but not with wild type E. coli. In the CT26-lung metastasized mouse model, the life span of mice was elongated when inject E. coli and longer in the group injected with E. coli cly A. Cly A expressing E. coli can become an effective candidate for imageable

  11. Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations.

    Science.gov (United States)

    Vilar, Santiago; Hripcsak, George

    2016-01-01

    Drug-target identification is crucial to discover novel applications for existing drugs and provide more insights about mechanisms of biological actions, such as adverse drug effects (ADEs). Computational methods along with the integration of current big data sources provide a useful framework for drug-target and drug-adverse effect discovery. In this article, we propose a method based on the integration of 3D chemical similarity, target and adverse effect data to generate a drug-target-adverse effect predictor along with a simple leveraging system to improve identification of drug-targets and drug-adverse effects. In the first step, we generated a system for multiple drug-target identification based on the application of 3D drug similarity into a large target dataset extracted from the ChEMBL. Next, we developed a target-adverse effect predictor combining targets from ChEMBL with phenotypic information provided by SIDER data source. Both modules were linked to generate a final predictor that establishes hypothesis about new drug-target-adverse effect candidates. Additionally, we showed that leveraging drug-target candidates with phenotypic data is very useful to improve the identification of drug-targets. The integration of phenotypic data into drug-target candidates yielded up to twofold precision improvement. In the opposite direction, leveraging drug-phenotype candidates with target data also yielded a significant enhancement in the performance. The modeling described in the current study is simple and efficient and has applications at large scale in drug repurposing and drug safety through the identification of mechanism of action of biological effects.

  12. Peptide drugs to target G protein-coupled receptors.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery.

    Science.gov (United States)

    Wang, Linlin; Zhu, Hongli; Shi, Ying; Ge, You; Feng, Xiaomiao; Liu, Ruiqing; Li, Yi; Ma, Yanwen; Wang, Lianhui

    2018-06-07

    Micromotors hold promise as drug carriers for targeted drug delivery owing to the characteristics of self-propulsion and directional navigation. However, several defects still exist, including high cost, short movement life, low drug loading and slow release rate. Herein, a novel catalytic micromotor based on porous zeolitic imidazolate framework-67 (ZIF-67) synthesized by a greatly simplified wet chemical method assisted with ultrasonication is described as an efficient anticancer drug carrier. These porous micromotors display effective autonomous motion in hydrogen peroxide and long durable movement life of up to 90 min. Moreover, the multifunctional micromotor ZIF-67/Fe3O4/DOX exhibits excellent performance in precise drug delivery under external magnetic field with high drug loading capacity of fluorescent anticancer drug DOX up to 682 μg mg-1 owing to its porous nature, high surface area and rapid drug release based on dual stimulus of catalytic reaction and solvent effects. Therefore, these porous ZIF-67-based catalytic micromotors combine the domains of metal-organic frameworks (MOFs) and micomotors, thus developing potential resources for micromotors and holding great potential as label-free and precisely controlled high-quality candidates of drug delivery systems for biomedical applications.

  14. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Antiprotozoal Activity of α,β-Unsaturated δ-Lactones: Promising ...

    African Journals Online (AJOL)

    The parasite resistance and side effects of drugs used to treat protozoal diseases have led to the search for new therapies, both natural and synthetic. Studies have shown that various α,β-unsaturated δ-lactones displayed high antiprotozoal activity and thus are promising compounds for new drug discovery and ...

  16. Biochemical Characterization of Glutamate Racemase-A New Candidate Drug Target against Burkholderia cenocepacia Infections.

    Directory of Open Access Journals (Sweden)

    Aygun Israyilova

    Full Text Available The greatest obstacle for the treatment of cystic fibrosis patients infected with the Burkholderia species is their intrinsic antibiotic resistance. For this reason, there is a need to develop new effective compounds. Glutamate racemase, an essential enzyme for the biosynthesis of the bacterial cell wall, is an excellent candidate target for the design of new antibacterial drugs. To this aim, we recombinantly produced and characterized glutamate racemase from Burkholderia cenocepacia J2315. From the screening of an in-house library of compounds, two Zn (II and Mn (III 1,3,5-triazapentadienate complexes were found to efficiently inhibit the glutamate racemase activity with IC50 values of 35.3 and 10.0 μM, respectively. Using multiple biochemical approaches, the metal complexes have been shown to affect the enzyme activity by binding to the enzyme-substrate complex and promoting the formation of an inhibited dimeric form of the enzyme. Our results corroborate the value of glutamate racemase as a good target for the development of novel inhibitors against Burkholderia.

  17. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bruno S. Pascoalino

    2016-10-01

    Full Text Available Background The recent epidemics of Zika virus (ZIKV implicated it as the cause of serious and potentially lethal congenital conditions such microcephaly and other central nervous system defects, as well as the development of the Guillain-Barré syndrome in otherwise healthy patients. Recent findings showed that anti-Dengue antibodies are capable of amplifying ZIKV infection by a mechanism similar to antibody-dependent enhancement, increasing the severity of the disease. This scenario becomes potentially catastrophic when the global burden of Dengue and the advent of the newly approved anti-Dengue vaccines in the near future are taken into account. Thus, antiviral chemotherapy should be pursued as a priority strategy to control the spread of the virus and prevent the complications associated with Zika. Methods Here we describe a fast and reliable cell-based, high-content screening assay for discovery of anti-ZIKV compounds. This methodology has been used to screen the National Institute of Health Clinical Collection compound library, a small collection of FDA-approved drugs. Results and conclusion From 725 FDA-approved compounds triaged, 29 (4% were found to have anti-Zika virus activity, of which 22 had confirmed (76% of confirmation by dose-response curves. Five candidates presented selective activity against ZIKV infection and replication in a human cell line. These hits have abroad spectrum of chemotypes and therapeutic uses, offering valuable opportunities for selection of leads for antiviral drug discovery.

  18. Molecular interaction study of commercial cyclic peptides and MERS-COV papain-like protease as novel drug candidate for MERS-COV

    Science.gov (United States)

    Nasution, M. A. F.; Azzuhdi, M. G.; Tambunan, U. S. F.

    2017-07-01

    Middle-east respiratory syndrome coronavirus (MERS-CoV) has become the current outbreak, MERS-CoV infection results in illness at the respiratory system, digestive, and even lead to death with an average mortality caused by MERS-CoV infection reaches 50 %. Until now, there is not any effective vaccine or drug to ward off MERS-CoV infection. Papain-like protease (PLpro) is responsible for cleavage of a nonstructural protein that is essential for viral maturation. Inhibition of PLpro with a ligand will block the cleavage process of nonstructural protein, thus reduce the infection of MERS-CoV. Through of bioinformatics study with molecular docking and binding interaction analysis of commercial cyclic peptides, aldosterone secretion inhibiting factor (1-35) (bovine) was obtained as an inhibitor for PLpro. Thus, aldosterone secretion inhibiting factor (1-35) (bovine) has a potential as a novel candidate drug for treating MERS-CoV.

  19. Repurposing of Copper(II)-chelating Drugs for the Treatment of Neurodegenerative Diseases.

    Science.gov (United States)

    Lanza, Valeria; Milardi, Danilo; Di Natale, Giuseppe; Pappalardo, Giuseppe

    2018-02-12

    repositioned drugs had already passed the safety and toxicity tests. Promising drug candidates in neurodegenerative diseases may be represented by copper chelating classes of drugs, provided that sufficient details on their mechanism of action are available to encourage further investigations and clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. MRJP1-containing glycoproteins isolated from honey, a novel antibacterial drug candidate with broad spectrum activity against multi-drug resistant clinical isolates

    Directory of Open Access Journals (Sweden)

    Katrina eBrudzynski

    2015-07-01

    Full Text Available The emergence of extended- spectrum β-lactamase (ESBL is the underlying cause of growing antibiotic resistance among Gram-negative bacteria to β-lactam antibiotics. We recently reported the discovery of honey glycoproteins (glps that exhibited a rapid, concentration-dependent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli that resembled action of cell wall-active β-lactam drugs. Glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1 precursor that harbors three antimicrobial peptides: Jelleins 1, 2 and 4. Here, we used semi-quantitative radial diffusion assay and broth microdilution assay to evaluate susceptibility of a number of multi-drug resistant (MDR clinical isolates to the MRJP1-contaning honey glycoproteins. The MDR bacterial strains comprised 3 MRSA, 4 Pseudomonas aeruginosa, 2 Klebsiella pneumoniae, 2 VRE and 5 Extended-spectrum beta-lactamase (ESBL identified as 1 Proteus mirabilis, 3 Escherichia coli and 1 Escherichia coli NDM. Their resistance to different classes of antibiotics was confirmed using automated system Vitek 2. MDR isolates differred in their susceptibility to glps with MIC90 values ranging from 4.8μg/ml against B. subtilis to 14.4μg/ml against ESBL K. pneumoniae, Klebsiella spp ESBL and E. coli and up to 33μg/ml against highly resistant strains of P. aeruginosa. Glps isolated from different honeys showed a similar ability to overcome bacterial resistance to β-lactams suggesting that (a their mode of action is distinct from other classes of β-lactams and that (b the common glps structure was the lead structure responsible for the activity. The results of the current study together with our previous evidence of a rapid bactericidal activity of glps demonstrate that glps possess suitable characteristics to be considered a novel antibacterial drug candidate.

  1. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    Science.gov (United States)

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-induced Round Bodies of Borrelia burgdorferi Persisters from an FDA Drug Library

    Directory of Open Access Journals (Sweden)

    Jie eFeng

    2016-05-01

    Full Text Available Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that are not killed by current Lyme antibiotics. To identify more effective drugs that are active against the round bodies of B. burgdorferi, we established a round body persister model induced by amoxicillin and screened the Food and Drug Administration (FDA drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide (PI viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven of these scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. While some drug candidates such as daptomycin and clofazimine overlapped with a previous screen against stationary phase B. burgdorferi persisters, additional drug candidates active against round bodies we identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi persisters in vitro, even if pre-treated with amoxicillin. These findings may have implications for improved treatment of Lyme disease.

  3. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.

  4. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs.

    Science.gov (United States)

    Nart, Viviane; Beringhs, André O'Reilly; França, Maria Terezinha; de Espíndola, Brenda; Pezzini, Bianca Ramos; Stulzer, Hellen Karine

    2017-01-01

    Mini-tablets are a new tendency in solid dosage form design for overcoming therapeutic obstacles such as impaired swallowing and polypharmacy therapy. Among their advantages, these systems offer therapeutic benefits such as dose flexibility and combined drug release patterns. The use of lipids in the formulation has also drawn considerable interest as means to modify the drug release from the dosage form. Therefore, this paper aimed at developing sustained release mini-tablets containing the highly soluble drugs captopril and metformin hydrochloride. Carnauba wax was used as a lipid component in melt granulation, targeting the improvement of the drugs poor flowability and tabletability, as well as to sustain the drug release profiles in association with other excipients. To assist sustaining the drug release, Ethocel™ (EC) and Kollicoat® SR 30D associated with Opadry® II were employed as matrix-forming and reservoir-forming materials, respectively. The neat drugs, granules and the bulk formulations were evaluated for their angle of repose, compressibility index, Hausner ratio and tabletability. Mini-tablets were evaluated for their weight variation, hardness, friability, drug content and in-vitro drug release. The results indicated that melt granulation with carnauba wax improved the flow and the tabletability of the drugs, allowing the preparation of mini-tablets with adequate tensile strength under reduced compaction pressures. All mini-tablet formulations showed acceptable hardness (within the range of 1.16 to 3.93Kp) and friability (carnauba wax proved to be a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of soluble drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Flavonoids as modulators of metabolic enzymes and drug transporters.

    Science.gov (United States)

    Miron, Anca; Aprotosoaie, Ana Clara; Trifan, Adriana; Xiao, Jianbo

    2017-06-01

    Flavonoids, natural compounds found in plants and in plant-derived foods and beverages, have been extensively studied with regard to their capacity to modulate metabolic enzymes and drug transporters. In vitro, flavonoids predominantly inhibit the major phase I drug-metabolizing enzyme CYP450 3A4 and the enzymes responsible for the bioactivation of procarcinogens (CYP1 enzymes) and upregulate the enzymes involved in carcinogen detoxification (UDP-glucuronosyltransferases, glutathione S-transferases (GSTs)). Flavonoids have been reported to inhibit ATP-binding cassette (ABC) transporters (multidrug resistance (MDR)-associated proteins, breast cancer-resistance protein) that contribute to the development of MDR. P-glycoprotein, an ABC transporter that limits drug bioavailability and also induces MDR, was differently modulated by flavonoids. Flavonoids and their phase II metabolites (sulfates, glucuronides) inhibit organic anion transporters involved in the tubular uptake of nephrotoxic compounds. In vivo studies have partially confirmed in vitro findings, suggesting that the mechanisms underlying the modulatory effects of flavonoids are complex and difficult to predict in vivo. Data summarized in this review strongly support the view that flavonoids are promising candidates for the enhancement of oral drug bioavailability, chemoprevention, and reversal of MDR. © 2017 New York Academy of Sciences.

  6. Fexinidazole--a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness.

    Directory of Open Access Journals (Sweden)

    Els Torreele

    2010-12-01

    , 30% in rats, and 10% in dogs. Furthermore, fexinidazole is rapidly metabolised in vivo to at least two biologically active metabolites (a sulfoxide and a sulfone derivative that likely account for a significant portion of the therapeutic effect. Key pharmacokinetic parameter after oral absorption in mice for fexinidazole and its sulfoxide and sulfone metabolites are a C(max of 500, 14171 and 13651 ng/mL respectively, and an AUC₀₋₂₄ of 424, 45031 and 96286 h.ng/mL respectively. Essentially similar PK profiles were observed in rats and dogs. Toxicology studies (including safety pharmacology and 4-weeks repeated-dose toxicokinetics in rat and dog have shown that fexinidazole is well tolerated. The No Observed Adverse Event Levels in the 4-weeks repeated dose toxicity studies in rats and dogs was 200 mg/kg/day in both species, with no issues of concern identified for doses up to 800 mg/kg/day. While fexinidazole, like many nitroheterocycles, is mutagenic in the Ames test due to bacterial specific metabolism, it is not genotoxic to mammalian cells in vitro or in vivo as assessed in an in vitro micronucleus test on human lymphocytes, an in vivo mouse bone marrow micronucleus test, and an ex vivo unscheduled DNA synthesis test in rats.The results of the preclinical pharmacological and safety studies indicate that fexinidazole is a safe and effective oral drug candidate with no untoward effects that would preclude evaluation in man. The drug has entered first-in-human phase I studies in September 2009. Fexinidazole is the first new clinical drug candidate with the potential for treating advanced-stage sleeping sickness in thirty years.

  7. BIOPHARMACEUTICAL SUBSTANTIATION OF THE SOLVENT IN THE COMPOSITION OF THE IMMUNOBIOLOGICAL DRUG FOR PREVENTION AND TREATMENT OF CANDIDAL INFECTION

    Directory of Open Access Journals (Sweden)

    Rybalkin М. V

    2014-10-01

    Full Text Available Today diseases caused by potentially pathogenic microorganisms become increasingly important. This phenomenon is connected with increase of power of influence of the environment: chemical pollution, radiation, irrational use of antibiotics and hormone therapy; it leads to decrease of the immune response and human nonspecific resistance. For the last years one of the indicators of failure of the human body immune protection is chronic and local candidiases caused by potentially pathogenic fungi of Candida genus. Prevalence and risk of candidal infections determine the need for searching new medicines with a high efficiency and safety for human. Development of a vaccine for prevention and treatment of candidal infection is being actively conducted in many countries of the world. It should be noted that currently no domestic vaccine is produced in Ukraine and no candidiasis vaccines have been registered. Therefore, development of such vaccine is the topical issue of modern pharmacy and medicine. In our previous studies it was found that the immunobiological drug based on the antigens of fungi of C. albicans with the protein concentration of 3 mg/ml and C. tropicalis with the protein concentration of 5 mg/ml in the ratio of 1:1 possesses the protective and therapeutic effect. At the current stage of research it is necessary to substantiate the solvent in the composition of the immunobiological drug. The aim of this work is the experimental substantiation of the solvent in the composition of the immunobiological drug based on the antigens of C. albicans and C. tropicalis fungi. Materials and Methods. The immunobiological drug with the protein concentration of 4 mg/ml was investigated using various solvents. The following solvents was studied: water for injections, 0.9 % isotonic saline solution, phosphate buffer solution. To determine the protective and therapeutic activity of the immunobiological drug based on the antigens of C. albicans and C

  8. Filled carbon nanotubes in biomedical imaging and drug delivery.

    Science.gov (United States)

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  9. Construction and characterization of a pure protein hydrogel for drug delivery application.

    Science.gov (United States)

    Xu, Xu; Xu, ZhaoKang; Yang, XiaoFeng; He, YanHao; Lin, Rong

    2017-02-01

    Injectable hydrogels have a variety of applications, including regenerative medicine, tissue engineering and controlled drug delivery. In this paper, we reported on a pure protein hydrogel based on tetrameric recombinant proteins for the potential drug delivery application. This protein hydrogel was formed instantly by simply mixing two recombinant proteins (ULD-TIP1 and ULD-GGGWRESAI) through the specific protein-peptide interaction. The protein hydrogel was characterized by rheology and scanning electron microscopy (SEM). In vitro cytotoxicity test indicated that the developed protein hydrogel had no apparent cytotoxicity against L-929 cells and HCEC cells after 48h incubation. The formed protein hydrogels was gradually degraded after incubation in phosphate buffered solution (PBS, pH=7.4) for a period of 144h study, as indicated by in vitro degradation test. Encapsulation of model drug (sodium diclofenac; DIC) were achieved by simple mixing of drugs with hydrogelator and the entrapped drugs was almost completely released from hydrogels within 24h via a diffusion manner. As a conclusion, the simple and mild preparation procedure and good biocompatibility of protein hydrogel would render its good promising candidate for drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics

    DEFF Research Database (Denmark)

    Hansen, Niclas Tue; Brunak, Søren; Altman, R. B.

    2009-01-01

    A critical task in pharmacogenomics is identifying genes that may be important modulators of drug response. High-throughput experimental methods are often plagued by false positives and do not take advantage of existing knowledge. Candidate gene lists can usefully summarize existing knowledge...

  11. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases.

    Science.gov (United States)

    Bisht, Rohit; Mandal, Abhirup; Jaiswal, Jagdish K; Rupenthal, Ilva D

    2018-03-01

    Effective drug delivery to the retina still remains a challenge due to ocular elimination mechanisms and complex barriers that selectively limit the entry of drugs into the eye. To overcome these barriers, frequent intravitreal injections are currently used to achieve high drug concentrations in vitreous and retina. However, these repetitive injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery could overcome some of these unmet needs and various preclinical studies conducted to date have demonstrated promising results of nanotherapies in the treatment of retinal diseases. Compared to the majority of commercially available ocular implants, the biodegradable nature of most nanoparticles (NPs) avoids the need for surgical implantation and removal after the release of the payload. In addition, the sustained drug release from NPs over an extended period of time reduces the need for frequent intravitreal injections and the risk of associated side effects. The nanometer size and highly modifiable surface properties make NPs excellent candidates for targeted ocular drug delivery. Studies have shown that nanocarriers enhance the intravitreal half-life and thus bioavailability of a number of drugs including proteins and peptides. In addition, they have shown promising results in delivering genetic material to the retinal tissues by protecting it from possible intravitreal degradation. This review covers the various challenges associated with drug delivery to the posterior segment of the eye, particularly the retina, and highlights the application of nanocarriers to overcome these challenges in context with recent advances in preclinical studies. WIREs Nanomed Nanobiotechnol 2018, 10:e1473. doi: 10.1002/wnan.1473 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals

  12. Glutamatergic substrates of drug addiction and alcoholism1

    Science.gov (United States)

    Gass, Justin T.; Foster Olive, M.

    2008-01-01

    The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and mematine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism. PMID:17706608

  13. Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Tatiana Y.; Garvey, Edward P.; Hoekstra, William J.; Yates, Christopher M.; Wawrzak, Zdzislaw; Rachakonda, Girish; Villalta, Fernando; Lepesheva, Galina I.

    2017-05-01

    ABSTRACT

    Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungusAspergillus fumigatus. VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole, ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatusCYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis ofA. fumigatusCYP51/voriconazole andCandida albicansCYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using twoA. fumigatusstrains (strains 32820 and 1022) displayed a direct

  14. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library.

    Science.gov (United States)

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi

  15. Novel amidines and analogues as promising agents against intracellular parasites: a systematic review.

    Science.gov (United States)

    Soeiro, M N C; Werbovetz, K; Boykin, D W; Wilson, W D; Wang, M Z; Hemphill, A

    2013-07-01

    Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.

  16. Drug repurposing for aging research using model organisms.

    Science.gov (United States)

    Ziehm, Matthias; Kaur, Satwant; Ivanov, Dobril K; Ballester, Pedro J; Marcus, David; Partridge, Linda; Thornton, Janet M

    2017-10-01

    Many increasingly prevalent diseases share a common risk factor: age. However, little is known about pharmaceutical interventions against aging, despite many genes and pathways shown to be important in the aging process and numerous studies demonstrating that genetic interventions can lead to a healthier aging phenotype. An important challenge is to assess the potential to repurpose existing drugs for initial testing on model organisms, where such experiments are possible. To this end, we present a new approach to rank drug-like compounds with known mammalian targets according to their likelihood to modulate aging in the invertebrates Caenorhabditis elegans and Drosophila. Our approach combines information on genetic effects on aging, orthology relationships and sequence conservation, 3D protein structures, drug binding and bioavailability. Overall, we rank 743 different drug-like compounds for their likelihood to modulate aging. We provide various lines of evidence for the successful enrichment of our ranking for compounds modulating aging, despite sparse public data suitable for validation. The top ranked compounds are thus prime candidates for in vivo testing of their effects on lifespan in C. elegans or Drosophila. As such, these compounds are promising as research tools and ultimately a step towards identifying drugs for a healthier human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Promising cardiovascular and blood pressure effects of the SGLT2 inhibitors: a new class of antidiabetic drugs.

    Science.gov (United States)

    Chrysant, S G

    2017-03-01

    Patients with type 2 diabetes mellitus (T2DM) exhibit an increased risk of cardiovascular (CV) events. Treatment of these patients with traditional as well as newer glucose-lowering drugs has not demonstrated superiority in CV outcomes compared to placebo, despite effective control of diabetes. However, the recently FDA-approved sodium-glucose cotransporter 2 (SGLT2) inhibitors for the treatment of T2DM have demonstrated promising CV-protecting and blood pressure-lowering effects in addition to their effectiveness in glucose lowering, making them a novel class of drugs for the treatment of T2DM. So far, there are three SGLT2 inhibitors approved by the FDA and EMA for the treatment of T2DM: canagliflozin, dapagliflozin and empagliflozin. They exert their antihyperglycemic effect through inhibition of SGLT2 in the kidney and significantly reduce glucose reabsorption from the proximal renal tubule. By blocking glucose reabsorption, they lead to loss of calories, weight, abdominal and total body fat, blood pressure and CV complications. One CV outcomes randomized trial and several short-term studies have shown reductions in CV events and blood pressure in patients with T2DM. It is the hope that large ongoing long-term outcome studies will provide further much-needed information, when they are completed. Copyright 2017 Clarivate Analytics.

  18. Ebola virus: A gap in drug design and discovery - experimental and computational perspective.

    Science.gov (United States)

    Balmith, Marissa; Faya, Mbuso; Soliman, Mahmoud E S

    2017-03-01

    The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus. © 2016 John Wiley & Sons A/S.

  19. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    Science.gov (United States)

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  20. The impact of assay technology as applied to safety assessment in reducing compound attrition in drug discovery.

    Science.gov (United States)

    Thomas, Craig E; Will, Yvonne

    2012-02-01

    Attrition in the drug industry due to safety findings remains high and requires a shift in the current safety testing paradigm. Many companies are now positioning safety assessment at each stage of the drug development process, including discovery, where an early perspective on potential safety issues is sought, often at chemical scaffold level, using a variety of emerging technologies. Given the lengthy development time frames of drugs in the pharmaceutical industry, the authors believe that the impact of new technologies on attrition is best measured as a function of the quality and timeliness of candidate compounds entering development. The authors provide an overview of in silico and in vitro models, as well as more complex approaches such as 'omics,' and where they are best positioned within the drug discovery process. It is important to take away that not all technologies should be applied to all projects. Technologies vary widely in their validation state, throughput and cost. A thoughtful combination of validated and emerging technologies is crucial in identifying the most promising candidates to move to proof-of-concept testing in humans. In spite of the challenges inherent in applying new technologies to drug discovery, the successes and recognition that we cannot continue to rely on safety assessment practices used for decades have led to rather dramatic strategy shifts and fostered partnerships across government agencies and industry. We are optimistic that these efforts will ultimately benefit patients by delivering effective and safe medications in a timely fashion.

  1. Detecting Novel and Emerging Drug Terms Using Natural Language Processing: A Social Media Corpus Study.

    Science.gov (United States)

    Simpson, Sean S; Adams, Nikki; Brugman, Claudia M; Conners, Thomas J

    2018-01-08

    therefore considered to be successful cases of uncovering novel drug terminology. Several of these novel terms appear to have been introduced as recently as 1 or 2 months before the corpus time slice used to train the word embeddings. Though the precision of the method described here is low enough as to still necessitate human review of any candidate term lists generated in such a manner, the fact that this process was able to detect 30 novel terms for the target substance based only on one month's worth of Twitter data is highly promising. We see this pilot study as an important proof of concept and a first step toward producing a fully automated drug term discovery system capable of tracking emerging NPS terms in real time. ©Sean S Simpson, Nikki Adams, Claudia M Brugman, Thomas J Conners. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 08.01.2018.

  2. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines.

    Science.gov (United States)

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-10-15

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid-based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Microfluidics Enables Small-Scale Tissue-Based Drug Metabolism Studies With Scarce Human Tissue

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Verpoorte, Elisabeth; Groothuis, Geny M. M.; Merema, M.T.

    2011-01-01

    Early information on the metabolism and toxicity properties of new drug candidates is crucial for selecting the right candidates for further development. Preclinical trials rely on cell-based in vitro tests and animal studies to characterize the in vivo behavior of drug candidates, although neither

  4. Historical Spice as a Future Drug: Therapeutic Potential of Piperlongumine.

    Science.gov (United States)

    Prasad, Sahdeo; Tyagi, Amit K

    2016-01-01

    Spice and spice-derived compounds have been identified and explored for their health benefits since centuries. One of the spice long pepper has been traditionally used to treat chronic bronchitis, asthma, constipation, gonorrhea, paralysis of the tongue, diarrhea, cholera, malaria, viral hepatitis, respiratory infections, stomach ache, diseases of the spleen, cough, and tumors. In this review, the evidences for the chemopreventive and chemotherapeutic potential of piperlongumine have been described. The active component piperlonguime has shown effective against various ailments including cancer, neurogenerative disease, arthritis, melanogenesis, lupus nephritis, and hyperlipidemic. These beneficial effects of piperlongumine is attributed to its ability to modulate several signaling molecules like reactive oxygen species, kinases, proteasome, proto-oncogenes, transcription factors, cell cycle, inflammatory molecules and cell growth and survival molecules. Piperlongumine also chemosensitizes to drugs resistant cancer cells. Overall the consumption of long peppers is therefore recommended for the prevention and treatment of various diseases including cancer, and thus piperlongumine may be a promising future candidate drug against cancer.

  5. eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs.

    Science.gov (United States)

    Brylinski, Michal; Naderi, Misagh; Govindaraj, Rajiv Gandhi; Lemoine, Jeffrey

    2017-12-10

    About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/. Copyright © 2017. Published by Elsevier Ltd.

  6. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers.

    Science.gov (United States)

    Yue, Xiuli; Dai, Zhifei

    2014-05-01

    Liposomes have been extensively investigated as possible carriers for diagnostic or therapeutic agents due to their unique properties. However, liposomes still have not attained their full potential as drug and gene delivery vehicles because of their insufficient morphological stability. Recently, a super-stable and freestanding hybrid liposomal cerasome (partially ceramic- or silica-coated liposome) has drawn much attention as a novel drug delivery system because its atomic layer of polyorganosiloxane surface imparts higher morphological stability than conventional liposomes and its liposomal bilayer structure reduces the overall rigidity and density greatly compared to silica nanoparticles. Cerasomes are more biocompatible than silica nanoparticles due to the incorporation of the liposomal architecture into cerasomes. Cerasomes combine the advantages of both liposomes and silica nanoparticles but overcome their disadvantages so cerasomes are ideal drug delivery systems. The present review will first highlights some of the key advances of the past decade in the technology of cerasome production and then review current biomedical applications of cerasomes, with a view to stimulating further research in this area of study. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A high content screening assay to predict human drug-induced liver injury during drug discovery.

    Science.gov (United States)

    Persson, Mikael; Løye, Anni F; Mow, Tomas; Hornberg, Jorrit J

    2013-01-01

    Adverse drug reactions are a major cause for failures of drug development programs, drug withdrawals and use restrictions. Early hazard identification and diligent risk avoidance strategies are therefore essential. For drug-induced liver injury (DILI), this is difficult using conventional safety testing. To reduce the risk for DILI, drug candidates with a high risk need to be identified and deselected. And, to produce drug candidates without that risk associated, risk factors need to be assessed early during drug discovery, such that lead series can be optimized on safety parameters. This requires methods that allow for medium-to-high throughput compound profiling and that generate quantitative results suitable to establish structure-activity-relationships during lead optimization programs. We present the validation of such a method, a novel high content screening assay based on six parameters (nuclei counts, nuclear area, plasma membrane integrity, lysosomal activity, mitochondrial membrane potential (MMP), and mitochondrial area) using ~100 drugs of which the clinical hepatotoxicity profile is known. We find that a 100-fold TI between the lowest toxic concentration and the therapeutic Cmax is optimal to classify compounds as hepatotoxic or non-hepatotoxic, based on the individual parameters. Most parameters have ~50% sensitivity and ~90% specificity. Drugs hitting ≥2 parameters at a concentration below 100-fold their Cmax are typically hepatotoxic, whereas non-hepatotoxic drugs typically hit based on nuclei count, MMP and human Cmax, we identified an area without a single false positive, while maintaining 45% sensitivity. Hierarchical clustering using the multi-parametric dataset roughly separates toxic from non-toxic compounds. We employ the assay in discovery projects to prioritize novel compound series during hit-to-lead, to steer away from a DILI risk during lead optimization, for risk assessment towards candidate selection and to provide guidance of safe

  8. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona

    2016-01-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer...... solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does...... not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both...

  9. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Xi-Nan Shi

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related deaths worldwide. Surgical resection and conventional chemotherapy and radiotherapy ultimately fail due to tumor recurrence and HCC's resistance. The development of novel therapies against HCC is thus urgently required. The cyclin-dependent kinase (CDK pathways are important and well-established targets for cancer treatment. In particular, CDK2 is a key factor regulating the cell cycle G1 to S transition and a hallmark for cancers. In this study, we utilized our free and open-source protein-ligand docking software, idock, prospectively to identify potential CDK2 inhibitors from 4,311 FDA-approved small molecule drugs using a repurposing strategy and an ensemble docking methodology. Sorted by average idock score, nine compounds were purchased and tested in vitro. Among them, the anti-psychotic drug fluspirilene exhibited the highest anti-proliferative effect in human hepatocellular carcinoma HepG2 and Huh7 cells. We demonstrated for the first time that fluspirilene treatment significantly increased the percentage of cells in G1 phase, and decreased the expressions of CDK2, cyclin E and Rb, as well as the phosphorylations of CDK2 on Thr160 and Rb on Ser795. We also examined the anti-cancer effect of fluspirilene in vivo in BALB/C nude mice subcutaneously xenografted with human hepatocellular carcinoma Huh7 cells. Our results showed that oral fluspirilene treatment significantly inhibited tumor growth. Fluspirilene (15 mg/kg exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil (10 mg/kg. Moreover, the cocktail treatment with fluspirilene and 5-fluorouracil exhibited the highest therapeutic effect. These results suggested for the first time that fluspirilene is a potential CDK2 inhibitor and a candidate anti-cancer drug for the treatment of human hepatocellular carcinoma. In view of the fact that fluspirilene has a long history

  10. Hybrid nanostructured drug carrier with tunable and controlled drug release

    International Nuclear Information System (INIS)

    Depan, D.; Misra, R.D.K.

    2012-01-01

    We describe here a transformative approach to synthesize a hybrid nanostructured drug carrier that exhibits the characteristics of controlled drug release. The synthesis of the nanohybrid architecture involved two steps. The first step involved direct crystallization of biocompatible copolymer along the long axis of the carbon nanotubes (CNTs), followed by the second step of attachment of drug molecule to the polymer via hydrogen bonding. The extraordinary inorganic–organic hybrid architecture exhibited high drug loading ability and is physically stable even under extreme conditions of acidic media and ultrasonic irradiation. The temperature and pH sensitive characteristics of the hybrid drug carrier and high drug loading ability merit its consideration as a promising carrier and utilization of the fundamental aspects used for synthesis of other promising drug carriers. The higher drug release response during the application of ultrasonic frequency is ascribed to a cavitation-type process in which the acoustic bubbles nucleate and collapse releasing the drug. Furthermore, the study underscores the potential of uniquely combining CNTs and biopolymers for drug delivery. - Graphical abstract: Block-copolymer crystallized on carbon nanotubes (CNTs). Nanohybrid drug carrier synthesized by attaching doxorubicin (DOX) to polymer crystallized CNTs. Crystallized polymer on CNTs provide mechanical stability. Triggered release of DOX. Highlights: ► The novel synthesis of a hybrid nanostructured drug carrier is described. ► The drug carrier exhibits high drug loading ability and is physically stable. ► The high drug release is ascribed to a cavitation-type process.

  11. Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems.

    Science.gov (United States)

    Ueda, H; Hacker, M C; Haesslein, A; Jo, S; Ammon, D M; Borazjani, R N; Kunzler, J F; Salamone, J C; Mikos, A G

    2007-12-01

    This study sought to develop an injectable formulation for long-term ocular delivery of fluocinolone acetonide (FA) by dissolving the anti-inflammatory drug and the biodegradable polymer poly(propylene fumarate) (PPF) in the biocompatible, water-miscible, organic solvent N-methyl-2-pyrrolidone (NMP). Upon injection of the solution into an aqueous environment, a FA-loaded PPF matrix is precipitated in situ through the diffusion/extraction of NMP into surrounding aqueous fluids. Fabrication of the matrices and in vitro release studies were performed in phosphate buffered saline at 37 degrees C. Drug loadings up to 5% were achieved. High performance liquid chromatography was employed to determine the released amount of FA. The effects of drug loading, PPF content of the injectable formulation, and additional photo-crosslinking of the matrix surface were investigated. Overall, FA release was sustained in vitro over up to 400 days. After an initial burst release of 22 to 68% of initial FA loading, controlled drug release driven by diffusion and bulk erosion was observed. Drug release rates in a therapeutic range were demonstrated. Release kinetics were found to be dependent on drug loading, formulation PPF content, and extent of surface crosslinking. The results suggest that injectable, in situ formed PPF matrices are promising candidates for the formulation of long-term, controlled delivery devices for intraocular drug delivery. Copyright 2007 Wiley Periodicals, Inc.

