WorldWideScience

Sample records for promising delivery strategy

  1. Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy?

    Science.gov (United States)

    Sousa, Flávia; Castro, Pedro; Fonte, Pedro; Kennedy, Patrick J; Neves-Petersen, Maria Teresa; Sarmento, Bruno

    2017-10-01

    Over the past two decades, therapeutic antibodies have demonstrated promising results in the treatment of a wide array of diseases. However, the application of antibody-based therapy implies multiple administrations and a high cost of antibody production, resulting in costly therapy. Another disadvantage inherent to antibody-based therapy is the limited stability of antibodies and the low level of tissue penetration. The use of nanoparticles as delivery systems for antibodies allows for a reduction in antibody dosing and may represent a suitable alternative to increase antibody stability Areas covered: We discuss different nanocarriers intended for the delivery of antibodies as well as the corresponding encapsulation methods. Recent developments in antibody nanoencapsulation, particularly the possible toxicity issues that may arise from entrapment of antibodies into nanocarriers, are also assessed. In addition, this review will discuss the alterations in antibody structure and bioactivity that occur with nanoencapsulation. Expert opinion: Nanocarriers can protect antibodies from degradation, ensuring superior bioavailability. Encapsulation of therapeutic antibodies may offer some advantages, including potential targeting, reduced immunogenicity and controlled release. Furthermore, antibody nanoencapsulation may aid in the incorporation of the antibodies into the cells, if intracellular components (e.g. intracellular enzymes, oncogenic proteins, transcription factors) are to be targeted.

  2. Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yichen Hu

    2016-04-01

    Full Text Available Various polymeric nanoparticles (NPs with optimal size, tumor-targeting functionalization, or microenvironment sensitive characteristics have been designed to solve several limitations of conventional chemotherapy. Nano-sized polymeric drug carrier systems have remarkably great advantages in drug delivery and cancer therapy, which are still plagued with severe deficiencies, especially insufficient cellular uptake. Recently, surface charge of medical NPs has been demonstrated to play an important role in cellular uptake. NPs with positive charge show higher affinity to anionic cell membranes such that with more efficient cellular internalization, but otherwise cause severe aggregation and fast clearance in circulation. Thus, surface charge-reversal NPs, specifically activated at the tumor site, have shown to elegantly resolve the enhanced cellular uptake in cancer cells vs. non-specific protein adsorption dilemma. Herein, this review mainly focuses on the effect of tumor-site activated surface charge reversal NPs on tumor treatment, including the activated mechanisms and various applications in suppressing cancer cells, killing cancer stem cell and overcoming multidrug resistance, with the emphasis on recent research in these fields. With the comprehensive and in-depth understanding of the activated surface charge reversal NPs, this approach might arouse great interest of scientific research on enhanced efficient polymeric nano-carriers in cancer therapy.

  3. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    Science.gov (United States)

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  4. Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies.

    Science.gov (United States)

    Sonawane, Sandeep J; Kalhapure, Rahul S; Rambharose, Sanjeev; Mocktar, Chunderika; Vepuri, Suresh B; Soliman, Mahmoud; Govender, Thirumala

    2016-05-17

    The purpose of this study was to explore the preparation of a new lipid-dendrimer hybrid nanoparticle (LDHN) system to effectively deliver vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) infections. Spherical LDHNs with particle size, polydispersity index and zeta potential of 52.21±0.22 nm, 0.105±0.01, and -14.2±1.49 mV respectively were prepared by hot stirring and ultrasonication using Compritol 888 ATO, G4 PAMAM- succinamic acid dendrimer, and Kolliphor RH-40. Vancomycin encapsulation efficiency (%) in LDHNs was almost 4.5-fold greater than in lipid-polymer hybrid nanoparticles formulated using Eudragit RS 100. Differential scanning calorimetry and Fourier transform-infrared studies confirmed the formation of LDHNs. The interactions between the drug-dendrimer complex and lipid molecules using in silico modeling revealed the molecular mechanism behind the enhanced encapsulation and stability. Vancomycin was released from LDHNs over the period of 72 h with zero order kinetics and super case II transport mechanism. The minimum inhibitory concentration (MIC) against S. aureus and MRSA were 15.62 μg/ml and 7.81 μg/ml respectively. Formulation showed sustained activity with MIC of 62.5 μg/ml against S. aureus and 500 μg/ml against MRSA at the end of 72 and 54 h period respectively. The results suggest that the LDHN system can be an effective strategy to combat resistant infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  6. Microencapsulation: A promising technique for controlled drug delivery.

    Science.gov (United States)

    Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G

    2010-07-01

    MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.

  7. Candida Biofilms: Threats, Challenges, and Promising Strategies

    Science.gov (United States)

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed. PMID:29487851

  8. Candida Biofilms: Threats, Challenges, and Promising Strategies.

    Science.gov (United States)

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis , and Candida parapsilosis , highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  9. Candida Biofilms: Threats, Challenges, and Promising Strategies

    Directory of Open Access Journals (Sweden)

    Mafalda Cavalheiro

    2018-02-01

    Full Text Available Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  10. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  11. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  12. Detonation nanodiamonds are promising nontoxic delivery system for urothelial cells.

    Science.gov (United States)

    Zupančič, Daša; Kreft, Mateja Erdani; Grdadolnik, Maja; Mitev, Dimitar; Iglič, Aleš; Veranič, Peter

    2018-01-01

    Detonation nanodiamonds (DNDs) are carbon-based nanomaterials that are among the most promising nanoparticles available for biomedical applications so far. This is due to their biocompatibility, which could be contributed to their inert core and conformable surface nature. However, DNDs cytotoxicity for urothelial cells and the routes of their internalization remains an open question in the aspect of nanodiamond surface. We therefore analyzed four types of DNDs for cytotoxicity and internalization with normal urothelial cells and two types of cancer urothelial cell lines in vitro. Viability of any of the cell types we used was not compromised with any of four DNDs we evaluated after 24-, 48- and 72-h incubation in three different concentrations of DNDs. Transmission electron microscopy revealed that all four types of DNDs were endocytosed into all three types of urothelial cells tested here. We observed DNDs in endosomes, as well as in multivesicular bodies and multilamellar bodies. These results propose using of DNDs as a delivery system for urological applications in human nanomedicine.

  13. Zeolites: promising candidates for drug delivery systems (DDSs)

    OpenAIRE

    Vilaça, Natália; Amorim, Ricardo; Baltazar, Fátima; Fonseca, António Manuel; Neves, Isabel C.

    2012-01-01

    [Excerpt] The aim of controlled drug delivery systems (DDSs) is to administer the necessary amount of drug safely and effectively to specific sites in the human body and to regulate the temporal drug profile for maximum therapeutic benefits.[1] Zeolites are crystalline aluminosilicates solids with very regular microporous structures and they have been recently considered for medical use due to their biological properties and stability in biological environments.[1,2] The large variety in ...

  14. Mucoadhesive microspheres: a promising tool in drug delivery.

    Science.gov (United States)

    Patil, Sanjay B; Sawant, Krutika K

    2008-10-01

    Mucoadhesive polymers have recently gained interest among pharmaceutical scientists as a means of improving drug delivery by promoting the residence time and contact time of the dosage form with the mucous membranes. Mucoadhesion is the process whereby synthetic and natural polymers adhere to mucosal surfaces in the body. If these materials are then incorporated into pharmaceutical formulations, drug absorption by mucosal cells may be enhanced or the drug will be released at the site for an extended period of time. Microspheres, in general, have the potential to be used for targeted and controlled release drug delivery; however, coupling of mucoadhesive properties to microspheres has additional advantages like, a much more intimate contact with the mucus layer, efficient absorption and enhanced bioavailability of the drugs due to a high surface to volume ratio. The present review describes the potential applications of mucoadhesive microspheres as a novel carrier system to improve drug delivery by various routes of administration like buccal, oral, nasal, ocular, vaginal and rectal, either for systemic or for local effects. The mucoadhesive polymers, methods of preparation of microspheres and their in vitro and in vivo evaluation are also described.

  15. eHealth Applications Promising Strategies for Behavior Change

    CERN Document Server

    Noar, Seth M

    2012-01-01

    eHealth Applications: Promising Strategies for Behavior Change provides an overview of technological applications in contemporary health communication research, exploring the history and current uses of eHealth applications in disease prevention and management. This volume focuses on the use of these technology-based interventions for public health promotion and explores the rapid growth of an innovative interdisciplinary field. The chapters in this work discuss key eHealth applications by presenting research examining a variety of technology-based applications. Authors Seth M. Noar and Nancy

  16. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering.

    Science.gov (United States)

    Labib, Gihan

    2018-01-01

    Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.

  17. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.

    Science.gov (United States)

    Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika

    2017-01-01

    Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries

  18. [The development of novel tumor targeting delivery strategy].

    Science.gov (United States)

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    microvessels to decrease the internal fluid pressure. All these strategies could enhance the accumulation and penetration of nanoparticles into tumor, leading to a homogenous distribution of drugs in tumor. To enhance the internalization by specific cells, active targeting delivery strategies are developed. There were many surface markers, receptors or carriers overexpressed on specific kinds of cells, thus the corresponding ligands were utilized to mediate active targeting to certain cells, including tumor cells, cancer stem cells, tumor neovasculatures, tumor associated macrophages and other tumor stroma cells. Targeting more than one cell type may provide an improved antitumor effect. Although these passive and active targeting strategies all have promising outcome in the treatment of tumor, some shortages are still unaddressed, such as the specificity of responsive is not good enough, and the active targeting may be diminished by the protein corona. Thus more research is required to promote the drug delivery study.

  19. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  20. Oral insulin delivery: existing barriers and current counter-strategies.

    Science.gov (United States)

    Gedawy, Ahmed; Martinez, Jorge; Al-Salami, Hani; Dass, Crispin R

    2018-02-01

    The chronic and progressive nature of diabetes is usually associated with micro- and macrovascular complications where failure of pancreatic β-cell function and a general condition of hyperglycaemia is created. One possible factor is failure of the patient to comply with and adhere to the prescribed insulin due to the inconvenient administration route. This review summarizes the rationale for oral insulin administration, existing barriers and some counter-strategies trialled. Oral insulin mimics the physiology of endogenous insulin secreted by pancreas. Following the intestinal absorption of oral insulin, it reaches the liver at high concentration via the portal vein. Oral insulin on the other hand has the potential to protect pancreatic β-cells from autoimmune destruction. Structural modification, targeting a particular tissue/receptor, and the use of innovative pharmaceutical formulations such as nanoparticles represent strategies introduced to improve oral insulin bioavailability. They showed promising results in overcoming the hurdles facing oral insulin delivery, although delivery is far from ideal. The use of advanced pharmaceutical technologies and further research in particulate carrier system delivery predominantly nanoparticle utilization would offer useful tools in delivering insulin via the oral route which in turn would potentially improve diabetic patient compliance to insulin and the overall management of diabetes. © 2017 Royal Pharmaceutical Society.

  1. The promises and facts of emergent strategy in public management

    DEFF Research Database (Denmark)

    Aagaard, Peter

    Public managers are experiencing a growing demand for innovation. One of the promising approaches to instigating innovation is that of emergent strategic patterns (ESPs). According to the literature, the institutional barriers and drivers of ESPs are shaped by the two dominant public management...... models, NPM (the barriers) and governance (the drivers). However, based on an empirical case study of the institutional barriers and drivers for ESPs in the Danish Crime Prevention Council, this article concludes that ESPs are in fact enabled by a much more mixed management model....

  2. Horizontal Learning as a promising strategy for Continuous Professional Development

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen; Jukic, Maja; Nielsen, Søren

    2009-01-01

    Rapport i forlængelse af et 3 årigt udviklingsprojekt på Balkan, initieret og finansieret af European Training Foundation (ETF) i Torino. Rapporten beskræftiger sig med hvorledes horisontal læring, hvor deltagerene primært lærer af hinanden, er en velegnet strategi i forbindelse med efteruddannelse...

  3. Video Self-Modeling: A Promising Strategy for Noncompliant Children.

    Science.gov (United States)

    Axelrod, Michael I; Bellini, Scott; Markoff, Kimberly

    2014-07-01

    The current study investigated the effects of a Video Self-Modeling (VSM) intervention on the compliance and aggressive behavior of three children placed in a psychiatric hospital. Each participant viewed brief video clips of himself following simple adult instructions just prior to the school's morning session and the unit's afternoon free period. A multiple baseline design across settings was used to evaluate the effects of the VSM intervention on compliance with staff instructions and aggressive behavior on the hospital unit and in the hospital-based classroom. All three participants exhibited higher levels of compliance and fewer aggressive episodes during the intervention condition, and the effects were generally maintained when the intervention was withdrawn. Hospital staff reported at the conclusion of the study that the VSM intervention was easy to implement and beneficial for all participants. Taken altogether, the results suggest VSM is a promising, socially acceptable, and proactive intervention approach for improving the behavior of noncompliant children. © The Author(s) 2014.

  4. Mesenchymal stem cell-derived microparticles: a promising therapeutic strategy.

    Science.gov (United States)

    Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long

    2014-08-18

    Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs.

  5. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  6. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections.

    Science.gov (United States)

    Lembo, David; Donalisio, Manuela; Civra, Andrea; Argenziano, Monica; Cavalli, Roberta

    2018-01-01

    Viral infections represent a public health problem and one of the leading causes of global mortality. Nanomedicine strategies can be considered a powerful tool to enhance the effectiveness of antiviral drugs, often associated with solubility and bioavailability issues. Consequently, high doses and frequent administrations are required, resulting in adverse side effects. To overcome these limitations, various nanomedicine platforms have been designed. Areas covered: This review focuses on the state of the art of organic-based nanoparticles for the delivery of approved antivirals. A brief description of the main characteristics of nanocarriers is followed by an overview of the most promising research addressing the treatment of most important viral infections. Expert opinion: The activity of antiviral drugs could be improved with nanomedicine formulations. Indeed, nanoparticles can affect the fate of the encapsulated drugs, allowing controlled release kinetics, enhanced bioavailability, modified pharmacokinetics, and reduced side effects. In addition, the physicochemical properties of nanocarriers can enable their capability to target specific sites and to interact with virus structures. In this regard, nanomedicines can be considered an opportunity to enhance the therapeutic index of antivirals. Efficacy, safety, and manufacturing issues need to be carefully assessed to bring this promising approach to the clinic.

  7. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs.

    Science.gov (United States)

    Sudhakar, Yajaman; Kuotsu, Ketousetuo; Bandyopadhyay, A K

    2006-08-10

    Rapid developments in the field of molecular biology and gene technology resulted in generation of many macromolecular drugs including peptides, proteins, polysaccharides and nucleic acids in great number possessing superior pharmacological efficacy with site specificity and devoid of untoward and toxic effects. However, the main impediment for the oral delivery of these drugs as potential therapeutic agents is their extensive presystemic metabolism, instability in acidic environment resulting into inadequate and erratic oral absorption. Parenteral route of administration is the only established route that overcomes all these drawbacks associated with these orally less/inefficient drugs. But, these formulations are costly, have least patient compliance, require repeated administration, in addition to the other hazardous effects associated with this route. Over the last few decades' pharmaceutical scientists throughout the world are trying to explore transdermal and transmucosal routes as an alternative to injections. Among the various transmucosal sites available, mucosa of the buccal cavity was found to be the most convenient and easily accessible site for the delivery of therapeutic agents for both local and systemic delivery as retentive dosage forms, because it has expanse of smooth muscle which is relatively immobile, abundant vascularization, rapid recovery time after exposure to stress and the near absence of langerhans cells. Direct access to the systemic circulation through the internal jugular vein bypasses drugs from the hepatic first pass metabolism leading to high bioavailability. Further, these dosage forms are self-administrable, cheap and have superior patient compliance. Developing a dosage form with the optimum pharmacokinetics is a promising area for continued research as it is enormously important and intellectually challenging. With the right dosage form design, local environment of the mucosa can be controlled and manipulated in order to

  8. Towards effective extension delivery approach and strategies for ...

    African Journals Online (AJOL)

    Towards effective extension delivery approach and strategies for food security poverty ... Journal Home > Vol 6, No 1 (2010) > ... groups, promotion of best practices and environment friendly initiatives among others were recommended.

  9. Promising Strategy To Improve Charge Separation in Organic Photovoltaics : Installing Permanent Dipoles in PCBM Analogues

    NARCIS (Netherlands)

    de Gier, Hilde D.; Jahani, Fatemeh; Broer, Ria; Hummelen, Jan C.; Havenith, Remco W. A.

    2016-01-01

    A multidisciplinary approach involving organic synthesis and theoretical chemistry was applied to investigate a promising strategy to improve charge separation in organic photovoltaics: installing permanent dipoles in fullerene derivatives. First, a PCBM analogue with a permanent dipole in the side

  10. 77 FR 4550 - Promising and Practical Strategies to Increase Postsecondary Success

    Science.gov (United States)

    2012-01-30

    ... education providers, researchers, and institutional faculty and staff, or consortia of such entities, to... providers, researchers, and institutional faculty and staff who can offer information about promising and... intervention. [cir] The theory of action that provides the basis for the promising and practical strategy. [cir...

  11. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits.

    Science.gov (United States)

    Chetoni, Patrizia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Tullio, Vivian; Cuffini, Anna Maria; Muntoni, Elisabetta; Spagnolo, Rita; Zara, Gian Paolo; Cavalli, Roberta

    2016-12-01

    , probably due to the ability of Tobra-SLN to penetrate either into phagocytic cells, or alternatively to cross bacterial barrier. The present study broadens the knowledge on the use of SLN as carriers for ocular drug delivery to the posterior chamber and might open new avenues for treatment of ocular infections, representing a strategy to overcome the microbial resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer.

    Science.gov (United States)

    Buss, Julieti Huch; Begnini, Karine Rech; Bender, Camila Bonemann; Pohlmann, Adriana R; Guterres, Silvia S; Collares, Tiago; Seixas, Fabiana Kömmling

    2017-01-01

    Mycobacterium bovis bacillus Calmette-Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.

  14. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Julieti Huch Buss

    2018-01-01

    Full Text Available Mycobacterium bovis bacillus Calmette–Guerin (BCG remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1 controlling drug release for extended time frames, (2 combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3 reducing systemic side effects, (4 increasing bioavailability, (5 and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.

  15. Novel drug delivery strategies for porphyrins and porphyrin precursors

    Science.gov (United States)

    Morrow, D. I. J.; Donnelly, R. F.

    2009-06-01

    superficial lesions, such as actinic keratosis. In addition, photodynamic antimicrobial chemotherapy (PACT) is attracting increasing interest for the treatment of infection. However, delivery strategies for topical PDT and PACT are still based on application of rather simplistic cream and solution formulations, with little consideration given to thermodynamics, targeting or the physicochemical properties of the active agent. Purpose-designed dosage forms for topical delivery of aminolevulinic acid or its esters include creams containing penetration enhancers and/or iron chelators, pressure sensitive patches and bioadhesive patches. Such systems aim to enhance drug delivery across the stratum corneum and keratinised debris overlying neoplastic lesions and improve subsequent protoporphyrin IX (PpIX) production. The alternative to using porphyrin precursors is the use of pre-formed photosensitisers. However, owing to their relatively high molecular weights, conventional topical application is not appropriate. Innovative strategies, such as the use of needle-free injections and microneedle arrays, bypass the stratum corneum, enabling rapid and targeted delivery not only porphyrin precursors but also pre-formed photosensitisers. This presentation will review drug delivery work published to date in the fields of PDT and PACT. In addition, the benefits of employing the latest advances in pharmaceutical technology will be highlighted.

  16. CDC's DELTA FOCUS Program: Identifying Promising Primary Prevention Strategies for Intimate Partner Violence.

    Science.gov (United States)

    Armstead, Theresa L; Rambo, Kirsten; Kearns, Megan; Jones, Kathryn M; Dills, Jenny; Brown, Pamela

    2017-01-01

    According to 2011 data, nearly one in four women and one in seven men in the United States experience severe physical violence by an intimate partner, creating a public health burden requiring population-level solutions. To prevent intimate partner violence (IPV) before it occurs, the CDC developed Domestic Violence Prevention Enhancements and Leadership Through Alliances, Focusing on Outcomes for Communities United with States to identify promising community- and societal-level prevention strategies to prevent IPV. The program funds 10 state domestic violence coalitions for 5 years to implement and evaluate programs and policies to prevent IPV by influencing the environments and conditions in which people live, work, and play. The program evaluation goals are to promote IPV prevention by identifying promising prevention strategies and describing those strategies using case studies, thereby creating a foundation for building practice-based evidence with a health equity approach.

  17. Non-viral Nucleic Acid Delivery Strategies to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    James-Kevin Tan

    2016-11-01

    Full Text Available With an increased prevalence and understanding of central nervous system injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the central nervous system and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection, and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the central nervous system are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for central nervous system applications and will ultimately bring non-viral vectors closer to clinical application.

  18. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-01-01

    Full Text Available Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1 protection of the loaded drug from the harsh environment of the GI tract, (2 release of the drug in a controlled manner at target sites, (3 prolongation of the residence time in the gut by mucoadhesion, and (4 inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.

  19. Strategies in Development and Delivery of Nanotechnology Based Cosmetic Products.

    Science.gov (United States)

    Ahmad, Usama; Ahmad, Zeeshan; Khan, Ahmed Abdullah; Akhtar, Juber; Singh, Satya Prakash; Ahmad, Farhan Jalees

    2018-03-26

    The science of formulation involving cosmetic ingredients has always been a challenge since the release of active components greatly depends upon the carrier system involved and the selectivity of skin barrier. The principle obstacle of the skin resides in the epidermis and it's hard for many active components to cross it. The formulation related factors like size of particles, viscosity and lipophilicity of the components also play an important role in permeation of the dermal composition. Though widely used; conventional creams and gels still struggle in terms of success. This work focuses on nano based formulation strategies for successful delivery of cosmetic agents. Novel strategies like nanoemulsion, nanogels, liposomes, aquasomes, niosomes, dendrimers and fullerenes have paved way for successful delivery of dermal formulations to desire depths in the skin. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    Science.gov (United States)

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for

  1. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.

  2. Building evaluation capacity in Ontario's public health units: promising practices and strategies.

    Science.gov (United States)

    Bourgeois, I; Simmons, L; Buetti, D

    2018-03-26

    This article presents the findings of a project focusing on building evaluation capacity in 10 Ontario public health units. The study sought to identify effective strategies that lead to increased evaluation capacity in the participating organizations. This study used a qualitative, multiple case research design. An action research methodology was used to design customized evaluation capacity building (ECB) strategies for each participating organization, based on its specific context and needs. This methodological approach also enabled monitoring and assessment of each strategy, based on a common set of reporting templates. A multiple case study was used to analyze the findings from the 10 participating organizations and derive higher level findings. The main findings of the study show that most of the strategies used to increase evaluation capacity in public health units are promising, especially those focusing on developing the knowledge, skills, and attitudes of health unit staff and managers. Facilitators to ECB strategies were the engagement of all staff members, the support of leadership, and the existence of organizational tools and infrastructure to support evaluation. It is also essential to recognize that ECB takes time and resources to be successful. The design and implementation of ECB strategies should be based on organizational needs. These can be assessed using a standardized instrument, as well as interviews and staff surveys. The implementation of a multicomponent approach (i.e. several strategies implemented simultaneously) is also linked to better ECB outcomes in organizations. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  3. Exploring Different Strategies for Efficient Delivery of Colorectal Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Congcong Lin

    2015-11-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer and the fourth leading cause of cancer death in the world. Currently available chemotherapy of CRC usually delivers the drug to both normal as well as cancerous tissues, thus leading to numerous undesirable effects. Much emphasis is being laid on the development of effective drug delivery systems for achieving selective delivery of the active moiety at the anticipated site of action with minimized unwanted side effects. Researchers have employed various techniques (dependent on pH, time, pressure and/or bacteria for targeting drugs directly to the colonic region. On the other hand, systemic drug delivery strategies to specific molecular targets (such as FGFR, EGFR, CD44, EpCAM, CA IX, PPARγ and COX-2 overexpressed by cancerous cells have also been shown to be effective. This review aims to put forth an overview of drug delivery technologies that have been, and may be developed, for the treatment of CRC.

  4. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation.

    Science.gov (United States)

    Đorđević, Sanela M; Cekić, Nebojša D; Savić, Miroslav M; Isailović, Tanja M; Ranđelović, Danijela V; Marković, Bojan D; Savić, Saša R; Timić Stamenić, Tamara; Daniels, Rolf; Savić, Snežana D

    2015-09-30

    This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters--co-emulsifier type, aqueous phase type, homogenization temperature--on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution Solutol(®) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy

    Science.gov (United States)

    Tukmachev, Dmitry; Lunov, Oleg; Zablotskii, Vitalii; Dejneka, Alexandr; Babic, Michal; Syková, Eva; Kubinová, Šárka

    2015-02-01

    Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal channel showed a good correlation with the calculated distribution of magnetic forces exerted onto the transplanted cells. The results suggest that focused targeting and fast delivery of stem cells can be achieved using the proposed non-invasive magnetic system. With future implementation the proposed targeting and delivery strategy bears advantages for the treatment of disease requiring fast stem cell transplantation.Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal

  6. Mini-tablets versus pellets as promising multiparticulate modified release delivery systems for highly soluble drugs.

    Science.gov (United States)

    Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y

    2015-07-05

    Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.

  7. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B.

    Science.gov (United States)

    Serafim, Cláudia; Ferreira, Inês; Rijo, Patrícia; Pinheiro, Lídia; Faustino, Célia; Calado, António; Garcia-Rio, Luis

    2016-01-30

    Lipoamino acid-based micelles have been developed as delivery vehicles for the hydrophobic drug amphotericin B (AmB). The micellar solubilisation of AmB by a gemini lipoamino acid (LAA) derived from cysteine and its equimolar mixtures with the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC), as well as the aggregation sate of the drug in the micellar systems, was studied under biomimetic conditions (phosphate buffered-saline, pH 7.4) using UV-vis spectroscopy. Pure surfactant systems and equimolar mixtures were characterized by tensiometry and important parameters were determined, such as critical micelle concentration (CMC), surface tension at the CMC (γCMC), maximum surface excess concentration (Γmax), and minimum area occupied per molecule at the water/air interface (Amin). Rheological behaviour from viscosity measurements at different shear rates was also addressed. Solubilisation capacity was quantified in terms of molar solubilisation ratio (χ), micelle-water partition coefficient (KM) and Gibbs energy of solubilisation (ΔGs°). Formulations of AmB in micellar media were compared in terms of drug loading, encapsulation efficiency, aggregation state of AmB and in vitro antifungal activity against Candida albicans. The LAA-containing micellar systems solubilise AmB in its monomeric and less toxic form and exhibit in vitro antifungal activity comparable to that of the commercial formulation Fungizone. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Five focus strategies to organize health care delivery.

    Science.gov (United States)

    Peltokorpi, Antti; Linna, Miika; Malmström, Tomi; Torkki, Paulus; Lillrank, Paul Martin

    2016-01-01

    The focused factory is one of the concepts that decision-makers have adopted for improving health care delivery. However, disorganized definitions of focus have led to findings that cannot be utilized systematically. The purpose of this paper is to discuss strategic options to focus health care operations. First the literature on focus in health care is reviewed revealing conceptual challenges. Second, a definition of focus in terms of demand and requisite variety is defined, and the mechanisms of focus are explicated. A classification of five focus strategies that follow the original idea to reduce variety in products and markets is presented. Finally, the paper examines managerial possibilities linked to the focus strategies. The paper proposes a framework of five customer-oriented focus strategies which aim at reducing variety in different characteristics of care pathways: population; urgency and severity; illnesses and symptoms; care practices and processes; and care outcomes. Empirical research is needed to evaluate the costs and benefits of the five strategies and about system-level effects of focused units on competition and coordination. Focus is an enabling condition that needs to be exploited using specific demand and supply management practices. It is essential to understand how focus mechanisms differ between strategies, and to select focus that fits with organization's strategy and key performance indicators. Compared to previous more resource-oriented approaches, this study provides theoretically solid and practically relevant customer-oriented framework for focusing in health care.

  9. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Gao D

    2012-07-01

    Full Text Available Dawei Gao, Shengnan Tang, Qi TongApplied Chemical Key Laboratory of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, ChinaBackground: Oleanolic acid is a pentacyclic triterpene present in many fruits and vegetables, and has received much attention on account of its biological properties. However, its poor solubility and low bioavailability limit its use. The objective of this study was to encapsulate oleanolic acid into nanoliposomes using the modified ethanol injection method.Methods: The liposomes contain a hydrophobic oleanolic acid core, an amphiphilic soybean lecithin monolayer, and a protective hydrophilic polyethylene glycol (PEG coating. During the preparation process, the formulations described were investigated by designing 34 orthogonal experiments as well as considering the effects of different physical characteristics. The four factors were the ratios of drug to soybean phosphatidylcholine (w/w, cholesterol (w/w, PEG-2000 (w/w, and temperature of phosphate-buffered saline at three different levels. We identified the optimized formulation which showed the most satisfactory lipid stability and particle formation. The morphology of the liposomes obtained was determined by transmission electron microscopy and atomic force microscopy. The existence of PEG in the liposome component was validated by Fourier transform infrared spectrum analysis.Results: The PEGylated liposomes dispersed individually and had diameters of around 110–200 nm. Encapsulation efficiency was more than 85%, as calculated by high-performance liquid chromatography and Sephadex® gel filtration. Furthermore, when compared with native oleanolic acid, the liposomal formulations showed better stability in vitro. Finally, the cytotoxicity of the oleanolic acid liposomes was evaluated using a microtiter tetrazolium assay.Conclusion: These results suggest that PEGylated liposomes would serve as a potent delivery vehicle

  10. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.

    Science.gov (United States)

    Piotrowska, Urszula; Sobczak, Marcin; Oledzka, Ewa

    2017-12-01

    Micro-organism resistance is an important challenge in modern medicine due to the global uncontrolled use of antibiotics. Natural and synthetic antimicrobial peptides (AMPs) symbolize a new family of antibiotics, which have stimulated research and clinical interest as new therapeutic options for infections. They represent one of the most promising antimicrobial substances, due to their broad spectrum of biological activity, against bacteria, fungi, protozoa, viruses, yeast and even tumour cells. Besides, being antimicrobial, AMPs have been shown to bind and neutralize bacterial endotoxins, as well as possess immunomodulatory, anti-inflammatory, wound-healing, angiogenic and antitumour properties. In contrast to conventional antibiotics, which have very defined and specific molecular targets, host cationic peptides show varying, complex and very rapid mechanisms of actions that make it difficult to form an effective antimicrobial defence. Importantly, AMPs display their antimicrobial activity at micromolar concentrations or less. To do this, many peptide-based drugs are commercially available for the treatment of numerous diseases, such as hepatitis C, myeloma, skin infections and diabetes. Herein, we present an overview of the general mechanism of AMPs action, along with recent developments regarding carriers of AMPs and their potential applications in medical fields. © 2017 John Wiley & Sons A/S.

  11. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meili; Zhao, Tingting; Liu, Yanping; Wang, Qianqian; Xing, Shanshan; Li, Lei; Wang, Longgang [Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004 (China); Liu, Lanxiang [The First Hospital of Qinhuangdao, No. 258 Cultural Road, Qinhuangdao 066000 (China); Gao, Dawei, E-mail: dwgao@ysu.edu.cn [Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004 (China)

    2017-02-01

    There are tremendous challenges on antitumor and its therapeutic drugs, and preparation of highly efficient nano-vehicles represents one of the novel topics in antitumor pharmaceutical field. Herein, the novel chitosan-coated ursolic acid (UA) liposome (CS-UA-L) was efficiently prepared with highly tumor targeting, drug controlled release and low side-effect. The CS-UA-L was uniformly spherical particles with diameter of ~ 130 nm, and the size was more easily trapped into the tumor tissues. Chitosan modification can make liposomes carrying positive charges, which were inclined to combine with the negative charges on the surface of tumor cells, and then the CS-UA-L could release UA rapidly at pH 5.0 comparing with pH 7.4. Meanwhile, the CS-UA-L exhibited obvious anti-proliferative effect (76.46%) on HeLa cells and significantly antitumor activity (61.26%) in mice bearing U14 cervical cancer. The tumor tissues of CS-UA-L treated mice had enhanced cell apoptosis, extensive necrosis and low cell proliferation activity. These results demonstrated that the multifunctional CS-UA-L allowed a precision treatment for localized tumor, and reducing the total drug dose and side-effect, which hold a great promise in new safe and effective tumor therapy. - Graphical abstract: Schematic diagram representing the principle of synthesis of CS-UA-L and pH-triggered sequential UA release after treatment on tumor bearing mouse. - Highlights: • The novel chitosan-coated ursolic acid liposomes (CS-UA-L) were successfully prepared. • CS-UA-L possessed sensitive pH-response, which could release UA rapidly at pH 5.0 comparing with pH 7.4. • CS-UA-L exhibited obvious anti-proliferative effect (76.46%) on HeLa cells than UA and UA-L. • CS-UA-L suppressed tumor growth more efficiently than those with UA and UA-L in mice bearing U14 cervical cancer. • The CS-UA-L allow for precision treatment of the tumor and potential to reduce the total drug dose and side-effect.

  12. The most effective and promising population health strategies to advance human papillomavirus vaccination.

    Science.gov (United States)

    Jacobson, Robert M; Agunwamba, Amenah A; St Sauver, Jennifer L; Finney Rutten, Lila J

    2016-01-01

    The US is failing to make substantive progress toward improving rates of human papillomavirus vaccine uptake. While the Healthy People 2020 goal for human papillomavirus (HPV) vaccination is 80%, the three-dose completion rate in the US in 2014 for 13- to 17-year-old females is less than 40%, and the rate for males is just above 20%. Experts point to a number of reasons for the poor HPV vaccination rates including parental concerns about safety, necessity, and timing. However, the evidence refuting these concerns is substantial. Efforts focusing on education and communication have not shown promise, but several population health strategies have reminder/recall systems; practice-focused strategies targeting staff, clinicians, and parents; assessment and feedback activities; and school-based HPV vaccination programs.

  13. Neuromodulation as a cognitive enhancement strategy in healthy older adults: promises and pitfalls.

    Science.gov (United States)

    Martins, Ana R S; Fregni, Felipe; Simis, Marcel; Almeida, Jorge

    2017-03-01

    Increases in life expectancy have been followed by an upsurge of age-associated cognitive decline. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have risen as promising approaches to prevent or delay such cognitive decline. However, consensus has not yet been reached about their efficacy in improving cognitive functioning in healthy older adults. Here we review the effects of TMS and tDCS on cognitive abilities in healthy older adults. Despite considerable variability in the targeted cognitive domains, design features and outcomes, the results generally show an enhancement or uniform benefit across studies. Most studies employed tDCS, suggesting that this technique is particularly well-suited for cognitive enhancement. Further work is required to determine the viability of these techniques as tools for long-term cognitive improvement. Importantly, the combination of TMS/tDCS with other cognitive enhancement strategies may be a promising strategy to alleviate the cognitive decline associated with the healthy aging process.

  14. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer's disease.

    Science.gov (United States)

    Faustino, Célia; Rijo, Patrícia; Reis, Catarina Pinto

    2017-06-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with amyloid-β peptide misfolding and aggregation. Neurotrophic factors, such as nerve growth factor (NGF), can prevent neuronal damage and rescue the cholinergic neurons that undergo cell death in AD, reverse deposition of extracellular amyloid plaques and improve cognitive deficits. However, NGF administration is hampered by the poor pharmacokinetic profile of the therapeutic protein and its inability to cross the blood-brain barrier, which requires specialised drug delivery systems (DDS) for efficient NGF delivery to the brain. This review covers the main therapeutic approaches that have been developed for NGF delivery targeting the brain, from polymeric implants to gene and cell-based therapies, focusing on the role of nanoparticulate systems for the sustained release of NGF in the brain as a neuroprotective and disease-modifying approach toward AD. Lipid- and polymer-based delivery systems, magnetic nanoparticles and quantum dots are specifically addressed as promising nanotechnological strategies to overcome the current limitations of NGF-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.

    Science.gov (United States)

    Crombez, Laurence; Morris, May C; Heitz, Frederic; Divita, Gilles

    2011-01-01

    The dramatic acceleration in identification of new nucleic acid-based therapeutic molecules such as short interfering RNA (siRNA) and peptide-nucleic acid (PNA) analogues has provided new perspectives for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of nucleic acids together with the low permeability of the cell membrane to negatively charged molecules remain major obstacles to their clinical development. Several non-viral strategies have been proposed to improve the delivery of synthetic short oligonucleotides both in cultured cells and in vivo. Cell-penetrating peptides constitute very promising tools for non-invasive cellular import of oligonucleotides and analogs. We recently described a non-covalent strategy based on short amphiphatic peptides (MPG8/PEP3) that have been successfully applied ex vivo and in vivo for the delivery of therapeutic siRNA and PNA molecules. PEP3 and MPG8 form stable nanoparticles with PNA analogues and siRNA, respectively, and promote their efficient cellular uptake, independently of the endosomal pathway, into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. This chapter describes easy-to-handle protocols for the use of MPG-8 or PEP-3-nanoparticle technologies for PNA and siRNA delivery into adherent and suspension cell lines as well as in vivo into cancer mouse models.

  16. A Promising Approach to Provide Appropriate Colon Target Drug Delivery Systems of Vancomycin HCL: Pharmaceutical and Microbiological Studies

    Directory of Open Access Journals (Sweden)

    Kadria A. Elkhodairy

    2014-01-01

    Full Text Available Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10–60% of tablet weight of guar gum (F1–F6 were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6–F20 were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6–8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.

  17. A promising approach to provide appropriate colon target drug delivery systems of vancomycin HCL: pharmaceutical and microbiological studies.

    Science.gov (United States)

    Elkhodairy, Kadria A; Afifi, Samar A; Zakaria, Azza S

    2014-01-01

    Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10-60% of tablet weight of guar gum (F1-F6) were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6-F20) were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT) values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA) isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6-8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.

  18. STRATEGIES AND PROSPECTS OF NASAL DRUG DELIVERY SYSTEMS

    OpenAIRE

    Gannu Praveen Kumar

    2012-01-01

    The recent advancement of nasal drug delivery systems has increased enormously and is gaining significant importance. Intranasal therapy has been an accepted form of treatment in the Ayurvedic system of Indian Medicine. The non-invasive delivery of nasal drug delivery systems made to exploit for the development of successful treatment. The advantages, disadvantages, mechanism of action and application of nasal drug delivery system in local delivery, systematic delivery, nasal vaccines and CNS...

  19. Do biological-based strategies hold promise to biofouling control in MBRs?

    KAUST Repository

    Malaeb, Lilian

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  20. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    Science.gov (United States)

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  1. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    Directory of Open Access Journals (Sweden)

    Åsa Holmner

    2012-06-01

    Full Text Available Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  2. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    Science.gov (United States)

    Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  3. Formulation and delivery strategies of ibuprofen: challenges and opportunities.

    Science.gov (United States)

    Irvine, Jake; Afrose, Afrina; Islam, Nazrul

    2018-02-01

    Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), is mostly administered orally and topically to relieve acute pain and fever. Due to its mode of action this drug may be useful in the treatment regimens of other, more chronic conditions, like cystic fibrosis. This drug is poorly soluble in aqueous media and thus the rate of dissolution from the currently available solid dosage forms is limited. This leads to poor bioavailability at high doses after oral administration, thereby increasing the risk of unwanted adverse effects. The poor solubility is a problem for developing injectable solution dosage forms. Because of its poor skin permeability, it is difficult to obtain an effective therapeutic concentration from topical preparations. This review aims to give a brief insight into the status of ibuprofen dosage forms and their limitations, particle/crystallization technologies for improving formulation strategies as well as suggesting its incorporation into the pulmonary drug delivery systems for achieving better therapeutic action at low dose.

  4. MSC transplantation: a promising therapeutic strategy to manage the onset and progression of diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Marcelo E Ezquer

    2012-01-01

    Full Text Available Currently, one of the main threats to public health is diabetes mellitus. Its most detrimental complication is diabetic nephropathy (DN, a clinical syndrome associated with kidney damage and an increased risk of cardiovascular disease. Irrespective of the type of diabetes, DN follows a well-known temporal course. The earliest detectable signs are microalbuminuria and histopathological changes including extracellular matrix deposition, glomerular basement membrane thickening, glomerular and mesangial expansion. Later on macroalbuminuria appears, followed by a progressive decline in glomerular filtration rate and the loss of glomerular podocytes, tubulointerstitial fibrosis, glomerulosclerosis and arteriolar hyalinosis. Tight glycemic and hypertension controls remain the key factors for preventing or arresting the progression of DN. Nevertheless, despite considerable educational effort to control the disease, a significant number of patients not only develop DN, but also progress to chronic kidney disease. Therefore, the availability of a strategy aimed to prevent, delay or revert DN would be highly desirable. In this article, we review the pathophysiological features of DN and the therapeutic mechanisms of multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs. The perfect match between them, together with encouraging pre-clinical data available, allow us to support the notion that MSC transplantation is a promising therapeutic strategy to manage DN onset and progression, not only because of the safety of this procedure, but mainly because of the renoprotective potential of MSCs.

  5. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    Science.gov (United States)

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Traditional Chinese Medicine for Refractory Nephrotic Syndrome: Strategies and Promising Treatments

    Science.gov (United States)

    Tu, Yuan-Chao

    2018-01-01

    Refractory nephrotic syndrome (RNS) is an immune-related kidney disease with poor clinical outcomes. Standard treatments include corticosteroids as the initial therapy and other immunosuppressants as second-line options. A substantial proportion of patients with RNS are resistant to or dependent on immunosuppressive drugs and often experience unremitting edema and proteinuria, cycles of remission and relapse, and/or serious adverse events due to long-term immunosuppression. Traditional Chinese medicine has a long history of treating complicated kidney diseases and holds great potential for providing effective treatments for RNS. This review describes the Chinese medical theories relating to the pathogenesis of RNS and discusses the strategies and treatment options using Chinese herbal medicine. Available preclinical and clinical evidence strongly supports the integration of traditional Chinese medicine and Western medicine for improving the outcome of RNS. Herbal medicine such as Astragalus membranaceus, Stephania tetrandra S. Moore, and Tripterygium wilfordii Hook F can serve as the alternative therapy when patients fail to respond to immunosuppression or as the complementary therapy to improve therapeutic efficacy and reduce side effects of immunosuppressive agents. Wuzhi capsules (Schisandra sphenanthera extract) with tacrolimus and tetrandrine with corticosteroids are two herb-drug combinations that have shown great promise and warrant further studies. PMID:29507594

  7. Corporate Social Responsibility: A Promising Social Innovation or a Neoliberal Strategy in Disguise?

    Directory of Open Access Journals (Sweden)

    Maja Savevska

    2014-06-01

    Full Text Available Since the Lisbon summit the European Union has become resolute in its intention to promote the uptake of corporate social responsibility among European companies. The recent financial crisis has provided further impetus for evangelising CSR, which is identified by the EU public authorities as one exit strategy from the crisis and a promising means of fulfilling the Treaty objectives of inclusive and sustainable social market economy. This paper finds the above assertion problematic and uses a Polanyian framework to evaluate its validity. The paper represents a conceptual intervention in the policy justification provided by the European Commission. Contrary to the overly optimistic voices that see decommodifying tendencies within CSR, this paper claims that CSR does not have a potential to re-embed the economy as argued by the Commission. Despite its protective invocation, CSR is predicated on deepened commodification. It depends on the staging of a special type of exchange relation, whereby reputation is quantified and sold as a commodity by being denominated in a common unit. As such the CSR form promoted by the Commission is a microeconomic counterpart to the regime of rule-based macroeconomic depoliticisation.

  8. Mesenchymal stem cell-based gene therapy: A promising therapeutic strategy.

    Science.gov (United States)

    Mohammadian, Mozhdeh; Abasi, Elham; Akbarzadeh, Abolfazl

    2016-08-01

    Mesenchymal stem cells (MSCs) are multipotent stromal cells that exist in bone marrow, fat, and so many other tissues, and can differentiate into a variety of cell types including osteoblasts, chondrocytes, and adipocytes, as well as myocytes and neurons. Moreover, they have great capacity for self-renewal while maintaining their multipotency. Their capacity for proliferation and differentiation, in addition to their immunomodulatory activity, makes them very promising candidates for cell-based regenerative medicine. Moreover, MSCs have the ability of mobilization to the site of damage; therefore, they can automatically migrate to the site of injury via their chemokine receptors following intravenous transplantation. In this respect, they can be applied for MSC-based gene therapy. In this new therapeutic method, genes of interest are introduced into MSCs via viral and non-viral-based methods that lead to transgene expression in them. Although stem cell-based gene therapy is a relatively new strategy, it lights a new hope for the treatment of a variety of genetic disorders. In the near future, MSCs can be of use in a vast number of clinical applications, because of their uncomplicated isolation, culture, and genetic manipulation. However, full consideration is still crucial before they are utilized for clinical trials, because the number of studies that signify the advantageous effects of MSC-based gene therapy are still limited.

  9. Combined Gemcitabine and Metronidazole Is a Promising Therapeutic Strategy for Cancer Stem-like Cholangiocarcinoma.

    Science.gov (United States)

    Kawamoto, Makoto; Umebayashi, Masayo; Tanaka, Hiroto; Koya, Norihiro; Nakagawa, Sinichiro; Kawabe, Ken; Onishi, Hideya; Nakamura, Masafumi; Morisaki, Takashi

    2018-05-01

    Metronidazole (MNZ) is a common antibiotic that exerts disulfiram-like effects when taken together with alcohol. However, the relationship between MNZ and aldehyde dehydrogenase (ALDH) activity remains unclear. This study investigated whether MNZ reduces cancer stemness by suppressing ALDH activity and accordingly reducing the malignancy of cholangiocarcinoma (CCA). We developed gemcitabine (GEM)-resistant TFK-1 cells and originally established CCA cell line from a patient with GEM-resistant CCA. Using these cell lines, we analyzed the impacts of MNZ for cancer stem cell markers, invasiveness, and chemosensitivity. MNZ reduced ALDH activity in GEM-resistant CCA cells, leading to decreased invasiveness and enhanced chemosensitivity. MNZ diminished the invasiveness by inducing mesenchymal-epithelial transition and enhancing chemosensitivity by increasing ENT1 (equilibrative nucleoside transporter 1) and reducing RRM1 (ribonucleotide reductase M1). MNZ reduced cancer stemness in GEM-resistant CCA cells. Combined GEM and MNZ would be a promising therapeutic strategy for cancer stem-like CAA. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Identifying promising accessions of cherry tomato: a sensory strategy using consumers and chefs.

    Science.gov (United States)

    Rocha, Mariella C; Deliza, Rosires; Ares, Gastón; Freitas, Daniela De G C; Silva, Aline L S; Carmo, Margarida G F; Abboud, Antonio C S

    2013-06-01

    An increased production of cherry and gourmet tomato cultivars that are harvested at advanced colour stages and sold at a higher price has been observed in the last 10 years. In this context, producers need information on the sensory characteristics of new cultivars and their perception by potential consumers. The aim of the present work was to obtain a sensory characterisation of nine cherry tomato cultivars produced under Brazilian organic cultivation conditions from a chef and consumer perspective. Nine organic cherry tomato genotypes were evaluated by ten chefs using an open-ended question and by 110 consumers using a check-all-that-apply question. Both methodologies provided similar information on the sensory characteristics of the cherry tomato accessions. The superimposed representation of the samples in a multiple factor analysis was similar for consumers' and chefs' descriptions (RV coefficient 0.728), although they used different methodologies. According to both panels, cherry tomatoes were sorted into five groups of samples with similar sensory characteristics. Results from the present work may provide information to help organic producers in the selection of the most promising cultivars for cultivation, taking into account consumers' and chefs' perceptions, as well as in the design of communication and marketing strategies. © 2012 Society of Chemical Industry.

  11. Targeting Glutathione-S Transferase Enzymes in Musculoskeletal Sarcomas: A Promising Therapeutic Strategy

    Directory of Open Access Journals (Sweden)

    Michela Pasello

    2011-01-01

    Full Text Available Recent studies have indicated that targeting glutathione-S-transferase (GST isoenzymes may be a promising novel strategy to improve the efficacy of conventional chemotherapy in the three most common musculoskeletal tumours: osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. By using a panel of 15 drug-sensitive and drug-resistant human osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma cell lines, the efficay of the GST-targeting agent 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthiohexanol (NBDHEX has been assessed and related to GST isoenzymes expression (namely GSTP1, GSTA1, GSTM1, and MGST. NBDHEX showed a relevant in vitro activity on all cell lines, including the drug-resistant ones and those with higher GSTs levels. The in vitro activity of NBDHEX was mostly related to cytostatic effects, with a less evident apoptotic induction. NBDHEX positively interacted with doxorubicin, vincristine, cisplatin but showed antagonistic effects with methotrexate. In vivo studies confirmed the cytostatic efficay of NBDHEX and its positive interaction with vincristine in Ewing's sarcoma cells, and also indicated a positive effect against the metastatisation of osteosarcoma cells. The whole body of evidence found in this study indicated that targeting GSTs in osteosarcoma, Ewing's sarcoma and rhabdomyosarcoma may be an interesting new therapeutic option, which can be considered for patients who are scarcely responsive to conventional regimens.

