WorldWideScience

Sample records for promising antitumor agents

  1. Structural organization of C{sub 60} fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents

    Energy Technology Data Exchange (ETDEWEB)

    Prylutskyy, Yu. I. [Taras Shevchenko National University of Kyiv (Ukraine); Evstigneev, M. P., E-mail: max-evstigneev@mail.ru [Belgorod State University, Department of Biology and Chemistry (Russian Federation); Cherepanov, V. V. [Institute of Physics of NAS of Ukraine (Ukraine); Kyzyma, O. A.; Bulavin, L. A.; Davidenko, N. A. [Taras Shevchenko National University of Kyiv (Ukraine); Scharff, P. [Ilmenau University of Technology (Germany)

    2015-01-15

    Specific features of structural self-organization of C{sub 60} fullerene (1 nm size range), antitumor antibiotic doxorubicin (Dox) and their complex in physiological solution (0.9 % NaCl) have been investigated by means of atomic-force microscopy, dynamic light scattering, and small-angle X-ray scattering. Significant ordering of the mixed system, C{sub 60} + Dox, was observed, suggesting the complexation between these drugs, and giving insight into the mechanism of enhancement of Dox antitumor effect on simultaneous administration with C{sub 60} fullerene.

  2. Design of novel antitumor DNA alkylating agents: the benzacronycine series.

    Science.gov (United States)

    David-Cordonnier, Marie-Hélène; Laine, William; Gaslonde, Thomas; Michel, Sylvie; Tillequin, Francois; Koch, Michel; Léonce, Stéphane; Pierré, Alain; Bailly, Christian

    2004-03-01

    Acronycine, a natural alkaloid originally extracted from the bark of the Australian ash scrub Acronychia baueri, has shown a significant antitumor activity in animal models. Acronycine has been tested against human cancers in the early 1980s, but the clinical trials showed modest therapeutic effects and its development was rapidly discontinued. In order to optimize the antineoplastic effect, different benzoacronycine derivatives were synthesized. Among those, the di-acetate compound S23906-1 was recently identified as a promising anticancer drug candidate and a novel alkylating agent specifically reacting with the exocylic 2-NH2 group of guanines in DNA. The study of DNA bonding capacity of acronycine derivatives leads to the identification of the structural requirements for DNA alkylation. In nearly all cases, the potent alkylating agents, such as S23906-1, were found to be much more cytotoxic than the unreactive analogs such as acronycine itself or diol derivatives. Alkylation of DNA by the monoacetate derivative S28687-1, which is a highly reactive hydrolysis metabolite of S23906-1, occurs with a marked preference for the N2 position of guanine. Other bionucleophiles can react with S23906-1. The benzacronycine derivatives, which efficiently alkylate DNA, also covalently bind to the tripeptide glutathione (GSH) but not to the oxidized product glutathione disulfide. Here we review the reactivity of S23906-1 and some derivatives toward DNA and GSH. The structure-activity relationships in the benzacronycine series validate the reaction mechanism implicating DNA as the main molecular target. S23906-1 stands as the most promising lead of a medicinal chemistry program aimed at discovering novel antitumor drugs based on the acronycine skeleton.

  3. Systematic screening of bryophytes for antitumor agents

    OpenAIRE

    Spjut, Richard W.; Kingston, David G. I.; Cassady, John M.

    1992-01-01

    References are made to cytotoxic and/or antitumor compounds that have been isolated - ansamitocin P-3 from Claopodium crispifolium (Hook.) Ren. & Card. and Anomodon attenuatus Hueb., or an associated actinomycete, and ohioensins and pallidisetums from Polytrichum spp. Several hundred collections, which have been obtained from temperate regions of North America during 1990 and 1991, are currently being screened in new bioassays; active sesquiterpene lactones have been recently isolated from sp...

  4. Potent antitumor bifunctional DNA alkylating agents, synthesis and biological activities of 3a-aza-cyclopenta[a]indenes.

    Science.gov (United States)

    Kakadiya, Rajesh; Dong, Huajin; Lee, Pei-Chih; Kapuriya, Naval; Zhang, Xiuguo; Chou, Ting-Chao; Lee, Te-Chang; Kapuriya, Kalpana; Shah, Anamik; Su, Tsann-Long

    2009-08-01

    A series of bifunctional DNA interstrand cross-linking agents, bis(hydroxymethyl)- and bis(carbamates)-8H-3a-azacyclopenta[a]indene-1-yl derivatives were synthesized for antitumor evaluation. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and antitumor therapeutic efficacy against human tumor xenografts in vivo. Furthermore, these derivatives have little or no cross-resistance to either Taxol or Vinblastine. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft by 13a,b and 14g,h and significant suppression against prostate adenocarcinoma PC3 xenograft by 13b were achieved at the maximum tolerable dose with relatively low toxicity. In addition, these agents induce DNA interstrand cross-linking and substantial G2/M phase arrest in human non-small lung carcinoma H1299 cells. The current studies suggested that these agents are promising candidates for preclinical studies.