  12. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Science.gov (United States)

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  13. SEARCHES FOR MILLISECOND PULSAR CANDIDATES AMONG THE UNIDENTIFIED FERMI OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Hui, C. Y.; Park, S. M. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Hu, C. P. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Lin, L. C. C. [Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan (China); Li, K. L.; Kong, A. K. H.; Jin, Ruolan; Yen, T.-C. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Tam, P. H. T. [Institute of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Kim, Chunglee, E-mail: cyhui@cnu.ac.kr [Yonsei University Observatory, Yonsei University, Seoul (Korea, Republic of)

    2015-08-10

    Here we report the results of searching millisecond pulsar (MSP) candidates from the Fermi LAT second source catalog (2FGL). Seven unassociated γ-ray sources in this catalog are identified as promising MSP candidates based on their γ-ray properties. Through the X-ray analysis, we have detected possible X-ray counterparts, localized to an arcsecond accuracy. We have systematically estimated their X-ray fluxes and compared them with the corresponding γ-ray fluxes. The X-ray to γ-ray flux ratios for 2FGL J1653.6-0159 and 2FGL J1946.4-5402 are comparable with the typical value for pulsars. For 2FGL J1625.2-0020, 2FGL J1653.6-0159, and 2FGL J1946.4-5402, their candidate X-ray counterparts are bright enough to perform a detailed spectral and temporal analysis to discriminate their thermal/non-thermal nature and search for the periodic signal. We have also searched for possible optical/IR counterparts at the X-ray positions. For the optical/IR source coincident with the brightest X-ray object associated with 2FGL J1120.0-2204, its spectral energy distribution is comparable with a late-type star. Evidence for the variability has also been found by examining its optical light curve. All the aforementioned 2FGL sources resemble a pulsar in one or more aspects, making them promising targets for follow-up investigations.

  14. High drug payload curcumin nanosuspensions stabilized by mPEG-DSPE and SPC: in vitro and in vivo evaluation.

    Science.gov (United States)

    Hong, Jingyi; Liu, Yingying; Xiao, Yao; Yang, Xiaofeng; Su, Wenjing; Zhang, Mingzhu; Liao, Yonghong; Kuang, Haixue; Wang, Xiangtao

    2017-11-01

    Curcumin (CUR) is a promising drug candidate based on its broad bioactivities and good antitumor effect, but the application of CUR is potentially restricted because of its poor solubility and bioavailability. This study aims at developing a simple and effective drug delivery system for CUR to enhance its solubility and bioavailability thus to improve its antitumor efficacy. Curcumin nanosuspensions (CUR-NSps) were prepared by precipitation-ultrasonication method using mPEG2000-DSPE and soybean lecithin as a combined stabilizer. CUR-NSps with a high drug payload of 67.07% were successfully prepared. The resultant CUR-NSps had a mean particle size of 186.33 ± 2.73 nm with a zeta potential of -19.00 ± 1.31 mV. In vitro cytotoxicity assay showed that CUR-NSps exhibited enhanced cytotoxicity compared to CUR solution. The pharmacokinetics results demonstrated that CUR-NSps exhibited a significantly greater AUC 0-24 and prolonged MRT compared to CUR injections after intravenous administration. In the biodistribution study, CUR-NSps demonstrated enhanced biodistribution compared with CUR injections in liver, spleen, kidney, brain, and tumor. The CUR-NSps also showed improved antitumor therapeutic efficacy over the injections (70.34% versus 40.03%, p < 0.01). These results suggest that CUR-NSps might represent a promising drug formulation for intravenous administration of CUR for the treatment of cancer.

  15. Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems

    Science.gov (United States)

    Wang, Hao; Dai, Tingting; Zhou, Shuyan; Huang, Xiaoxiao; Li, Songying; Sun, Kang; Zhou, Guangdong; Dou, Hongjing

    2017-01-01

    In order to overcome the key challenge in improving both fabrication efficiency and their drug delivery capability of anti-cancer drug delivery systems (ACDDS), here polyacrylic acid (PAA) grafted dextran (Dex) nanohydrogels (NGs) with covalent crosslinked structure bearing redox sensitive disulfide crosslinking junctions (Dex-SS-PAA) were synthesized efficiently through a one-step self-assembly assisted methodology (SAA). The Dex-SS-PAA were subsequently conjugated with doxorubicin through an acid-labile hydrazone bond (Dex-SS-PAA-DOX). The in vitro drug release behavior, anti-cancer effects in vivo, and biosafety of the as-prepared acid- and redox-dual responsive biodegradable NGs were systematically investigated. The results revealed that the Dex-SS-PAA-DOX exhibited pH- and redox-controlled drug release, greatly reduced the toxicity of free DOX, while exhibiting a strong ability to inhibit the growth of MDA-MB-231 tumors. Our study demonstrated that the Dex-SS-PAA-DOX NGs are very promising candidates as ACDDS for anti-cancer therapeutics.

  16. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy

    Science.gov (United States)

    Chen, Haijun; Yang, Zhengduo; Ding, Chunyong; Chu, Lili; Zhang, Yusong; Terry, Kristin; Liu, Huiling; Shen, Qiang; Zhou, Jia

    2013-01-01

    Fragment-based drug design (FBDD) is a promising approach for the generation of lead molecules with enhanced activity and especially drug-like properties against therapeutic targets. Herein, we report the fragment-based drug design, systematic chemical synthesis and pharmacological evaluation of novel scaffolds as potent anticancer agents by utilizing six privileged fragments from known STAT3 inhibitors. Several new molecules such as compounds 5, 12, and 19 that may act as advanced chemical leads have been identified. The most potent compound 5 (HJC0123) has demonstrated to inhibit STAT3 promoter activity, downregulate phosphorylation of STAT3, increase the expression of cleaved caspase-3, inhibit cell cycle progression and promote apoptosis in breast and pancreatic cancer cells with low micromolar to nanomolar IC50 values. Furthermore, compound 5 significantly suppressed estrogen receptor (ER)-negative breast cancer MDA-MB-231 xenograft tumor growth in vivo (p.o.), indicating its great potential as an efficacious and orally bioavailable drug candidate for human cancer therapy. PMID:23416191

  17. Predicting targeted drug combinations based on Pareto optimal patterns of coexpression network connectivity.

    Science.gov (United States)

    Penrod, Nadia M; Greene, Casey S; Moore, Jason H

    2014-01-01

    Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced tumor adaptation. We use this approach to identify tumor-essential genes as druggable candidates. We apply our method to a set of ER(+) breast tumor samples, collected before (n = 58) and after (n = 60) neoadjuvant treatment with the aromatase inhibitor letrozole, to prioritize genes as targets for combination therapy with letrozole treatment. We validate letrozole-induced tumor adaptation through coexpression and pathway analyses in an independent data set (n = 18). We find pervasive differential coexpression between the untreated and letrozole-treated tumor samples as evidence of letrozole-induced tumor adaptation. Based on patterns of coexpression, we identify ten genes as potential candidates for combination therapy with letrozole including EPCAM, a letrozole-induced essential gene and a target to which drugs have already been developed as cancer therapeutics. Through replication, we validate six letrozole-induced coexpression relationships and confirm the epithelial-to-mesenchymal transition as a process that is upregulated in the residual tumor samples following letrozole treatment. To derive the greatest benefit from molecularly targeted drugs it is critical to design combination

  18. A kernel for open source drug discovery in tropical diseases.

    Science.gov (United States)

    Ortí, Leticia; Carbajo, Rodrigo J; Pieper, Ursula; Eswar, Narayanan; Maurer, Stephen M; Rai, Arti K; Taylor, Ginger; Todd, Matthew H; Pineda-Lucena, Antonio; Sali, Andrej; Marti-Renom, Marc A

    2009-01-01

    Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private-public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues-open source drug discovery-has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such "kernels". HERE, WE USE A COMPUTATIONAL PIPELINE FOR: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we have experimentally tested our predictions for two of these targets, confirming one and invalidating the other. The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases.

  19. Exploring drug-target interaction networks of illicit drugs

    OpenAIRE

    Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming

    2013-01-01

    Background Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit dru...

  20. Influence networks based on coexpression improve drug target discovery for the development of novel cancer therapeutics

    Science.gov (United States)

    2014-01-01

    Background The demand for novel molecularly targeted drugs will continue to rise as we move forward toward the goal of personalizing cancer treatment to the molecular signature of individual tumors. However, the identification of targets and combinations of targets that can be safely and effectively modulated is one of the greatest challenges facing the drug discovery process. A promising approach is to use biological networks to prioritize targets based on their relative positions to one another, a property that affects their ability to maintain network integrity and propagate information-flow. Here, we introduce influence networks and demonstrate how they can be used to generate influence scores as a network-based metric to rank genes as potential drug targets. Results We use this approach to prioritize genes as drug target candidates in a set of ER + breast tumor samples collected during the course of neoadjuvant treatment with the aromatase inhibitor letrozole. We show that influential genes, those with high influence scores, tend to be essential and include a higher proportion of essential genes than those prioritized based on their position (i.e. hubs or bottlenecks) within the same network. Additionally, we show that influential genes represent novel biologically relevant drug targets for the treatment of ER + breast cancers. Moreover, we demonstrate that gene influence differs between untreated tumors and residual tumors that have adapted to drug treatment. In this way, influence scores capture the context-dependent functions of genes and present the opportunity to design combination treatment strategies that take advantage of the tumor adaptation process. Conclusions Influence networks efficiently find essential genes as promising drug targets and combinations of targets to inform the development of molecularly targeted drugs and their use. PMID:24495353

  1. In Silico Predictions of hERG Channel Blockers in Drug Discovery

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Sørensen, Flemming Steen

    2011-01-01

    The risk for cardiotoxic side effects represents a major problem in clinical studies of drug candidates and regulatory agencies have explicitly recommended that all new drug candidates should be tested for blockage of the human Ether-a-go-go Related-Gene (hERG) potassium channel. Indeed, several ...

  2. Crowd sourcing a new paradigm for interactome driven drug target identification in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Rohit Vashisht

    Full Text Available A decade since the availability of Mycobacterium tuberculosis (Mtb genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative 'Connect to Decode' (C2D to generate the first and largest manually curated interactome of Mtb termed 'interactome pathway' (IPW, encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.

  3. Crowd Sourcing a New Paradigm for Interactome Driven Drug Target Identification in Mycobacterium tuberculosis

    Science.gov (United States)

    Rohira, Harsha; Bhat, Ashwini G.; Passi, Anurag; Mukherjee, Keya; Choudhary, Kumari Sonal; Kumar, Vikas; Arora, Anshula; Munusamy, Prabhakaran; Subramanian, Ahalyaa; Venkatachalam, Aparna; S, Gayathri; Raj, Sweety; Chitra, Vijaya; Verma, Kaveri; Zaheer, Salman; J, Balaganesh; Gurusamy, Malarvizhi; Razeeth, Mohammed; Raja, Ilamathi; Thandapani, Madhumohan; Mevada, Vishal; Soni, Raviraj; Rana, Shruti; Ramanna, Girish Muthagadhalli; Raghavan, Swetha; Subramanya, Sunil N.; Kholia, Trupti; Patel, Rajesh; Bhavnani, Varsha; Chiranjeevi, Lakavath; Sengupta, Soumi; Singh, Pankaj Kumar; Atray, Naresh; Gandhi, Swati; Avasthi, Tiruvayipati Suma; Nisthar, Shefin; Anurag, Meenakshi; Sharma, Pratibha; Hasija, Yasha; Dash, Debasis; Sharma, Arun; Scaria, Vinod; Thomas, Zakir; Chandra, Nagasuma; Brahmachari, Samir K.; Bhardwaj, Anshu

    2012-01-01

    A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative ‘Connect to Decode’ (C2D) to generate the first and largest manually curated interactome of Mtb termed ‘interactome pathway’ (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach. PMID:22808064

  4. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    Science.gov (United States)

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  5. Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids

    Directory of Open Access Journals (Sweden)

    Annkathrin Hornung

    2015-09-01

    Full Text Available Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT employing superparamagnetic iron oxide nanoparticles (SPION loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of nanomedicine from bench to bedside, nanoparticle-mediated effects have to be studied carefully. In this study, we compare the effect of SPION, unloaded or loaded with the cytotoxic drug mitoxantrone (MTO with the effect of free MTO, on the viability and proliferation of HT-29 cells within three-dimensional multicellular tumor spheroids. Fluorescence microscopy and flow cytometry showed that both free MTO, as well as SPION-loaded MTO (SPIONMTO are able to penetrate into tumor spheroids and thereby kill tumor cells, whereas unloaded SPION did not affect cellular viability. Since SPIONMTO has herewith proven its effectivity also in complex multicellular tumor structures with its surrounding microenvironment, we conclude that it is a promising candidate for further use in magnetic drug targeting in vivo.

  6. Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid Titania—Synthesis and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Olga L. Evdokimova

    2018-04-01

    Full Text Available Spherical cellulose nanocrystal-based hybrids grafted with titania nanoparticles were successfully produced for topical drug delivery. The conventional analytical filter paper was used as a precursor material for cellulose nanocrystals (CNC production. Cellulose nanocrystals were extracted via a simple and quick two-step process based on first the complexation with Cu(II solution in aqueous ammonia followed by acid hydrolysis with diluted H2SO4. Triclosan was selected as a model drug for complexation with titania and further introduction into the nanocellulose based composite. Obtained materials were characterized by a broad variety of microscopic, spectroscopic, and thermal analysis methods. The drug release studies showed long-term release profiles of triclosan from the titania based nanocomposite that agreed with Higuchi model. The bacterial susceptibility tests demonstrated that released triclosan retained its antibacterial activity against Escherichia coli and Staphylococcus aureus. It was found that a small amount of titania significantly improved the antibacterial activity of obtained nanocomposites, even without immobilization of model drug. Thus, the developed hybrid patches are highly promising candidates for potential application as antibacterial agents.

  7. Advanced Vaccine Candidates for Lassa Fever

    Directory of Open Access Journals (Sweden)

    Igor S. Lukashevich

    2012-10-01

    Full Text Available Lassa virus (LASV is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF. LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.

  8. Theoretical design and discovery of the most-promising, previously overlooked hybrid perovskite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zunger, Alex [University of Colorado Boulder; Kazmerski, Lawrence [University of Colorado Boulder; Dalpian, Gustavo [University of Colorado Boulder

    2018-03-14

    The material class of hybrid organic-inorganic perovskites (AMX3) has risen rapidly from a virtually unknown material in photovoltaic applications a short 8-years ago into 20-23% efficient thin-film solar cell devices. As promising as this class of materials is, however, there are limitations associated with its poor long-term stability, non-optimal band gap, and the presence of toxic Pb atom on the metalloid site. An Edisonian laboratory exploration (i.e., growth + characterization) via trial-and-error processes of all other candidate materials, is unpractical. Our approach uses high speed computational design and discovery to screen the ‘best of class” candidates based upon optimal functionalities.

  9. Design of colon targeting drug delivery systems using natural polymeric carriers and their evaluation by gamma scintigraphy technique

    International Nuclear Information System (INIS)

    Soni, P.S.; Sawarkar, S.P.; Deshpande, S.G.; Bajaj, A.N.

    2004-01-01

    Of late, there has been a great awareness in the concept of drug targeting and delivery to a specific site (organ, tissue or cell) in the body to maximize therapeutic effect and reduce toxicity. The various approaches of site-specific drug delivery are implantable pumps, adhesive patches impregnated with drugs, vesicle enclosed drugs and drug carriers. Colonic drug delivery is intended for local and systemic treatment in the diseases of colon like inflammatory bowel conditions. Several approaches using viz. pro-drugs, biodegradable polymers and pH sensitive polymer coatings have been used to achieve colonic delivery. Natural polysaccarides like guar gum and pectin are promising candidates because they are susceptible to degradation by colonic bacteria and thus can release the entrapped drug in the colonic region. These indigenous natural polymers are cheaply and readily available. They comprise of polygalactouronic acid and refractory to host enzymes present in the upper gastrointestinal tract and are degraded by the enzymes produced by the colonic microflora. They were evaluated as a colonic carrier using 5-amino salicylic acid (5-ASA) as a model drug. After successful in vitro testing, gamma scintigraphy technique was used to assess in-vivo behavior of the colon specific drug delivery after a coat of Guar gum and Pectin

  10. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material

    International Nuclear Information System (INIS)

    Qian, Tingting; Li, Jinhong; Min, Xin; Deng, Yong; Guan, Weimin; Ning, Lei

    2015-01-01

    Graphical abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCMs’ applications is not limited to low temperatures only. In the present study, three kinds of PCMs: polyethylene glycol (PEG), lithium nitrate, and sodium sulfate were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three kinds of PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. - Highlights: • Low-temperature PEG/diatomite was prepared. • Middle-temperature LiNO 3 /diatomite was prepared. • High-temperature Na 2 SO 4 /diatomite was prepared. - Abstract: Low-temperature PCMs are always the objects of prime investigations, however, the field of PCM’s application is not only limited to low temperatures. In this study, polyethylene glycol (PEG), lithium nitrate (LiNO 3 ), and sodium sulfate (Na 2 SO 4 ) were respectively employed as the low-, middle- and high-temperature storage medium. A series of novel form-stable phase change materials (fs-PCMs) were tailor-made by blending diatomite and the three PCMs via a vacuum impregnation method or a facile mixing and sintering method. Various techniques were employed to characterize their structural and thermal properties. The maximum loads of PEG, LiNO 3 , and Na 2 SO 4 in diatomite powder could respectively reach 58%, 60%, and 65%, while PCM melts during the solid–liquid phase transformation. SEM, XRD, and FT-IR results indicated that PCMs were well dispersed into diatomite pores and no chemical changes took place during the heating and cooling process. The prepared fs-PCMs were quite stable in terms of thermal and chemical manner even after a 200-cycle of melting and freezing. The resulting composite fs-PCMs were promising candidates to

  11. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate.

    Science.gov (United States)

    Sun, Hengchang; Lin, Zhipeng; Zhao, Lu; Chen, Tingjin; Shang, Mei; Jiang, Hongye; Tang, Zeli; Zhou, Xinyi; Shi, Mengchen; Zhou, Lina; Ren, Pengli; Qu, Honglin; Lin, Jinsi; Li, Xuerong; Xu, Jin; Huang, Yan; Yu, Xinbing

    2018-03-07

    Clonorchiasis caused by Clonorchis sinensis has become increasingly prevalent in recent years. Effective prevention strategies are urgently needed to control this food-borne infectious disease. Previous studies indicated that paramyosin of C. sinensis (CsPmy) is a potential vaccine candidate. We constructed a recombinant plasmid of PEB03-CotC-CsPmy, transformed it into Bacillus subtilis WB600 strain (B.s-CotC-CsPmy), and confirmed CsPmy expression on the spore surface by SDS-PAGE, Western blotting and immunofluorescence assay. The immune response and protective efficacy of the recombinant spore were investigated in BALB/c mice after intragastrical or intraperitoneal immunization. Additionally, biochemical enzyme activities in sera, the intestinal histopathology and gut microflora of spore-treated mice were investigated. CsPmy was successfully expressed on the spore surface and the fusion protein on the spore surface with thermostability. Specific IgG in sera and intestinal mucus were increased after intraperitoneal and intragastrical immunization. The sIgA level in intestinal mucus, feces and bile of B.s-CotC-CsPmy orally treated mice were also significantly raised. Furthermore, numerous IgA-secreting cells were detected in intestinal mucosa of intragastrically immunized mice. No inflammatory injury was observed in the intestinal tissues and there was no significant difference in levels of enzyme-indicated liver function among the groups. Additionally, the diversity and abundance of gut microbiota were not changed after oral immunization. Intragastric and intraperitoneal immunization of B.s-CotC-CsPmy spores in mice resulted in egg reduction rates of 48.3 and 51.2% after challenge infection, respectively. Liver fibrosis degree in B.s-CotC-CsPmy spores treated groups was also significantly reduced. CsPmy expressed on the spore surface maintained its immunogenicity. Both intragastrical and intraperitoneal immunization with B.s-CotC-CsPmy spores induced systemic and

  12. An integrated dataset for in silico drug discovery

    Directory of Open Access Journals (Sweden)

    Cockell Simon J

    2010-12-01

    Full Text Available Drug development is expensive and prone to failure. It is potentially much less risky and expensive to reuse a drug developed for one condition for treating a second disease, than it is to develop an entirely new compound. Systematic approaches to drug repositioning are needed to increase throughput and find candidates more reliably. Here we address this need with an integrated systems biology dataset, developed using the Ondex data integration platform, for the in silico discovery of new drug repositioning candidates. We demonstrate that the information in this dataset allows known repositioning examples to be discovered. We also propose a means of automating the search for new treatment indications of existing compounds.

  13. Exploring drug-target interaction networks of illicit drugs.

    Science.gov (United States)

    Atreya, Ravi V; Sun, Jingchun; Zhao, Zhongming

    2013-01-01

    Drug addiction is a complex and chronic mental disease, which places a large burden on the American healthcare system due to its negative effects on patients and their families. Recently, network pharmacology is emerging as a promising approach to drug discovery by integrating network biology and polypharmacology, allowing for a deeper understanding of molecular mechanisms of drug actions at the systems level. This study seeks to apply this approach for investigation of illicit drugs and their targets in order to elucidate their interaction patterns and potential secondary drugs that can aid future research and clinical care. In this study, we extracted 188 illicit substances and their related information from the DrugBank database. The data process revealed 86 illicit drugs targeting a total of 73 unique human genes, which forms an illicit drug-target network. Compared to the full drug-target network from DrugBank, illicit drugs and their target genes tend to cluster together and form four subnetworks, corresponding to four major medication categories: depressants, stimulants, analgesics, and steroids. External analysis of Anatomical Therapeutic Chemical (ATC) second sublevel classifications confirmed that the illicit drugs have neurological functions or act via mechanisms of stimulants, opioids, and steroids. To further explore other drugs potentially having associations with illicit drugs, we constructed an illicit-extended drug-target network by adding the drugs that have the same target(s) as illicit drugs to the illicit drug-target network. After analyzing the degree and betweenness of the network, we identified hubs and bridge nodes, which might play important roles in the development and treatment of drug addiction. Among them, 49 non-illicit drugs might have potential to be used to treat addiction or have addictive effects, including some results that are supported by previous studies. This study presents the first systematic review of the network

  14. Corrosion susceptibility study of candidate pin materials for ALTC (Active Lithium/Thionyl Chloride) batteries

    Science.gov (United States)

    Bovard, Francine S.; Cieslak, Wendy R.

    1987-09-01

    The corrosion susceptibilities of eight alternate battery pin material candidates for ALTC (Active Lithium/Thionyl Chloride) batteries in 1.5M LiAlCl4/SOCl2 electrolyte have been investigated using ampule exposure and electrochemical tests. The thermal expansion coefficients of these candidate materials are expected to match Sandia-developed Li-corrosion resistant glasses. The corrosion resistances of the candidate materials, which included three stainless steels (15-5 PH, 17-4 PH, and 446), three Fe-Ni glass sealing alloys (Kovar, Alloy 52, and Niromet 426), a Ni-based alloy (Hastelloy B-2) and a zirconium-based alloy (Zircaloy), were compared to the reference materials Ni and 316L SS. All of the candidate materials showed some evidence of corrosion and, therefore, did not perform as well as the reference materials. The Hastelloy B-2 and Zircaloy are clearly unacceptable materials for this application. Of the remaining alternate materials, the 446 SS and Alloy 52 are the most promising candidates.

  15. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies.

    Science.gov (United States)

    Al Shweiki, Mhd Rami; Oeckl, Patrick; Steinacker, Petra; Hengerer, Bastian; Schönfeldt-Lecuona, Carlos; Otto, Markus

    2017-06-01

    Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.

  16. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions

    Directory of Open Access Journals (Sweden)

    Andrew C. Kotze

    2014-12-01

    Full Text Available Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging concern in companion animal medicine, and represents a threat to our ongoing ability to control human soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS provides a forum for scientists to meet and discuss the latest developments in the search for molecular markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of resistance is also important for understanding how anthelmintics work, and how drug resistant populations arise. Changes to target receptors, drug efflux and other biological processes can be involved. This paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge on the development of molecular markers for resistance to each of the principal classes of anthelmintics is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of compounds, and we examine recent work to translate this knowledge into useful diagnostics for field use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic resistance and identify markers. We also look at drug transporters in terms of providing both useful markers for resistance, as well as opportunities to overcome resistance through the targeting of the transporters themselves with inhibitors. Finally, we describe the tools available for the application of the newest high-throughput sequencing technologies to the study of anthelmintic resistance.

  17. Promising Practices in Higher Education: Art Education and Human Rights Using Information, Communication Technologies (ICT)

    Science.gov (United States)

    Black, Joanna; Cap, Orest

    2014-01-01

    Promising pedagogical practices is described in relation to incorporating ICT (Information, Communication and Technologies) with the study of Human Rights issues in Visual Arts Education for teacher candidates. As part of a course, "Senior Years Art," students at the Faculty of Education, University of Manitoba during 2013-2014…

  18. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications.

    Science.gov (United States)

    Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K

    2014-06-01

    Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.

  19. Bioanalytical LC-MS/MS of protein-based biopharmaceuticals

    NARCIS (Netherlands)

    Broek, I. van den; Niessen, W.M.A.; Dongen, W.D. van

    2013-01-01

    Biotechnology increasingly delivers highly promising protein-based biopharmaceutical candidates to the drug development funnel. For successful biopharmaceutical drug development, reliable bioanalytical methods enabling quantification of drugs in biological fluids (plasma, urine, tissue, etc.) are

  20. Interleukin-11 Receptor Is a Candidate Target for Ligand-Directed Therapy in Lung Cancer: Analysis of Clinical Samples and BMTP-11 Preclinical Activity.

    Science.gov (United States)

    Cardó-Vila, Marina; Marchiò, Serena; Sato, Masanori; Staquicini, Fernanda I; Smith, Tracey L; Bronk, Julianna K; Yin, Guosheng; Zurita, Amado J; Sun, Menghong; Behrens, Carmen; Sidman, Richard L; Lee, J Jack; Hong, Waun K; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2016-08-01

    We previously isolated an IL-11-mimic motif (CGRRAGGSC) that binds to IL-11 receptor (IL-11R) in vitro and accumulates in IL-11R-expressing tumors in vivo. This synthetic peptide ligand was used as a tumor-targeting moiety in the rational design of BMTP-11, which is a drug candidate in clinical trials. Here, we investigated the specificity and accessibility of IL-11R as a target and the efficacy of BMTP-11 as a ligand-targeted drug in lung cancer. We observed high IL-11R expression levels in a large cohort of patients (n = 368). In matching surgical specimens (i.e., paired tumors and nonmalignant tissues), the cytoplasmic levels of IL-11R in tumor areas were significantly higher than in nonmalignant tissues (n = 36; P = 0.003). Notably, marked overexpression of IL-11R was observed in both tumor epithelial and vascular endothelial cell membranes (n = 301; P < 0.0001). BMTP-11 induced in vitro cell death in a representative panel of human lung cancer cell lines. BMTP-11 treatment attenuated the growth of subcutaneous xenografts and reduced the number of pulmonary tumors after tail vein injection of human lung cancer cells in mice. Our findings validate BMTP-11 as a pharmacologic candidate drug in preclinical models of lung cancer and patient-derived tumors. Moreover, the high expression level in patients with non-small cell lung cancer is a promising feature for potential translational applications. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial.

    Science.gov (United States)

    Christoph, Annette; Eerdekens, Marie-Henriette; Kok, Maurits; Volkers, Gisela; Freynhagen, Rainer

    2017-09-01

    Chronic low back pain (LBP) is a common condition, usually with the involvement of nociceptive and neuropathic pain components, high economic burden and impact on quality of life. Cebranopadol is a potent, first-in-class drug candidate with a novel mechanistic approach, combining nociceptin/orphanin FQ peptide and opioid peptide receptor agonism. We conducted the first phase II, randomized, double-blind, placebo- and active-controlled trial, evaluating the analgesic efficacy, safety, and tolerability of cebranopadol in patients with moderate-to-severe chronic LBP with and without neuropathic pain component. Patients were treated for 14 weeks with cebranopadol 200, 400, or 600 μg once daily, tapentadol 200 mg twice daily, or placebo. The primary efficacy endpoints were the change from baseline pain to the weekly average 24-hour pain during the entire 12 weeks and during week 12 of the maintenance phase. Cebranopadol demonstrated analgesic efficacy, with statistically significant and clinically relevant improvements over placebo for all doses as did tapentadol. The responder analysis (≥30% or ≥50% pain reduction) confirmed these results. Cebranopadol and tapentadol displayed beneficial effects on sleep and functionality. Cebranopadol treatment was safe, with higher doses leading to higher treatment discontinuations because of treatment-emergent adverse events occurring mostly during titration. Those patients reaching the target doses had an acceptable tolerability profile. The incidence rate of most frequently reported treatment-emergent adverse events during maintenance phase was ≤10%. Although further optimizing the titration scheme to the optimal dose for individual patients is essential, cebranopadol is a new drug candidate with a novel mechanistic approach for potential chronic LBP treatment.

  2. Drug-resistant tuberculosis: emerging treatment options

    Directory of Open Access Journals (Sweden)

    Adhvaryu MR

    2011-12-01

    Full Text Available Meghna Adhvaryu1, Bhasker Vakharia21Department of Biotechnology, SRK Institute of Computer Education and Applied Sciences, 2R&D, Bhuma Research in Ayurvedic and Herbal Medicine, Surat, Gujarat, IndiaAbstract: Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV, inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drug-susceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and

  3. Behavior of the magnetocaloric effect in La0.7Ba0.2Ca0.1Mn1-xSnxO3 manganite oxides as promising candidates for magnetic refrigeration

    Science.gov (United States)

    Dhahri, Ja.; Mnefgui, Safa; Ben Hassine, A.; Tahri, Ta.; Oumezzine, M.; Hlil, E. K.

    2018-05-01

    The magnetocaloric effect along with magnetic phase transition in the peroveskite polycrystalline samples La0.7Ba0.2Ca0.1Mn1-xSnxO3 (x = 0 and 0.1) was investigated. The samples were synthesized using conventional solid state reaction at 1400 °C temperature. Magnetization vs. temperature measurements, under a magnetic field of μ0H = 0.05 T, showed a paramagnetic-ferromagnetic transition at Curie temperature, TC, which decreases from 310 K for x = 0-290 K for x = 0.1. A large magnetic entropy change | ΔSM | deduced from isothermal magnetization curves, has been observed in our samples with a peak centered on their respective TC. Interesting values of the relative cooling power (RCP), 237 J kg-1 for x = 0 and 248 J kg-1 x = 0.1, make these samples promising candidates for magnetic refrigeration around room temperature.

  4. An Assessment of the Oral Bioavailability of Three Ca-Channel Blockers Using a Cassette-Microdose Study: A New Strategy for Streamlining Oral Drug Development.

    Science.gov (United States)

    Yamashita, Shinji; Kataoka, Makoto; Suzaki, Yuki; Imai, Hiromitsu; Morimoto, Takuya; Ohashi, Kyoichi; Inano, Akihiro; Togashi, Kazutaka; Mutaguchi, Kuninori; Sugiyama, Yuichi

    2015-09-01

    A cassette-microdose (MD) clinical study was performed to demonstrate its usefulness for identifying the most promising compound for oral use. Three Ca-channel blockers (nifedipine, nicardipine, and diltiazem) were chosen as model drugs. In the MD clinical study, a cassette-dose method was employed in which three model drugs were administered simultaneously. Both intravenous (i.v.) and oral (p.o.) administration studies were conducted to calculate the oral bioavailability (BA). For comparison, p.o. studies with therapeutic dose (ThD) levels were also performed. In all studies, blood concentrations of each drug were successfully determined using liquid chromatography-mass spectrometry with the lower limit of quantification of 0.2-2.0 pg/mL. Oral BA of nifedipine in the MD study was approximately 50% and in the same range with that obtained in the ThD study, whereas other two drugs showed significantly lower BA in the MD study, indicating a dose-dependent absorption. In addition, compared with the ThD study, absorption of nicardipine was delayed in the MD study. As a result, nifedipine was considered to be most promising for oral use. In conclusion, a cassette-MD clinical study is of advantage for oral drug development that enables to identify the candidate having desired properties for oral use. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Modified local diatomite as potential functional drug carrier--A model study for diclofenac sodium.

    Science.gov (United States)

    Janićijević, Jelena; Krajišnik, Danina; Čalija, Bojan; Vasiljević, Bojana Nedić; Dobričić, Vladimir; Daković, Aleksandra; Antonijević, Milan D; Milić, Jela

    2015-12-30

    Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure. Significant increase in adsorbent loading with diclofenac sodium (DS) was achieved after the modification process (∼373mg/g) which enabled the preparation of comprimates containing therapeutic dose of the adsorbed drug. Adsorption of DS onto modified diatomite resulted in the alteration of the drug's XRD pattern and FTIR spectrum. In vitro drug release studies in phosphate buffer pH 7.5 demonstrated prolonged DS release over 8h from comprimates containing DS adsorbed on modified diatomite (up to 37% after 8h) and those containing physical mixture of the same composition (up to 45% after 8h). The results of in vivo toxicity testing on mice pointed on potential safety of both unmodified (starting) and modified diatomite. All these findings favor the application of diatomite as a potential functional drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Stages of Drug Use Acquisition among College Students: Implications for the Prevention of Drug Abuse.

    Science.gov (United States)

    Werch, Chudley E.; And Others

    1993-01-01

    Examined stages of drug use acquisition among college students (n=669) and relationship between stage status and motivation to avoid drugs and frequency of drug use. College students differed with regard to their stage of habit acquisition across five drugs. Findings suggest that acquisition stage heuristic holds promise in increasing…

  7. Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery.

    Science.gov (United States)

    Ding, Mingming; Zeng, Xin; He, Xueling; Li, Jiehua; Tan, Hong; Fu, Qiang

    2014-08-11

    A cell internalizable and intracellularly degradable micellar system, assembled from multiblock polyurethanes bearing cell-penetrating gemini quaternary ammonium pendent groups in the side chain and redox-responsive disulfide linkages throughout the backbone, was developed for potential magnetic resonance imaging (MRI) and drug delivery. The nanocarrier is featured as a typical "cleavable core-internalizable shell-protective corona" architecture, which exhibits small size, positive surface charge, high loading capacity, and reduction-triggered destabilization. Furthermore, it can rapidly enter tumor cells and release its cargo in response to an intracellular level of glutathione, resulting in enhanced drug efficacy in vitro. The magnetic micelles loaded with superparamagnetic iron oxide (SPIO) nanoparticles demonstrate excellent MRI contrast enhancement, with T2 relaxivity found to be affected by the morphology of SPIO-clustering inside the micelle core. The multifunctional carrier with good cytocompatibility and nontoxic degradation products can serve as a promising theranostic candidate for efficient intracellular delivery of anticancer drugs and real-time monitoring of therapeutic effect.