  12. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.

    Science.gov (United States)

    Wang, Mingxin; You, Chaoqun; Gao, Zhiguo; Wu, Hongshuai; Sun, Baiwang; Zhu, Xiaoli; Chen, Renjie

    2018-08-01

    The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.

  13. Recent advances in medicinal chemistry and pharmaceutical technology--strategies for drug delivery to the brain.

    Science.gov (United States)

    Denora, Nunzio; Trapani, Adriana; Laquintana, Valentino; Lopedota, Angela; Trapani, Giuseppe

    2009-01-01

    This paper provides a mini-review of some recent approaches for the treatment of brain pathologies examining both medicinal chemistry and pharmaceutical technology contributions. Medicinal chemistry-based strategies are essentially aimed at the chemical modification of low molecular weight drugs in order to increase their lipophilicity or the design of appropriate prodrugs, although this review will focus primarily on the use of prodrugs and not analog development. Recently, interest has been focused on the design and evaluation of prodrugs that are capable of exploiting one or more of the various endogenous transport systems at the level of the blood brain barrier (BBB). The technological strategies are essentially non-invasive methods of drug delivery to malignancies of the central nervous system (CNS) and are based on the use of nanosystems (colloidal carriers) such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, polymeric micelles and dendrimers. The biodistribution of these nanocarriers can be manipulated by modifying their surface physico-chemical properties or by coating them with surfactants and polyethylene-glycols (PEGs). Liposomes, surfactant coated polymeric nanoparticles, and solid lipid nanoparticles are promising systems for delivery of drugs to tumors of the CNS. This mini-review discusses issues concerning the scope and limitations of both the medicinal chemistry and technological approaches. Based on the current findings, it can be concluded that crossing of the BBB and drug delivery to CNS is extremely complex and requires a multidisciplinary approach such as a close collaboration and common efforts among researchers of several scientific areas, particularly medicinal chemists, biologists and pharmaceutical technologists.

  14. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Science.gov (United States)

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  15. Investigating the effect of different conflict management strategies on brand promise: A case study of banking industry

    Directory of Open Access Journals (Sweden)

    Hosseinali Aziziha

    2014-01-01

    Full Text Available The purpose of this paper is to study the effect of different conflict management strategies including competition, cooperation, prevention and compromise on brand promise. The proposed study uses the questionnaire developed by Putnam and Wilson (1982 [Putnam, L. L., & Wilson, C. E. (1982. Communicative strategies in organizational conflicts: Reliability and validity of a measurement scale. Communication yearbook, 6, 629-652.] to measure conflict management measures and to measure the components of brand promise, the study develops a questionnaire. The proposed study is executed among some employees of bank Melli Iran in city of Tehran, Iran. Cronbach alphas have been calculated as 0.76 and 0.83 for conflict management and brand promise, respectively. Using Pearson correlation ratios as well as multiple regression technique, the study determines that there was a reverse relationship between two conflict management strategies, cooperation and compromise, and brand promise. In addition, there was a positive relationship between two conflict management strategies, competition and compromise, and brand promise.

  16. Vote Buying or Campaign Promises? Electoral Strategies When Party Credibility is Limited

    OpenAIRE

    Hanusch, Marek; Keefer, Philip; Vlaicu, Razvan

    2016-01-01

    What explains significant variation across countries in the use of vote buying instead of campaign promises to secure voter support? This paper explicitly models the tradeoff parties face between engaging in vote buying and making campaign promises, and explores the distributional consequences of this decision, in a setting where party credibility can vary. When parties are less credible they spend more on vote buying and target vote buying more heavily toward groups that do not believe campa...

  17. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    Science.gov (United States)

    Zhang, Zubin; Song, Lina; Dong, Jinlai; Guo, Dawei; Du, Xiaolin; Cao, Biyin; Zhang, Yu; Gu, Ning; Mao, Xinliang

    2013-05-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  18. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    International Nuclear Information System (INIS)

    Zhang Zubin; Song Lina; Dong Jinlai; Guo Dawei; Du Xiaolin; Cao Biyin; Zhang Yu; Gu Ning; Mao Xinliang

    2013-01-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  19. Formulation Strategies and Particle Engineering Technologies for Pulmonary Delivery of Biopharmaceuticals

    DEFF Research Database (Denmark)

    Cun, Dongmei; Wan, Feng; Yang, Mingshi

    2015-01-01

    . In this review we discussed the formulation strategies and particle engineering technologies to improve the efficiency of pulmonary delivery of biopharmaceutical, with a focus on systemic therapy of pharmaceutical proteins/peptides and local delivery of siRNA via the lung administration....

  20. Strategies for Success: Promising Ideas in Adult College Completion. Policy Exchanges

    Science.gov (United States)

    Lane, Patrick

    2012-01-01

    This publication is the first of a series focusing on promising new ideas and innovative practices developed through the Adult College Completion Network. The brief addresses five topics of importance to those working to improve adult college completion: (1) Data availability particular to the returning adult population; (2) Partnerships between…

  1. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  2. From Molecular to Nanotechnology Strategies for Delivery of Neurotrophins: Emphasis on Brain-Derived Neurotrophic Factor (BDNF)

    Science.gov (United States)

    Géral, Claire; Angelova, Angelina; Lesieur, Sylviane

    2013-01-01

    Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted. PMID:24300402

  3. The adenylate cyclase toxin from Bordetella pertussis - a novel promising vehicke fer antigen delivery to dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Šimšová, Marcela; Šebo, Peter; Leclerc, C.

    2004-01-01

    Roč. 293, - (2004), s. 571-576 ISSN 1438-4221 R&D Projects: GA ČR GA310/01/0934; GA AV ČR IAA5020907 Grant - others:GA QLK2-CT-1999(XX) 00556 Keywords : cyaa * cellular immune response * antigen delivery Subject RIV: EE - Microbiology, Virology Impact factor: 2.919, year: 2004

  4. Cannabidiol as a Promising Strategy to Treat and Prevent Movement Disorders?

    Directory of Open Access Journals (Sweden)

    Fernanda F. Peres

    2018-05-01

    Full Text Available Movement disorders such as Parkinson's disease and dyskinesia are highly debilitating conditions linked to oxidative stress and neurodegeneration. When available, the pharmacological therapies for these disorders are still mainly symptomatic, do not benefit all patients and induce severe side effects. Cannabidiol is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. Although the studies that investigate the effects of this compound on movement disorders are surprisingly few, cannabidiol emerges as a promising compound to treat and/or prevent them. Here, we review these clinical and pre-clinical studies and draw attention to the potential of cannabidiol in this field.

  5. Pricing: A Normative Strategy in the Delivery of Human Services.

    Science.gov (United States)

    Moore, Stephen T.

    1995-01-01

    Discusses a normative strategy toward pricing human services, which will allow providers to develop pricing strategies within the context of organizational missions, goals, and values. Pricing is an effective tool for distributing resources and improving efficiency, and can be used as a tool for encouraging desired patterns of service utilization.…

  6. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment.

    Science.gov (United States)

    Nelson, Antoinette G; Zhang, Xiaoping; Ganapathi, Usha; Szekely, Zoltan; Flexner, Charles W; Owen, Andrew; Sinko, Patrick J

    2015-12-10

    The year 2016 will mark an important milestone - the 35th anniversary of the first reported cases of HIV/AIDS. Antiretroviral Therapy (ART) including Highly Active Antiretroviral Therapy (HAART) drug regimens is widely considered to be one of the greatest achievements in therapeutic drug research having transformed HIV infection into a chronically managed disease. Unfortunately, the lack of widespread preventive measures and the inability to eradicate HIV from infected cells highlight the significant challenges remaining today. Moving forward there are at least three high priority goals for anti-HIV drug delivery (DD) research: (1) to prevent new HIV infections from occurring, (2) to facilitate a functional cure, i.e., when HIV is present but the body controls it without drugs and (3) to eradicate established infection. Pre-exposure Prophylaxis (PrEP) represents a significant step forward in preventing the establishment of chronic HIV infection. However, the ultimate success of PrEP will depend on achieving sustained antiretroviral (ARV) tissue concentrations and will require strict patient adherence to the regimen. While first generation long acting/extended release (LA/ER) DD Systems (DDS) currently in development show considerable promise, significant DD treatment and prevention challenges persist. First, there is a critical need to improve cell specificity through targeting in order to selectively achieve efficacious drug concentrations in HIV reservoir sites to control/eradicate HIV as well as mitigate systemic side effects. In addition, approaches for reducing cellular efflux and metabolism of ARV drugs to prolong effective concentrations in target cells need to be developed. Finally, given the current understanding of HIV pathogenesis, next generation anti-HIV DDS need to address selective DD to the gut mucosa and lymph nodes. The current review focuses on the DDS technologies, critical challenges, opportunities, strategies, and approaches by which novel

  7. Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies.

    Science.gov (United States)

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Batelli, Sara; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2009-12-01

    This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.

  8. The promise of multimedia technology for STI/HIV prevention: frameworks for understanding improved facilitator delivery and participant learning.

    Science.gov (United States)

    Khan, Maria R; Epperson, Matthew W; Gilbert, Louisa; Goddard, Dawn; Hunt, Timothy; Sarfo, Bright; El-Bassel, Nabila

    2012-10-01

    There is increasing excitement about multimedia sexually transmitted infection (STI) and HIV prevention interventions, yet there has been limited discussion of how use of multimedia technology may improve STI/HIV prevention efforts. The purpose of this paper is to describe the mechanisms through which multimedia technology may work to improve the delivery and uptake of intervention material. We present conceptual frameworks describing how multimedia technology may improve intervention delivery by increasing standardization and fidelity to the intervention material and the participant's ability to learn by improving attention, cognition, emotional engagement, skills-building, and uptake of sensitive material about sexual and drug risks. In addition, we describe how the non-multimedia behavioral STI/HIV prevention intervention, Project WORTH, was adapted into a multimedia format for women involved in the criminal justice system and provide examples of how multimedia activities can more effectively target key mediators of behavioral change in this intervention.

  9. A facile nanoaggregation strategy for oral delivery of hydrophobic drugs by utilizing acid-base neutralization reactions

    International Nuclear Information System (INIS)

    Chen Huabing; Wan Jiangling; Wang Yirui; Mou Dongsheng; Liu Hongbin; Xu Huibi; Yang Xiangliang

    2008-01-01

    Nanonization strategies have been used to enhance the oral availability of numerous drugs that are poorly soluble in water. Exploring a facile nanonization strategy with highly practical potential is an attractive focus. Here, we report a novel facile nanoaggregation strategy for constructing drug nanoparticles of poorly soluble drugs with pH-dependent solubility by utilizing acid-base neutralization in aqueous solution, thus facilitating the exploration of nanonization in oral delivery for general applicability. We demonstrate that hydrophobic itraconazole dissolved in acid solution formed a growing core and aggregated into nanoparticles in the presence of stabilizers. The nanoparticles, with an average diameter of 279.3 nm and polydispersity index of 0.116, showed a higher dissolution rate when compared with the marketed formulation; the average dissolution was about 91.3%. The in vivo pharmacokinetic studies revealed that the nanoparticles had a rapid absorption and enhanced oral availability. The diet state also showed insignificant impact on the absorption of itraconazole from nanoparticles. This nanoaggregation strategy is a promising nanonization method with a facile process and avoidance of toxic organic solvents for oral delivery of poorly soluble drugs with pH-dependent solubility and reveals a highly practical potential in the pharmaceutical and chemical industries

  10. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system

    Science.gov (United States)

    Chen, Huabing; Xiao, Ling; Du, Danrong; Mou, Dongsheng; Xu, Huibi; Yang, Xiangliang

    2010-01-01

    We report a novel facile method for preparing stable nanoparticles with inner spherical solid spheres and an outer hydrogel matrix using a hot O/W hydrogel-thickened microemulsion with spontaneous stability. The nanoparticles with average diameters of about 30.0 nm and 100.0 nm were constructed by cooling the hot hydrogel-thickened microemulsion at different temperatures, respectively. We explained the application of these nanoparticles by actualizing the cutaneous delivery of drug-loaded nanoparticles. The in vitro skin permeation studies showed that the nanoparticles could significantly reduce the penetration of model drugs through skin and resulted in their dermal uptakes in skin. The sol-gel process of TEOS was furthermore used in the template of HTM to regulate the particle size of nanoparticles. The coating of silica on the surface of nanoparticles could regulate the penetration of drug into skin from dermal delivery to transdermal delivery. This strategy provides a facile method to produce nanoparticles with long-term stability and ease of manufacture, which might have a promising application in drug delivery.

  11. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Singh S

    2015-11-01

    Full Text Available Sima Singh,1,* Niranjan G Kotla,2,* Sonia Tomar,3 Balaji Maddiboyina,4 Thomas J Webster,5,6 Dinesh Sharma,7 Omprakash Sunnapu2 1Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 2Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, 3Department of Pharmaceutics, Ram Gopal College of Pharmacy, Rohtak, Haryana, 4Department of Pharmaceutics, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 7Ranbaxy Laboratory Ltd, Gurgaon, Haryana, India *These authors contributed equally to this work Abstract: Targeted drug delivery plays a significant role in disease treatment associated with the colon, affording therapeutic responses for a prolonged period of time with low side effects. Colorectal cancer is the third most common cancer in both men and women with an estimated 102,480 cases of colon cancer and 40,340 cases of rectal cancer in 2013 as reported by the American Cancer Society. In the present investigation, we developed an improved oral delivery system for existing anticancer drugs meant for colon cancer via prebiotic and probiotic approaches. The system comprises three components, namely, nanoparticles of drug coated with natural materials such as guar gum, xanthan gum (that serve as prebiotics, and probiotics. The natural gums play a dual role of protecting the drug in the gastric as well as intestinal conditions to allow its release only in the colon. In vitro results obtained from these experiments indicated the successful targeted delivery of 5-fluorouracil to the colon. Electron microscopy results demonstrated that the prepared nanoparticles were spherical in shape and 200 nm in size. The in vitro release data

  12. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.

    Science.gov (United States)

    Liu, Chang; Zhang, Li; Liu, Hao; Cheng, Kun

    2017-11-28

    The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The delivery of medical services in a retail shopping mall: a strategy for growth.

    Science.gov (United States)

    Hayden, K R

    1989-01-01

    The successful medical practice of the future will continually search for growth strategies. This writer believes the location of a primary care medical clinic in a retail shopping mall, with a full menu of primary services, is one strategy for growth. It is an effective method of health care delivery to a community.

  14. Food intake rate and delivery strategy in aquaculture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In aquaculture, it is important to estimate in advance how much food cultured animals would take. The rate of food consumption by cultured animals to available food amount is defined as the food intake rate (FIR) in this paper. To some extents, FIR reflects the quality of food, the health of cultured animals and the delivery efficiency. In practice, it is difficult to estimate in advance the accurate quantity of food that cultured animal needs. Usually, food is provided more than the need by animals, causing excess food that may pollute water and environment. Our experiments in past years show that FIR at 80% is recommended.

  15. Polymersome-based drug-delivery strategies for cancer therapeutics.

    Science.gov (United States)

    Anajafi, Tayebeh; Mallik, Sanku

    2015-01-01

    Polymersomes are stable vesicles prepared from amphiphilic polymers and are more stable compared with liposomes. Although these nanovesicles have many attractive properties for in vitro/in vivo applications, liposome-based drug delivery systems are still prevalent in the market. In order to expedite the translational potential and to provide medically valuable formulations, the polymersomes need to be biocompatible and biodegradable. In this review, recent developments for biocompatible and biodegradable polymersomes, including the design of intelligent, targeted, and stimuli-responsive vesicles are summarized.

  16. Laser-Based Strategies to Treat Diabetic Macular Edema: History and New Promising Therapies

    Directory of Open Access Journals (Sweden)

    Young Gun Park

    2014-01-01

    Full Text Available Diabetic macular edema (DME is the main cause of visual impairment in diabetic patients. The management of DME is complex and often various treatment approaches are needed. At the present time, despite the enthusiasm for evaluating several new treatments for DME, including the intravitreal pharmacologic therapies (e.g., corticosteroids and anti-VEGF drugs, laser photocoagulation still remains the current standard in DME. The purpose of this review is to update our knowledge on laser photocoagulation for DME and describe the developments in laser systems. And we will also discuss the new laser techniques and review the latest results including benefits of combined therapy. In this paper, we briefly summarize the major laser therapeutics for the treatment of diabetic macular edema and allude to some future promising laser therapies.

  17. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.

    Science.gov (United States)

    Wang, Jianyun; Ersan, Yusuf Cagatay; Boon, Nico; De Belie, Nele

    2016-04-01

    The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.

  18. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

  19. Promising SINEs for embargoing nuclear-cytoplasmic export as an anticancer strategy.

    Science.gov (United States)

    Tan, David S P; Bedard, Philippe L; Kuruvilla, John; Siu, Lillian L; Razak, Albiruni R Abdul

    2014-05-01

    In cancer cells, the nuclear-cytoplasmic transport machinery is frequently disrupted, resulting in mislocalization and loss of function for many key regulatory proteins. In this review, the mechanisms by which tumor cells co-opt the nuclear transport machinery to facilitate carcinogenesis, cell survival, drug resistance, and tumor progression will be elucidated, with a particular focus on the role of the nuclear-cytoplasmic export protein. The recent development of a new generation of selective inhibitors of nuclear export (XPO1 antagonists) and how these novel anticancer drugs may bring us closer to the implementation of this therapeutic strategy in the clinic will be discussed.

  20. The integrated project: a promising promotional strategy for primary health care.

    Science.gov (United States)

    Daniel, C; Mora, B

    1985-10-01

    The integrated project using parasite control and nutrition as entry points for family planning practice has shown considerable success in promoting health consciousness among health workers and project beneficiaries. This progress is evident in the Family Planning, Parasite Control and Nutrition (FAPPCAN) areas. The project has also mobilized technical and financial support from the local government as well as from private and civic organizations. The need for integration is underscored by the following considerations: parasite control has proved to be effective for preventive health care; the integrated project uses indigenous community health workers to accomplish its objectives; the primary health care (PHC) movement depends primarily on voluntary community participation and the integrated project has shown that it can elicit this participation. The major health problems in the Philippines are: a prevalence of communicable and other infectious diseases; poor evironmental sanitation; malnutrition; and a rapid population growth rate. The integrated program utilizes the existing village health workers in identifying problems related to family planning, parasite control and nutrition and integrates these activities into the health delivery system; educates family members on how to detect health and health-related problems; works out linkages with government agencies and the local primary health care committee in defining the scope of health-related problems; mobilizes community members to initiate their own projects; gets the commitment of village officials and committe members. The integrated project operates within the PHC. A health van with a built-in video playback system provides educational and logistical support to the village worker. The primary detection and treatment of health problems are part of the village health workers' responsibilities. Research determines the project's capability to reactivate the village primary health care committees and sustain

  1. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Ha, Suk-Jin; Wei, Na; Oh, Eun Joong; Jin, Yong-Su

    2012-05-01

    The lack of microbial strains capable of fermenting all sugars prevalent in plant cell wall hydrolyzates to ethanol is a major challenge. Although naturally existing or engineered microorganisms can ferment mixed sugars (glucose, xylose and galactose) in these hydrolyzates sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Therefore, numerous metabolic engineering approaches have been attempted to construct optimal microorganisms capable of co-fermenting mixed sugars simultaneously. Here, we present recent findings and breakthroughs in engineering yeast for improved ethanol production from mixed sugars. In particular, this review discusses new sugar transporters, various strategies for simultaneous co-fermentation of mixed sugars, and potential applications of co-fermentation for producing fuels and chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function.

    Science.gov (United States)

    Wang, Lei; Li, Li; Gu, Kai; Xu, Xiao-Li; Sun, Yuan; You, Qi-Dong

    2017-01-01

    The Hsp90 chaperone protein regulates the folding, maturation and stability of a wide variety of oncoproteins. In recent years, many Hsp90 inhibitors have entered into the clinical trials while all of them target ATPase showing similar binding capacity and kinds of side-effects so that none have reached to the market. During the regulation progress, numerous protein- protein interactions (PPI) such as Hsp90 and client proteins or cochaperones are involved. With the Hsp90-cochaperones PPI networks being more and more clear, many cancerous proteins have been reported to be tightly correlated to Hsp90-cochaperones PPI. Among them, Hsp90-Cdc37 PPI has been widely reported to associate with numerous protein kinases, making it a novel target for the treatment of cancers. In this paper, we briefly review the strategies and modulators targeting Hsp90-Cdc37 complex including direct and indirect regulation mechanism. Through these discussions we expect to present inspirations for new insights into an alternative way to inhibit Hsp90 chaperone function. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies.

    Science.gov (United States)

    Rivera, José Carlos; Holm, Mari; Austeng, Dordi; Morken, Tora Sund; Zhou, Tianwei Ellen; Beaudry-Richard, Alexandra; Sierra, Estefania Marin; Dammann, Olaf; Chemtob, Sylvain

    2017-08-22

    Retinopathy of prematurity (ROP) is an important cause of childhood blindness globally, and the incidence is rising. The disease is characterized by initial arrested retinal vascularization followed by neovascularization and ensuing retinal detachment causing permanent visual loss. Although neovascularization can be effectively treated via retinal laser ablation, it is unknown which children are at risk of entering this vision-threatening phase of the disease. Laser ablation may itself induce visual field deficits, and there is therefore a need to identify targets for novel and less destructive treatments of ROP. Inflammation is considered a key contributor to the pathogenesis of ROP. A large proportion of preterm infants with ROP will have residual visual loss linked to loss of photoreceptor (PR) and the integrity of the retinal pigment epithelium (RPE) in the macular region. Recent studies using animal models of ROP suggest that choroidal degeneration may be associated with a loss of integrity of the outer retina, a phenomenon so far largely undescribed in ROP pathogenesis. In this review, we highlight inflammatory and neuron-derived factors related to ROP progression, as well, potential targets for new treatment strategies. We also introduce choroidal degeneration as a significant cause of residual visual loss following ROP. We propose that ROP should no longer be considered an inner retinal vasculopathy only, but also a disease of choroidal degeneration affecting both retinal pigment epithelium and photoreceptor integrity.

  4. Renal Denervation Using an Irrigated Catheter in Patients with Resistant Hypertension: A Promising Strategy?

    International Nuclear Information System (INIS)

    Armaganijan, Luciana; Staico, Rodolfo; Moraes, Aline; Abizaid, Alexandre; Moreira, Dalmo; Amodeo, Celso; Sousa, Márcio; Borelli, Flávio; Armaganijan, Dikran; Sousa, J. Eduardo; Sousa, Amanda

    2014-01-01

    Systemic hypertension is an important public health problem and a significant cause of cardiovascular mortality. Its high prevalence and the low rates of blood pressure control have resulted in the search for alternative therapeutic strategies. Percutaneous renal sympathetic denervation emerged as a perspective in the treatment of patients with resistant hypertension. To evaluate the feasibility and safety of renal denervation using an irrigated catheter. Ten patients with resistant hypertension underwent the procedure. The primary endpoint was safety, as assessed by periprocedural adverse events, renal function and renal vascular abnormalities at 6 months. The secondary endpoints were changes in blood pressure levels (office and ambulatory monitoring) and in the number of antihypertensive drugs at 6 months. The mean age was 47.3 (± 12) years, and 90% of patients were women. In the first case, renal artery dissection occurred as a result of trauma due to the long sheath; no further cases were observed after technical adjustments, thus showing an effect of the learning curve. No cases of thrombosis/renal infarction or death were reported. Elevation of serum creatinine levels was not observed during follow-up. At 6 months, one case of significant renal artery stenosis with no clinical consequences was diagnosed. Renal denervation reduced office blood pressure levels by 14.6/6.6 mmHg, on average (p = 0.4 both for systolic and diastolic blood pressure). Blood pressure levels on ambulatory monitoring decreased by 28/17.6 mmHg (p = 0.02 and p = 0.07 for systolic and diastolic blood pressure, respectively). A mean reduction of 2.1 antihypertensive drugs was observed. Renal denervation is feasible and safe in the treatment of resistant systemic arterial hypertension. Larger studies are required to confirm our findings

  5. Renal Denervation Using an Irrigated Catheter in Patients with Resistant Hypertension: A Promising Strategy?

    Energy Technology Data Exchange (ETDEWEB)

    Armaganijan, Luciana, E-mail: luciana-va@hotmail.com; Staico, Rodolfo; Moraes, Aline; Abizaid, Alexandre; Moreira, Dalmo; Amodeo, Celso; Sousa, Márcio; Borelli, Flávio; Armaganijan, Dikran; Sousa, J. Eduardo; Sousa, Amanda [Instituto Dante Pazzanese de Cardiologia, São Paulo, SP (Brazil)

    2014-04-15

    Systemic hypertension is an important public health problem and a significant cause of cardiovascular mortality. Its high prevalence and the low rates of blood pressure control have resulted in the search for alternative therapeutic strategies. Percutaneous renal sympathetic denervation emerged as a perspective in the treatment of patients with resistant hypertension. To evaluate the feasibility and safety of renal denervation using an irrigated catheter. Ten patients with resistant hypertension underwent the procedure. The primary endpoint was safety, as assessed by periprocedural adverse events, renal function and renal vascular abnormalities at 6 months. The secondary endpoints were changes in blood pressure levels (office and ambulatory monitoring) and in the number of antihypertensive drugs at 6 months. The mean age was 47.3 (± 12) years, and 90% of patients were women. In the first case, renal artery dissection occurred as a result of trauma due to the long sheath; no further cases were observed after technical adjustments, thus showing an effect of the learning curve. No cases of thrombosis/renal infarction or death were reported. Elevation of serum creatinine levels was not observed during follow-up. At 6 months, one case of significant renal artery stenosis with no clinical consequences was diagnosed. Renal denervation reduced office blood pressure levels by 14.6/6.6 mmHg, on average (p = 0.4 both for systolic and diastolic blood pressure). Blood pressure levels on ambulatory monitoring decreased by 28/17.6 mmHg (p = 0.02 and p = 0.07 for systolic and diastolic blood pressure, respectively). A mean reduction of 2.1 antihypertensive drugs was observed. Renal denervation is feasible and safe in the treatment of resistant systemic arterial hypertension. Larger studies are required to confirm our findings.

  6. Non-viral gene delivery strategies for gene therapy: a “ménage à trois” among nucleic acids, materials, and the biological environment

    International Nuclear Information System (INIS)

    Pezzoli, Daniele; Candiani, Gabriele

    2013-01-01

    Gene delivery is the science of transferring genetic material into cells by means of a vector to alter cellular function or structure at a molecular level. In this context, a number of nucleic acid-based drugs have been proposed and experimented so far and, as they act on distinct steps along the gene transcription–translation pathway, specific delivery strategies are required to elicit the desired outcome. Cationic lipids and polymers, collectively known as non-viral delivery systems, have thus made their breakthrough in basic and medical research. Albeit they are promising alternatives to viral vectors, their therapeutic application is still rather limited as high transfection efficiencies are normally associated to adverse cytotoxic side effects. In this scenario, drawing inspiration from processes naturally occurring in vivo, major strides forward have been made in the development of more effective materials for gene delivery applications. Specifically, smart vectors sensitive to a variety of physiological stimuli such as cell enzymes, redox status, and pH are substantially changing the landscape of gene delivery by helping to overcome some of the systemic and intracellular barriers that viral vectors naturally evade. Herein, after summarizing the state-of-the-art information regarding the use of nucleic acids as drugs, we review the main bottlenecks still limiting the overall effectiveness of non-viral gene delivery systems. Finally, we provide a critical outline of emerging stimuli-responsive strategies and discuss challenges still existing on the road toward conceiving more efficient and safer multifunctional vectors.

  7. Effective teaching strategies and methods of delivery for patient education: a systematic review and practice guideline recommendations.

    Science.gov (United States)

    Friedman, Audrey Jusko; Cosby, Roxanne; Boyko, Susan; Hatton-Bauer, Jane; Turnbull, Gale

    2011-03-01

    The objective of this study was to determine effective teaching strategies and methods of delivery for patient education (PE). A systematic review was conducted and reviews with or without meta-analyses, which examined teaching strategies and methods of delivery for PE, were included. Teaching strategies identified are traditional lectures, discussions, simulated games, computer technology, written material, audiovisual sources, verbal recall, demonstration, and role playing. Methods of delivery focused on how to deliver the teaching strategies. Teaching strategies that increased knowledge, decreased anxiety, and increased satisfaction included computer technology, audio and videotapes, written materials, and demonstrations. Various teaching strategies used in combination were similarly successful. Moreover, structured-, culturally appropriate- and patient-specific teachings were found to be better than ad hoc teaching or generalized teaching. Findings provide guidance for establishing provincial standards for the delivery of PE. Recommendations concerning the efficacy of the teaching strategies and delivery methods are provided.

  8. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Dajun D. Sun

    2014-02-01

    Full Text Available Water-insoluble materials containing amorphous solid dispersions (ASD are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate (PHEMA can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  9. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  10. Promising applications in drug delivery systems of a novel β-cyclodextrin derivative obtained by green synthesis.

    Science.gov (United States)

    García, Agustina; Leonardi, Darío; Lamas, María C

    2016-01-15

    An efficient and green method has been developed for the synthesis of succinyl-β-cyclodextrin in aqueous media obtaining very good yield. Acidic groups have been introduced in the synthesized carrier molecule to improve the guest-host affinity. To evaluate the suitability of the novel excipient focused to develop oral dosage forms, albendazole, a BSC class II compound, was chosen as a model drug. The β-cyclodextrin derivative and the inclusion complex were thoroughly characterized in solution and solid state by phase solubility studies, FT-IR spectroscopy, SEM, XRD, ESI-MS, DSC, 1D (1)H NMR, 1D (13)C NMR, selective 1D TOCSY, 2D COSY, 2D HSQC, 2D HMBC and ROESY NMR spectroscopy. Phase solubility studies indicated that both of them β-cyclodextrin and succinyl-β-cyclodextrin formed 1:1 inclusion complexes with albendazole, and the stability constants were 68M(-1) (β-cyclodextrin), 437M(-1) (succinyl-β-cyclodextrin), respectively. Water solubility and dissolution rate of albendazole were significantly improved in complex forms. Thus, the succinyl-β-cyclodextrin derivative could be a promising excipient to design oral dosage forms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Bolstering cholesteryl ester hydrolysis in liver: A hepatocyte-targeting gene delivery strategy for potential alleviation of atherosclerosis.

    Science.gov (United States)

    He, Hongliang; Lancina, Michael G; Wang, Jing; Korzun, William J; Yang, Hu; Ghosh, Shobha

    2017-06-01

    Current atherosclerosis treatment strategies primarily focus on limiting further cholesteryl esters (CE) accumulation by reducing endogenous synthesis of cholesterol in the liver. No therapy is currently available to enhance the removal of CE, a crucial step to reduce the burden of the existing disease. Given the central role of hepatic cholesteryl ester hydrolase (CEH) in the intrahepatic hydrolysis of CE and subsequent removal of the resulting free cholesterol (FC), in this work, we applied galactose-functionalized polyamidoamine (PAMAM) dendrimer generation 5 (Gal-G5) for hepatocyte-specific delivery of CEH expression vector. The data presented herein show the increased specific uptake of Gal-G5/CEH expression vector complexes (simply Gal-G5/CEH) by hepatocytes in vitro and in vivo. Furthermore, the upregulated CEH expression in the hepatocytes significantly enhanced the intracellular hydrolysis of high density lipoprotein-associated CE (HDL-CE) and subsequent conversion/secretion of hydrolyzed FC as bile acids (BA). The increased CEH expression in the liver significantly increased the flux of HDL-CE to biliary as well as fecal FC and BA. Meanwhile, Gal-G5 did not induce hepatic or renal toxicity. It was also not immunotoxic. Because of these encouraging pre-clinical testing results, using this safe and highly efficient hepatocyte-specific gene delivery platform to enhance the hepatic processes involved in cholesterol elimination is a promising strategy for the alleviation of atherosclerosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 20 CFR 669.310 - What are the basic components of an NFJP service delivery strategy?

    Science.gov (United States)

    2010-04-01

    ... include: (a) A customer-centered case management approach; (b) The provision of workforce investment... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What are the basic components of an NFJP service delivery strategy? 669.310 Section 669.310 Employees' Benefits EMPLOYMENT AND TRAINING...

  13. The challenges of implementing advanced access for residents in family medicine in Quebec. Do promising strategies exist?

    Science.gov (United States)

    Abou Malham, Sabina; Touati, Nassera; Maillet, Lara; Breton, Mylaine

    2018-12-01

    The advanced access (AA) model is a highly recommended innovation to improve timely access to primary healthcare. Despite that many studies have shown positive impacts for healthcare professionals, and for patients, implementing this model in clinics with a teaching mission for family medicine residents poses specific challenges. To identify these challenges within these clinics, as well as potential strategies to address them. The authors adopted a qualitative multiple case study design, collected data in 2016 using semi-structured interviews (N = 40) with healthcare professionals and clerical staff in four family medicine units in Quebec, and performed a thematic analysis. They validated results through a discussion workshop, involving many family physicians and residents practicing in different regions Results: Five challenges emerged from the data: 1) choosing, organizing residents' patient; 2) managing and balancing residents' appointment schedules; 3) balancing timely access with relational continuity; 4) understanding the AA model; 5) establishing collaborative practices with other health professionals. Several promising strategies were suggested to address these challenges, including clearly defining residents' patient panels; adopting a team-based care approach; incorporating the model into academic curriculum and clinical training; proactive and ongoing education of health professionals, residents, and patients; involving residents in the change process and in adjustment strategies. To meet the challenges of implementing AA, decision-makers should consider exposing residents to AA during academic training and clinical internships, involving them in team work on arrival, engaging them as key actors in the implementation and in intra- and inter-professional collaborative models.

  14. Care delivery and self management strategies for children with epilepsy.

    Science.gov (United States)

    Fleeman, Nigel; Bradley, Peter M; Lindsay, Bruce

    2015-12-23

    Epilepsy care for children has been criticised for its lack of impact. Various service models and strategies have been developed in response to perceived inadequacies in care provision for children and their families. To compare the effectiveness of any specialised or dedicated intervention for the care of children with epilepsy and their families to the effectiveness of usual care. We searched the Cochrane Epilepsy Group Specialized Register (9 December 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2013,Issue 11), MEDLINE (1946 to June week 2, 2013), EMBASE (1988 to week 25, 2013), PsycINFO (1887 to 11 December 2013) and CINAHL Plus (1937 to 11 December 2013). In addition, we contacted experts in the field to seek information on unpublished and ongoing studies, checked the websites of epilepsy organisations and checked the reference lists of included studies. We included randomised controlled trials (RCTs), controlled or matched trials, cohort studies or other prospective studies with a control group (controlled before-and-after studies), or time series studies. Each review author independently selected studies, extracted data and assessed the quality of included studies. We included five interventions reported in seven study reports (of which only four studies of three interventions were designed as RCTs) in this review. They reported on different education and counselling programmes for children, children and parents, teenagers and parents, or children, adolescents and their parents. Each programme showed some benefits for the well-being of children with epilepsy, but each study had methodological flaws (e.g. in one of the studies designed as an RCT, randomisation failed) and no single programme was independently evaluated by more than one study. While each of the programmes in this review showed some benefit to children with epilepsy, their impacts were extremely variable. No programme showed benefits across the full

  15. Immobilizing Organic-Based Molecular Switches into Metal-Organic Frameworks: A Promising Strategy for Switching in Solid State.

    Science.gov (United States)

    Gui, Bo; Meng, Yi; Xie, Yang; Du, Ke; Sue, Andrew C-H; Wang, Cheng

    2018-01-01

    Organic-based molecular switches (OMS) are essential components for the ultimate miniaturization of nanoscale electronics and devices. For practical applications, it is often necessary for OMS to be incorporated into functional solid-state materials. However, the switching characteristics of OMS in solution are usually not transferrable to the solid state, presumably because of spatial confinement or inefficient conversion in densely packed solid phase. A promising way to circumvent this issue is harboring the functional OMS within the robust and porous environment of metal-organic frameworks (MOFs) as their organic components. In this feature article, recent research progress of OMS-based MOFs is briefly summarized. The switching behaviors of OMS under different stimuli (e.g., light, redox, pH, etc.) in the MOF state are first introduced. After that, the technological applications of these OMS-based MOFs in different areas, including CO 2 adsorption, gas separation, drug delivery, photodynamic therapy, and sensing, are outlined. Finally, perspectives and future challenges are discussed in the conclusion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects

    International Nuclear Information System (INIS)

    Yilgor Huri, Pinar; Huri, Gazi; Yasar, Umit; Dikmen, Nurten; Ucar, Yurdanur; Hasirci, Nesrin; Hasirci, Vasif

    2013-01-01

    The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are early and late appearing factors during bone regeneration, respectively, was shown in vitro to enhance osteoblastic differentiation of bone marrow derived mesenchymal stem cells. In the present study, the aim was to study the effectiveness of this delivery strategy in a rabbit iliac crest model. 3D plotted poly(ε-caprolactone) scaffolds were loaded with BMP carrying nanoparticles to achieve: (a) single BMP-2 or BMP-7 delivery, and (b) their combined delivery in a simultaneous or (c) sequential (biomimetic) fashion. After eight weeks of implantation, computed tomography and biomechanical tests showed better mineralized matrix formation and bone-implant union strength at the defect site in the case of sequential delivery compared to single or simultaneous delivery modes. Bone mineral density (BMD) and push-out stress were: 33.65±2.25 g cm −3 and 14.5±2.28 MPa, respectively, and almost 2.5 fold higher in comparison to those without growth factors (BMD: 14.14±1.21 g cm −3 ; PS: 6.59±0.65 MPa). This study, therefore, supports those obtained in vitro and emphasizes the importance of mimicking the natural timing of bioavailability of osteogenic factors in improving the regeneration of critical-sized bone defects. (paper)

  17. USING MOBILE PHONES TO PROMOTE LIFE SKILLS EDUCATION AMONG OPEN SCHOOLING STUDENTS: Promises, Possibilities, and Potential Strategies

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar MISRA

    2013-07-01

    Full Text Available Across the globe, life skills education has been usually developed as part of a school initiative designed to support the healthy psychosocial development of children and adolescents. In other side, formal education system not always provides young people with good opportunities to become confident and realize their potentials. In this back drop, the biggest challenge is to identify the best strategies for providing effective life skills education to those many children who never attend secondary school or reach an age of high vulnerability and risk taking behaviour in the years immediately before reaching secondary school. Considering the situation that in different parts of the world, majority of the youths is having a mobile or will have a mobile soon, the researcher is of the view that mobile phones can be a viable option to offer life skills education to open schooling students coming from different cultural and social settings and backgrounds. Following this approach, present paper mainly discusses about: promises offered by mobile phones for life skills education; possibilities for using mobile phones as an effective, efficient and economical option for offering life skills education; and potential strategies to offer mobile phones supported life skills education to open schooling students.

  18. Analysis of Cumulative Dose to Implanted Pacemaker According to Various IMRT Delivery Methods: Optimal Dose Delivery Versus Dose Reduction Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Woo; Hong, Se Mie [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of)

    2011-11-15

    Cancer patients with implanted cardiac pacemaker occasionally require radiotherapy. Pacemaker may be damaged or malfunction during radiotherapy due to ionizing radiation or electromagnetic interference. Although radiotherapy should be planned to keep the dose to pacemaker as low as possible not to malfunction ideally, current radiation treatment planning (RTP) system does not accurately calculate deposited dose to adjacent field border or area beyond irradiated fields. In terms of beam delivery techniques using multiple intensity modulated fields, dosimetric effect of scattered radiation in high energy photon beams is required to be detailed analyzed based on measurement data. The aim of this study is to evaluate dose discrepancies of pacemaker in a RTP system as compared to measured doses. We also designed dose reduction strategy limited value of 2 Gy for radiation treatment patients with cardiac implanted pacemaker. Total accumulated dose of 145 cGy based on in-vivo dosimetry was satisfied with the recommendation criteria to prevent malfunction of pacemaker in SS technique. However, the 2 mm lead shielder enabled the scattered doses to reduce up to 60% and 40% in the patient and the phantom, respectively. The SS technique with the lead shielding could reduce the accumulated scattered doses less than 100 cGy. Calculated and measured doses were not greatly affected by the beam delivery techniques. In-vivo and measured doses on pacemaker position showed critical dose discrepancies reaching up to 4 times as compared to planned doses in RTP. The current SS technique could deliver lower scattered doses than recommendation criteria, but use of 2 mm lead shielder contributed to reduce scattered doses by 60%. The tertiary lead shielder can be useful to prevent malfunction or electrical damage of implanted pacemakers during radiotherapy. It is required to estimate more accurate scattered doses of the patient or medical device in RTP to design proper dose reduction strategy.

  19. Analysis of Cumulative Dose to Implanted Pacemaker According to Various IMRT Delivery Methods: Optimal Dose Delivery Versus Dose Reduction Strategy

    International Nuclear Information System (INIS)

    Lee, Jeong Woo; Hong, Se Mie

    2011-01-01

    Cancer patients with implanted cardiac pacemaker occasionally require radiotherapy. Pacemaker may be damaged or malfunction during radiotherapy due to ionizing radiation or electromagnetic interference. Although radiotherapy should be planned to keep the dose to pacemaker as low as possible not to malfunction ideally, current radiation treatment planning (RTP) system does not accurately calculate deposited dose to adjacent field border or area beyond irradiated fields. In terms of beam delivery techniques using multiple intensity modulated fields, dosimetric effect of scattered radiation in high energy photon beams is required to be detailed analyzed based on measurement data. The aim of this study is to evaluate dose discrepancies of pacemaker in a RTP system as compared to measured doses. We also designed dose reduction strategy limited value of 2 Gy for radiation treatment patients with cardiac implanted pacemaker. Total accumulated dose of 145 cGy based on in-vivo dosimetry was satisfied with the recommendation criteria to prevent malfunction of pacemaker in SS technique. However, the 2 mm lead shielder enabled the scattered doses to reduce up to 60% and 40% in the patient and the phantom, respectively. The SS technique with the lead shielding could reduce the accumulated scattered doses less than 100 cGy. Calculated and measured doses were not greatly affected by the beam delivery techniques. In-vivo and measured doses on pacemaker position showed critical dose discrepancies reaching up to 4 times as compared to planned doses in RTP. The current SS technique could deliver lower scattered doses than recommendation criteria, but use of 2 mm lead shielder contributed to reduce scattered doses by 60%. The tertiary lead shielder can be useful to prevent malfunction or electrical damage of implanted pacemakers during radiotherapy. It is required to estimate more accurate scattered doses of the patient or medical device in RTP to design proper dose reduction strategy.

  20. Physicochemical characterization by AFM, FT-IR and DSC and biological assays of a promising antileishmania delivery system loaded with a natural Brazilian product.

    Science.gov (United States)

    Marquele-Oliveira, Franciane; Torres, Elina Cassia; Barud, Hernane da Silva; Zoccal, Karina Furlani; Faccioli, Lúcia Helena; Hori, Juliana I; Berretta, Andresa Aparecida

    2016-05-10

    The control and treatment of Leishmaniasis, a neglected and infectious disease affecting approximately 12 million people worldwide, are challenging. Leishmania parasites multiply intracellularly within macrophages located in deep skin and in visceral tissues, and the currently employed treatments for this disease are subject to significant drawbacks, such as resistance and toxicity. Thus, the search for new Leishmaniasis treatments is compulsory, and Ocotea duckei Vattimo, a plant-derived product from the biodiverse Brazilian flora, may be a promising new treatment for this disease. In this regard, the aim of this work was to develop and characterize a delivery system based on solid lipid nanoparticles (SLN) that contain the liposoluble lignan fraction (LF) of Ocotea duckei Vattimo, which targets the Leishmania phagolysosome of infected macrophages. LF-loaded SLNs were obtained via the hot microemulsion method, and their physical and chemical properties were comprehensively assessed using PCS, AFM, SEM, FT-IR, DSC, HPLC, kinetic drug release studies, and biological assays. The size of the developed delivery system was 218.85±14.2 nm, its zeta potential was -30 mV and its entrapment efficiency (EE%) was high (the EEs% of YAN [yangambin] and EPI-YAN [epi-yangambin] markers were 94.21±0.40% and 94.20±0.00%, respectively). Microscopy, FT-IR and DSC assays confirmed that the delivery system was nanosized and indicated a core-shell encapsulation model, which corroborated the measured kinetics of drug release. The total in vitro release rates of YAN and EPI-YAN in buffer (with sink conditions attained) were 29.6±8.3% and 34.3±8.9%, respectively, via diffusion through the cellulose acetate membrane of the SLN over a period of 4 h. After 24 h, the release rates of both markers reached approximately 45%, suggesting a sustained pattern of release. Mathematical modeling indicated that both markers, YAN and EPI-YAN, followed matrix diffusion-based release kinetics (Higuchi

  1. Strategies to improve drug delivery across the blood-brain barrier.

    Science.gov (United States)

    de Boer, Albertus G; Gaillard, Pieter J

    2007-01-01

    The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.

  2. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ji Young Yhee

    2016-09-01

    Full Text Available Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD, cystic fibrosis (CF, idiopathic pulmonary fibrosis (IPF, and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.

  3. Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.

    Science.gov (United States)

    Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur

    2017-01-01

    Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Systematic Assessment of Strategies for Lung-targeted Delivery of MicroRNA Mimics

    Science.gov (United States)

    Schlosser, Kenny; Taha, Mohamad; Stewart, Duncan J.

    2018-01-01

    There is considerable interest in the use of synthetic miRNA mimics (or inhibitors) as potential therapeutic agents in pulmonary vascular disease; however, the optimal delivery method to achieve high efficiency, selective lung targeting has not been determined. Here, we sought to investigate the relative merits of different lung-targeted strategies for delivering miRNA mimics in rats. Methods: Tissue levels of a synthetic miRNA mimic, cel-miR-39-3p (0.5 nmol in 50 µL invivofectamine/PBS vehicle) were compared in male rats (n=3 rats/method) after delivery by commonly used lung-targeting strategies including intratracheal liquid instillation (IT-L), intratracheal aerosolization with (IT-AV) or without ventilator assistance (IT-A), intranasal liquid instillation (IN-L) and intranasal aerosolization (IN-A). Intravenous (IV; via jugular vein), intraperitoneal (IP) and subcutaneous (SC) delivery served as controls. Relative levels of cel-miR-39 were quantified by RT-qPCR. Results: At 2 h post delivery, IT-L showed the highest lung mimic level, which was significantly higher than levels achieved by all other methods (from ~10- to 10,000-fold, pMimic levels remained detectable in the lung 24 h after delivery, but were 10- to 100-fold lower. The intrapulmonary distribution of cel-miR-39 was comparable when delivered as either a liquid or aerosol, with evidence of mimic distribution to both the left and right lung lobes and penetration to distal regions. All lung-targeted strategies showed lung-selective mimic uptake, with mimic levels 10- to 100-fold lower in heart and 100- to 10,000-fold lower in liver, kidney and spleen. In contrast, IV, SC and IP routes showed comparable or higher mimic levels in non-pulmonary tissues. Conclusions: miRNA uptake in the lungs differed markedly by up to 4 orders of magnitude, demonstrating that the choice of delivery strategy could have a significant impact on potential therapeutic outcomes in preclinical investigations of miRNA-based drug

  5. User evaluations offer promise for pod-intravaginal ring as a drug delivery platform: A mixed methods study of acceptability and use experiences.

    Science.gov (United States)

    Guthrie, Kate M; Rosen, Rochelle K; Vargas, Sara E; Getz, Melissa L; Dawson, Lauren; Guillen, Melissa; Ramirez, Jaime J; Baum, Marc M; Vincent, Kathleen L

    2018-01-01

    evaluations elicited by them, could both challenge use or be used to leverage use in future trials and product rollout once fully articulated. High willingness-to-use data and lack of salient differences in user experiences related to use of the pod-IVR platform (regardless of agents delivered) suggests that the pod-IVR is a feasible and acceptable drug delivery device in and of itself. This finding holds promise both for an anti-HIV pod-IVR and, potentially, a multipurpose prevention pod-IVR that could deliver both prevention for sexually transmitted infections (STIs) including HIV and contraception. Given the very early clinical trial context, further acceptability, perceptibility, and adherence data should continue to be explored, in the context of longer use periods (e.g., 28-day ring use), and in the contexts of sexual activity and menses. Using early design and development contexts to gain insights into potential challenges and facilitators of drug delivery systems such as the pod-IVR could save valuable resources and time as a potential biomedical technology moves through the clinical trial pipeline and into real-world use.

  6. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    Science.gov (United States)

    Bhise, Nupura S.