  8. Pharmacodynamics and common drug-drug interactions of the third-generation antiepileptic drugs.

    Science.gov (United States)

    Stefanović, Srđan; Janković, Slobodan M; Novaković, Milan; Milosavljević, Marko; Folić, Marko

    2018-02-01

    Anticonvulsants that belong to the third generation are considered as 'newer' antiepileptic drugs, including: eslicarbazepine acetate, lacosamide, perampanel, brivaracetam, rufinamide and stiripentol. Areas covered: This article reviews pharmacodynamics (i.e. mechanisms of action) and clinically relevant drug-drug interactions of the third-generation antiepileptic drugs. Expert opinion: Newer antiepileptic drugs have mechanisms of action which are not shared with the first and the second generation anticonvulsants, like inhibition of neurotransmitters release, blocking receptors for excitatory amino acids and new ways of sodium channel inactivation. New mechanisms of action increase chances of controlling forms of epilepsy resistant to older anticonvulsants. Important advantage of the third-generation anticonvulsants could be their little propensity for interactions with both antiepileptic and other drugs observed until now, making prescribing much easier and safer. However, this may change with new studies specifically designed to discover drug-drug interactions. Although the third-generation antiepileptic drugs enlarged therapeutic palette against epilepsy, 20-30% of patients with epilepsy is still treatment-resistant and need new pharmacological approach. There is great need to explore all molecular targets that may directly or indirectly be involved in generation of seizures, so a number of candidate compounds for even newer anticonvulsants could be generated.

  9. Drugs from the Sea - Opportunities and Obstacles

    Directory of Open Access Journals (Sweden)

    Rainer Ebel

    2003-11-01

    Full Text Available Abstract: The supply problem with regard to drug development and sustainable production lies in the limited amounts of biomass of most marine invertebrates available from wild stocks. Thus, most pharmacologically active marine natural products can only be isolated in minute yields. Total synthesis of pharmacologically active natural products has been successfully established but is in many cases economically not feasible due to the complexity of the molecular structures and the low yields. To solve the pressing supply issue in marine drug discovery, other strategies appear to be more promising. One of these is mariculture which has successfully been established with the bryozoan Bugula neritina (the source of the bryostatins and the tunicate Ecteinascidia turbinata (the source of ET-743. Another strategy involves partial synthesis from precursors which are biotechnologically available. An example is ET-743 that can be partially synthesized from safracin B which is a metabolite of Pseudomonas fluorescens. There have been many examples of striking structural similarities between natural products obtained from marine invertebrates and those of microbial origin which suggests that microorganisms living in their invertebrate hosts could be the actual producers of these secondary metabolites. With regard to sustainable biotechnological production of pharmacologically important metabolites from marine invertebrates and their “endosymbionts”, a more advanced strategy is to focus on cloning and expression of the respective key biosynthetic gene clusters. This molecular biological approach will open up new avenues for biotechnological production of drugs or drug candidates from the sea.

  10. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-03-01

    Full Text Available Medullary thyroid cancer (MTC is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1 plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K, which is the key enzyme in the mammalian target of rapamycin (mTOR pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53-sestrins-AMPK-mTOR signaling pathway.

  11. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy.

    Science.gov (United States)

    Zhang, Lei; Liu, Wen; Wang, Qun; Li, Qinpei; Wang, Huijuan; Wang, Jun; Teng, Tieshan; Chen, Mingliang; Ji, Ailing; Li, Yanzhang

    2018-03-02

    Medullary thyroid cancer (MTC) is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1) plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K), which is the key enzyme in the mammalian target of rapamycin (mTOR) pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53)-sestrins-AMPK-mTOR signaling pathway.

  12. Promising applications in drug delivery systems of a novel β-cyclodextrin derivative obtained by green synthesis.

    Science.gov (United States)

    García, Agustina; Leonardi, Darío; Lamas, María C

    2016-01-15

    An efficient and green method has been developed for the synthesis of succinyl-β-cyclodextrin in aqueous media obtaining very good yield. Acidic groups have been introduced in the synthesized carrier molecule to improve the guest-host affinity. To evaluate the suitability of the novel excipient focused to develop oral dosage forms, albendazole, a BSC class II compound, was chosen as a model drug. The β-cyclodextrin derivative and the inclusion complex were thoroughly characterized in solution and solid state by phase solubility studies, FT-IR spectroscopy, SEM, XRD, ESI-MS, DSC, 1D (1)H NMR, 1D (13)C NMR, selective 1D TOCSY, 2D COSY, 2D HSQC, 2D HMBC and ROESY NMR spectroscopy. Phase solubility studies indicated that both of them β-cyclodextrin and succinyl-β-cyclodextrin formed 1:1 inclusion complexes with albendazole, and the stability constants were 68M(-1) (β-cyclodextrin), 437M(-1) (succinyl-β-cyclodextrin), respectively. Water solubility and dissolution rate of albendazole were significantly improved in complex forms. Thus, the succinyl-β-cyclodextrin derivative could be a promising excipient to design oral dosage forms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Remote controlled capsules in human drug absorption (HDA) studies.

    Science.gov (United States)

    Wilding, Ian R; Prior, David V

    2003-01-01

    The biopharmaceutical complexity of today's new drug candidates provides significant challenges for pharmaceutical scientists in terms of both candidate selection and optimizing subsequent development strategy. In addition, life cycle management of marketed drugs has become an important income stream for pharmaceutical companies, but the selection of least risk/highest benefit strategies is far from simple. The proactive adoption of human drug absorption (HDA) studies using remote controlled capsules offers the pharmaceutical scientist significant guidance for planning a route through the maze of product development. This review examines the position of HDA studies in drug development, using a variety of case histories and an insightful update on remote controlled capsules to achieve site-specific delivery.

  14. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium. Furtherm......The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers....... In order to successfully do this, methods for fabricating micro structures in biodegradable polymers need to be developed. The goal of this project has been to develop methods for micro fabrication in biodegradable polymers and to use these methods to produce micro systems for oral drug delivery. This has...

  15. "Drug" Discovery with the Help of Organic Chemistry.

    Science.gov (United States)

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  16. Metabotropic glutamate receptor 5 - a promising target in drug development and neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rajapillai L.I.; Tipre, Dnyanesh N. [Stony Brook University Health Science Center, Department of Psychiatry, Stony Brook, NY (United States)

    2016-06-15

    This review summarizes the contributions by various teams of scientists in assessing the metabotropic glutamate receptor 5 (mGluR5) as a biomarker in neuropsychiatric disorders and diseases. Development of positive and negative allosteric modulators of mGluR5 is reviewed, as is the development of PET radioligands that have the potential to measure mGluR5 receptor density in neurological disorders and during therapeutic interventions. PET imaging provides an effective tool to assess the specificity of new drugs, select dose regimens in clinical trials, and study drug mechanisms of action. We summarize and deliver comparative analyses of mGluR5-specific PET radiotracers and their applications in understanding the pathophysiology of mGluR5-related nervous system disorders and to speed up drug development. (orig.)

  17. Metabotropic glutamate receptor 5 - a promising target in drug development and neuroimaging

    International Nuclear Information System (INIS)

    Pillai, Rajapillai L.I.; Tipre, Dnyanesh N.

    2016-01-01

    This review summarizes the contributions by various teams of scientists in assessing the metabotropic glutamate receptor 5 (mGluR5) as a biomarker in neuropsychiatric disorders and diseases. Development of positive and negative allosteric modulators of mGluR5 is reviewed, as is the development of PET radioligands that have the potential to measure mGluR5 receptor density in neurological disorders and during therapeutic interventions. PET imaging provides an effective tool to assess the specificity of new drugs, select dose regimens in clinical trials, and study drug mechanisms of action. We summarize and deliver comparative analyses of mGluR5-specific PET radiotracers and their applications in understanding the pathophysiology of mGluR5-related nervous system disorders and to speed up drug development. (orig.)

  18. Probing cardiac repolarization reserve in drug safety assessment

    NARCIS (Netherlands)

    Nalos, L.

    2011-01-01

    Excessive prolongation of cardiac repolarization, manifested as QT prolongation on ECG, is common unwanted side effect of many drugs and drug candidates. Prolongation of QT interval may lead to life threatening cardiac arrhythmia – Torsade de Point (TdP). Number of drugs was withdrawn from the

  19. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    Science.gov (United States)

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  20. Promising Diabetes Therapy Based on the Molecular Mechanism for Glucose Toxicity: Usefulness of SGLT2 Inhibitors as well as Incretin-Related Drugs.

    Science.gov (United States)

    Kaneto, Hideaki; Obata, Atsushi; Shimoda, Masashi; Kimura, Tomohiko; Hirukawa, Hidenori; Okauchi, Seizo; Matsuoka, Taka-Aki; Kaku, Kohei

    2016-01-01

    Pancreatic β-cell dysfunction and insulin resistance are the main characteristics of type 2 diabetes. Chronic exposure of β-cells to hyperglycemia leads to the deterioration of β-cell function. Such phenomena are well known as pancreatic β-cell glucose toxicity. MafA, a strong transactivator of insulin gene, is particularly important for the maintenance of mature β-cell function, but its expression level is significantly reduced under diabetic conditions which is likely associated with β-cell failure. Reduction of incretin receptor expression level in β-cells in diabetes is also likely associated with β-cell failure. On the other hand, incretin-related drugs and sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising diabetes therapy based on the mechanism for pancreatic β-cell glucose toxicity. Indeed, it was shown that incretin-related drugs exerted protective effects on β-cells through the augmentation of IRS-2 expression especially in the presence of pioglitazone. It was also shown that incretin-related drug and/or pioglitazone exerted more protective effects on β-cells at the early stage of diabetes compared to the advanced stage. SGLT2 inhibitors, new hypoglycemic agents, also exert beneficial effects for the protection of pancreatic β-cells as well as for the reduction of insulin resistance in various insulin target tissues. Taken together, it is important to select appropriate therapy based on the molecular mechanism for glucose toxicity.

  1. Design, challenge, and promise of stimuli-responsive nanoantibiotics

    Science.gov (United States)

    Edson, Julius A.; Kwon, Young Jik

    2016-10-01

    Over the past few years, there have been calls for novel antimicrobials to combat the rise of drug-resistant bacteria. While some promising new discoveries have met this call, it is not nearly enough. The major problem is that although these new promising antimicrobials serve as a short-term solution, they lack the potential to provide a long-term solution. The conventional method of creating new antibiotics relies heavily on the discovery of an antimicrobial compound from another microbe. This paradigm of development is flawed due to the fact that microbes can easily transfer a resistant mechanism if faced with an environmental pressure. Furthermore, there has been some evidence to indicate that the environment of the microbe can provide a hint as to their virulence. Because of this, the use of materials with antimicrobial properties has been garnering interest. Nanoantibiotics, (nAbts), provide a new way to circumvent the current paradigm of antimicrobial discovery and presents a novel mechanism of attack not found in microbes yet; which may lead to a longer-term solution against drug-resistance formation. This allows for environment-specific activation and efficacy of the nAbts but may also open up and create new design methods for various applications. These nAbts provide promise, but there is still ample work to be done in their development. This review looks at possible ways of improving and optimizing nAbts by making them stimuli-responsive, then consider the challenges ahead, and industrial applications.[Figure not available: see fulltext.

  2. Drug gastrointestinal absorption in rat: Strain and gender differences.

    Science.gov (United States)

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  4. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier.

    Science.gov (United States)

    Ghadiri, Maryam; Vasheghani-Farahani, Ebrahim; Atyabi, Fatemeh; Kobarfard, Farzad; Mohamadyar-Toupkanlou, Farzaneh; Hosseinkhani, Hossein

    2017-10-01

    Application of many vital hydrophilic medicines have been restricted by blood-brain barrier (BBB) for treatment of brain diseases. In this study, a targeted drug delivery system based on dextran-spermine biopolymer was developed for drug transport across BBB. Drug loaded magnetic dextran-spermine nanoparticles (DS-NPs) were prepared via ionic gelation followed by transferrin (Tf) conjugation as targeting moiety. The characteristics of Tf conjugated nanoparticles (TDS-NPs) were analyzed by different methods and their cytotoxicity effects on U87MG cells were tested. The superparamagnetic characteristic of TDS-NPs was verified by vibration simple magnetometer. Capecitabine loaded TDS-NPs exhibited pH-sensitive release behavior with enhanced cytotoxicity against U87MG cells, compared to DS-NPs and free capecitabine. Prussian-blue staining and TEM-imaging showed the significant cellular uptake of TDS-NPs. Furthermore, a remarkable increase of Fe concentrations in brain was observed following their biodistribution and histological studies in vivo, after 1 and 7 days of post-injection. Enhanced drug transport across BBB and pH-triggered cellular uptake of TDS-NPs indicated that these theranostic nanocarriers are promising candidate for the brain malignance treatment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2851-2864, 2017. © 2017 Wiley Periodicals, Inc.

  5. Preclinical experimental models of drug metabolism and disposition in drug discovery and development

    Directory of Open Access Journals (Sweden)

    Donglu Zhang

    2012-12-01

    Full Text Available Drug discovery and development involve the utilization of in vitro and in vivo experimental models. Different models, ranging from test tube experiments to cell cultures, animals, healthy human subjects, and even small numbers of patients that are involved in clinical trials, are used at different stages of drug discovery and development for determination of efficacy and safety. The proper selection and applications of correct models, as well as appropriate data interpretation, are critically important in decision making and successful advancement of drug candidates. In this review, we discuss strategies in the applications of both in vitro and in vivo experimental models of drug metabolism and disposition.

  6. Alphavirus capsid proteins self-assemble into core-like particles in insect cells: A promising platform for nanoparticle vaccine development

    NARCIS (Netherlands)

    Hikke, M.C.; Geertsema, C.; Wu, V.; Metz, Stefan; Lent, van J.W.M.; Vlak, J.M.; Pijlman, G.P.

    2016-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes arthritic diseases in humans, whereas the aquatic salmonid alphavirus (SAV) is associated with high mortality in aquaculture of salmon and trout. Using modern biotechnological approaches, promising vaccine candidates based upon highly immunogenic,

  7. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    NARCIS (Netherlands)

    Jones, S; Grignard, L.; Nebie, I.; Chilongola, J.; Dodoo, D.; Sauerwein, R.W.; Theisen, M.; Roeffen, W.F.; Singh, S.K; Singh, R.K.; Kyei-Baafour, E.; Tetteh, K.; Drakeley, C.; Bousema, T.

    2015-01-01

    OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the

  8. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Færgeman, Nils J.

    2012-01-01

    and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster,Caenorhabditis elegans...... critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...

  9. In vitro characterization of microcontainers as an oral drug delivery system

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Jacobsen, J.

    We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide.......We here present in vitro studies showing the promise of microcontainers (fabricated in either SU-8 or Poly(lactic acid) (PLLA)) as an oral drug delivery system for the poorly watersoluble drug, furosemide....

  10. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer

    OpenAIRE

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood–brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers non...

  11. Drug repositioning: Re-investigating existing drugs for new therapeutic indications

    Directory of Open Access Journals (Sweden)

    B M Padhy

    2011-01-01

    Full Text Available Drug discovery and development is an expensive, time-consuming, and risky enterprise. In order to accelerate the drug development process with reduced risk of failure and relatively lower costs, pharmaceutical companies have adopted drug repositioning as an alternative. This strategy involves exploration of drugs that have already been approved for treatment of other diseases and/or whose targets have already been discovered. Various techniques including data mining, bioinformatics, and usage of novel screening platforms have been used for identification and screening of potential repositioning candidates. However, challenges in clinical trials and intellectual property issues may be encountered during the repositioning process. Nevertheless, such initiatives not only add value to the portfolio of pharmaceutical companies but also provide an opportunity for academia and government laboratories to develop new and innovative uses of existing drugs for infectious and neglected diseases, especially in emerging countries like India.

  12. Drug repositioning: re-investigating existing drugs for new therapeutic indications.

    Science.gov (United States)

    Padhy, B M; Gupta, Y K

    2011-01-01

    Drug discovery and development is an expensive, time-consuming, and risky enterprise. In order to accelerate the drug development process with reduced risk of failure and relatively lower costs, pharmaceutical companies have adopted drug repositioning as an alternative. This strategy involves exploration of drugs that have already been approved for treatment of other diseases and/or whose targets have already been discovered. Various techniques including data mining, bioinformatics, and usage of novel screening platforms have been used for identification and screening of potential repositioning candidates. However, challenges in clinical trials and intellectual property issues may be encountered during the repositioning process. Nevertheless, such initiatives not only add value to the portfolio of pharmaceutical companies but also provide an opportunity for academia and government laboratories to develop new and innovative uses of existing drugs for infectious and neglected diseases, especially in emerging countries like India.

  13. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    Energy Technology Data Exchange (ETDEWEB)

    Celarek, Anna [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Kraus, Tanja [Department of Paediatric Orthopaedics, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Tschegg, Elmar K., E-mail: elmar.tschegg@tuwien.ac.at [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Fischerauer, Stefan F. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Stanzl-Tschegg, Stefanie [Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Str. 82, 1190 Vienna (Austria); Uggowitzer, Peter J. [Department of Materials, Laboratory for Metal Physics and Technology, ETH Zurich, 8093 Zurich (Switzerland); Weinberg, Annelie M. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria)

    2012-08-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO{sub 2} and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: Black-Right-Pointing-Pointer In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. Black-Right-Pointing-Pointer Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. Black-Right-Pointing-Pointer Evaluated interface shear strength, push-out energies, stiffness, histology. Black-Right-Pointing-Pointer Mg WZ21 suitable, other materials only after alterations.

  14. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    International Nuclear Information System (INIS)

    Celarek, Anna; Kraus, Tanja; Tschegg, Elmar K.; Fischerauer, Stefan F.; Stanzl-Tschegg, Stefanie; Uggowitzer, Peter J.; Weinberg, Annelie M.

    2012-01-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO 2 and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: ► In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. ► Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. ► Evaluated interface shear strength, push-out energies, stiffness, histology. ► Mg WZ21 suitable, other materials only after alterations.

  15. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery

    Directory of Open Access Journals (Sweden)

    Nicholas Ekow Thomford

    2018-05-01

    Full Text Available The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of “active compound” has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of ‘organ-on chip’ and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug

  16. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery.

    Science.gov (United States)

    Thomford, Nicholas Ekow; Senthebane, Dimakatso Alice; Rowe, Arielle; Munro, Daniella; Seele, Palesa; Maroyi, Alfred; Dzobo, Kevin

    2018-05-25

    The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review

  17. A multi-infrastructure gateway for virtual drug screening

    NARCIS (Netherlands)

    Jaghoori, Mohammad Mahdi; van Altena, Allard J.; Bleijlevens, Boris; Ramezani, Sara; Font, Juan Luis; Olabarriaga, Silvia D.

    2015-01-01

    In computer-aided drug design, software tools are used to narrow down possible drug candidates, thereby reducing the amount of expensive in vitro research, by a process called virtual screening. This process includes large computations that require advanced computing infrastructure; however, using

  18. Feasibility of SPECT-CT imaging to study the pharmacokinetics of antisense oligonucleotides in a mouse model of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    Steeg, E. van de; Läppchen, T.; Aguilera, B.; Jansen, H.T.; Muilwijk, D.; Vermue, R.; Hoorn, J.W. van der; Donato, K.; Rossin, R.; Visser, P.C. de; Vlaming, M.L.H.

    2017-01-01

    Antisense oligonucleotides (AONs) are promising candidates for treatment of Duchenne muscular dystrophy (DMD), a severe and progressive disease resulting in premature death. However, more knowledge on the pharmacokinetics of new AON drug candidates is desired for effective application in the clinic.

  19. What can the SEDs of first hydrostatic core candidates reveal about their nature?

    Science.gov (United States)

    Young, Alison K.; Bate, Matthew R.; Mowat, Chris F.; Hatchell, Jennifer; Harries, Tim J.

    2018-02-01

    The first hydrostatic core (FHSC) is the first stable object to form in simulations of star formation. This stage has yet to be observed definitively, although several candidate FHSCs have been reported. We have produced synthetic spectral energy distributions (SEDs) from 3D hydrodynamical simulations of pre-stellar cores undergoing gravitational collapse for a variety of initial conditions. Variations in the initial rotation rate, radius and mass lead to differences in the location of the SED peak and far-infrared flux. Secondly, we attempt to fit the SEDs of five FHSC candidates from the literature and five newly identified FHSC candidates located in the Serpens South molecular cloud with simulated SEDs. The most promising FHSC candidates are fitted by a limited number of model SEDs with consistent properties, which suggests that the SED can be useful for placing constraints on the age and rotation rate of the source. The sources we consider most likely to be in FHSC phase are B1-bN, CB17-MMS, Aqu-MM1 and Serpens South candidate K242. We were unable to fit SerpS-MM22, Per-Bolo 58 and Chamaeleon-MMS1 with reasonable parameters, which indicates that they are likely to be more evolved.

  20. Screening novel candidates and exploring design strategies for organic dye sensitizers with rigid π-linker: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai-Li [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China); College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000 Gansu (China); Liu, Le-Yan [College of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo, 747000 Gansu (China); Geng, Zhi-Yuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China); Yan, Pen-Ji; Lu, Yan-Hong; Liu, Rui-Rui [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou, 730070 Gansu (China)

    2015-07-15

    Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations have been carried out to explore the underlying origin of merits for rigid π-spacer based on reference dyes C255 and C254. The results demonstrate that higher short-circuit current density (J{sub SC}) of C255 is primarily ascribed to the lower EBE, while the biggish short-circuit current density (V{sub OC}) mainly originates from the larger μ{sub normal} compared to C254. Besides, a novel index integral of overlap between hole and electron (S) is firstly introduced to quantitatively estimate the facility of intramolecular charge transfer (ICT) and preliminarily confirmed to be effective for the research target of this work. Furthermore, three series of dyes (C-series, A-series, AC-series) have been designed and characterized to screen promising sensitizer candidates and design strategies, while delightful results have been achieved including 6 promising candidates, design stratagem on efficiently reducing the charge recombination and combinational tactics on screening new dyes with excellent spectral properties or outstanding DSSC performance. - Graphical abstract: Display Omitted - Highlights: • Novel S index was introduced in and confirmed to be effective to estimate ICT. • The merits of rigid π bridge have been theoretically revealed. • Six promising candidates have been screened out. • New strategy on reduce charge recombination was reported. • Novel combinational tactics were acquired and justified to be feasible.

  1. Bioactive compounds fractionated from endophyte Streptomyces SUK 08 with promising ex-vivo antimalarial activity

    Directory of Open Access Journals (Sweden)

    Noraziah Mohamad Zin

    2017-12-01

    Full Text Available Objective: To determine ex vivo antimalarial activity and cytotoxicity of endophytic Streptomyces SUK 08 as well as the main core structure fractionated from its crude extract. Methods: The activities of SUK 08 crude extract were evaluated by using the Plasmodium lactate dehydrogenase assay and synchronization test against rodent malaria parasite Plasmodium berghei, instead of human malarial parasite Plasmodium falciparum. The cytotoxicity of the crude extract was determined by MTT assay. The crude extract was analyzed by thin-layer chromatography and gas chromatography–mass spectrophotometry. Results: The ethyl acetate crude extract showed very promising antimalarial activity with IC50 of 1.25 mg/mL. The synchronization tests showed that ethyl acetate extraction could inhibit all stages of the Plasmodium life cycle, but it was most effective at the Plasmodium ring stage. On the basis of a MTT assay on Chang Liver cells, ethyl acetate and ethanol demonstrated IC50 values of >1.0 mg/mL. The IC50 of parasitemia at 5% and 30% for this extract was lower than chloroquine. Thin-layer chromatography, with 1: 9 ratio of ethyl acetate: hexane, was used to isolate several distinct compounds. Based on gas chromatography–mass spectrophotometry analysis, three core structures were identified as cyclohexane, butyl propyl ester, and 2,3-heptanedione. Structurally, these compounds were similar to currently available antimalarial drugs. Conclusions: The results suggest that compounds isolated from Streptomyces SUK 08 are viable antimalarial drug candidates that require further investigations. Keywords: Butyl–propyl–ester, Cyclohexane, 2,3-Heptanedione, Endophyte, Streptomyces, Antimalarial

  2. Alternatives to currently used antimalarial drugs: in search of a magic bullet.

    Science.gov (United States)

    Bhagavathula, Akshaya Srikanth; Elnour, Asim Ahmed; Shehab, Abdulla

    2016-11-04

    Malaria is a major cause of morbidity and mortality in many African countries and parts of Asia and South America. Novel approaches to combating the disease have emerged in recent years and several drug candidates are now being tested clinically. However, it is long before these novel drugs can hit the market, especially due to a scarcity of safety and efficacy data.To reduce the malaria burden, the Medicines for Malaria Venture (MMV) was established in 1999 to develop novel medicines through industry and academic partners' collaboration. However, no reviews were focused following various preclinical and clinical studies published since the MMV initiation (2000) to till date.We identify promising approaches in the global portfolio of antimalarial medicines, and highlight challenges and patient specific concerns of these novel molecules. We discuss different clinical studies focusing on the evaluation of novel drugs against malaria in different human trials over the past five years.The drugs KAE609 and DDD107498 are still being evaluated in Phase I trials and preclinical developmental studies. Both the safety and efficacy of novel compounds such as KAF156 and DSM265 need to be assessed further, especially for use in pregnant women. Synthetic non-artemisinin ozonides such as OZ277 raised concerns in terms of its insufficient efficacy against high parasitic loads. Aminoquinoline-based scaffolds such as ferroquine are promising but should be combined with good partner drugs for enhanced efficacy. AQ-13 induced electrocardiac events, which led to prolonged QTc intervals. Tafenoquine, the only new anti-relapse scaffold for patients with a glucose-6-phosphate dehydrogenase deficiency, has raised significant concerns due to its hemolytic activity. Other compounds, including methylene blue (potential transmission blocker) and fosmidomycin (DXP reductoisomerase inhibitor), are available but cannot be used in children.At this stage, we are unable to identify a single magic

  3. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  4. Preparative Scale Resolution of Enantiomers Enables Accelerated Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Hanna Leek

    2017-01-01

    Full Text Available The provision of pure enantiomers is of increasing importance not only for the pharmaceutical industry but also for agro-chemistry and biotechnology. In drug discovery and development, the enantiomers of a chiral drug depict unique chemical and pharmacological behaviors in a chiral environment, such as the human body, in which the stereochemistry of the chiral drugs determines their pharmacokinetic, pharmacodynamic and toxicological properties. We present a number of challenging case studies of up-to-kilogram separations of racemic or enriched isomer mixtures using preparative liquid chromatography and super critical fluid chromatography to generate individual enantiomers that have enabled the development of new candidate drugs within AstraZeneca. The combination of chromatography and racemization as well as strategies on when to apply preparative chiral chromatography of enantiomers in a multi-step synthesis of a drug compound can further facilitate accelerated drug discovery and the early clinical evaluation of the drug candidates.

  5. Potential candidate genomic biomarkers of drug induced vascular injury in the rat

    International Nuclear Information System (INIS)

    Dalmas, Deidre A.; Scicchitano, Marshall S.; Mullins, David; Hughes-Earle, Angela; Tatsuoka, Kay; Magid-Slav, Michal; Frazier, Kendall S.; Thomas, Heath C.

    2011-01-01

    Drug-induced vascular injury is frequently observed in rats but the relevance and translation to humans present a hurdle for drug development. Numerous structurally diverse pharmacologic agents have been shown to induce mesenteric arterial medial necrosis in rats, but no consistent biomarkers have been identified. To address this need, a novel strategy was developed in rats to identify genes associated with the development of drug-induced mesenteric arterial medial necrosis. Separate groups (n = 6/group) of male rats were given 28 different toxicants (30 different treatments) for 1 or 4 days with each toxicant given at 3 different doses (low, mid and high) plus corresponding vehicle (912 total rats). Mesentery was collected, frozen and endothelial and vascular smooth muscle cells were microdissected from each artery. RNA was isolated, amplified and Affymetrix GeneChip® analysis was performed on selectively enriched samples and a novel panel of genes representing those which showed a dose responsive pattern for all treatments in which mesenteric arterial medial necrosis was histologically observed, was developed and verified in individual endothelial cell- and vascular smooth muscle cell-enriched samples. Data were confirmed in samples containing mesentery using quantitative real-time RT-PCR (TaqMan™) gene expression profiling. In addition, the performance of the panel was also confirmed using similarly collected samples obtained from a timecourse study in rats given a well established vascular toxicant (Fenoldopam). Although further validation is still required, a novel gene panel has been developed that represents a strategic opportunity that can potentially be used to help predict the occurrence of drug-induced mesenteric arterial medial necrosis in rats at an early stage in drug development. -- Highlights: ► A gene panel was developed to help predict rat drug-induced mesenteric MAN. ► A gene panel was identified following treatment of rats with 28

  6. Polyelectrolyte Multilayer Film Coated Silver Nanorods: An Effective Carrier System for Externally Activated Drug Delivery

    Science.gov (United States)

    Paramasivam, Gokul; Sharma, Varsha; Sundaramurthy, Anandhakumar

    2017-08-01

    Nanoparticle anisotropy offers unique functions and features in comparison with spherical nanoparticles (NPs) and makes anisotropic nanoparticles (ANPs) promising candidates in applications like drug delivery, imaging, biosensing and theranostics. Presence of surface active groups (e.g. amine, and carboxylate groups) on their surface provides binding sites for ligands or other biomolecules, and hence, this could be targeted for specific part or cells in our body. In the quest of such surface modification, functionalization of ANPs along Layer-by-Layer (LbL) coating of oppositely charged polyelectrolytes (PE) reduces cellular toxicity and promotes easy encapsulation of drugs. In this work, we report the silver nanorods (AgNRs) synthesis by adsorbate directed synthetic approach using cetyltrimethyl ammonium bromide (CTAB). The formed ANPs is investigated by scanning electron microscopy (SEM) and UV-Visible (UV-Vis) spectroscopy revealing the shaping of AgNRs of 3-16 nm aspect ratio with some presence of triangles. These NRs were further coated with bio polymers of chitosan (CH) and dextran sulphate (DS) through LbL approach and used for encapsulation of water soluble anti-bacterial drugs like ciprofloxacin hydrochloride (CFH). The encapsulation of drugs and profiles of drug release were investigated and compared to that of spherical silver nanoparticles (AgNPs). The added advantages of the proposed drug delivery system (DDS) can be externally activated to release the loaded drug and used as contrast agents for biological imaging under exposure to NIR light. Such system shows unique and attractive characteristics required for drug delivery and bioimaging thus offering the scope for further development as theranostic material.

  7. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions.

    Science.gov (United States)

    Adiwidjaja, Jeffry; McLachlan, Andrew J; Boddy, Alan V

    2017-09-01

    Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.

  8. Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine.

    Science.gov (United States)

    Pecak, Matija; Korošec, Peter; Kunej, Tanja

    2018-06-01

    Asthma is a common complex disorder and has been subject to intensive omics research for disease susceptibility and therapeutic innovation. Candidate biomarkers of asthma and its precision treatment demand that they stand the test of multiomics data triangulation before they can be prioritized for clinical applications. We classified the biomarkers of asthma after a search of the literature and based on whether or not a given biomarker candidate is reported in multiple omics platforms and methodologies, using PubMed and Web of Science, we identified omics studies of asthma conducted on diverse platforms using keywords, such as asthma, genomics, metabolomics, and epigenomics. We extracted data about asthma candidate biomarkers from 73 articles and developed a catalog of 190 potential asthma biomarkers (167 human, 23 animal data), comprising DNA loci, transcripts, proteins, metabolites, epimutations, and noncoding RNAs. The data were sorted according to 13 omics types: genomics, epigenomics, transcriptomics, proteomics, interactomics, metabolomics, ncRNAomics, glycomics, lipidomics, environmental omics, pharmacogenomics, phenomics, and integrative omics. Importantly, we found that 10 candidate biomarkers were apparent in at least two or more omics levels, thus promising potential for further biomarker research and development and precision medicine applications. This multiomics catalog reported herein for the first time contributes to future decision-making on prioritization of biomarkers and validation efforts for precision medicine in asthma. The findings may also facilitate meta-analyses and integrative omics studies in the future.

  9. Identify drug repurposing candidates by mining the protein data bank.

    Science.gov (United States)

    Moriaud, Fabrice; Richard, Stéphane B; Adcock, Stewart A; Chanas-Martin, Laetitia; Surgand, Jean-Sébastien; Ben Jelloul, Marouane; Delfaud, François

    2011-07-01

    Predicting off-targets by computational methods is gaining increasing interest in early-stage drug discovery. Here, we present a computational method based on full 3D comparisons of 3D structures. When a similar binding site is detected in the Protein Data Bank (PDB) (or any protein structure database), it is possible that the corresponding ligand also binds to that similar site. On one hand, this target hopping case is probably rare because it requires a high similarity between the binding sites. On the other hand, it could be a strong rational evidence to highlight possible off-target reactions and possibly a potential undesired side effect. This target-based drug repurposing can be extended a significant step further with the capability of searching the full surface of all proteins in the PDB, and therefore not relying on pocket detection. Using this approach, we describe how MED-SuMo reproduces the repurposing of tadalafil from PDE5A to PDE4A and a structure of PDE4A with tadalafil. Searching for local protein similarities generates more hits than for whole binding site similarities and therefore fragment repurposing is more likely to occur than for drug-sized compounds. In this work, we illustrate that by mining the PDB for proteins sharing similarities with the hinge region of protein kinases. The experimentally validated examples, biotin carboxylase and synapsin, are retrieved. Further to fragment repurposing, this approach can be applied to the detection of druggable sites from 3D structures. This is illustrated with detection of the protein kinase hinge motif in the HIV-RT non-nucleosidic allosteric site.

  10. Molecular mass spectrometry in metallodrug development: A case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, Maciej [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Matczuk, Magdalena, E-mail: mmatczuk@ch.pw.edu.pl [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Pawlak, Katarzyna [Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw (Poland); Timerbaev, Andrei R. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin St. 19, 119991 Moscow (Russian Federation)

    2014-12-03

    Highlights: • Extra- and intra-cellular interactions of Ru(III) anticancer drug candidate. • ESI-TOF-MS mapping of the ruthenium species bound to transferring. • ESI-QqQ-MS identification of released Ru species under cytosol simulated conditions. - Abstract: Electrospray ionization mass spectrometry (ESI-MS) techniques have been used to characterize the speciation of a Ru(III) anticancer drug, indazolium trans-[tetrachloridobis(1H-indazole) ruthenate(III)], upon its binding to transferrin and the impact of cellular reducing components on drug–transferrin adducts. Using time-of-flight ESI-MS, the polymorphism of apo- (iron-free) and holo-form (iron-saturated) of the protein was confirmed. While the ruthenium moieties bound to each of five isoforms under simulated extracellular conditions are essentially identical in numbers for apo- and holo-transferrin, distinct differences were found in the composition of Ru(III) species attached to either of the protein forms, which are dominated by differently coordinated aquated complexes. On the other hand, at least one of the Ru-N bonds in metal-organic framework remains intact even after prolonged interaction with the protein. Triple quadrupole tandem ESI-MS measurements demonstrated that the ruthenium species released from drug adducts with holo-transferrin in simulated cancer cytosol are underwent strong ligand exchange (as compared to the protein-bound forms) but most strikingly, they contain the metal center in the reduced Ru(II) state. In vitro probing the extra- and intracellular interactions of promising Ru(III) drug candidate performed by ESI-MS is thought to shed light on the transportation to tumor cells by transferrin and on the activation to more reactive species by the reducing environment of solid tumors.

  11. Extensively Drug-Resistant TB

    Centers for Disease Control (CDC) Podcasts

    2016-12-16

    Dr. Charlotte Kvasnovsky, a surgery resident and Ph.D. candidate in biostatistics, discusses various types of drug resistance in TB patients in South Africa.  Created: 12/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/16/2016.

  12. Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Hyeong-Min Lee

    2016-01-01

    Full Text Available Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.

  13. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives.

    Science.gov (United States)

    Yasinzai, Masoom; Khan, Momin; Nadhman, Akhtar; Shahnaz, Gul

    2013-10-01

    Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.

  14. Nanonization strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  15. 6-mercaptopurine and daunorubicin double drug liposomes-preparation, drug-drug interaction and characterization.

    Science.gov (United States)

    Agrawal, Vineet; Paul, Manash K; Mukhopadhyay, Anup K

    2005-01-01

    This article addresses and investigates the dual incorporation of daunorubicin (DR) and 6-mercaptopurine (6-MP) in liposomes for better chemotherapy. These drugs are potential candidates for interaction due to the quinone (H acceptor) and hydroxyl (H donor) groups on DR and 6-MP, respectively. Interactions between the two drugs in solution were monitored by UV/Vis and fluorescence spectroscopy. Interaction between the two drugs inside the liposomes was evaluated by HPLC (for 6-MP) and by fluorescence spectroscopy (for daunorubicin) after phospholipase-mediated liposome lysis. Our results provide evidence for the lack of interaction between the two drugs in solution and in liposomes. The entrapment efficiencies of 6-MP in the neutral Phosphatidyl choline (PC):Cholesterol (Chol):: 2:1 and anionic PC:Chol:Cardiolipin (CL) :: 4:5:1 single and double drug liposomes were found to be 0.4% and 1.5% (on average), respectively. The entrapment efficiencies of DR in the neutral and anionic double drug liposomes were found to be 55% and 31%, respectively. The corresponding entrapment of daunorubicin in the single drug liposomes was found to be 62% on average. Our thin layer chromatography (TLC) and transmission electron microscopy (TEM) results suggest stability of lipid and liposomes, thus pointing plausible existence of double drug liposomes. Cytotoxicity experiments were performed by using both single drug and double drug liposomes. By comparing the results of phase contrast and fluorescence microscopy, it was observed that the double drug liposomes were internalized in the jurkat and Hut78 (highly resistant cell line) leukemia cells as viewed by the fluorescence of daunorubicin. The cytotoxicity was dose dependent and had shown a synergistic effect when double drug liposome was used.

  16. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  17. Microreactor for electrochemical conversion: in drug screening and proteomics

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus

    2016-01-01

    The majority of marketed drugs are metabolized through oxidation by enzymes of the cytochrome P450 family, thereby producing phase I metabolites. For pharmaceutical companies it is essential to thoroughly screen candidate drugs for potentially toxic metabolites, in order to avoid high costs

  18. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    Science.gov (United States)

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  19. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  20. Impact of fgd1 and ddn Diversity in Mycobacterium tuberculosis Complex on In Vitro Susceptibility to PA-824

    KAUST Repository

    Feuerriegel, S.; Koser, C. U.; Bau, D.; Rusch-Gerdes, S.; Summers, D. K.; Archer, John A.C.; Marti-Renom, M. A.; Niemann, S.

    2011-01-01

    PA-824 is a promising drug candidate for the treatment of tuberculosis (TB). It is in phase II clinical trials as part of the first newly designed regimen containing multiple novel antituberculosis drugs (PA-824 in combination with moxifloxacin

  1. Fuzzy promises

    DEFF Research Database (Denmark)

    Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas

    2012-01-01

    as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....

  2. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-01-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery

  3. Transforming fragments into candidates: small becomes big in medicinal chemistry.

    Science.gov (United States)

    de Kloe, Gerdien E; Bailey, David; Leurs, Rob; de Esch, Iwan J P

    2009-07-01

    Fragment-based drug discovery (FBDD) represents a logical and efficient approach to lead discovery and optimisation. It can draw on structural, biophysical and biochemical data, incorporating a wide range of inputs, from precise mode-of-binding information on specific fragments to wider ranging pharmacophoric screening surveys using traditional HTS approaches. It is truly an enabling technology for the imaginative medicinal chemist. In this review, we analyse a representative set of 23 published FBDD studies that describe how low molecular weight fragments are being identified and efficiently transformed into higher molecular weight drug candidates. FBDD is now becoming warmly endorsed by industry as well as academia and the focus on small interacting molecules is making a big scientific impact.

  4. Financing drug discovery via dynamic leverage.

    Science.gov (United States)

    Montazerhodjat, Vahid; Frishkopf, John J; Lo, Andrew W

    2016-03-01

    We extend the megafund concept for funding drug discovery to enable dynamic leverage in which the portfolio of candidate therapeutic assets is predominantly financed initially by equity, and debt is introduced gradually as assets mature and begin generating cash flows. Leverage is adjusted so as to maintain an approximately constant level of default risk throughout the life of the fund. Numerical simulations show that applying dynamic leverage to a small portfolio of orphan drug candidates can boost the return on equity almost twofold compared with securitization with a static capital structure. Dynamic leverage can also add significant value to comparable all-equity-financed portfolios, enhancing the return on equity without jeopardizing debt performance or increasing risk to equity investors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Detecting peptidic drugs, drug candidates and analogs in sports doping: current status and future directions.

    Science.gov (United States)

    Thevis, Mario; Thomas, Andreas; Schänzer, Wilhelm

    2014-12-01

    With the growing availability of mature systems and strategies in biotechnology and the continuously expanding knowledge of cellular processes and involved biomolecules, human sports drug testing has become a considerably complex field in the arena of analytical chemistry. Proving the exogenous origin of peptidic drugs and respective analogs at lowest concentration levels in biological specimens (commonly blood, serum and urine) of rather limited volume is required to pursue an action against cheating athletes. Therefore, approaches employing chromatographic-mass spectrometric, electrophoretic, immunological and combined test methods have been required and developed. These allow detecting the misuse of peptidic compounds of lower (such as growth hormone-releasing peptides, ARA-290, TB-500, AOD-9604, CJC-1295, desmopressin, luteinizing hormone-releasing hormones, synacthen, etc.), intermediate (e.g., insulins, IGF-1 and analogs, 'full-length' mechano growth factor, growth hormone, chorionic gonadotropin, erythropoietin, etc.) and higher (e.g., stamulumab) molecular mass with desired specificity and sensitivity. A gap between the technically possible detection and the day-to-day analytical practice, however, still needs to be closed.

  6. MXene: a potential candidate for yarn supercapacitors.

    Science.gov (United States)

    Zhang, Jizhen; Seyedin, Shayan; Gu, Zhoujie; Yang, Wenrong; Wang, Xungai; Razal, Joselito M

    2017-12-07

    The increasing developments in wearable electronics demand compatible power sources such as yarn supercapacitors (YSCs) that can effectively perform in a limited footprint. MXene nanosheets, which have been recently shown in the literature to possess ultra-high volumetric capacitance, were used in this study for the fabrication of YSCs in order to identify their potential merit and performance in YSCs. With the aid of a conductive binder (PEDOT-PSS), YSCs with high mass loading of MXene are demonstrated. These MXene-based YSCs exhibit excellent device performance and stability even under bending and twisting. This study demonstrates that MXene is a promising candidate for YSCs and its further development can lead to flexible power sources with sufficient performance for powering miniaturized and/or wearable electronics.

  7. Nanosuspension Technology for Solubilizing Poorly Soluble Drugs

    OpenAIRE

    Deoli Mukesh

    2012-01-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. It is estimated that around 40% of drugs in the pipeline cannot be delivered through the preferred route or in some cases, at all owing to poor water solubility. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor1 EL). To date, nanoscale systems f...

  8. NHI economic analysis of candidate nuclear hydrogen processes

    International Nuclear Information System (INIS)

    Allen, D.; Pickard, P.; Patterson, M.; Sink, C.

    2010-01-01

    The DOE Nuclear Hydrogen Initiative (NHI) is investigating candidate technologies for large scale hydrogen production using high temperature gas-cooled reactors (HTGR) in concert with the Next Generation Nuclear Plant (NGNP) programme. The candidate processes include high temperature thermochemical and high temperature electrolytic processes which are being investigated in a sequence of experimental and analytic studies to establish the most promising and cost effective means of hydrogen production with nuclear energy. Although these advanced processes are in an early development stage, it is important that the projected economic potential of these processes be evaluated to assist in the prioritisation of research activities, and ultimately in the selection of the most promising processes for demonstration and deployment. The projected cost of hydrogen produced is the most comprehensive metric in comparing candidate processes. Since these advanced processes are in the early stages of development and much of the technology is still unproven, the estimated production costs are also significantly uncertain. The programme approach has been to estimate the cost of hydrogen production from each process periodically, based on the best available data at that time, with the intent of increasing fidelity and reducing uncertainty as the research programme and system definition studies progress. These updated cost estimates establish comparative costs at that stage of development but are also used as inputs to the evaluation of research priorities, and identify the key cost and risk (uncertainty) drivers for each process. The economic methodology used to assess the candidate processes are based on the H2A ground rules and modelling tool (discounted cash flow) developed by the DOE Office of Energy Efficiency and Renewable Energy (EERE). The figure of merit output from the calculation is the necessary selling price for hydrogen in dollars per kilogram that satisfies the cost

  9. An Evaluation of 20 Years of EU Framework Programme-Funded Immune-Mediated Inflammatory Translational Research in Non-Human Primates

    NARCIS (Netherlands)

    Haanstra, Krista G.; Jonker, Margreet; 't Hart, Bert A.

    2016-01-01

    Aging western societies are facing an increasing prevalence of chronic inflammatory and degenerative diseases for which often no effective treatments exist, resulting in increasing health-care expenditure. Despite high investments in drug development, the number of promising new drug candidates

  10. Glycogen synthase kinase-3: A promising therapeutic target for Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Marjelo M. Mines

    2011-11-01

    Full Text Available Recent advances in understanding the pathophysiological mechanisms contributing to Fragile X Syndrome (FXS have increased optimism that drug interventions can provide significant therapeutic benefits. FXS results from inadequate expression of functional fragile X mental retardation protein (FMRP. FMRP may have several functions, but it is most well-established as an RNA-binding protein that regulates translation, and it is by this mechanism that FMRP is capable of affecting numerous cellular processes by selectively regulating protein levels. The multiple cellular functions regulated by FMRP suggest that multiple interventions may be required for reversing the effects of deficient FMRP. Evidence that inhibitors of glycogen synthase kinase-3 (GSK3 may contribute to the therapeutic treatment of FXS is reviewed here. In the mouse model of FXS, which lacks FMRP expression (FX mice, GSK3 is hyperactive in several brain regions. Furthermore, significant improvements in several FX-related phenotypes have been obtained in FX mice following the administration of lithium, and in some case other GSK3 inhibitors. These responses include normalization of heightened audiogenic seizure susceptibility and of hyperactive locomotor behavior, enhancement of passive avoidance learning retention and of sociability behaviors, and corrections of macroorchidism, neuronal spine density, and neural plasticity measured electrophysiologically as long term depression. A pilot clinical trial of lithium in FXS patients also found improvements in several measures of behavior. Taken together, these findings indicate that lithium and other inhibitors of GSK3 are promising candidate therapeutic agents for treating FXS.

  11. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era

    Directory of Open Access Journals (Sweden)

    Koollawat Chupradit

    2017-09-01

    Full Text Available Human immunodeficiency virus (HIV is a causative agent of acquired immune deficiency syndrome (AIDS. Highly active antiretroviral therapy (HAART can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.

  12. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hattel, Jesper Henri; Hald, John

    2010-01-01

    of the Au–Sn binary system were explored in this work. Furthermore, the effects of thermal aging on the microstructure and microhardness of these promising Au–Sn based ternary alloys were investigated. For this purpose, the candidate alloys were aged at a lower temperature, 150°C for up to 1week...

  13. PEG-based degradable networks for drug delivery applications

    Science.gov (United States)

    Ostroha, Jamie L.

    The controlled delivery of therapeutic agents by biodegradable hydrogels has become a popular mechanism for drug administration in recent years. Hydrogels are three-dimensional networks of polymer chains held together by crosslinks. Although the changes which the hydrogel undergoes in solution are important to a wide range of experimental studies, they have not been investigated systematically and the factors which influence the degree of swelling have not been adequately described. Hydrogels made of poly(ethylene glycol) (PEG) will generally resist degradation in aqueous conditions, while a hydrogel made from a copolymer of poly(lactic acid) (PLA) and PEG will degrade via hydrolysis of the lactic acid group. This ability to degrade makes these hydrogels promising candidates for controlled release drug delivery systems. The goal of this research was to characterize the swelling and degradation of both degradable and non-degradable gels and to evaluate the release of different drugs from these hydrogels, where the key variable is the molecular weight of the PEG segment. These hydrogels were formed by the addition and subsequent chemically crosslinking of methacrylate end groups. During crosslinking, both PEG and LA-PEG-LA hydrogels of varied PEG molecular weight were loaded with Vitamin B12, Insulin, Haloperidol, and Dextran. It was shown that increasing PEG molecular weight produces a hydrogel with larger pores, thus increasing water uptake and degradation rate. While many environmental factors do not affect the swelling behavior, they do significantly impact the degradation of the hydrogel, and thus the release of incorporated therapeutic agents.

  14. Mining drug-disease relationships as a complement to medical genetics-based drug repositioning: Where a recommendation system meets genome-wide association studies.

    Science.gov (United States)

    Wang, H; Gu, Q; Wei, J; Cao, Z; Liu, Q

    2015-05-01

    A novel recommendation-based drug repositioning strategy is presented to simultaneously determine novel drug indications and side effects in one integrated framework. This strategy provides a complementary method to medical genetics-based drug repositioning, which reduces the occurrence of false positives in medical genetics-based drug repositioning, resulting in a ranked list of new candidate indications and/or side effects with different confidence levels. Several new drug indications and side effects are reported with high prediction confidences. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  15. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    Science.gov (United States)

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  16. A VOLUME-LIMITED PHOTOMETRIC SURVEY OF 114 γ DORADUS CANDIDATES

    International Nuclear Information System (INIS)

    Henry, Gregory W.; Fekel, Francis C.; Henry, Stephen M.

    2011-01-01

    We have carried out a photometric survey of a complete, volume-limited sample of γ Doradus candidates. The sample was extracted from the Hipparcos catalog and consists of 114 stars with colors and absolute magnitudes within the range of known γ Doradus stars and that also lie within a specified volume of 266,600 pc 3 . We devoted one year of observing time with our T12 0.8 m automatic photometric telescope to acquire nightly observations of the complete sample of stars. From these survey observations, we identify 37 stars with intrinsic variability of 0.002 mag or more. Of these 37 variables, 8 have already been confirmed as γ Doradus stars in our earlier papers; we scheduled the remaining 29 variables on our T3 0.4 m automatic telescope to acquire more intensive observations over the next two years. As promising new γ Doradus candidates were identified from the photometry, we obtained complementary spectroscopic observations of each candidate with the Kitt Peak coude feed telescope. Analysis of our new photometric and spectroscopic data reveals 15 new γ Doradus variables (and confirms two others), 8 new δ Scuti variables (and confirms one other), and 3 new variables with unresolved periodicity. Therefore, of the 114 γ Doradus candidates in our volume-limited sample, we find 25 stars that are new or previously known γ Doradus variables. This results in an incidence of 22% for γ Doradus variability among candidate field stars for this volume of the solar neighborhood. The corresponding space density of γ Doradus stars in this volume of space is 0.094 stars per 10 3 pc 3 or 94 stars per 10 6 pc 3 . We provide an updated list of 86 bright, confirmed, γ Doradus field stars.

  17. Luminescent GdVO4:Eu3+ functionalized mesoporous silica nanoparticles for magnetic resonance imaging and drug delivery.

    Science.gov (United States)

    Huang, Shanshan; Cheng, Ziyong; Ma, Ping'an; Kang, Xiaojiao; Dai, Yunlu; Lin, Jun

    2013-05-14

    Luminescent GdVO4:Eu(3+) nanophosphor functionalized mesoporous silica nanoparticles (MSN) were prepared (denoted as GdVO4:Eu(3+)@MSN). The in vitro cytotoxicity tests show that the sample has good biocompatibility, which indicates that the nanocomposite could be a promising candidate for drug delivery. Flow cytometry and confocal laser scanning microscopy (CLSM) confirm that the sample can be effectively taken up by SKOV3 ovarian cancer cells and A549 lung adenocarcinoma cells. It was also shown that the GdVO4:Eu(3+)@MSN brightened the T1-weighted images and enhanced the r1 relaxivity of water protons, which suggested that they could act as T1 contrast agents for magnetic resonance (MR) imaging. It was found that the carriers present a pH-dependent drug release behavior for doxorubicin (DOX). The composites show a red emission under UV irradiation due to the GdVO4:Eu(3+) nanophosphors. Furthermore, the PL intensity of the composite shows correlation with the cumulative release of DOX. These results suggest that the composite can potentially act as a multifunctional drug carrier system with luminescent tagging, MR imaging and pH-controlled release property for DOX.

  18. Albumin-based drug delivery

    DEFF Research Database (Denmark)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand...... binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent...... conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform....

  19. Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites.

    Science.gov (United States)

    Liu, Huinan; Webster, Thomas J

    2010-06-01

    placed in rat calvaria, this study continued to demonstrate that ceramic/polymer nanocomposites are promising candidates as novel orthopedic materials to promote bone regeneration.

  20. Candidate genes for COPD: current evidence and research

    Directory of Open Access Journals (Sweden)

    Kim WJ

    2015-10-01

    Full Text Available Woo Jin Kim,1 Sang Do Lee2 1Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, 2Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Abstract: COPD is a common complex disease characterized by progressive airflow limitation. Several genome-wide association studies (GWASs have discovered genes that are associated with COPD. Recently, candidate genes for COPD identified by GWASs include CHRNA3/5 (cholinergic nicotine receptor alpha 3/5, IREB2 (iron regulatory binding protein 2, HHIP (hedgehog-interacting protein, FAM13A (family with sequence similarity 13, member A, and AGER (advanced glycosylation end product–specific receptor. Their association with COPD susceptibility has been replicated in multiple populations. Since these candidate genes have not been considered in COPD, their pathological roles are still largely unknown. Herein, we review some evidences that they can be effective drug targets or serve as biomarkers for diagnosis or subtyping. However, more study is required to understand the functional roles of these candidate genes. Future research is needed to characterize the effect of genetic variants, validate gene function in humans and model systems, and elucidate the genes’ transcriptional and posttranscriptional regulatory mechanisms. Keywords: chronic obstructive pulmonary disease, genetics, genome-wide association study

  1. Orphan drugs: trends and issues in drug development.

    Science.gov (United States)

    Rana, Proteesh; Chawla, Shalini

    2018-04-12

    Research in rare diseases has contributed substantially toward the current understanding in the pathophysiology of the common diseases. However, medical needs of patients with rare diseases have always been neglected by the society and pharmaceutical industries based on their small numbers and unprofitability. The Orphan Drug Act (1983) was the first serious attempt to address the unmet medical needs for patients with rare diseases and to provide impetus for the pharmaceutical industry to promote orphan drug development. The process of drug development for rare diseases is no different from common diseases but involves significant cost and infrastructure. Further, certain aspect of drug research may not be feasible for the rare diseases. The drug-approving authority must exercise their scientific judgment and ensure due flexibility while evaluating data at various stages of orphan drug development. The emergence of patent cliff combined with the government incentives led the pharmaceutical industry to realize the good commercial prospects in developing an orphan drug despite the small market size. Indeed, many drugs that were given orphan designation ended up being blockbusters. The orphan drug market is projected to reach $178 billion by 2020, and the prospects of research and development in rare diseases appears to be quite promising and rewarding.

  2. Drugs that modulate aging: the promising yet difficult path ahead.

    Science.gov (United States)

    Kennedy, Brian K; Pennypacker, Juniper K

    2014-05-01

    Once a backwater in medical sciences, aging research has emerged and now threatens to take the forefront. This dramatic change of stature is driven from 3 major events. First and foremost, the world is rapidly getting old. Never before have we lived in a demographic environment like today, and the trends will continue such that 20% percent of the global population of 9 billion will be over the age of 60 by 2050. Given current trends of sharply increasing chronic disease incidence, economic disaster from the impending silver tsunami may be ahead. A second major driver on the rise is the dramatic progress that aging research has made using invertebrate models such as worms, flies, and yeast. Genetic approaches using these organisms have led to hundreds of aging genes and, perhaps surprisingly, strong evidence of evolutionary conservation among longevity pathways between disparate species, including mammals. Current studies suggest that this conservation may extend to humans. Finally, small molecules such as rapamycin and resveratrol have been identified that slow aging in model organisms, although only rapamycin to date impacts longevity in mice. The potential now exists to delay human aging, whether it is through known classes of small molecules or a plethora of emerging ones. But how can a drug that slows aging become approved and make it to market when aging is not defined as a disease. Here, we discuss the strategies to translate discoveries from aging research into drugs. Will aging research lead to novel therapies toward chronic disease, prevention of disease or be targeted directly at extending lifespan? Copyright © 2014 Mosby, Inc. All rights reserved.

  3. Process Pharmacology: A Pharmacological Data Science Approach to Drug Development and Therapy.

    Science.gov (United States)

    Lötsch, Jörn; Ultsch, Alfred

    2016-04-01

    A novel functional-genomics based concept of pharmacology that uses artificial intelligence techniques for mining and knowledge discovery in "big data" providing comprehensive information about the drugs' targets and their functional genomics is proposed. In "process pharmacology", drugs are associated with biological processes. This puts the disease, regarded as alterations in the activity in one or several cellular processes, in the focus of drug therapy. In this setting, the molecular drug targets are merely intermediates. The identification of drugs for therapeutic or repurposing is based on similarities in the high-dimensional space of the biological processes that a drug influences. Applying this principle to data associated with lymphoblastic leukemia identified a short list of candidate drugs, including one that was recently proposed as novel rescue medication for lymphocytic leukemia. The pharmacological data science approach provides successful selections of drug candidates within development and repurposing tasks. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  4. Analytical challenges in sports drug testing.

    Science.gov (United States)

    Thevis, Mario; Krug, Oliver; Geyer, Hans; Walpurgis, Katja; Baume, Norbert; Thomas, Andreas

    2018-03-01

    Analytical chemistry represents a central aspect of doping controls. Routine sports drug testing approaches are primarily designed to address the question whether a prohibited substance is present in a doping control sample and whether prohibited methods (for example, blood transfusion or sample manipulation) have been conducted by an athlete. As some athletes have availed themselves of the substantial breadth of research and development in the pharmaceutical arena, proactive and preventive measures are required such as the early implementation of new drug candidates and corresponding metabolites into routine doping control assays, even though these drug candidates are to date not approved for human use. Beyond this, analytical data are also cornerstones of investigations into atypical or adverse analytical findings, where the overall picture provides ample reason for follow-up studies. Such studies have been of most diverse nature, and tailored approaches have been required to probe hypotheses and scenarios reported by the involved parties concerning the plausibility and consistency of statements and (analytical) facts. In order to outline the variety of challenges that doping control laboratories are facing besides providing optimal detection capabilities and analytical comprehensiveness, selected case vignettes involving the follow-up of unconventional adverse analytical findings, urine sample manipulation, drug/food contamination issues, and unexpected biotransformation reactions are thematized.

  5. Production and Potency of Local Rambutan at East Java as a Candidate Phytopharmaca

    OpenAIRE

    Lestari, Sri Rahayu; Djati, Muhammad Sasmito; Rudijanto, Ahmad; Fatchiyah, Fatchiyah

    2013-01-01

    Rambutan is a tropical fruit that grow well in Indonesia and the peel is considered as waste. Many researchers' showed that rambutan peel contains polyphenol that could be expected to avoid obesity. The objective of this study was to explore the increasing production of local rambutan and to identify the promising phytochemical compounds on its peel as phytopharmaca candidate against obesity. Survey was conducted on the production of rambutan, potential plantation area, and marketing. Sample...

  6. PRODUCTION AND POTENCY OF LOCAL RAMBUTAN AT EAST JAVA AS A CANDIDATE PHYTOPHARMACA

    OpenAIRE

    Sri Rahayu Lestari; Muhammad Sasmito Djati; Ahmad Rudijanto; Fatchiyah

    2013-01-01

    Rambutan is a tropical fruit that grow well in Indonesia and the peel is considered as waste. Many researchers’ showed that rambutan peel contains polyphenol that could be expected to avoid obesity. The objective of this study was to explore the increasing production of local rambutan and to identify the promising phytochemical compounds on its peel as phytopharmaca candidate against obesity. Survey was conducted on the production of rambutan, potential plantation area, and marketing. Sample...

  7. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-12-01

    Full Text Available Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB, extensively drug-resistant tuberculosis (XDR-TB and totally drug resistant tuberculosis (TDR-TB has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.

  9. Open Access Could Transform Drug Discovery: A Case Study of JQ1.

    Science.gov (United States)

    Arshad, Zeeshaan; Smith, James; Roberts, Mackenna; Lee, Wen Hwa; Davies, Ben; Bure, Kim; Hollander, Georg A; Dopson, Sue; Bountra, Chas; Brindley, David

    2016-01-01

    The cost to develop a new drug from target discovery to market is a staggering $1.8 billion, largely due to the very high attrition rate of drug candidates and the lengthy transition times during development. Open access is an emerging model of open innovation that places no restriction on the use of information and has the potential to accelerate the development of new drugs. To date, no quantitative assessment has yet taken place to determine the effects and viability of open access on the process of drug translation. This need is addressed within this study. The literature and intellectual property landscapes of the drug candidate JQ1, which was made available on an open access basis when discovered, and conventionally developed equivalents that were not are compared using the Web of Science and Thomson Innovation software, respectively. Results demonstrate that openly sharing the JQ1 molecule led to a greater uptake by a wider and more multi-disciplinary research community. A comparative analysis of the patent landscapes for each candidate also found that the broader scientific diaspora of the publically released JQ1 data enhanced innovation, evidenced by a greater number of downstream patents filed in relation to JQ1. The authors' findings counter the notion that open access drug discovery would leak commercial intellectual property. On the contrary, JQ1 serves as a test case to evidence that open access drug discovery can be an economic model that potentially improves efficiency and cost of drug discovery and its subsequent commercialization.

  10. Identifying candidate agents for lung adenocarcinoma by walking the human interactome

    Directory of Open Access Journals (Sweden)

    Sun Y

    2016-09-01

    Full Text Available Yajiao Sun,1 Ranran Zhang,2 Zhe Jiang,1 Rongyao Xia,1 Jingwen Zhang,1 Jing Liu,1 Fuhui Chen1 1Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, 2Department of Respiratory, Harbin First Hospital, Harbin, People’s Republic of China Abstract: Despite recent advances in therapeutic strategies for lung cancer, mortality is still increasing. Therefore, there is an urgent need to identify effective novel drugs. In the present study, we implement drug repositioning for lung adenocarcinoma (LUAD by a bioinformatics method followed by experimental validation. We first identified differentially expressed genes between LUAD tissues and nontumor tissues from RNA sequencing data obtained from The Cancer Genome Atlas database. Then, candidate small molecular drugs were ranked according to the effect of their targets on differentially expressed genes of LUAD by a random walk with restart algorithm in protein–protein interaction networks. Our method identified some potentially novel agents for LUAD besides those that had been previously reported (eg, hesperidin. Finally, we experimentally verified that atracurium, one of the potential agents, could induce A549 cells death in non-small-cell lung cancer-derived A549 cells by an MTT assay, acridine orange and ethidium bromide staining, and electron microscopy. Furthermore, Western blot assays demonstrated that atracurium upregulated the proapoptotic Bad and Bax proteins, downregulated the antiapoptotic p-Bad and Bcl-2 proteins, and enhanced caspase-3 activity. It could also reduce the expression of p53 and p21Cip1/Waf1 in A549 cells. In brief, the candidate agents identified by our approach may provide greater insights into improving the therapeutic status of LUAD. Keywords: lung adenocarcinoma, drug repositioning, bioinformatics, protein–protein interaction network, atracurium

  11. Parenteral formulation of an antileishmanial drug candidate--tackling poor solubility, chemical instability, and polymorphism.

    Science.gov (United States)

    Kupetz, Eva; Preu, Lutz; Kunick, Conrad; Bunjes, Heike

    2013-11-01

    The paullon chalcone derivative KuRei300 is active against Leishmania donovani, the protozoans causing visceral leishmaniasis. The aim of this study was the development of a parenteral formulation of the virtually water insoluble compound in order to enable future studies in mice. Mixed lecithin/bile salt micelles, liposomes, supercooled smectic cholesterol myristate nanoparticles, cubic phase nanoparticles and a triglyceride emulsion were screened for their solubilizing properties. Due to the limited available amount of KuRei300 a passive loading approach with pre-formulated carriers that were incubated with drug substance deposited onto the walls of glass vials was used. The loading capacities of the nanocarriers, the influence of the solid state properties of the drug and its deposits on the loading results and chemical stability aspects of KuRei300 were investigated. Employed methods included HPLC, UV spectroscopy, (1)H NMR, XRPD, and DSC. All nanocarriers substantially improved the solubility of KuRei300; the mixed micelles exhibited the highest drug load. Related to the lipid matrix, however, the smectic nanoparticles solubilized the significantly highest amount of drug. Loading from physically altered drug deposits improved the obtainable concentration to the threefold compared with untreated drug powder. Formulations with KuRei300 must be stored excluded from light under a nitrogen atmosphere as the substance is susceptible to photoisomerization and decomposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    Science.gov (United States)

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  13. California drug courts: outcomes, costs and promising practices: an overview of Phase II in a statewide study.

    Science.gov (United States)

    Carey, Shannon M; Finigan, Michael; Crumpton, Dave; Waller, Mark

    2006-11-01

    The rapid expansion of drug courts in California and the state's uncertain fiscal climate highlighted the need for definitive cost information on drug court programs. This study focused on creating a research design that can be utilized for statewide and national cost-assessment of drug courts by conducting in-depth case studies of the costs and benefits in nine adult drug courts in California. A Transactional Institutional Costs Analysis (TICA) approach was used, allowing researchers to calculate costs based on every individual's transactions within the drug court or the traditional criminal justice system. This methodology also allows the calculation of costs and benefits by agency (e.g., Public Defender's office, court, District Attorney). Results in the nine sites showed that the majority of agencies save money in processing an offender though drug court. Overall, for these nine study sites, participation in drug court saved the state over 9 million dollars in criminal justice and treatment costs due to lower recidivism in drug court participants. Based on the lessons learned in Phases I and II, Phase III of this study focuses on the creation of a web-based drug court cost self-evaluation tool (DC-CSET) that drug courts can use to determine their own costs and benefits.

  14. Understanding drugs in breast cancer through drug sensitivity screening.

    Science.gov (United States)

    Uhr, Katharina; Prager-van der Smissen, Wendy J C; Heine, Anouk A J; Ozturk, Bahar; Smid, Marcel; Göhlmann, Hinrich W H; Jager, Agnes; Foekens, John A; Martens, John W M

    2015-01-01

    With substantial numbers of breast tumors showing or acquiring treatment resistance, it is of utmost importance to develop new agents for the treatment of the disease, to know their effectiveness against breast cancer and to understand their relationships with other drugs to best assign the right drug to the right patient. To achieve this goal drug screenings on breast cancer cell lines are a promising approach. In this study a large-scale drug screening of 37 compounds was performed on a panel of 42 breast cancer cell lines representing the main breast cancer subtypes. Clustering, correlation and pathway analyses were used for data analysis. We found that compounds with a related mechanism of action had correlated IC50 values and thus grouped together when the cell lines were hierarchically clustered based on IC50 values. In total we found six clusters of drugs of which five consisted of drugs with related mode of action and one cluster with two drugs not previously connected. In total, 25 correlated and four anti-correlated drug sensitivities were revealed of which only one drug, Sirolimus, showed significantly lower IC50 values in the luminal/ERBB2 breast cancer subtype. We found expected interactions but also discovered new relationships between drugs which might have implications for cancer treatment regimens.

  15. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  16. Novel candidate metastasis genes as putative drug targets for breast cancer

    NARCIS (Netherlands)

    Roosmalen, Wilhelmina Paulina Elisabeth van

    2012-01-01

    Despite extensive studies to unravel molecular mechanisms underlying breast cancer metastasis, still 3500 women die of the results of this disease in the Netherlands each year. Improving our understanding of metastasis formation remains a challenge for further drug development. The scope of this

  17. Survey of Swedish buffer material candidates and methods for characterization

    International Nuclear Information System (INIS)

    Erlstroem, M.; Pusch, R.

    1987-12-01

    The study has given a good overview of potential clay buffer candidates in the part of Sweden that offers the best possibilities to find large accessible quantities of smectitic materials. The most promising Scanian materials are those in the Kaageroed and Vallaakra (Margreteberg) areas since they represent the most smectitic ones, which may serve as raw material for the production of canister embedment. The moraine clays in the Lund-Landskrona region seem to be useful for backfilling purposes. A refined version of Reynolds technique is suggested as an SKB standard for prospecting and characterization of buffer materials. (orig./DG)

  18. Drug-Drug Multicomponent Solid Forms: Cocrystal, Coamorphous and Eutectic of Three Poorly Soluble Antihypertensive Drugs Using Mechanochemical Approach.