    Gene therapy involves the delivery of deoxyribonucleic acid (DNA) into cells to override or replace a malfunctioning gene for treating debilitating genetic diseases, including cancer and neurodegenerative diseases. In addition to its use as a therapeutic, it can also serve as a technology to enable regenerative medicine strategies. The central challenge of the gene therapy research arena is developing a safe and effective delivery agent. Since viral vectors have critical immunogenic and tumorogenic safety issues that limit their clinical use, recent efforts have focused on developing non-viral biomaterial based delivery vectors. Cationic polymers are an attractive class of gene delivery vectors due to their structural versatility, ease of synthesis, biodegradability, ability to self-complex into nanoparticles with negatively charged DNA, capacity to carry large cargo, cellular uptake and endosomal escape capacity. In this thesis, we hypothesized that developing a biomaterial library of poly(betaamino esters) (PBAE), a newer class of cationic polymers consisting of biodegradable ester groups, would allow investigating vector design parameters and formulating effective non-viral gene delivery strategies for cancer drug delivery, tissue engineering and stem cell engineering. Consequently, a high-throughput transfection assay was developed to screen the PBAE-based nanoparticles in hard to transfect fibroblast cell lines. To gain mechanistic insights into the nanoparticle formulation process, biophysical properties of the vectors were characterized in terms of molecular weight (MW), nanoparticle size, zeta potential and plasmid per particle count. We report a novel assay developed for quantifying the plasmid per nanoparticle count and studying its implications for co-delivery of multiple genes. The MW of the polymers ranged from 10 kDa to 100 kDa, nanoparticle size was about 150 run, zeta potential was about 30 mV in sodium acetate buffer (25 mM, pH 5) and 30 to 100

  7. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  8. Development of strategies to reduce cesarean delivery rates in iran 2012-2014: A mixed methods study

    Directory of Open Access Journals (Sweden)

    Razieh Lotfi

    2014-01-01

    Full Text Available Background: With the change in population policy from birth control toward encouraging birth and population growth in Iran, repeated cesarean deliveries as a main reason of cesarean section are associated with more potential adverse consequences. The aim of this research was to explore effective strategies to reduce cesarean delivery rates in Iran. Methods: A mixed methodological study was designed and implemented. First, using a qualitative approach, concepts and influencing factors of increased cesarean delivery were explored. Based on the findings of this phase of the study, a questionnaire including the proposed strategies to reduce cesarean delivery was developed. Then in a quantitative phase, the questionnaire was assessed by key informants from across the country and evaluated to obtain more effective strategies to reduce cesarean delivery. Ten participants in the qualitative study included policy makers from the Ministry of Health, obstetricians, midwives and anthropologists. In the next step, 141 participants from private and public hospitals, insurance experts, Academic Associations of Midwifery, and policy makers in Maternity Health Affairs of Ministry of Health were invited to assess and provide feedback on the strategies that work to reduce cesarean deliveries. Results: Qualitative data analysis showed four concept related to increased cesarean delivery rates including; "standardization", "education", "amending regulations", and "performance supervision". Effective strategies extracted from qualitative data were rated by participants then, using ACCEPT derived from A as attainability, C as costing, C as complication, E as effectiveness, P as popularity, and T as timing table 19 strategies were detected as priorities. Conclusions: Although developing effective strategies to reduce cesarean delivery rates is complex process because of the multi-factorial nature of increased cesarean deliveries, in this study we have achieved

  9. Current challenges and emerging drug delivery strategies for the treatment of psoriasis.

    Science.gov (United States)

    Hoffman, Melissa B; Hill, Dane; Feldman, Steven R

    2016-10-01

    Psoriasis is a common skin disorder associated with physical, social, psychological and financial burden. Over the past two decades, advances in our understanding of pathogenesis and increased appreciation for the multifaceted burden of psoriasis has led to new treatment development and better patient outcomes. Yet, surveys demonstrate that many psoriasis patients are either undertreated or are dissatisfied with treatment. There are many barriers that need be overcome to optimize patient outcomes and satisfaction. This review covers the current challenges associated with each major psoriasis treatment strategy (topical, phototherapy, oral medications and biologics). It also reviews the challenges associated with the psychosocial aspects of the disease and how they affect treatment outcomes. Patient adherence, inconvenience, high costs, and drug toxicities are all discussed. Then, we review the emerging drug delivery strategies in topical, oral, and biologic therapy. By outlining current treatment challenges and emerging drug delivery strategies, we hope to highlight the deficits in psoriasis treatment and strategies for how to overcome them. Regardless of disease severity, clinicians should use a patient-centered approach. In all cases, we need to balance patients' psychosocial needs, treatment costs, convenience, and effectiveness with patients' preferences in order to optimize treatment outcomes.

  10. Self-Micro Emulsifying Drug Delivery Systems: a Strategy to Improve Oral Bioavailability

    Directory of Open Access Journals (Sweden)

    Vijay K. Sharma

    Full Text Available Aim: Oral route has always been the favorite route of drug administration in many diseases and till today it is the first way investigated in the development of new dosage forms. The major problem in oral drug formulations is low and erratic bioavailability, which mainly results from poor aqueous solubility, thereby pose problems in their formulation. For the therapeutic delivery of lipophilic active moieties (BCS class II drugs, lipid based formulations are inviting increasing attention. Methods: To that aim, from the web sites of PubMed, HCAplus, Thomson, and Registry were used as the main sources to perform the search for the most significant research articles published on the subject. The information was then carefully analyzed, highlighting the most important results in the formulation and development of self-micro emulsifying drug delivery systems as well as its therapeutic activity. Results: Self-emulsifying drug delivery system (SMEDDS has gained more attention due to enhanced oral bio-availability enabling reduction in dose, more consistent temporal profiles of drug absorption, selective targeting of drug(s toward specific absorption window in GIT, and protection of drug(s from the unreceptive environment in gut. Conclusions: This article gives a complete overview of SMEDDS as a promising approach to effectively deal with the problem of poorly soluble molecules.

  11. Controlled local drug delivery strategies from chitosan hydrogels for wound healing.

    Science.gov (United States)

    Elviri, Lisa; Bianchera, Annalisa; Bergonzi, Carlo; Bettini, Ruggero

    2017-07-01

    The main target of tissue engineering is the preparation and application of adequate materials for the design and production of scaffolds, that possess properties promoting cell adhesion, proliferation and differentiation. The use of natural polysaccharides, such as chitosan, to prepare hydrogels for wound healing and controlled drug delivery is a research topic of wide and increasing interest. Areas covered: This review presents the latest results and challenges in the preparation of chitosan and chitosan-based scaffold/hydrogel for wound healing applications. A detailed overview of their behavior in terms of controlled drug delivery, divided by drug categories, and efficacy was provided and critically discussed. Expert opinion: The need to establish and exploit the advantages of natural biomaterials in combination with active compounds is playing a pivotal role in the regenerative medicine fields. The challenges posed by the many variables affecting tissue repair and regeneration need to be standardized and adhere to recognized guidelines to improve the quality of evidence in the wound healing process. Currently, different methodologies are followed to prepare innovative scaffold formulations and structures. Innovative technologies such as 3D printing or bio-electrospray are promising to create chitosan-based scaffolds with finely controlled structures with customizable shape porosity and thickness. Chitosan scaffolds could be designed in combination with a variety of polysaccharides or active compounds with selected and reproducible spacial distribution, providing active wound dressing with highly tunable controlled drug delivery.

  12. Experiences of operational costs of HPV vaccine delivery strategies in Gavi-supported demonstration projects

    Science.gov (United States)

    Holroyd, Taylor; Nanda, Shreya; Bloem, Paul; Griffiths, Ulla K.; Sidibe, Anissa; Hutubessy, Raymond C. W.

    2017-01-01

    From 2012 to 2016, Gavi, the Vaccine Alliance, provided support for countries to conduct small-scale demonstration projects for the introduction of the human papillomavirus vaccine, with the aim of determining which human papillomavirus vaccine delivery strategies might be effective and sustainable upon national scale-up. This study reports on the operational costs and cost determinants of different vaccination delivery strategies within these projects across twelve countries using a standardized micro-costing tool. The World Health Organization Cervical Cancer Prevention and Control Costing Tool was used to collect costing data, which were then aggregated and analyzed to assess the costs and cost determinants of vaccination. Across the one-year demonstration projects, the average economic and financial costs per dose amounted to US$19.98 (standard deviation ±12.5) and US$8.74 (standard deviation ±5.8), respectively. The greatest activities representing the greatest share of financial costs were social mobilization at approximately 30% (range, 6–67%) and service delivery at about 25% (range, 3–46%). Districts implemented varying combinations of school-based, facility-based, or outreach delivery strategies and experienced wide variation in vaccine coverage, drop-out rates, and service delivery costs, including transportation costs and per diems. Size of target population, number of students per school, and average length of time to reach an outreach post influenced cost per dose. Although the operational costs from demonstration projects are much higher than those of other routine vaccine immunization programs, findings from our analysis suggest that HPV vaccination operational costs will decrease substantially for national introduction. Vaccination costs may be decreased further by annual vaccination, high initial investment in social mobilization, or introducing/strengthening school health programs. Our analysis shows that drivers of cost are dependent on

  13. Boosting ART uptake and retention among HIV-infected pregnant and breastfeeding women and their infants: the promise of innovative service delivery models.

    Science.gov (United States)

    Srivastava, Meena; Sullivan, David; Phelps, B Ryan; Modi, Surbhi; Broyles, Laura N

    2018-01-01

    With the rapid scale-up of antiretroviral treatment (ART) in the "Treat All" era, there has been increasing emphasis on using differentiated models of HIV service delivery. The gaps within the clinical cascade for mothers and their infants suggest that current service delivery models are not meeting families' needs and prompt re-consideration of how services are provided. This article will explore considerations for differentiated care and encourage the ongoing increase of ART coverage through innovative strategies while also addressing the unique needs of mothers and infants. Service delivery models should recognize that the timing of the mother's HIV diagnosis is a critical aspect of determining eligibility. Women newly diagnosed with HIV require a more intensive approach so that adequate counselling and monitoring of ART initiation and response can be provided. Women already on ART with evidence of virologic failure are also at high risk of transmitting HIV to their infants and require close follow-up. However, women stable on ART with a suppressed viral load before conception have a very low likelihood of HIV transmission and thus are strong candidates for multi-month ART dispensing, community-based distribution of ART, adherence clubs, community adherence support groups and longer intervals between clinical visits. A number of other factors should be considered when defining eligibility of mothers and infants for differentiated care, including location of services, viral load monitoring and duration on ART. To provide differentiated care that is client-centred and driven while encompassing a family-based approach, it will be critical to engage mothers, families and communities in models that will optimize client satisfaction, retention in care and quality of services. Differentiated care for mothers and infants represents an opportunity to provide client-centred care that reduces the burden on clients and health systems while improving the quality and uptake

  14. The health maintenance organization strategy: a corporate takeover of health services delivery.

    Science.gov (United States)

    Salmon, J W

    1975-01-01

    This paper presents a political economic framework for viewing the social organization of the delivery of health care servies and predicting a qualitatively different institutional configuration involving the health maintenance organization. The principal forces impacting American capitalism today are leading to a fundamental restructuring for increased social efficiency of the entire social welfare sector, including the health services industry. The method to achieve this restructuring involves health policy directed at raising the contribution to the social surplus from the delivery of health care services and eventual corporate domination. The health maintenance organization conceptualization is examined with suggestions as to how the HMO strategy promoted by the state leads to this corporate takeover. The mechanism and extent of the present corporate involvement are examined and implications of health services as a social control mechanism are presented.

  15. Delivery of viral vectors to tumor cells: extracellular transport, systemic distribution, and strategies for improvement.

    Science.gov (United States)

    Wang, Yong; Yuan, Fan

    2006-01-01

    It is a challenge to deliver therapeutic genes to tumor cells using viral vectors because (i) the size of these vectors are close to or larger than the space between fibers in extracellular matrix and (ii) viral proteins are potentially toxic in normal tissues. In general, gene delivery is hindered by various physiological barriers to virus transport from the site of injection to the nucleus of tumor cells and is limited by normal tissue tolerance of toxicity determined by local concentrations of transgene products and viral proteins. To illustrate the obstacles encountered in the delivery and yet limit the scope of discussion, this review focuses only on extracellular transport in solid tumors and distribution of viral vectors in normal organs after they are injected intravenously or intratumorally. This review also discusses current strategies for improving intratumoral transport and specificity of viral vectors.

  16. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  17. Household coping strategies for delivery and related healthcare cost: findings from rural Bangladesh.

    Science.gov (United States)

    Hoque, Mohammad Enamul; Dasgupta, Sushil Kanta; Naznin, Eva; Al Mamun, Abdullah

    2015-10-01

    This study aims to measure the economic costs of maternal complication and to understand household coping strategies for financing maternal healthcare cost. A household survey of the 706 women with maternal complication, of whom 483 had normal delivery, was conducted to collect data at 6 weeks and 6 months post-partum. Data were collected on socio-economic information of the household, expenditure during delivery and post-partum, coping strategies adopted by households and other related information. Despite the high cost of health care associated with maternal complications, the majority of families were capable of protecting consumption on non-health items. Around one-third of households spent more than 20% of their annual household expenditure on maternal health care. Almost 50% were able to avoid catastrophic spending because of the coping strategies that they relied on. In general, households appeared resilient to short-term economic consequences of maternal health shocks, due to the availability of informal credit, donations from relatives and selling assets. While richer households fund a greater portion of the cost of maternal health care from income and savings, the poorer households with severe maternal complication resorted to borrowing from local moneylenders at high interest, which may leave them vulnerable to financial difficulties. Financial protection, especially for the poor, may benefit households against economic consequences of maternal complication. © 2015 John Wiley & Sons Ltd.

  18. Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Wang Q

    2015-07-01

    Full Text Available Qingbing Wang,1,2 Jianfeng Li,3 Sai An,3 Yi Chen,1 Chen Jiang,3 Xiaolin Wang1,2 1Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 2Shanghai Institute of Medical Imaging, 3Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China Background: Gene therapy is a very promising technology for treatment of pancreatic ductal adenocarcinoma (PDAC. However, its application has been limited by the abundant stromal response in the tumor microenvironment. The aim of this study was to prepare a dendrimer-based gene-free loading vector with high permeability in the tumor stroma and explore an imaging-guided local gene delivery strategy for PDAC to promote the efficiency of targeted gene delivery.Methods: The experimental protocol was approved by the animal ethics committee of Zhongshan Hospital, Fudan University. Third-generation dendrigraft poly-L-lysines was selected as the nanocarrier scaffold, which was modified by cell-penetrating peptides and gadolinium (Gd chelates. DNA plasmids were loaded with these nanocarriers via electrostatic interaction. The cellular uptake and loaded gene expression were examined in MIA PaCa-2 cell lines in vitro. Permeability of the nanoparticles in the tumor stroma and transfected gene distribution in vivo were studied using a magnetic resonance imaging-guided delivery strategy in an orthotopic nude mouse model of PDAC.Results: The nanocarriers were synthesized with a dendrigraft poly-L-lysine to polyethylene glycol to DTPA ratio of 1:3.4:8.3 and a mean diameter of 110.9±7.7 nm. The luciferases were strictly expressed in the tumor, and the luminescence intensity in mice treated by Gd-DPT/plasmid luciferase (1.04×104±9.75×102 p/s/cm2/sr was significantly (P<0.05 higher than in those treated with Gd-DTPA (9.56×102±6.15×10 p/s/cm2/sr and Gd-DP (5.75×103± 7.45×102 p/s/cm2/sr

  19. iPhone application development strategies for efficient mobile design and delivery

    CERN Document Server

    Hahn, Jim

    2011-01-01

    iPhone application development is explained here in an accessible treatment for the generalist Library and Information Science (LIS) practitioner. Future information-seeking practices by users will take place across a diverse array of ubiquitous computing devices. iPhone applications represent one of the most compelling new platforms for which to remediate and re-engineer library service. Strategies of efficient mobile design and delivery include adapting computing best practices of data independence and adhering to web standards as articulated by the W3C. These best practices apply across the

  20. The Social Media MBA Your Competitive Edge in Social Media Strategy Development and Delivery

    CERN Document Server

    Holloman, Christer

    2011-01-01

    It's a fact that companies so far have only scratched the surface of what can be achieved with social media. Whatever continent, industry, company size, current degree of social media adoption or your job title, the purpose of this book is to inspire you to see how you can raise the bar further to reap new rewards. It will give you the tools to make a difference to your organisation's social media strategy development and delivery going forward. In addition it will also give you more intellectual support and confidence to discuss social media on a higher level with peers, inspire colleagues or

  1. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system.

    Science.gov (United States)

    Kibria, Golam; Hatakeyama, Hiroto; Harashima, Hideyoshi

    2014-01-01

    Multidrug resistance (MDR), the principal mechanism by which many cancers develop resistance to chemotherapy, is one of the major obstacles to the successful clinical treatment of various types of cancer. Several key regulators are responsible for mediating MDR, a process that renders chemotherapeutic drugs ineffective in the internal organelles of target cells. A nanoparticulate drug delivery system (DDS) is a potentially promising tool for circumventing such MDR, which can be achieved by targeting tumor cells themselves or tumor endothelial cells that support the survival of MDR cancer cells. The present article discusses key factors that are responsible for MDR in cancer cells, with a specific focus on the application of DDS to overcome MDR via the use of chemotherapy or macromolecules.

  2. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective

    Directory of Open Access Journals (Sweden)

    Zhenjie Wang

    2017-11-01

    Full Text Available Mitochondria are a novel and promising therapeutic target for diagnosis, treatment and prevention of a lot of human diseases such as cancer, metabolic diseases and neurodegenerative disease. Owing to the mitochondrial special bilayer structure and highly negative potential nature, therapeutic molecules have multiple difficulties in reaching mitochondria. To overcome multiple barriers for targeting mitochondria, the researchers developed various pharmaceutical preparations such as liposomes, polymeric nanoparticles and inorganic nanoparticles modified by mitochondriotropic moieties like dequalinium (DQA, triphenylphosphonium (TPP, mitochondrial penetrating peptides (MPPs and mitochondrial protein import machinery that allow specific targeting. The targeted formulations exhibited enhanced pharmacological effect and better therapeutic effect than their untargeted counterpart both in vitro and in vivo. Nanocarriers may be used for bio-therapeutic delivery into specific mitochondria that possess a great potential treatment of mitochondria related diseases.

  3. Vitamin A supplementation in Tanzania: the impact of a change in programmatic delivery strategy on coverage

    Directory of Open Access Journals (Sweden)

    Shekar Meera

    2006-11-01

    Full Text Available Abstract Background Efficient delivery strategies for health interventions are essential for high and sustainable coverage. We report impact of a change in programmatic delivery strategy from routine delivery through the Expanded Programme on Immunization (EPI+ approach to twice-yearly mass distribution campaigns on coverage of vitamin A supplementation in Tanzania Methods We investigated disparities in age, sex, socio-economic status, nutritional status and maternal education within vitamin A coverage in children between 1 and 2 years of age from two independent household level child health surveys conducted (1 during a continuous universal targeting scheme based on routine EPI contacts for children aged 9, 15 and 21 months (1999; and (2 three years later after the introduction of twice-yearly vitamin A supplementation campaigns for children aged 6 months to 5 years, a 6-monthly universal targeting scheme (2002. A representative cluster sample of approximately 2,400 rural households was obtained from Rufiji, Morogoro Rural, Kilombero and Ulanga districts. A modular questionnaire about the health of all children under the age of five was administered to consenting heads of households and caretakers of children. Information on the use of child health interventions including vitamin A was asked. Results Coverage of vitamin A supplementation among 1–2 year old children increased from 13% [95% CI 10–18%] in 1999 to 76% [95%CI 72–81%] in 2002. In 2002 knowledge of two or more child health danger signs was negatively associated with vitamin A supplementation coverage (80% versus 70% (p = 0.04. Nevertheless, we did not find any disparities in coverage of vitamin A by district, gender, socio-economic status and DPT vaccinations. Conclusion Change in programmatic delivery of vitamin A supplementation was associated with a major improvement in coverage in Tanzania that was been sustained by repeated campaigns for at least three years. There is a

  4. A Systematic Review of Promising Strategies of Faith-Based Cancer Education and Lifestyle Interventions Among Racial/Ethnic Minority Groups.

    Science.gov (United States)

    Hou, Su-I; Cao, Xian

    2017-09-13

    Church-based interventions have been used to reach racial/ethnic minorities. In order to develop effective programs, we conducted a comprehensive systematic review of faith-based cancer prevention studies (2005~2016) to examine characteristics and promising strategies. Combination terms "church or faith-based or religion," "intervention or program," and "cancer education or lifestyle" were used in searching the five major databases: CINAHL; ERIC; Health Technology Assessments; MEDLINE; and PsycInfo. A total of 20 studies met study criteria. CDC's Community Guide was used to analyze and review group interventions. Analyses were organized by two racial groups: African American (AA) and Latino/Hispanic American groups. Results showed most studies reviewed focused on breast cancer alone or in combination with other cancers. Studies of Latino/Hispanic groups targeted more on uninsured, Medicare, or Medicaid individuals, whereas AA studies generally did not include specific insurance criteria. The sample sizes of the AA studies were generally larger. The majority of these studies reviewed used pre-post, posttest only with control group, or quasi-experience designs. The Health Belief Model was the most commonly used theory in both groups. Community-based participatory research and empowerment/ecological frameworks were also used frequently in the Latino/Hispanic studies. Small media and group education were the top two most popular intervention strategies in both groups. Although one-on-one strategy was used in some Latino studies, neither group used reducing client out-of-pocket costs strategy. Client reminders could also be used more in both groups as well. Current review showed church-based cancer education programs were effective in changing knowledge, but not always screening utilization. Results show faith-based cancer educational interventions are promising. To maximize intervention impact, future studies might consider using stronger study designs, incorporating a

  5. Pasundan Delivery Services (PT. Wahana Bumi Raya) Business Strategy Formulation and Implementation to Create Sustain Future Competition

    OpenAIRE

    Haryanto, Iman; Wandebori, Harimukti

    2012-01-01

    Pasundan Delivery Services (PDS) is the delivery services provider using motorcycle provide solutions for visitors and Bandung citizens to effective and efficient their valuable time, run its costumer order through smartphone and social media, lucrative demand leads PDS to formulate its strategy to reach more costumers among existing competitors to win the competition in and as the leader the future. Formulation of strategic management involving small team discussion group as the management o...

  6. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system

    Science.gov (United States)

    Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng

    2018-01-01

    Background Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. Purpose The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. Methods LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog (Ihh) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). Results In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. Conclusion This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes. PMID:29440889

  7. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system.

    Science.gov (United States)

    Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng; Wei, Lei

    2018-01-01

    Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog ( Ihh ) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes.

  8. Fuzzy promises

    DEFF Research Database (Denmark)

    Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas

    2012-01-01

    as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....

  9. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system

    Directory of Open Access Journals (Sweden)

    Wang S

    2018-01-01

    impact on catabolic metabolism. Conclusion: This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes. Keywords: cartilage diseases, lipid nanoparticle, RNA interference, delivery system

  10. Multiple-robot drug delivery strategy through coordinated teams of microswimmers

    Energy Technology Data Exchange (ETDEWEB)

    Kei Cheang, U; Kim, Min Jun, E-mail: mkim@coe.drexel.edu [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Lee, Kyoungwoo [Department of Computer Science, Yonsei University, Seoul 120-749 (Korea, Republic of); Julius, Anak Agung [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2014-08-25

    Untethered robotic microswimmers are very promising to significantly improve various types of minimally invasive surgeries by offering high accuracy at extremely small scales. A prime example is drug delivery, for which a large number of microswimmers is required to deliver sufficient dosages to target sites. For this reason, the controllability of groups of microswimmers is essential. In this paper, we demonstrate simultaneous control of multiple geometrically similar but magnetically different microswimmers using a single global rotating magnetic field. By exploiting the differences in their magnetic properties, we triggered different swimming behaviors from the microswimmers by controlling the frequency and the strength of the global field, for example, one swim and the other does not while exposed to the same control input. Our results show that the balance between the applied magnetic torque and the hydrodynamic torque can be exploited for simultaneous control of two microswimmers to swim in opposite directions, with different velocities, and with similar velocities. This work will serve to establish important concepts for future developments of control systems to manipulate multiple magnetically actuated microswimmers and a step towards using swarms of microswimmers as viable workforces for complex operations.

  11. Multiple-robot drug delivery strategy through coordinated teams of microswimmers

    International Nuclear Information System (INIS)

    Kei Cheang, U; Kim, Min Jun; Lee, Kyoungwoo; Julius, Anak Agung

    2014-01-01

    Untethered robotic microswimmers are very promising to significantly improve various types of minimally invasive surgeries by offering high accuracy at extremely small scales. A prime example is drug delivery, for which a large number of microswimmers is required to deliver sufficient dosages to target sites. For this reason, the controllability of groups of microswimmers is essential. In this paper, we demonstrate simultaneous control of multiple geometrically similar but magnetically different microswimmers using a single global rotating magnetic field. By exploiting the differences in their magnetic properties, we triggered different swimming behaviors from the microswimmers by controlling the frequency and the strength of the global field, for example, one swim and the other does not while exposed to the same control input. Our results show that the balance between the applied magnetic torque and the hydrodynamic torque can be exploited for simultaneous control of two microswimmers to swim in opposite directions, with different velocities, and with similar velocities. This work will serve to establish important concepts for future developments of control systems to manipulate multiple magnetically actuated microswimmers and a step towards using swarms of microswimmers as viable workforces for complex operations.

  12. Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer

    OpenAIRE

    Wang, Xiaolin; Wang,Qingbing; Li,Jianfeng; An,Sai; Chen,Yi; Jiang,Chen

    2015-01-01

    Qingbing Wang,1,2 Jianfeng Li,3 Sai An,3 Yi Chen,1 Chen Jiang,3 Xiaolin Wang1,2 1Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 2Shanghai Institute of Medical Imaging, 3Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China Background: Gene therapy is a very promising technology for treatment of pancreatic ductal adenocarci...

  13. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    Directory of Open Access Journals (Sweden)

    Andrew H. Baker

    2010-10-01

    Full Text Available Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX, which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs. These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon, pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies, can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX, or alternatively, through the use of polymer

  14. Delivery of gentamicin from resorbable polymeric carriers as anti-infective strategy for implant-associated osteomyelitis

    NARCIS (Netherlands)

    ter Boo, G.A.

    2016-01-01

    This thesis describes the development of gentamicin loaded resorbable polymeric carriers as anti-infective strategy for implant-associated osteomyelitis and their in vitro and in vivo evaluation. Local delivery of antibiotics has several advantages in the case of trauma to the bone and surrounding

  15. Dance and Hometown Associations are Promising Strategies to Improve Physical Activity Participation Among US Nigerian Transnational Immigrants.

    Science.gov (United States)

    Ibe-Lamberts, Kelechi; Tshiswaka, Daudet Ilunga; Onyenekwu, Ifeyinwa; Schwingel, Andiara; Iwelunmor, Juliet

    2018-04-01

    Lack of physical activity participation has been identified as a determinant for negative health outcomes across various ethnicities worldwide and within the USA. We investigated the perceptions of the prospects of promoting dancing within hometown associations as a form for improving physical activity participation for Nigerian Transnational Immigrants (NTIs) in the USA: a migrant cohort subset of individuals who maintain cross-border ties with their indigenous communities of origin. Using PEN-3 cultural model, we conducted semi-structured interviews with 24 transnational African migrants (11 males and 13 females) living in Chicago to explore culturally sensitive strategies to promote physical activity participation among our target population. The findings revealed positive perceptions related to dancing that might help to promote physical activity (PA) among NTI, existential or unique perceptions related to Nigerian parties that may also play a role with PA promotion, and negative perception in the form of limited discussions about PA in Nigerian hometown associations in the USA. Results from this study highlight the need for further investigation on culturally sensitive strategies to improve physical activity and participation in diverse Black immigrant populations, specifically in the form of cultural dance and activities such as parties in which this population frequently participate in. Furthermore, hometown associations may also serve as a platform for the implementation of PA programs due to its large reach to a rather covert group.

  16. Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture

    Science.gov (United States)

    Asok, Aparna; Arshad, Esha; Jasmin, C.; Somnath Pai, S.; Bright Singh, I. S.; Mohandas, A.; Anas, Abdulaziz

    2012-01-01

    Summary We propose antimicrobial photodynamic therapy (aPDT) as an alternative strategy to reduce the use of antibiotics in shrimp larviculture systems. The growth of a multiple antibiotic resistant Vibrio harveyi strain was effectively controlled by treating the cells with Rose Bengal and photosensitizing for 30 min using a halogen lamp. This resulted in the death of > 50% of the cells within the first 10 min of exposure and the 50% reduction in the cell wall integrity after 30 min could be attributed to the destruction of outer membrane protein of V. harveyi by reactive oxygen intermediates produced during the photosensitization. Further, mesocosm experiments with V. harveyi and Artemia nauplii demonstrated that in 30 min, the aPDT could kill 78.9% and 91.2% of heterotrophic bacterial and Vibrio population respectively. In conclusion, the study demonstrated that aPDT with its rapid action and as yet unreported resistance development possibilities could be a propitious strategy to reduce the use of antibiotics in shrimp larviculture systems and thereby, avoid their hazardous effects on human health and the ecosystem at large. PMID:21951316

  17. Pulmonary Arterial Hypertension in Adults: Novel Drugs and Catheter Ablation Techniques Show Promise? Systematic Review on Pharmacotherapy and Interventional Strategies

    Directory of Open Access Journals (Sweden)

    Salvatore Rosanio

    2014-01-01

    Full Text Available This systematic review aims to provide an update on pharmacological and interventional strategies for the treatment of pulmonary arterial hypertension in adults. Currently US Food and Drug Administration approved drugs including prostanoids, endothelin-receptor antagonists, phosphodiesterase type-5 inhibitors, and soluble guanylate-cyclase stimulators. These agents have transformed the prognosis for pulmonary arterial hypertension patients from symptomatic improvements in exercise tolerance ten years ago to delayed disease progression today. On the other hand, percutaneous balloon atrioseptostomy by using radiofrequency perforation, cutting balloon dilatation, or insertion of butterfly stents and pulmonary artery catheter-based denervation, both associated with very low rate of major complications and death, should be considered in combination with specific drugs at an earlier stage rather than late in the progression of pulmonary arterial hypertension and before the occurrence of overt right-sided heart failure.

  18. CPR in medical schools: learning by teaching BLS to sudden cardiac death survivors – a promising strategy for medical students?

    Directory of Open Access Journals (Sweden)

    Herkner Harald

    2006-04-01

    Full Text Available Abstract Background Cardiopulmonary resuscitation (CPR training is gaining more importance for medical students. There were many attempts to improve the basic life support (BLS skills in medical students, some being rather successful, some less. We developed a new problem based learning curriculum, where students had to teach CPR to cardiac arrest survivors in order to improve the knowledge about life support skills of trainers and trainees. Methods Medical students who enrolled in our curriculum had to pass a 2 semester problem based learning session about the principles of cardiac arrest, CPR, BLS and defibrillation (CPR-D. Then the students taught cardiac arrest survivors who were randomly chosen out of a cardiac arrest database of our emergency department. Both, the student and the Sudden Cardiac Death (SCD survivor were asked about their skills and knowledge via questionnaires immediately after the course. The questionnaires were then used to evaluate if this new teaching strategy is useful for learning CPR via a problem-based-learning course. The survey was grouped into three categories, namely "Use of AED", "CPR-D" and "Training". In addition, there was space for free answers where the participants could state their opinion in their own words, which provided some useful hints for upcoming programs. Results This new learning-by-teaching strategy was highly accepted by all participants, the students and the SCD survivors. Most SCD survivors would use their skills in case one of their relatives goes into cardiac arrest (96%. Furthermore, 86% of the trainees were able to deal with failures and/or disturbances by themselves. On the trainer's side, 96% of the students felt to be well prepared for the course and were considered to be competent by 96% of their trainees. Conclusion We could prove that learning by teaching CPR is possible and is highly accepted by the students. By offering a compelling appreciation of what CPR can achieve in using

  19. Mucosal delivery of liposome-chitosan nanoparticles complexes

    OpenAIRE

    Carvalho, Edison Samir Mascarelhas; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can...

  20. A promising sword of tomorrow: Human γδ T cell strategies reconcile allo-HSCT complications.

    Science.gov (United States)

    Hu, Yongxian; Cui, Qu; Luo, Chao; Luo, Yi; Shi, Jimin; Huang, He

    2016-05-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is potentially a curative therapeutic option for hematological malignancies. In clinical practice, transplantation associated complications greatly affected the final therapeutical outcomes. Currently, primary disease relapse, graft-versus-host disease (GVHD) and infections remain the three leading causes of a high morbidity and mortality in allo-HSCT patients. Various strategies have been investigated in the past several decades including human γδ T cell-based therapeutical regimens. In different microenvironments, human γδ T cells assume features reminiscent of classical Th1, Th2, Th17, NKT and regulatory T cells, showing diverse biological functions. The cytotoxic γδ T cells could be utilized to target relapsed malignancies, and recently regulatory γδ T cells are defined as a novel implement for GVHD management. In addition, human γδ Τ cells facilitate control of post-transplantation infections and participate in tissue regeneration and wound healing processes. These features potentiate γδ T cells a versatile therapeutical agent to target transplantation associated complications. This review focuses on insights of applicable potentials of human γδ T cells reconciling complications associated with allo-HSCT. We believe an improved understanding of pertinent γδ T cell functions would be further exploited in the design of innovative immunotherapeutic approaches in allo-HSCT, to reduce mortality and morbidity, as well as improve quality of life for patients after transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases—Promises, Perspectives, and Pitfalls

    Directory of Open Access Journals (Sweden)

    Anouk Kaulmann

    2016-01-01

    Full Text Available Inflammatory bowel diseases (IBDs are characterized by autoimmune and inflammation-related complications of the large intestine (ulcerative colitis and additional parts of the digestive tract (Crohn’s disease. Complications include pain, diarrhoea, chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially in Westernized countries, being as high as 1%. As prognosis is poor and medication often ineffective or causing side effects, additional preventive/adjuvant strategies are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-κB, Nrf-2, Jak/STAT, and MAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1β, and TNF-α, and boosting the bodies’ own antioxidant status (HO-1, SOD, and GPx. Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria, Akkermansia, short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary actions of polyphenols targeting IBD.

  2. Lymphatic-targeted therapy following neoadjuvant chemotherapy: a promising strategy for lymph node-positive breast cancer treatment.

    Science.gov (United States)

    Chen, Jianghao; Yao, Qing; Wang, Hui; Wang, Bo; Zhang, Juliang; Wang, Ting; Lv, Yonggang; Han, Zenghui; Wang, Ling

    2015-07-01

    Neoadjuvant chemotherapy has been increasingly used to downstage breast cancer prior to surgery recently. However, in some cases, it was observed that despite sufficient regression of primary tumors, the metastatic lymph nodes remained nonresponsive. In this study, we applied lymphatic-targeted strategy to evaluate its efficacy and safety for patients presenting refractory nodes following systemic chemotherapy. A total of 318 breast cancer patients were demonstrated with lymph node metastasis by needle biopsy and given neoadjuvant chemotherapy. Two cycles later, 72 patients were observed with responsive tumors but stable nodes, 42 of which received a subcutaneous injection of lymphatic-targeted pegylated liposomal doxorubicin during the third cycle, while the remaining 30 patients were continued with former neoadjuvant therapeutic pattern and regarded as the control. Lymphatic-targeted treatment substantially increased both clinical and pathological node response rate [62 % (26/42) vs. 13 % (4/30) and 12 % (5/42) vs. 0 (0/30), respectively], and induced a higher apoptosis level of metastatic cells (median, 41 vs. 6 %), compared with the control. Moreover, a higher disease-free survival was observed after a median follow-up of 4 years (69 vs. 56 %). Inflammatory reaction surrounding injection sites was the most common side effect. Lymphatic chemotherapy has reliable efficacy and well-tolerated toxicity for breast cancer patients presenting refractory lymph nodes following neoadjuvant chemotherapy.

  3. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery.

    Science.gov (United States)

    Elezaby, Reham S; Gad, Heba A; Metwally, Abdelkader A; Geneidi, Ahmed S; Awad, Gehanne A

    2017-09-10

    Disorders of the central nervous system (CNS) represent increasing social and economic problems all over the world which makes the effective transport of drugs to the brain a crucial need. In the last decade, many strategies were introduced to deliver drugs to the brain trying to overcome the challenge of the blood brain barrier (BBB) using both invasive and non-invasive methods. Non-invasive strategy represented in the application of nanocarriers became very common. One of the most hopeful nanoscopic carriers for brain delivery is core-shell nanocarriers or polymeric micelles (PMs). They are more advantageous than other nanocarriers. They offer small size, ease of preparation, ease of sterilization and the possibility of surface modification with various ligands. Hence, the aim of this review is to discuss modern strategies for brain delivery, micelles as a successful delivery system for the brain and how micelles could be modified to act as "magic bullets" for brain delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In vitro and in vivo effects of PDGF-BB delivery strategies on tendon healing: a review

    Directory of Open Access Journals (Sweden)

    O Evrova

    2017-07-01

    Full Text Available To promote and support tendon healing, one viable strategy is the use or administration of growth factors at the wound/rupture site. Platelet derived growth factor-BB (PDGF-BB, together with other growth factors, is secreted by platelets after injury. PDGF-BB promotes mitogenesis and angiogenesis, which could accelerate tendon healing. Therefore, in vitro studies with PDGF-BB have been performed to determine its effect on tenocytes and tenoblasts. Moreover, accurate and sophisticated drug delivery devices, aiming for a sustained release of PDGF-BB, have been developed, either by using heparin-binding and fibrin-based matrices or different electrospinning techniques. In this review, the structure and composition, as well as the healing process of tendons, are described. Part A deals with in vitro studies. They focus on the multiple effects evoked by PDGF-BB on the cellular level. Moreover, they address strategies for the sustained delivery of PDGF-BB. Part B focuses on animal models used to test different delivery strategies for PDGF-BB, in the context of tendon reconstruction. These studies showed that dosage and timing of PDGF-BB application are the most important factors for deciding which delivery device should be applied for a specific tendon laceration.

  5. The promises of marriage like social mobility strategies of the población de castas. Medellín, 1776-1830

    Directory of Open Access Journals (Sweden)

    Carolina Jaramillo Velásquez

    2016-06-01

    Full Text Available The construction and negotiation of identities of colonial subjects, particularly caste people, was held in a network of power relations where attributes such as honor, “quality”, the origin, “purity of blood” and color were crucial to establish a social structure based on inequality. That is why the people of caste, as a way of resistance, appropriated this discourse of inequality looking promote strategies to enable them to transform both their identity and their life chances through social mobility. This article aims to explain how the promises of marriage and conflicts related to these were one of those many strategies used by the population of caste for effective social promotion.

  6. Pairing vegetables with a liked food and visually appealing presentation: promising strategies for increasing vegetable consumption among preschoolers.

    Science.gov (United States)

    Correia, Danielle C S; O'Connell, Meghan; Irwin, Melinda L; Henderson, Kathryn E

    2014-02-01

    Vegetable consumption among preschool children is below recommended levels. New evidence-based approaches to increase preschoolers' vegetable intake, particularly in the child care setting, are needed. This study tests the effectiveness of two community-based randomized interventions to increase vegetable consumption and willingness to try vegetables: (1) the pairing of a vegetable with a familiar, well-liked food and (2) enhancing the visual appeal of a vegetable. Fifty-seven preschoolers enrolled in a Child and Adult Care Food Program-participating child care center participated in the study; complete lunch and snack data were collected from 43 and 42 children, respectively. A within-subjects, randomized design was used, with order of condition counterbalanced. For lunch, steamed broccoli was served either on the side of or on top of cheese pizza. For a snack, raw cucumber was served either as semicircles with chive and an olive garnish or arranged in a visually appealing manner (in the shape of a caterpillar). Paired t-tests were used to determine differences in consumption of meal components, and McNemar's test was performed to compare willingness to taste. Neither visual appeal enhancement nor pairing with a liked food increased vegetable consumption. Pairing increased willingness to try the vegetable from 79% to 95% of children (p=0.07). Greater vegetable intake occurred at snack than at lunch. Further research should explore the strategy of pairing vegetables with liked foods. Greater consumption at snack underscores snack time as a critical opportunity for increasing preschool children's vegetable intake.

  7. Improving drug delivery strategies for lymphatic filariasis elimination in urban areas in Ghana.

    Directory of Open Access Journals (Sweden)

    Nana-Kwadwo Biritwum

    2017-05-01

    Full Text Available The Global Program to Eliminate Lymphatic Filariasis (GPELF advocates for the treatment of entire endemic communities, in order to achieve its elimination targets. LF is predominantly a rural disease, and achieving the required treatment coverage in these areas is much easier compared to urban areas that are more complex. In Ghana, parts of the Greater Accra Region with Accra as the capital city are also endemic for LF. Mass Drug Administration (MDA in Accra started in 2006. However, after four years of treatment, the coverage has always been far below the 65% epidemiologic coverage for interrupting transmission. As such, there was a need to identify the reasons for poor treatment coverage and design specific strategies to improve the delivery of MDA. This study therefore set out to identify the opportunities and barriers for implementing MDA in urban settings, and to develop appropriate strategies for MDA in these settings. An experimental, exploratory study was undertaken in three districts in the Greater Accra region. The study identified various types of non-rural settings, the social structures, stakeholders and resources that could be employed for MDA. Qualitative assessment such as in-depth interviews (IDIs and focus group discussions (FGDs with community leaders, community members, health providers, NGOs and other stakeholders in the community was undertaken. The study was carried out in three phases: pre-intervention, intervention and post-intervention phases, to assess the profile of the urban areas and identify reasons for poor treatment coverage using both qualitative and quantitative research methods. The outcomes from the study revealed that, knowledge, attitudes and practices of community members to MDA improved slightly from the pre-intervention phase to the post-intervention phase, in the districts where the interventions were readily implemented by health workers. Many factors such as adequate leadership, funding, planning and

  8. Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies

    Science.gov (United States)

    Groves, D.; Bloom, E.; Fischbach, J. R.; Knopman, D.

    2013-12-01

    The U.S. Bureau of Reclamation and water management agencies representing the seven Colorado River Basin States initiated the Colorado River Basin Study in January 2010 to evaluate the resiliency of the Colorado River system over the next 50 years and compare different options for ensuring successful management of the river's resources. RAND was asked to join this Basin Study Team in January 2012 to help develop an analytic approach to identify key vulnerabilities in managing the Colorado River basin over the coming decades and to evaluate different options that could reduce this vulnerability. Using a quantitative approach for planning under uncertainty called Robust Decision Making (RDM), the RAND team assisted the Basin Study by: identifying future vulnerable conditions that could lead to imbalances that could cause the basin to be unable to meet its water delivery objectives; developing a computer-based tool to define 'portfolios' of management options reflecting different strategies for reducing basin imbalances; evaluating these portfolios across thousands of future scenarios to determine how much they could improve basin outcomes; and analyzing the results from the system simulations to identify key tradeoffs among the portfolios. This talk will describe RAND's contribution to the Basin Study, focusing on the methodologies used to to identify vulnerabilities for Upper Basin and Lower Basin water supply reliability and to compare portfolios of options. Several key findings emerged from the study. Future Streamflow and Climate Conditions Are Key: - Vulnerable conditions arise in a majority of scenarios where streamflows are lower than historical averages and where drought conditions persist for eight years or more. - Depending where the shortages occur, problems will arise for delivery obligations for the upper river basin and the lower river basin. The lower river basin is vulnerable to a broader range of plausible future conditions. Additional Investments in

  9. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    Science.gov (United States)

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications.

    Science.gov (United States)

    Ma, Guanghui

    2014-11-10

    Bio-degradable poly(lactide) (PLA)/poly(lactide-glycolide) (PLGA) and chitosan microspheres (or microcapsules) have important applications in Drug Delivery Systems (DDS) of protein/peptide drugs. By encapsulating protein/peptide drugs in the microspheres, the serum drug concentration can be maintained at a higher constant value for a prolonged time, or injection formulation can be changed to orally or mucosally administered formulation. PLA/PLGA and chitosan are most often used in injection formulation and oral formulation. However, in the preparation and applications of PLA/PLGA and chitosan microspheres containing protein/peptide drugs, the problems of broad size distribution and poor reproducibility of microspheres, and deactivation of protein during the preparation, storage and release, are still big challenges. In this article, the techniques for control of the diameter of microspheres and microcapsules will be introduced at first, then the strategies about how to maintain the bioactivity of protein drugs during preparation and drug release will be reviewed and developed in our research group. The membrane emulsification techniques including direct membrane emulsification and rapid membrane emulsification processes were developed to prepare uniform-sized microspheres, the diameter of microspheres can be controlled from submicron to 100μm by these two processes, and the reproducibility of products can be guaranteed. Furthermore, compared with conventional stirring method, the big advantages of membrane emulsification process were that the uniform microspheres with much higher encapsulation efficiency can be obtained, and the release behavior can be adjusted by selecting microsphere size. Mild membrane emulsification condition also can prevent the deactivation of proteins, which frequently occurred under high shear force in mechanical stirring, sonification, and homogenization methods. The strategies for maintaining the bioactivity of protein drug were

  11. Examining leadership as a strategy to enhance health care service delivery in regional hospitals in South Africa

    Science.gov (United States)

    Govender, Sagaren; Gerwel Proches, Cecile N; Kader, Abdulla

    2018-01-01

    Background Four public hospitals in South Africa, which render both specialized and nonspecialized services to thousands of patients, were examined to determine the impact of leadership on health care service delivery. These hospitals were inundated by various problems that were impacting negatively on health care service delivery. Purpose This research study aimed to gain a comprehensive understanding of the challenges, complexities and constraints facing public health care in KwaZulu-Natal (KZN) and to examine leadership as a strategy to enhance healthcare service delivery with a particular focus on four regional hospitals in the KZN Province. Methods The mixed-method research approach was utilized. Purposive sampling and stratified random sampling were employed in the research setting, and in-depth, semistructured interviews and questionnaires were used to collect data. Data were analyzed using the Nvivo computer software package for in-depth interviews and the Statistical Package for the Social Sciences (SPSS) software for the quantitative analysis. Results The research findings showed that the current leadership framework adopted by the health care leaders in regional hospitals in KZN is weak and is contributing to poor health care service delivery. Conclusion This study, therefore, aimed to address the current challenges and weaknesses that are impacting negatively on health care service delivery in regional hospitals in the KZN Province and made recommendations for improvement. PMID:29535529

  12. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    Science.gov (United States)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  13. Examining leadership as a strategy to enhance health care service delivery in regional hospitals in South Africa.

    Science.gov (United States)

    Govender, Sagaren; Gerwel Proches, Cecile N; Kader, Abdulla

    2018-01-01

    Four public hospitals in South Africa, which render both specialized and nonspecialized services to thousands of patients, were examined to determine the impact of leadership on health care service delivery. These hospitals were inundated by various problems that were impacting negatively on health care service delivery. This research study aimed to gain a comprehensive understanding of the challenges, complexities and constraints facing public health care in KwaZulu-Natal (KZN) and to examine leadership as a strategy to enhance healthcare service delivery with a particular focus on four regional hospitals in the KZN Province. The mixed-method research approach was utilized. Purposive sampling and stratified random sampling were employed in the research setting, and in-depth, semistructured interviews and questionnaires were used to collect data. Data were analyzed using the Nvivo computer software package for in-depth interviews and the Statistical Package for the Social Sciences (SPSS) software for the quantitative analysis. The research findings showed that the current leadership framework adopted by the health care leaders in regional hospitals in KZN is weak and is contributing to poor health care service delivery. This study, therefore, aimed to address the current challenges and weaknesses that are impacting negatively on health care service delivery in regional hospitals in the KZN Province and made recommendations for improvement.

  14. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems

    Science.gov (United States)

    Kydd, Janel; Jadia, Rahul; Velpurisiva, Praveena; Gad, Aniket; Paliwal, Shailee; Rai, Prakash

    2017-01-01

    Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment—due to the hostile tumor microenvironment—that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as ‘vascular targeting’), the tumor microenvironment (‘tissue targeting’) or the individual cancer cells (‘cellular targeting’). Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines. PMID:29036899

  15. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Janel Kydd

    2017-10-01

    Full Text Available Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment—due to the hostile tumor microenvironment—that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as ‘vascular targeting’, the tumor microenvironment (‘tissue targeting’ or the individual cancer cells (‘cellular targeting’. Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines.

  16. Effects of Bifidobacterium Breve Feeding Strategy and Delivery Modes on Experimental Allergic Rhinitis Mice.

    Directory of Open Access Journals (Sweden)

    Jian-jun Ren

    Full Text Available Different delivery modes may affect the susceptibility to allergic diseases. It is still unknown whether early intervention with probiotics would counteract this effect.The effect of different delivery modes on immune status and nasal symptoms was investigated on established allergic rhinitis (AR mouse model. In addition, the immunoregulatory effects and mechanisms of different feeding manners with Bifidobacterium breve(B. breve were examined.Live lyophilized B. breve was orally administered to BALB/c mice born via vaginal delivery(VD or cesarean delivery (CD for 8 consecutive weeks, after which they were sensitized by ovalbumin(OVA to establish experimental AR. Nasal symptoms, serum immunoglobulins, cytokines, splenic percentages of CD4(+CD25(+Foxp3(+ regulatory T(Treg cells and nasal eosinophil infiltration were evaluated.Compared with VD mice, mice delivered via CD demonstrated more serious nasal symptoms, higher concentrations of OVA-specific immunoglobulin (Ig E, more nasal eosinophils and lower percentages of splenic CD4(+CD25(+Foxp3(+Treg cells after establishing experimental AR. These parameters were reversed by administering B. breves hortly after birth. However, the effect of B. breve did not differ between different delivery modes.CD aggravates the nasal symptoms of AR mice compared to VD. This is the first report that oral administration of B. breve shortly after birth can significantly alleviate the symptoms of AR mice born via both deliveries, probably via activation of the regulatory capacity of CD4(+CD25(+Foxp3(+Treg cells.

  17. Effects of Bifidobacterium Breve Feeding Strategy and Delivery Modes on Experimental Allergic Rhinitis Mice.

    Science.gov (United States)

    Ren, Jian-jun; Yu, Zhao; Yang, Feng-Ling; Lv, Dan; Hung, Shi; Zhang, Jie; Lin, Ping; Liu, Shi-Xi; Zhang, Nan; Bachert, Claus

    2015-01-01

    Different delivery modes may affect the susceptibility to allergic diseases. It is still unknown whether early intervention with probiotics would counteract this effect. The effect of different delivery modes on immune status and nasal symptoms was investigated on established allergic rhinitis (AR) mouse model. In addition, the immunoregulatory effects and mechanisms of different feeding manners with Bifidobacterium breve(B. breve) were examined. Live lyophilized B. breve was orally administered to BALB/c mice born via vaginal delivery(VD) or cesarean delivery (CD) for 8 consecutive weeks, after which they were sensitized by ovalbumin(OVA) to establish experimental AR. Nasal symptoms, serum immunoglobulins, cytokines, splenic percentages of CD4(+)CD25(+)Foxp3(+) regulatory T(Treg) cells and nasal eosinophil infiltration were evaluated. Compared with VD mice, mice delivered via CD demonstrated more serious nasal symptoms, higher concentrations of OVA-specific immunoglobulin (Ig) E, more nasal eosinophils and lower percentages of splenic CD4(+)CD25(+)Foxp3(+)Treg cells after establishing experimental AR. These parameters were reversed by administering B. breves hortly after birth. However, the effect of B. breve did not differ between different delivery modes. CD aggravates the nasal symptoms of AR mice compared to VD. This is the first report that oral administration of B. breve shortly after birth can significantly alleviate the symptoms of AR mice born via both deliveries, probably via activation of the regulatory capacity of CD4(+)CD25(+)Foxp3(+)Treg cells.

  18. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    Science.gov (United States)

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Hadjira Rabti

    2014-06-01

    Full Text Available Elementary osmotic pump (EOP is a unique extended release (ER drug delivery system based on the principle of osmosis. It has the ability to minimize the amount of the drug, accumulation and fluctuation in drug level during chronic uses. Carbamazepine (CBZ, a poorly water-soluble antiepileptic drug, has serious side effects on overdoses and chronic uses. The aim of the present study was to design a new EOP tablet of CBZ containing a solubility enhancers and swellable polymer to reduce its side effects and enhance the patient compliance. Firstly, a combination of solubilizing carriers was selected to improve the dissolution of the slightly soluble drug. Then, designing the new EOP tablet and investigating the effect of different variables of core and coat formulations on drug release behavior by single parameter optimization and by Taguchi orthogonal design with analysis of variance (ANOVA, respectively. The results showed that CBZ solubility was successfully enhanced by a minimum amount of combined polyvinyl pyrrolidone (PVP K30 and sodium lauryl sulfate (SLS. The plasticizer amount and molecular weight (MW together with the osmotic agent amount directly affect the release rate whereas the swellable polymer amount and viscosity together with the semi-permeable membrane (SPM thickness inversely influence the release rate. In addition, the tendency of following zero order kinetics was mainly affected by the coat components rather than those of the core. Further, orifice size does not have any significant effect on the release behavior within the range of 0.1 mm to 0.8 mm. In this study we report the successful formulation of CBZ-EOP tablets, which were similar to the marketed product Tegretol CR 200 and able to satisfy the USP criterion limits and to deliver about 80% of CBZ at a rate of approximately zero order for up to 12 h.

  20. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Antigona Ulndreaj

    2017-10-01

    Full Text Available Traumatic spinal cord injury (SCI is a devastating condition of motor, sensory, and autonomic dysfunction. The significant cost associated with the management and lifetime care of patients with SCI also presents a major economic burden. For these reasons, there is a need to develop and translate strategies that can improve outcomes following SCI. Given the challenges in achieving regeneration of the injured spinal cord, neuroprotection has been at the forefront of clinical translation. Yet, despite many preclinical advances, there has been limited translation into the clinic apart from methylprednisolone (which remains controversial, hypertensive therapy to maintain spinal cord perfusion, and early decompressive surgery. While there are several factors related to the limited translational success, including the clinical and mechanistic heterogeneity of human SCI, the misalignment between animal models of SCI and clinical reality continues to be an important factor. Whereas most clinical cases are at the cervical level, only a small fraction of preclinical research is conducted in cervical models of SCI. Therefore, this review highlights the most promising neuroprotective and neural reparative therapeutic strategies undergoing clinical assessment, including riluzole, hypothermia, granulocyte colony-stimulating factor, glibenclamide, minocycline, Cethrin (VX-210, and anti-Nogo-A antibody, and emphasizes their efficacy in relation to the anatomical level of injury. Our hope is that more basic research will be conducted in clinically relevant cervical SCI models in order to expedite the transition of important laboratory discoveries into meaningful treatment options for patients with SCI.

  1. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    Science.gov (United States)

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  2. Insoluble drug delivery strategies: review of recent advances and business prospects

    Science.gov (United States)

    Kalepu, Sandeep; Nekkanti, Vijaykumar

    2015-01-01

    The emerging trends in the combinatorial chemistry and drug design have led to the development of drug candidates with greater lipophilicity, high molecular weight and poor water solubility. Majority of the failures in new drug development have been attributed to poor water solubility of the drug. Issues associated with poor solubility can lead to low bioavailability resulting in suboptimal drug delivery. About 40% of drugs with market approval and nearly 90% of molecules in the discovery pipeline are poorly water-soluble. With the advent of various insoluble drug delivery technologies, the challenge to formulate poorly water soluble drugs could be achieved. Numerous drugs associated with poor solubility and low bioavailabilities have been formulated into successful drug products. Several marketed drugs were reformulated to improve efficacy, safety and patient compliance. In order to gain marketing exclusivity and patent protection for such products, revitalization of poorly soluble drugs using insoluble drug delivery technologies have been successfully adopted by many pharmaceutical companies. This review covers the recent advances in the field of insoluble drug delivery and business prospects. PMID:26579474

  3. Insoluble drug delivery strategies: review of recent advances and business prospects

    Directory of Open Access Journals (Sweden)

    Sandeep Kalepu

    2015-09-01

    Full Text Available The emerging trends in the combinatorial chemistry and drug design have led to the development of drug candidates with greater lipophilicity, high molecular weight and poor water solubility. Majority of the failures in new drug development have been attributed to poor water solubility of the drug. Issues associated with poor solubility can lead to low bioavailability resulting in suboptimal drug delivery. About 40% of drugs with market approval and nearly 90% of molecules in the discovery pipeline are poorly water-soluble. With the advent of various insoluble drug delivery technologies, the challenge to formulate poorly water soluble drugs could be achieved. Numerous drugs associated with poor solubility and low bioavailabilities have been formulated into successful drug products. Several marketed drugs were reformulated to improve efficacy, safety and patient compliance. In order to gain marketing exclusivity and patent protection for such products, revitalization of poorly soluble drugs using insoluble drug delivery technologies have been successfully adopted by many pharmaceutical companies. This review covers the recent advances in the field of insoluble drug delivery and business prospects.

  4. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation

    Directory of Open Access Journals (Sweden)

    Thomas J. Kean

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC therapeutic dose.

  5. Balancing Instructional Techniques and Delivery Formats in Capstone Business Strategy Courses

    Science.gov (United States)

    Alstete, Jeffrey W.; Beutell, Nicholas J.

    2016-01-01

    Purpose: The purpose of this paper is to contend that collegiate programs should carefully plan their capstone courses in light of the educational mission, pedagogical content knowledge, instructional techniques and delivery formats. Design/methodology/approach: This is a concept paper with elements of theory building from the case of business…

  6. Integrated strategies to address emerging freight and delivery challenges in New York City : final report.

    Science.gov (United States)

    2017-01-01

    This report has three critical objectives. First, to highlight the changing nature of freight deliveries even as zoning policy for off-street loading has changed little over the last 65 years. Second, to consider policy and physical approaches to add...

  7. Drug delivery strategies for chemoprevention of UVB-induced skin cancer: A review.

    Science.gov (United States)

    Bagde, Arvind; Mondal, Arindam; Singh, Mandip

    2018-01-01

    Annually, more skin cancer cases are diagnosed than the collective incidence of the colon, lung, breast, and prostate cancer. Persistent contact with sunlight is a primary cause for all the skin malignancies. UVB radiation induces reactive oxygen species (ROS) production in the skin which eventually leads to DNA damage and mutation. Various delivery approaches for the skin cancer treatment/prevention have been evolving and are directed toward improvements in terms of delivery modes, therapeutic agents, and site-specificity of therapeutics delivery. The effective chemoprevention activity achieved is based on the efficiency of the delivery system used and the amount of the therapeutic molecule deposited in the skin. In this article, we have discussed different studies performed specifically for the chemoprevention of UVB-induced skin cancer. Ultra-flexible nanocarriers, transethosomes nanocarriers, silica nanoparticles, silver nanoparticles, nanocapsule suspensions, microemulsion, nanoemulsion, and polymeric nanoparticles which have been used so far to deliver the desired drug molecule for preventing the UVB-induced skin cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Promising Biomolecules.

    Science.gov (United States)

    Oliveira, Isabel; Carvalho, Ana L; Radhouani, Hajer; Gonçalves, Cristiana; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    The osteochondral defect (OD) comprises the articular cartilage and its subchondral bone. The treatment of these lesions remains as one of the most problematic clinical issues, since these defects include different tissues, requiring distinct healing approaches. Among the growing applications of regenerative medicine, clinical articular cartilage repair has been used for two decades, and it is an effective example of translational medicine; one of the most used cell-based repair strategies includes implantation of autologous cells in degradable scaffolds such as alginate, agarose, collagen, chitosan, chondroitin sulfate, cellulose, silk fibroin, hyaluronic acid, and gelatin, among others. Concerning the repair of osteochondral defects, tissue engineering and regenerative medicine started to design single- or bi-phased scaffold constructs, often containing hydroxyapatite-collagen composites, usually used as a bone substitute. Biomolecules such as natural and synthetic have been explored to recreate the cartilage-bone interface through multilayered biomimetic scaffolds. In this chapter, a succinct description about the most relevant natural and synthetic biomolecules used on cartilage and bone repair, describing the procedures to obtain these biomolecules, their chemical structure, common modifications to improve its characteristics, and also their application in the biomedical fields, is given.

  9. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  10. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    Science.gov (United States)

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  11. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia ( Niloticus oreochromis ) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  12. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  13. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.

    Science.gov (United States)

    Steyer, Benjamin; Carlson-Stevermer, Jared; Angenent-Mari, Nicolas; Khalil, Andrew; Harkness, Ty; Saha, Krishanu

    2016-04-01

    Non-viral gene-editing of human cells using the CRISPR-Cas9 system requires optimized delivery of multiple components. Both the Cas9 endonuclease and a single guide RNA, that defines the genomic target, need to be present and co-localized within the nucleus for efficient gene-editing to occur. This work describes a new high-throughput screening platform for the optimization of CRISPR-Cas9 delivery strategies. By exploiting high content image analysis and microcontact printed plates, multi-parametric gene-editing outcome data from hundreds to thousands of isolated cell populations can be screened simultaneously. Employing this platform, we systematically screened four commercially available cationic lipid transfection materials with a range of RNAs encoding the CRISPR-Cas9 system. Analysis of Cas9 expression and editing of a fluorescent mCherry reporter transgene within human embryonic kidney cells was monitored over several days after transfection. Design of experiments analysis enabled rigorous evaluation of delivery materials and RNA concentration conditions. The results of this analysis indicated that the concentration and identity of transfection material have significantly greater effect on gene-editing than ratio or total amount of RNA. Cell subpopulation analysis on microcontact printed plates, further revealed that low cell number and high Cas9 expression, 24h after CRISPR-Cas9 delivery, were strong predictors of gene-editing outcomes. These results suggest design principles for the development of materials and transfection strategies with lipid-based materials. This platform could be applied to rapidly optimize materials for gene-editing in a variety of cell/tissue types in order to advance genomic medicine, regenerative biology and drug discovery. CRISPR-Cas9 is a new gene-editing technology for "genome surgery" that is anticipated to treat genetic diseases. This technology uses multiple components of the Cas9 system to cut out disease-causing mutations

  14. Delivery of promise of pheromones: Part II

    Science.gov (United States)

    This issue contains the remainder of the reviews and research papers on the topic of using semiochemicals in pest management, but with different topics. It leads off with a review article that presents an overview of the prospects and technical details of using semiochemicals for detection and samp...

  15. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications

    KAUST Repository

    Croissant, Jonas G.

    2017-11-30

    Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer\\'s disease therapy.

  16. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.

    Science.gov (United States)

    Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid

    2016-09-20

    Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Emerging Trends On Drug Delivery Strategy of Momordica charantia against Diabetes and its Complications.

    Science.gov (United States)

    Thent, Zar Chi; Das, Srijit; Zaidun, Nurul Hannim

    2018-01-01

    The incidence of diabetes mellitus has increased drastically over the past few decades. This oxidant-antioxidant imbalance resulting in complication of diabetes mellitus includes macro- and microvascular complications. Resistance to conventional treatment and patient compliance has paved the way to the usage of effective natural products and supplements. Momordica charantia (bitter gourd) is widely consumed in many parts of Malaysia as a vegetable. Momordica charantia (MC) is mainly used in the management of diabetes mellitus. The present review discusses the literature concerning the antidiabetic and antioxidant properties of MC focusing on the complication of diabetes mellitus along with its mode of delivery. We found that among the whole part of MC, its fruit extract has been widely studied, therapeutically. The evidence based analysis of the beneficiary effects of MC on the different organs involved in diabetes complication is also highlighted. This review elucidated an essential understanding of MC based drug delivery system in both clinical and experimental studies and appraised the great potential of the protein based MC extract against diabetes mellitus. The review paper is believed to assist the researchers and medical personnel in treating diabetic associated complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Decision-making strategies: ignored to the detriment of healthcare training and delivery?

    Science.gov (United States)

    Desmond, Chris; Brubaker, Kathryn A; Ellner, Andrew L

    2013-01-01

    Context : People do not always make health-related decisions which reflect their best interest - best interest being defined as the decision they would make if they carefully considered the options and fully understood the information available. A substantial literature has developed in behavioral economics and social psychology that seeks to elucidate the patterns in individual decision-making. While this is particularly relevant to healthcare, the insights from these fields have only been applied in a limited way. To address the health challenges of the twenty-first century, healthcare providers and healthcare systems designers need to more fully understand how individuals are making decisions. Methods : We provide an overview of the theories of behavioral economics and social psychology that relate to how individuals make health-related decisions. The concentration on health-related decisions leads to a focus on three topics: (1) mental shortcuts and motivated reasoning; (2) implications of time; and (3) implications of affect. The first topic is relevant because health-related decisions are often made in a hurry without a full appreciation of the implications and the deliberation they warrant. The second topic is included because the link between a decision and its health-related outcomes can involve a significant time lag. The final topic is included because health and affect are so often linked. Findings : The literature reviewed has implications for healthcare training and delivery. Selection for medical training must consider the skills necessary to understand and adapt to how patients make decisions. Training on the insights garnered from behavioral economics and social psychology would better prepare healthcare providers to effectively support their clients to lead healthy lives. Healthcare delivery should be structured to respond to the way in which decisions are made. Conclusions : These patterns in decision-making call into question basic assumptions

  19. Waste Feed Delivery Strategy for Tanks 241-AN-102 and 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    BLACKER, S.M.

    2000-04-13

    This engineering study establishes the detailed retrieval strategy, equipment requirements, and key parameters for preparing detailed process flowsheets; evaluates the technical and programmatic risks associated with processing, certifying, transferring, and delivering waste from Tanks 241-AN-102 and 241-AN-107 to BNFL; and provides a list of necessary follow-on actions so that program direction from ORP can be successfully implemented.

  20. Teachers' Improvisation of Instructional Materials for Nigerian Home Economics Curriculum Delivery: Challenges and Strategies

    Science.gov (United States)

    Olibie, Eyiuche Ifeoma; Nwabunwanne, Chinyere; Ezenwanne, Dorothy Nkem

    2013-01-01

    This study was designed to ascertain the challenges of improvising instructional materials by Home Economics teachers at the Upper Basic education level in Nigeria, and as a result identify strategies for enhancing improvisation. The study used survey research design based on two research questions. The sample was four hundred and thirty-one Home…

  1. Optimization of delivery strategies for cardiac cell therapy in ischemic heart disease

    NARCIS (Netherlands)

    van der Spoel, T.I.G.

    2012-01-01

    Cardiac cell therapy has been proposed as an alternative treatment option for patients after acute myocardial infarction (MI). Irrespective of the chosen regenerative strategy, it is essential to deliver sufficient number of cells to the infarcted myocardium to become effective which is important

  2. Waste Feed Delivery Strategy for Tanks 241-AN-102 and 241-AN-107

    International Nuclear Information System (INIS)

    BLACKER, S.M.

    2000-01-01

    This engineering study establishes the detailed retrieval strategy, equipment requirements, and key parameters for preparing detailed process flowsheets; evaluates the technical and programmatic risks associated with processing, certifying, transferring, and delivering waste from Tanks 241-AN-102 and 241-AN-107 to BNFL; and provides a list of necessary follow-on actions so that program direction from ORP can be successfully implemented

  3. Results of implementation of a hospital-based strategy to reduce cesarean delivery among low-risk women in Canada.

    Science.gov (United States)

    Shoemaker, Esther S; Bourgeault, Ivy L; Cameron, Carol; Graham, Ian D; Hutton, Eileen K

    2017-11-01

    To assess the cesarean delivery (CD) rate among low-risk pregnancies before and after implementation of a hospital-based program in Canada. A prospective before-and-after study was conducted to assess the effects of the CARE (CAesarean REduction) strategy, which was developed and implemented at Markham Stouffville Hospital, Toronto, ON, Canada, in 2010 to reduce CD among low-risk women. Hospital records were reviewed to identify changes in the proportions of CD performed during 12 months (April 2009-March 2010) before implementation of the CARE strategy versus 12 months after implementation (April 2012-March 2013) at Markham Stouffville Hospital and 36 hospitals of the same level in the same province. At the intervention hospital, 30.3% (964/3181) of women underwent CD in 2009-2010, compared with 26.4% (803/3045) in 2012-2013 (difference -3.9%, PImplementation of the CARE strategy reduced rates of CD among the target population. © 2017 International Federation of Gynecology and Obstetrics.

  4. Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies.

    Science.gov (United States)

    Haddad Kashani, Hamed; Schmelcher, Mathias; Sabzalipoor, Hamed; Seyed Hosseini, Elahe; Moniri, Rezvan

    2018-01-01

    Staphylococcus aureus is one of the most common pathogens of humans and animals, where it frequently colonizes skin and mucosal membranes. It is of major clinical importance as a nosocomial pathogen and causative agent of a wide array of diseases. Multidrug-resistant strains have become increasingly prevalent and represent a leading cause of morbidity and mortality. For this reason, novel strategies to combat multidrug-resistant pathogens are urgently needed. Bacteriophage-derived enzymes, so-called endolysins, and other peptidoglycan hydrolases with the ability to disrupt cell walls represent possible alternatives to conventional antibiotics. These lytic enzymes confer a high degree of host specificity and could potentially replace or be utilized in combination with antibiotics, with the aim to specifically treat infections caused by Gram-positive drug-resistant bacterial pathogens such as methicillin-resistant S. aureus . LysK is one of the best-characterized endolysins with activity against multiple staphylococcal species. Various approaches to further enhance the antibacterial efficacy and applicability of endolysins have been demonstrated. These approaches include the construction of recombinant endolysin derivatives and the development of novel delivery strategies for various applications, such as the production of endolysins in lactic acid bacteria and their conjugation to nanoparticles. These novel strategies are a major focus of this review. Copyright © 2017 American Society for Microbiology.

  5. [Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain].

    Science.gov (United States)

    Domínguez, Alazne; Álvarez, Antonia; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-03-01

    The incidence in the central nervous system diseases has increased with a growing elderly population. Unfortunately, conventional treatments used to treat the mentioned diseases are frequently ineffective due to the presence of the blood brain barrier. To illustrate the blood-brain barrier properties that limit drug transport into the brain and the main strategies employed to treat neurologic disorders. The blood-brain barrier is mainly composed of a specialized microvascular endothelium and of glial cells. It constitutes a valuable tool to separate the central nervous system from the rest of the body. Nevertheless, it also represents an obstacle to the delivery of therapeutic drugs to the brain. To be effective, drugs must reach their target in the brain. On one hand, therapeutic agents could be designed to be able to cross the blood brain barrier. On the other hand, drug delivery systems could be employed to facilitate the therapeutic agents' entry into the central nervous system. In vivo models of neurological diseases, in addition to in vitro models of the blood brain barrier, have been widely employed for the evaluation of drugs utilized to treat central nervous system diseases.

  6. Global oral health inequalities: task group--implementation and delivery of oral health strategies

    DEFF Research Database (Denmark)

    Sheiham, A; Alexander, D; Cohen, L

    2011-01-01

    This paper reviews the shortcomings of present approaches to reduce oral diseases and inequalities, details the importance of social determinants, and links that to research needs and policies on implementation of strategies to reduce oral health inequalities. Inequalities in health...... their environment. There is a dearth of oral health research on social determinants that cause health-compromising behaviors and on risk factors common to some chronic diseases. The gap between what is known and implemented by other health disciplines and the dental fraternity needs addressing. To re-orient oral...... strategies tailored to determinants and needs of each group along the social gradient. Approaches focusing mainly on downstream lifestyle and behavioral factors have limited success in reducing health inequalities. They fail to address social determinants, for changing people's behaviors requires changing...

  7. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  8. Japanese manufacturers' cost-performance marketing strategy for the delivery of solar photovoltaic homes

    International Nuclear Information System (INIS)

    Noguchi, M.

    2005-02-01

    Japanese manufacturers have been gaining a global reputation for their design approaches to industrialized housing, which is often equipped with PV systems. Homes are produced on a cost performance marketing strategy. In 2004, 13.7 per cent of the 1,160,083 houses built in Japan were pre-fabricated. The pre-fabricated housing industry has been given considerable government support. In response to growing demands for sustainable housing, the government has implemented promotional programs aiming to support the installations of photovoltaic systems. Details of various programs were presented, including: value-added production; housing sustainability; PV rooftop systems; and a mass custom design approach. It was concluded that the cost performance marketing strategy has a significant impact on production and design approaches. However, quality-oriented production may also result in successful commercialization of innovative housing. The Japanese marketing approach allows consumers to understand the added value of packaged innovations rather than the cost. It was suggested that this marketing strategy should be examined further, when considering approaches to innovative housing in other countries. 38 refs., 3 figs

  9. Japanese manufacturers' cost-performance marketing strategy for the delivery of solar photovoltaic homes

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, M.

    2005-02-01

    Japanese manufacturers have been gaining a global reputation for their design approaches to industrialized housing, which is often equipped with PV systems. Homes are produced on a cost performance marketing strategy. In 2004, 13.7 per cent of the 1,160,083 houses built in Japan were pre-fabricated. The pre-fabricated housing industry has been given considerable government support. In response to growing demands for sustainable housing, the government has implemented promotional programs aiming to support the installations of photovoltaic systems. Details of various programs were presented, including: value-added production; housing sustainability; PV rooftop systems; and a mass custom design approach. It was concluded that the cost performance marketing strategy has a significant impact on production and design approaches. However, quality-oriented production may also result in successful commercialization of innovative housing. The Japanese marketing approach allows consumers to understand the added value of packaged innovations rather than the cost. It was suggested that this marketing strategy should be examined further, when considering approaches to innovative housing in other countries. 38 refs., 3 figs.

  10. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking.

    Science.gov (United States)

    Joshee, Nirmal; Bastola, Dhundy R; Cheng, Pi-Wan

    2002-11-01

    We previously showed that mixing transferrin with a cationic liposome prior to the addition of DNA, greatly enhanced the lipofection efficiency. Here, we report characterization of the transfection complexes in formulations prepared with transferrin, lipofectin, and DNA (pCMVlacZ) in various formulations. DNA in all the formulations that contain lipofectin was resistant to DNase I treatment. Transfection experiments performed in Panc 1 cells showed that the standard formulation, which was prepared by adding DNA to a mixture of transferrin and lipofectin, yielded highest transfection efficiency. There was no apparent difference in zeta potential among these formulations, but the most efficient formulation contained complexes with a mean diameter of three to four times that of liposome and the complexes in other gene delivery formulations. Transmission electron microscopic examination of the standard transfection complexes formulated using gold-labeled transferrin showed extended circular DNA decorated with transferrin as compared to extensively condensed DNA found in lipofectin-DNA complexes and heterogeneous structures in other formulations. By confocal microscopy, DNA and transferrin were found to colocalize at the perinuclear space and in the nucleus, suggesting cotransportation intracellularly, including nuclear transport. We propose that transferrin enhances the transfection efficiency of the standard lipofection formulation by preventing DNA condensation, and facilitating endocytosis and nuclear targeting.

  11. Preparation and characterization of docetaxel self-nanoemulsifying powders (SNEPs): A strategy for improved oral delivery

    Energy Technology Data Exchange (ETDEWEB)

    Sunkavalli, Sharath; Eedara, Basanth Babu; Janga, Karthik Yadav; Velpula, Ashok; Jukanti, Raju; Bandari, Suresh [St. Peter' s Institute of Pharmaceutical Sciences, Warangal (India)

    2016-03-15

    Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) of docetaxel were prepared using varying ratios of Capmul PG 8 NF (oil), Cremophor EL (surfactant) and Transcutol-P (co-surfactant). The optimized L-SNEDDS (L{sub 11}) was transformed into self-nanoemulsifying powder (SNEP) by physical adsorption on to Neusilin US2 and evaluated for dissolution behavior, in vitro cytotoxicity and in vivo oral bioavailability. Optimized L-SNEDDS (L{sub 11}) composed of 50% of oil, 41.7% of surfactant and 8.3% co-surfactant produced stable emulsion with smaller globules (43±3 nm). In vitro dissolution studies showed the rapid drug release within 5min (95.42±1%) from SNEP{sub N}. In vitro cytotoxicity assessed by the MTT assay using MCF-7 human breast cancer cell lines revealed that L-SNEDDS significantly reduced the IC{sub 50} value and was 2.3 times lower than the pure docetaxel. Further, the oral bioavailability studies in male Wistar rats showed higher C{sub max} values following treatment with SNEP{sub N} (0.98±0.13 μg/mL) and L-SNEDDS (1.09± 0.06 μg/mL) compared to pure docetaxel (0.37±0.04 μg/mL).

  12. Nanomedicine and drug delivery strategies for treatment of inflammatory bowel disease.

    Science.gov (United States)

    Takedatsu, Hidetoshi; Mitsuyama, Keiichi; Torimura, Takuji

    2015-10-28

    Crohn's disease and ulcerative colitis are two important categories of human inflammatory bowel disease (IBD). Because the precise mechanisms of the inflammation and immune responses in IBD have not been fully elucidated, the treatment of IBD primarily aims to inhibit the pathogenic factors of the inflammatory cascade. Inconsistencies exist regarding the response and side effects of the drugs that are currently used to treat IBD. Recent studies have suggested that the use of nanomedicine might be advantageous for the treatment of intestinal inflammation because nano-sized molecules can effectively penetrate epithelial and inflammatory cells. We reviewed nanomedicine treatments, such as the use of small interfering RNAs, antisense oligonucleotides, and anti-inflammatory molecules with delivery systems in experimental colitis models and clinical trials for IBD based on a systematic search. The efficacy and usefulness of the treatments reviewed in this manuscript have been demonstrated in experimental colitis models and clinical trials using various types of nanomedicine. Nanomedicine is expected to become a new therapeutic approach to the treatment of IBD.

  13. Optimizing delivery of recovery-oriented online self-management strategies for bipolar disorder: a review.

    Science.gov (United States)

    Leitan, Nuwan D; Michalak, Erin E; Berk, Lesley; Berk, Michael; Murray, Greg

    2015-03-01

    Self-management is emerging as a viable alternative to difficult-to-access psychosocial treatments for bipolar disorder (BD), and has particular relevance to recovery-related goals around empowerment and personal meaning. This review examines data and theory on BD self-management from a recovery-oriented perspective, with a particular focus on optimizing low-intensity delivery of self-management tools via the web. A critical evaluation of various literatures was undertaken. Literatures on recovery, online platforms, and self-management in mental health and BD are reviewed. The literature suggests that the self-management approach aligns with the recovery framework. However, studies have identified a number of potential barriers to the utilization of self-management programs for BD and it has been suggested that utilizing an online environment may be an effective way to surmount many of these barriers. Online self-management programs for BD are rapidly developing, and in parallel the recovery perspective is becoming the dominant paradigm for mental health services worldwide, so research is urgently required to assess the efficacy and safety of optimization methods such as professional and/or peer support, tailoring and the development of 'online communities'. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Coverage, adherence and costs of intermittent preventive treatment of malaria in children employing different delivery strategies in Jasikan, Ghana.

    Directory of Open Access Journals (Sweden)

    Edith Patouillard

    Full Text Available Intermittent preventive treatment of malaria in children (IPTc involves the administration of a course of anti-malarial drugs at specified time intervals to children at risk of malaria regardless of whether or not they are known to be infected. IPTc provides a high level of protection against uncomplicated and severe malaria, with monthly sulphadoxine-pyrimethamine plus amodiaquine (SP&AQ and sulphadoxine-pyrimethamine plus piperaquine being the most efficacious regimens. A key challenge is the identification of a cost-effective delivery strategy.A community randomized trial was undertaken in Jasikan district, Ghana to assess IPTc effectiveness and costs using SP&AQ delivered in three different ways. Twelve villages were randomly selected to receive IPTc from village health workers (VHWs or facility-based nurses working at health centres' outpatient departments (OPD or EPI outreach clinics. Children aged 3 to 59 months-old received one IPT course (three doses in May, June, September and October. Effectiveness was measured in terms of children covered and adherent to a course and delivery costs were calculated in financial and economic terms using an ingredient approach from the provider perspective.The economic cost per child receiving at least the first dose of all 4 courses was US$4.58 when IPTc was delivered by VHWs, US$4.93 by OPD nurses and US$ 5.65 by EPI nurses. The unit economic cost of receiving all 3 doses of all 4 courses was US$7.56 and US$8.51 when IPTc was delivered by VHWs or facility-based nurses respectively. The main cost driver for the VHW delivery was supervision, reflecting resources used for travelling to more remote communities rather than more intense supervision, and for OPD and EPI delivery, it was the opportunity cost of the time spent by nurses in dispensing IPTc.VHWs achieve higher IPTc coverage and adherence at lower costs than facility-based nurses in Jasikan district, Ghana.ClinicalTrials.gov NCT00119132.

  15. Fumigation in Ayurveda: potential strategy for drug discovery and drug delivery.

    Science.gov (United States)

    Vishnuprasad, Chethala N; Pradeep, Nediyamparambu Sukumaran; Cho, Yong Woo; Gangadharan, Geethalayam Gopinathan; Han, Sung Soo

    2013-09-16

    Ayurveda has its unique perceptions and resultant methodologies for defining and treating human diseases. Fumigation therapy is one of the several treatment methods described in Ayurveda whereby fumes produced from defined drug formulations are inhaled by patients. This therapeutic procedure offers promising research opportunities from phytochemical and ethnopharmacological viewpoints, however, it remains under-noticed. Considering these facts, this review is primarily aimed at introducing said Ayurvedic fumigation therapy and discussing its scientific gaps and future challenges. A search of multiple bibliographical databases and traditional Ayurvedic text books was conducted and the articles analyzed under various key themes, e.g., Ayurvedic fumigation, fumigation therapy, medicinal fumigation, inhalation of drugs and aerosol therapy. Ayurveda recommends fumigation as a method of sterilization and therapeutic procedure for various human diseases including microbial infections and psychological disorders. However, it has not gained much attention as a prospective field with multiple research opportunities. It is necessary to have a more detailed and systematic investigation of the phytochemical and pharmacodynamic properties of Ayurvedic fumigation therapy in order to facilitate the identification of novel bioactive compounds and more effective drug administration methods. © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Case series of feasibility considerations that impact operational delivery strategy in the highly competitive rheumatoid arthritis space in Asia

    Directory of Open Access Journals (Sweden)

    Wai K

    2013-02-01

    Full Text Available Karen Wai,1 Lisa Marie Saldanha,1 Elvira Zenaida Lansang,1 Saumya Nayak,1 Anish Sule,2 Ken J Lee31Feasibility and Site Identification Asia, Quintiles East Asia Pte Ltd, Singapore; 2Feasibility and Site Identification India, Quintiles India, Mumbai, India; 3Site Services Asia, Quintiles East Asia Pte Ltd, SingaporeAbstract: The rheumatoid arthritis (RA clinical trial space is very competitive, and recruiting and retaining subjects is of critical importance. Feasibility studies are a central component of ensuring successful recruitment and retention. A feasibility study is an assessment of the practicality of a proposed study protocol, with the goal of understanding challenges and providing risk mitigation strategies leading to better subject enrolment and study start-up should the assessment be favorable. This paper presents findings from a retrospective case series of RA feasibilities, describing important parameters to consider in the highly competitive RA space in Asia. Key parameters identified and discussed are how decisions on clinical development strategy necessitate changes in the clinical operational delivery strategy, with focus on changes in inclusion and exclusion criteria and patient contribution load; how small the patient population becomes when the clinical trial needs to target the patient population that is refractory to standard therapy; regulatory timelines; and the competitive clinical trial landscape. Feasibility assessments are a snapshot in time exercise. Multiple parameters change over time, and, particularly in a space that has become competitive for subjects, one cannot rely on one static feasibility assessment to predict trial performance accurately. Continuous feasibility assessment will also provide insight into the resourcing needs on the part of the sponsor, contract research organization, and investigative site.Keywords: site selection, country selection, clinical operations, risk management, recruitment rates

  17. Self-management toolkit and delivery strategy for end-of-life pain: the mixed-methods feasibility study.

    Science.gov (United States)

    Bennett, Michael I; Mulvey, Matthew R; Campling, Natasha; Latter, Sue; Richardson, Alison; Bekker, Hilary; Blenkinsopp, Alison; Carder, Paul; Closs, Jose; Farrin, Amanda; Flemming, Kate; Gallagher, Jean; Meads, David; Morley, Stephen; O'Dwyer, John; Wright-Hughes, Alexandra; Hartley, Suzanne

    2017-12-01

    Pain affects most people approaching the end of life and can be severe for some. Opioid analgesia is effective, but evidence is needed about how best to support patients in managing these medicines. To develop a self-management support toolkit (SMST) and delivery strategy and to test the feasibility of evaluating this intervention in a future definitive trial. Phase I - evidence synthesis and qualitative interviews with patients and carers. Phase II - qualitative semistructured focus groups and interviews with patients, carers and specialist palliative care health professionals. Phase III - multicentre mixed-methods single-arm pre-post observational feasibility study. Phase I - six patients and carers. Phase II - 15 patients, four carers and 19 professionals. Phase III - 19 patients recruited to intervention that experienced pain, living at home and were treated with strong opioid analgesia. Process evaluation interviews with 13 patients, seven carers and 11 study nurses. Self-Management of Analgesia and Related Treatments at the end of life (SMART) intervention comprising a SMST and a four-step educational delivery approach by clinical nurse specialists in palliative care over 6 weeks. Recruitment rate, treatment fidelity, treatment acceptability, patient-reported outcomes (such as scores on the Brief Pain Inventory, Self-Efficacy for Managing Chronic Disease Scale, Edmonton Symptom Assessment Scale, EuroQol-5 Dimensions, Satisfaction with Information about Medicines Scale, and feasibility of collecting data on health-care resource use for economic evaluation). Phase I - key themes on supported self-management were identified from evidence synthesis and qualitative interviews. Phase II - the SMST was developed and refined. The delivery approach was nested within a nurse-patient consultation. Phase III - intervention was delivered to 17 (89%) patients, follow-up data at 6 weeks were available on 15 patients. Overall, the intervention was viewed as acceptable and

  18. Evaluation strategies for midwifery education linked to digital media and distance delivery technology.

    Science.gov (United States)

    Fullerton, Judith T; Ingle, Henry T

    2003-01-01

    The goal of the teaching and learning process for health professionals is the acquisition of a fundamental core of knowledge, the demonstration of critical thinking ability, and the demonstration of competency in the performance of clinical skills. Teaching and learning in distance education programs require that the administration, teachers, and students be creative in developing evaluation strategies that can be adapted to the challenges of the cyberspace on-line educational environment. Evaluation standards for distance education programs recently have been delineated by federal agencies, private organizations, and academic accreditation associations. These standards are linked to principles of sound education practice that promote program quality, high levels of student-faculty interaction, and support effective teaching and learning in the distance education context. A growing body of evidence supports the conclusion that technology-enhanced teaching is equivalent in effectiveness compared with traditional methods when student-learning outcomes are the focus of measurement. An allied body of literature offers model approaches that can be useful to educators who must also conduct the evaluation of clinical skills, provide feedback, and promote socialization to the nurse-midwifery/midwifery role for students being educated in whole or in part through instruction delivered at a distance.

  19. Care delivery and self-management strategies for children with epilepsy.

    Science.gov (United States)

    Fleeman, Nigel; Bradley, Peter M

    2018-03-01

    In response to criticism that epilepsy care for children has little impact, healthcare professionals and administrators have developed various service models and strategies to address perceived inadequacies. To assess the effects of any specialised or dedicated intervention for epilepsy versus usual care in children with epilepsy and in their families. We searched the Cochrane Epilepsy Group Specialized Register (27 September 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 9) in the Cochrane Library, MEDLINE (1946 to 27 September 2016), Embase (1974 to 27 September 2016), PsycINFO (1887 to 27 September 2016) and CINAHL Plus (1937 to 27 September 2016). In addition, we also searched clinical trials registries for ongoing or recently completed trials, contacted experts in the field to seek information on unpublished and ongoing studies, checked the websites of epilepsy organisations and checked the reference lists of included studies. We included randomised controlled trials (RCTs), cohort studies or other prospective studies with a (matched or unmatched) control group (controlled before-and-after studies), or time series studies. We used standard methodological procedures expected by Cochrane. Our review included six interventions reported through seven studies (of which five studies were designed as RCTs). They reported on different education and counselling programmes for children and parents; teenagers and parents; or children, adolescents and their parents. Each programme showed some benefits for the well-being of children with epilepsy, but all had methodological flaws (e.g. in one of the studies designed as an RCT, randomisation failed), no single programme was independently evaluated with different study samples and no interventions were sufficiently homogeneous enough to be included in a meta-analysis,. While each of the programmes in this review showed some benefit to children with epilepsy, their impacts were extremely

  20. Potential Targets' Analysis Reveals Dual PI3K/mTOR Pathway Inhibition as a Promising Therapeutic Strategy for Uterine Leiomyosarcomas-an ENITEC Group Initiative

    NARCIS (Netherlands)

    Cuppens, T.; Annibali, D.; Coosemans, A.; Trovik, J.; Haar, N. Ter; Colas, E.; Garcia-Jimenez, A.; Vijver, K. van der; Kruitwagen, R.P.; Brinkhuis, M.; Zikan, M.; Dundr, P.; Huvila, J.; Carpen, O.; Haybaeck, J.; Moinfar, F.; Salvesen, H.B.; Stukan, M.; Mestdagh, C.; Zweemer, R.P.; Massuger, L.F.A.G.; Mallmann, M.R.; Wardelmann, E.; Mints, M.; Verbist, G.; Thomas, D; Gomme, E.; Hermans, E; Moerman, P.; Bosse, T.; Amant, F.

    2017-01-01

    Purpose: Uterine sarcomas are rare and heterogeneous tumors characterized by an aggressive clinical behavior. Their high rates of recurrence and mortality point to the urgent need for novel targeted therapies and alternative treatment strategies. However, no molecular prognostic or predictive

  1. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    Science.gov (United States)

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular si

  2. Political Reputations and Campaign Promises

    OpenAIRE

    Aragones, Enriqueta; Palfrey, Thomas R.; Postlewaite, Andrew

    2006-01-01

    We analyze conditions under which candidates' reputations may affect voters' beliefs over what policy will be implemented by the winning candidate of an election. We develop a model of repeated elections with complete information in which candidates are purely ideological. We analyze an equilibrium in which voters' strategies involve a credible threat to punish candidates who renege on their campaign promises and in which all campaign promises are believed by voters and honored by candidates....

  3. Information needs, preferred educational messages and channel of delivery, and opinion on strategies to promote organ donation: a multicultural perspective.

    Science.gov (United States)

    Wong, L P

    2010-10-01

    This study assessed the information needs, preferred educational messages and channels of delivery, as well as opinions on strategies to promote organ donation. It aimed to provide insight into a culturally sensitive public education campaign to encourage organ donation in diverse ethnic communities in Asia, namely the Malays, Chinese and Indians. A total of 17 focus group discussions with 105 participants were conducted between September and December 2008. The participants were members of the general public aged 18 to 60 years, who were recruited through convenient sampling in the Klang Valley area of Malaysia. Across ethnic groups, there was a general concern about the mistreatment of the deceased's body in the organ procurement process. The Chinese and Indian participants wanted assurance that the body would be treated with respect and care. The Muslims wanted assurance that the handling of a Muslim's body would follow the rules and regulations of the Islamic faith. The most important information requested by the Muslim participants was whether cadaveric donation is permissible in Islam. A lack of national public education and promotion of organ donation was noted. All the three ethnic groups, especially the Malays, required community and religious leaders for support, encouragement and involvement, as sociocultural influences play a significant role in the willingness to donate organs. The pronounced ethnic differences in information needs suggest that culturally sensitive public educational messages are required. Organ donation and transplantation organisations should work closely with community and religious organisations to address the sociocultural barriers identified.

  4. Evaluation of gene delivery strategies to efficiently overexpress functional HLA-G on human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Joana S Boura

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSC constitutively express low levels of human leukocyte antigen-G (HLA-G, which has been shown to contribute to their immunomodulatory and anti-inflammatory properties. Here, we hypothesized that overexpression of HLA-G on bone marrow-derived MSC would improve their immunomodulatory function, thus increasing their therapeutic potential. Therefore, we investigated which gene transfer system is best suited for delivering this molecule while maintaining its immunomodulatory effects. We performed a side-by-side comparison between three nonviral plasmid-based platforms (pmax-HLA-G1; MC-HLA-G1; pEP-HLA-G1 and a viral system (Lv-HLA-G1 using gene transfer parameters that yielded similar levels of HLA-G1-expressing MSC. Natural killer (NK cell–mediated lysis assays and T cell proliferation assays showed that MSC modified with the HLA-G1 expressing viral vector had significantly lower susceptibility to NK-lysis and significantly reduced T cell proliferation when compared to nonmodified cells or MSC modified with plasmid. We also show that, in plasmid-modified MSC, an increase in Toll-like receptor (TLR9 expression is the mechanism responsible for the abrogation of HLA-G1's immunomodulatory effect. Although MSC can be efficiently modified to overexpress HLA-G1 using viral and nonviral strategies, only viral-based delivery of HLA-G1 is suitable for improvement of MSC's immunomodulatory properties.

  5. Characterization of the pH and Temperature in the Rabbit, Pig, and Monkey Eye: Key Parameters for the Development of Long-Acting Delivery Ocular Strategies.

    Science.gov (United States)

    Lorget, Florence; Parenteau, Audrey; Carrier, Michel; Lambert, Daniel; Gueorguieva, Ana; Schuetz, Chris; Bantseev, Vlad; Thackaberry, Evan

    2016-09-06

    Many long-acting delivery strategies for ocular indications rely on pH- and/or temperature-driven release of the therapeutic agent and degradation of the drug carrier. Yet, these physiological parameters are poorly characterized in ocular animal models. These strategies aim at reducing the frequency of dosing, which is of particular interest for the treatment of chronic disorders affecting the posterior segment of the eye, such as macular degeneration that warrants monthly or every other month intravitreal injections. We used anesthetized white New Zealand rabbits, Yucatan mini pigs, and cynomolgus monkeys to characterize pH and temperature in several vitreous locations and the central aqueous location. We also established post mortem pH changes in the vitreous. Our data showed regional and species differences, which need to be factored into strategies for developing biodegradable long-acting delivery systems.

  6. Implementation of Brazil's "family health strategy": factors associated with community health workers', nurses', and physicians' delivery of drug use services.

    Science.gov (United States)

    Spector, Anya Y; Pinto, Rogério M; Rahman, Rahbel; da Fonseca, Aline

    2015-05-01

    Brazil's "family health strategy" (ESF), provides primary care, mostly to individuals in impoverished communities through teams of physicians, nurses, and community health workers (CHWs). ESF workers are called upon to offer drug use services (e.g., referrals, counseling) as drug use represents an urgent public health crisis. New federal initiatives are being implemented to build capacity in this workforce to deliver drug use services, yet little is known about whether ESF workers are providing drug use services already. Guided by social cognitive theory, this study examines factors associated with ESF workers' provision of drug use services. Cross-sectional surveys were collected from 262 ESF workers (168 CHWs, 62 nurses, and 32 physicians) in Mesquita, Rio de Janeiro State and Santa Luzia, Minas Gerais State. provision of drug-use services. capacity to engage in evidence-based practice (EBP), resource constraints, peer support, knowledge of EBP, and job title. Logistic regression was used to determine relative influence of each predictor upon the outcome. Thirty-nine percent reported providing drug use services. Younger workers, CHWs, workers with knowledge about EBP and workers that report peer support were more likely to offer drug use services. Workers that reported resource constraints and more capacity to implement EBP were less likely to offer drug use services. ESF workers require education in locating, assessing and evaluating the latest research. Mentorship from physicians and peer support through team meetings may enhance workers' delivery of drug use services, across professional disciplines. Educational initiatives aimed at ESF teams should consider these factors as potentially enhancing implementation of drug use services. Building ESF workers' capacity to collaborate across disciplines and to gain access to tools for providing assessment and treatment of drug use issues may improve uptake of new initiatives. Copyright © 2014 Elsevier B.V. All

  7. Annual Research Review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders--promises and limitations.

    Science.gov (United States)

    Zhao, Yihong; Castellanos, F Xavier

    2016-03-01

    Psychiatric science remains descriptive, with a categorical nosology intended to enhance interobserver reliability. Increased awareness of the mismatch between categorical classifications and the complexity of biological systems drives the search for novel frameworks including discovery science in Big Data. In this review, we provide an overview of incipient approaches, primarily focused on classically categorical diagnoses such as schizophrenia (SZ), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD), but also reference convincing, if focal, advances in cancer biology, to describe the challenges of Big Data and discovery science, and outline approaches being formulated to overcome existing obstacles. A paradigm shift from categorical diagnoses to a domain/structure-based nosology and from linear causal chains to complex causal network models of brain-behavior relationship is ongoing. This (r)evolution involves appreciating the complexity, dimensionality, and heterogeneity of neuropsychiatric data collected from multiple sources ('broad' data) along with data obtained at multiple levels of analysis, ranging from genes to molecules, cells, circuits, and behaviors ('deep' data). Both of these types of Big Data landscapes require the use and development of robust and powerful informatics and statistical approaches. Thus, we describe Big Data analysis pipelines and the promise and potential limitations in using Big Data approaches to study psychiatric disorders. We highlight key resources available for psychopathological studies and call for the application and development of Big Data approaches to dissect the causes and mechanisms of neuropsychiatric disorders and identify corresponding biomarkers for early diagnosis. © 2016 Association for Child and Adolescent Mental Health.

  8. Virtual Reality as a Promising Strategy in the Assessment and Treatment of Bulimia Nervosa and Binge Eating Disorder: A Systematic Review.