    Science.gov (United States)

    Haneef, Jamshed; Chadha, Renu

    2017-08-01

    The present study deals with the application of mechanochemical approach for the preparation of drug-drug multicomponent solid forms of three poorly soluble antihypertensive drugs (telmisartan, irbesartan and hydrochlorothiazide) using atenolol as a coformer. The resultant solid forms comprise of cocrystal (telmisartan-atenolol), coamorphous (irbesartan-atenolol) and eutectic (hydrochlorothiazide-atenolol). The study emphasizes that solid-state transformation of drug molecules into new forms is a result of the change in structural patterns, diminishing of dimers and creating new facile hydrogen bonding network based on structural resemblance. The propensity for heteromeric or homomeric interaction between two different drugs resulted into diverse solid forms (cocrystal/coamorphous/eutectics) and become one of the interesting aspects of this research work. Evaluation of these solid forms revealed an increase in solubility and dissolution leading to better antihypertensive activity in deoxycorticosterone acetate (DOCA) salt-induced animal model. Thus, development of these drug-drug multicomponent solid forms is a promising and viable approach to addressing the issue of poor solubility and could be of considerable interest in dual drug therapy for the treatment of hypertension.

  19. Probiotic Candidates from Fish Pond Water in Central Java Indonesia

    Science.gov (United States)

    Harjuno Condro Haditomo, Alfabetian; Desrina; Sarjito; Budi Prayitno, S.

    2018-02-01

    Aeromonas hydrophilla is a major bacterial pathogen of intensive fresh water fish culture in Indonesia. An alternative method to control the pathogen is using probiotics. Probiotics is usually consist of live microorganisms which when administered in adequate amounts confer a health benefits on host. The aim of this research was to determine the probiotic candidates against A. hydrophilla which identified based on the 16S rDNA gene sequences. This research was started with field survey to obtained the probiotic candidate and continue with laboratory experiment. Probiotic candidates were isolated from fish pond water located in Boyolali, and Banjarnegara Regency, Central Java, Indonesia. A total of 133 isolates bacteria were isolated and cultured on to TSA, TSB and GSP medium. Out of 133 isolates only 30 isolates showed inhibition to A.hydrophilla activity. Three promising isolates were identified with PCR using primer for 16S rDNA. Based on 16S rDNA sequence analysis, all three isolates were belong to Bacillus genus. Isolate CKlA21, CKlA28, and CBA14 respectively were closely related to Bacillus sp. 13843 (GenBank accession no. JN874760.1 -100% homology), Bacillus subtilis strain H13 (GenBank accession no.KT907045.1 -- 99% homology), and Bacillus sp. strain 22-4 (GenBank accession no. KX816417.1 -- 97% homology).

  20. Target Essentiality and Centrality Characterize Drug Side Effects

    OpenAIRE

    Wang, Xiujuan; Thijssen, Bram; Yu, Haiyuan

    2013-01-01

    Author Summary The ultimate goal of medical research is to develop effective treatments for disease with minimal side effects. Currently, about 20% of drug candidates failed at clinical trial phases II and III due to safety issues. Therefore, understanding the determining factors of drug side effects is of paramount importance to human health and the pharmaceutical industry. Here, we present the first systematic study to uncover key factors leading to drug side effects within the framework of...

  1. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bálint Mészáros

    2011-07-01

    Full Text Available Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.

  2. Corrosion susceptibility study of candidate pin materials for ALTC (active lithium/thionyl chloride) batteries. [Active lithium/thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Bovard, F.S.; Cieslak, W.R.

    1987-09-01

    (ALTC = active lithium/thionyl chloride.) We have investigated the corrosion susceptibilities of eight alternate battery pin materials in 1.5M LiAlCl/sub 4//SOCl/sub 2/ electrolyte using ampule exposure and electrochemical tests. The thermal expansion coefficients of these candidate materials are expected to match Sandia-developed Li-corrosion resistant glasses. The corrosion resistances of the candidate materials, which included three stainless steels (15-5 PH, 17-4 PH, and 446), three Fe-Ni glass sealing alloys (Kovar, Alloy 52, and Niromet 426), a Ni-based alloy (Hastelloy B-2) and a zirconium-based alloy (Zircaloy), were compared to the reference materials Ni and 316L SS. All of the candidate materials showed some evidence of corrosion and, therefore, did not perform as well as the reference materials. The Hastelloy B-2 and Zircaloy are clearly unacceptable materials for this application. Of the remaining alternate materials, the 446 SS and Alloy 52 are the most promising candidates.

  3. A review on proniosomal drug delivery system for targeted drug action.

    Science.gov (United States)

    Radha, G V; Rani, T Sudha; Sarvani, B

    2013-03-01

    Proniosomes are dry formulation of water soluble carrier particles that are coated with surfactant. They are rehydrated to form niosomal dispersion immediately before use on agitation in hot aqueous media within minutes. Proniosomes are physically stable during the storage and transport. Drug encapsulated in the vesicular structure of proniosomes prolong the existence of drug in the systematic circulation and enhances the penetration into target tissue and reduce toxicity. From a technical point of view, niosomes are promising drug carriers as they possess greater chemical stability and lack of many disadvantages associated with liposomes, such as high- cost and variable purity problems of phospholipids. The present review emphasizes on overall methods of preparation characterization and applicability of proniosomes in targeted drug action.

  4. Assessing pharmacologic and nonpharmacologic risks in candidates for kidney transplantation.

    Science.gov (United States)

    Maldonado, Angela Q; Tichy, Eric M; Rogers, Christin C; Campara, Maya; Ensor, Christopher; Doligalski, Christina T; Gabardi, Steven; Descourouez, Jillian L; Doyle, Ian C; Trofe-Clark, Jennifer

    2015-05-15

    Pharmacotherapy concerns and other factors with a bearing on patient selection for kidney transplantation are discussed. The process of selecting appropriate candidates for kidney transplantation involves multidisciplinary assessment to evaluate a patient's mental, social, physical, financial, and medical readiness for successful surgery and good posttransplantation outcomes. Transplantation pharmacists can play important roles in the recognition and stratification of pharmacologic and nonpharmacologic risks in prospective kidney transplant recipients and the identification of issues that require a mitigation strategy. Key pharmacotherapy-related issues and considerations during the risk assessment process include (1) anticoagulation concerns, (2) cytochrome P-450 isoenzyme-mediated drug interactions, (3) mental health-related medication use, (4) chronic pain-related medication use, (5) medication allergies, (6) use of hormonal contraception and replacement therapy, (7) prior or current use of immunosuppressants, (8) issues with drug absorption, (9) alcohol use, (10) tobacco use, (11) active use of illicit substances, and (12) use of herbal supplements. Important areas of nonpharmacologic risk include vaccine delivery, infection prophylaxis and treatment, and socially related factors such as nonadherent behavior, communication barriers, and financial, insurance, or transportation challenges that can compromise posttransplantation outcomes. Consensus opinions of practitioners in transplantation pharmacy regarding the pharmacologic and nonpharmacologic factors that should be considered in assessing candidates for kidney transplantation are presented. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  5. Advances in drug delivery to the posterior segment.

    Science.gov (United States)

    Pearce, William; Hsu, Jason; Yeh, Steven

    2015-05-01

    Emerging developments and research for drug delivery to the posterior segment offer a promising future for the treatment of vitreoretinal disease. As new technologies enter the market, clinicians should be aware of new indications and ongoing clinical trials. This review summarizes the advantages and shortcomings of the most commonly used drug delivery methods, including vitreous dynamics, physician sustainability and patient preferences. Currently available, intravitreal, corticosteroid-release devices offer surgical and in-office management of retinal vascular disease and posterior uveitis. The suprachoroidal space offers a new anatomic location for the delivery of lower dose medications directly to the target tissue. Implantable drug reservoirs would potentially allow for less frequent intravitreal injections reducing treatment burdens and associated risks. Newer innovations in encapsulated cell technology offer promising results in early clinical trials. Although pars plana intravitreal injection remains the mainstay of therapy for many vitreoretinal diseases, targeted delivery and implantable eluting devices are rapidly demonstrating safety and efficacy. These therapeutic modalities offer promising options for the vitreoretinal therapeutic landscape.

  6. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer’s drugs: a computational investigation

    Directory of Open Access Journals (Sweden)

    Azam F

    2014-10-01

    by Osiris property explorer and Molinspiration online toolkit, respectively. None of the compounds violated Lipinski’s rule of five, making them potentially promising drug candidates for the treatment of Alzheimer’s disease. Keywords: Alzheimer’s disease, ginger, molecular docking, structure–activity relationship, toxicity prediction

  7. Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Jean Rodgers

    2011-09-01

    Full Text Available Human African trypanosomiasis (HAT, or sleeping sickness, results from infection with the protozoan parasites Trypanosoma brucei (T. b. gambiense or T. b. rhodesiense and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal is the only currently available treatment for CNS-stage T. b. rhodesiense infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-β-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties in vitro and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy.

  8. Citizen Candidates Under Uncertainty

    OpenAIRE

    Eguia, Jon X.

    2005-01-01

    In this paper we make two contributions to the growing literature on "citizen-candidate" models of representative democracy. First, we add uncertainty about the total vote count. We show that in a society with a large electorate, where the outcome of the election is uncertain and where winning candidates receive a large reward from holding office, there will be a two-candidate equilibrium and no equilibria with a single candidate. Second, we introduce a new concept of equilibrium, which we te...

  9. Computational Amphiphilic Materials for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naresh eThota

    2015-10-01

    Full Text Available Amphiphilic materials can assemble into a wide variety of morphologies and have emerged as a novel class of candidates for drug delivery. Along with a large number of experiments reported, computational studies have been also conducted in this field. At an atomistic/molecular level, computations can facilitate quantitative understanding of experimental observations and secure fundamental interpretation of underlying phenomena. This review summarizes the recent computational efforts on amphiphilic copolymers and peptides for drug delivery. Atom-resolution and time-resolved insights are provided from bottom-up to microscopically elucidate the mechanisms of drug loading/release, which are indispensable in the rational screening and design of new amphiphiles for high-efficacy drug delivery.

  10. Intracranial drug delivery for subarachnoid hemorrhage.

    Science.gov (United States)

    Macdonald, Robert Loch; Leung, Ming; Tice, Tom

    2012-01-01

    Tice and colleagues pioneered site-specific, sustained-release drug delivery to the brain almost 30 years ago. Currently there is one drug approved for use in this manner. Clinical trials in subarachnoid hemorrhage have led to approval of nimodipine for oral and intravenous use, but other drugs, such as clazosentan, hydroxymethylglutaryl CoA reductase inhibitors (statins) and magnesium, have not shown consistent clinical efficacy. We propose that intracranial delivery of drugs such as nimodipine, formulated in sustained-release preparations, are good candidates for improving outcome after subarachnoid hemorrhage because they can be administered to patients that are already undergoing surgery and who have a self-limited condition from which full recovery is possible.

  11. Dark Matter candidates in a baryogenesis inspired scenario

    International Nuclear Information System (INIS)

    Provenza, A; Quiros, M; Ullio, P

    2006-01-01

    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space

  12. Cost-effectiveness analysis of microdose clinical trials in drug development.

    Science.gov (United States)

    Yamane, Naoe; Igarashi, Ataru; Kusama, Makiko; Maeda, Kazuya; Ikeda, Toshihiko; Sugiyama, Yuichi

    2013-01-01

    Microdose (MD) clinical trials have been introduced to obtain human pharmacokinetic data early in drug development. Here we assessed the cost-effectiveness of microdose integrated drug development in a hypothetical model, as there was no such quantitative research that weighed the additional effectiveness against the additional time and/or cost. First, we calculated the cost and effectiveness (i.e., success rate) of 3 types of MD integrated drug development strategies: liquid chromatography-tandem mass spectrometry, accelerator mass spectrometry, and positron emission tomography. Then, we analyzed the cost-effectiveness of 9 hypothetical scenarios where 100 drug candidates entering into a non-clinical toxicity study were selected by different methods as the conventional scenario without MD. In the base-case, where 70 drug candidates were selected without MD and 30 selected evenly by one of the three MD methods, incremental cost-effectiveness ratio per one additional drug approved was JPY 12.7 billion (US$ 0.159 billion), whereas the average cost-effectiveness ratio of the conventional strategy was JPY 24.4 billion, which we set as a threshold. Integrating MD in the conventional drug development was cost-effective in this model. This quantitative analytical model which allows various modifications according to each company's conditions, would be helpful for guiding decisions early in clinical development.

  13. The basics of preclinical drug development for neurodegenerative disease indications.

    Science.gov (United States)

    Steinmetz, Karen L; Spack, Edward G

    2009-06-12

    Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and

  14. SemaTyP: a knowledge graph based literature mining method for drug discovery.

    Science.gov (United States)

    Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian

    2018-05-30

    Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.

  15. Quantitative decisions in drug development

    CERN Document Server

    Chuang-Stein, Christy

    2017-01-01

    This book offers a high-level treatise of evidence-based decisions in drug development. Because of the inseparable relationship between designs and decisions, a good portion of this book is devoted to the design of clinical trials. The book begins with an overview of product development and regulatory approval pathways. It then discusses how to incorporate prior knowledge into study design and decision making at different stages of drug development. The latter include selecting appropriate metrics to formulate decisions criteria, determining go/no-go decisions for progressing a drug candidate to the next stage and predicting the effectiveness of a product. Lastly, it points out common mistakes made by drug developers under the current drug-development paradigm. The book offers useful insights to statisticians, clinicians, regulatory affairs managers and decision-makers in the pharmaceutical industry who have a basic understanding of the drug-development process and the clinical trials conducted to support dru...

  16. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates

    Directory of Open Access Journals (Sweden)

    Fatma E. El-Khouly

    2017-10-01

    Full Text Available Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG, patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB. We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%—carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole—are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG.

  17. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    Science.gov (United States)

    LaBute, Montiago X; Zhang, Xiaohua; Lenderman, Jason; Bennion, Brian J; Wong, Sergio E; Lightstone, Felice C

    2014-01-01

    Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number

  18. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    Directory of Open Access Journals (Sweden)

    Montiago X LaBute

    Full Text Available Late-stage or post-market identification of adverse drug reactions (ADRs is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409 of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively. Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with

  19. Drug-induced hypotension SEP test and acetazolamide test using sup 133 Xe SPECT in patients with occlusive carotid disease; Selection of candidates for extracranial-intracranial bypass

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Satoshi; Kamiyama, Hiroyasu; Abe, Hiroshi; Takigawa, Shugo [Hokkaido Univ., Sapporo (Japan). School of Medicine; Mitsumori, Kenji; Nomura, Mikio; Saitoh, Hisatoshi

    1991-01-01

    The correlation between the drug-induced hypotension somatosensory evoked potential (SEP) test and regional cerebral blood flow changes after acetazolamide administration was studied. Fourteen patients presenting with transient ischemic attack, reversible ischemic neurological deficits, or minor completed stroke were evaluated. All patients had no or only localized low-density areas on computed tomographic scans, and unilateral occlusion or severe stenosis of the internal carotid or middle cerebral artery on cerebral angiograms. The Diamox asymmetry enhancement (DAE) was studied to detect reduced cerebral perfusion reserve in the affected hemispheres. The DAE was 7.9+-5.8% in seven patients positive in the SEP test, significantly higher than -1.5+-2.9% in patients negative in the SEP test. Postoperative SEP tests were negative in all five patients who underwent extracranial-intracranial (EC-IC) bypass surgery, suggesting that the EC-IC bypass improved the cerebral perfusion reserve in the affected hemispheres. The DAE decreased significantly in four of these patients. This study disclosed a significant correlation between the drug-induced hypotension SEP test and DAE. These parameters are considered important for evaluating patients with hemodynamic compromise and/or suitable candidates for EC-IC bypass. (author).

  20. Big Data for Global History: The Transformative Promise of Digital Humanities

    Directory of Open Access Journals (Sweden)

    Joris van Eijnatten

    2013-12-01

    Full Text Available This article discusses the promises and challenges of digital humanitiesmethodologies for historical inquiry. In order to address the great outstanding question whether big data will re-invigorate macro-history, a number of research projects are described that use cultural text mining to explore big data repositories of digitised newspapers. The advantages of quantitative analysis, visualisation and named entity recognition in both exploration and analysis are illustrated in the study of public debates on drugs, drug trafficking, and drug users in the early twentieth century (wahsp, the comparative study of discourses about heredity, genetics, and eugenics in Dutch and German newspapers, 1863-1940 (biland and the study of trans-Atlantic discourses (Translantis. While many technological and practical obstacles remain, advantages over traditional hermeneutic methodology are found in heuristics, analytics, quantitative trans-disciplinarity, and reproducibility, offering a quantitative and trans-national perspective on the history of mentalities.

  1. Systematic evaluation of candidate blood markers for detecting ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Chana Palmer

    2008-07-01

    Full Text Available Epithelial ovarian cancer is a significant cause of mortality both in the United States and worldwide, due largely to the high proportion of cases that present at a late stage, when survival is extremely poor. Early detection of epithelial ovarian cancer, and of the serous subtype in particular, is a promising strategy for saving lives. The low prevalence of ovarian cancer makes the development of an adequately sensitive and specific test based on blood markers very challenging. We evaluated the performance of a set of candidate blood markers and combinations of these markers in detecting serous ovarian cancer.We selected 14 candidate blood markers of serous ovarian cancer for which assays were available to measure their levels in serum or plasma, based on our analysis of global gene expression data and on literature searches. We evaluated the performance of these candidate markers individually and in combination by measuring them in overlapping sets of serum (or plasma samples from women with clinically detectable ovarian cancer and women without ovarian cancer. Based on sensitivity at high specificity, we determined that 4 of the 14 candidate markers--MUC16, WFDC2, MSLN and MMP7--warrant further evaluation in precious serum specimens collected months to years prior to clinical diagnosis to assess their utility in early detection. We also reported differences in the performance of these candidate blood markers across histological types of epithelial ovarian cancer.By systematically analyzing the performance of candidate blood markers of ovarian cancer in distinguishing women with clinically apparent ovarian cancer from women without ovarian cancer, we identified a set of serum markers with adequate performance to warrant testing for their ability to identify ovarian cancer months to years prior to clinical diagnosis. We argued for the importance of sensitivity at high specificity and of magnitude of difference in marker levels between cases and

  2. A side-effect free method for identifying cancer drug targets.

    Science.gov (United States)

    Ashraf, Md Izhar; Ong, Seng-Kai; Mujawar, Shama; Pawar, Shrikant; More, Pallavi; Paul, Somnath; Lahiri, Chandrajit

    2018-04-27

    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.

  3. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations

    Science.gov (United States)

    Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  4. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  5. Tasty THC: Promises and Challenges of Cannabis Edibles

    Science.gov (United States)

    Barrus, Daniel G.; Capogrossi, Kristen L.; Cates, Sheryl C.; Gourdet, Camille K.; Peiper, Nicholas C.; Novak, Scott P.; Lefever, Timothy W.; Wiley, Jenny L.

    2016-01-01

    Food products containing cannabis extract (edibles) have emerged as a popular and lucrative facet of the legalized market for both recreational and medicinal cannabis. The many formulations of cannabis extracts used in edibles present a unique regulatory challenge for policy makers. Though edibles are often considered a safe, discreet, and effective means of attaining the therapeutic and/or intoxicating effects of cannabis without exposure to the potentially harmful risks of cannabis smoking, little research has evaluated how ingestion differs from other methods of cannabis administration in terms of therapeutic efficacy, subjective effects, and safety. The most prominent difference between ingestion and inhalation of cannabis extracts is the delayed onset of drug effect with ingestion. Consumers often do not understand this aspect of edible use and may consume a greater than intended amount of drug before the drug has taken effect, often resulting in profoundly adverse effects. Written for the educated layperson and for policy makers, this paper explores the current state of research regarding edibles, highlighting the promises and challenges that edibles present to both users and policy makers, and describes the approaches that four states in which recreational cannabis use is legal have taken regarding regulating edibles. PMID:28127591

  6. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... between drug misuse and HIV/AIDS and the discovery of promising treatment interventions for breaking the harmful ... requires the free Adobe Flash Player . NIH...Turning Discovery Into Health ®

  7. Crucial factors and emerging concepts in ultrasound-triggered drug delivery.

    Science.gov (United States)

    Geers, Bart; Dewitte, Heleen; De Smedt, Stefaan C; Lentacker, Ine

    2012-12-28

    Time and space controlled drug delivery still remains a huge challenge in medicine. A novel approach that could offer a solution is ultrasound guided drug delivery. “Ultrasonic drug delivery” is often based on the use of small gas bubbles (so-called microbubbles) that oscillate and cavitate upon exposure to ultrasound waves. Some microbubbles are FDA approved contrast agents for ultrasound imaging and are nowadays widely investigated as promising drug carriers. Indeed, it has been observed that upon exposure to ultrasound waves, microbubbles may (a) release the encapsulated drugs and (b) simultaneously change the structure of the cell membranes in contact with the microbubbles which may facilitate drug entrance into cells. This review aims to highlight (a) major factors known so far which affect ultrasonic drug delivery (like the structure of the microbubbles, acoustic settings, etc.) and (b) summarizes the recent preclinical progress in this field together with a number of promising new concepts and applications.

  8. Which drug or drug delivery system can change clinical practice for brain tumor therapy?

    OpenAIRE

    Siegal, Tali

    2013-01-01

    The prognosis and treatment outcome for primary brain tumors have remained unchanged despite advances in anticancer drug discovery and development. In clinical trials, the majority of promising experimental agents for brain tumors have had limited impact on survival or time to recurrence. These disappointing results are partially explained by the inadequacy of effective drug delivery to the CNS. The impediments posed by the various specialized physiological barriers and active efflux mechanis...

  9. Role of Statin Drugs for Polycystic Ovary Syndrome.

    Science.gov (United States)

    Cassidy-Vu, Lisa; Joe, Edwina; Kirk, Julienne K

    2016-12-01

    Objective: To review the potential role and specific impact of statin drugs in women with PCOS. The evidence for this use of statins in PCOS is limited and still under further investigation. Materials and methods: A search was conducted using PubMed, DynaMed and PubMedHealth databases through October 16, 2016 using the terms polycystic ovary syndrome, PCOS, hydroxymethylglutaryl-CoA reductase inhibitors, hydroxymethylglutaryl-CoA, statin, atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin . English-language trials evaluating statins in PCOS were obtained and incorporated if they provided relevant data for providers. Results: We summarize twelve trials involving statins in PCOS. The trials were predominantly 12 weeks to 3 months in length (8 of the 12 trials) and low to moderate dose of statin drugs were used. The majority (10 of 12) of the trials show that statins reduce testosterone levels or other androgen hormones (DHEA-S and androstenedione), half of the trials evaluating LH/FSH ratio show an improvement, and all had positive effects on lipid profiles. Conclusion: Statins show promising improvements in serum levels of androgens and LH/FSH ratios translating to improved cardiovascular risk factors above and beyond simply lowering LDL levels. More investigation is needed to determine if statins can clinically impact women with PCOS long term, particularly those who are young and are not yet candidates for traditional preventative treatment with a statin medication.

  10. Role of Statin Drugs for Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Lisa Cassidy Vu

    2017-03-01

    Full Text Available Objective: To review the potential role and specific impact of statin drugs in women with PCOS. The evidence for this use of statins in PCOS is limited and still under further investigation.Materials and methods: A search was conducted using PubMed, DynaMed and PubMedHealth databases through October 16, 2016 using the terms polycystic ovary syndrome, PCOS, hydroxymethylglutaryl-CoA reductase inhibitors, hydroxymethylglutaryl-CoA , statin, atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. English-language trials evaluating statins in PCOS were obtained and incorporated if they provided relevant data for providers.Results: We summarize twelve trials involving statins in PCOS. The trials were predominantly 12 weeks to 3 months in length (8 of the 12 trials and low to moderate dose of statin drugs were used. The majority (10 of 12 of the trials show that statins reduce testosterone levels or other androgen hormones (DHEA-S and androstenedione, half of the trials evaluating LH/FSH ratio show an improvement, and all had positive effects on lipid profiles.Conclusion: Statins show promising improvements in serum levels of androgens and LH/FSH ratios translating to improved cardiovascular risk factors above and beyond simply lowering LDL levels. More investigation is needed to determine if statins can clinically impact women with PCOS long term, particularly those who are young and are not yet candidates for traditional preventative treatment with a statin medication. 

  11. Quantitation of small intestinal permeability during normal human drug absorption

    OpenAIRE

    Levitt, David G

    2013-01-01

    Background Understanding the quantitative relationship between a drug?s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorpti...

  12. User evaluations offer promise for pod-intravaginal ring as a drug delivery platform: A mixed methods study of acceptability and use experiences.

    Science.gov (United States)

    Guthrie, Kate M; Rosen, Rochelle K; Vargas, Sara E; Getz, Melissa L; Dawson, Lauren; Guillen, Melissa; Ramirez, Jaime J; Baum, Marc M; Vincent, Kathleen L

    2018-01-01

    evaluations elicited by them, could both challenge use or be used to leverage use in future trials and product rollout once fully articulated. High willingness-to-use data and lack of salient differences in user experiences related to use of the pod-IVR platform (regardless of agents delivered) suggests that the pod-IVR is a feasible and acceptable drug delivery device in and of itself. This finding holds promise both for an anti-HIV pod-IVR and, potentially, a multipurpose prevention pod-IVR that could deliver both prevention for sexually transmitted infections (STIs) including HIV and contraception. Given the very early clinical trial context, further acceptability, perceptibility, and adherence data should continue to be explored, in the context of longer use periods (e.g., 28-day ring use), and in the contexts of sexual activity and menses. Using early design and development contexts to gain insights into potential challenges and facilitators of drug delivery systems such as the pod-IVR could save valuable resources and time as a potential biomedical technology moves through the clinical trial pipeline and into real-world use.

  13. High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

    Science.gov (United States)

    Zhou, Ting; Tan, Lei; Cederquist, Gustav Y; Fan, Yujie; Hartley, Brigham J; Mukherjee, Suranjit; Tomishima, Mark; Brennand, Kristen J; Zhang, Qisheng; Schwartz, Robert E; Evans, Todd; Studer, Lorenz; Chen, Shuibing

    2017-08-03

    Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  15. Delivery of peptide and protein drugs over the blood-brain barrier.

    Science.gov (United States)

    Brasnjevic, Ivona; Steinbusch, Harry W M; Schmitz, Christoph; Martinez-Martinez, Pilar

    2009-04-01

    Peptide and protein (P/P) drugs have been identified as showing great promises for the treatment of various neurodegenerative diseases. A major challenge in this regard, however, is the delivery of P/P drugs over the blood-brain barrier (BBB). Intense research over the last 25 years has enabled a better understanding of the cellular and molecular transport mechanisms at the BBB, and several strategies for enhanced P/P drug delivery over the BBB have been developed and tested in preclinical and clinical-experimental research. Among them, technology-based approaches (comprising functionalized nanocarriers and liposomes) and pharmacological strategies (such as the use of carrier systems and chimeric peptide technology) appear to be the most promising ones. This review combines a comprehensive overview on the current understanding of the transport mechanisms at the BBB with promising selected strategies published so far that can be applied to facilitate enhanced P/P drug delivery over the BBB.

  16. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach.

    Science.gov (United States)

    Bhise, Ketki; Kashaw, Sushil Kumar; Sau, Samaresh; Iyer, Arun K

    2017-06-30

    Cancer is one of the leading causes of death worldwide. There are several hurdles in cancer therapy because of side-effects which limits its usage. Nanoparticulate drug delivery systems have been tested against cancer in a range of scientific studies. In the recent years, advanced research on Nanostructured Lipid Carriers (NLCs) has garnered considerable attention owing to the advantages over their first-generation counterparts, Solid Lipid Nanoparticles (SLN). NLCs facilitate efficient loading of poorly water soluble drugs with simple methods of drug loading. Recently, there is an increased interest in polyphenols because of the evidence of their promising role in prevention of cancer. Polyphenols are produced as secondary metabolites by plants. Their role in prevention of development of tumors through variety of mechanisms and reduction of tumor cell mass has been reported. This article aims to review the science behind development of NLCs and role of polyphenols as promising anticancer agents. Principles of Quality by Design (QbD) have also been explained which are used in formulation-development of many nanoparticles, including NLCs, as reported in literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cyclodextrin-Containing Polymers: Versatile Platforms of Drug Delivery Materials

    Directory of Open Access Journals (Sweden)

    Jeremy D. Heidel

    2012-01-01

    Full Text Available Nanoparticles are being widely explored as potential therapeutics for numerous applications in medicine and have been shown to significantly improve the circulation, biodistribution, efficacy, and safety profiles of multiple classes of drugs. One leading class of nanoparticles involves the use of linear, cyclodextrin-containing polymers (CDPs. As is discussed in this paper, CDPs can incorporate therapeutic payloads into nanoparticles via covalent attachment of prodrug/drug molecules to the polymer (the basis of the Cyclosert platform or by noncovalent inclusion of cationic CDPs to anionic, nucleic acid payloads (the basis of the RONDEL platform. For each of these two approaches, we review the relevant molecular architecture and its rationale, discuss the physicochemical and biological properties of these nanoparticles, and detail the progress of leading drug candidates for each that have achieved clinical evaluation. Finally, we look ahead to potential future directions of investigation and product candidates based upon this technology.

  18. Lost in translation? Role of metabolomics in solving translational problems in drug discovery and development

    NARCIS (Netherlands)

    Greef, J. van der; Adourian, A.; Muntendam, P.; McBurney, R.N.

    2006-01-01

    Too few drug discovery projects generate a marketed drug product, often because preclinical studies fail to predict the clinical experience with a drug candidate. Improving the success of preclinical-to-clinical translation is of paramount importance in optimizing the pharmaceutical value chain.

  19. Use of biomarkers in ALS drug development and clinical trials.

    Science.gov (United States)

    Bakkar, Nadine; Boehringer, Ashley; Bowser, Robert

    2015-05-14

    The past decade has seen a dramatic increase in the discovery of candidate biomarkers for ALS. These biomarkers typically can either differentiate ALS from control subjects or predict disease course (slow versus fast progression). At the same time, late-stage clinical trials for ALS have failed to generate improved drug treatments for ALS patients. Incorporation of biomarkers into the ALS drug development pipeline and the use of biologic and/or imaging biomarkers in early- and late-stage ALS clinical trials have been absent and only recently pursued in early-phase clinical trials. Further clinical research studies are needed to validate biomarkers for disease progression and develop biomarkers that can help determine that a drug has reached its target within the central nervous system. In this review we summarize recent progress in biomarkers across ALS model systems and patient population, and highlight continued research directions for biomarkers that stratify the patient population to enrich for patients that may best respond to a drug candidate, monitor disease progression and track drug responses in clinical trials. It is crucial that we further develop and validate ALS biomarkers and incorporate these biomarkers into the ALS drug development process. This article is part of a Special Issue entitled ALS complex pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Prediction of overall in vitro microsomal stability of drug candidates based on molecular modeling and support vector machines. Case study of novel arylpiperazines derivatives.

    Directory of Open Access Journals (Sweden)

    Szymon Ulenberg

    Full Text Available Other than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model and predict metabolic stability quantitatively is still lacking. This study proposes a workflow for developing quantitative metabolic stability-structure relationships, taking a set of 30 arylpiperazine derivatives as an example. The metabolic stability of the compounds was assessed in in vitro incubations in the presence of human liver microsomes and NADPH and subsequently quantified by liquid chromatography-mass spectrometry (LC-MS. Density functional theory (DFT calculations were used to obtain 30 models of the molecules, and Dragon software served as a source of structure-based molecular descriptors. For modeling structure-metabolic stability relationships, Support Vector Machines (SVM, a non-linear machine learning technique, were found to be more effective than a regression technique, based on the validation parameters obtained. Moreover, for the first time, general sites of metabolism for arylpiperazines bearing the 4-aryl-2H-pyrido[1,2-c]pyrimidine-1,3-dione system were defined by analysis of Q-TOF-MS/MS spectra. The results indicated that the application of one of the most advanced chemometric techniques combined with a simple and quick in vitro procedure and LC-MS analysis provides a novel and valuable tool for predicting metabolic half-life values. Given the reduced time and simplicity of analysis, together with the accuracy of the predictions obtained, this is a valid approach for predicting metabolic stability using structural data. The approach presented provides a novel, comprehensive and reliable tool

  1. Antiherpetic Drugs in Equine Medicine.

    Science.gov (United States)

    Maxwell, Lara K

    2017-04-01

    Since vaccination may not prevent disease, antiherpetic drugs have been investigated for the therapy of several equine herpesviruses. Drug efficacy has been assessed in horses with disease, but most evidence is in vitro, in other species, or empirical. Oral valacyclovir is most often administered in the therapy of equine herpesvirus type-1 (EHV-1) to protect adult horses from equine herpesvirus myeloencephalopathy, while oral acyclovir is frequently administered for EHV-5 infection in the therapy of equine multinodular pulmonary fibrosis. Other antiherpetic drugs are promising but require further investigation. Several topical drugs are also empirically used in the therapy of equine viral keratitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Promising Themes for Antismoking Campaigns Targeting Youth and Young Adults.

    Science.gov (United States)

    Brennan, Emily; Gibson, Laura A; Kybert-Momjian, Ani; Liu, Jiaying; Hornik, Robert C

    2017-01-01

    Behavior change campaigns typically try to change beliefs that influence behaviors, with targeted beliefs comprising the campaign theme. We present an empirical approach for choosing among a large number of potential themes, and results from the implementation of this approach for campaigns aimed at 4 behavioral targets: (1) preventing smoking initiation among youth, and (2) preventing initiation, (3) stopping progression to daily smoking and (4) encouraging cessation among young adults. An online survey of 13- to 17-year-olds and 18- to 25-year-olds in the United States (US), in which 20 potential campaign themes were represented by 154 beliefs. For each behavioral target, themes were ranked based on the strength of belief-intention and belief-behavior associations and size of the population not already endorsing the beliefs. The most promising themes varied across behavioral targets but 3 were consistently promising: consequences of smoking for mood, social acceptance and social popularity. Using a robust and systematic approach, this study provides campaign developers with empirical data to inform their selection of promising themes. Findings related to the campaign to prevent initiation among youth informed the development of the US Food and Drug Administration's "The Real Cost" campaign.

  3. 4D-QSAR: Perspectives in Drug Design

    Directory of Open Access Journals (Sweden)

    Carolina H. Andrade

    2010-05-01

    Full Text Available Drug design is a process driven by innovation and technological breakthroughs involving a combination of advanced experimental and computational methods. A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads, as well as to accelerate the optimization of leads into drug candidates. The quantitative structure–activity relationship (QSAR formalisms are among the most important strategies that can be applied for the successful design new molecules. This review provides a comprehensive review on the evolution and current status of 4D-QSAR, highlighting present challenges and new opportunities in drug design.

  4. Retrieval of Enterobacteriaceae drug targets using singular value decomposition.

    Science.gov (United States)

    Silvério-Machado, Rita; Couto, Bráulio R G M; Dos Santos, Marcos A

    2015-04-15

    The identification of potential drug target proteins in bacteria is important in pharmaceutical research for the development of new antibiotics to combat bacterial agents that cause diseases. A new model that combines the singular value decomposition (SVD) technique with biological filters composed of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of Escherichia coli (strain K12) has been created to predict potential antibiotic drug targets in the Enterobacteriaceae family. This model identified 99 potential drug target proteins in the studied family, which exhibit eight different functions and are protein-coding essential genes or similar to protein-coding essential genes of E.coli (strain K12), indicating that the disruption of the activities of these proteins is critical for cells. Proteins from bacteria with described drug resistance were found among the retrieved candidates. These candidates have no similarity to the human proteome, therefore exhibiting the advantage of causing no adverse effects or at least no known adverse effects on humans. rita_silverio@hotmail.com. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Promising approaches for the treatment and prevention of viral respiratory illnesses.