    Science.gov (United States)

    de Carvalho, Marcele Regine; Dias, Thiago Rodrigues de Santana; Duchesne, Monica; Nardi, Antonio Egidio; Appolinario, Jose Carlos

    2017-07-09

    Several lines of evidence suggest that Virtual Reality (VR) has a potential utility in eating disorders. The objective of this study is to review the literature on the use of VR in bulimia nervosa (BN) and binge eating disorder (BED). Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement for reporting systematic reviews, we performed a PubMed, Web of Knowledge and SCOPUS search to identify studies employing VR in the assessment and treatment of BN and BED. The following search terms were used: "virtual reality", "eating disorders", "binge eating", and "bulimia nervosa". From the 420 articles identified, 19 were selected, nine investigated VR in assessment and 10 were treatment studies (one case-report, two non-controlled and six randomized controlled trials). The studies using VR in BN and BED are at an early stage. However, considering the available evidence, the use of VR in the assessment of those conditions showed some promise in identifying: (1) how those patients experienced their body image; and (2) environments or specific kinds of foods that may trigger binge-purging cycle. Some studies using VR-based environments associated to cognitive behavioral techniques showed their potential utility in improving motivation for change, self-esteem, body image disturbances and in reducing binge eating and purging behavior.

  9. A youth mentor-led nutritional intervention in urban recreation centers: a promising strategy for childhood obesity prevention in low-income neighborhoods.

    Science.gov (United States)

    Sato, Priscila M; Steeves, Elizabeth A; Carnell, Susan; Cheskin, Lawrence J; Trude, Angela C; Shipley, Cara; Mejía Ruiz, M J; Gittelsohn, Joel

    2016-04-01

    B'More Healthy Community for Kids (BHCK) is an ongoing multi-level intervention to prevent childhood obesity in African-American low-income neighborhoods in Baltimore city, MD. Although previous nutrition interventions involving peer mentoring of youth have been successful, there is a lack of studies evaluating the influence of cross-age peers within interventions targeting youth. This article evaluates the implementation of the BHCK intervention in recreation centers, and describes lessons learned. Sixteen youth leaders delivered bi-weekly, interactive sessions to 10- to 14-y olds. Dose, fidelity and reach are assessed, as is qualitative information regarding what worked well during sessions. Dose is operationalized as the number of interactive sessions, and taste tests, giveaways and handouts per session; fidelity as the number of youth leaders participating in the entire intervention and per session and reach as the number of interactions with the target population. Based on a priori set values, number of interactive sessions was high, and number of taste tests, giveaways and handouts was moderate to high (dose). The number of participating youth leaders was also high (fidelity). Of the 14 planned sessions, the intervention was implemented with high/moderate reach. Data suggest that working with cross-age peers is a promising nutritional intervention for recreation centers. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. The promise and challenge of practice-research collaborations: Guiding principles and strategies for initiating, designing, and implementing program evaluation research.

    Science.gov (United States)

    Secret, Mary; Abell, Melissa L; Berlin, Trey

    2011-01-01

    The authors present a set of guiding principles and strategies to facilitate the collaborative efforts of social work researchers and practitioners as they initiate, design, and implement outcome evaluations of human service interventions and programs. Beginning with an exploration of the interpersonal barriers to practice-research collaborations, and building on their experiences in successfully completing a community-based research evaluation, the authors identify specific relationship-focused principles and strategies and illustrate how these approaches can guide practice-research teams through the various sequential activities of the evaluation research process. In particular, it is suggested that practice-research collaborations can be formed, strengthened, and sustained by emphasis on a spirit of discovery and shared leadership at the start of the relationship, use of a comprehensive evaluation model to clarify and frame the evaluation and program goals, beginning where the client is when selecting research methodology and measurement tools, commitment to keeping the program first and recording everything during the implementation and data-collection stages, discussion of emerging findings and presentation of findings in graphic format at the data-analysis stage, and a total team approach at the dissemination stage.

  11. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    International Nuclear Information System (INIS)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre

    2017-01-01

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO 2 ) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO 2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO 2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO 2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO 3 , Ca 3 (PO 4 ) 2 , CaHPO 4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  12. Microneedles for intradermal and transdermal delivery

    Science.gov (United States)

    Tuan-Mahmood, Tuan-Mazlelaa; McCrudden, Maeliosa T.C.; Torrisi, Barbara M.; McAlister, Emma; Garland, Martin J; Singh, Thakur Raghu Raj; Donnelly, Ryan F

    2014-01-01

    The formidable barrier properties of the uppermost layer of the skin, the stratum corneum impose significant limitations for successful systemic delivery of a broad range of therapeutic molecules, particularly macromolecules and genetic material. Microneedle delivery has been proposed as a strategy to breach the SC barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves the use of micron sized needles fabricated from different materials and using different geometries to create transient aqueous conduits across the skin. Microneedles in isolation, or in combination with other enhancing strategies, have been shown to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo. Progress in the areas of microneedle design, development and manufacture have proven promising in terms of the potential use of this emerging delivery method in clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. This review article focuses on recent and potential future developments in microneedle technologies. This will include the detailing of progress made in microneedle design, an exploration of the challenges faced in this field and potential forward strategies to embrace the exploitation of microneedle methodologies, while considering the inherent safety aspects of such therapeutic tools. PMID:23680534

  13. [Strategies, actors, promises and fears in the smallpox vaccinations campaigns in Mexico: from the Porfiriato to the Post-revolution (1880-1940)].

    Science.gov (United States)

    Agostoni, Claudia

    2011-02-01

    The article examines some of the strategies employed by the Mexican health authorities that led to the organization of massive and obligatory smallpox vaccination campaigns from the late 1880s to the 1940s, a period of Mexican history that corresponds to the Porfirio Díaz regime (1877-1911), to the armed phase of the Mexican Revolution (1910-1920), and to the first two decades of the Post-revolutionary governments (1920-1940). Attention will be placed of the vaccination programs in the main urban settings, notably in Mexico City, as well as the gradual but decisive organization and regulation of vaccination campaigns in the heterogeneous rural milieu. Furthermore, the importance that hygienic education acquired will be explored, as well as the divergent and contested responses that emerged due to the obligatory vaccination campaigns, responses that included resistance, fear, uncertainty and widespread acceptance.

  14. Buccal and sublingual vaccine delivery.

    Science.gov (United States)

    Kraan, Heleen; Vrieling, Hilde; Czerkinsky, Cecil; Jiskoot, Wim; Kersten, Gideon; Amorij, Jean-Pierre

    2014-09-28

    Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery. Copyright © 2014. Published by Elsevier B.V.

  15. Synthesis of calcium-phosphorous doped TiO{sub 2} nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sofia A., E-mail: sofiafonso@msn.com [CMEMS – Center of MicroElectroMechanical Systems, Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães (Portugal); IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Patel, Sweetu B. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Mechanical Engineering, Michigan Technological University, 49931 Houghton, MI (United States); Sukotjo, Cortino [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Departmenmt of Restorative Dentistry, University of Illinois at Chicago, 60612 Chicago, IL (United States); Mathew, Mathew T. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Orthopedic Surgery, Rush University Medical Center, 60612 Chicago, IL (United States); Department of Biomedical Science, UIC School of Medicine at Rockford, 61107 Rockford, IL (United States); Filho, Paulo N. [IBTN/Br – Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UNESP – Universidade Estadual Paulista, Faculdade de Ciências, 17033-360 Bauru, São Paulo (Brazil); Faculdade de Ciências, Departamento de Física, UNESP - Universidade Estadual Paulista, 17033-360 Bauru, São Paulo (Brazil); Celis, Jean-Pierre [Department of Materials Engineering, KU Leuven, 3001 Leuven (Belgium); and others

    2017-03-31

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO{sub 2}) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO{sub 2} nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO{sub 2} nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO{sub 2} nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, CaHPO{sub 4} and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated

  16. Innovative vaccine delivery strategies in response to a cholera outbreak in the challenging context of Lake Chilwa. A rapid qualitative assessment.

    Science.gov (United States)

    Heyerdahl, Leonard W; Ngwira, Bagrey; Demolis, Rachel; Nyirenda, Gabriel; Mwesawina, Maurice; Rafael, Florentina; Cavailler, Philippe; Bernard Le Gargasson, Jean; Mengel, Martin A; Gessner, Bradford D; Guillermet, Elise

    2017-11-07

    A reactive campaign using two doses of Shanchol Oral Cholera Vaccine (OCV) was implemented in 2016 in the Lake Chilwa Region (Malawi) targeting fish dependent communities. Three strategies for the second vaccine dose delivery (including delivery by a community leader and self-administration) were used to facilitate vaccine access. This assessment collected vaccine perceptions and opinions about the OCV campaign of 313 study participants, including: fishermen, fish traders, farmers, community leaders, and one health and one NGO officer. Socio-demographic surveys were conducted, In Depth Interviews and Focus Group Discussions were conducted before and during the campaign. Some fishermen perceived the traditional delivery strategy as reliable but less practical. Delivery by traditional leaders was acceptable for some participants while others worried about traditional leaders not being trained to deliver vaccines or beneficiaries taking doses on their own. A slight majority of beneficiaries considered the self-administration strategy practical while some beneficiaries worried about storing vials outside of the cold chain or losing vials. During the campaign, a majority of participants preferred receiving oral vaccines instead of injections given ease of intake and lack of pain. OCV was perceived as efficacious and safe. However, a lack of information on how sero-protection may be delayed and the degree of sero-protection led to loss of trust in vaccine potency among some participants who witnessed cholera cases among vaccinated individuals. OCV campaign implementation requires accompanying communication on protective levels, less than 100% vaccine efficacy, delays in onset of sero-protection, and out of cold chain storage. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Functionalization of protein-based nanocages for drug delivery applications.

    Science.gov (United States)

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  18. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    Science.gov (United States)

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  19. Elicited vs. voluntary promises

    NARCIS (Netherlands)

    Ismayilov, H.; Potters, Jan

    2017-01-01

    We set up an experiment with pre-play communication to study the impact of promise elicitation by trustors from trustees on trust and trustworthiness. When given the opportunity a majority of trustors solicits a promise from the trustee. This drives up the promise making rate by trustees to almost

  20. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy.

    Directory of Open Access Journals (Sweden)

    Noel P Gurwick

    Full Text Available BACKGROUND: Claims about the environmental benefits of charring biomass and applying the resulting "biochar" to soil are impressive. If true, they could influence land management worldwide. Alleged benefits include increased crop yields, soil fertility, and water-holding capacity; the most widely discussed idea is that applying biochar to soil will mitigate climate change. This claim rests on the assumption that biochar persists for hundreds or thousands of years, thus storing carbon that would otherwise decompose. We conducted a systematic review to quantify research effort directed toward ten aspects of biochar and closely evaluated the literature concerning biochar's stability. FINDINGS: We identified 311 peer-reviewed research articles published through 2011. We found very few field studies that addressed biochar's influence on several ecosystem processes: one on soil nutrient loss, one on soil contaminants, six concerning non-CO2 greenhouse gas (GHG fluxes (some of which fail to support claims that biochar decreases non-CO2 GHG fluxes, and 16-19 on plants and soil properties. Of 74 studies related to biochar stability, transport or fate in soil, only seven estimated biochar decomposition rates in situ, with mean residence times ranging from 8 to almost 4,000 years. CONCLUSIONS: Our review shows there are not enough data to draw conclusions about how biochar production and application affect whole-system GHG budgets. Wide-ranging estimates of a key variable, biochar stability in situ, likely result from diverse environmental conditions, feedstocks, and study designs. There are even fewer data about the extent to which biochar stimulates decomposition of soil organic matter or affects non-CO2 GHG emissions. Identifying conditions where biochar amendments yield favorable GHG budgets requires a systematic field research program. Finally, evaluating biochar's suitability as a climate mitigation strategy requires comparing its effects with

  1. Wharton’s Jelly-Derived Mesenchymal Stromal Cells as a Promising Cellular Therapeutic Strategy for the Management of Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Joseph P. McGuirk

    2015-04-01

    Full Text Available Allogeneic hematopoietic cell transplantation (allo-HCT, a treatment option in hematologic malignancies and bone marrow failure syndromes, is frequently complicated by Graft-versus-host disease (GVHD. The primary treatment for GVHD involves immune suppression by glucocorticoids. However, patients are often refractory to the steroid therapy, and this results in a poor prognosis. Therefore alternative therapies are needed to treat GVHD. Here, we review data supporting the clinical investigation of a novel cellular therapy using Wharton’s jelly (WJ-derived mesenchymal stromal cells (MSCs as a potentially safe and effective therapeutic strategy in the management of GVHD. Adult-derived sources of MSCs have demonstrated signals of efficacy in the management of GVHD. However, there are limitations, including: limited proliferation capacity; heterogeneity of cell sources; lengthy expansion time to clinical dose; expansion failure in vitro; and a painful, invasive, isolation procedure for the donor. Therefore, alternative MSC sources for cellular therapy are sought. The reviewed data suggests MSCs derived from WJ may be a safe and effective cellular therapy for GVHD. Laboratories investigated and defined the immune properties of WJ-MSCs for potential use in cellular therapy. These cells represent a more uniform cell population than bone marrow-derived MSCs, displaying robust immunosuppressive properties and lacking significant immunogenicity. They can be collected safely and painlessly from individuals at birth, rapidly expanded and stored cryogenically for later clinical use. Additionally, data we reviewed suggested licensing MSCs (activating MSCs by exposure to cytokines to enhance effectiveness in treating GVHD. Therefore, WJCs should be tested as a second generation, relatively homogeneous allogeneic cell therapy for the treatment of GVHD.

  2. Delivery of peptide and protein drugs over the blood-brain barrier.

    Science.gov (United States)

    Brasnjevic, Ivona; Steinbusch, Harry W M; Schmitz, Christoph; Martinez-Martinez, Pilar

    2009-04-01

    Peptide and protein (P/P) drugs have been identified as showing great promises for the treatment of various neurodegenerative diseases. A major challenge in this regard, however, is the delivery of P/P drugs over the blood-brain barrier (BBB). Intense research over the last 25 years has enabled a better understanding of the cellular and molecular transport mechanisms at the BBB, and several strategies for enhanced P/P drug delivery over the BBB have been developed and tested in preclinical and clinical-experimental research. Among them, technology-based approaches (comprising functionalized nanocarriers and liposomes) and pharmacological strategies (such as the use of carrier systems and chimeric peptide technology) appear to be the most promising ones. This review combines a comprehensive overview on the current understanding of the transport mechanisms at the BBB with promising selected strategies published so far that can be applied to facilitate enhanced P/P drug delivery over the BBB.

  3. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  4. Impact of alternative reimbursement strategies in the new cooperative medical scheme on caesarean delivery rates: a mixed-method study in rural China

    Directory of Open Access Journals (Sweden)

    Huang Kun

    2012-07-01

    Full Text Available Abstract Background The rate of caesarean delivery (CD in rural China has been rapidly increasing in recent decades. Due to the exorbitant costs associated with CD, paying for this expensive procedure is often a great challenge for the majority of rural families. Since 2003, the Chinese government has re-established the New Cooperative Medical Scheme (NCMS, aimed to improve the access of essential healthcare to rural residents and reduce financial burden owing to high out of pocket payments. This paper seeks to test the hypothesis that NCMS may provide service users and providers with financial incentives to select CD. It also assesses the effect of different health insurance reimbursement strategies of NCMS on CD rates in rural China. Methods Mixed quantitative and qualitative methods were adopted for data collection. Two cross-sectional household surveys were conducted with women having babies delivered in 2006 and 2009; 2326 and 1515 women, respectively, from the study sites were interviewed using structured questionnaires, to collect demographic and socio-economic data, maternal and child care characteristics and health-related expenditures. Focus group discussions (FGDs and in-depth key informant interviews (KIIs were undertaken with policy makers, health managers, providers and mothers to understand their perceptions of the influence of NCMS on the choices of delivery mode. Results The CD rates in the two study counties were 46.0 percent and 64.7 percent in 2006, increasing to 63.6 percent and 82.1 percent, respectively, in 2009. The study found that decisions on the selection of CD largely came from the pregnant women. Logistic regression analysis, after adjusting for socio-economic, maternal and fetal characteristics, did not indicate a significant effect of either proportional reimbursement or fixed amount reimbursement on the choice of CD for both study years. Interviews with stakeholders reflected that different reimbursable rates for

  5. Physico-Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor-Targeted Drug Delivery

    NARCIS (Netherlands)

    Shi, Y.; Lammers, Twan Gerardus Gertudis Maria; Storm, Gerrit; Hennink, W.E.

    2017-01-01

    Polymeric micelles (PM) have been extensively used for tumor-targeted delivery of hydrophobic anti-cancer drugs. The lipophilic core of PM is naturally suitable for loading hydrophobic drugs and the hydrophilic shell endows them with colloidal stability and stealth properties. Decades of research on

  6. Improving health related quality of life among rural hypertensive patients through the integrative strategy of health services delivery: a quasi-experimental trial from Chongqing, China.

    Science.gov (United States)

    Miao, Yudong; Zhang, Liang; Sparring, Vibeke; Sandeep, Sandeep; Tang, Wenxi; Sun, Xiaowei; Feng, Da; Ye, Ting

    2016-08-23

    Integrative strategy of health services delivery has been proven to be effective in economically developed countries, where the healthcare systems have enough qualified primary care providers. However rural China lacks such providers to act as gatekeeper, besides, Chinese rural hypertensive patients are usually of old age, more likely to be exposed to health risk factors and they experience a greater socio-economic burden. All these Chinese rural setting specific features make the effectiveness of integrative strategy of health services in improving health related quality of life among Chinese rural hypertensive patients uncertain. In order to assess the impact of integrative strategy of health services delivery on health related quality of life among Chinese rural hypertensive patients, a two-year quasi-experimental trial was conducted in Chongqing, China. At baseline the sample enrolled 1006 hypertensive patients into intervention group and 420 hypertensive patients into control group. Physicians from village clinics, town hospitals and county hospitals worked collaboratively to deliver multidisciplinary health services for the intervention group, while physicians in the control group provided services without cooperation. The quality of life was studied by SF-36 Scale. Blood pressures were reported by town hospitals. The Difference-in-Differences model was used to estimate the differences in SF-36 score and blood pressure of both groups to assess the impact. The study showed that at baseline there was no statistical difference in SF-36 scores between both groups. While at follow-up the intervention group scored higher in overall SF-36, Role Physical, Body Pain, Social Functioning and Role Emotional than the control group. The Difference-in-Differences result demonstrated that there were statistical differences in SF-36 total score (p = 0.011), Role Physical (p = 0.027), Social Functioning (p = 0.000), Role Emotional (p = 0.002) between both

  7. The Promise and Pitfalls of Grand Strategy

    Science.gov (United States)

    2012-08-01

    Watergate scandal left him po- litically and emotionally crippled. As Jeremi Suri and John Lewis Gaddis have made clear, however, Kissinger provided the...38 by Watergate , Kissinger subsequently used this op- portunity to excellent effect. Shuttling between Jeru- salem, Cairo, and Damascus, he gradually...Vietnam and Watergate , Kissinger and the Presidents he served seemed to be replicating—indeed, intensifying—these practices. Sure enough, when

  8. Biocorrosion control: Current strategies and promising alternatives ...

    African Journals Online (AJOL)

    Metal corrosion is an electrochemical reaction between the environment and a metal, in which microbes are thought to play a very important role. The rates at which various types of metals corrode are dependent upon environmental conditions as well as on the type of metals. The most well studied bacteria involved in ...

  9. SOLUBILITY AND BIOAVAILABILITY ENHANCEMENT STRATEGIES FOR EFFECTIVE DELIVERY OF POORLY WATER SOLUBLE DRUGS BY NANO FORMULATIONS AND SOLID DISPERSIONS

    OpenAIRE

    Rayapolu Ranga Goud*, Gunnala Krishnaveni, Girija Prasad Patro

    2018-01-01

    For the ancient few years, there has been a substantial research done on diverse methodologies for poorly water soluble and lipophilic drugs. More in modern times voluminous molecules cannot be distributed due to low solubility. Now a day frequently, particulate vesicle systems such as nanoparticles, liposomes, microspheres, niosomes, pronisomes, ethosomes, and proliposomes have been used as drug carriers. Drug delivery designates the technique and methodology to conveying medications or drug...

  10. Keeping the Promise

    Science.gov (United States)

    Whissemore, Tabitha

    2016-01-01

    Since its launch in September 2015, Heads Up America has collected information on nearly 125 promise programs across the country, many of which were instituted long before President Barack Obama announced the America's College Promise (ACP) plan in 2015. At least 27 new free community college programs have launched in states, communities, and at…

  11. Screening strategy to avoid toxicological hazards of inhaled nanoparticles for drug delivery: The use of a-quartz and nano zinc oxide particles as benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Beyerle, Andrea; Schulz, Holger; Stoeger, Tobias [Institute of Inhalation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, D - 85764 Neuherberg (Germany); Kissel, Thomas, E-mail: tobias.stoeger@helmholtz-muenchen.d [Department of Pharmaceutical Technology and Biopharmacy, Philipps- University Marburg (Germany)

    2009-02-01

    Nanotechnology is a broad, revolutionary field with promising advantages for new medicine. In this context the rapid development and improvement of so called nanocarriers is of high pharmaceutical interest and some devices are already on the market. In our project we aim to develop well characterized nanoscaled drug delivery systems for an inhalative application. To this end, we focus on the most adverse side-effects within the lung, the cytotoxic and the proinflammatory responses to these nanoparticles (NPs). Before performing any animal experiments, we start with an in vitro screening for analyzing the cytotoxic and proinflammatory effects of the investigated particles on two murine lung target cell lines, the alveolar epithelial like typ II cell line (LA4) and the alveolar macrophage cell line (MH-S). Three different endpoints were estimated, (i) cellular metabolic activity, determined by the WST-1 assay, (ii) membrane integrity, by detection of LDH release and hemolytic activity, and (iii) secretion of inflammatory mediators. To analyze the relative particle toxicity we choose two reference particles as benchmarks, (i) fine a-quartz, and (ii) ultrafine ZnO particles. The investigation of dose-response and kinetics of proinflammatory and toxic effects caused to the named cell lines provide an insight to a close evaluation of our cell based screening strategy. oc-quartz is well known for its inflammatory and toxic potential caused by inhalation, and nanosized ZnO particles - used in a broad field of nanotechnology like electronics, but also cosmetics and pharmaceuticals - is to a high degree cytotoxic and proinflammatory in vitro. Preliminary experiments indicated not only particle and cell specific inflammatory responses, but also different susceptibilities of the cell types being exposed to our benchmark particles regarding their size and surface activities. Exposure to the mum-sized a-quartz particles affected the viability of epithelia cells less than that of

  12. Screening strategy to avoid toxicological hazards of inhaled nanoparticles for drug delivery: The use of a-quartz and nano zinc oxide particles as benchmark

    Science.gov (United States)

    Beyerle, Andrea; Schulz, Holger; Kissel, Thomas; Stoeger, Tobias

    2009-02-01

    Nanotechnology is a broad, revolutionary field with promising advantages for new medicine. In this context the rapid development and improvement of so called nanocarriers is of high pharmaceutical interest and some devices are already on the market. In our project we aim to develop well characterized nanoscaled drug delivery systems for an inhalative application. To this end, we focus on the most adverse side-effects within the lung, the cytotoxic and the proinflammatory responses to these nanoparticles (NPs). Before performing any animal experiments, we start with an in vitro screening for analyzing the cytotoxic and proinflammatory effects of the investigated particles on two murine lung target cell lines, the alveolar epithelial like typ II cell line (LA4) and the alveolar macrophage cell line (MH-S). Three different endpoints were estimated, (i) cellular metabolic activity, determined by the WST-1 assay, (ii) membrane integrity, by detection of LDH release and hemolytic activity, and (iii) secretion of inflammatory mediators. To analyze the relative particle toxicity we choose two reference particles as benchmarks, (i) fine a-quartz, and (ii) ultrafine ZnO particles. The investigation of dose-response and kinetics of proinflammatory and toxic effects caused to the named cell lines provide an insight to a close evaluation of our cell based screening strategy. oc-quartz is well known for its inflammatory and toxic potential caused by inhalation, and nanosized ZnO particles - used in a broad field of nanotechnology like electronics, but also cosmetics and pharmaceuticals - is to a high degree cytotoxic and proinflammatory in vitro. Preliminary experiments indicated not only particle and cell specific inflammatory responses, but also different susceptibilities of the cell types being exposed to our benchmark particles regarding their size and surface activities. Exposure to the μm-sized a-quartz particles affected the viability of epithelia cells less than that of

  13. Screening strategy to avoid toxicological hazards of inhaled nanoparticles for drug delivery: The use of a-quartz and nano zinc oxide particles as benchmark

    International Nuclear Information System (INIS)

    Beyerle, Andrea; Schulz, Holger; Stoeger, Tobias; Kissel, Thomas

    2009-01-01

    Nanotechnology is a broad, revolutionary field with promising advantages for new medicine. In this context the rapid development and improvement of so called nanocarriers is of high pharmaceutical interest and some devices are already on the market. In our project we aim to develop well characterized nanoscaled drug delivery systems for an inhalative application. To this end, we focus on the most adverse side-effects within the lung, the cytotoxic and the proinflammatory responses to these nanoparticles (NPs). Before performing any animal experiments, we start with an in vitro screening for analyzing the cytotoxic and proinflammatory effects of the investigated particles on two murine lung target cell lines, the alveolar epithelial like typ II cell line (LA4) and the alveolar macrophage cell line (MH-S). Three different endpoints were estimated, (i) cellular metabolic activity, determined by the WST-1 assay, (ii) membrane integrity, by detection of LDH release and hemolytic activity, and (iii) secretion of inflammatory mediators. To analyze the relative particle toxicity we choose two reference particles as benchmarks, (i) fine a-quartz, and (ii) ultrafine ZnO particles. The investigation of dose-response and kinetics of proinflammatory and toxic effects caused to the named cell lines provide an insight to a close evaluation of our cell based screening strategy. oc-quartz is well known for its inflammatory and toxic potential caused by inhalation, and nanosized ZnO particles - used in a broad field of nanotechnology like electronics, but also cosmetics and pharmaceuticals - is to a high degree cytotoxic and proinflammatory in vitro. Preliminary experiments indicated not only particle and cell specific inflammatory responses, but also different susceptibilities of the cell types being exposed to our benchmark particles regarding their size and surface activities. Exposure to the μm-sized a-quartz particles affected the viability of epithelia cells less than that of

  14. The process of end-of-life care delivery to the families of elderly patients according to the Family Health Strategy.

    Science.gov (United States)

    Silva, Lucía; Poles, Kátia; Baliza, Michelle Freire; dos Santos Ribeiro Silva, Mariana Cristina Lobato; dos Santos, Maiara Rodrigues; Bousso, Regina Szylit

    2013-02-01

    To understand the process of end-of-life care delivery to the families of elderly patients according to a Family Health Strategy (FHS) team, to identify the meanings the team attributes to the experience and to build a theoretical model. Symbolic Interactionism and Grounded Theory were applied. Fourteen professionals working in an FHS located in a country town in the state of São Paulo were interviewed. Through comparative analysis, the core category overcoming challenges to assist the family and the elderly during the dying process was identified, and it was composed of the following sub-processes: Identifying situational problems, Planning a new care strategy, Managing the care and Evaluating the care process. the team faces difficulties to achieve better performance in attending to the biological and emotional needs of families, seeking to ensure dignity to the elderly at the end of their lives and expand access to healthcare.

  15. Bisphosphonate-Linked TrkB Agonist: Cochlea-Targeted Delivery of a Neurotrophic Agent as a Strategy for the Treatment of Hearing Loss.

    Science.gov (United States)

    Kempfle, Judith S; Nguyen, Kim; Hamadani, Christine; Koen, Nicholas; Edge, Albert S; Kashemirov, Boris A; Jung, David H; McKenna, Charles E

    2018-04-18

    Hearing loss affects more than two-thirds of the elderly population, and more than 17% of all adults in the U.S. Sensorineural hearing loss related to noise exposure or aging is associated with loss of inner ear sensory hair cells (HCs), cochlear spiral ganglion neurons (SGNs), and ribbon synapses between HCs and SGNs, stimulating intense interest in therapies to regenerate synaptic function. 7,8-Dihydroxyflavone (DHF) is a selective and potent agonist of tropomyosin receptor kinase B (TrkB) and protects the neuron from apoptosis. Despite evidence that TrkB agonists can promote survival of SGNs, local delivery of drugs such as DHF to the inner ear remains a challenge. We previously demonstrated in an animal model that a fluorescently labeled bisphosphonate, 6-FAM-Zol, administered to the round window membrane penetrated the membrane and diffused throughout the cochlea. Given their affinity for bone mineral, including cochlear bone, bisphosphonates offer an intriguing modality for targeted delivery of neurotrophic agents to the SGNs to promote survival, neurite outgrowth, and, potentially, regeneration of synapses between HCs and SGNs. The design and synthesis of a bisphosphonate conjugate of DHF (Ris-DHF) is presented, with a preliminary evaluation of its neurotrophic activity. Ris-DHF increases neurite outgrowth in vitro, maintains this ability after binding to hydroxyapatite, and regenerates synapses in kainic acid-damaged cochlear organ of Corti explants dissected in vitro with attached SGNs. The results suggest that bisphosphonate-TrkB agonist conjugates have promise as a novel approach to targeted delivery of drugs to treat sensorineural hearing loss.

  16. A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept - A compromise between small safety margins and long duty cycles

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Kavanagh, Anthony; Webb, Steve; Brada, Michael

    2011-01-01

    Purpose: To evaluate a novel respiratory motion compensation strategy combining gated beam delivery with the mean target position (MTP) concept for pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Four motion compensation strategies were compared for 10 targets with motion amplitudes between 6 mm and 31 mm: the internal target volume concept (plan ITV ); the MTP concept where safety margins were adapted based on 4D dose accumulation (plan MTP ); gated beam delivery without margins for motion compensation (plan gated ); a novel approach combining gating and the MTP concept (plan gated and MTP ). Results: For 5/10 targets with an average motion amplitude of 9 mm, the differences in the mean lung dose (MLD) between plan gated and plan MTP were gated and MTP . Despite significantly shorter duty cycles, plan gated reduced the MLD by gated and MTP . The MLD was increased by 18% in plan MTP compared to that of plan gated and MTP . Conclusions: For pulmonary targets with motion amplitudes >10-15 mm, the combination of gating and the MTP concept allowed small safety margins with simultaneous long duty cycles.

  17. Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design.

    Science.gov (United States)

    Li, Yingpeng; Li, Xiuyan; Guan, Qingxia; Zhang, Chunjing; Xu, Ting; Dong, Yujing; Bai, Xinyu; Zhang, Weiping

    2017-01-01

    Enhancing drug delivery is an ongoing endeavor in pharmaceutics, especially when the efficacy of chemotherapy for cancer is concerned. In this study, we prepared and evaluated nanosized HKUST-1 (nanoHKUST-1), nanosized metal-organic drug delivery framework, loaded with 5-fluorouracil (5-FU) for potential use in cancer treatment. NanoHKUST-1 was prepared by reacting copper (II) acetate [Cu(OAc) 2 ] and benzene-1,3,5-tricarboxylic acid (H 3 BTC) with benzoic acid (C 6 H 5 COOH) at room temperature (23.7°C±2.4°C). A central composite design was used to optimize 5-FU-loaded nanoHKUST-1. Contact time, ethanol concentration, and 5-FU:material ratios were the independent variables, and the entrapment efficiency of 5-FU was the response parameter measured. Powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption were used to determine the morphology of nanoHKUST-1. In addition, 5-FU release studies were conducted, and the in vitro cytotoxicity was evaluated. Entrapment efficiency and drug loading were 9.96% and 40.22%, respectively, while the small-angle X-ray diffraction patterns confirmed a regular porous structure. The SEM and TEM images of the nanoHKUST-1 confirmed the presence of round particles (diameter: approximately 100 nm) and regular polygon arrays of mesoporous channels of approximately 2-5 nm. The half-maximal lethal concentration (LC 50 ) of the 5-FU-loaded nanoHKUST-1 was approximately 10 µg/mL. The results indicated that nanoHKUST-1 is a potential vector worth developing as a cancer chemotherapeutic drug delivery system.

  18. Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design

    Directory of Open Access Journals (Sweden)

    Li YP

    2017-02-01

    Full Text Available Yingpeng Li,1 Xiuyan Li,2 Qingxia Guan,2 Chunjing Zhang,2 Ting Xu,2 Yujing Dong,2 Xinyu Bai,2 Weiping Zhang3 1College of Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, 2College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, People’s Republic of China; 3Pope John XXIII High School, Everett, MA, USA Background: Enhancing drug delivery is an ongoing endeavor in pharmaceutics, especially when the efficacy of chemotherapy for cancer is concerned. In this study, we prepared and evaluated nanosized HKUST-1 (nanoHKUST-1, nanosized metal-organic drug delivery framework, loaded with 5-fluorouracil (5-FU for potential use in cancer treatment.Materials and methods: NanoHKUST-1 was prepared by reacting copper (II acetate [Cu(OAc2] and benzene-1,3,5-tricarboxylic acid (H3BTC with benzoic acid (C6H5COOH at room temperature (23.7°C±2.4°C. A central composite design was used to optimize 5-FU-loaded nanoHKUST-1. Contact time, ethanol concentration, and 5-FU:material ratios were the independent variables, and the entrapment efficiency of 5-FU was the response parameter measured. Powder X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and nitrogen adsorption were used to determine the morphology of nanoHKUST-1. In addition, 5-FU release studies were conducted, and the in vitro cytotoxicity was evaluated.Results: Entrapment efficiency and drug loading were 9.96% and 40.22%, respectively, while the small-angle X-ray diffraction patterns confirmed a regular porous structure. The SEM and TEM images of the nanoHKUST-1 confirmed the presence of round particles (diameter: approximately 100 nm and regular polygon arrays of mesoporous channels of approximately 2–5 nm. The half-maximal lethal concentration (LC50 of the 5-FU-loaded nanoHKUST-1 was approximately 10 µg/mL.Conclusion: The results indicated that nanoHKUST-1 is a potential vector worth developing as a

  19. Promise Zones for Applicants

    Data.gov (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  20. Can metabotyping help deliver the promise of personalised nutrition?

    Science.gov (United States)

    O'Donovan, Clare B; Walsh, Marianne C; Gibney, Michael J; Gibney, Eileen R; Brennan, Lorraine

    2016-02-01

    Over a decade since the completion of the human genome sequence, the promise of personalised nutrition available to all has yet to become a reality. While the definition was originally very gene-focused, in recent years, a model of personalised nutrition has emerged with the incorporation of dietary, phenotypic and genotypic information at various levels. Developing on from the idea of personalised nutrition, the concept of targeted nutrition has evolved which refers to the delivery of tailored dietary advice at a group level rather than at an individual level. Central to this concept is metabotyping or metabolic phenotyping, which is the ability to group similar individuals together based on their metabolic or phenotypic profiles. Applications of the metabotyping concept extend from the nutrition to the medical literature. While there are many examples of the metabotype approach, there is a dearth in the literature with regard to the development of tailored interventions for groups of individuals. This review will first explore the effectiveness of personalised nutrition in motivating behaviour change and secondly, examine potential novel ways for the delivery of personalised advice at a population level through a metabotyping approach. Based on recent findings from our work, we will demonstrate a novel strategy for the delivery of tailored dietary advice at a group level using this concept. In general, there is a strong emerging evidence to support the effectiveness of personalised nutrition; future work should ascertain if targeted nutrition can motivate behaviour change in a similar manner.

  1. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.

    Science.gov (United States)

    Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir

    2015-02-10

    Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Planning, delivery, and quality assurance of treatment with dynamic multileaf collimator for prostate: a strategy for large scale implementation

    International Nuclear Information System (INIS)

    Burman, Chandra; Chen, Chui; Kutcher, Gerald; Leibel, Steven; Zelefsky, Michael; LoSasso, Thomas; Spirou, Spiridon; Wu Qiuwen; Stein, Jorge; Mohan, Radhe; Ling, C. Clifton; Fuks, Zvi

    1996-01-01

    Purpose: In an attempt to improve tumor control of patients treated for the adenocarcinoma of the prostate, we have implemented a technique to deliver a prescribed dose of 81 Gy. At such high doses, the surrounding normal organs such as the rectum, bladder, and femur impose challenging constraints. We present a method to plan and deliver intensity modulated fields with dynamic multileaf collimators (DMLCs) in an effort to meet the difficult constraints. While the planning technique which uses inverse planning has been described in the literature, safe delivery with DMLC is a new and challenging problem. We will describe in detail our procedures with the emphasis on the delivery problems and chosen solutions. Procedures for the quality assurance of DMLC will be described. Methods and Materials: Using a recently developed and modified inverse planning algorithm, we have developed a 5-field intensity modulated plan that is delivered using DMLC. The planner specifies the target, normal organs, and the desired doses for these tissues and for the overlap regions. The planning system designs the desired intensity profiles to meet the specified criteria. To deliver the dose DMLCs provide a practical and convenient method. A procedure has been developed for the dose delivery. A scheme has been designed to determine the leaf motion to produce the required intensity pattern based on the prescribed dose and the dose rate. In order to ensure that the dose is delivered as planned, we have instituted the following procedures: (1) verification of the aperture shape on a localization port film, (2) an additional dose calculation, which uses the delivered leaf motion, and compares the difference between the planned and delivered doses, (3) comparison of the machine log files, generated during the actual dose delivery, with the planned leaf motions, (4) comparison of the measured dose profile in a flat phantom with the calculated dose distribution using the prescribed treatment

  3. Human resources for health strategies adopted by providers in resource-limited settings to sustain long-term delivery of ART: a mixed-methods study from Uganda.

    Science.gov (United States)

    Zakumumpa, Henry; Taiwo, Modupe Oladunni; Muganzi, Alex; Ssengooba, Freddie

    2016-10-19

    Human resources for health (HRH) constraints are a major barrier to the sustainability of antiretroviral therapy (ART) scale-up programs in Sub-Saharan Africa. Many prior approaches to HRH constraints have taken a top-down trend of generalized global strategies and policy guidelines. The objective of the study was to examine the human resources for health strategies adopted by front-line providers in Uganda to sustain ART delivery beyond the initial ART scale-up phase between 2004 and 2009. A two-phase mixed-methods approach was adopted. In the first phase, a survey of a nationally representative sample of health facilities (n = 195) across Uganda was conducted. The second phase involved in-depth interviews (n = 36) with ART clinic managers and staff of 6 of the 195 health facilities purposively selected from the first study phase. Quantitative data was analysed based on descriptive statistics, and qualitative data was analysed by coding and thematic analysis. The identified strategies were categorized into five themes: (1) providing monetary and non-monetary incentives to health workers on busy ART clinic days; (2) workload reduction through spacing ART clinic appointments; (3) adopting training workshops in ART management as a motivation strategy for health workers; (4) adopting non-physician-centred staffing models; and (5) devising ART program leadership styles that enhanced health worker commitment. Facility-level strategies for responding to HRH constraints are feasible and can contribute to efforts to increase country ownership of HIV programs in resource-limited settings. Consideration of the human resources for health strategies identified in the study by ART program planners and managers could enhance the long-term sustainment of ART programs by providers in resource-limited settings.

  4. Transcutaneous delivery of T Cell-inducing viral vector Malaria vaccines by microneedle patches

    OpenAIRE

    2011-01-01

    There is an urgent need for improvements to existing vaccine delivery technologies to run parallel with the development of new-generation vaccines. The burdens of needle-based immunisation strategies are exacerbated by poor resource provision in such areas as sub-Saharan Africa, where annual malaria mortality stands at 860,000. Needle-free delivery of vaccine to the skin holds promise for improved immunogenicity with lower doses of vaccine, in addition to significant logistical advantages. Va...

  5. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury

    OpenAIRE

    Lopes, CDF; Gonçalves, NP; Gomes, CP; Saraiva, MJ; Pêgo, AP

    2017-01-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the br...

  6. Premature delivery

    Directory of Open Access Journals (Sweden)

    Bernardita Donoso Bernales

    2012-09-01

    Full Text Available Preterm delivery is the single most important cause of perinatal morbidity and mortality. In Chile, preterm births have increased in the past decade, although neonatal morbidity and mortality attributable to it shows a downward trend, thanks to improvements in neonatal care of premature babies, rather than the success of obstetric preventive and therapeutic strategies. This article describes clinical entities, disease processes and conditions that constitute predisposing factors of preterm birth, as well as an outline for the prevention and clinical management of women at risk of preterm birth.

  7. Promising More Information

    Science.gov (United States)

    2003-01-01

    When NASA needed a real-time, online database system capable of tracking documentation changes in its propulsion test facilities, engineers at Stennis Space Center joined with ECT International, of Brookfield, Wisconsin, to create a solution. Through NASA's Dual-Use Program, ECT developed Exdata, a software program that works within the company's existing Promise software. Exdata not only satisfied NASA s requirements, but also expanded ECT s commercial product line. Promise, ECT s primary product, is an intelligent software program with specialized functions for designing and documenting electrical control systems. An addon to AutoCAD software, Promis e generates control system schematics, panel layouts, bills of material, wire lists, and terminal plans. The drawing functions include symbol libraries, macros, and automatic line breaking. Primary Promise customers include manufacturing companies, utilities, and other organizations with complex processes to control.

  8. Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage.

    Science.gov (United States)

    Gao, Liansheng; Xu, Weilin; Li, Tao; Chen, Jingyin; Shao, Anwen; Yan, Feng; Chen, Gao

    2018-01-01

    Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment. In this study, our aim was to review the therapeutic effects, strategies, related mechanisms and safety issues of various types of stem cell for ICH treatment. Numerous studies had demonstrated the therapeutic effects of diverse stem cell types in ICH. The potential mechanisms include tissue repair and replacement, neurotrophy, promotion of neurogenesis and angiogenesis, anti-apoptosis, immunoregulation and anti-inflammation and so forth. The microenvironment of the central nervous system (CNS) can also influence the effects of stem cell therapy. The detailed therapeutic strategies for ICH treatment such as cell type, the number of cells, time window, and the routes of medication delivery, varied greatly among different studies and had not been determined. Moreover, the safety issues of stem cell therapy for ICH should not be ignored. Stem cell therapy showed good therapeutic effect in ICH, making it a promising treatment. However, safety should be carefully evaluated, and more clinical trials are required before stem cell therapy can be extensively applied to clinical use.

  9. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    Science.gov (United States)

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Bone regeneration with biomaterials and active molecules delivery.

    Science.gov (United States)

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  11. Clinical leadership development in postgraduate medical education and training: policy, strategy, and delivery in the UK National Health Service

    Directory of Open Access Journals (Sweden)

    Aggarwal R

    2015-11-01

    Full Text Available Reena Aggarwal,1,2 Tim Swanwick2 1Women's Health, Whittington Health, London, UK; 2Health Education England, North Central and East London, London, UK Abstract: Achieving high quality health care against a background of continual change, increasing demand, and shrinking financial resource is a major challenge. However, there is significant international evidence that when clinicians use their voices and values to engage with system delivery, operational efficiency and care outcomes are improved. In the UK National Health Service, the traditional divide between doctors and managers is being bridged, as clinical leadership is now foregrounded as an important organizational priority. There are 60,000 doctors in postgraduate training (junior doctors in the UK who provide the majority of front-line patient care and form an "operating core" of most health care organizations. This group of doctors is therefore seen as an important resource in initiating, championing, and delivering improvement in the quality of patient care. This paper provides a brief overview of leadership theories and constructs that have been used to develop a raft of interventions to develop leadership capability among junior doctors. We explore some of the approaches used, including competency frameworks, talent management, shared learning, clinical fellowships, and quality improvement. A new paradigm is identified as necessary to make a difference at a local level, which moves learning and leadership away from developing "leaders", to a more inclusive model of developing relationships between individuals within organizations. This shifts the emphasis from the development of a "heroic" individual leader to a more distributed model, where organizations are "leader-ful" and not just "well led" and leadership is centered on a shared vision owned by whole teams working on the frontline. Keywords: National Health Service, junior doctors, quality improvement, management, health care

  12. Clinical leadership development in postgraduate medical education and training: policy, strategy, and delivery in the UK National Health Service.

    Science.gov (United States)

    Aggarwal, Reena; Swanwick, Tim

    2015-01-01

    Achieving high quality health care against a background of continual change, increasing demand, and shrinking financial resource is a major challenge. However, there is significant international evidence that when clinicians use their voices and values to engage with system delivery, operational efficiency and care outcomes are improved. In the UK National Health Service, the traditional divide between doctors and managers is being bridged, as clinical leadership is now foregrounded as an important organizational priority. There are 60,000 doctors in postgraduate training (junior doctors) in the UK who provide the majority of front-line patient care and form an "operating core" of most health care organizations. This group of doctors is therefore seen as an important resource in initiating, championing, and delivering improvement in the quality of patient care. This paper provides a brief overview of leadership theories and constructs that have been used to develop a raft of interventions to develop leadership capability among junior doctors. We explore some of the approaches used, including competency frameworks, talent management, shared learning, clinical fellowships, and quality improvement. A new paradigm is identified as necessary to make a difference at a local level, which moves learning and leadership away from developing "leaders", to a more inclusive model of developing relationships between individuals within organizations. This shifts the emphasis from the development of a "heroic" individual leader to a more distributed model, where organizations are "leader-ful" and not just "well led" and leadership is centered on a shared vision owned by whole teams working on the frontline.

  13. Clinical leadership development in postgraduate medical education and training: policy, strategy, and delivery in the UK National Health Service

    Science.gov (United States)

    Aggarwal, Reena; Swanwick, Tim

    2015-01-01

    Achieving high quality health care against a background of continual change, increasing demand, and shrinking financial resource is a major challenge. However, there is significant international evidence that when clinicians use their voices and values to engage with system delivery, operational efficiency and care outcomes are improved. In the UK National Health Service, the traditional divide between doctors and managers is being bridged, as clinical leadership is now foregrounded as an important organizational priority. There are 60,000 doctors in postgraduate training (junior doctors) in the UK who provide the majority of front-line patient care and form an “operating core” of most health care organizations. This group of doctors is therefore seen as an important resource in initiating, championing, and delivering improvement in the quality of patient care. This paper provides a brief overview of leadership theories and constructs that have been used to develop a raft of interventions to develop leadership capability among junior doctors. We explore some of the approaches used, including competency frameworks, talent management, shared learning, clinical fellowships, and quality improvement. A new paradigm is identified as necessary to make a difference at a local level, which moves learning and leadership away from developing “leaders”, to a more inclusive model of developing relationships between individuals within organizations. This shifts the emphasis from the development of a “heroic” individual leader to a more distributed model, where organizations are “leader-ful” and not just “well led” and leadership is centered on a shared vision owned by whole teams working on the frontline. PMID:29355184

  14. Beyond providing drugs: the Mectizan® donation stimulates new strategies in service delivery and in strengthening health systems.

    Science.gov (United States)

    Hopkins, Adrian

    2012-05-01

    The donation of Mectizan® by Merck & Co Inc. in 1987 "as much as was needed for as long as was needed for onchocerciasis control" was a major change from traditional corporate drug donations. The company realised that those who needed the drug most would never be able to purchase it, and so gave it away. The donation enabled the Onchocerciasis Control Programme in West Africa to add Mectizan distribution to its ongoing control strategy. For the first time there was hope for those living in other areas of Africa, Latin America and Yemen. Governments and non-governmental development organizations quickly got together to begin treatment in these new areas. Two new programmes and partnerships were created; the African Programme for Onchocerciasis Control and the Onchocerciasis Elimination Programme for the Americas. These programmes have been in the forefront of developing new strategies, including the Community Directed approach, which has now expanded into other disease control programmes at the community level, such as Vitamin A distribution and malaria control. This donation has led not only to the probability of elimination of onchocerciasis in the Americas in the near future, but is stimulating approaches to the elimination in Africa, in areas considered impossible five years ago. Other major pharmaceutical donations have followed, initiating the plan to eliminate lymphatic filariasis worldwide, and also stimulating interest in controlling other "neglected tropical diseases," which affect the poorest billion of the world's population, making this now a reality.

  15. Multi-country comparison of delivery strategies for mass campaigns to achieve universal coverage with insecticide-treated nets: what works best?

    Science.gov (United States)

    Zegers de Beyl, Celine; Koenker, Hannah; Acosta, Angela; Onyefunafoa, Emmanuel Obi; Adegbe, Emmanuel; McCartney-Melstad, Anna; Selby, Richmond Ato; Kilian, Albert

    2016-02-03

    The use of insecticide-treated nets (ITNs) is widely recognized as one of the main interventions to prevent malaria. High ITN coverage is needed to reduce transmission. Mass distribution campaigns are the fastest way to rapidly scale up ITN coverage. However, the best strategy to distribute ITNs to ensure household coverage targets are met is still under debate. This paper presents results from 14 post-campaign surveys in five African countries to assess whether the campaign strategy used had any effect on distribution outcome. Data from 13,901 households and 14 campaigns from Ghana, Nigeria, Senegal, South Sudan and Uganda, were obtained through representative cross-sectional questionnaire surveys, conducted three to 16 months after ITN distribution. All evaluations used a multi-stage sampling approach and similar methods for data collection. Key outcomes examined were the proportion of households having received a net from the campaign and the proportion of households with one net for every two people. Household registration rates proved to be the most important determinant of a household receiving any net from the campaign (adjusted odds ratio [OR] 74.8; 95 % confidence interval [CI]: 55.3-101.1) or had enough ITNs for all household members (adjusted OR 19.1; 95 % CI: 55.34-101.05). Factors that positively influenced registration were larger household size (adjusted OR 1.7; 95 % CI: 1.5-2.1) and families with children under five (adjusted OR 1.4; 95 % CI: 1.2-1.6). Urban residence was negatively associated with receipt of a net from the campaign (adjusted OR 0.73; 95 % CI: 0.58-0.92). Registration was equitable in most campaigns except for Uganda and South Sudan, where the poorest wealth quintiles were less likely to have been reached. After adjusting for other factors, delivery strategy (house-to-house vs. fixed point) and distribution approach (integrated versus stand-alone) did not show a systematic impact on registration or owning any ITN. Campaigns that

  16. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  17. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  18. Differential susceptibility of adults and nymphs of Blattella germanica (L.) (Blattodea: Blattellidae) to infection by Metarhizium anisopliae and assessment of delivery strategies

    International Nuclear Information System (INIS)

    Lopes, R.B.; Alves, S.B.

    2011-01-01

    Microbial insecticides for cockroach control, such as those containing entomopathogenic fungi, may be an alternative to reduce contamination by chemicals in housing and food storage environments. Virulence of isolate ESALQ1037 belonging to the Metarhizium anisopliae complex against nymphs and adults of Blattella germanica (L.), and its infectivity following exposure of insects to a contaminated surface or to M. anisopliae-bait were determined under laboratory conditions. Estimated LD50 15 d following topical inoculation was 2.69 x 105 conidia per adult, whereas for nymphs the maximum mortality was lower than 50%. Baits amended with M. anisopliae conidia had no repellent effect on targets; adult mortality was inferior to 25%, and nymphs were not susceptible. All conidia found in the digestive tract of M. anisopliae-bait fed cockroaches were unviable, and bait-treated insects that succumbed to fungal infection showed a typical mycelial growth on mouthparts and front legs, but not on the hind body parts. As opposed to baits, the use of a M. anisopliae powdery formulation for surface treatment was effective in attaining high mortality rates of B. germanica. Both nymphs and adults were infected when this delivery strategy was used, and mycelia growth occurred all over the body surface. Our results suggest that the development of powders or similar formulations of M. anisopliae to control B. germanica may provide faster and better results than some of the strategies based on baits currently available. (author)

  19. Differential susceptibility of adults and nymphs of Blattella germanica (L.) (Blattodea: Blattellidae) to infection by Metarhizium anisopliae and assessment of delivery strategies

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, R.B., E-mail: rblopes@cenargen.embrapa.b [EMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF (Brazil); Alves, S.B. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Entomologia e Acarologia

    2011-05-15

    Microbial insecticides for cockroach control, such as those containing entomopathogenic fungi, may be an alternative to reduce contamination by chemicals in housing and food storage environments. Virulence of isolate ESALQ1037 belonging to the Metarhizium anisopliae complex against nymphs and adults of Blattella germanica (L.), and its infectivity following exposure of insects to a contaminated surface or to M. anisopliae-bait were determined under laboratory conditions. Estimated LD50 15 d following topical inoculation was 2.69 x 105 conidia per adult, whereas for nymphs the maximum mortality was lower than 50%. Baits amended with M. anisopliae conidia had no repellent effect on targets; adult mortality was inferior to 25%, and nymphs were not susceptible. All conidia found in the digestive tract of M. anisopliae-bait fed cockroaches were unviable, and bait-treated insects that succumbed to fungal infection showed a typical mycelial growth on mouthparts and front legs, but not on the hind body parts. As opposed to baits, the use of a M. anisopliae powdery formulation for surface treatment was effective in attaining high mortality rates of B. germanica. Both nymphs and adults were infected when this delivery strategy was used, and mycelia growth occurred all over the body surface. Our results suggest that the development of powders or similar formulations of M. anisopliae to control B. germanica may provide faster and better results than some of the strategies based on baits currently available. (author)

  20. Microneedle-mediated delivery of viral vectored vaccines.

    Science.gov (United States)

    Zaric, Marija; Ibarzo Yus, Bárbara; Kalcheva, Petya Petrova; Klavinskis, Linda Sylvia

    2017-10-01

    Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.

  1. Delivery presentations

    Science.gov (United States)

    Pregnancy - delivery presentation; Labor - delivery presentation; Occiput posterior; Occiput anterior; Brow presentation ... The mother can walk, rock, and try different delivery positions during labor to help encourage the baby ...

  2. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.

    Science.gov (United States)

    Song, Young Ho; Shin, Eyoung; Wang, Hong; Nolan, Jim; Low, Susan; Parsons, Donald; Zale, Stephen; Ashton, Susan; Ashford, Marianne; Ali, Mir; Thrasher, Daniel; Boylan, Nicholas; Troiano, Greg

    2016-05-10

    preclinical efficacy and tolerability data were generated for the pamoic acid lead formulation, which has been selected for evaluation in a Phase 1 clinical trial (ClinicalTrials.gov Identifier NCT 02579226). This work clearly demonstrates the importance of assessing a wide range of drug release rates during formulation screening as a critical step for new drug product development, and how utilizing hydrophobic ion pairing enabled this promising nanoparticle formulation to proceed into clinical development. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin

    Science.gov (United States)

    Mihoub, Amina Ben; Saidat, Boubakeur; Bal, Youssef; Frochot, Céline; Vanderesse, Régis; Acherar, Samir

    2018-03-01

    In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD- g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD- g-CS NPs vs. the classical ionic gelation method. New HA/β-CD- g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD- g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA): w(β-CD- g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD- g-CS NPs. Furthermore, the stability of β- CD- g-CS NPs and HA/β-CD- g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD- g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD- g-CS NPs. Finally, preliminary study of HA/β-CD- g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD- g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.

  4. Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/mTOR pathway.

    Science.gov (United States)

    Chen, Dongshao; Lin, Xiaoting; Zhang, Cheng; Liu, Zhentao; Chen, Zuhua; Li, Zhongwu; Wang, Jingyuan; Li, Beifang; Hu, Yanting; Dong, Bin; Shen, Lin; Ji, Jiafu; Gao, Jing; Zhang, Xiaotian

    2018-01-26

    Paclitaxel (PTX) is widely used in the front-line chemotherapy for gastric cancer (GC), but resistance limits its use. Due to the lack of proper models, mechanisms underlying PTX resistance in GC were not well studied. Using established PTX-resistant GC cell sublines HGC-27R, we for the first time integrated biological traits and molecular mechanisms of PTX resistance in GC. Data revealed that PTX-resistant GC cells were characterized by microtubular disorders, an EMT phenotype, reduced responses to antimitotic drugs, and resistance to apoptosis (marked by upregulated β-tubulin III, vimentin, attenuated changes in G 2 /M molecules or pro-apoptotic factors in response to antimitotic drugs or apoptotic inducers, respectively). Activation of the phosphoinositide 3-kinase, the serine/threonine kinase Akt and mammalian target of rapamycin (PI3K/Akt/mTOR) and mitogen-activated protein kinase (MAPK) pathways were also observed, which might be the reason for above phenotypic alternations. In vitro data suggested that targeting these pathways were sufficient to elicit antitumor responses in PTX-resistant GC, in which the dual PI3K/mTOR inhibitor BEZ235 displayed higher therapeutic efficiency than the mTOR inhibitor everolimus or the MEK inhibitor AZD6244. Antitumor effects of BEZ235 were also confirmed in mice bearing HGC-27R tumors. Thus, these data suggest that PI3K/Akt/mTOR and MAPK pathway inhibition, especially PI3K/mTOR dual blockade, might be a promising therapeutic strategy against PTX-resistant GC.

  5. Nanocarriers for Nitric Oxide Delivery

    Directory of Open Access Journals (Sweden)

    Juliana Saraiva

    2011-01-01

    Full Text Available Nitric oxide (NO is a promising pharmaceutical agent that has vasodilative, antibacterial, and tumoricidal effects. To study the complex and wide-ranging roles of NO and to facilitate its therapeutic use, a great number of synthetic compounds (e.g., nitrosothiols, nitrosohydroxyamines, N-diazeniumdiolates, and nitrosyl metal complexes have been developed to chemically stabilize and release NO in a controlled manner. Although NO is currently being exploited in many biomedical applications, its use is limited by several factors, including a short half-life, instability during storage, and potential toxicity. Additionally, efficient methods of both localized and systemic in vivo delivery and dose control are needed. One strategy for addressing these limitations and thus increasing the utility of NO donors is based on nanotechnology.

  6. New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery.

    Science.gov (United States)

    Savaldi-Goldstein, Sigal; Baiga, Thomas J; Pojer, Florence; Dabi, Tsegeye; Butterfield, Cristina; Parry, Geraint; Santner, Aaron; Dharmasiri, Nihal; Tao, Yi; Estelle, Mark; Noel, Joseph P; Chory, Joanne

    2008-09-30

    Plant growth depends on the integration of environmental cues and phytohormone-signaling pathways. During seedling emergence, elongation of the embryonic stem (hypocotyl) serves as a readout for light and hormone-dependent responses. We screened 10,000 chemicals provided exogenously to light-grown seedlings and identified 100 compounds that promote hypocotyl elongation. Notably, one subset of these chemicals shares structural characteristics with the synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid (1-NAA); however, traditional auxins (e.g., indole-3-acetic acid [IAA], 2,4-D, 1-NAA) have no effect on hypocotyl elongation. We show that the new compounds act as "proauxins" akin to prodrugs. Our data suggest that these compounds diffuse efficiently to the hypocotyls, where they undergo cleavage at varying rates, releasing functional auxins. To investigate this principle, we applied a masking strategy and designed a pro-2,4-D. Unlike 2,4-D alone, this pro-2,4-D enhanced hypocotyl elongation. We further demonstrated the utility of the proauxins by characterizing auxin responses in light-grown hypocotyls of several auxin receptor mutants. These new compounds thus provide experimental access to a tissue previously inaccessible to exogenous application of auxins. Our studies exemplify the combined power of chemical genetics and biochemical analyses for discovering and refining prohormone analogs with selective activity in specific plant tissues. In addition to the utility of these compounds for addressing questions related to auxin and light-signaling interactions, one can envision using these simple principles to study other plant hormone and small molecule responses in temporally and spatially controlled ways.

  7. Interprofessional primary care protocols: a strategy to promote an evidence-based approach to teamwork and the delivery of care.

    Science.gov (United States)

    Goldman, Joanne; Meuser, Jamie; Lawrie, Lynne; Rogers, Jess; Reeves, Scott

    2010-11-01

    Primary care reform involving interprofessional team-based care is a global phenomenon. In Ontario, Canada, 150 Family Health Teams (FHTs) have been approved in the past few years. The transition to a FHT is complex involving many changes and the processes for collaborative teamwork are not clearly delineated. To support the transition to team-based care in FHTs, a project was undertaken to develop and implement a series of interprofessional protocols in four clinical areas. These interprofessional protocols would contain relevant and evidence-based resources to support both a team and evidence-based approach to care. This paper reports on a qualitative study to examine the process of interprofessional protocol development and pilot implementation. Adopting an exploratory case study approach (Robson, 2002 ), 36 interviews were conducted with health professionals and community group members who participated in the creation and piloting of the protocols, and with project managers. In addition, observational and documentary data were gathered on the protocol development and implementation processes. The findings from the protocol development stage demonstrate the value of the focus on evidence and team, the process of assessing and targeting FHT needs, inter-organizational and interprofessional sharing, the importance of facilitation and support, and expectations for implementation. The findings from the pilot implementation stage report on the importance of champions and leaders, the implementation strategies used, FHT and organizational factors affecting implementation, and outcomes achieved. Findings are discussed in relation to the knowledge translation and interprofessional literature. Research is ongoing to examine the effectiveness of dissemination of the protocols to FHTs across the province of Ontario and its impact on health care outcomes.

  8. Interrupting transmission of soil-transmitted helminths: a study protocol for cluster randomised trials evaluating alternative treatment strategies and delivery systems in Kenya.

    Science.gov (United States)

    Brooker, Simon J; Mwandawiro, Charles S; Halliday, Katherine E; Njenga, Sammy M; Mcharo, Carlos; Gichuki, Paul M; Wasunna, Beatrice; Kihara, Jimmy H; Njomo, Doris; Alusala, Dorcas; Chiguzo, Athuman; Turner, Hugo C; Teti, Caroline; Gwayi-Chore, Claire; Nikolay, Birgit; Truscott, James E; Hollingsworth, T Déirdre; Balabanova, Dina; Griffiths, Ulla K; Freeman, Matthew C; Allen, Elizabeth; Pullan, Rachel L; Anderson, Roy M

    2015-10-19

    In recent years, an unprecedented emphasis has been given to the control of neglected tropical diseases, including soil-transmitted helminths (STHs). The mainstay of STH control is school-based deworming (SBD), but mathematical modelling has shown that in all but very low transmission settings, SBD is unlikely to interrupt transmission, and that new treatment strategies are required. This study seeks to answer the question: is it possible to interrupt the transmission of STH, and, if so, what is the most cost-effective treatment strategy and delivery system to achieve this goal? Two cluster randomised trials are being implemented in contrasting settings in Kenya. The interventions are annual mass anthelmintic treatment delivered to preschool- and school-aged children, as part of a national SBD programme, or to entire communities, delivered by community health workers. Allocation to study group is by cluster, using predefined units used in public health provision-termed community units (CUs). CUs are randomised to one of three groups: receiving either (1) annual SBD; (2) annual community-based deworming (CBD); or (3) biannual CBD. The primary outcome measure is the prevalence of hookworm infection, assessed by four cross-sectional surveys. Secondary outcomes are prevalence of Ascaris lumbricoides and Trichuris trichiura, intensity of species infections and treatment coverage. Costs and cost-effectiveness will be evaluated. Among a random subsample of participants, worm burden and proportion of unfertilised eggs will be assessed longitudinally. A nested process evaluation, using semistructured interviews, focus group discussions and a stakeholder analysis, will investigate the community acceptability, feasibility and scale-up of each delivery system. Study protocols have been reviewed and approved by the ethics committees of the Kenya Medical Research Institute and National Ethics Review Committee, and London School of Hygiene and Tropical Medicine. The study has a

  9. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    Science.gov (United States)

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  10. Promising change, delivering continuity

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Sungusia, Eliezeri; Mabele, Mathew Bukhi

    2017-01-01

    REDD+ is an ambition to reduce carbon emissions from deforestation and forest degradation in the Global South. This ambition has generated unprecedented commitment of political support and financial funds for the forest-development sector. Many academics and people-centered advocacy organizations...... have conceptualized REDD+ as an example of ‘‘green grabbing” and have voiced fears of a potential global rush for land and trees. In this paper we argue that, in practice and up until now, REDD+ resembles longstanding dynamics of the development and conservation industry, where the promise of change...... becomes a discursive commodity that is constantly reproduced and used to generate value and appropriate financial resources. We thus argue for a re-conceptualization of REDD+ as a conservation fad within the broader political economy of development and conservation. We derive this argument from a study...

  11. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene.

    Science.gov (United States)

    Melo, Luis G; Agrawal, Reitu; Zhang, Lunan; Rezvani, Mojgan; Mangi, Abeel A; Ehsan, Afshin; Griese, Daniel P; Dell'Acqua, Giorgio; Mann, Michael J; Oyama, Junichi; Yet, Shaw-Fang; Layne, Matthew D; Perrella, Mark A; Dzau, Victor J

    2002-02-05

    Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury. Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1beta protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death. This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel "pre-event" gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.

  12. Combinatorial drug delivery strategy employing nano-curcumin and nano-MiADMSA for the treatment of arsenic intoxication in mouse.

    Science.gov (United States)

    Kushwaha, Pramod; Yadav, Abhishek; Samim, M; Flora, S J S

    2018-04-25

    Chelation therapy is the mainstream treatment for heavy metal poisoning. Apart from this, therapy using antioxidant/herbal extracts are the other strategies now commonly being tried for the treatment. We have previously reported individual beneficial efficacy of nanoparticle mediated administration of an antioxidant like 'curcumin' and an arsenic chelator 'monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA)' for the treatment of arsenic toxicity compared to bulk drugs. The present paper investigates our hypothesis that a combination drug delivery therapy employing two nanosystems, a chelator and a strong antioxidant, may produce more pronounced therapeutic effects compared to individual effects in the treatment of arsenic toxicity. An in-vivo study was conducted wherein arsenic as sodium arsenite (100 ppm) was administered in drinking water for 5 months to Swiss albino mice. This was followed by a treatment protocol comprising of curcumin encapsulated chitosan nanoparticles (nano-curcumin, 15 mg/kg, orally for 1 month) either alone or in combination with MiADMSA encapsulated polymeric nanoparticles (nano-MiADMSA, 50 mg/kg for last 5 days) to evaluate the therapeutic potential of the combination treatment. Our results demonstrated that co-treatment with nano-curcumin and nano-MiADMSA provided beneficial effects in a synergistic way on the adverse changes in oxidative stress parameters and metal status induced by arsenic. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Promising carbons for supercapacitors derived from fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hui; Wang, Xiaolei; Yang, Fan; Yang, Xiurong [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2011-06-24

    Activated carbons with promising performance in capacitors are produced from fungi via a hydrothermal assistant pyrolysis approach. This study introduces a facile strategy to discover carbonaceous materials and triggers interest in exploring fungi for material science applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Meng [Tsinghua University, Department of Chemical Engineering (China); Kang, Yoon Joong [Jungwon University, Department of Biomedical Science (Korea, Republic of); Sohn, Youngjoo [Kyung Hee University, Department of Anatomy, College of Korean Medicine (Korea, Republic of); Kim, Do Kyung, E-mail: eurokorean@gmail.com, E-mail: dokyung@konyang.ac.kr [Konyang University, Industry Cooperation Foundation (Korea, Republic of)

    2015-06-15

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[(N-isopropylacrylamide-r-acrylamide)-b-l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  15. Targeted drug delivery and penetration into solid tumors.

    Science.gov (United States)

    Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

    2012-09-01

    Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

  16. Comparative cost analysis of insecticide-treated net delivery strategies: sales supported by social marketing and free distribution through antenatal care.

    Science.gov (United States)

    De Allegri, Manuela; Marschall, Paul; Flessa, Steffen; Tiendrebéogo, Justin; Kouyaté, Bocar; Jahn, Albrecht; Müller, Olaf

    2010-01-01

    Insecticide-treated nets (ITNs) are effective in substantially reducing malaria transmission. Still, ITN coverage in sub-Saharan Africa (SSA) remains extremely low. Policy makers are concerned with identifying the most suitable delivery mechanism to achieve rapid yet sustainable increases in ITN coverage. Little is known, however, on the comparative costs of alternative ITN distribution strategies. This paper aimed to fill this gap in knowledge by developing such a comparative cost analysis, looking at the cost per ITN distributed for two alternative interventions: subsidized sales supported by social marketing and free distribution to pregnant women through antenatal care (ANC). The study was conducted in rural Burkina Faso, where the two interventions were carried out alongside one another in 2006/07. Cost information was collected prospectively to derive both a financial analysis adopting a provider's perspective and an economic analysis adopting a societal perspective. The average financial cost per ITN distributed was US$8.08 and US$7.21 for sales supported by social marketing and free distribution through ANC, respectively. The average economic cost per ITN distributed was US$4.81 for both interventions. Contrary to common belief, costs did not differ substantially between the two interventions. Due to the district's ability to rely fully on the use of existing resources, financial costs associated with free ITN distribution through ANC were in fact even lower than those associated with the social marketing campaign. This represents an encouraging finding for SSA governments and points to the possibility to invest in programmes to favour free ITN distribution through existing health facilities. Given restricted budgets, however, free distribution programmes are unlikely to be feasible.

  17. MRI-Guided Focused Ultrasound as a New Method of Drug Delivery

    Directory of Open Access Journals (Sweden)

    M. Thanou

    2013-01-01

    Full Text Available Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS- mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to “activate” nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery.

  18. From intervention to impact: modelling the potential mortality impact achievable by different long-lasting, insecticide-treated net delivery strategies

    Directory of Open Access Journals (Sweden)

    Okell Lucy C

    2012-09-01

    Full Text Available Abstract Background The current target of universal access to long-lasting, insecticide-treated nets (LLIN is 80% coverage to reduce malaria deaths by 75% by 2015. So far, campaigns have been the main channel for large-scale delivery of LLINs, however the World Health Organization has recommended that equal priority should be given to delivery via routine antenatal care (ANC and immunization systems (EPI to target pregnant women and children from birth. These various channels of LLIN delivery are targeted to children of different ages. Since risk of mortality varies with child age and LLIN effectiveness declines with net age, it was hypothesized that the age at which a child receives a new LLIN, and therefore the delivery channel, is important in optimizing the health impact of a net. Methods A simple dynamic mathematical model was developed of delivery and impact of LLINs among children under five years of age and their household members, incorporating data on age-specific malaria death rates, net use by household structure, and net efficacy over time. Results The presented analysis finds that supplementing a universal mass campaign with extra ANC delivery would achieve a 1.4 times higher mortality reduction than campaign delivery alone, reflecting that children born in the years between campaigns would otherwise have access to old nets or no nets at an age of high risk. The relative advantage of supplementary ANC delivery is still present though smaller if malaria transmission levels are lower or if there is a strong mass effect achieved by mass campaigns. Conclusion These results indicate that LLIN delivery policies must take into account the age of greatest malaria risk. Emphasis should be placed on supporting routine delivery of LLINs to young children as well as campaigns.

  19. Exosomes: Nanoparticulate tools for RNA interference and drug delivery.

    Science.gov (United States)

    Shahabipour, Fahimeh; Barati, Nastaran; Johnston, Thomas P; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-07-01

    Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell-cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules. © 2017 Wiley Periodicals, Inc.

  20. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  1. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  2. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  3. Melanoma Vaccines: Mixed Past, Promising Future

    Science.gov (United States)

    Ozao-Choy, Junko; Lee, Delphine J.; Faries, Mark B.

    2014-01-01

    Synopsis Cancer vaccines were one of the earliest forms of immunotherapy to be investigated. Past attempts to vaccinate against cancer, including melanoma, have mixed results, revealing the complexity of what was thought to be a simple concept. However, several recent successes and the combination of improved knowledge of tumor immunology and the advent of new immunomodulators make vaccination a promising strategy for the future. PMID:25245965

  4. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  5. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-01-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery

  6. 基于博弈分析的民营快递业竞争策略研究%Competitive Strategy of Private Express Delivery Industry Viewed from the Perspective of Game Theory

    Institute of Scientific and Technical Information of China (English)

    余丽婷; 陆克斌

    2015-01-01

    In the view of the slowdown of income growth of private express delivery industry and the lower customer satisfaction,the paper constructs the Bertrand model of different substitution degree to make analysis. According to the results of the analysis,the private express industry should actively take innovative measures to increase business income by means of diversified competition strategies. In the meantime,private express delivery enterprises should take full advantage of integrated transportation and train their employees with the MOOC approach,and improve the effectiveness of delivery as well as the professional skills and ethics of delivery personnel.%针对民营快递业收入增长出现下滑迹象,以及顾客满意度不高等问题,通过构建替代程度不同的伯特兰德博弈模型进行分析,提出了民营快递业应积极创新,采取差异化竞争策略增加企业收入,同时提出民营快递业要充分利用综合型交通运输平台,尝试利用MOOC对快递人员进行培训,缩短快递服务时效,提高快递人员的专业技能和职业道德素养。

  7. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  8. TH-C-12A-02: Comparison of Two RapidArc Delivery Strategies in Stereotactic Body Radiotherapy of Stage I and II Peripheral Lung Tumors with Unflattened Beams

    International Nuclear Information System (INIS)

    Huang, B; Lu, J; Chen, J; Chen, C; Lin, P; Kuang, Y

    2014-01-01

    Purpose: The full arcs strategy used in SBRT with RapidArc and unflattened (FFF) beams in large and heterogeneous peripheral non-smallcell lung cancer (NSCLC) appears to be suboptimal as it increases the disadvantageous dose to the contralateral lung, which potentially increases the toxicity to surrounding tissues. In this study, we investigated, for the first time, the dose delivery strategies using partial arcs (PA) and the fully rotational arcs with avoidance sectors (FAAS) for SBRT with FFF beams in peripheral NSCLC patients. Methods: Eighteen patients with NSCLC (stage I and II) were selected for this study. Nine patients with a GTV <= 10cc were designated as the small tumor group. The remaining nine patients with a GTV between 10 cc and 44 cc were assigned to the large tumor group. The treatment plans were generated in eighteen patients using PA and FAAS, respectively, and delivered with a Varian TrueBeam Linac. Dosimetry of the target and organs at risk (OAR), total MU, out-of-field dose, and delivery time were analyzed. Delta4 and Portal dosimetry were employed to evaluate the delivery accuracy. Results: or the small tumor group, the FAAS plans significantly achieved a better conformity index, the lower total MU and out-of-field dose, a shorter treatment time, and the reduced doses to cord, heart, and lung (p < 0.05). But the target doses were slightly higher than that delivered by PA plans. For the large tumor group, the PA plans significantly attained a better conformity index and a shorter treatment time (p < 0.05). Furthermore, all plans achieved a high pass rate, with all the gamma indices greater than 97% at the Γ 3mm, 3% threshold. Conclusion: This study suggests that FAAS strategy is more beneficial for small tumor patients undergoing lung SBRT with FFF beams. However, for large tumor patients, PA strategy is recommended. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship

  9. A sight on the current nanoparticle-based gene delivery vectors

    Science.gov (United States)

    Dizaj, Solmaz Maleki; Jafari, Samira; Khosroushahi, Ahmad Yari

    2014-05-01

    Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/ in vivo transformation efficiency.

  10. Harnessing the capacity of cell-penetrating peptides for drug delivery to the central nervous system.

    Science.gov (United States)

    Kang, Ting; Gao, Xiaoling; Chen, Jun

    2014-01-01

    The existence of blood-brain barrier (BBB) represents the most formidable challenge for drug delivery to the central nervous system (CNS). Modern breakthrough in biology offers multiple choices for overcoming this barrier but yields modest outcomes for clinical application due to various problems such as safety concerns, insufficient delivery efficiency and poor penetration. Cell penetrating peptides (CPPs) possessing powerful transmembrane capacity have been shown to be effective transport vectors for bioactive molecules and an attractive alternative to traditional active targeting approaches. However, the non-specificity of CPPs has hindered them from targeting a desired site of action. Promisingly, design of novel CPP-mediated nanoparticulate delivery systems with specific targeting property may extricate CPPs from the dilemma. In this review, both the traditional and novel applications of CPPs-based strategies for CNS drug delivery will be discussed.

  11. Cell-Penetrating Peptides as Carriers for Oral Delivery of Biopharmaceuticals

    DEFF Research Database (Denmark)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2016-01-01

    Oral delivery of biopharmaceuticals, for example peptides and proteins, constitutes a great challenge in drug delivery due to their low chemical stability and poor permeation across the intestinal mucosa, to a large extent limiting the mode of administration to injections, which is not favouring...... patient compliance. Nevertheless, cell-penetrating peptides (CPPs) have shown promising potential as carriers to overcome the epithelium, and this minireview highlights recent knowledge gained within the field of CPP-mediated transepithelial delivery of therapeutic peptides and proteins from the intestine...... is to be preferred depends on the physicochemical properties of both the specific CPP and the specific cargo. In addition to the physical epithelial barrier, a metabolic barrier must be overcome in order to obtain CPP-mediated delivery of a cargo drug from the intestine, and a number of strategies have been employed...

  12. Innovations in gene and growth factor delivery systems for diabetic wound healing

    Science.gov (United States)

    Laiva, Ashang Luwang; O'Brien, Fergal J.

    2017-01-01

    Abstract The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off‐the‐shelf treatment; however, the dose‐ and time‐dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds. PMID:28482114

  13. Solutions for Failing High Schools: Converging Visions and Promising Models.

    Science.gov (United States)

    Legters, Nettie; Balfanz, Robert; McPartland, James

    Promising solutions to the failings of traditional comprehensive high schools were reviewed to identify basic principles and strategies for improving high schools nationwide. Selected research studies, policy documents, and promising high school programs were reviewed. The review revealed the following principles for helping high schools better…

  14. Filled carbon nanotubes in biomedical imaging and drug delivery.

    Science.gov (United States)

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  15. Nanomedicine delivers promising treatments for rheumatoid arthritis.

    Science.gov (United States)

    Prasad, Leena Kumari; O'Mary, Hannah; Cui, Zhengrong

    2015-01-01

    An increased understanding in the pathophysiology of chronic inflammatory diseases, such as rheumatoid arthritis, reveals that the diseased tissue and the increased presence of macrophages and other overexpressed molecules within the tissue can be exploited to enhance the delivery of nanomedicine. Nanomedicine can passively accumulate into chronic inflammatory tissues via the enhanced permeability and retention phenomenon, or be surface conjugated with a ligand to actively bind to receptors overexpressed by cells within chronic inflammatory tissues, leading to increased efficacy and reduced systemic side-effects. This review highlights the research conducted over the past decade on using nanomedicine for potential treatment of rheumatoid arthritis and summarizes some of the major findings and promising opportunities on using nanomedicine to treat this prevalent and chronic disease.

  16. Polymer brush hexadecyltrimethylammonium bromide (CTAB) modified poly (propylene-g-styrene sulphonic acid) fiber (ZB-1): CTAB/ZB-1 as a promising strategy for improving the dissolution and physical stability of poorly water-soluble drugs.

    Science.gov (United States)

    Cao, Jinxu; Yang, Baixue; Wang, Yumei; Wei, Chen; Wang, Hongyu; Li, Sanming

    2017-11-01

    The feasibility of polymer brush as drug delivery vehicle was demonstrated with the goal of improving the dissolution and physical stability of poorly water-soluble drugs. Polymer brush CTAB/ZB-1 was synthesized by electrostatic interaction using a physical modification method with anionic poly (propylene-g-styrene sulphonic acid) fiber (ZB-1) as the substrate and cationic hexadecyltrimethylammonium bromide (CTAB) as the modifier. The polymer brush structure of CTAB/ZB-1 was validated by atomic force microscopy (AFM) and the channels of brush provided the drug loading sites. Flurbiprofen (FP), a BCS class II representative drug, was selected as the model poorly water-soluble drug to be loaded into this polymer brush. Then the drug loading and release were systematically investigated. Besides, the transformation from crystalline FP to amorphous state was observed by differential scanning calorimeter (DSC). In vitro dissolution in pure water and pH1.2 HCl media with/without 0.1% sodium dodecyl sulfate (SDS) was tested. Moreover, the optimal formulations (namely carrier/drug ratios) were determined. The results demonstrated prominent improvement of dissolution when FP was released from CTAB/ZB-1. After a long time storage, FP remained amorphous in CTAB/ZB-1 according to DSC determinations and performed an approximately equivalent dissolution compared with fresh samples, suggesting the advantage of CTAB/ZB-1 as carrier in enhancing the physical stability of drugs. The study introduced the versatile easily formulated polymer brush CTAB/ZB-1 and demonstrated the potential of polymer brush as an alternative approach for improving the dissolution and physical stability of poorly water-soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. After Delivery

    Science.gov (United States)

    ... Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home Food MyFoodAdvisor ... A Listen En Español After Delivery After your baby arrives, your body begins to recover from the ...

  18. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  19. Nanocarriers for skin delivery of cosmetic antioxidants

    Directory of Open Access Journals (Sweden)

    Lucia Montenegro

    2014-08-01

    Full Text Available The demand of natural skin care products is steadily growing since consumers perceive them as safe. Currently, cosmetic manufacturers are focusing their efforts on developing innovative natural products to address skin-aging signs, thus meeting consumers’ needs of healthy appearance and well-being. To prevent or treat skin aging, topical supplementation with antioxidant is regarded as one of the most promising strategies. However, most antioxidants presently used in skin care formulations show unfavorable physicochemical properties such as excessive lipophilicity or hydrophilicity, chemical instability and poor skin penetration that actively limit their effectiveness after topical application. Therefore, nanocarriers such as liposomes, niosomes, microemulsions and nanoparticles have been widely investigated as delivery systems for antioxidants to improve their beneficial effects in the treatment of skin aging. In this article, the antioxidants most commonly used in anti-aging cosmetic products will be reviewed along with the nanocarriers designed to improve their safety and effectiveness.

  20. Transmembrane transport of peptide type compounds: prospects for oral delivery

    Science.gov (United States)

    Lipka, E.; Crison, J.; Amidon, G. L.

    1996-01-01

    Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.

  1. Recent in vivo advances in cell-penetrating peptide-assisted drug delivery.

    Science.gov (United States)

    Kurrikoff, Kaido; Gestin, Maxime; Langel, Ülo

    2016-01-01

    Delivery of macromolecular drugs is an important field in medical research. However, macromolecules are usually unable to cross the cell membrane without the assistance of a delivery system. Cell penetrating peptides (CPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into the cytosol or nucleus. In addition to macromolecular delivery, CPPs have been used to deliver smaller bioactive molecules. Therefore CPPs have become an intensive field of research for medical treatment. In this review, we highlight studies that include CPP in vivo disease models. We review different strategies and approaches that have been used, with specific attention on recent publications. The approaches that have been used include CPP-cargo covalent conjugation strategies and nanoparticle strategies. Various additional strategies have been used to achieve disease targeting, including active targeting, passive targeting, and combined active/passive strategies. As a result, delivery of various types of molecule has been achieved, including small drug molecules, proteins and nucleic acid-based macromolecules (e.g. siRNA, antisense nucleotides and plasmid DNA). Despite recent advances in the field, confusions surrounding CPP internalization mechanisms and intracellular trafficking are hindering the development of new and more efficient vectors. Nevertheless, the recent increase in the number of publications containing in vivo CPP utilization looks promising that the number of clinical trials would also increase in the near future.

  2. SMART POLYMERS: INNOVATIONS IN NOVEL DRUG DELIVERY

    OpenAIRE

    Apoorva Mahajan; Geeta Aggarwal

    2011-01-01

    Smart polymers are attracting the researchers for development of novel drug delivery systems. Importance of smart polymers is rising day by day as these polymers undergo large reversible, physical or chemical changes in response to small changes in the environmental conditions such as pH, temperature, dual- stimuli, light and phase transition. Smart polymers are representing promising means for targeted drug delivery, enhanced drug delivery, gene therapy, actuator stimuli and protein folders....

  3. Mastering JavaScript promises

    CERN Document Server

    Hussain, Muzzamil

    2015-01-01

    This book is for all the software and web engineers wanting to apply the promises paradigm to their next project and get the best outcome from it. This book also acts as a reference for the engineers who are already using promises in their projects and want to improve their current knowledge to reach the next level. To get the most benefit from this book, you should know basic programming concepts, have a familiarity with JavaScript, and a good understanding of HTML.

  4. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alberto Malerba

    2012-01-01

    Full Text Available The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD. In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstrated that phosphorodiamidate morpholino oligomers (PMOs can be used to re-direct myostatin splicing and promote the expression of an out-of-frame transcript so reducing the amount of the synthesized myostatin protein. Furthermore, the systemic administration of the same PMO conjugated to an octaguanidine moiety (Vivo-PMO led to a significant increase in the mass of soleus muscle of treated mice. Here, we have further optimized the use of Vivo-PMO in normal mice and also tested the efficacy of the same PMO conjugated to an arginine-rich cell-penetrating peptide (B-PMO. Similar experiments conducted in mdx dystrophic mice showed that B-PMO targeting myostatin is able to significantly increase the tibialis anterior (TA muscle weight and when coadministered with a B-PMO targeting the dystrophin exon 23, it does not have a detrimental interaction. This study confirms that myostatin knockdown by exon skipping is a potential therapeutic strategy to counteract muscle wasting conditions and dual myostatin and dystrophin skipping has potential as a therapy for DMD.

  5. Promising psyllium-based composite containing TiO2 nanoparticles as aspirin-carrier matrix

    Directory of Open Access Journals (Sweden)

    Marcela-Corina Rosu

    2014-06-01

    Full Text Available Composite nanomaterials represent a new trend in the biomedical field. Coupling inorganic/organic constituents with non-toxicity/biocompatibility properties leads to develop the new systems having special characteristics that can be used in various bio-applications. This paper describes the preparation and characterization of psyllium-based composites containing TiO2 nanoparticles in order to develop new therapeutic strategies for aspirin drug delivery. The structural characteristics of obtained materials were investigated by FTIR spectroscopy. The UV–vis spectrophotometric analysis was performed to evaluate the aspirin release behavior under different pH conditions at 37 °C. Combining psyllium (as an excellent source of fiber with TiO2 inorganic unit (as vehicle of aspirin it was found that polymeric-TiO2 networks have promising potential for controlled aspirin release as therapeutic agent.

  6. The Research on Integrated Strategy of Supply Chain Information Systems in the Automobile Industry Based on Order-To-Delivery Mode

    Science.gov (United States)

    Li, Ming; Gan, Lianzhen; He, Xuefeng

    The automotive industry there are different degrees of impairment of many companies supply chain IT strategy. In this paper, in which the automotive industry supply chain management business cooperation between enterprises loose, poor exchange of information leading to the presence or delays in product customization, supply of raw materials, material control, production planning and control, sales and service and a fast response propose a series of typical problems of scientific and rational supply chain information integration strategy. The strategy through the development system integration platform, improve internal ERP system, implementation of supply chain management and other methods. Put some protection principles in the information process, to ensure the correct implementation of supply chain IT strategy, and ultimately achieve collaborative business development concept and enhance the automotive industry as a whole level of information.

  7. The impact of the consumer on healthcare delivery.

    Science.gov (United States)

    Scott, Cheryl M

    2003-01-01

    The authors of the lead articles are correct that the customer experience should be at the forefront of our attention and work in healthcare delivery. Expanding our current definitions of customer satisfaction and patient safety to include the important intangibles of "experience" will be key. However, a singular focus on patient or consumer experience is not enough in the long run. A solid business model and an understanding of the healthcare market dynamics are also required. The promises we make in support of our business strategy are at the core of how we interact with our patients, how we ensure their safety, and how we build their loyalty. Our work as healthcare leaders should be to keep those promises.

  8. Visualization and Quantitative Assessment of the Brain Distribution of Insulin through Nose-to-Brain Delivery Based on the Cell-Penetrating Peptide Noncovalent Strategy.

    Science.gov (United States)

    Kamei, Noriyasu; Shingaki, Tomotaka; Kanayama, Yousuke; Tanaka, Misa; Zochi, Riyo; Hasegawa, Koki; Watanabe, Yasuyoshi; Takeda-Morishita, Mariko

    2016-03-07

    Our recent work suggested that intranasal coadministration with the cell-penetrating peptide (CPP) penetratin increased the brain distribution of the peptide drug insulin. The present study aimed to distinctly certify the ability of penetratin to facilitate the nose-to-brain delivery of insulin by quantitatively evaluating the distribution characteristics in brain using radioactive (64)Cu-NODAGA-insulin. Autoradiography and analysis using a gamma counter of brain areas demonstrated that the accumulation of radioactivity was greatest in the olfactory bulb, the anterior part of the brain closest to the administration site, at 15 min after intranasal administration of (64)Cu-NODAGA-insulin with l- or d-penetratin. The brain accumulation of (64)Cu-NODAGA-insulin with penetratin was confirmed by ELISA using unlabeled insulin in which intact insulin was delivered to the brain after intranasal coadministration with l- or d-penetratin. By contrast, quantification of cerebrospinal fluid (CSF) samples showed increased insulin concentration in only the anterior portion of the CSF at 15 min after intranasal coadministration with l-penetratin. This study gives the first concrete proof that penetratin can accelerate the direct transport of insulin from the nasal cavity to the brain parenchyma. Further optimization of intranasal administration with CPP may increase the efficacy of delivery of biopharmaceuticals to the brain while reducing the risk of systemic drug exposure.

  9. Liposheres as a Novel Carrier for Lipid Based Drug Delivery: Current and Future Directions.

    Science.gov (United States)

    Swain, Suryakanta; Beg, Sarwar; Babu, Sitty M

    2016-01-01

    Researchers are facing challenges to develop robust formulation and to enhance the bioavailability of poorly water-soluble drugs towards clinical applications. The development of new drug molecule alone is not adequate to assure ample pharmacotherapy of various diseases. Considerable results obtained from in vitro studies are not supported by in vivo data due to inadequate plasma drug concentrations. This may occur due to limited drug solubility and absorption. To resolve these problems, development of new drug delivery systems will be a promising approach. One of the promising pharmaceutical strategies is the use of lipospheres drug delivery system to deliver the poorly water-soluble drugs. Therefore, the present review described the methodology for manufacturing of lipospheres and factors influencing the formulation to deliver the drugs to the targeted site. Apart from that, this review also enlisted briefly the various applications of liposphers in medical and biomedical fields and critically discussed the recent patent system.

  10. Nuclear energy: obstacles and promises

    International Nuclear Information System (INIS)

    Bacher, P.

    2003-01-01

    Nuclear energy has distinctive merits (sustainable resources, low costs, no greenhouse gases) but its development must overcome serious hurdles (fear of accidents, radio-phobia, waste management). The large unit size of present-day reactors is compatible only with large electrical grids, and involves a high capital cost. Taking into account these different factors, the paper outlines how nuclear energy may contribute to the reduction of greenhouse gases, and which are the most promising developments. (author)

  11. The promise of cyborg intelligence.

    Science.gov (United States)

    Brown, Michael F; Brown, Alexander A

    2017-03-01

    Yu et al. (2016) demonstrated that algorithms designed to find efficient routes in standard mazes can be integrated with the natural processes controlling rat navigation and spatial choices, and they pointed out the promise of such "cyborg intelligence" for biorobotic applications. Here, we briefly describe Yu et al.'s work, explore its relevance to the study of comparative cognition, and indicate how work involving cyborg intelligence would benefit from interdisciplinary collaboration between behavioral scientists and engineers.

  12. Freedom: A Promise of Possibility.

    Science.gov (United States)

    Bunkers, Sandra Schmidt

    2015-10-01

    The idea of freedom as a promise of possibility is explored in this column. The core concepts from a research study on considering tomorrow (Bunkers, 1998) coupled with humanbecoming community change processes (Parse, 2003) are used to illuminate this notion. The importance of intentionality in human freedom is discussed from both a human science and a natural science perspective. © The Author(s) 2015.

  13. Developments in the formulation and delivery of spray dried vaccines.

    Science.gov (United States)

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  14. Veterinary vaccine nanotechnology: pulmonary and nasal delivery in livestock animals.

    Science.gov (United States)

    Calderon-Nieva, Daniella; Goonewardene, Kalhari Bandara; Gomis, Susantha; Foldvari, Marianna

    2017-08-01

    Veterinary vaccine development has several similarities with human vaccine development to improve the overall health and well-being of species. However, veterinary goals lean more toward feasible large-scale administration methods and low cost to high benefit immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin their infection cycle at the mucosa, immunization through the respiratory route has been a highly attractive vaccine delivery strategy against infectious diseases. Additionally, vaccines administered via the respiratory mucosa could lower costs by removing the need of trained medical personnel, and lowering doses yet achieving similar or increased immune stimulation. The respiratory route often brings challenges in antigen delivery efficiency with enough potency to induce immunity. Nanoparticle (NP) technology has been shown to enhance immune activation by producing higher antibody titers and protection. Although specific mechanisms between NPs and biological membranes are still under investigation, physical parameters such as particle size and shape, as well as biological tissue distribution including mucociliary clearance influence the protection and delivery of antigens to the site of action and uptake by target cells. For respiratory delivery, various biomaterials such as mucoadhesive polymers, lipids, and polysaccharides have shown enhanced antibody production or protection in comparison to antigen alone. This review presents promising NPs administered via the nasal or pulmonary routes for veterinary applications specifically focusing on livestock animals including poultry.

  15. Developments in the formulation and delivery of spray dried vaccines

    Science.gov (United States)

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  16. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems

    Science.gov (United States)

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules. PMID:23268651

  17. Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: effect of experimental conditions and a comparison with other enhancement strategies.

    Science.gov (United States)

    Cázares-Delgadillo, Jennyfer; Ganem-Rondero, Adriana; Quintanar-Guerrero, David; López-Castellano, Alicia C; Merino, Virginia; Kalia, Yogeshvar N

    2010-03-18

    The objectives of the study were (i) to investigate the effect of experimental parameters on the iontophoretic transport of granisetron, (ii) to identify the relative contributions of electromigration (EM) and electroosmosis (EO), (iii) to determine the feasibility of delivering therapeutic amounts of drug for the treatment of chemotherapy-induced nausea and vomiting and (iv) to test the in vitro results in a simple animal model in vivo. Preliminary in vitro studies using aqueous granisetron formulations investigating the effect of drug concentration (5, 10, 20 and 40 mM) and current density (0.1, 0.2, 0.3 mA cm(-2)) were performed using porcine ear skin. As expected, cumulative delivery in vitro at the 20 and 40 mM concentrations was significantly greater than that at 5 and 10mM, which were not statistically different (pgranisetron concentration of 40 mM, the transport rate was 2.93+/-0.62 microg cm(-2)min(-1)). Co-iontophoresis of acetaminophen was used to show that EM was the predominant transport mechanism accounting for 71-86% of total granisetron delivery. In vivo studies in Wistar rats (40 mM granisetron; application of 0.3 mA cm(-2) for 5h with Ag/AgCl electrodes and salt bridges) showed an average iontophoretic input rate (k(input)) of 0.83+/-0.26 microg min(-1) and a maximum plasma concentration (C(max)) of 0.092+/-0.004 microg ml(-1). Based on these results and given the known pharmacokinetics, transdermal iontophoresis could achieve therapeutic drug levels for the management of chemotherapy-induced emesis using a reasonably sized (4-6 cm(2)) patch. Copyright 2010 Elsevier B.V. All rights reserved.

  18. The ‘soft’ importance of energy modelling tools and their absence in Albania’s delivery strategy of energy system

    International Nuclear Information System (INIS)

    Qystri, Arber; Koço, Marpol

    2015-01-01

    Energy is essential for all human activities, and its availability is critical to economic and social development. Energy is the engine for the production of goods and services across all economic sectors. Lack of energy is a contributing factor to the poverty of individuals, communities, nations and regions. Energy mix visions and strategies are determining an important part of our world’s future prosperity and welfare. Choices made now are important for future generations. Energy trend forecasting, scenarios and system analysis have matured into powerful modelling tools for providing advice on optimizing our future energy solutions. The choice of the model and its effectiveness for developing energy supply strategies critically depend on the underlying vision for achieving a future energy mix. Knowledge advancement and exchange are more important than ever before, because this will stimulate and optimize the vision sharing and further the integration of today’s diverse energy strategies. In this regard, in Albania there is an absence in applying this tools. This article aims to demonstrate the vital importance of this tools to create a sustainable future, moreover in Albania where the energy sector is facing financial and management difficulties and lack of vision. Key words: energy, energy models, tools, sustainable energy, energy sector, energy strategy

  19. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry.

    Science.gov (United States)

    Chen, Kai; Xu, Xiaoqiu; Guo, Jiawei; Zhang, Xuelin; Han, Songling; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2015-11-09

    Nanomaterials have been broadly studied for intracellular delivery of diverse compounds for diagnosis or therapy. Currently it remains challenging for discovering new biomolecules that can prominently enhance cellular internalization and tissue retention of nanoparticles (NPs). Herein we report for the first time that a mussel-inspired engineering approach may notably promote cellular uptake and tissue retention of NPs. In this strategy, the catechol moiety is covalently anchored onto biodegradable NPs. Thus, fabricated NPs can be more effectively internalized by sensitive and multidrug resistant tumor cells, as well as some normal cells, resulting in remarkably potentiated in vitro activity when an antitumor drug is packaged. Moreover, the newly engineered NPs afford increased tissue retention post local or oral delivery. This biomimetic approach is promising for creating functional nanomaterials for drug delivery, vaccination, and cell therapy.

  20. The combination of chemotherapy and radiotherapy towards more efficient drug delivery.

    Science.gov (United States)

    Cao, Wei; Gu, Yuwei; Meineck, Myriam; Xu, Huaping

    2014-01-01

    Research on anticancer therapies has advanced significantly in recent years. New therapeutic platforms that can further improve the health of patients are still highly demanded. We propose the idea of combining regular chemotherapy with radiation therapy to minimize side effects as well as increase drug-delivery efficiency. In this Focus Review, we seek to provide an overview of recent advances that can combine chemotherapy and radiotherapy. We begin by reviewing the current state of systems that can combine chemotherapy and gamma radiation. Among them, diselenide-containing polymers are highlighted as sensitive drug-delivery vehicles that can disassemble under gamma radiation. Then X-ray responsive materials as promising alternative systems are summarized, including X-ray responsive drug-delivery vehicles, prodrugs that can be activated by X-rays, and radiation-site-targeting systems. Finally, we describe strategies that involve phototherapies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  2. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  3. Congestion Service Facilities Location Problem with Promise of Response Time

    Directory of Open Access Journals (Sweden)

    Dandan Hu

    2013-01-01

    Full Text Available In many services, promise of specific response time is advertised as a commitment by the service providers for the customer satisfaction. Congestion on service facilities could delay the delivery of the services and hurts the overall satisfaction. In this paper, congestion service facilities location problem with promise of response time is studied, and a mixed integer nonlinear programming model is presented with budget constrained. The facilities are modeled as M/M/c queues. The decision variables of the model are the locations of the service facilities and the number of servers at each facility. The objective function is to maximize the demands served within specific response time promised by the service provider. To solve this problem, we propose an algorithm that combines greedy and genetic algorithms. In order to verify the proposed algorithm, a lot of computational experiments are tested. And the results demonstrate that response time has a significant impact on location decision.