    Science.gov (United States)

    Papadopoulos, Nikolaos G; Megremis, Spyridon; Kitsioulis, Nikolaos A; Vangelatou, Olympia; West, Peter; Xepapadaki, Paraskevi

    2017-10-01

    Viral respiratory tract infections are the most common human ailments, leading to enormous health and economic burden. Hundreds of viral species and subtypes have been associated with these conditions, with influenza viruses, respiratory syncytial virus, and rhinoviruses being the most frequent and with the highest burden. When considering prevention or treatment of viral respiratory tract infections, potential targets include the causative pathogens themselves but also the immune response, disease transmission, or even just the symptoms. Strategies targeting all these aspects are developing concurrently, and several novel and promising approaches are emerging. In this perspective we overview the entire range of options and highlight some of the most promising approaches, including new antiviral agents, symptomatic or immunomodulatory drugs, the re-emergence of natural remedies, and vaccines and public health policies toward prevention. Wide-scale prevention through immunization appears to be within reach for respiratory syncytial virus and promising for influenza virus, whereas additional effort is needed in regard to rhinovirus, as well as other respiratory tract viruses. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  7. In vitro inhibitory effects of plumbagin, the promising antimalarial candidate, on human cytochrome P450 enzymes.

    Science.gov (United States)

    Sumsakul, Wiriyaporn; Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2015-11-01

    To investigate the propensity of plumbagin to inhibit the three isoforms of human cytochrome P450 (CYP), i.e., CYP1A2, CYP2C19, and CYP3A4 using human liver microsomes in vitro. Inhibitory effects of plumbagin on the three human CYP isoforms were investigated using pooled human liver microsomes. Phenacetin O-deethylation, omeprazole hydroxylation and nifedipine oxidation were used as selective substrates for CYP1A2, CYP2C19 and CYP3A4 activities, respectively. Concentrations of paracetamol, 5-hydroxyomeprazole, and oxidized nifedipine were determined in microsomal incubation mixture using high-performance liquid chromatography. Plumbagin showed significant inhibitory effects on all CYP isoforms, but with the most potent activity on CYP2C19-mediated omeprazole hydroxylation. The IC50 (concentration that inhibits enzyme activity by 50%) values of plumbagin and nootkatone (selective inhibitor) for CYP2C19 were (0.78 ± 0.01) and (27.31 ± 0.66) μM, respectively. The inhibitory activities on CYP1A2-mediated phenacetin O-deethylation and CYP3A4-mediated nifedipine oxidation were moderate. The IC50 values of plumbagin and α-naphthoflavone (selective inhibitor) for CYP1A2 were (1.39 ± 0.01) and (0.02 ± 0.36) μM, respectively. The corresponding IC50 values of plumbagin and ketoconazole (selective inhibitor) for CYP3A4 were (2.37 ± 0.10) and (0.18 ± 0.06) μM, respectively. Clinical relevance of the interference of human drug metabolizing enzymes should be aware of for further development scheme of plumbagin as antimalarial drug when used in combination with other antimalarial drugs which are metabolized by these CYP isoforms. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  8. Promises Of Political Dialogue: Changes In Myanmar’s Ceasefire Process

    Science.gov (United States)

    2017-12-01

    most of them to buy into the agreements. The SLORC government took advantage of a situation, in which the ethnic minority groups were at their...Additionally, they were tacitly permitted to increase growth of opium and continue with the trade and business of that drug .78 Promises of cash and...built-up resentment throughout the bilateral ceasefire period, the violence added another real dimension to why some groups did not buy into the

  9. Organotypic cultures as tools for testing neuroactive drugs - link between in-vitro and in-vivo experiments.

    Science.gov (United States)

    Drexler, B; Hentschke, H; Antkowiak, B; Grasshoff, C

    2010-01-01

    The development of neuroactive drugs is a time consuming procedure. Candidate drugs must be run through a battery of tests, including receptor studies and behavioural tests on animals. As a rule, numerous substances with promising properties as assessed in receptor studies must be eliminated from the development pipeline in advanced test phases because of unforeseen problems like intolerable side-effects or unsatisfactory performance in the whole organism. Clearly, test systems of intermediate complexity would alleviate this inefficiency. In this review, we propose cultured organotypic brain slices as model systems that could bridge the 'interpolation gap' between receptors and the brain, with a focus on the development of new general anaesthetics with lesser side effects. General anaesthesia is based on the modulation of neurotransmitter receptors and other conductances located on neurons in diverse brain regions, including cerebral cortex and spinal cord. It is well known that different components of general anaesthesia, e.g. hypnosis and immobility, are produced by the depression of neuronal activity in distinct brain regions. The ventral horn of the spinal cord is an important structure for the induction of immobility. Thus, the potentially immobilizing effects of a newly designed drug can be estimated from its depressant effect on neuronal network activity in cultured spinal slices. A drug's sedative and hypnotic potential can be examined in cortical cultures. Combined with genetically engineered mice, this approach can point to receptor subtypes most relevant to the drug's intended net effect and in return can help in the design of more selective drugs. In conclusion, the use of organotypic cultures permits predictions of neuroactive properties of newly designed drugs on an intermediate level, and should therefore open up avenues for a more creative and economic drug development process.

  10. Recent advances in targeted drug therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    FAN Yongqiang

    2018-02-01

    Full Text Available More and more clinical trials have proved the efficacy of targeted drugs in the treatment of hepatocellular carcinoma (HCC. With the development of science and technology, more and more targeted drugs have appeared. In recent years, targeted drugs such as regorafenib and ramucirumab have shown great potential in related clinical trials. In addition, there are ongoing clinical trials for second-line candidate drugs, such as c-Met inhibitors tivantinib and cabozantinib and a VEGFR-2 inhibitor ramucirumab. This article summarizes the advances in targeted drug therapy for HCC and related trial data, which provides a reference for further clinical trials and treatment.

  11. Do promises matter? An exploration of the role of promises in psychological contract breach.

    Science.gov (United States)

    Montes, Samantha D; Zweig, David

    2009-09-01

    Promises are positioned centrally in the study of psychological contract breach and are argued to distinguish psychological contracts from related constructs, such as employee expectations. However, because the effects of promises and delivered inducements are confounded in most research, the role of promises in perceptions of, and reactions to, breach remains unclear. If promises are not an important determinant of employee perceptions, emotions, and behavioral intentions, this would suggest that the psychological contract breach construct might lack utility. To assess the unique role of promises, the authors manipulated promises and delivered inducements separately in hypothetical scenarios in Studies 1 (558 undergraduates) and 2 (441 employees), and they measured them separately (longitudinally) in Study 3 (383 employees). The authors' results indicate that breach perceptions do not represent a discrepancy between what employees believe they were promised and were given. In fact, breach perceptions can exist in the absence of promises. Further, promises play a negligible role in predicting feelings of violation and behavioral intentions. Contrary to the extant literature, the authors' findings suggest that promises may matter little; employees are concerned primarily with what the organization delivers.

  12. Fragment-based drug discovery using rational design.

    Science.gov (United States)

    Jhoti, H

    2007-01-01

    Fragment-based drug discovery (FBDD) is established as an alternative approach to high-throughput screening for generating novel small molecule drug candidates. In FBDD, relatively small libraries of low molecular weight compounds (or fragments) are screened using sensitive biophysical techniques to detect their binding to the target protein. A lower absolute affinity of binding is expected from fragments, compared to much higher molecular weight hits detected by high-throughput screening, due to their reduced size and complexity. Through the use of iterative cycles of medicinal chemistry, ideally guided by three-dimensional structural data, it is often then relatively straightforward to optimize these weak binding fragment hits into potent and selective lead compounds. As with most other lead discovery methods there are two key components of FBDD; the detection technology and the compound library. In this review I outline the two main approaches used for detecting the binding of low affinity fragments and also some of the key principles that are used to generate a fragment library. In addition, I describe an example of how FBDD has led to the generation of a drug candidate that is now being tested in clinical trials for the treatment of cancer.

  13. Loading of microcontainers for oral drug delivery

    DEFF Research Database (Denmark)

    Marizza, Paolo

    The pharmaceutical research is facing several obstacles in the development of drug products for the oral delivery. The main problem deals with the intrinsic chemical nature of the new drug candidates, which are often poorly soluble and barely absorbed in the gastro-intestinal tract. Furthermore......, they are usually degraded before they are absorbed. These combined factors considerably reduce the bioavailability of many active ingredients. Several strategies have been developed to overcome these challenges. One of them are microfabricated drug delivery devices. Microreservoir based-systems are characterized...... of UV photolithography was developed. The fabrication of polymer patterns was optimized and loading with both small hydrophobic drugs and proteins was demonstrated. Finally, structural properties of hydrogels were elucidated by rheology and NMR with the perspective of controlling the drug release...

  14. Eudragit ® FS 30 D polymeric films containing chondroitin sulfate as candidates for use in coating seeking modified delivery of drugs

    Directory of Open Access Journals (Sweden)

    Camila Borges dos Reis

    Full Text Available ABSTRACT Polymeric films associating different concentrations of Eudragit(r FS 30 D (EFS and chondroitin sulfate (CS were produced by casting for the development of a new target-specific site material. Formed films kept a final polymer mass of 4% (w/v in the following proportions: EFS 100:00 CS (control, EFS 95:05 CS, EFS 90:10 CS and EFS 80:20 CS. They were analyzed for physical and chemical characteristics using Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM and Raman spectroscopy. Furthermore, they were characterized by their water vapor permeability and degree of hydration at different conditions simulating the gastrointestinal tract. No chemical interactions were observed between CS and EFS, suggesting only a physical interaction between them in the different combinations tested. The results suggest that EFS and CS, when combined, may form films that are candidates for coating processes seeking a modified drug delivery, especially due to the synergism between pH dependency and specific biodegradability properties by the colonic microbiota. EFS 90:10 CS proved to be the most suitable for this purpose considering hydration and permeability characteristics of different associations analyzed.

  15. Virtual drug discovery: beyond computational chemistry?

    Science.gov (United States)

    Gilardoni, Francois; Arvanites, Anthony C

    2010-02-01

    This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.

  16. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... of people infected with HIV, drug misuse can interfere with an individual's likelihood of adhering to the ... HIV/AIDS and the discovery of promising treatment interventions for breaking the harmful links between them, we ...

  17. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... groups of young people, guiding the use of technology, the discussion between friends, and the importance of ... between drug misuse and HIV/AIDS and the discovery of promising treatment interventions for breaking the harmful ...

  18. SMART POLYMERS: INNOVATIONS IN NOVEL DRUG DELIVERY

    OpenAIRE

    Apoorva Mahajan; Geeta Aggarwal

    2011-01-01

    Smart polymers are attracting the researchers for development of novel drug delivery systems. Importance of smart polymers is rising day by day as these polymers undergo large reversible, physical or chemical changes in response to small changes in the environmental conditions such as pH, temperature, dual- stimuli, light and phase transition. Smart polymers are representing promising means for targeted drug delivery, enhanced drug delivery, gene therapy, actuator stimuli and protein folders....

  19. The basics of preclinical drug development for neurodegenerative disease indications

    Directory of Open Access Journals (Sweden)

    Spack Edward G

    2009-06-01

    Full Text Available Abstract Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s. Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot

  20. Position Statement: Drug Holiday in Osteoporosis Treatment with Bisphosphonates in South Korea

    Science.gov (United States)

    Lee, Seung Hun; Gong, Hyun Sik; Kim, Tae-Hee; Park, Si Young; Shin, Jung-Ho; Cho, Sun Wook

    2015-01-01

    Bisphosphonates have been widely used in the treatment of osteoporosis with robust data from many placebo-controlled trials demonstrating its efficacy in fracture risk reduction over 3 to 5 years of treatment. Although bisphosphonates are generally safe and well tolerated, concerns have emerged about the adverse effects related to its long-term use, including osteonecrosis of the jaw and atypical femur fractures. Because bisphosphonates are incorporated into the skeleton and continue to exert an anti-resorptive effect for a period of time after the discontinuation of drugs, the concept of a "drug holiday" has emerged, whereby the risk of adverse effects might be decreased while the patient still benefits from anti-fracture efficacy. As randomized clinical trial evidence is not yet available on who may qualify for a drug holiday, there is considerable controversy regarding the selection of candidates for the drug holiday and monitoring during a drug holiday, both of which should be based on individual assessments of risk and benefit. This statement will provide suggestions for clinicians in South Korea on the identification of possible candidates and monitoring during a bisphosphonate drug holiday. PMID:26713307

  1. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    Science.gov (United States)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  2. Electric vehicle batteries. Development status for the promising candidates; Elbilsbatterier. Utvecklingsstatus foer de fraemsta kandidaterna

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Johansson, Arne [Catella Generics AB, Jaerfaella (Sweden)

    2000-04-01

    One driver for the EV and HEV programme of KFB is to study the effects of a large scale introduction of electric vehicles in the future. Catella Generics was contracted to investigate and report on the development status for EV batteries and the success potential for the different candidates, their development obstacles and alternative usage and on the links between different players. The batteries studied in greater detail have been evaluated according to special criteria like performance, cost, ruggedness, resource efficiency, safety and environmental impact and how that will influence their likely success. Models for the evaluation of EV batteries have been developed by the car manufacturers and authorities. We have based our investigation on the criteria established by USABC and the modifications made by PNGV for the energy storage in hybrid electric vehicles. Some basic conclusions reported as a result of this investigation are listed below: Lead-acid may have a role as energy storage in HEVs. Ni/Cd batteries are attractive from a technical standpoint, but questioned based on the environmental concern for cadmium. Ni/MH batteries are attracting a great attention in the medium term. Na/NiCl{sub 2} batteries have been successful in the German demonstration programme. Lithium batteries have a great potential in the long term. Metal/air batteries have been operated without problems, however there need for a special infrastructure is a major draw-back. Fuel cells and ultra capacitors are new alternative power sources for propulsion of EVs, however these are not included in this report.

  3. Efficacy of chimeric Pestivirus vaccine candidates against classical swine fever: protection and DIVA characteristics.

    Science.gov (United States)

    Eblé, P L; Geurts, Y; Quak, S; Moonen-Leusen, H W; Blome, S; Hofmann, M A; Koenen, F; Beer, M; Loeffen, W L A

    2013-03-23

    Currently no live DIVA (Differentiating Infected from Vaccinated Animals) vaccines against classical swine fever (CSF) are available. The aim of this study was to investigate whether chimeric pestivirus vaccine candidates (CP7_E2alf, Flc11 and Flc9) are able to protect pigs against clinical signs, and to reduce virus shedding and virus transmission, after a challenge with CSF virus (CSFV), 7 or 14 days after a single intramuscular vaccination. In these vaccine candidates, either the E2 or the E(rns) encoding genome region of a bovine viral diarrhoea virus strain were combined with a cDNA copy of CSFV or vice versa. Furthermore, currently available serological DIVA tests were evaluated. The vaccine candidates were compared to the C-strain. All vaccine candidates protected against clinical signs. No transmission to contact pigs was detected in the groups vaccinated with C-strain, CP7_E2alf and Flc11. Limited transmission occurred in the groups vaccinated with Flc9. All vaccine candidates would be suitable to stop on-going transmission of CSFV. For Flc11, no reliable differentiation was possible with the current E(rns)-based DIVA test. For CP7_E2alf, the distribution of the inhibition percentages was such that up to 5% false positive results may be obtained in a large vaccinated population. For Flc9 vaccinated pigs, the E2 ELISA performed very well, with an expected 0.04% false positive results in a large vaccinated population. Both CP7_E2alf and Flc9 are promising candidates to be used as live attenuated marker vaccines against CSF, with protection the best feature of CP7_E2alf, and the DIVA principle the best feature of Flc9. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Comparison of minipig, dog, monkey and human drug metabolism and disposition.

    Science.gov (United States)

    Dalgaard, Lars

    2015-01-01

    This article gives an overview of the drug metabolism and disposition (ADME) characteristics of the most common non-rodent species used in toxicity testing of drugs (minipigs, dogs, and monkeys) and compares these to human characteristics with regard to enzymes mediating the metabolism of drugs and the transport proteins which contribute to the absorption, distribution and excretion of drugs. Literature on ADME and regulatory guidelines of relevance in drug development of small molecules has been gathered. Non-human primates (monkeys) are the species that is closest to humans in terms of genetic homology. Dogs have an advantage due to the ready availability of comprehensive background data for toxicological safety assessment and dogs are easy to handle. Pigs have been used less than dogs and monkeys as a model in safety assessment of drug candidates. However, when a drug candidate is metabolised by aldehyde oxidase (AOX1), N-acetyltransferases (NAT1 and NAT2) or cytochrome (CYP2C9-like) enzymes which are not expressed in dogs, but are present in pigs, this species may be a better choice than dogs, provided that adequate exposure can be obtained in pigs. Conversely, pigs might not be the right choice if sulfation, involving 3-phospho-adenosyl-5-phosphosulphate sulphotransferase (PAPS) is an important pathway in the human metabolism of a drug candidate. In general, the species selection should be based on comparison between in vitro studies with human cell-based systems and animal-cell-based systems. Results from pharmacokinetic studies are also important for decision-making by establishing the obtainable exposure level in the species. Access to genetically humanized mouse models and highly sensitive analytical methods (accelerator mass spectrometry) makes it possible to improve the chance of finding all metabolites relevant for humans before clinical trials have been initiated and, if necessary, to include another animal species before long term toxicity studies are

  5. A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients.

    Science.gov (United States)

    Cheng, Lijun; Schneider, Bryan P; Li, Lang

    2016-07-01

    Cancer has been extensively characterized on the basis of genomics. The integration of genetic information about cancers with data on how the cancers respond to target based therapy to help to optimum cancer treatment. The increasing usage of sequencing technology in cancer research and clinical practice has enormously advanced our understanding of cancer mechanisms. The cancer precision medicine is becoming a reality. Although off-label drug usage is a common practice in treating cancer, it suffers from the lack of knowledge base for proper cancer drug selections. This eminent need has become even more apparent considering the upcoming genomics data. In this paper, a personalized medicine knowledge base is constructed by integrating various cancer drugs, drug-target database, and knowledge sources for the proper cancer drugs and their target selections. Based on the knowledge base, a bioinformatics approach for cancer drugs selection in precision medicine is developed. It integrates personal molecular profile data, including copy number variation, mutation, and gene expression. By analyzing the 85 triple negative breast cancer (TNBC) patient data in the Cancer Genome Altar, we have shown that 71.7% of the TNBC patients have FDA approved drug targets, and 51.7% of the patients have more than one drug target. Sixty-five drug targets are identified as TNBC treatment targets and 85 candidate drugs are recommended. Many existing TNBC candidate targets, such as Poly (ADP-Ribose) Polymerase 1 (PARP1), Cell division protein kinase 6 (CDK6), epidermal growth factor receptor, etc., were identified. On the other hand, we found some additional targets that are not yet fully investigated in the TNBC, such as Gamma-Glutamyl Hydrolase (GGH), Thymidylate Synthetase (TYMS), Protein Tyrosine Kinase 6 (PTK6), Topoisomerase (DNA) I, Mitochondrial (TOP1MT), Smoothened, Frizzled Class Receptor (SMO), etc. Our additional analysis of target and drug selection strategy is also fully

  6. A comprehensive approach to identifying repurposed drugs to treat SCN8A epilepsy.

    Science.gov (United States)

    Atkin, Talia A; Maher, Chani M; Gerlach, Aaron C; Gay, Bryant C; Antonio, Brett M; Santos, Sonia C; Padilla, Karen M; Rader, JulieAnn; Krafte, Douglas S; Fox, Matthew A; Stewart, Gregory R; Petrovski, Slavé; Devinsky, Orrin; Might, Matthew; Petrou, Steven; Goldstein, David B

    2018-04-01

    Many previous studies of drug repurposing have relied on literature review followed by evaluation of a limited number of candidate compounds. Here, we demonstrate the feasibility of a more comprehensive approach using high-throughput screening to identify inhibitors of a gain-of-function mutation in the SCN8A gene associated with severe pediatric epilepsy. We developed cellular models expressing wild-type or an R1872Q mutation in the Na v 1.6 sodium channel encoded by SCN8A. Voltage clamp experiments in HEK-293 cells expressing the SCN8A R1872Q mutation demonstrated a leftward shift in sodium channel activation as well as delayed inactivation; both changes are consistent with a gain-of-function mutation. We next developed a fluorescence-based, sodium flux assay and used it to assess an extensive library of approved drugs, including a panel of antiepileptic drugs, for inhibitory activity in the mutated cell line. Lead candidates were evaluated in follow-on studies to generate concentration-response curves for inhibiting sodium influx. Select compounds of clinical interest were evaluated by electrophysiology to further characterize drug effects on wild-type and mutant sodium channel functions. The screen identified 90 drugs that significantly inhibited sodium influx in the R1872Q cell line. Four drugs of potential clinical interest-amitriptyline, carvedilol, nilvadipine, and carbamazepine-were further investigated and demonstrated concentration-dependent inhibition of sodium channel currents. A comprehensive drug repurposing screen identified potential new candidates for the treatment of epilepsy caused by the R1872Q mutation in the SCN8A gene. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  7. Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer's Disease Therapeutic Agents.

    Science.gov (United States)

    Llorach-Pares, Laura; Nonell-Canals, Alfons; Sanchez-Martinez, Melchor; Avila, Conxita

    2017-11-27

    Computer-aided drug discovery/design (CADD) techniques allow the identification of natural products that are capable of modulating protein functions in pathogenesis-related pathways, constituting one of the most promising lines followed in drug discovery. In this paper, we computationally evaluated and reported the inhibitory activity found in meridianins A-G, a group of marine indole alkaloids isolated from the marine tunicate Aplidium , against various protein kinases involved in Alzheimer's disease (AD), a neurodegenerative pathology characterized by the presence of neurofibrillary tangles (NFT). Balance splitting between tau kinase and phosphate activities caused tau hyperphosphorylation and, thereby, its aggregation and NTF formation. Inhibition of specific kinases involved in its phosphorylation pathway could be one of the key strategies to reverse tau hyperphosphorylation and would represent an approach to develop drugs to palliate AD symptoms. Meridianins bind to the adenosine triphosphate (ATP) binding site of certain protein kinases, acting as ATP competitive inhibitors. These compounds show very promising scaffolds to design new drugs against AD, which could act over tau protein kinases Glycogen synthetase kinase-3 Beta (GSK3β) and Casein kinase 1 delta (CK1δ, CK1D or KC1D), and dual specificity kinases as dual specificity tyrosine phosphorylation regulated kinase 1 (DYRK1A) and cdc2-like kinases (CLK1). This work is aimed to highlight the role of CADD techniques in marine drug discovery and to provide precise information regarding the binding mode and strength of meridianins against several protein kinases that could help in the future development of anti-AD drugs.

  8. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer.

    Science.gov (United States)

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.

  9. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    Science.gov (United States)

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  10. Immunotherapy and immunochemotherapy in visceral leishmaniasis: promising treatments for this neglected disease

    Directory of Open Access Journals (Sweden)

    Bruno Mendes Roatt

    2014-06-01

    Full Text Available Leishmaniasis has several clinical forms: self-healing or chronic cutaneous leishmaniasis or post-kala-azar dermal leishmaniasis; mucosal leishmaniasis; and visceral leishmaniasis, which is fatal if left untreated. The epidemiology and clinical features of VL vary greatly due to the interaction of multiple factors including parasite strains, vectors, host genetics, and the environment. HIV infection, augments the severity of VL increasing the risk of developing active disease by 100 to 2320 times. An effective vaccine for humans is not yet available. Resistance to chemotherapy is a growing problem in many regions, and the costs associated with drug identification and development, make commercial production for leishmaniasis, unattractive. The toxicity of currently drugs, their long treatment course, and limited efficacy are significant concerns. For cutaneous disease, many studies have shown promising results with immunotherapy/immunochemotherapy, aimed to modulate and activate the immune response to obtain a therapeutic cure. Nowadays, the focus of many groups centers on treating canine VL by using vaccines and immunomodulators with or without chemotherapy. In human disease, the use of cytokines like Interferon-γ associated with pentavalent antimonials demonstrated promising results in patients that did not respond to conventional treatment. In mice, immunomodulation based on monoclonal antibodies to remove endogenous immunosuppressive cytokines (interleukin-10 or block their receptors, antigen-pulsed syngeneic dendritic cells, or biological products like Pam3Cys (TLR ligand has already been shown as a prospective treatment of the disease. This review addresses VL treatment, particularly immunotherapy and/or immunochemotherapy as an alternative to conventional drug treatment in experimental models, canine VL, and human disease.

  11. Optimized candidal biofilm microtiter assay

    NARCIS (Netherlands)

    Krom, Bastiaan P.; Cohen, Jesse B.; Feser, Gail E. McElhaney; Cihlar, Ronald L.

    Microtiter based candidal biofilm formation is commonly being used. Here we describe the analysis of factors influencing the development of candidal biofilms such as the coating with serum, growth medium and pH. The data reported here show that optimal candidal biofilm formation is obtained when

  12. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  13. Elicited vs. voluntary promises

    NARCIS (Netherlands)

    Ismayilov, H.; Potters, Jan

    2017-01-01

    We set up an experiment with pre-play communication to study the impact of promise elicitation by trustors from trustees on trust and trustworthiness. When given the opportunity a majority of trustors solicits a promise from the trustee. This drives up the promise making rate by trustees to almost

  14. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    Science.gov (United States)

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The lead-acid eloflux cell. Research tool and candidate for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kullmeine, U.; Kappus, W.

    1982-12-01

    The discharge capacity of usual lead-acid cells is limited by several mechanisms among which acid depletion is the most incisive. It is shown that the use of the so-called eloflux principle which is characterized by the flow of electrolyte through the porous electrodes, allows a significant deepe discharge and that by avoiding acid depletion the study of the other limiting processes and their functional dependence on the discharge conditions is possible. From the results it is concluded that an eloflux lead-acid cell is a promising candidate for advanced batteries with high energy density and performance.

  16. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    Science.gov (United States)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti

  17. Mass spectrometry-driven drug discovery for development of herbal medicine.

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Wang, Xijun

    2018-05-01

    Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.

  18. Are zebrafish larvae suitable for assessing the hepatotoxicity potential of drug candidates?

    NARCIS (Netherlands)

    Mesens, N.; Crawfordb, A.D.; Menke, A.; Hung, P.D.; Goethem, F. van; Nuyts, R.; Hansen, E.; Wolterbeek, A.; Gompel, J. van; Witte, P. de; Esguerra, C.V.

    2015-01-01

    Drug-induced liver injury (DILI) is poorly predicted by single-cell-based assays, probably because of the lack of physiological interactions with other cells within the liver. An intact whole liver system such as one present in zebrafish larvae could provide added value in a screening strategy for

  19. An automated synthesis-purification-sample-management platform for the accelerated generation of pharmaceutical candidates.

    Science.gov (United States)

    Sutherland, J David; Tu, Noah P; Nemcek, Thomas A; Searle, Philip A; Hochlowski, Jill E; Djuric, Stevan W; Pan, Jeffrey Y

    2014-04-01

    A flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.

  20. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Damte, Dereje; Suh, Joo-Won; Lee, Seung-Jin; Yohannes, Sileshi Belew; Hossain, Md Akil; Park, Seung-Chun

    2013-07-01

    In the present study, a computational comparative and subtractive genomic/proteomic analysis aimed at the identification of putative therapeutic target and vaccine candidate proteins from Kyoto Encyclopedia of Genes and Genomes (KEGG) annotated metabolic pathways of Mycoplasma hyopneumoniae was performed for drug design and vaccine production pipelines against M.hyopneumoniae. The employed comparative genomic and metabolic pathway analysis with a predefined computational systemic workflow extracted a total of 41 annotated metabolic pathways from KEGG among which five were unique to M. hyopneumoniae. A total of 234 proteins were identified to be involved in these metabolic pathways. Although 125 non homologous and predicted essential proteins were found from the total that could serve as potential drug targets and vaccine candidates, additional prioritizing parameters characterize 21 proteins as vaccine candidate while druggability of each of the identified proteins evaluated by the DrugBank database prioritized 42 proteins suitable for drug targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Strategies for the early detection of drug-induced hepatic steatosis in preclinical drug safety evaluation studies

    International Nuclear Information System (INIS)

    Amacher, David E.

    2011-01-01

    Hepatic steatosis is characterized by the accumulation of lipid droplets in the liver. Although relatively benign, simple steatosis can eventually lead to the development of steatohepatitis, a more serious condition characterized by fibrosis, cirrhosis, and eventual liver failure if the underlying cause is not eliminated. According to the 'two hit' theory of steatohepatitis, the initial hit involves fat accumulation in the liver, and a second hit leads to inflammation and subsequent tissue injury. Because some xenobiotics target liver fatty acid metabolism, especially mitochondrial β-oxidation, it is important to avoid potential drug candidates that can contribute to either the initiation of liver steatosis or progression to the more injurious steatohepatitis. The gold standard for the detection of these types of hepatic effects is histopathological examination of liver tissue. In animal studies, these examinations are slow, restricted to a single sampling time, and limited tissue sections. Recent literature suggests that rapid in vitro screening methods can be used early in the drug R and D process to identify compounds with steatotic potential. Further, progress in the identification of potential serum or plasma protein biomarkers for these liver changes may provide additional in vivo tools to the preclinical study toxicologist. This review summarizes recent developments for in vitro screening and in vivo biomarker detection for steatotic drug candidates.

  2. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas Eiland; Clausen, Mads Hartvig

    2016-01-01

    Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function, and ther......Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function...

  3. Drug development in Parkinson's disease: from emerging molecules to innovative drug delivery systems.

    Science.gov (United States)

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2013-11-01

    Current treatments for Parkinson's disease (PD) are aimed at addressing motor symptoms but there is no therapy focused on modifying the course of the disease. Successful treatment strategies have been so far limited and brain drug delivery remains a major challenge that restricts its treatment. This review provides an overview of the most promising emerging agents in the field of PD drug discovery, discussing improvements that have been made in brain drug delivery for PD. It will be shown that new approaches able to extend the length of the treatment, to release the drug in a continuous manner or to cross the blood-brain barrier and target a specific region are still needed. Overall, the results reviewed here show that there is an urgent need to develop both symptomatic and disease-modifying treatments, giving priority to neuroprotective treatments. Promising perspectives are being provided in this field by rasagiline and by neurotrophic factors like glial cell line-derived neurotrophic factor. The identification of disease-relevant genes has also encouraged the search for disease-modifying therapies that function by identifying molecularly targeted drugs. The advent of new molecular and cellular targets like α-synuclein, leucine-rich repeat serine/threonine protein kinase 2 or parkin, among others, will require innovative delivery therapies. In this regard, drug delivery systems (DDS) have shown great potential for improving the efficacy of conventional and new PD therapy and reducing its side effects. The new DDS discussed here, which include microparticles, nanoparticles and hydrogels among others, will probably open up possibilities that extend beyond symptomatic relief. However, further work needs to be done before DDS become a therapeutic option for PD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Candida Biofilms: Threats, Challenges, and Promising Strategies

    Directory of Open Access Journals (Sweden)

    Mafalda Cavalheiro

    2018-02-01

    Full Text Available Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  5. Candida Biofilms: Threats, Challenges, and Promising Strategies.

    Science.gov (United States)

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis , and Candida parapsilosis , highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  6. Candida Biofilms: Threats, Challenges, and Promising Strategies

    Science.gov (United States)

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed. PMID:29487851

  7. Development of novel alkylating drugs as anticancer agents.

    Science.gov (United States)

    Izbicka, Elzbieta; Tolcher, Anthony W

    2004-06-01

    Although conventional alkylating drugs have proven efficacy in the treatment of malignancies, the agents themselves are not selective. Therefore, non-specific alkylation of cellular nucleophilic targets may contribute to many of the observed toxic effects. Novel approaches to drug discovery have resulted in candidate agents that are focused on 'soft alkylation'--alkylators with greater target selectivity. This review highlights the discovery of small molecule drugs that bind to DNA with higher selectivity, act in a unique hypoxic tumor environment, or covalently bind specific protein targets overexpressed in cancer, such as topoisomerase II, glutathione transferase pi1, beta-tubulin and histone deacetylase.

  8. Artificial intelligence in drug combination therapy.

    Science.gov (United States)

    Tsigelny, Igor F

    2018-02-09

    Currently, the development of medicines for complex diseases requires the development of combination drug therapies. It is necessary because in many cases, one drug cannot target all necessary points of intervention. For example, in cancer therapy, a physician often meets a patient having a genomic profile including more than five molecular aberrations. Drug combination therapy has been an area of interest for a while, for example the classical work of Loewe devoted to the synergism of drugs was published in 1928-and it is still used in calculations for optimal drug combinations. More recently, over the past several years, there has been an explosion in the available information related to the properties of drugs and the biomedical parameters of patients. For the drugs, hundreds of 2D and 3D molecular descriptors for medicines are now available, while for patients, large data sets related to genetic/proteomic and metabolomics profiles of the patients are now available, as well as the more traditional data relating to the histology, history of treatments, pretreatment state of the organism, etc. Moreover, during disease progression, the genetic profile can change. Thus, the ability to optimize drug combinations for each patient is rapidly moving beyond the comprehension and capabilities of an individual physician. This is the reason, that biomedical informatics methods have been developed and one of the more promising directions in this field is the application of artificial intelligence (AI). In this review, we discuss several AI methods that have been successfully implemented in several instances of combination drug therapy from HIV, hypertension, infectious diseases to cancer. The data clearly show that the combination of rule-based expert systems with machine learning algorithms may be promising direction in this field. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Issue-Advocacy versus Candidate Advertising: Effects on Candidate Preferences and Democratic Process.

    Science.gov (United States)

    Pfau, Michael; Holbert, R. Lance; Szabo, Erin Alison; Kaminski, Kelly

    2002-01-01

    Examines the influence of soft-money-sponsored issue-advocacy advertising in U.S. House and Senate campaigns, comparing its effects against candidate-sponsored positive advertising and contrast advertising on viewers' candidate preferences and on their attitude that reflect democratic values. Reveals no main effects for advertising approach on…

  10. The promising anticancer drug 3-bromopyruvate is metabolized through glutathione conjugation which affects chemoresistance and clinical practice: An evidence-based view.

    Science.gov (United States)

    El Sayed, Salah Mohamed; Baghdadi, Hussam; Zolaly, Mohammed; Almaramhy, Hamdi H; Ayat, Mongi; Donki, Jagadish G

    2017-03-01

    3-Bromopyruvate (3BP) is a promising effective anticancer drug against many different tumors in children and adults. 3BP exhibited strong anticancer effects in both preclinical and human studies e.g. energy depletion, oxidative stress, anti-angiogenesis, anti-metastatic effects, targeting cancer stem cells and antagonizing the Warburg effect. There is no report about 3BP metabolism to guide researchers and oncologists to improve clinical practice and prevent drug resistance. In this article, we provide evidences that 3BP is metabolized through glutathione (GSH) conjugation as a novel report where 3BP was confirmed to be attached to GSH followed by permanent loss of pharmacological effects in a picture similar to cisplatin. Both cisplatin and 3BP are alkylating agents. Reported decrease in endogenous cellular GSH content upon 3BP treatment was confirmed to be due to the formation of 3BP-GSH complex i.e. GSH consumption for conjugation with 3BP. Cancer cells having high endogenous GSH exhibit resistance to 3BP while 3BP sensitive cells acquire resistance upon adding exogenous GSH. Being a thiol blocker, 3BP may attack thiol groups in tissues and serum proteins e.g. albumin and GSH. That may decrease 3BP-induced anticancer effects and the functions of those proteins. We proved here that 3BP metabolism is different from metabolism of hydroxypyruvate that results from metabolism of D-serine using D-amino acid oxidase. Clinically, 3BP administration should be monitored during albumin infusion and protein therapy where GSH should be added to emergency medications. GSH exerts many physiological effects and is safe for human administration both orally and intravenously. Based on that, reported GSH-induced inhibition of 3BP effects makes 3BP effects reversible, easily monitored and easily controlled. This confers a superiority of 3BP over many anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    Directory of Open Access Journals (Sweden)

    Miyatake S

    2016-08-01

    Full Text Available Shouta Miyatake,1 Yuko Shimizu-Motohashi,2 Shin’ichi Takeda,1 Yoshitsugu Aoki1 1Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; 2Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan Abstract: Duchenne muscular dystrophy (DMD, an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. Keywords: calcium channels, ryanodine receptor 1, exon skipping, NF-κB, myokine, ROS

  12. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery.

    Science.gov (United States)

    Rashidi, Mohammad-Reza; Soltani, Somaieh

    2017-03-01

    Given the rising trend in medicinal chemistry strategy to reduce cytochrome P450-dependent metabolism, aldehyde oxidase (AOX) has recently gained increased attention in drug discovery programs and the number of drug candidates that are metabolized by AOX is steadily growing. Areas covered: Despite the emerging importance of AOX in drug discovery, there are certain major recognized problems associated with AOX-mediated metabolism of drugs. Intra- and inter-species variations in AOX activity, the lack of reliable and predictive animal models using the common experimental animals, and failure in the predictions of in vivo metabolic activity of AOX using traditional in vitro methods are among these issues that are covered in this article. A comprehensive review of computational human AOX (hAOX) related studies are also provided. Expert opinion: Following the recent progress in the stem cell field, the authors recommend the application of organoids technology as an effective tool to solve the fundamental problems associated with the evaluation of AOX in drug discovery. The recent success in resolving the hAOX crystal structure can too be another valuable data source for the study of AOX-catalyzed metabolism of new drug candidates, using computer-aided drug discovery methods.

  13. PLANETARY TRANSIT CANDIDATES IN THE CSTAR FIELD: ANALYSIS OF THE 2008 DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songhu; Zhang, Hui; Zhou, Ji-Lin; Yang, Ming; Liu, Huigen; Meng, Zeyang [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210093 (China); Zhou, Xu; Fan, Zhou; Liu, Qiang; Ma, Jun [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wang, Lifan; Feng, Long-Long [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Bayliss, D.; Zhou, G. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Ashley, M. C. B.; Lawrence, J. S.; Luong-Van, D. M.; Storey, J. W. V.; Wittenmyer, R. A. [School of Physics, University of New South Wales, NSW 2052 (Australia); Gong, Xuefei, E-mail: zhoujl@nju.edu.cn, E-mail: zhouxu@bao.ac.cn [Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042 (China); and others

    2014-04-01

    The Chinese Small Telescope ARray (CSTAR) is a group of four identical, fully automated, static 14.5 cm telescopes. CSTAR is located at Dome A, Antarctica and covers 20 deg{sup 2} of sky around the South Celestial Pole. The installation is designed to provide high-cadence photometry for the purpose of monitoring the quality of the astronomical observing conditions at Dome A and detecting transiting exoplanets. CSTAR has been operational since 2008, and has taken a rich and high-precision photometric data set of 10,690 stars. In the first observing season, we obtained 291,911 qualified science frames with 20 s integrations in the i band. Photometric precision reaches ∼4 mmag at 20 s cadence at i = 7.5 and is ∼20 mmag at i = 12. Using robust detection methods, 10 promising exoplanet candidates were found. Four of these were found to be giants using spectroscopic follow-up. All of these transit candidates are presented here along with the discussion of their detailed properties as well as the follow-up observations.

  14. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... projects/learn-link-drugs-hiv . 120x90 460x80 486x60 Social Media Send the message to young people and ... HIV/AIDS and the discovery of promising treatment interventions for breaking the harmful links between them, we ...

  15. Activity of oxantel pamoate monotherapy and combination chemotherapy against Trichuris muris and hookworms: revival of an old drug.

    Directory of Open Access Journals (Sweden)

    Jennifer Keiser

    Full Text Available BACKGROUND: It is widely recognized that only a handful of drugs are available against soil-transmitted helminthiasis, all of which are characterized by a low efficacy against Trichuris trichiura, when administered as single doses. The re-evaluation of old, forgotten drugs is a promising strategy to identify alternative anthelminthic drug candidates or drug combinations. METHODOLOGY: We studied the activity of the veterinary drug oxantel pamoate against Trichuris muris, Ancylostoma ceylanicum and Necator americanus in vitro and in vivo. In addition, the dose-effect of oxantel pamoate combined with albendazole, mebendazole, levamisole, pyrantel pamoate and ivermectin was studied against T. muris in vitro and additive or synergistic combinations were followed up in vivo. PRINCIPAL FINDINGS: We calculated an ED50 of 4.7 mg/kg for oxantel pamoate against T. muris in mice. Combinations of oxantel pamoate with pyrantel pamoate behaved antagonistically in vitro (combination index (CI = 2.53. Oxantel pamoate combined with levamisole, albendazole or ivermectin using ratios based on their ED50s revealed antagonistic effects in vivo (CI = 1.27, 1.90 and 1.27, respectively. A highly synergistic effect (CI = 0.15 was observed when oxantel pamoate-mebendazole was administered to T. muris-infected mice. Oxantel pamoate (10 mg/kg lacked activity against Ancylostoma ceylanicum and Necator americanus in vivo. CONCLUSION/SIGNIFICANCE: Our study confirms the excellent trichuricidal properties of oxantel pamoate. Since the drug lacks activity against hookworms it is necessary to combine oxantel pamoate with a partner drug with anti-hookworm properties. Synergistic effects were observed for oxantel pamoate-mebendazole, hence this combination should be studied in more detail. Since, of the standard drugs, albendazole has the highest efficacy against hookworms, additional investigations on the combination effect of oxantel pamoate-albendazole should be

  16. Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our method is based only on two, simple, biologically motivated assumptions--that a gene is a good disease-gene candidate if it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence and shared pathophysiology between different disorders.

  17. Chitosan capped nanoscale Fe-MIL-88B-NH2 metal-organic framework as drug carrier material for the pH responsive delivery of doxorubicin

    Science.gov (United States)

    Sivakumar, P.; Priyatharshni, S.; Nagashanmugam, K. B.; Thanigaivelan, A.; Kumar, K.

    2017-08-01

    In recent years nanoscale metal-organic frameworks (NMOFs) are contributing as an effective material for use in drug delivery and imaging applications due to their porous surfaces and easy surface modifications. In this work, Fe-MIL-88B-NH2 NMOFs were successfully synthesized on facile hydrothermal route and 2-aminoterephthalic acid (NH2-BDC) was employed as a bridging ligand to activate amine functional groups on the surface. Amine functional groups not only serve as a structure stabilizing agent but also enhance the loading efficiency of the doxorubicin (DOX) anticancer drug. A pH responsive DOX release was realized by introducing a positively charged chitosan (Chi) capping layer. Upon Chi-coating, cleavage was observed in the Fe-MIL-88B-NH2 structure at acidic pH, while gel-like insoluble structure was formed at basic pH. By utilizing this phenomenon, a pH responsive DOX release system was developed by using Chi capped Fe-MIL-88B-NH2 NMOFs under the designed pH (4.0-8.0). The results suggest the Chi capped Fe-MIL-88B-NH2 can be a promising candidate for future pH responsive drug delivery systems.

  18. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  19. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  20. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Guilherme Curty Lechuga

    2016-12-01

    Full Text Available Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM, with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.

  1. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    Science.gov (United States)

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  2. L1188: A Promising Candidate for Cloud–Cloud Collisions Triggering the Formation of Low- and Intermediate-mass Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan; Fang, Min; Mao, Ruiqing; Zhang, Shaobo; Wang, Yuan; Su, Yang; Chen, Xuepeng; Yang, Ji; Wang, Hongchi; Lu, Dengrong, E-mail: ygong@pmo.ac.cn [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China)

    2017-01-20

    We present a new large-scale (2° × 2°) simultaneous {sup 12}CO, {sup 13}CO, and C{sup 18}O (J = 1–0) mapping of L1188 with the Purple Mountain Observatory 13.7 m telescope. Our observations have revealed that L1188 consists of two nearly orthogonal filamentary molecular clouds at two clearly separated velocities. Toward the intersection showing large velocity spreads, we find several bridging features connecting the two clouds in velocity, and an open arc structure that exhibits high excitation temperatures, enhanced {sup 12}CO and {sup 13}CO emission, and broad {sup 12}CO line wings. This agrees with the scenario that the two clouds are colliding with each other. The distribution of young stellar object (YSO) candidates implies an enhancement of star formation in the intersection of the two clouds. We suggest that a cloud–cloud collision happened in L1188 about 1 Myr ago, possibly triggering the formation of low- and intermediate-mass YSOs in the intersection.

  3. 3-Aminothiophene-2-Acylhydrazones: Non-Toxic, Analgesic and Anti-Inflammatory Lead-Candidates

    Directory of Open Access Journals (Sweden)

    Yolanda Karla Cupertino da Silva

    2014-06-01

    Full Text Available Different chemotypes are described as anti-inflammatory. Among them the N-acylhydrazones (NAH are highlighted by their privileged structure nature, being present in several anti-inflammatory drug-candidates. In this paper a series of functionalized 3-aminothiophene-2-acylhydrazone derivatives 5a–i were designed, synthesized and bioassayed. These new derivatives showed great anti-inflammatory and analgesic potency and efficacy. Compounds 5a and 5d stand out in this respect, and were also active in CFA-induced arthritis in rats. After daily treatment for seven days with 5a and 5d (50 µmol/Kg, by oral administration, these compounds were not renal or hepatotoxic nor immunosuppressive. Compounds 5a and 5d also displayed good drug-scores and low risk toxicity calculated in silico using the program OSIRIS Property Explorer.

  4. Computer-Aided Drug Design in Epigenetics

    Science.gov (United States)

    Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng

    2018-03-01

    Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.

  5. Computer-Aided Drug Design in Epigenetics

    Science.gov (United States)

    Lu, Wenchao; Zhang, Rukang; Jiang, Hao; Zhang, Huimin; Luo, Cheng

    2018-01-01

    Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field. PMID:29594101

  6. Synergistic Interplay of Medicinal Chemistry and Formulation Strategies in Nanotechnology - From Drug Discovery to Nanocarrier Design and Development.

    Science.gov (United States)

    Sunoqrot, Suhair; Hamed, Rania; Abdel-Halim, Heba; Tarawneh, Ola

    2017-01-01

    Over the last few decades, nanotechnology has given rise to promising new therapies and diagnostic tools for a wide range of diseases, especially cancer. The unique properties of nanocarriers such as liposomes, polymeric nanoparticles, micelles, and bioconjugates have mainly been exploited to enhance drug solubility, dissolution, and bioavailability. The most important advantage offered by nanotechnology is the ability to specifically target organs, tissues, and individual cells, which ultimately reduces the systemic side effects and improves the therapeutic index of drug molecules. The contribution of medicinal chemistry to nanotechnology is evident in the abundance of new active molecules that are being discovered but are faced with tremendous delivery challenges by conventional formulation strategies. Additionally, medicinal chemistry plays a crucial role in all the steps involved in the preparation of nanocarriers, where structure-activity relationships of the drug molecule as well as the nanocarrier are harnessed to enhance the design, efficacy, and safety of nanoformulations. The aim of this review is to provide an overview of the contributions of medicinal chemistry to nanotechnology, from supplying drug candidates and inspiring high-throughput nanocarrier design strategies, to structure-activity relationship elucidation and construction of computational models for better understanding of nanocarrier physicochemical properties and biological behavior. These two fields are undoubtedly interconnected and we will continue to see the fruits of that communion for years to come. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Multifunctional reduction-responsive SPIO and DOX-loaded PEGylated polymeric lipid vesicles for magnetic resonance imaging-guided drug delivery

    International Nuclear Information System (INIS)

    Wang, Sheng; Yang, Weitao; Wang, Hanjie; Chang, Jin; Gong, Xiaoqun; Du, Hongli; Guo, Fangfang; Zhang, Bingbo

    2016-01-01

    Multifunctional superparamagnetic iron-oxide (SPIO)-based nanoparticles have been emerging as candidate nanosystems for cancer diagnosis and therapy. Here, we report the use of reduction- responsive SPIO/doxorubicin (DOX)-loaded poly(ethylene glycol) monomethyl ether (PEG)ylated polymeric lipid vesicles (SPIO and DOX-PPLVs) as a novel theranostic system for tumor magnetic resonance imaging (MRI) diagnosis and controlled drug delivery. These SPIO and DOX-PPLVs are composed of SPIOs that function as MR contrast agents for tumor enhancement and PPLVs as polymer matrices for encapsulating SPIO and antitumor drugs. The in vitro characterizations show that the SPIO and DOX-PPLVs have nanosized structures (∼80 nm), excellent colloidal stability,  good biocompatibility, as well as T _2-weighted MRI capability with a relatively high T _2 relaxivity (r _2 = 213.82 mM"−"1 s"−"1). In vitro drug release studies reveal that the release rate of DOX from the SPIO and DOX-PPLVs is accelerated in the reduction environment. An in vitro cellular uptake study and an antitumor study show that the SPIO and DOX-PPLVs have magnetic targeting properties and effective antitumor activity. In vivo studies show the SPIO and DOX-PPLVs have excellent T _2-weighted tumor targeted MRI capability, image-guided drug delivery capability, and high antitumor effects. These results suggest that the SPIO and DOX-PPLVs are promising nanocarriers for MRI diagnosis and cancer therapy applications. (paper)

  8. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Singh S

    2015-11-01

    Full Text Available Sima Singh,1,* Niranjan G Kotla,2,* Sonia Tomar,3 Balaji Maddiboyina,4 Thomas J Webster,5,6 Dinesh Sharma,7 Omprakash Sunnapu2 1Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 2Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, 3Department of Pharmaceutics, Ram Gopal College of Pharmacy, Rohtak, Haryana, 4Department of Pharmaceutics, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 7Ranbaxy Laboratory Ltd, Gurgaon, Haryana, India *These authors contributed equally to this work Abstract: Targeted drug delivery plays a significant role in disease treatment associated with the colon, affording therapeutic responses for a prolonged period of time with low side effects. Colorectal cancer is the third most common cancer in both men and women with an estimated 102,480 cases of colon cancer and 40,340 cases of rectal cancer in 2013 as reported by the American Cancer Society. In the present investigation, we developed an improved oral delivery system for existing anticancer drugs meant for colon cancer via prebiotic and probiotic approaches. The system comprises three components, namely, nanoparticles of drug coated with natural materials such as guar gum, xanthan gum (that serve as prebiotics, and probiotics. The natural gums play a dual role of protecting the drug in the gastric as well as intestinal conditions to allow its release only in the colon. In vitro results obtained from these experiments indicated the successful targeted delivery of 5-fluorouracil to the colon. Electron microscopy results demonstrated that the prepared nanoparticles were spherical in shape and 200 nm in size. The in vitro release data

  9. Imaging mass spectrometry in drug development and toxicology.

    Science.gov (United States)

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  10. Keeping the Promise

    Science.gov (United States)

    Whissemore, Tabitha

    2016-01-01

    Since its launch in September 2015, Heads Up America has collected information on nearly 125 promise programs across the country, many of which were instituted long before President Barack Obama announced the America's College Promise (ACP) plan in 2015. At least 27 new free community college programs have launched in states, communities, and at…

  11. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases.

    Science.gov (United States)

    Mello, Juliana da Fonseca Rezende E; Gomes, Renan Augusto; Vital-Fujii, Drielli Gomes; Ferreira, Glaucio Monteiro; Trossini, Gustavo Henrique Goulart

    2017-12-01

    Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs. © 2017 John Wiley & Sons A/S.

  12. Antibody-drug conjugates for cancer therapy: The technological and regulatory challenges of developing drug-biologic hybrids.

    Science.gov (United States)

    Hamilton, Gregory S

    2015-09-01

    Antibody-drug conjugates (ADCs) are a new class of therapeutic agents that combine the targeting ability of monoclonal antibodies (mAbs) with small molecule drugs. The combination of a mAb targeting a cancer-specific antigen with a cytotoxin has tremendous promise as a new type of targeted cancer therapy. Two ADCs have been approved and many more are in clinical development, suggesting that this new class of drugs is coming to the forefront. Because of their unique nature as biologic-small drug hybrids, ADCs are challenging to develop, from both the scientific and regulatory perspectives. This review discusses both these aspects in current practice, and surveys the current state of the art of ADC drug development. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  13. The heparin-binding domain of HB-EGF as an efficient cell-penetrating peptide for drug delivery.

    Science.gov (United States)

    Luo, Zhao; Cao, Xue-Wei; Li, Chen; Wu, Miao-Dan; Yang, Xu-Zhong; Zhao, Jian; Wang, Fu-Jun

    2016-11-01

    Cell-penetrating peptides (CPPs) have been shown to be potential drug carriers for cancer therapy. The inherently low immunogenicity and cytotoxicity of human-derived CPPs make them more suitable for intracellular drug delivery compared to other delivery vehicles. In this work, the protein transduction ability of a novel CPP (termed HBP) derived from the heparin-binding domain of HB-EGF was evaluated. Our data shows, for the first time, that HBP possesses similar properties to typical CPPs and is a potent drug delivery vector for improving the antitumor activity of impermeable MAP30. The intrinsic bioactivities of recombinant MAP30-HBP were well preserved compared to those of free MAP30. Furthermore, HBP conjugated to the C-terminus of MAP30 promoted the cellular uptake of recombinant MAP30-HBP. Moreover, the fusion of HBP to MAP30 gave rise to significantly enhanced cytotoxic effects in all of the tumor cell lines tested. In HeLa cells, this cytotoxicity was mainly caused by the induction of cell apoptosis. Further investigation revealed that HBP enhanced MAP30-induced apoptosis through the activation of the mitochondrial- and death receptor-mediated signaling pathways. In addition, the MAP30-HBP fusion protein caused more HeLa cells to become arrested in S phase compared to MAP30 alone. These results highlight the MAP30-HBP fusion protein as a promising drug candidate for cancer therapy and demonstrate HBP, a novel CPP derived from human HB-EGF, as a new potential vector for antitumor drug delivery. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  14. Testing candidate interlayers for an enhanced water-cooled divertor target

    International Nuclear Information System (INIS)

    Hancock, David; Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William; Rieth, Michael; Reiser, Jens

    2015-01-01

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  15. Testing candidate interlayers for an enhanced water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, E-mail: david.hancock@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, Michael; Reiser, Jens [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  16. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Science.gov (United States)

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-05-12

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD.

  17. Multiplex reverse transcription-polymerase chain reaction combined with on-chip electrophoresis as a rapid screening tool for candidate gene sets

    DEFF Research Database (Denmark)

    Wittig, Rainer; Salowsky, Rüdiger; Blaich, Stephanie

    2005-01-01

    Combining multiplex reverse transcription-polymerase chain reaction (mRT-PCR) with microfluidic amplicon analysis, we developed an assay for the rapid and reliable semiquantitative expression screening of 11 candidate genes for drug resistance in human malignant melanoma. The functionality of thi...

  18. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores.

    Directory of Open Access Journals (Sweden)

    Madhan R Tirumalai

    Full Text Available The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T. This cluster of five genes is considered to be an especially promising target for future experimental

  19. A microscale synthesis of a promising radiolabelled antitumor drug: cis-1,1-cyclobutanedicarboxylato (2R)-2-methyl-1,4-butanediamine platinum(II), NK121

    International Nuclear Information System (INIS)

    Suwa, Masato; Kogawa, Osamu; Hashimoto, Yutaka

    1992-01-01

    A promising antitumor drug, cis-1,1-cyclobutane-dicarboxylato (2R)-2-methyl-1,4-butanediamine platinum (II), NK121, was synthesized from radionuclides of platinum such as 193m Pt, 195m Pt and 191 Pt which were produced by neutron irradiation of enriched 192 Pt. The overall yield was 38.6% in a synthesis time of 10 hours. The radioactivities present in 8.39 mg of NK121 were 115.3 μCi as 193m Pt, 29.9 μCi as 197 Pt, 22.0 μCi as 195m Pt, and 4.8 μCi as 191 Pt at the end of synthesis. The specific activity of the NK121 was 13.7 μCi ( 193m Pt)/mg NK121 at the end of synthesis. The radiochemical purity of NK121 was typically 99%. HPLC analyses confirmed that NK121 was in an adequate chemical purity and suitable for animal experimentation. (author)

  20. A microscale synthesis of a promising radiolabelled antitumor drug: cis-1,1-cyclobutanedicarboxylato (2R)-2-methyl-1,4-butanediamine platinum(II), NK121

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, Masato; Kogawa, Osamu; Hashimoto, Yutaka (Nippon Kayaku Co. Ltd., Tokyo (Japan). Research Labs. of Pharmaceuticals Group); Nowatari, Hiroyoshi (Nippon Kayaku Co. Ltd., Takasaki, Gumma (Japan). Takasaki Research Labs.); Murase, Yuko; Homma, Yoshio (Kyoritsu Coll. of Pharmacy, Tokyo (Japan))

    1992-05-01

    A promising antitumor drug, cis-1,1-cyclobutane-dicarboxylato (2R)-2-methyl-1,4-butanediamine platinum (II), NK121, was synthesized from radionuclides of platinum such as {sup 193m}Pt, {sup 195m}Pt and {sup 191}Pt which were produced by neutron irradiation of enriched {sup 192}Pt. The overall yield was 38.6% in a synthesis time of 10 hours. The radioactivities present in 8.39 mg of NK121 were 115.3 {mu}Ci as {sup 193m}Pt, 29.9 {mu}Ci as {sup 197}Pt, 22.0 {mu}Ci as {sup 195m}Pt, and 4.8 {mu}Ci as {sup 191}Pt at the end of synthesis. The specific activity of the NK121 was 13.7 {mu}Ci ({sup 193m}Pt)/mg NK121 at the end of synthesis. The radiochemical purity of NK121 was typically 99%. HPLC analyses confirmed that NK121 was in an adequate chemical purity and suitable for animal experimentation. (author).

  1. Applied metabolomics in drug discovery.

    Science.gov (United States)

    Cuperlovic-Culf, M; Culf, A S

    2016-08-01

    The metabolic profile is a direct signature of phenotype and biochemical activity following any perturbation. Metabolites are small molecules present in a biological system including natural products as well as drugs and their metabolism by-products depending on the biological system studied. Metabolomics can provide activity information about possible novel drugs and drug scaffolds, indicate interesting targets for drug development and suggest binding partners of compounds. Furthermore, metabolomics can be used for the discovery of novel natural products and in drug development. Metabolomics can enhance the discovery and testing of new drugs and provide insight into the on- and off-target effects of drugs. This review focuses primarily on the application of metabolomics in the discovery of active drugs from natural products and the analysis of chemical libraries and the computational analysis of metabolic networks. Metabolomics methodology, both experimental and analytical is fast developing. At the same time, databases of compounds are ever growing with the inclusion of more molecular and spectral information. An increasing number of systems are being represented by very detailed metabolic network models. Combining these experimental and computational tools with high throughput drug testing and drug discovery techniques can provide new promising compounds and leads.

  2. A computer vision based candidate for functional balance test.

    Science.gov (United States)

    Nalci, Alican; Khodamoradi, Alireza; Balkan, Ozgur; Nahab, Fatta; Garudadri, Harinath

    2015-08-01

    Balance in humans is a motor skill based on complex multimodal sensing, processing and control. Ability to maintain balance in activities of daily living (ADL) is compromised due to aging, diseases, injuries and environmental factors. Center for Disease Control and Prevention (CDC) estimate of the costs of falls among older adults was $34 billion in 2013 and is expected to reach $54.9 billion in 2020. In this paper, we present a brief review of balance impairments followed by subjective and objective tools currently used in clinical settings for human balance assessment. We propose a novel computer vision (CV) based approach as a candidate for functional balance test. The test will take less than a minute to administer and expected to be objective, repeatable and highly discriminative in quantifying ability to maintain posture and balance. We present an informal study with preliminary data from 10 healthy volunteers, and compare performance with a balance assessment system called BTrackS Balance Assessment Board. Our results show high degree of correlation with BTrackS. The proposed system promises to be a good candidate for objective functional balance tests and warrants further investigations to assess validity in clinical settings, including acute care, long term care and assisted living care facilities. Our long term goals include non-intrusive approaches to assess balance competence during ADL in independent living environments.

  3. The current status of community drug testing via the analysis of drugs and drug metabolites in sewage

    Directory of Open Access Journals (Sweden)

    Malcolm J. Reid

    2011-12-01

    Full Text Available Over the past few years the analysis of drug residues in sewage has been promoted as a means of estimating the level of drug use in communities. Measured drug residue concentrations in the sewage are used to determine the load (total mass of the drug being used by the entire community. Knowledge of the size or population of the community then allows for the calculation of drug-use relative to population (typically drug-mass/day/1000 inhabitants which facilitates comparisons between differing communities or populations. Studies have been performed in many European countries, including Norway, as well as in the US and Australia. The approach has successfully estimated the use of cocaine, amphetamine, methamphetamine, MDMA, cannabis, nicotine and alcohol. The analysis of biomarkers of drug use in sewage has great potential to support and complement existing techniques for estimating levels of drug use, and as such has been identified as a promising development by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA; www.emcdda.europa.eu/wastewater-analysis. The approach is not without its challenges, and ongoing collaboration across Europe aims at agreeing upon best-practice and harmonising the methods being used. In Norway development is being performed through the NFR RUSMIDDEL funded DrugMon (www.niva.no/drugmon project that has led to the development of many new techniques, significantly improved our understanding of the uncertainties associated with the approach and allowed the coordination of Europe wide collaboration which has included all important intercalibration exercises. Application of the technique can provide evidence-based and real-time estimates of collective drug use with the resulting data used to improve the much needed estimates of drug use and dependency.

  4. Functionalization of protein-based nanocages for drug delivery applications.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  5. Meta-analysis and genome-wide interpretation of genetic susceptibility to drug addiction

    Science.gov (United States)

    2011-01-01

    Background Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction. Results Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility. From meta-data retrieved from 212 publications on candidate gene association studies and 5 GWAS reports, we linked a total of 843 haplotypes to addiction susceptibility. We mapped the SNPs in these haplotypes to functional and regulatory elements in the genome and estimated the magnitude of the contributions of different molecular mechanisms to their effects on addiction susceptibility. In addition to SNPs in coding regions, these data suggest that haplotypes in gene regulatory regions may also contribute to addiction susceptibility. When we compared the lists of genes identified by association studies and those identified by molecular biological studies of drug-regulated genes, we observed significantly higher participation in the same gene interaction networks than expected by chance, despite little overlap between the two gene lists. Conclusions These results appear to offer new insights into the genetic factors underlying drug addiction. PMID:21999673

  6. Assessing anti-T. cruzi candidates in vitro for sterile cidality

    Directory of Open Access Journals (Sweden)

    Monica Cal

    2016-12-01

    Full Text Available Total clearance of the T. cruzi infection – referred to herein as “sterile cure” – seems to be a critical prerequisite for new drug candidates for Chagas disease, ensuring long-term beneficial effects for patients in the chronic indeterminate stage. This requirement is notably supported by the recent findings of clinical studies involving posaconazole and fosravuconazole, where the majority of patients treated eventually relapsed after an apparent clearance of parasitaemia at the end of treatment. We have adapted an in vitro system to predict the ability of a compound to deliver sterile cure. It relies on mouse peritoneal macrophages as host cells for Trypanosoma cruzi amastigotes. The macrophages do not proliferate, allowing for long-term testing and wash-out experiments. Giemsa staining followed by microscopy provides a highly sensitive and specific tool to quantify the numbers of infected host cells. Combining macrophages as host cells and Giemsa staining as the read-out, we demonstrate that posaconazole and other CYP51 inhibitors are unable to achieve complete clearance of an established T. cruzi infection in vitro in spite of the fact that these compounds are active at significantly lower concentrations than the reference drugs benznidazole and nifurtimox. Indeed, a few macrophages remained infected after 96 h of drug incubation in the presence of CYP51 inhibitors–albeit at a very low parasite load. These residual T. cruzi amastigotes were shown to be viable and infective, as demonstrated by wash-out experiments. We advocate characterizing any new anti-T. cruzi early stage candidates for sterile cidality early in the discovery cascade, as a surrogate for delivery of sterile cure in vivo.

  7. Neuroimaging in psychiatric pharmacogenetics research: the promise and pitfalls.

    Science.gov (United States)

    Falcone, Mary; Smith, Ryan M; Chenoweth, Meghan J; Bhattacharjee, Abesh Kumar; Kelsoe, John R; Tyndale, Rachel F; Lerman, Caryn

    2013-11-01

    The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment.

  8. Fe/Co doped molybdenum diselenide: a promising two-dimensional intermediate-band photovoltaic material

    International Nuclear Information System (INIS)

    Zhang, Jiajia; He, Haiyan; Pan, Bicai

    2015-01-01

    An intermediate-band (IB) photovoltaic material is an important candidate in developing the new-generation solar cell. In this paper, we propose that the Fe-doped or the Co-doped MoSe 2 just meets the required features in IB photovoltaic materials. Our calculations demonstrate that when the concentration of the doped element reaches 11.11%, the doped MoSe 2 shows a high absorptivity for both infrared and visible light, where the photovoltaic efficiency of the doped MoSe 2 is as high as 56%, approaching the upper limit of photovoltaic efficiency of IB materials. So, the Fe- or Co-doped MoSe 2 is a promising two-dimensional photovoltaic material. (paper)

  9. Synaptic plasticity in drug reward circuitry.

    Science.gov (United States)

    Winder, Danny G; Egli, Regula E; Schramm, Nicole L; Matthews, Robert T

    2002-11-01

    Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.

  10. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  11. Comparison of lithium and the eutectic lead lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    International Nuclear Information System (INIS)

    Malang, S.; Mattas, R.

    1994-06-01

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety, and required R ampersand D program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeders and coolant. The remaining feasibility question for both breeder materials is the electrical insulation between liquid metal and duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and radiation induced electrical degradation are not yet demonstrated. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns

  12. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events.

    Science.gov (United States)

    Wang, Kejian; Wan, Mei; Wang, Rui-Sheng; Weng, Zuquan

    2016-04-01

    Drug repositioning refers to the process of developing new indications for existing drugs. As a phenotypic indicator of drug response in humans, clinical side effects may provide straightforward signals and unique opportunities for drug repositioning. We aimed to identify drugs frequently associated with hypotension adverse reactions (ie, the opposite condition of hypertension), which could be potential candidates as antihypertensive agents. We systematically searched the electronic records of the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) through the openFDA platform to assess the association between hypotension incidence and antihypertensive therapeutic effect regarding a list of 683 drugs. Statistical analysis of FAERS data demonstrated that those drugs frequently co-occurring with hypotension events were more likely to have antihypertensive activity. Ranked by the statistical significance of frequent hypotension reporting, the well-known antihypertensive drugs were effectively distinguished from others (with an area under the receiver operating characteristic curve > 0.80 and a normalized discounted cumulative gain of 0.77). In addition, we found a series of antihypertensive agents (particularly drugs originally developed for treating nervous system diseases) among the drugs with top significant reporting, suggesting the good potential of Web-based and data-driven drug repositioning. We found several candidate agents among the hypotension-related drugs on our list that may be redirected for lowering blood pressure. More important, we showed that a pharmacovigilance system could alternatively be used to identify antihypertensive agents and sustainably create opportunities for drug repositioning.

  13. A Synthetic Serine Protease Inhibitor, Nafamostat Mesilate, Is a Drug Potentially Applicable to the Treatment of Ebola Virus Disease.

    Science.gov (United States)

    Nishimura, Hidekazu; Yamaya, Mutsuo

    2015-09-01

    Ebola virus disease (EVD) has been a great concern worldwide because of its high mortality. EVD usually manifests with fever, diarrhea and vomiting, as well as disseminated intravascular coagulation (DIC). To date, there is neither a licensed Ebola vaccine nor a promising therapeutic agent, although clinical trials are ongoing. For replication inside the cell, Ebola virus (EBOV) must undergo the proteolytic processing of its surface glycoprotein in the endosome by proteases including cathepsin B (CatB), followed by the fusion of the viral membrane and host endosome. Thus, the proteases have been considered as potential targets for drugs against EVD. However, no protease inhibitor has been presented as effective clinical drug against it. A synthetic serine protease inhibitor, nafamostat mesilate (NM), reduced the release of CatB from the rat pancreas. Furthermore, it has anticoagulant activities, such as inhibition of the factor VIIa complex, and has been used for treating DIC in Japan. Thus, NM could be considered as a drug candidate for the treatment of DIC induced by EBOV infection, as well as for the possible CatB-related antiviral action. Moreover, the drug has a history of large-scale production and clinical use, and the issues of safety and logistics might have been cleared. We advocate in vitro and in vivo experiments using active EBOV to examine the activities of NM against the infection and the DIC induced by the infection. In addition, we suggest trials for comparison among anti-DIC drugs including the NM in EVD patients, in parallel with the experiments.

  14. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery

    Science.gov (United States)

    Khan, R. U.; Wang, L.; Yu, H.; Zain-ul-Abdin; Akram, M.; Wu, J.; Haroon, M.; Ullah, R. S.; Deng, Zh; Xia, X.