  4. Online Training of Teachers Using OER: Promises and Potential Strategies

    Science.gov (United States)

    Misra, Pradeep Kumar

    2014-01-01

    Teacher education nowadays needs a change in vision and action to cater to the demands of changing societies. Reforms, improvements, and new approaches in teacher education are an immediate need. Online training of teachers using OER has emerged as a new approach in this direction. This approach is based on the assumption that online training will…

  5. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  6. Social video content delivery

    CERN Document Server

    Wang, Zhi; Zhu, Wenwu

    2016-01-01

    This brief presents new architecture and strategies for distribution of social video content. A primary framework for socially-aware video delivery and a thorough overview of the possible approaches is provided. The book identifies the unique characteristics of socially-aware video access and social content propagation, revealing the design and integration of individual modules that are aimed at enhancing user experience in the social network context. The change in video content generation, propagation, and consumption for online social networks, has significantly challenged the traditional video delivery paradigm. Given the massive amount of user-generated content shared in online social networks, users are now engaged as active participants in the social ecosystem rather than as passive receivers of media content. This revolution is being driven further by the deep penetration of 3G/4G wireless networks and smart mobile devices that are seamlessly integrated with online social networking and media-sharing s...

  7. Assisted Vaginal Delivery

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Assisted Vaginal Delivery Home For Patients Search FAQs Assisted Vaginal ... Vaginal Delivery FAQ192, February 2016 PDF Format Assisted Vaginal Delivery Labor, Delivery, and Postpartum Care What is ...

  8. Biology Education Delivery for Attaining Health-specific Millennium ...

    African Journals Online (AJOL)

    Biology Education Delivery for Attaining Health-specific Millennium ... PROMOTING ACCESS TO AFRICAN RESEARCH ... This study investigated the strategies for ensuring effective delivery of Biology Education at the secondary school level ...

  9. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.

    Science.gov (United States)

    Li, Ling; Hu, Shuo; Chen, Xiaoyuan

    2018-07-01

    In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed. Published by Elsevier Ltd.

  10. Emerging technologies to achieve oral delivery of GLP-1 and GLP-1 analogs for treatment of type 2 diabetes mellitus (T2DM

    Directory of Open Access Journals (Sweden)

    Shengwu Ma

    2017-04-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a gastrointestinal (GI peptide hormone that stimulates insulin secretion, gene expression and β-cell proliferation, representing a potentially novel and promising therapeutic agent for the treatment of T2DM. DPP-IV-resistant, long-acting GLP-1 analogs have already been approved by FDA as injectable drugs for treating patients with T2DM. Oral delivery of therapeutic peptides and proteins would be preferred owing to advantages of lower cost, ease of administration and greater patient adherence. However, oral delivery of proteins can be affected by rapid enzymatic degradation in the GI tract and poor penetration across the intestinal membrane, which may require amounts that exceed practical consideration. Various production strategies have been explored to overcome challenges associated with the oral delivery of therapeutic peptides and proteins. The goal of this review is to provide an overview of the current state of progress made towards the oral delivery of GLP-1 and its analogs in the treatment of T2DM, with special emphasis on the development of plant and food-grade bacterial delivery systems. Recently, genetically engineered plants and food-grade bacteria have been increasingly explored as novel carrier systems for the oral delivery of peptide and protein drugs. These have a largely unexplored potential to serve both as an expression system and as a delivery vehicle for clinically relevant, cost effective therapeutics. As such, they hold great promise for human biopharmaceuticals and novel therapies against various diseases.

  11. Efficient Gene Delivery to Pig Airway Epithelia and Submucosal Glands Using Helper-Dependent Adenoviral Vectors

    Directory of Open Access Journals (Sweden)

    Huibi Cao

    2013-01-01

    Full Text Available Airway gene delivery is a promising strategy to treat patients with life-threatening lung diseases such as cystic fibrosis (CF. However, this strategy has to be evaluated in large animal preclinical studies in order to translate it to human applications. Because of anatomic and physiological similarities between the human and pig lungs, we utilized pig as a large animal model to examine the safety and efficiency of airway gene delivery with helper-dependent adenoviral vectors. Helper-dependent vectors carrying human CFTR or reporter gene LacZ were aerosolized intratracheally into pigs under bronchoscopic guidance. We found that the LacZ reporter and hCFTR transgene products were efficiently expressed in lung airway epithelial cells. The transgene vectors with this delivery can also reach to submucosal glands. Moreover, the hCFTR transgene protein localized to the apical membrane of both ciliated and nonciliated epithelial cells, mirroring the location of wild-type CF transmembrane conductance regulator (CFTR. Aerosol delivery procedure was well tolerated by pigs without showing systemic toxicity based on the limited number of pigs tested. These results provide important insights into developing clinical strategies for human CF lung gene therapy.

  12. p53 and PTEN/MMAC1/TEP1 gene therapy of human prostate PC-3 carcinoma xenograft, using transferrin-facilitated lipofection gene delivery strategy.

    Science.gov (United States)

    Seki, Masafumi; Iwakawa, Jun; Cheng, Helen; Cheng, Pi-Wan

    2002-04-10

    We previously reported that supplementation of a cationic liposome with transferrin (Tf) greatly enhanced lipofection efficiency (P.-W. Cheng, Hum. Gene Ther. 1996;7:275-282). In this study, we examined the efficacy of p53 and PTEN tumor suppressor gene therapy in a mouse xenograft model of human prostate PC-3 carcinoma cells, using a vector consisting of dimyristoyloxypropyl-3-dimethylhydroxyethyl ammonium bromide (DMRIE)-cholesterol (DC) and Tf. When the volume of the tumors grown subcutaneously in athymic nude mice reached 50-60 mm(3), three intratumoral injections of the following four formulations were performed during week 1 and then during week 3: (1) saline, (2) DC + Tf + pCMVlacZ, (3) DC + Tf + pCMVPTEN, and (4) DC + Tf + pCMVp53 (standard formulation). There was no significant difference in tumor volume and survival between group 1 and group 2 animals. As compared with group 1 controls, group 3 animals had slower tumor growth during the first 3 weeks but thereafter their tumor growth rate was similar to that of the controls. By day 2 posttreatment, group 4 animals had significantly lower tumor volume relative to initial tumor volume as well as controls at the comparable time point. Also, animals treated with p53 survived longer. Treatment with DC, Tf, pCMVp53, DC + pCMVp53, or Tf + pCMVp53 had no effect on tumor volume or survival. Expression of p53 protein and apoptosis were detected in tumors treated with the standard formulation, thus associating p53 protein expression and apoptosis with efficacy. However, p53 protein was expressed in only a fraction of the tumor cells, suggesting a role for bystander effects in the efficacy of p53 gene therapy. We conclude that intratumoral gene delivery by a nonviral vector consisting of a cationic liposome and Tf can achieve efficacious p53 gene therapy of prostate cancer.

  13. MFTF-progress and promise

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) has been in construction at Lawrence Livermore National Laboratory (LLNL) for 3 years, and most of the major subsystems are nearing completion. Recently, the scope of this project was expanded to meet new objectives, principally to reach plasma conditions corresponding to energy break-even. To fulfill this promise, the single-cell minimum-B mirror configuration will be replaced with a tandem mirror configuration (MFTF-B). The facility must accordingly be expanded to accomodate the new geometry. This paper briefly discusses the status of the major MFTF subsystems and describes how most of the technological objectives of MFTF will be demonstrated before we install the additional systems necessary to make the tandem. It also summarizes the major features of the expanded facility

  14. The promising opportunity of dismantlement

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Civil engineering, mechanics and waste conditioning companies are thriving around the market of nuclear facilities dismantlement which is promised to a huge development in the coming decade. This paper presents a map of the opportunities of the dismantlement market throughout Europe (research and power reactors, fuel fabrication plants, spent fuel reprocessing plants) and a cost estimation of a given dismantling work with respect to the different steps of the work. In France a small core of about twenty companies is involved in nuclear dismantlement but the French market is also looking towards foreign specialists of this activity. The British market is also targeted by the French companies but for all the actors the technological or commercial advance gained today will be determining for the future markets. (J.S.)

  15. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  16. Initiatives to Enhance Primary Care Delivery

    Directory of Open Access Journals (Sweden)

    Jan L. Losby

    2015-01-01

    Full Text Available Objectives: Increasing demands on primary care providers have created a need for systems-level initiatives to improve primary care delivery. The purpose of this article is to describe and present outcomes for 2 such initiatives: the Pennsylvania Academy of Family Physicians’ Residency Program Collaborative (RPC and the St Johnsbury Vermont Community Health Team (CHT. Methods: Researchers conducted case studies of the initiatives using mixed methods, including secondary analysis of program and electronic health record data, systematic document review, and interviews. Results: The RPC is a learning collaborative that teaches quality improvement and patient centeredness to primary care providers, residents, clinical support staff, and administrative staff in residency programs. Results show that participation in a higher number of live learning sessions resulted in a significant increase in patient-centered medical home recognition attainment and significant improvements in performance in diabetic process measures including eye examinations (14.3%, P = .004, eye referrals (13.82%, P = .013, foot examinations (15.73%, P = .003, smoking cessation (15.83%, P = .012, and self-management goals (25.45%, P = .001. As a community-clinical linkages model, CHT involves primary care practices, community health workers (CHWs, and community partners. Results suggest that CHT members successfully work together to coordinate comprehensive care for the individuals they serve. Further, individuals exposed to CHWs experienced increased stability in access to health insurance ( P = .001 and prescription drugs ( P = .000 and the need for health education counseling ( P = .000. Conclusion: Findings from this study indicate that these 2 system-level strategies have the promise to improve primary care delivery. Additional research can determine the extent to which these strategies can improve other health outcomes.

  17. Delivery strategies to optimize resource utilization and performance status for patients with advanced life-limiting illness: results from the "palliative care trial" [ISRCTN 81117481].

    Science.gov (United States)

    Abernethy, Amy P; Currow, David C; Shelby-James, Tania; Rowett, Debra; May, Frank; Samsa, Gregory P; Hunt, Roger; Williams, Helena; Esterman, Adrian; Phillips, Paddy A

    2013-03-01

    Evidence-based approaches are needed to improve the delivery of specialized palliative care. The aim of this trial was to improve on current models of service provision. This 2×2×2 factorial cluster randomized controlled trial was conducted at an Australian community-based palliative care service, allowing three simultaneous comparative effectiveness studies. Participating patients were newly referred adults, experiencing pain, and who were expected to live >48 hours. Patients enrolled with their general practitioners (GPs) and were randomized three times: 1) individualized interdisciplinary case conference including their GP vs. control, 2) educational outreach visiting for GPs about pain management vs. control, and 3) structured educational visiting for patients/caregivers about pain management vs. control. The control condition was current palliative care. Outcomes included Australia-modified Karnofsky Performance Status (AKPS) and pain from 60 days after randomization and hospitalizations. There were 461 participants: mean age 71 years, 50% male, 91% with cancer, median survival 179 days, and median baseline AKPS 60. Only 47% of individuals randomized to the case conferencing intervention received it; based on a priori-defined analyses, 32% of participants were included in final analyses. Case conferencing reduced hospitalizations by 26% (least squares means hospitalizations per patient: case conference 1.26 [SE 0.10] vs. control 1.70 [SE 0.13], P=0.0069) and better maintained performance status (AKPS case conferences 57.3 [SE 1.5] vs. control 51.7 [SE 2.3], P=0.0368). Among patients with declining function (AKPS performance status (AKPS case conferences 55.0 [SE 2.1] vs. control 46.5 [SE 2.9], P=0.0143; patient/caregiver education 54.7 [SE 2.8] vs. control 46.8 [SE 2.1], P=0.0206). Pain was unchanged. GP education did not change outcomes. A single case conference added to current specialized community-based palliative care reduced hospitalizations and better

  18. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy.

    Science.gov (United States)

    Joubert, Nicolas; Denevault-Sabourin, Caroline; Bryden, Francesca; Viaud-Massuard, Marie-Claude

    2017-12-15

    The design of innovative anticancer chemotherapies with superior antitumor efficacy and reduced toxicity continues to be a challenging endeavor. Recently, the success of Adcetris ® and Kadcyla ® made antibody-drug conjugates (ADCs) serious contenders to reach the envied status of Paul Ehrlich's "magic bullet". However, ADCs classically target overexpressed and internalizing antigens at the surface of cancer cells, and in solid tumors are associated with poor tumor penetration, insufficient targeting in heterogeneous tumors, and appearance of several resistance mechanisms. In this context, alternative non-internalizing ADCs and prodrugs have been developed to circumvent these limitations, in which the drug can be selectively released by an extracellular stimulus in the tumor microenvironment. Each strategy and method of activation will be discussed as potential alternatives to internalizing ADCs for cancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Assisted delivery of antisense therapeutics in animal models of heritable neurodegenerative and neuromuscular disorders: a systematic review and meta-analysis.

    Science.gov (United States)

    van der Bent, M Leontien; Paulino da Silva Filho, Omar; van Luijk, Judith; Brock, Roland; Wansink, Derick G

    2018-03-08

    Antisense oligonucleotide (AON)-based therapies hold promise for a range of neurodegenerative and neuromuscular diseases and have shown benefit in animal models and patients. Success in the clinic is nevertheless still limited, due to unfavourable biodistribution and poor cellular uptake of AONs. Extensive research is currently being conducted into the formulation of AONs to improve delivery, but thus far there is no consensus on which of those strategies will be the most effective. This systematic review was designed to answer in an unbiased manner which delivery strategies most strongly enhance the efficacy of AONs in animal models of heritable neurodegenerative and neuromuscular diseases. In total, 95 primary studies met the predefined inclusion criteria. Study characteristics and data on biodistribution and toxicity were extracted and reporting quality and risk of bias were assessed. Twenty studies were eligible for meta-analysis. We found that even though the use of delivery systems provides an advantage over naked AONs, it is not yet possible to select the most promising strategies. Importantly, standardisation of experimental procedures is warranted in order to reach conclusions about the most efficient delivery strategies. Our best practice guidelines for future experiments serve as a step in that direction.

  20. A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D,L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus.

    Science.gov (United States)

    Liman, Martin; Peiser, Lieselotte; Zimmer, Gert; Pröpsting, Marcus; Naim, Hassan Y; Rautenschlein, Silke

    2007-11-14

    In this study we demonstrated the use of an oculonasally delivered poly(D,L-lactic-co-glycolic acid) microparticle (PLGA-MP)-based and genetically engineered vaccination strategy in the avian system. An avian Metapneumovirus (aMPV) fusion (F) protein-encoding plasmid vaccine and the corresponding recombinant protein vaccine were produced and bound to or encapsulated by PLGA-MP, respectively. The PLGA-MP as the controlled release system was shown in vitro to not induce any cytopathic effects and to efficiently deliver the F protein-based aMPV-vaccines to avian cells for further processing. Vaccination of turkeys was carried out by priming with an MP-bound F protein-encoding plasmid vaccine and a booster-vaccination with an MP-encapsulated recombinant F protein. Besides the prime-boost F-specific vaccinated birds, negative control birds inoculated with a mock-MP prime-boost regimen as well as non-vaccinated birds and live vaccinated positive control birds were included in the study. The MP-based immunization of turkeys via the oculonasal route induced systemic humoral immune reactions as well as local and systemic cellular immune reactions, and had no adverse effects on the upper respiratory tract. The F protein-specific prime-boost strategy induced partial protection. After challenge the F protein-specific MP-vaccinated birds showed less clinical signs and histopathological lesions than control birds of mock MP-vaccinated and non-vaccinated groups did. The vaccination improved viral clearance and induced accumulation of local and systemic CD4+ T cells when compared to the mock MP-vaccination. It also induced systemic aMPV-neutralizing antibodies. The comparison of mock- and F protein-specific MP-vaccinated birds to non-vaccinated control birds suggests that aMPV-specific effects as well as adjuvant effects mediated by MP may have contributed to the overall protective effect.

  1. Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy

    Directory of Open Access Journals (Sweden)

    Ioannis Liakos

    2014-08-01

    Full Text Available This review highlights the current situation of antimicrobial resistance and the use of magnetic nanoparticles (MNPs in developing novel routes for fighting infectious diseases. The most important two directions developed recently are: (i improved delivery of antimicrobial compounds based on a drastic decrease of the minimal inhibition concentration (MIC of the drug used independently; and (ii inhibition of microbial attachment and biofilm development on coated medical surfaces. These new directions represent promising alternatives in the development of new strategies to eradicate and prevent microbial infections that involve resistant and biofilm-embedded bacteria. Recent promising applications of MNPs, as the development of delivery nanocarriers and improved nanovehicles for the therapy of different diseases are discussed, together with the mechanisms of microbial inhibition.

  2. An aligned porous electrospun fibrous membrane with controlled drug delivery - An efficient strategy to accelerate diabetic wound healing with improved angiogenesis.

    Science.gov (United States)

    Ren, Xiaozhi; Han, Yiming; Wang, Jie; Jiang, Yuqi; Yi, Zhengfang; Xu, He; Ke, Qinfei

    2018-04-01

    A chronic wound in diabetic patients is usually characterized by poor angiogenesis and delayed wound closure. The exploration of efficient strategy to significantly improve angiogenesis in the diabetic wound bed and thereby accelerate wound healing is still a significant challenge. Herein, we reported a kind of aligned porous poly (l-lactic acid) (PlLA) electrospun fibrous membranes containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles (DS) for diabetic wound healing. The PlLA electrospun fibers aligned in a single direction and there were ellipse-shaped nano-pores in situ generated onto the surface of fibers, while the DS were well distributed in the fibers and the DMOG as well as Si ion could be controlled released from the nanopores on the fibers. The in vitro results revealed that the aligned porous composite membranes (DS-PL) could stimulate the proliferation, migration and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs) compared with the pure PlLA membranes. The in vivo study further demonstrated that the prepared DS-PL membranes significantly improved neo-vascularization, re-epithelialization and collagen formation as well as inhibited inflammatory reaction in the diabetic wound bed, which eventually stimulated the healing of the diabetic wound. Collectively, these results suggest that the combination of hierarchical structures (nanopores on the aligned fibers) with the controllable released DMOG drugs as well as Si ions from the membranes, which could create a synergetic effect on the rapid stimulation of angiogenesis in the diabetic wound bed, is a potential novel therapeutic strategy for highly efficient diabetic wound healing. A chronic wound in diabetic patients is usually characterized by the poor angiogenesis and the delayed wound closure. The main innovation of this study is to design a new kind of skin tissue engineered scaffold, aligned porous poly (l-lactic acid) (PlLA) electrospun

  3. Venezuelan oil - the unfulfilled promise

    OpenAIRE

    2007-01-01

    Winston Churchill once said that ‘Russia was a riddle wrapped in a mystery inside an enigma.’ One is reminded of these words when approaching the subject of Venezuela’s oil strategy in the last few years. Venezuelan politics, and by implication its economy, have always been product and hostage to oil and the capriciousness of the oil price. A founder member of OPEC, and throughout history a very vocal, and at times vociferous advocate for the rights of the sovereign state against the inte...

  4. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.

    Science.gov (United States)

    Garland, Martin J; Caffarel-Salvador, Ester; Migalska, Katarzyna; Woolfson, A David; Donnelly, Ryan F

    2012-04-10

    enhanced when ITP was used in combination of the soluble PMVE/MA MN arrays. For example, the cumulative amount of insulin permeated across neonatal porcine skin at 6h was found to be approximately 150 μg (3.25%), 227 μg (4.85%) and 462 μg (9.87%) for ITP, MN, and MN/ITP delivery strategies, respectively. Similarly, the cumulative amount of FTIC-BSA delivered across neonatal porcine skin after a 6h period was found to be approximately 110 μg (4.53%) for MN alone and 326 μg (13.40%) for MN in combination with anodal ITP (pdrug loaded soluble PMVE/MA MN arrays show promise for the electrically controlled transdermal delivery of biomacromolecules in a simple, one-step approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Disease-responsive drug delivery: the next generation of smart delivery devices.

    Science.gov (United States)

    Wanakule, Prinda; Roy, Krishnendu

    2012-01-01

    With the advent of highly potent and cytotoxic drugs, it is increasingly critical that they be targeted and released only in cells of diseased tissues, while sparing physiologically normal neighbors. Simple ligand-based targeting of drug carriers, although promising, cannot always provide the required specificity to achieve this since often normal cells also express significant levels of the targeted receptors. Therefore, stimuli-responsive delivery systems are being explored to allow drug release from nano- and microcarriers and implantable devices, primarily in the presence of physiological or disease-specific pathophysiological signals. Designing smart biomaterials that respond to temperature or pH changes, protein and ligand binding, disease-specific degradation, e.g. enzymatic cleavage, has become an integral part of this approach. These strategies are used in combination with nano- and microparticle systems to improve delivery efficiency through several routes of administration, and with injectable or implantable systems for long term controlled release. This review focuses on recent developments in stimuli-responsive systems, their physicochemical properties, release profiles, efficacy, safety and biocompatibility, as well as future perspectives.

  6. The role of strategic position in brand promise: Evidence from LG Company

    Directory of Open Access Journals (Sweden)

    A. Eilaghi Karvandi

    2016-08-01

    Full Text Available This paper presents an empirical investigation to study the effects of different strategies including attribute, advantage, application, consumer, competitive advantage, pricing/quality and category on brand promise for products of LG Company in city of Tehran, Iran. The study designs two questionnaires, one for strategic positioning and the other for brand promise in Likert scale. Cronbach alphas for brand promise and strategic positioning are 0.81 and 0.79, respectively. The questionnaires are distributed among 385 randomly selected regular users of LG products and using Spearman correlation as well as Stepwise regression techniques, the effects of various strategies on brand promise are examined. The results of the implementation of Spearman correlation have indicated that there were positive and meaningful relationships between different strategies and brand promise. In addition, the results of Stepwise regression have indicated that three strategies of price/quality, consumer and application were the most important predictors of brand promise.

  7. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  8. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    Science.gov (United States)

    Strazielle, Nathalie; Ghersi-Egea, Jean-François

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates. PMID:27464721

  9. Colloidal drug delivery system: amplify the ocular delivery.

    Science.gov (United States)

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  10. Delivery of Fluorescent Nanoparticles to the Brain.

    Science.gov (United States)

    Shimoni, Olga; Shi, Bingyang; Adlard, Paul A; Bush, Ashley I

    2016-11-01

    Nanotechnology applications in neuroscience promises to deliver significant scientific and technological breakthroughs, providing answers to unresolved questions regarding the processes occurring in the brain. In this perspective, we provide a short background on two distinct fluorescent nanoparticles and summarize several studies focussed on achieving delivery of these into the brain and their interaction with brain tissue. Furthermore, we discuss challenges and opportunities for further development of nanoparticle-based therapies for targeting delivery of drugs across the blood-brain barrier.

  11. Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Chunsheng Feng

    2016-04-01

    Full Text Available The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol (PEG, and dextrorotatory and levorotatory polylactides (PDLA and PLLA was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE and the slowest drug release in phosphate-buffered saline (PBS at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA–PEG–PLA micelle may be promising for optimized drug delivery in the clinic.

  12. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  13. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix.

    Science.gov (United States)

    Guggi, Davide; Kast, Constantia E; Bernkop-Schnürch, Andreas

    2003-12-01

    To develop and evaluate an oral delivery system for salmon calcitonin. 2-Iminothiolane was covalently bound to chitosan in order to improve the mucoadhesive and cohesive properties of the polymer. The resulting chitosan-TBA conjugate (chitosan-4-thiobutylamidine conjugate) was homogenized with salmon calcitonin. mannitol, and a chitosan-Bowman-Birk inhibitor conjugate and a chitosan-elastatinal conjugate (6.75 + 0.25 + 1 + 1 + 1). Optionally 0.5% (m/m) reduced glutathione. used as permeation mediator, was added. Each mixture was compressed to 2 mg microtablets and enteric coated with a polymethacrylate. Biofeedback studies were performed in rats by oral administration of the delivery system and determination of the decrease in plasma calcium level as a function of time. Test formulations led to a significant (p thiolated chitosan, chitosan-enzyme-inhibitor conjugates and the permeation mediator glutathione seems to represent a promising strategy for the oral delivery of salmon calcitonin.

  14. Assisted delivery with forceps

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000509.htm Assisted delivery with forceps To use the sharing features on ... called vacuum assisted delivery . When is a Forceps Delivery Needed? Even after your cervix is fully dilated ( ...

  15. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  16. Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Image-Guided Approaches.

    Science.gov (United States)

    Huang, Jing; Li, Yuancheng; Orza, Anamaria; Lu, Qiong; Guo, Peng; Wang, Liya; Yang, Lily; Mao, Hui

    2016-06-14

    With rapid advances in nanomedicine, magnetic nanoparticles (MNPs) have emerged as a promising theranostic tool in biomedical applications, including diagnostic imaging, drug delivery and novel therapeutics. Significant preclinical and clinical research has explored their functionalization, targeted delivery, controllable drug release and image-guided capabilities. To further develop MNPs for theranostic applications and clinical translation in the future, we attempt to provide an overview of the recent advances in the development and application of MNPs for drug delivery, specifically focusing on the topics concerning the importance of biomarker targeting for personalized therapy and the unique magnetic and contrast-enhancing properties of theranostic MNPs that enable image-guided delivery. The common strategies and considerations to produce theranostic MNPs and incorporate payload drugs into MNP carriers are described. The notable examples are presented to demonstrate the advantages of MNPs in specific targeting and delivering under image guidance. Furthermore, current understanding of delivery mechanisms and challenges to achieve efficient therapeutic efficacy or diagnostic capability using MNP-based nanomedicine are discussed.

  17. Strategies to Maximize the Potential of Marine Biomaterials as a Platform for Cell Therapy

    Science.gov (United States)

    Kim, Hyeongmin; Lee, Jaehwi

    2016-01-01

    Marine biopolymers have been explored as a promising cell therapy system for efficient cell delivery and tissue engineering. However, the marine biomaterial-based systems themselves have exhibited limited performance in terms of maintenance of cell viability and functions, promotion of cell proliferation and differentiation as well as cell delivery efficiency. Thus, numerous novel strategies have been devised to improve cell therapy outcomes. The strategies include optimization of physical and biochemical properties, provision of stimuli-responsive functions, and design of platforms for efficient cell delivery and tissue engineering. These approaches have demonstrated substantial improvement of therapeutic outcomes in a variety of research settings. In this review, therefore, research progress made with marine biomaterials as a platform for cell therapy is reported along with current research directions to further advance cell therapies as a tool to cure incurable diseases. PMID:26821034

  18. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    Science.gov (United States)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo

  19. Rational design of protamine nanocapsules as antigen delivery carriers.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Presas, Elena; Dalmau-Mena, Inmaculada; Martínez-Pulgarín, Susana; Alonso, Covadonga; Escribano, José M; Alonso, María J; Csaba, Noemi Stefánia

    2017-01-10

    Current challenges in global immunization indicate the demand for new delivery strategies, which could be applied to the development of new vaccines against emerging diseases, as well as to improve safety and efficacy of currently existing vaccine formulations. Here, we report a novel antigen nanocarrier consisting of an oily core and a protamine shell, further stabilized with pegylated surfactants. These nanocarriers, named protamine nanocapsules, were rationally designed to promote the intracellular delivery of antigens to immunocompetent cells and to trigger an efficient and long-lasting immune response. Protamine nanocapsules have nanometric size, positive zeta potential and high association capacity for H1N1 influenza hemagglutinin, a protein that was used here as a model antigen. The new formulation shows an attractive stability profile both, as an aqueous suspension or a freeze-dried powder formulation. In vitro studies showed that protamine nanocapsules were efficiently internalized by macrophages without eliciting significant toxicity. In vivo studies indicate that antigen-loaded nanocapsules trigger immune responses comparable to those achieved with alum, even when using significantly lower antigen doses, thus indicating their adjuvant properties. These promising in vivo data, alongside with their versatility for the loading of different antigens and oily immunomodulators and their excellent stability profile, make these nanocapsules a promising platform for the delivery of antigens. Protamine sulphate (PubChem SID: 7849283), Sodium Cholate (PubChem CID: 23668194), Miglyol (PubChem CID: 53471835), α tocopherol (PubChem CID: 14985), Tween® 20(PubChem CID: 443314), Tween® 80(PubChem CID: 5281955), TPGS (PubChem CID: 71406). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Applications of nanodiamonds in drug delivery and catalysis

    KAUST Repository

    Moosa, Basem; Fhayli, Karim; Li, Song; Julfakyan, Khachatur; Ezzeddine, Alaa; Khashab, Niveen M.

    2014-01-01

    The interest of researchers in utilizing nanomaterials as carriers for a wide spectrum of molecules has exploded in the last two decades. Nanodiamonds are one class of carbon-based nanomaterials that have emerged as promising drug delivery vehicles

  1. Intracerebroventricular Delivery in Mice for Motor Neuron Diseases.

    Science.gov (United States)

    Nizzardo, M; Rizzuti, M

    2017-01-01

    The use of antisense oligonucleotides to target specific mRNA sequences represents a promising therapeutic strategy for neurological disorders. Recent advances in antisense technology enclose the development of phosphorodiamidate morpholino oligomers (MO), which is one of the best candidates for molecular therapies due to MO's excellent pharmacological profile.Nevertheless, the route of administration of antisense compounds represents a critical issue in the neurological field. Particularly, as regards motor neuron diseases, intracerebroventricular (ICV) injection is undoubtedly the most efficient procedure to directly deliver therapeutic molecules in the central nervous system (CNS). Indeed, we recently demonstrated the outstanding efficacy of the MO antisense approach by its direct administration to CNS of the transgenic mouse models of Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS).Here, we describe methods to perform the ICV delivery of MO in neonatal SMA mice and in adult ALS mice.

  2. Ionic liquids in drug delivery.

    Science.gov (United States)

    Shamshina, Julia L; Barber, Patrick S; Rogers, Robin D

    2013-10-01

    To overcome potential problems with solid-state APIs, such as polymorphism, solubility and bioavailability, pure liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are considered here as a design strategy. After a critical review of the current literature, the recent development of the API-ILs strategy is presented, with a particular focus on the liquefaction of drugs. A variety of IL tools for control over the liquid salt state of matter are discussed including choice of counterion to produce an IL from a given API; the concept of oligomeric ions that enables liquefaction of solid ILs by changing the stoichiometry or complexity of the ions; formation of 'liquid co-crystals' where hydrogen bonding is the driving force in the liquefaction of a neutral acid-base complex; combining an IL strategy with the prodrug strategy to improve the delivery of solid APIs; using ILs as delivery agents via trapping a drug in a micelle and finally ILs designed with tunable hydrophilic-lipophilic balance that matches the structural requirements needed to solubilize poorly water-soluble APIs. The authors believe that API-IL approaches may save failed lead candidates, extend the patent life of current APIs, lead to new delivery options or even new pharmaceutical action. They encourage the pharmaceutical industry to invest more research into the API-IL platform as it could lead to fast-tracked approval based on similarities to the APIs already approved.

  3. Peptide and low molecular weight proteins based kidney targeted drug delivery systems.

    Science.gov (United States)

    Xu, Pengfei; Zhang, Hailiang; Dang, Ruili; Jiang, Pei

    2018-05-30

    Renal disease is a worldwide public health problem, and unfortunately, the therapeutic index of regular drugs is limited. Thus, it is a great need to develop effective treatment strategies. Among the reported strategies, kidney-targeted drug delivery system is a promising method to increase renal efficacy and reduce extra-renal toxicity. In recent years, working as vehicles for targeted drug delivery, low molecular weight proteins (LMWP) and peptide have received immense attention due to their many advantages, such as selective accumulation in kidney, high drug loading capability, control over routes of biodegradation, convenience in modification at the amino terminus, and good biocompatibility. In this review, we describe the current LMWP and peptide carriers for kidney targeted drug delivery systems. In addition, we discuss different linking strategies between carriers and drugs. Furthermore, we briefly outline the current status and attempt to give an outlook on the further study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Formulation design for target delivery of iron nanoparticles to TCE zones.

    Science.gov (United States)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  5. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Schneider, Anselm F. L.; Leonhardt, Heinrich

    2018-01-01

    Abstract Nanobodies can be seen as next‐generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site‐specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens. PMID:28913971

  6. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Schneider, Anselm F L; Leonhardt, Heinrich; Hackenberger, Christian P R

    2018-02-23

    Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Pricing strategies for capitated delivery systems

    Science.gov (United States)

    Gruenberg, Leonard; Wallack, Stanley S.; Tompkins, Christopher P.

    1986-01-01

    This article discusses alternative methods for establishing a fairer pricing mechanism for Medicare recipients who enroll in health maintenance organizations and other competitive medical plans. The current method, based upon the adjusted average per capita cost, is inadequate because it fails to adjust premium levels for differences in health status; it establishes undesirable incentives that may lead to underservice, and it is tied to costs in the fee-for-service system. Alternative methods would incorporate health status, have Medicare share the risk with HMO's, and base payment on HMO experience. PMID:10311925

  8. Lipopolyplex for therapeutic gene delivery and its application for the treatment of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Wei eChen

    2016-04-01

    Full Text Available Abstract: Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson’s disease is the second most common neurodegenerative disorder and severely influences the patients’ life quality. Current gene therapy clinical trials for Parkinson’s disease employing viral vectors didn’t achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier and specific targeting to diseased brain cells.

  9. The effect of health facility delivery on neonatal mortality: systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Tura Gurmesa

    2013-01-01

    Full Text Available Abstract Background Though promising progress has been made towards achieving the Millennium Development Goal four through substantial reduction in under-five mortality, the decline in neonatal mortality remains stagnant, mainly in the middle and low-income countries. As an option, health facility delivery is assumed to reduce this problem significantly. However, the existing evidences show contradicting conclusions about this fact, particularly in areas where enabling environments are constraint. Thus, this review was conducted with the aim of determining the pooled effect of health facility delivery on neonatal mortality. Methods The reviewed studies were accessed through electronic web-based search strategy from PUBMED, Cochrane Library and Advanced Google Scholar by using combination key terms. The analysis was done by using STATA-11. I2 test statistic was used to assess heterogeneity. Funnel plot, Begg’s test and Egger’s test were used to check for publication bias. Pooled effect size was determined in the form of relative risk in the random-effects model using DerSimonian and Laird's estimator. Results A total of 2,216 studies conducted on the review topic were identified. During screening, 37 studies found to be relevant for data abstraction. From these, only 19 studies fulfilled the preset criteria and included in the analysis. In 10 of the 19 studies included in the analysis, facility delivery had significant association with neonatal mortality; while in 9 studies the association was not significant. Based on the random effects model, the final pooled effect size in the form of relative risk was 0.71 (95% CI: 0.54, 0.87 for health facility delivery as compared to home delivery. Conclusion Health facility delivery is found to reduce the risk of neonatal mortality by 29% in low and middle income countries. Expansion of health facilities, fulfilling the enabling environments and promoting their utilization during childbirth are

  10. Supporting the delivery of cost-effective interventions in primary health-care systems in low-income and middle-income countries: an overview of systematic reviews.

    Science.gov (United States)

    Lewin, Simon; Lavis, John N; Oxman, Andrew D; Bastías, Gabriel; Chopra, Mickey; Ciapponi, Agustín; Flottorp, Signe; Martí, Sebastian García; Pantoja, Tomas; Rada, Gabriel; Souza, Nathan; Treweek, Shaun; Wiysonge, Charles S; Haines, Andy

    2008-09-13

    Strengthening health systems is a key challenge to improving the delivery of cost-effective interventions in primary health care and achieving the vision of the Alma-Ata Declaration. Effective governance, financial and delivery arrangements within health systems, and effective implementation strategies are needed urgently in low-income and middle-income countries. This overview summarises the evidence from systematic reviews of health systems arrangements and implementation strategies, with a particular focus on evidence relevant to primary health care in such settings. Although evidence is sparse, there are several promising health systems arrangements and implementation strategies for strengthening primary health care. However, their introduction must be accompanied by rigorous evaluations. The evidence base needs urgently to be strengthened, synthesised, and taken into account in policy and practice, particularly for the benefit of those who have been excluded from the health care advances of recent decades.

  11. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  12. Therapeutic targeting strategies using endogenous cells and proteins.

    Science.gov (United States)

    Parayath, Neha N; Amiji, Mansoor M

    2017-07-28

    Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, EEM; Akkerman, [No Value; Koulman, A; Kamermans, P; Reith, H; Barbosa, MJ; Sipkema, D; Wijffels, RH

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  14. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, E.E.M.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; Wijffels, R.H.

    2003-01-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  15. Tennessee Promise: A Response to Organizational Change

    Science.gov (United States)

    Littlepage, Ben; Clark, Teresa; Wilson, Randal; Stout, Logan

    2018-01-01

    Community colleges in Tennessee, either directly or indirectly, experienced unprecedented change as a result of Tennessee Promise. The present study explored how student support service administrators at three community colleges responded to organizational change as a result of the Tennessee Promise legislation. Investigators selected community…

  16. Enhancement of the efficiency of magnetic targeting for drug delivery: Development and evaluation of magnet system

    International Nuclear Information System (INIS)

    Cao Quanliang; Han Xiaotao; Li Liang

    2011-01-01

    Deep magnetic capture and clinical application are the current trends for magnetic targeted drug delivery system. More promising and possible strategies are needed to overcome the current limitations and further improve the magnetic targeting technique. Recent advances in the development of targeting magnet system show promise in progressing this technology from the laboratory to the clinic. Starting from well-known basic concepts, current limitations of magnetic targeted drug delivery system are analyzed. Meanwhile, the design concepts and evaluations of some effective improvements in magnet system are discussed and reviewed with reference to (i) reasonable design of magnet system; (ii) control modes of magnet system used to generate dynamical magnetic fields; and (iii) magnetic field driving types. - Research Highlights: → The current limitations of MTDDS for deep capture and clinical application are analyzed. → The development of magnet system shows promise in progressing MTDDS to clinical application. → The design concepts and evaluations of improvements in magnet system are reviewed and discussed. → The key to improve magnet system lies in controllable magnets and different excitations.

  17. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  18. The NPT regime: Progress and promises

    International Nuclear Information System (INIS)

    Dhanapala, Jayantha

    2001-01-01

    Full text: Thesis. The 'NPT regime' has arrived at a fateful crossroads. Though extended indefinitely in 1995, its future is my no means secure. The future 'progress' of this treaty will depend upon whether the 'promises' of its States parties are fully implemented and, eventually, upon the treaty's success in achieving fully universal membership. Challenges The treaty faces many short-term and longer-term challenges: Short term - The first Preparatory Committee meeting for the 2005 Review Conference will meet next year. NNWS will want to see some evidence of progress on nuclear disarmament (Art. VI), along the lines prescribed in the 13 'practical steps' agreed at the last Review Conference. Yet progress has been set back by: uncertainties over the future of the ABM Treaty; the failure of START II and the CTBT to enter into force; the lack of a FISMAT treaty and a treaty establishing a NWFZ in Central Asia; continued qualitative improvements in nuclear weapons; hints that nuclear testing may one day resume; the persistence of doctrines of first-use, pre-emptive use, and use against states that use CBW. Other compliance-related questions will arise over safeguards (e.g. the inability of the IAEA to conduct inspections in the DPRK; signs of a breakdown of the norm of full-scope IAEA safeguards, e.g. in South Asia). There are also concerns over the implementation of non-proliferation commitments (e.g. persisting allegations about nuclear weapon programmes in existing NNWS). The terrorist attacks in New York and Washington, D.C. on 11 September should also serve as a reminder of the new terrorist dangers relating to the possible use of weapons of mass destruction and unorthodox delivery systems. Longer term - Selectivity in the enforcement of NPT norms; unilateralism; IAEA funding uncertainties and shortfalls; difficulties in reaching universal membership (India, Pakistan, and Israel); continuing compliance problems with respect to both non-proliferation and

  19. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review

    Directory of Open Access Journals (Sweden)

    Giovana Maria Fioramonti Calixto

    2016-03-01

    Full Text Available Photodynamic therapy (PDT is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs, solid lipid nanoparticles (SLNs, nanostructured lipid carriers (NLCs, gold nanoparticles (AuNPs, hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  20. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    Science.gov (United States)

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  1. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Directory of Open Access Journals (Sweden)

    Kanika Madaan

    2014-01-01

    Full Text Available Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.

  2. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues

    Science.gov (United States)

    Madaan, Kanika; Kumar, Sandeep; Poonia, Neelam; Lather, Viney; Pandita, Deepti

    2014-01-01

    Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity. PMID:25035633

  3. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    Science.gov (United States)

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  4. Strategies for osteochondral repair: Focus on scaffolds

    Directory of Open Access Journals (Sweden)

    Seog-Jin Seo

    2014-07-01

    Full Text Available Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering.

  5. 3D Photo-Fabrication for Tissue Engineering and Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rúben F. Pereira

    2015-03-01

    Full Text Available The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo-fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.

  6. Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles.

    Science.gov (United States)

    Ramishetti, Srinivas; Landesman-Milo, Dalit; Peer, Dan

    2016-11-01

    Small interfering RNAs (siRNAs) therapeutics has advanced into clinical trials for liver diseases and solid tumors, but remain a challenge for manipulating leukocytes fate due to lack of specificity and safety issues. Leukocytes ingest pathogens and defend the body through a complex network. They are also involved in the pathogeneses of inflammation, viral infection, autoimmunity and cancers. Modulating gene expression in leukocytes using siRNAs holds great promise to treat leukocyte-mediated diseases. Leukocytes are notoriously hard to transduce with siRNAs and are spread throughout the body often located deep in tissues, therefore developing an efficient systemic delivery strategy is still a challenge. Here, we discuss recent advances in siRNA delivery to leukocyte subsets such as macrophages, monocytes, dendritic cells and lymphocytes. We focus mainly on lipid-based nanoparticles (LNPs) comprised of new generation of ionizable lipids and their ability to deliver siRNA to primary or malignant leukocytes in a targeted manner. Special emphasis is made on LNPs targeted to subsets of leukocytes and we detail a novel microfluidic mixing technology that could aid in changing the landscape of process development of LNPs from a lab tool to a potential novel therapeutic modality.

  7. eDelivery

    Data.gov (United States)

    US Agency for International Development — eDelivery provides the electronic packaging and delivery of closed and complete OPM investigation files to government agencies, including USAID, in a secure manner....

  8. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  9. Polydopamine-Functionalized CA-(PCL-ran-PLA) Nanoparticles for Target Delivery of Docetaxel and Chemo-photothermal Therapy of Breast Cancer

    Science.gov (United States)

    Kong, Na; Deng, Mei; Sun, Xiu-Na; Chen, Yi-Ding; Sui, Xin-Bing

    2018-01-01

    Current limitations of cancer therapy include the lack of effective strategy for target delivery of chemotherapeutic drugs, and the difficulty of achieving significant efficacy by single treatment. Herein, we reported a synergistic chemo-photothermal strategy based on aptamer (Apt)-polydopamine (pD) functionalized CA-(PCL-ran-PLA) nanoparticles (NPs) for effective delivery of docetaxel (DTX) and enhanced therapeutic effect. The developed DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs achieved promising advantages, such as (i) improved drug loading content (LC) and encapsulation efficiency (EE) initiated by star-shaped copolymer CA-(PCL-ran-PLA); (ii) effective target delivery of drugs to tumor sites by incorporating AS1411 aptamers; (iii) significant therapeutic efficacy caused by synergistic chemo-photothermal treatment. In addition, the pD coating strategy with simple procedures could address the contradiction between targeting modification and maintaining formerly excellent bio-properties. Therefore, with excellent bio-properties and simple preparation procedures, the DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs effectively increased the local drug concentration in tumor sites, minimized side effects, and significantly eliminated tumors, indicating the promising application of these NPs for cancer therapy. PMID:29527167

  10. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pan Dipanjan [Department of Medicine, Washington University Medical School, St. Louis, MO (United States)], E-mail: dipanjan@wustl.edu; Lanza, Gregory M.; Wickline, Samuel A. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Caruthers, Shelton D. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Philips Healthcare, Andover, MA (United States)], E-mail: scaruthers@cmrl.wustl.edu

    2009-05-15

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  11. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    International Nuclear Information System (INIS)

    Pan Dipanjan; Lanza, Gregory M.; Wickline, Samuel A.; Caruthers, Shelton D.

    2009-01-01

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  12. Financial Technology: The Promise of Blockchain

    OpenAIRE

    Demary, Markus; Demary, Vera

    2017-01-01

    Digitization affects all sectors of the economy. A new and possibly disruptive digital technology is the blockchain, a decentralized ledger, which seems to offer great promise for many financial and business applications.

  13. A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library.

    Science.gov (United States)

    Wang, Hao; Liu, Kan; Chen, Kuan-Ju; Lu, Yujie; Wang, Shutao; Lin, Wei-Yu; Guo, Feng; Kamei, Ken-ichiro; Chen, Yi-Chun; Ohashi, Minori; Wang, Mingwei; Garcia, Mitch André; Zhao, Xing-Zhong; Shen, Clifton K-F; Tseng, Hsian-Rong

    2010-10-26

    Nanoparticles are regarded as promising transfection reagents for effective and safe delivery of nucleic acids into a specific type of cells or tissues providing an alternative manipulation/therapy strategy to viral gene delivery. However, the current process of searching novel delivery materials is limited due to conventional low-throughput and time-consuming multistep synthetic approaches. Additionally, conventional approaches are frequently accompanied with unpredictability and continual optimization refinements, impeding flexible generation of material diversity creating a major obstacle to achieving high transfection performance. Here we have demonstrated a rapid developmental pathway toward highly efficient gene delivery systems by leveraging the powers of a supramolecular synthetic approach and a custom-designed digital microreactor. Using the digital microreactor, broad structural/functional diversity can be programmed into a library of DNA-encapsulated supramolecular nanoparticles (DNA⊂SNPs) by systematically altering the mixing ratios of molecular building blocks and a DNA plasmid. In vitro transfection studies with DNA⊂SNPs library identified the DNA⊂SNPs with the highest gene transfection efficiency, which can be attributed to cooperative effects of structures and surface chemistry of DNA⊂SNPs. We envision such a rapid developmental pathway can be adopted for generating nanoparticle-based vectors for delivery of a variety of loads.

  14. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Yaozhong Hu

    2017-11-01

    Full Text Available The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs. The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs. Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as

  15. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  16. Cesarean delivery on maternal request.

    Science.gov (United States)

    Viswanathan, Meera; Visco, Anthony G; Hartmann, Katherine; Wechter, Mary Ellen; Gartlehner, Gerald; Wu, Jennifer M; Palmieri, Rachel; Funk, Michele Jonsson; Lux, Linda; Swinson, Tammeka; Lohr, Kathleen N

    2006-03-01

    are completely absent. Given the limited data available, we cannot draw definitive conclusions about factors that might influence outcomes of planned CDMR versus PVD. The evidence is significantly limited by its minimal relevance to primary CDMR. Future research requires developing consensus about terminology for both delivery routes and outcomes; creating a minimum data set of information about CDMR; improving study design and statistical analyses; attending to major outcomes and their special measurement issues; assessing both short- and long-term outcomes with better measurement strategies; dealing better with confounders; and considering the value or utility of different outcomes.

  17. FMS Implementation Management: Promise and Performance

    DEFF Research Database (Denmark)

    Boer, Harry; Hill, Malcolm; Krabbendam, Koos

    1990-01-01

    At the present time, industry is confronted with ever-increasing customer demand for a wider diversity of products, faster product innovation, shorter delivery times and higher delivery reliability. Flexible Manufacturing Systems (FMS) are widely regarded as a major technological response...... to this need for increased flexibility. Since the development of the first FMS in 1962, a few hundred FMS have been installed worldwide. The number of companies that have experience in operating an FMS over a long period is very much smaller, so it is hardly known whether, and under what circumstances...

  18. Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

    Science.gov (United States)

    Bishop, Corey J; Kim, Jayoung; Green, Jordan J

    2014-07-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.