    2018-02-01

    It is a highly desirable goal of researchers to develop effective biomaterials with minimum recovery time and affordable treatment expense for tissue engineering and drug delivery. In this scenario, numerous synthetic and natural polymers have been used. Among those synthetic polymers, polyorganophosphazenes (POPs) have got much attention as highly promising candidates for applications in tissue engineering and drug delivery. Polyorganophosphazenes are hybrid polymers containing inorganic backbone consisting of alternating nitrogen and phosphorus atoms with two organic side groups. POPs possess a wide range of unique properties, i.e., synthetic flexibility, biocompatibility, osteocompatibility, osteoinductivity, sustainability and degradability into harmless end products with predictable degradation rate and adjustable mechanical strength. Moreover, their tunable hydrophilic/hydrophobic and stimuli responsive properties add extra points to their use in biomedical applications. In addition, their various polymeric forms, i.e., microspheres, nano/microfibres, micelles, membranes, polymersomes, hydrogels and nano-conjugate linear polymers provide different carriers to efficiently deliver various hydrophilic/hydrophobic therapeutic agents both in vitro and in vivo. This review focuses on the most recent progress that has been made in the synthesis and applications of POPs in tissue engineering and their different polymeric forms used for drug delivery. Moreover, we have also summarized the effect of different side groups on the overall efficiency of POPs. The bibliography includes 239 references.

  15. Testing antidepressant compounds in a neuropsychological model of drug action

    NARCIS (Netherlands)

    Cerit, Hilal

    2015-01-01

    Although much research effort has been put into the development of new antidepressant drugs, the process of developing a drug often fails at the stage of large randomized controlled trials (RCTs) in which an initially promising compound appears to lack efficacy after all. Several experimental

  16. Computer-Aided Drug Design in Epigenetics

    Directory of Open Access Journals (Sweden)

    Wenchao Lu

    2018-03-01

    Full Text Available Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.

  17. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  18. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles.

    Science.gov (United States)

    Mousavikhamene, Zeynab; Abdekhodaie, Mohammad J; Ahmadieh, Hamid

    2017-10-01

    A unique method was used to facilitate ocular drug delivery from periocular route by drug loaded magnetic sensitive particles. Injection of particles in periocular space along the eye axis followed by application of magnetic field in front of the eye would trigger the magnetic polymeric particles to move along the direction of magnetic force and reside against the outer surface of the sclera. This technique prevents removal of drug in the periocular space, observed in conventional transscleral drug delivery systems and hence higher amount of drug can enter the eye in a longer period of time. The experiments were performed by fresh human sclera and an experimental setup. Experimental setup was designed by side by side diffusion cell and hydrodynamic and thermal simulation of the posterior segment of the eye were applied. Magnetic polymeric particles were synthesized by alginate as a model polymer, iron oxide nanoparticles as a magnetic agent and diclofenac sodium as a model drug and characterized by SEM, TEM, DLS and FT-IR techniques. According to the SEM images, the size range of particles is around 60 to 800nm. The results revealed that the cumulative drug transfer from magnetic sensitive particles across the sclera improves by 70% in the presence of magnetic field. The results of this research show promising method of drug delivery to use magnetic properties to facilitate drug delivery to the back of the eye. Copyright © 2017. Published by Elsevier B.V.

  19. Structure and organization of drug-target networks: insights from genomic approaches for drug discovery.

    Science.gov (United States)

    Janga, Sarath Chandra; Tzakos, Andreas

    2009-12-01

    Recent years have seen an explosion in the amount of "omics" data and the integration of several disciplines, which has influenced all areas of life sciences including that of drug discovery. Several lines of evidence now suggest that the traditional notion of "one drug-one protein" for one disease does not hold any more and that treatment for most complex diseases can best be attempted using polypharmacological approaches. In this review, we formalize the definition of a drug-target network by decomposing it into drug, target and disease spaces and provide an overview of our understanding in recent years about its structure and organizational principles. We discuss advances made in developing promiscuous drugs following the paradigm of polypharmacology and reveal their advantages over traditional drugs for targeting diseases such as cancer. We suggest that drug-target networks can be decomposed to be studied at a variety of levels and argue that such network-based approaches have important implications in understanding disease phenotypes and in accelerating drug discovery. We also discuss the potential and scope network pharmacology promises in harnessing the vast amount of data from high-throughput approaches for therapeutic advantage.

  20. Virtual Dual inhibition of COX-2 / 5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug

    Science.gov (United States)

    Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam

    2016-01-01

    ) that are known as cancer preventive agents, since it is free of side effects on human body and it can be a promising drug for cancer therapeutics. PMID:27231478

  1. Liposheres as a Novel Carrier for Lipid Based Drug Delivery: Current and Future Directions.

    Science.gov (United States)

    Swain, Suryakanta; Beg, Sarwar; Babu, Sitty M

    2016-01-01

    Researchers are facing challenges to develop robust formulation and to enhance the bioavailability of poorly water-soluble drugs towards clinical applications. The development of new drug molecule alone is not adequate to assure ample pharmacotherapy of various diseases. Considerable results obtained from in vitro studies are not supported by in vivo data due to inadequate plasma drug concentrations. This may occur due to limited drug solubility and absorption. To resolve these problems, development of new drug delivery systems will be a promising approach. One of the promising pharmaceutical strategies is the use of lipospheres drug delivery system to deliver the poorly water-soluble drugs. Therefore, the present review described the methodology for manufacturing of lipospheres and factors influencing the formulation to deliver the drugs to the targeted site. Apart from that, this review also enlisted briefly the various applications of liposphers in medical and biomedical fields and critically discussed the recent patent system.

  2. Thermophoresis of water droplets inside carbon nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2016-01-01

    Carbon Nanotubes(CNTs) offer unique possibilities as fluid conduits with applications ranging from lab on a chip devices to encapsulation media for drug delivery. CNTs feature high mechanical strength, chemical and thermalstability and biocompatibility therefore they are promising candidates...

  3. In vitro and in vivo models for testing arrhythmogenesis in drugs.

    Science.gov (United States)

    Carlsson, L

    2006-01-01

    The steadily increasing list of drugs associated with prolongation of the QT interval and torsades de pointes (TdP) constitute a medical problem of major concern. Hence, there is a need at an early stage to identify drug candidates with an inherent capacity to induce repolarization-related proarrhythmias, avoiding exposure of large populations to potentially harmful drugs. Furthermore, the availability of clinically relevant and predictive animal models should reduce the risk that effective and potentially life-saving drugs never reach the market. This review will discuss the pros and cons of some in vivo and in vitro animal models for assessing proarrhythmia liability.

  4. Stable Higgs Bosons - new candidate for cold dark matter

    International Nuclear Information System (INIS)

    Hosotani, Yutaka

    2010-01-01

    The Higgs boson is in the backbone of the standard model of electroweak interactions. It must exist in some form for achieving unification of interactions. In the gauge-Higgs unification scenario the Higgs boson becomes a part of the extra-dimensional component of gauge fields. The Higgs boson becomes absolutely stable in a class of the gauge-Higgs unification models, serving as a promising candidate for cold dark matter in the universe. The observed relic abundance of cold dark matter is obtained with the Higgs mass around 70 GeV. The Higgs-nucleon scattering cross section is found to be close to the recent CDMS II XENON10 bounds in the direct detection of dark matter. In collider experiments stable Higgs bosons are produced in a pair, appearing as missing energies momenta so that the way of detecting Higgs bosons must be altered.

  5. Drug repurposing by integrated literature mining and drug–gene–disease triangulation

    DEFF Research Database (Denmark)

    Sun, Peng; Guo, Jiong; Winnenburg, Rainer

    2017-01-01

    recent developments in computational drug repositioning and introduce the utilized data sources. Afterwards, we introduce a new data fusion model based on n-cluster editing as a novel multi-source triangulation strategy, which was further combined with semantic literature mining. Our evaluation suggests...... that utilizing drug–gene–disease triangulation coupled to sophisticated text analysis is a robust approach for identifying new drug candidates for repurposing....

  6. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  7. Will dapivirine redeem the promises of anti-HIV microbicides? Overview of product design and clinical testing.

    Science.gov (United States)

    das Neves, José; Martins, João Pedro; Sarmento, Bruno

    2016-08-01

    Microbicides are being developed in order to prevent sexual transmission of HIV. Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is one of the leading drug candidates in the field, currently being tested in various dosage forms, namely vaginal rings, gels, and films. In particular, a ring allowing sustained drug release for 1month is in an advanced stage of clinical testing. Two parallel phase III clinical trials are underway in sub-Saharan Africa and results are expected to be released in early 2016. This article overviews the development of dapivirine and its multiple products as potential microbicides, with particular emphasis being placed on clinical evaluation. Also, critical aspects regarding regulatory approval, manufacturing, distribution, and access are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    Science.gov (United States)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  9. Sperm-Hybrid Micromotor for Targeted Drug Delivery.

    Science.gov (United States)

    Xu, Haifeng; Medina-Sánchez, Mariana; Magdanz, Veronika; Schwarz, Lukas; Hebenstreit, Franziska; Schmidt, Oliver G

    2018-01-23

    A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm-cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing  toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.

  10. Drug repositioning for enzyme modulator based on human metabolite-likeness.

    Science.gov (United States)

    Lee, Yoon Hyeok; Choi, Hojae; Park, Seongyong; Lee, Boah; Yi, Gwan-Su

    2017-05-31

    Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme's metabolites and drugs. We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden's index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness. In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for

  11. Targeted proteins for diabetes drug design

    Science.gov (United States)

    Doan Trang Nguyen, Ngoc; Thi Le, Ly

    2012-03-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people.

  12. Targeted proteins for diabetes drug design

    International Nuclear Information System (INIS)

    Trang Nguyen, Ngoc Doan; Le, Ly Thi

    2012-01-01

    Type 2 diabetes mellitus is a common metabolism disorder characterized by high glucose in the bloodstream, especially in the case of insulin resistance and relative insulin deficiency. Nowadays, it is very common in middle-aged people and involves such dangerous symptoms as increasing risk of stroke, obesity and heart failure. In Vietnam, besides the common treatment of insulin injection, some herbal medication is used but no unified optimum remedy for the disease yet exists and there is no production of antidiabetic drugs in the domestic market yet. In the development of nanomedicine at the present time, drug design is considered as an innovative tool for researchers to study the mechanisms of diseases at the molecular level. The aim of this article is to review some common protein targets involved in type 2 diabetes, offering a new idea for designing new drug candidates to produce antidiabetic drugs against type 2 diabetes for Vietnamese people. (review)

  13. Promising More Information

    Science.gov (United States)

    2003-01-01

    When NASA needed a real-time, online database system capable of tracking documentation changes in its propulsion test facilities, engineers at Stennis Space Center joined with ECT International, of Brookfield, Wisconsin, to create a solution. Through NASA's Dual-Use Program, ECT developed Exdata, a software program that works within the company's existing Promise software. Exdata not only satisfied NASA s requirements, but also expanded ECT s commercial product line. Promise, ECT s primary product, is an intelligent software program with specialized functions for designing and documenting electrical control systems. An addon to AutoCAD software, Promis e generates control system schematics, panel layouts, bills of material, wire lists, and terminal plans. The drawing functions include symbol libraries, macros, and automatic line breaking. Primary Promise customers include manufacturing companies, utilities, and other organizations with complex processes to control.

  14. "Heart-cut" bidimensional achiral-chiral liquid chromatography applied to the evaluation of stereoselective metabolism, in vivo biological activity and brain response to chiral drug candidates targeting the central nervous system.

    Science.gov (United States)

    Battisti, Umberto M; Citti, Cinzia; Larini, Martina; Ciccarella, Giuseppe; Stasiak, Natalia; Troisi, Luigino; Braghiroli, Daniela; Parenti, Carlo; Zoli, Michele; Cannazza, Giuseppe

    2016-04-22

    A "heart-cut" two-dimensional achiral-chiral liquid chromatography triple-quadrupole mass spectrometry method (LC-LC-MS/MS) was developed and coupled to in vivo cerebral microdialysis to evaluate the brain response to the chiral compound (±)-7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide ((±)-1), a potent positive allosteric modulator (PAM) of AMPA receptor. The method was successfully employed to evaluate also its stereoselective metabolism and in vitro biological activity. In particular, the LC achiral method developed, employs a pentafluorinated silica based column (Discovery HS-F5) to separate dopamine, acetylcholine, serotonin, (±)-1 and its two hepatic metabolites. In the "heart-cut" two-dimension achiral-chiral configuration, (±)-1 and (±)-1-d4 eluted from the achiral column (1st dimension), were transferred to a polysaccharide-based chiral column (2nd dimension, Chiralcel OD-RH) by using an automatic six-port valve. Single enantiomers of (±)-1 were separated and detected using electrospray positive ionization mode and quantified in selected reaction monitoring mode. The method was validated and showed good performance in terms of linearity, accuracy and precision. The new method employed showed several possible applications in the evaluation of: (a) brain response to neuroactive compounds by measuring variations in the brain extracellular levels of selected neurotransmitters and other biomarkers; (b) blood brain barrier penetration of drug candidates by measuring the free concentration of the drug in selected brain areas; (c) the presence of drug metabolites in the brain extracellular fluid that could prove very useful during drug discovery; (d) a possible stereoselective metabolization or blood brain barrier stereoselective crossing of chiral drugs. Finally, compared to the methods reported in the literature, this technique avoids the necessity of euthanizing an animal at each time point to measure drug

  15. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol

    Science.gov (United States)

    Zhao, Qinfu; Wang, Tianyi; Wang, Jing; Zheng, Li; Jiang, Tongying; Cheng, Gang; Wang, Siling

    2011-09-01

    In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.

  16. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Qinfu [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Tianyi [Department of Clinical Pharmacy, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Jing [Department of Physical Chemistry, School of Basic Science, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Zheng Li; Jiang, Tongying; Cheng Gang [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China)

    2011-09-15

    In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N{sub 2} adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.

  17. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol

    International Nuclear Information System (INIS)

    Zhao Qinfu; Wang Tianyi; Wang Jing; Zheng Li; Jiang, Tongying; Cheng Gang; Wang Siling

    2011-01-01

    In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N 2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.

  18. The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes.

    Science.gov (United States)

    Mikov, Momir; Đanić, Maja; Pavlović, Nebojša; Stanimirov, Bojan; Goločorbin-Kon, Svetlana; Stankov, Karmen; Al-Salami, Hani

    2017-12-01

    Following the drug administration, patients are exposed not only to the parent drug itself, but also to the metabolites generated by drug-metabolizing enzymes. The role of drug metabolites in cytochrome P450 (CYP) inhibition and subsequent drug-drug interactions (DDIs) have recently become a topic of considerable interest and scientific debate. The list of metabolites that were found to significantly contribute to clinically relevant DDIs is constantly being expanded and reported in the literature. New strategies have been developed for better understanding how different metabolites of a drug candidate contribute to its pharmacokinetic properties and pharmacological as well as its toxicological effects. However, the testing of the role of metabolites in CYP inhibition is still not routinely performed during the process of drug development, although the evaluation of time-dependent CYP inhibition during the clinical candidate selection process may provide information on possible effects of metabolites in CYP inhibition. Due to large number of compounds to be tested in the early stages of drug discovery, the experimental approaches for assessment of CYP-mediated metabolic profiles are particularly resource demanding. Consequently, a large number of in silico or computational tools have been developed as useful complement to experimental approaches. In summary, circulating metabolites may be recognized as significant CYP inhibitors. Current data may suggest the need for an optimized effort to characterize the inhibitory potential of parent drugs metabolites on CYP, as well as the necessity to develop the advanced in vitro models that would allow a better quantitative predictive value of in vivo studies.

  19. Medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and invention of boron tracedrugs as innovative future-architectural drugs.

    Science.gov (United States)

    Hori, Hitoshi; Uto, Yoshihiro; Nakata, Eiji

    2010-09-01

    We describe herein for the first time our medicinal electronomics bricolage design of hypoxia-targeting antineoplastic drugs and boron tracedrugs as newly emerging drug classes. A new area of antineoplastic drugs and treatments has recently focused on neoplastic cells of the tumor environment/microenvironment involving accessory cells. This tumor hypoxic environment is now considered as a major factor that influences not only the response to antineoplastic therapies but also the potential for malignant progression and metastasis. We review our medicinal electronomics bricolage design of hypoxia-targeting drugs, antiangiogenic hypoxic cell radiosensitizers, sugar-hybrid hypoxic cell radiosensitizers, and hypoxia-targeting 10B delivery agents, in which we design drug candidates based on their electronic structures obtained by molecular orbital calculations, not based solely on pharmacophore development. These drugs include an antiangiogenic hypoxic cell radiosensitizer TX-2036, a sugar-hybrid hypoxic cell radiosensitizer TX-2244, new hypoxia-targeting indoleamine 2,3-dioxygenase (IDO) inhibitors, and a hypoxia-targeting BNCT agent, BSH (sodium borocaptate-10B)-hypoxic cytotoxin tirapazamine (TPZ) hybrid drug TX-2100. We then discuss the concept of boron tracedrugs as a new drug class having broad potential in many areas.

  20. 11 CFR 100.154 - Candidate debates.

    Science.gov (United States)

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Candidate debates. 100.154 Section 100.154 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Expenditures § 100.154 Candidate debates. Funds used to defray costs incurred in staging candidate debates in...

  1. 11 CFR 100.92 - Candidate debates.

    Science.gov (United States)

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Candidate debates. 100.92 Section 100.92 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Contributions § 100.92 Candidate debates. Funds provided to defray costs incurred in staging candidate debates...

  2. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation.

    Science.gov (United States)

    Đorđević, Sanela M; Cekić, Nebojša D; Savić, Miroslav M; Isailović, Tanja M; Ranđelović, Danijela V; Marković, Bojan D; Savić, Saša R; Timić Stamenić, Tamara; Daniels, Rolf; Savić, Snežana D

    2015-09-30

    This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters--co-emulsifier type, aqueous phase type, homogenization temperature--on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution Solutol(®) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Inmunoterapias para las adicciones a las drogas Immunotherapies for Drug Addictions

    Science.gov (United States)

    Montoya, Iván D.

    2008-01-01

    Immunotherapies in the form of vaccines (active immunization) or monoclonal antibodies (passive immunization) appear safe and a promising treatment approaches for some substance-related disorders. The mechanism of action of the antibody therapy is by preventing the rapid entry of drugs of abuse into the central nervous system. In theory, immunotherapies could have several clinical applications. Monoclonal antibodies may be useful to treat drug overdoses and prevent the neurotoxic effects of drugs by blocking the access of drugs to the brain. Vaccines may help to prevent the development of addiction, initiate drug abstinence in those already addicted to drugs, or prevent drug use relapse by reducing the pharmacological effects and rewarding properties of the drugs of abuse on the brain. Passive immunization with monoclonal antibodies has been investigated for cocaine, methamphetamine, nicotine, and phencyclidine (PCP). Active immunization with vaccines has been studied for cocaine, heroin, methamphetamine, and nicotine. These immunotherapies seem promising therapeutic tools and are at different stages in their development before they can be approved by regulatory agencies for the treatment of substance-related disorders. The purpose of this article is to review the current immunotherapy approaches with emphasis on the risks and benefits for the treatment of these disorders. PMID:18551223

  4. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  5. Expression, purification and characterization of the cancer-germline antigen GAGE12I: a candidate for cancer immunotherapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Besir, Hüseyin; Larsen, Martin R

    2010-01-01

    GAGE cancer-germline antigens are frequently expressed in a broad range of different cancers, while their expression in normal tissues is limited to the germ cells of the immune privileged organs, testis and ovary. GAGE proteins are immunogenic in humans, which make them promising targets...... for immunotherapy and candidates for cancer vaccines. Recombinant proteins may be superior to peptides as immunogens, since they have the potential to prime both CD4(+) and CD8(+) T cells and are not dependent on patient HLA-type. We have developed a method for production of highly pure recombinant GAGE12I...... filtration and formaldehyde cross-linking indicated that GAGE12I forms tetramers. The purified recombinant GAGE12I represents a candidate molecule for vaccination of cancer patients and will form the basis for further structural analysis of GAGE proteins....

  6. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections.

    Science.gov (United States)

    Romero-Saavedra, Felipe; Laverde, Diana; Budin-Verneuil, Aurélie; Muller, Cécile; Bernay, Benoit; Benachour, Abdellah; Hartke, Axel; Huebner, Johannes

    2015-01-01

    Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens. We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72%) between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm,) and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm). These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens. Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single components or as carrier proteins

  7. Design of a tripartite network for the prediction of drug targets

    Science.gov (United States)

    Kunimoto, Ryo; Bajorath, Jürgen

    2018-02-01

    Drug-target networks have aided in many target prediction studies aiming at drug repurposing or the analysis of side effects. Conventional drug-target networks are bipartite. They contain two different types of nodes representing drugs and targets, respectively, and edges indicating pairwise drug-target interactions. In this work, we introduce a tripartite network consisting of drugs, other bioactive compounds, and targets from different sources. On the basis of analog relationships captured in the network and so-called neighbor targets of drugs, new drug targets can be inferred. The tripartite network was found to have a stable structure and simulated network growth was accompanied by a steady increase in assortativity, reflecting increasing correlation between degrees of connected nodes leading to even network connectivity. Local drug environments in the tripartite network typically contained neighbor targets and revealed interesting drug-compound-target relationships for further analysis. Candidate targets were prioritized. The tripartite network design extends standard drug-target networks and provides additional opportunities for drug target prediction.

  8. Pharmacokinetics and enhanced bioavailability of candidate cancer preventative agent, SR13668 in dogs and monkeys.

    Science.gov (United States)

    Kapetanovic, Izet M; Muzzio, Miguel; Hu, Shu-Chieh; Crowell, James A; Rajewski, Roger A; Haslam, John L; Jong, Ling; McCormick, David L

    2010-05-01

    SR13668 (2,10-dicarbethoxy-6-methoxy-5,7-dihydro-indolo-(2,3-b)carbazole), is a new candidate cancer chemopreventive agent under development. It was designed using computational modeling based on a naturally occurring indole-3-carbinol and its in vivo condensation products. It showed promising anti-cancer activity and its preclinical toxicology profile (genotoxicity battery and subchronic rat and dog studies) was unremarkable. However, it exhibited a very poor oral bioavailability (Solutol, were tested in dogs and monkeys. Levels of SR13668 were measured in plasma and blood using a high-performance liquid chromatograph-tandem mass spectrometer system. Non-compartmental analysis was used to derive pharmacokinetic parameters including the bioavailability. The Solutol formulation yielded better bioavailability reaching a maximum of about 14.6 and 7.3% in dogs and monkeys, respectively, following nominal oral dose of ca. 90 mg SR13668/m(2). Blood levels of SR13668 were consistently about threefold higher than those in plasma in both species. SR13668 did not cause untoward hematology, clinical chemistry, or coagulation effects in dogs or monkeys with the exception of a modest, reversible increase in liver function enzymes in monkeys. The lipid-based surfactant/emulsifiers, especially Solutol, markedly enhanced the oral bioavailability of SR13668 over that previously seen in preclinical studies. These formulations are being evaluated in a Phase 0 clinical study prior to further clinical development of this drug.

  9. Fulfilling the promise of personalized medicine? Systematic review and field synopsis of pharmacogenetic studies.

    Directory of Open Access Journals (Sweden)

    Michael V Holmes

    2009-12-01

    Full Text Available Studies of the genetic basis of drug response could help clarify mechanisms of drug action/metabolism, and facilitate development of genotype-based predictive tests of efficacy or toxicity (pharmacogenetics.We conducted a systematic review and field synopsis of pharmacogenetic studies to quantify the scope and quality of available evidence in this field in order to inform future research.Original research articles were identified in Medline, reference lists from 24 meta-analyses/systematic reviews/review articles and U.S. Food and Drug Administration website of approved pharmacogenetic tests. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTION CRITERIA: We included any study in which either intended or adverse response to drug therapy was examined in relation to genetic variation in the germline or cancer cells in humans.Study characteristics and data reported in abstracts were recorded. We further analysed full text from a random 10% subset of articles spanning the different subclasses of study.From 102,264 Medline hits and 1,641 articles from other sources, we identified 1,668 primary research articles (1987 to 2007, inclusive. A high proportion of remaining articles were reviews/commentaries (ratio of reviews to primary research approximately 25 ratio 1. The majority of studies (81.8% were set in Europe and North America focussing on cancer, cardiovascular disease and neurology/psychiatry. There was predominantly a candidate gene approach using common alleles, which despite small sample sizes (median 93 [IQR 40-222] with no trend to an increase over time, generated a high proportion (74.5% of nominally significant (por=4 studies, only 31 meta-analyses were identified. The majority (69.4% of end-points were continuous and likely surrogate rather than hard (binary clinical end-points.The high expectation but limited translation of pharmacogenetic research thus far may be explained by the preponderance of reviews over primary research

  10. A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery.

    Science.gov (United States)

    Hou, Jie; Guo, Chunlei; Shi, Yuzhi; Liu, Ergang; Dong, Weibing; Yu, Bo; Liu, Shiyuan; Gong, Junbo

    2017-11-25

    A novel high drug loading pH-cleavable polymer hybrid nanoparticle was prepared via doxorubicin (DOX) grafted onto PEGylated, mussel-inspired polydopamine (PDA) and then coated onto hollow silica nanoparticles for drug delivery. A series of characterization shed light on the formation mechanisms of PDA coatings on hollow silica. We hypothesized that dopamine was first absorbed onto the surface of hollow silica and then began self-polymerization. A Dox-containing thiol moiety was fabricated with conjugation between doxorubicin hydrochloride and Mercaptopropionyalkali with a pH-cleavable hydrozone bond. Using a Michael addition reaction, several Dox-containing thiol moieties were grafted onto the surface of the PDA. The drug loading capacity can reach 35.43%. It can minimize the metabolic problem of silica. The released behavior of Dox can be significantly enhanced at endosomal pH compared to physiological pH. After folate modification, nanoparticles can lead to more cellular endocytosis. Meanwhile animal assays showed that more Dox accumulated in tumor tissue, which can enhanced the cytotoxicity to 4T1 cancer cells with a targeting group compared to free DOX and untargeted groups. Meanwhile, the tumor growth was significantly inhibited. This promising material shows a promising future as a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Predicting Adverse Drug Effects from Literature- and Database-Mined Assertions.

    Science.gov (United States)

    La, Mary K; Sedykh, Alexander; Fourches, Denis; Muratov, Eugene; Tropsha, Alexander

    2018-06-06

    Given that adverse drug effects (ADEs) have led to post-market patient harm and subsequent drug withdrawal, failure of candidate agents in the drug development process, and other negative outcomes, it is essential to attempt to forecast ADEs and other relevant drug-target-effect relationships as early as possible. Current pharmacologic data sources, providing multiple complementary perspectives on the drug-target-effect paradigm, can be integrated to facilitate the inference of relationships between these entities. This study aims to identify both existing and unknown relationships between chemicals (C), protein targets (T), and ADEs (E) based on evidence in the literature. Cheminformatics and data mining approaches were employed to integrate and analyze publicly available clinical pharmacology data and literature assertions interrelating drugs, targets, and ADEs. Based on these assertions, a C-T-E relationship knowledge base was developed. Known pairwise relationships between chemicals, targets, and ADEs were collected from several pharmacological and biomedical data sources. These relationships were curated and integrated according to Swanson's paradigm to form C-T-E triangles. Missing C-E edges were then inferred as C-E relationships. Unreported associations between drugs, targets, and ADEs were inferred, and inferences were prioritized as testable hypotheses. Several C-E inferences, including testosterone → myocardial infarction, were identified using inferences based on the literature sources published prior to confirmatory case reports. Timestamping approaches confirmed the predictive ability of this inference strategy on a larger scale. The presented workflow, based on free-access databases and an association-based inference scheme, provided novel C-E relationships that have been validated post hoc in case reports. With refinement of prioritization schemes for the generated C-E inferences, this workflow may provide an effective computational method for

  12. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2010-02-01

    Full Text Available Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  13. Organs-on-Chips in Drug Development: The Importance of Involving Stakeholders in Early Health Technology Assessment

    NARCIS (Netherlands)

    Middelkamp, Heleen H.T.; van der Meer, Andries Dirk; Hummel, J. Marjan; Stamatialis, Dimitrios; Mummery, Christine Lindsay; Passier, Petrus Christianus Johannes Josephus; IJzerman, Maarten Joost

    2016-01-01

    Organs-on-chips are three-dimensional, microfluidic cell culture systems that simulate the function of tissues and organ subunits. Organ-on-chip systems are expected to contribute to drug candidate screening and the reduction of animal tests in preclinical drug development and may increase

  14. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy.

    Science.gov (United States)

    Yonucu, Sirin; Yιlmaz, Defne; Phipps, Colin; Unlu, Mehmet Burcin; Kohandel, Mohammad

    2017-09-01

    Tumor-induced angiogenesis leads to the development of leaky tumor vessels devoid of structural and morphological integrity. Due to angiogenesis, elevated interstitial fluid pressure (IFP) and low blood perfusion emerge as common properties of the tumor microenvironment that act as barriers for drug delivery. In order to overcome these barriers, normalization of vasculature is considered to be a viable option. However, insight is needed into the phenomenon of normalization and in which conditions it can realize its promise. In order to explore the effect of microenvironmental conditions and drug scheduling on normalization benefit, we build a mathematical model that incorporates tumor growth, angiogenesis and IFP. We administer various theoretical combinations of antiangiogenic agents and cytotoxic nanoparticles through heterogeneous vasculature that displays a similar morphology to tumor vasculature. We observe differences in drug extravasation that depend on the scheduling of combined therapy; for concurrent therapy, total drug extravasation is increased but in adjuvant therapy, drugs can penetrate into deeper regions of tumor.

  15. Predicting Drug-Target Interactions Based on Small Positive Samples.

    Science.gov (United States)

    Hu, Pengwei; Chan, Keith C C; Hu, Yanxing

    2018-01-01

    A basic task in drug discovery is to find new medication in the form of candidate compounds that act on a target protein. In other words, a drug has to interact with a target and such drug-target interaction (DTI) is not expected to be random. Significant and interesting patterns are expected to be hidden in them. If these patterns can be discovered, new drugs are expected to be more easily discoverable. Currently, a number of computational methods have been proposed to predict DTIs based on their similarity. However, such as approach does not allow biochemical features to be directly considered. As a result, some methods have been proposed to try to discover patterns in physicochemical interactions. Since the number of potential negative DTIs are very high both in absolute terms and in comparison to that of the known ones, these methods are rather computationally expensive and they can only rely on subsets, rather than the full set, of negative DTIs for training and validation. As there is always a relatively high chance for negative DTIs to be falsely identified and as only partial subset of such DTIs is considered, existing approaches can be further improved to better predict DTIs. In this paper, we present a novel approach, called ODT (one class drug target interaction prediction), for such purpose. One main task of ODT is to discover association patterns between interacting drugs and proteins from the chemical structure of the former and the protein sequence network of the latter. ODT does so in two phases. First, the DTI-network is transformed to a representation by structural properties. Second, it applies a oneclass classification algorithm to build a prediction model based only on known positive interactions. We compared the best AUROC scores of the ODT with several state-of-art approaches on Gold standard data. The prediction accuracy of the ODT is superior in comparison with all the other methods at GPCRs dataset and Ion channels dataset. Performance

  16. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  17. The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Visscher, Koen M.; Rodrigues, João P.G.L.M.; De Vries, Renko; Hennink, Wim E.; Baldus, Marc; Bonvin, Alexandre M.J.J.; Mastrobattista, Enrico; Weingarth, Markus

    2015-01-01

    Nanovesicles self-assembled from amphiphilic peptides are promising candidates for applications in drug delivery. However, complete high-resolution data on the local and supramolecular organization of such materials has been elusive thus far, which is a substantial obstacle to their rational design.

  18. Membrane-Mimic Nanoparticles for Drug and Gene Delivery

    KAUST Repository

    Alamoudi, Kholod

    2017-12-01

    Nanoscale organic particles have gained a prominent role in drug and gene delivery field. As the nature of the nanoparticle’s (NPs) surface plays a major role in their targeting efficiency, bioavailability, and cytotoxicity, membrane-mimic nanoparticles are considered highly attractive materials for in vivo and in vitro applications. Synthetic membrane vesicles (liposomes) and nanoconstructs built with native cancer cellular membrane are excellent scaffolds to improve cellular delivery. Liposomes have been extensively used due to their high loading capacity, biocompatibility and biodegradability. However, modifications with stimuli responsive materials are highly needed to improve their stability and turn them active participants in controlled delivery. Towards a nature inspired approach, reconstructed bilayers from cell membrane are a good candidate to enhance NP’s targeting ability and biocompatibility. The primary focus of this research is to develop smart responsive (lipid) membrane coated NPs with surface modifications for controlled and targeted drug and/or gene delivery for application in cancer therapy. Three approaches have been developed, namely i) liposomes as thermoresponsive nanocarriers for the delivery of genetic material; ii) magnetically photosensitive liposome hybrids and iii) biomimetic periodic mesoporous organo silica engineered for better a biocompatibility and targeting capabilities. In the first project synthetic liposomes were loaded with ammonium bicarbonate salt (ABC) and siRNA. The combination of lipids chosen and the relative ratios allowed the rapid release of the genetic material to the multi drug resistant cancer cells studied, upon external heat trigger. This design has improved the gene silencing efficiency via successful endosomal escape. In the second project, SPIO@Au nanoparticles were imbedded in the lipid bilayer to produce a photo/thermal responsive carrier that could be also used in cell imaging besides gene transfection

  19. Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development.

    Science.gov (United States)

    Chen, Shun; Yang, Chao; Zhang, Wei; Mahalingam, Suresh; Wang, Mingshu; Cheng, Anchun

    2018-05-06

    Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Novel Methods for Drug-Target Interaction Prediction using Graph Mining

    KAUST Repository

    Ba Alawi, Wail

    2016-08-31

    The problem of developing drugs that can be used to cure diseases is important and requires a careful approach. Since pursuing the wrong candidate drug for a particular disease could be very costly in terms of time and money, there is a strong interest in minimizing such risks. Drug repositioning has become a hot topic of research, as it helps reduce these risks significantly at the early stages of drug development by reusing an approved drug for the treatment of a different disease. Still, finding new usage for a drug is non-trivial, as it is necessary to find out strong supporting evidence that the proposed new uses of drugs are plausible. Many computational approaches were developed to narrow the list of possible candidate drug-target interactions (DTIs) before any experiments are done. However, many of these approaches suffer from unacceptable levels of false positives. We developed two novel methods based on graph mining networks of drugs and targets. The first method (DASPfind) finds all non-cyclic paths that connect a drug and a target, and using a function that we define, calculates a score from all the paths. This score describes our confidence that DTI is correct. We show that DASPfind significantly outperforms other state-of-the-art methods in predicting the top ranked target for each drug. We demonstrate the utility of DASPfind by predicting 15 novel DTIs over a set of ion channel proteins, and confirming 12 out of these 15 DTIs through experimental evidence reported in literature and online drug databases. The second method (DASPfind+) modifies DASPfind in order to increase the confidence and reliability of the resultant predictions. Based on the structure of the drug-target interaction (DTI) networks, we introduced an optimization scheme that incrementally alters the network structure locally for each drug to achieve more robust top 1 ranked predictions. Moreover, we explored effects of several similarity measures between the targets on the prediction