  19. Client/Server Architecture Promises Radical Changes.

    Science.gov (United States)

    Freeman, Grey; York, Jerry

    1991-01-01

    This article discusses the emergence of the client/server paradigm for the delivery of computer applications, its emergence in response to the proliferation of microcomputers and local area networks, the applicability of the model in academic institutions, and its implications for college campus information technology organizations. (Author/DB)

  20. Thermosensitive liposomal drug delivery systems: state of the art review

    Directory of Open Access Journals (Sweden)

    Kneidl B

    2014-09-01

    Full Text Available Barbara Kneidl,1,2 Michael Peller,3 Gerhard Winter,2 Lars H Lindner,1 Martin Hossann11Department of Internal Medicine III, University Hospital Munich, 2Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, 3Institute for Clinical Radiology, University Hospital Munich, Ludwig-Maximilians University, Munich, GermanyAbstract: Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.Keywords: thermosensitive liposomes, phosphatidyloligoglycerol, hyperthermia, high intensity focused ultrasound, drug delivery, drug targeting

  1. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chuan Junlan [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Li Yanzhen [Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics (China); Yang Likai; Sun Xun [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Zhang Qiang [Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences (China); Gong Tao, E-mail: gongtaoy@126.com; Zhang Zhirong, E-mail: zrzzl@vip.sina.com [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China)

    2013-05-15

    The present study aimed at developing a drug delivery system targeting the densest site of tuberculosis infection, the alveolar macrophages (AMs). Rifampicin (RFP)-loaded solid lipid nanoparticles (RFP-SLNs) with an average size of 829.6 {+-} 16.1 nm were prepared by a modified lipid film hydration method. The cytotoxicity of RFP-SLNs to AMs and alveolar epithelial type II cells (AECs) was examined using MTT assays. The viability of AMs and AECs was above 80 % after treatment with RFP-SLNs, which showed low toxicity to both AMs and AECs. Confocal Laser Scanning Microscopy was employed to observe the interaction between RFP-SLNs and both AMs and AECs. After incubating the cells with RFP-SLNs for 2 h, the fluorescent intensity in AMs was more and remained longer (from 0.5 to 12 h) when compared with that in AECs (from 0.5 to 8 h). In vitro uptake characteristics of RFP-SLNs in AMs and AECs were also investigated by detection of intracellular RFP by High performance liquid chromatography. Results showed that RFP-SLNs delivered markedly higher RFP into AMs (691.7 ng/mg in cultured AMs, 662.6 ng/mg in primary AMs) than that into AECs (319.2 ng/mg in cultured AECs, 287.2 ng/mg in primary AECs). Subsequently, in vivo delivery efficiency and the selectivity of RFP-SLNs were further verified in Sprague-Dawley rats. Under pulmonary administration of RFP-SLNs, the amount of RFP in AMs was significantly higher than that in AECs at each time point. Our results demonstrated that solid lipid nanoparticles are a promising strategy for the delivery of rifampicin to alveolar macrophages selectively.

  2. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  3. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  4. The promise of e-health--a Canadian perspective.

    Science.gov (United States)

    Alvarez, Richard C

    2004-01-01

    Canadians value their health care system above any other social programme. Canada's system of health care faces significant financial and population pressures, relating to cost, access, quality, accountability, and the intergration of information and communication technologies (ICTs). The health-system also faces certain unique challenges that include care delivery within a highly decentralised system of financing and accountability, and care delivery to a significant portion of the population sparsely distributed across a land mass of 10 million square kilometres, in areas of extreme climatic conditions. All of these challenges are significant catalysts in the development of technologies that aim to significantly mitigate or eliminate these selfsame challenges. The system is undergoing widespread review, nationally and within each province and territory, where the bulk of care provision is financed and managed. The challenges are being addressed by national, regional and provincial initiatives in the public, private and not-for-profit sectors. The promise of e-health lies in the manner and degree to which it can mitigate or resolve these challenges to the health system and build on advancements in ICTs supporting the development of a health infostructure. Canada is actively developing and implementing technological solutions to deliver health information and health care services across the country. These solutions, while exciting and promising, also present new challenges, particularly in regard to acceptable standards, choice of technologies, overcoming traditional jurisdictional boundaries, up-front investment, and privacy and confidentiality. Many organizations and governments are working to address these challenges. Canada Health Infoway, a not-for-profit corporation, was founded by the first ministers in 2001 to accelerate the establishment of an interoperable, pan-Canadian electronic health record. It works with partners in the federal, provincial and

  5. Drug development in Parkinson's disease: from emerging molecules to innovative drug delivery systems.

    Science.gov (United States)

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2013-11-01

    Current treatments for Parkinson's disease (PD) are aimed at addressing motor symptoms but there is no therapy focused on modifying the course of the disease. Successful treatment strategies have been so far limited and brain drug delivery remains a major challenge that restricts its treatment. This review provides an overview of the most promising emerging agents in the field of PD drug discovery, discussing improvements that have been made in brain drug delivery for PD. It will be shown that new approaches able to extend the length of the treatment, to release the drug in a continuous manner or to cross the blood-brain barrier and target a specific region are still needed. Overall, the results reviewed here show that there is an urgent need to develop both symptomatic and disease-modifying treatments, giving priority to neuroprotective treatments. Promising perspectives are being provided in this field by rasagiline and by neurotrophic factors like glial cell line-derived neurotrophic factor. The identification of disease-relevant genes has also encouraged the search for disease-modifying therapies that function by identifying molecularly targeted drugs. The advent of new molecular and cellular targets like α-synuclein, leucine-rich repeat serine/threonine protein kinase 2 or parkin, among others, will require innovative delivery therapies. In this regard, drug delivery systems (DDS) have shown great potential for improving the efficacy of conventional and new PD therapy and reducing its side effects. The new DDS discussed here, which include microparticles, nanoparticles and hydrogels among others, will probably open up possibilities that extend beyond symptomatic relief. However, further work needs to be done before DDS become a therapeutic option for PD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. MicroRNA delivery for regenerative medicine.

    Science.gov (United States)

    Peng, Bo; Chen, Yongming; Leong, Kam W

    2015-07-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Do promises matter? An exploration of the role of promises in psychological contract breach.

    Science.gov (United States)

    Montes, Samantha D; Zweig, David

    2009-09-01

    Promises are positioned centrally in the study of psychological contract breach and are argued to distinguish psychological contracts from related constructs, such as employee expectations. However, because the effects of promises and delivered inducements are confounded in most research, the role of promises in perceptions of, and reactions to, breach remains unclear. If promises are not an important determinant of employee perceptions, emotions, and behavioral intentions, this would suggest that the psychological contract breach construct might lack utility. To assess the unique role of promises, the authors manipulated promises and delivered inducements separately in hypothetical scenarios in Studies 1 (558 undergraduates) and 2 (441 employees), and they measured them separately (longitudinally) in Study 3 (383 employees). The authors' results indicate that breach perceptions do not represent a discrepancy between what employees believe they were promised and were given. In fact, breach perceptions can exist in the absence of promises. Further, promises play a negligible role in predicting feelings of violation and behavioral intentions. Contrary to the extant literature, the authors' findings suggest that promises may matter little; employees are concerned primarily with what the organization delivers.

  8. 2011 Rita Schaffer lecture: nanoparticles for intracellular nucleic acid delivery.

    Science.gov (United States)

    Green, Jordan J

    2012-07-01

    Nanoparticles are a promising technology for delivery of new types of therapeutics. A polymer library approach has allowed engineering of polymeric particles that are particularly effective for the delivery of DNA and siRNA to human cells. Certain chemical structural motifs, degradable linkages, hydrophobicity, and biophysical properties are key for successful intracellular delivery. Small differences to biomaterial structure, and especially the type of degradable linkage in the polymers, can be critical for successful delivery of siRNA vs. DNA. Furthermore, subtle changes to biomaterial structure can facilitate cell-type gene delivery specificity between human brain cancer cells and healthy cells as well as between human retinal endothelial cells and epithelial cells. These polymeric nanoparticles are effective for nucleic acid delivery in a broad range of human cell types and have applications to regenerative medicine, ophthalmology, and cancer among many other biomedical research areas.

  9. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  10. The path to fulfilling the promise

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, J. [Canadian Nuclear Association, Ottawa, ON (Canada)

    2014-07-01

    'Full text:'Countries work together to develop effective governance and regulation. Canada has made big investments in these areas and it carries a premium for us. The rapid build-out of nuclear technology around the Pacific Rim holds vast promise for our populations in better climate, better air, affordable and reliable electricity, and longer lives. The biggest risk is not another accident: rather, it is the risk of failing to fulfill that promise to our people. Every country that wants the benefits of nuclear must also want to be sure that those benefits are realized and sustained by good governance and regulation. Canada has the people, laws, organizations, public institutions, and relationships that can help our partners fulfill the whole and lasting promise of nuclear technology. (author)

  11. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications

    Directory of Open Access Journals (Sweden)

    Wang Q

    2016-12-01

    Full Text Available Qun Wang,1,2,* Jian-Ying Huang,2,* Hua-Qiong Li,3,4 Allan Zi-Jian Zhao,4 Yi Wang,4 Ke-Qin Zhang,2,5 Hong-Tao Sun,1 Yue-Kun Lai,2,5 1College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 3Institute of Biomaterials and Engineering, Wenzhou Medical University, 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 5Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: To address the limitations of traditional drug delivery, TiO2 nanotubes (TNTs are recognized as a promising material for localized drug delivery systems. With regard to the excellent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical anodizing process have been used to fabricate new drug-releasing implants for localized drug delivery. This review discusses the development of TNTs applied in localized drug delivery systems, focusing on several approaches to control drug release, including the regulation of the dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, rational strategies on external conditions-triggered stimuli-responsive drug release for localized drug delivery systems are highlighted. Finally, the review concludes with the recent advances on TNTs for controlled drug delivery and corresponding prospects in the future. Keywords: TiO2 nanotubes, electrochemical anodization, modification, stimulated drug delivery, drug-releasing implant

  12. Promising Compilation to ARMv8 POP

    OpenAIRE

    Podkopaev, Anton; Lahav, Ori; Vafeiadis, Viktor

    2017-01-01

    We prove the correctness of compilation of relaxed memory accesses and release-acquire fences from the "promising" semantics of [Kang et al. POPL'17] to the ARMv8 POP machine of [Flur et al. POPL'16]. The proof is highly non-trivial because both the ARMv8 POP and the promising semantics provide some extremely weak consistency guarantees for normal memory accesses; however, they do so in rather different ways. Our proof of compilation correctness to ARMv8 POP strengthens the results of the Kan...

  13. MUCOADHESIVE MICROBEADS OF METFORMIN HCL: A PROMISING SUSTAINED DRUG DELIVERY SYSTEM

    OpenAIRE

    B. Samyuktha Rani; Ambati Brahma Reddy; E. Lakshmi Sai; K. Lakshmi; M.Vasavi chandrika

    2012-01-01

    The present work was investigated to reduce the dosing frequency, improve patient compliance, to improve gastric residence and to decrease GI side effects by designing and evaluating controlled Release Mucoadhesive (CRM) microbeads of Metformin hydrochloride for effective control of diabetes type-II. Microbeads were prepared by employing ionic gelation method by using various natural and synthetic polymers such as sodium alginate as main polymer and sodium carboxy methyl cellulose(SCMC), carb...

  14. A comparative histological study of alginate beads as a promising controlled release delivery for mefenamic acid.

    Science.gov (United States)

    Sevgi, Ferhan; Kaynarsoy, Buket; Ozyazici, Mine; Pekcetin, Cetin; Ozyurt, Dogan

    2008-01-01

    The new mefenamic acid-alginate bead formulation prepared by ionotropic gelation method using 3 x 2(2) factorial design has shown adequate controlled release properties in vitro. In the present study, the irritation effects of mefenamic acid (MA), a prominent non-steroidal anti-inflammatory (NSAI) drug, were evaluated on rat gastric and duodenal mucosa when suspended in 0.5% (w/v) sodiumcarboxymethylcellulose (NaCMC) solution and loaded in alginate beads. Wistar albino rats weighing 200 +/- 50 g were used during in vivo animal studies. In this work, biodegradable controlled release MA beads and free MA were evaluated according to the degree of gastric or duodenal damage following oral administration in rats. The gastric and duodenal mucosa was examined for any haemorrhagic changes. Formulation code A10 showing both Case II transport and zero order drug release and t(50) % value of 5.22 h was chosen for in vivo animal studies. For in vivo trials, free MA (100 mgkg(-1)), blank and MA (100 mgkg(-1)) loaded alginate beads (formulation code A10) were suspended in 0.5% (w/v) NaCMC solution and each group was given to six rats orally by gavage. NaCMC solution was used as a control in experimental studies. In vivo data showed that the administration of MA in alginate beads prevented the gastric lesions.

  15. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    Science.gov (United States)

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit.

  16. E-learning strategies of higer education institutions : an exploraty study into the influence of environmental contingencies on strategic choices of higher education institutions with respect to integrating e-learning in their education delivery and support processes

    NARCIS (Netherlands)

    Boezerooy, P.

    2006-01-01

    Looking back at the main research question of this thesis ¿how do higher education institutions differ in their strategic choices with respect to integrating e- Learning into their educational delivery processes and how can these differences be explained?¿ the results of this study showed that

  17. Strategies for healthcare information systems

    NARCIS (Netherlands)

    Stegwee, R.A.; Spil, Antonius A.M.

    2001-01-01

    Information technologies of the past two decades have created significant fundamental changes in the delivery of healthcare services by healthcare provider organizations. Many healthcare organizations have been in search of ways and strategies to keep up with continuously emerging information

  18. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  19. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer

    OpenAIRE

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood–brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers non...

  20. Evaluation of Retrofit Delivery Packages

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.; Smith, P.; Porse, E.

    2013-07-01

    Residential energy retrofit activities are a critical component of efforts to increase energy efficiency in the U.S. building stock; however, retrofits account for a small percentage of aggregate energy savings at relatively high per unit costs. This report by Building America research team, Alliance for Residential Building Innovation (ARBI), describes barriers to widespread retrofits and evaluates opportunities to improve delivery of home retrofit measures by identifying economies of scale in marketing, energy assessments, and bulk purchasing through pilot programs in portions of Sonoma, Los Angeles, and San Joaquin Counties, CA. These targeted communities show potential and have revealed key strategies for program design, as outlined in the report.

  1. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics

    DEFF Research Database (Denmark)

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A.

    2014-01-01

    of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties...... of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA....

  2. The Promise of Zoomable User Interfaces

    Science.gov (United States)

    Bederson, Benjamin B.

    2011-01-01

    Zoomable user interfaces (ZUIs) have received a significant amount of attention in the 18 years since they were introduced. They have enjoyed some success, and elements of ZUIs are widely used in computers today, although the grand vision of a zoomable desktop has not materialised. This paper describes the premise and promise of ZUIs along with…

  3. Seaweed: Promising plant of the millennium

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Pereira, N.

    Seaweeds, one of the important marine living resources could be termed as the futuristically promising plants. These plants have been a source of food, feed and medicine in the orient as well as in the west, since ancient times. Although, seaweeds...

  4. Complexity of Propositional Proofs Under a Promise

    Czech Academy of Sciences Publication Activity Database

    Dershowitz, N.; Tzameret, Iddo

    2010-01-01

    Roč. 11, č. 3 (2010), s. 1-29 ISSN 1529-3785 Institutional research plan: CEZ:AV0Z10190503 Keywords : theory * promise problems * propositional proof complexity * random 3CNF * resolution Subject RIV: BA - General Mathematics Impact factor: 1.391, year: 2010 http://dl.acm.org/ citation .cfm?doid=1740582.1740586

  5. Complexity of Propositional Proofs Under a Promise

    Czech Academy of Sciences Publication Activity Database

    Dershowitz, N.; Tzameret, Iddo

    2010-01-01

    Roč. 11, č. 3 (2010), s. 1-29 ISSN 1529-3785 Institutional research plan: CEZ:AV0Z10190503 Keywords : theory * promise problems * propositional proof complexity * random 3CNF * resolution Subject RIV: BA - General Mathematics Impact factor: 1.391, year: 2010 http://dl.acm.org/citation.cfm?doid=1740582.1740586

  6. 76 FR 13152 - Promise Neighborhoods Program

    Science.gov (United States)

    2011-03-10

    ... comprehensive education reforms that are linked to improved educational outcomes for children and youth in... parents or family members who report talking with their child about the importance of college and career... DEPARTMENT OF EDUCATION RIN 1855-ZA07 Promise Neighborhoods Program Catalog of Federal Domestic...

  7. Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion.

    Science.gov (United States)

    Chuan, Yap Pang; Zeng, Bi Yun; O'Sullivan, Brendan; Thomas, Ranjeny; Middelberg, Anton P J

    2012-02-15

    Nanotechnology promises new drug carriers that can be tailored to specific applications. Here we report a new approach to drug delivery based on tailorable nanocarrier emulsions (TNEs), motivated by a need to co-deliver a protein antigen and a lipophilic drug for specific inhibition of nuclear factor kappa B (NF-κB) in antigen presenting cells (APCs). Co-delivery for NF-κB inhibition holds promise as a strategy for the treatment of rheumatoid arthritis. We used a highly surface-active peptide (SAP) to prepare a nanosized emulsion having defined surface properties predictable from the SAP sequence. Incorporating the lipophilic drug into the oil phase at the time of emulsion formation enabled its facile packaging. The SAP is depleted from bulk during emulsification, allowing simple subsequent addition of the drug-loaded oil-in-water emulsion to a solution of protein antigen. Decoration of emulsion surface with antigen was achieved via electrostatic deposition. In vitro data showed that the TNE prepared this way was internalized and well-tolerated by model APCs, and that good suppression of NF-κB expression was achieved. This work reports a new type of nanotechnology-based carrier, a TNE, which can potentially be tailored for co-delivery of multiple therapeutic components, and can be made using simple methods using only biocompatible materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Prolonged Suppression of Neuropathic Pain by Sequential Delivery of Lidocaine and Thalidomide Drugs Using PEGylated Graphene Oxide.

    Science.gov (United States)

    Song, Tieying; Gu, Kunfeng; Wang, Wenli; Wang, Hong; Yang, Yunliang; Yang, Lijun; Ma, Pengxu; Ma, Xiaojing; Zhao, Jianhui; Yan, Ruyu; Guan, Jiao; Wang, Chunping; Qi, Yan; Ya, Jian

    2015-11-01

    The management of patients with neuropathic pain is challenging. Monotherapy with a single pain relief drug may encounter different difficulties, such as short duration of efficacy and hence too many times of drug administration, and inadequate drug delivery. Recently, nanocarrier-based drug delivery systems have been proved to provide promising strategies for efficient drug loading, delivery, and release. In the present study, we developed poly(ethylene glycol) methyl ether functionalized graphene oxide (GO) bearing two commonly used drugs of lidocaine (LDC) and thalidomide (THD) as an agent for the treatment of neuropathic pain. The sequential drug release of LDC and THD from the developed LDC-THD-GO nanosheets exhibited a synergistic effect on neuropathic pain in vitro and in vivo, as evidenced by the increased pain threshold in mechanical allodynia and hyperalgesic response tests, and the improved inhibition of proinflammatory cytokines TNF-α, IL-1β, IL-6, and nitric oxide. We believed that the present study herein would hold promise for future development of a new generation of potent agents for neuropathic pain relief. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Scaling up delivery of contraceptive implants in sub-Saharan Africa: operational experiences of Marie Stopes International.

    Science.gov (United States)

    Duvall, Susan; Thurston, Sarah; Weinberger, Michelle; Nuccio, Olivia; Fuchs-Montgomery, Nomi

    2014-02-01

    Contraceptive implants offer promising opportunities for addressing the high and growing unmet need for modern contraceptives in sub-Saharan Africa. Marie Stopes International (MSI) offers implants as one of many family planning options. Between 2008 and 2012, MSI scaled up voluntary access to implants in 15 sub-Saharan African countries, from 80,041 implants in 2008 to 754,329 implants in 2012. This 9-fold increase amounted to more than 1.7 million implants delivered cumulatively over the 5-year period. High levels of client satisfaction were attained alongside service provision scale up by using existing MSI service delivery channels-mobile outreach, social franchising, and clinics-to implement strategies that broadened access for underserved clients and maintained service quality. Use of adaptive and context-specific service delivery models and attention to key operational components, including sufficient numbers of trained providers, strong supply chains, diverse financing mechanisms, and implant removal services, underpinned our service delivery efforts. Accounting for 70% of the implants delivered by MSI in 2012, mobile outreach services through dedicated MSI provider teams played a central role in scale-up efforts, fueled in part by the provision of free or heavily subsidized services. Social franchising also demonstrated promise for future program growth, along with MSI clinics. Continued high growth in implant provision between 2011 and 2012 in all sub-Saharan African countries indicates the region's capacity for further service delivery expansion. Meeting the expected rising demand for implants and ensuring long-term sustainable access to the method, as part of a comprehensive method mix, will require continued use of appropriate service delivery models, effective operations, and ongoing collaboration between the private, public, and nongovernmental sectors. MSI's experience can be instructive for future efforts to ensure contraceptive access and choice

  10. Scaling up delivery of contraceptive implants in sub-Saharan Africa: operational experiences of Marie Stopes International

    Science.gov (United States)

    Duvall, Susan; Thurston, Sarah; Weinberger, Michelle; Nuccio, Olivia; Fuchs-Montgomery, Nomi

    2014-01-01

    Contraceptive implants offer promising opportunities for addressing the high and growing unmet need for modern contraceptives in sub-Saharan Africa. Marie Stopes International (MSI) offers implants as one of many family planning options. Between 2008 and 2012, MSI scaled up voluntary access to implants in 15 sub-Saharan African countries, from 80,041 implants in 2008 to 754,329 implants in 2012. This 9-fold increase amounted to more than 1.7 million implants delivered cumulatively over the 5-year period. High levels of client satisfaction were attained alongside service provision scale up by using existing MSI service delivery channels—mobile outreach, social franchising, and clinics—to implement strategies that broadened access for underserved clients and maintained service quality. Use of adaptive and context-specific service delivery models and attention to key operational components, including sufficient numbers of trained providers, strong supply chains, diverse financing mechanisms, and implant removal services, underpinned our service delivery efforts. Accounting for 70% of the implants delivered by MSI in 2012, mobile outreach services through dedicated MSI provider teams played a central role in scale-up efforts, fueled in part by the provision of free or heavily subsidized services. Social franchising also demonstrated promise for future program growth, along with MSI clinics. Continued high growth in implant provision between 2011 and 2012 in all sub-Saharan African countries indicates the region's capacity for further service delivery expansion. Meeting the expected rising demand for implants and ensuring long-term sustainable access to the method, as part of a comprehensive method mix, will require continued use of appropriate service delivery models, effective operations, and ongoing collaboration between the private, public, and nongovernmental sectors. MSI's experience can be instructive for future efforts to ensure contraceptive access and

  11. Project delivery system (PDS)

    CERN Document Server

    2001-01-01

    As business environments become increasingly competitive, companies seek more comprehensive solutions to the delivery of their projects. "Project Delivery System: Fourth Edition" describes the process-driven project delivery systems which incorporates the best practices from Total Quality and is aligned with the Project Management Institute and ISO Quality Standards is the means by which projects are consistently and efficiently planned, executed and completed to the satisfaction of clients and customers.

  12. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  13. Situation Analysis of Healthcare Service Delivery using ...

    African Journals Online (AJOL)

    ISML5

    7. No. 1, AARSE 2017 Special Edition, January 2017. 75. Situation Analysis of ... then becomes a major bottleneck to proper planning and policy formulation in healthcare delivery. ... Uganda Annual Health Sector Performance Report for Financial Year 2014/15 ... government's strategy of taking services closer to the people.

  14. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    Science.gov (United States)

    Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

    2011-10-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

  15. Laser-assisted delivery of synergistic combination chemotherapy in in vivo skin.

    Science.gov (United States)

    Wenande, Emily; Tam, Joshua; Bhayana, Brijesh; Schlosser, Steven Kyle; Ishak, Emily; Farinelli, William A; Chlopik, Agata; Hoang, Mai P; Pinkhasov, Omar R; Caravan, Peter; Rox Anderson, R; Haedersdal, Merete

    2018-04-10

    The effectiveness of topical drugs for treatment of non-melanoma skin cancer is greatly reduced by insufficient penetration to deep skin layers. Ablative fractional lasers (AFLs) are known to enhance topical drug uptake by generating narrow microchannels through the skin, but information on AFL-drug delivery in in vivo conditions is limited. In this study, we examined pharmacokinetics, biodistribution and toxicity of two synergistic chemotherapy agents, cisplatin and 5-fluorouracil (5-FU), following AFL-assisted delivery alone or in combination in in vivo porcine skin. Detected at 0-120 h using mass spectrometry techniques, we demonstrated that fractional CO 2 laser pretreatment (196 microchannels/cm 2 , 852 μm ablation depth) leads to rapid drug uptake in 1500 μm deep skin layers, with a sixfold enhancement in peak cisplatin concentrations versus non-laser-treated controls (5 h, P = 0.005). Similarly, maximum 5-FU deposition was measured within an hour of AFL-delivery, and exceeded peak deposition in non-laser-exposed skin that had undergone topical drug exposure for 5 days. Overall, this accelerated and deeper cutaneous drug uptake resulted in significantly increased inflammatory and histopathological effects. Based on clinical scores and transepidermal water loss measurement, AFL intensified local toxic responses to drugs delivered alone and in combination, while systemic drug exposure remained undetectable. Quantitative histopathologic analyses correspondingly revealed significantly reduced epidermal proliferation and greater cellular apoptosis after AFL-drug delivery; particularly after combined cisplatin + 5-FU exposure. In sum, by overcoming the primary limitation of topical drug penetration and providing accelerated, enhanced and deeper delivery, AFL-assisted combination chemotherapy may represent a promising treatment strategy for non-melanoma skin cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Service Users perspectives in PROMISE and research.

    Science.gov (United States)

    Rae, Sarah

    2017-09-01

    Since its inception in 2013, PROMISE (PROactive Management of Integrated Services and Environments) has been supporting service users and staff at the Cambridgeshire and Peterborough NHS Foundation Trust (CPFT) on a journey to reduce reliance on force. The author's own personal experiences led to the founding of PROMISE and illustrates how individual experiences can influence a patient to lead change. Coproduction is actively embedded in PROMISE. Patients have been meaningfully involved because they are innovators and problem solvers who bring an alternative viewpoint by the very nature of their condition. A patient is more than just a person who needs to be 'fixed' they are individuals with untapped skills and added insight. There have been 2 separate Patient Advisory Groups (PAGs) since the project was first established. The first Patient Advisory Group was recruited to work with the PROMISE researchers on a study which used a participatory qualitative approach. Drawing on their lived experience and different perspectives the PAG was instrumental in shaping the qualitative study, including the research questions. Their active involvement helped to ensure that that the study was sensitively designed, methodologically robust and ethically sound. The 2 nd PAG was formed in 2016 to give the project an overall steer. Patients in this group contributed to the work on the 'No' Audit and reviewed several CPFT policies such as the Seclusion and Segregation policy which has impacted on frontline practice. They also made a significant contribution to the study design for a funding application that was submitted by the PROMISE team to the National Institute for Health Research (NIHR). Both PAGs were supported by funding from East of England Collaboration for Leadership in Applied Health Research and Care (CLAHRC EoE) and were influential in different ways. An evaluation of the 2 nd PAG which was conducted in June 2017 showed very high satisfaction levels. The free text

  17. Adamantane in Drug Delivery Systems and Surface Recognition

    OpenAIRE

    Adela Štimac; Marina Šekutor; Kata Mlinarić-Majerski; Leo Frkanec; Ruža Frkanec

    2017-01-01

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based struc...

  18. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer.

    Science.gov (United States)

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.

  19. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  20. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin.

    Science.gov (United States)

    Hatahet, T; Morille, M; Hommoss, A; Devoisselle, J M; Müller, R H; Bégu, S

    2018-05-05

    Quercetin is a flavonoid with strong antioxidant and antiinflammatory activities considered as a potential drug candidate for skin exogenous supplementation. Nevertheless, crude quercetin suffers from poor water solubility and consequently topical inactivity. Therefore, quercetin formulation within a suitable system that overcomes its solubility limitation is a matter of investigation. Three approaches were tested to improve quercetin delivery to skin: liposomes, lipid nanocapsules (LNC) and smartCrystals®. These nanoformulations were compared in terms of average particle size, homogeneity (PDI), quercetin loading and cellular interactions with HaCaT (keratinocytes) and TPH-1 (monocytes) cell lines. Finally, two formulations were selected for testing quercetin delivery to human skin in vivo using stripping test. Different size distribution was obtained with each strategy starting from 26 nm with quercetin LNC, 179 nm with liposomes to 295 nm with quercetin smartCrystals®. The drug loading varied with each formulation from 0.56 mg/ml with liposomes, 10.8 mg/ml with LNC to 14.4 mg/ml with smartCrystals®. No toxicity was observed in HaCaT cells with quercetin and free radical scavenging ability was established at 5 µg/ml. The safety of quercetin at 5 µg/ml was further confirmed on THP-1 cells with efficient free radical scavenging ability. Finally, skin penetration evidenced different behavior between the two selected forms (LNC and SmartCrystals®), which could lead to different promising strategies for skin protection. On one side, quercetin smartCrystals® seems to enable the superficial deposition of quercetin on top of the skin, which presents a good strategy for a quercetin-based sunscreen product. On the other side, LNC seems to allow quercetin delivery to viable epidermis that holds the promise for skin inflammatory disorders such as psoriasis. Copyright © 2018. Published by Elsevier B.V.

  1. Perpendicular recording: the promise and the problems

    International Nuclear Information System (INIS)

    Wood, Roger; Sonobe, Yoshiaki; Jin Zhen; Wilson, Bruce

    2001-01-01

    Perpendicular recording has long been advocated as a means of achieving the highest areal densities. In particular, in the context of the 'superparamagnetic limit', perpendicular recording with a soft underlayer promises several key advantages. These advantages include a higher coercivity, thicker media that should permit smaller diameter grains and higher signal-to-noise ratio. Also, the sharper edge-writing will facilitate recording at very high track densities (lower bit aspect ratio). Recent demonstrations of the technology have shown densities comparable with the highest densities reported for longitudinal recording. This paper further examines the promise that perpendicular recording will deliver an increase in areal density two to eight times higher than that achievable with longitudinal recording. There are a number of outstanding issues but the key challenge is to create a low-noise medium with a coercivity that is high and is much larger than the remanent magnetization

  2. The deepwater Gulf of Mexico : promises delivered?

    International Nuclear Information System (INIS)

    Pickering, D.R.

    1999-01-01

    A summary review of deepwater Gulf of Mexico (GOM) oil production was presented for the years 1989 to 1998. Trends and prospects in deepwater GOM production and leasing were assessed. Promises and forecasts made in the early 1990s were compared with what actually happened since then. Forecasts in the early 1990s promised deeper, faster and cheaper developments in the deepwater Gulf. Results of the comparison showed that the prognosticators were correct on all three counts. Regarding the future of the Gulf, one can be justified in being optimistic in so far as more experience, robust economics, more and cheaper rigs can be taken as reliable indicators of optimism. In contrast, there are certain negatives to consider, such as low commodity prices, budget constraints, lease expirations, technical challenges and increased competition. . 12 figs

  3. Promising Products for Printing and Publishing Market

    Directory of Open Access Journals (Sweden)

    Renata Činčikaitė

    2011-04-01

    Full Text Available The article surveys printing and publishing market and its strong and weak aspects. The concept of a new product is described as well as its lifetime and the necessity of its introduction to the market. The enterprise X operating on the market is analyzed, its strong and weak characteristics are presented. The segmentation of the company consumers is performed. On the basis of the performed analysis the potential promising company products are defined.Article in Lithuanian

  4. Molecular Imaging: A Promising Tool to Monitor Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2011-01-01

    Full Text Available Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells.

  5. 6. Home deliveries

    African Journals Online (AJOL)

    Sitwala

    determine factors associated with home deliveries. Main outcome ... deliver at home than a health facility compared to those who .... regression analysis, women who had four years of schooling or .... by report bias, the burden of home deliveries is a real challenge .... Journal of Econometrics 1987; 36: 185-204. 14. Michelo ...

  6. Global Delivery Models

    DEFF Research Database (Denmark)

    Manning, Stephan; Larsen, Marcus M.; Bharati, Pratyush

    2013-01-01

    This article examines antecedents and performance implications of global delivery models (GDMs) in global business services. GDMs require geographically distributed operations to exploit both proximity to clients and time-zone spread for efficient service delivery. We propose and empirically show...

  7. Health care delivery systems.

    NARCIS (Netherlands)

    Stevens, F.; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective,

  8. Global Delivery Models

    DEFF Research Database (Denmark)

    Manning, Stephan; Møller Larsen, Marcus; Bharati, Pratyush

    -zone spread allowing for 24/7 service delivery and access to resources. Based on comprehensive data we show that providers are likely to establish GDM configurations when clients value access to globally distributed talent pools and speed of service delivery, and in particular when services are highly...

  9. Family-centred care delivery

    Science.gov (United States)

    Mayo-Bruinsma, Liesha; Hogg, William; Taljaard, Monica; Dahrouge, Simone

    2013-01-01

    Abstract Objective To determine whether models of primary care service delivery differ in their provision of family-centred care (FCC) and to identify practice characteristics associated with FCC. Design Cross-sectional study. Setting Primary care practices in Ontario (ie, 35 salaried community health centres, 35 fee-for-service practices, 32 capitation-based health service organizations, and 35 blended remuneration family health networks) that belong to 4 models of primary care service delivery. Participants A total of 137 practices, 363 providers, and 5144 patients. Main outcome measures Measures of FCC in patient and provider surveys were based on the Primary Care Assessment Tool. Statistical analyses were conducted using linear mixed regression models and generalized estimating equations. Results Patient-reported FCC scores were high and did not vary significantly by primary care model. Larger panel size in a practice was associated with lower odds of patients reporting FCC. Provider-reported FCC scores were significantly higher in community health centres than in family health networks (P = .035). A larger number of nurse practitioners and clinical services on-site were both associated with higher FCC scores, while scores decreased as the number of family physicians in a practice increased and if practices were more rural. Conclusion Based on provider and patient reports, primary care reform strategies that encourage larger practices and more patients per family physician might compromise the provision of FCC, while strategies that encourage multidisciplinary practices and a range of services might increase FCC. PMID:24235195

  10. Strategies for Enhanced Crop Resistance to Insect Pests.

    Science.gov (United States)

    Douglas, Angela E

    2018-04-29

    Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.

  11. Lactoferrin and prematurity: a promising milk protein?

    Science.gov (United States)

    Ochoa, Theresa J; Sizonenko, Stéphane V

    2017-02-01

    Lactoferrin (Lf) is the major whey protein in milk, with multiple beneficial health effects including direct antimicrobial activities, anti-inflammatory effects, and iron homeostasis. Oral Lf supplementation in human preterm infants has been shown to reduce the incidence of sepsis and necrotizing enterocolitis. In preclinical models of antenatal stress and perinatal brain injury, bovine Lf protected the developing brain from neuronal loss, improved connectivity, increased neurotrophic factors, and decreased inflammation. It also supported brain development and cognition. Further, Lf can prevent preterm delivery by reducing proinflammatory factors and inhibiting premature cervix maturation. We review here the latest research on Lf in the field of neonatology.

  12. Smart Polymers in Nasal Drug Delivery.

    Science.gov (United States)

    Chonkar, Ankita; Nayak, Usha; Udupa, N

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones.

  13. Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers.

    Science.gov (United States)

    Grabovac, Vjera; Föger, Florian; Bernkop-Schnürch, Andreas

    2008-02-04

    The aim of this study was to develop and evaluate a novel three-layered oral delivery system for insulin in vivo. The patch system consisted of a mucoadhesive layer, a water insoluble backing layer made of ethylcellulose and an enteric coating made of Eudragit. Drug release studies were performed in media mimicking stomach and intestinal fluids. For in vivo studies patch systems were administered orally to conscious non-diabetic rats. Orally administered insulin in aqueous solution was used as control. After the oral administration of the patch systems a decrease of glucose and increase of insulin blood levels were measured. The mucoadhesive layer, exhibiting a diameter of 2.5mm and a weight of 5mg, comprised polycarbophil-cysteine conjugate (49%), bovine insulin (26%), gluthatione (5%) and mannitol (20%). 74.8+/-4.8% of insulin was released from the delivery system over 6h. Six hours after administration of the patch system mean maximum decrease of blood glucose level of 31.6% of the initial value could be observed. Maximum insulin concentration in blood was 11.3+/-6.2ng/ml and was reached 6h after administration. The relative bioavailability of orally administered patch system versus subcutaneous injection was 2.2%. The results indicate that the patch system provides enhancement of intestinal absorption and thereby offers a promising strategy for peroral peptide delivery.

  14. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment.

    Science.gov (United States)

    Calias, Pericles; Banks, William A; Begley, David; Scarpa, Maurizio; Dickson, Patricia

    2014-11-01

    Disorders of the central nervous system (CNS), including stroke, neurodegenerative diseases, and brain tumors, are the world's leading causes of disability. Delivery of drugs to the CNS is complicated by the blood-brain barriers that protect the brain from the unregulated leakage and entry of substances, including proteins, from the blood. Yet proteins represent one of the most promising classes of therapeutics for the treatment of CNS diseases. Many strategies for overcoming these obstacles are in development, but the relatively straightforward approach of bypassing these barriers through direct intrathecal administration has been largely overlooked. Originally discounted because of its lack of usefulness for delivering small, lipid-soluble drugs to the brain, the intrathecal route has emerged as a useful, in some cases perhaps the ideal, route of administration for certain therapeutic protein and targeted disease combinations. Here, we review blood-brain barrier functions and cerebrospinal fluid dynamics and their relevance to drug delivery via the intrathecal route, discuss animal and human studies that have investigated intrathecal delivery of protein therapeutics, and outline several characteristics of protein therapeutics that can allow them to be successfully delivered intrathecally. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications.

    Science.gov (United States)

    Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K

    2014-06-01

    Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.

  16. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations.

    Science.gov (United States)

    Barua, Neil U; Gill, Steven S; Love, Seth

    2014-03-01

    Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD). © 2013 International Society of Neuropathology.

  17. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    Science.gov (United States)

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway.

    Directory of Open Access Journals (Sweden)

    Jun Hai

    Full Text Available Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes. In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0 x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies.

  19. 5-Fluorouracil Encapsulated Chitosan Nanoparticles for pH-Stimulated Drug Delivery: Evaluation of Controlled Release Kinetics

    Directory of Open Access Journals (Sweden)

    R. Seda Tığlı Aydın

    2012-01-01

    Full Text Available Nanoparticles consisting of human therapeutic drugs are suggested as a promising strategy for targeted and localized drug delivery to tumor cells. In this study, 5-fluorouracil (5-FU encapsulated chitosan nanoparticles were prepared in order to investigate potentials of localized drug delivery for tumor environment due to pH sensitivity of chitosan nanoparticles. Optimization of chitosan and 5-FU encapsulated nanoparticles production revealed 148.8±1.1 nm and 243.1±17.9 nm particle size diameters with narrow size distributions, which are confirmed by scanning electron microscope (SEM images. The challenge was to investigate drug delivery of 5-FU encapsulated chitosan nanoparticles due to varied pH changes. To achieve this objective, pH sensitivity of prepared chitosan nanoparticle was evaluated and results showed a significant swelling response for pH 5 with particle diameter of ∼450 nm. In vitro release studies indicated a controlled and sustained release of 5-FU from chitosan nanoparticles with the release amounts of 29.1–60.8% due to varied pH environments after 408 h of the incubation period. pH sensitivity is confirmed by mathematical modeling of release kinetics since chitosan nanoparticles showed stimuli-induced release. Results suggested that 5-FU encapsulated chitosan nanoparticles can be launched as pH-responsive smart drug delivery agents for possible applications of cancer treatments.

  20. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    Science.gov (United States)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  1. siRNA delivery with lipid-based systems

    DEFF Research Database (Denmark)

    Foged, Camilla

    2012-01-01

    A key hurdle for the further development of RNA interference (RNAi) therapeutics like small interfering RNA (siRNA) is their safe and effective delivery. Lipids are promising and versatile carriers because they are based on Nature's own building blocks and can be provided with properties which......RNA into more hydrophobic lipoplexes, which promote passage of the siRNA across cellular membrane barriers, especially when lipids are added that facilitate membrane fusion. Despite these attractive features, siRNA delivery vehicles are facing a number of challenges such as the limited delivery efficiency...

  2. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Institute of Scientific and Technical Information of China (English)

    Huile Gao

    2016-01-01

    Due to the ability of the blood–brain barrier(BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier(BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  3. Progress and perspectives on targeting nanoparticles for brain drug delivery

    Directory of Open Access Journals (Sweden)

    Huile Gao

    2016-07-01

    Full Text Available Due to the ability of the blood–brain barrier (BBB to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood–brain tumor barrier (BBTB, and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed.

  4. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  5. Marketing Strategy: A Tool for Library and Information Services ...

    African Journals Online (AJOL)

    Marketing Strategy: A Tool for Library and Information Services Delivery by ... delivery by academic libraries using the various technology driven facilities. ... Data were gathered using questionnaire and the findings revealed that face to face ...

  6. Asymmetrical Polymer Vesicles for Drug delivery and Other Applications

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-06-01

    Full Text Available Scientists have been attracted by polymersomes as versatile drug delivery systems since the last two decades. Polymersomes have the potential to be versatile drug delivery systems because of their tunable membrane formulations, stabilities in vivo, various physicochemical properties, controlled release mechanisms, targeting abilities, and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical polymersomes are nano- to micro-sized polymeric capsules with asymmetrical membranes, which means, they have different outer and inner coronas so that they can exhibit better endocytosis rate and endosomal escape ability than other polymeric systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly promising as self-assembled nano-delivery systems in the future for in vivo therapeutics delivery and diagnostic imaging applications. In this review, we prepared a summary about recent research progresses of asymmetrical polymersomes in the following aspects: synthesis, preparation, applications in drug delivery and others.

  7. Polymer nanogels: a versatile nanoscopic drug delivery platform

    Science.gov (United States)

    Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

    2012-01-01

    In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed. PMID:22342438

  8. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  9. The role of entry into regional markets in fulfilling brand promise

    Directory of Open Access Journals (Sweden)

    Ali Ghasemi

    2014-12-01

    Full Text Available This paper presents an empirical investigation to study the role of entry into regional markets in fulfilling brand promise. The study designs two questionnaires, one for measuring brand promise and the other for measuring export capabilities, in Likert scale and distributes it among 250 randomly selected producers who were involved in production and development of various products in city of Esfahan, Iran. Cronbach alphas were calculated for brand promise and export capabilities as 0.856 and 0.812, respectively. Using structural equation modeling, the study has detected seven factors including product development, public advocacy, strategic orientation, customer satisfaction, competitive pressures, organizational capabilities and distribution strategies.

  10. Practical guide to content delivery networks

    CERN Document Server

    Held, Gilbert

    2005-01-01

    With a practical and organized approach to learning and implementation, A Practical Guide to Content Delivery Networks presents a step-by-step process for building a highly available and highly scalable content delivery network (CDN). CDN refers to the infrastructure behind any service that provides utility or access to data to an end user. This book offers terminology, tactics, potential problems to avoid, and individual layers of design, providing clear understanding of the framework for CDNs using a structural and visual approach. The text emphasizes a best-of-breed strategy, allowing a tec

  11. What Is a Cesarean Delivery?

    Science.gov (United States)

    ... Twitter Pinterest Email Print What is a cesarean delivery? A cesarean delivery is a surgical procedure in which a fetus ... 32.2% of U.S. births were by cesarean delivery. 2 The CDC also found that the number ...

  12. Atopic Dermatitis: Drug Delivery Approaches in Disease Management.

    Science.gov (United States)

    Lalan, Manisha; Baweja, Jitendra; Misra, Ambikanandan

    2015-01-01

    In this review, we describe the very basic of atopic dermatitis (AD), the established management strategies, and the advances in drug delivery approaches for successful therapeutic outcomes. The multifactorial pathophysiology of AD has given rise to the clinician's paradigm of topical and systemic therapy and potential combinations. However, incomplete remission of skin disorders like AD is a major challenge to be overcome. Recurrence is thought to be due to genetic and immunological etiologies and shortcomings in drug delivery. This difficulty has sparked research in nanocarrier-based delivery approaches as well as molecular biology-inspired stratagems to deal with the immunological imbalance and to address insufficiencies of delivery propositions. In this review, we assess various novel drug delivery strategies in terms of their success and utility. We present a brief compilation and assessment of management modalities to sensitize the readers to therapeutic scenario in AD.

  13. Does environmental archaeology need an ethical promise?

    DEFF Research Database (Denmark)

    Riede, Felix; Andersen, Per; Price, Neil

    2016-01-01

    formalized ethical codes or promises that not only guide the dissemination of data but oblige scientists to relate to fundamentally political issues. This article couples a survey of the recent environmental ethics literature with two case studies of how past natural hazards have affected vulnerable...... societies in Europe?s prehistory. We ask whether cases of past calamities and their societal effects should play a greater role in public debates and whether archaeologists working with past environmental hazards should be more outspoken in their ethical considerations. We offer no firm answers, but suggest...... that archaeologists engage with debates in human?environment relations at this interface between politics, public affairs and science....

  14. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs.

    Science.gov (United States)

    Tian, Ye; Mao, Shirui

    2012-06-01

    Many amphiphilic copolymers have recently been synthesized as novel promising micellar carriers for the delivery of poorly water-soluble anticancer drugs. Studies on the formulation and oral delivery of such micelles have demonstrated their efficacy in enhancing drug uptake and absorption, and exhibit prolonged circulation time in vitro and in vivo. In this review, literature on hydrophobic modifications of several hydrophilic polymers, including polyethylene glycol, chitosan, hyaluronic acid, pluronic and tocopheryl polyethylene glycol succinate, is summarized. Parameters influencing the properties of polymeric micelles for oral chemotherapy are discussed and strategies to overcome main barriers for polymeric micelles peroral absorption are proposed. During the design of polymeric micelles for peroral chemotherapy, selecting or synthesizing copolymers with good compatibility with the drug is an effective strategy to increase drug loading and encapsulation efficiency. Stability of the micelles can be improved in different ways. It is recommended to take permeability, mucoadhesion, sustained release, and P-glycoprotein inhibition into consideration during copolymer preparation or to consider adding some excipients in the formulation. Furthermore, both the copolymer structure and drug loading methods should be controlled in order to get micelles with appropriate particle size for better absorption.

  15. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  16. Infusing BSCS 5E Instructional Model with Multimedia: A Promising Approach to Develop 21st Century Skills

    Science.gov (United States)

    Senan, Divya C.

    2013-01-01

    The full promise of class room learning is dependent on its ability to incorporate 21st century skills in its instructional design, delivery and implementation. In this increasingly competitive global economy, it is not enough for students to acquire subject-level mastery alone. Skills like creative thinking, problem-solving, communication and…

  17. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application

    Science.gov (United States)

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Kim, Hye Hyun; Seo, Hansu; Lee, Kang Dae; Oh, Junghwan

    2017-01-01

    In this review, specific attention is paid to the development of nanostructured magnetic hydroxyapatite (MHAp) and its potential application in controlled drug/gene delivery, tissue engineering, magnetic hyperthermia treatment, and the development of contrast agents for magnetic resonance imaging. Both magnetite and hydroxyapatite materials have excellent prospects in nanomedicine with multifunctional therapeutic approaches. To date, many research articles have focused on biomedical applications of nanomaterials because of which it is very difficult to focus on any particular type of nanomaterial. This study is possibly the first effort to emphasize on the comprehensive assessment of MHAp nanostructures for biomedical applications supported with very recent experimental studies. From basic concepts to the real-life applications, the relevant characteristics of magnetic biomaterials are patented which are briefly discussed. The potential therapeutic and diagnostic ability of MHAp-nanostructured materials make them an ideal platform for future nanomedicine. We hope that this advanced review will provide a better understanding of MHAp and its important features to utilize it as a promising material for multifunctional biomedical applications. PMID:29200851

  18. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application.

    Science.gov (United States)

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Kim, Hye Hyun; Seo, Hansu; Lee, Kang Dae; Oh, Junghwan

    2017-01-01

    In this review, specific attention is paid to the development of nanostructured magnetic hydroxyapatite (MHAp) and its potential application in controlled drug/gene delivery, tissue engineering, magnetic hyperthermia treatment, and the development of contrast agents for magnetic resonance imaging. Both magnetite and hydroxyapatite materials have excellent prospects in nanomedicine with multifunctional therapeutic approaches. To date, many research articles have focused on biomedical applications of nanomaterials because of which it is very difficult to focus on any particular type of nanomaterial. This study is possibly the first effort to emphasize on the comprehensive assessment of MHAp nanostructures for biomedical applications supported with very recent experimental studies. From basic concepts to the real-life applications, the relevant characteristics of magnetic biomaterials are patented which are briefly discussed. The potential therapeutic and diagnostic ability of MHAp-nanostructured materials make them an ideal platform for future nanomedicine. We hope that this advanced review will provide a better understanding of MHAp and its important features to utilize it as a promising material for multifunctional biomedical applications.

  19. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.

    Science.gov (United States)

    Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A

    2018-05-16

    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.

  20. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers

    NARCIS (Netherlands)

    Chen, Wei; Meng, Fenghua; Cheng, R.; Deng, C.; Feijen, Jan; Zhong, Zhiyuan

    2014-01-01

    Biodegradable polymeric nanocarriers are one of the most promising systems for targeted and controlled drug and gene delivery. They have shown several unique advantages such as excellent biocompatibility, prolonged circulation time, passive tumor targeting via the enhanced permeability and retention