  5. Bacteriophages show promise as antimicrobial agents.

    Science.gov (United States)

    Alisky, J; Iczkowski, K; Rapoport, A; Troitsky, N

    1998-01-01

    The emergence of antibiotic-resistant bacteria has prompted interest in alternatives to conventional drugs. One possible option is to use bacteriophages (phage) as antimicrobial agents. We have conducted a literature review of all Medline citations from 1966-1996 that dealt with the therapeutic use of phage. There were 27 papers from Poland, the Soviet Union, Britain and the U.S.A. The Polish and Soviets administered phage orally, topically or systemically to treat a wide variety of antibiotic-resistant pathogens in both adults and children. Infections included suppurative wound infections, gastroenteritis, sepsis, osteomyelitis, dermatitis, empyemas and pneumonia; pathogens included Staphylococcus, Streptococcus, Klebsiella, Escherichia, Proteus, Pseudomonas, Shigella and Salmonella spp. Overall, the Polish and Soviets reported success rates of 80-95% for phage therapy, with rare, reversible gastrointestinal or allergic side effects. However, efficacy of phage was determined almost exclusively by qualitative clinical assessment of patients, and details of dosages and clinical criteria were very sketchy. There were also six British reports describing controlled trials of phage in animal models (mice, guinea pigs and livestock), measuring survival rates and other objective criteria. All of the British studies raised phage against specific pathogens then used to create experimental infections. Demonstrable efficacy against Escherichia, Acinetobacter, Pseudomonas and Staphylococcus spp. was noted in these model systems. Two U.S. papers dealt with improving the bioavailability of phage. Phage is sequestered in the spleen and removed from circulation. This can be overcome by serial passage of phage through mice to isolate mutants that resist sequestration. In conclusion, bacteriophages may show promise for treating antibiotic resistant pathogens. To facilitate further progress, directions for future research are discussed and a directory of authors from the reviewed

  6. Agent-Based Computing: Promise and Perils

    OpenAIRE

    Jennings, N. R.

    1999-01-01

    Agent-based computing represents an exciting new synthesis both for Artificial Intelligence (AI) and, more genrally, Computer Science. It has the potential to significantly improve the theory and practice of modelling, designing and implementing complex systems. Yet, to date, there has been little systematic analysis of what makes an agent such an appealing and powerful conceptual model. Moreover, even less effort has been devoted to exploring the inherent disadvantages that stem from adoptin...

  7. Biomedical potentials of crown ethers: prospective antitumor agents.

    Science.gov (United States)

    Kralj, Marijeta; Tusek-Bozić, Ljerka; Frkanec, Leo

    2008-10-01

    Crown ethers are of enormous interest and importance in chemistry, biochemistry, materials science, catalysis, separation, transport and encapsulated processes, as well as in the design and synthesis of various synthetic systems with specific properties, diverse capabilities, and programmable functions. Classical crown ethers are macrocyclic polyethers that contain 3-20 oxygen atoms separated from each other by two or more carbon atoms. They are exceptionally versatile in selectively binding a range of metal ions and a variety of organic neutral and ionic species. Crown ethers are currently being studied and used in a variety of applications beyond their traditional place in chemistry. This review presents additional applications and the ever-increasing biomedical potentials of these intriguing compounds, with particular emphasis on the prospects of their relevance as anticancer agents. We believe that further research in this direction should be encouraged, as crown compounds could either induce toxicities that are different from those of conventional antitumor drugs, or complement drugs in current use, thereby providing a valuable adjunct to therapy.

  8. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meili; Zhao, Tingting; Liu, Yanping; Wang, Qianqian; Xing, Shanshan; Li, Lei; Wang, Longgang [Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004 (China); Liu, Lanxiang [The First Hospital of Qinhuangdao, No. 258 Cultural Road, Qinhuangdao 066000 (China); Gao, Dawei, E-mail: dwgao@ysu.edu.cn [Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004 (China)

    2017-02-01

    There are tremendous challenges on antitumor and its therapeutic drugs, and preparation of highly efficient nano-vehicles represents one of the novel topics in antitumor pharmaceutical field. Herein, the novel chitosan-coated ursolic acid (UA) liposome (CS-UA-L) was efficiently prepared with highly tumor targeting, drug controlled release and low side-effect. The CS-UA-L was uniformly spherical particles with diameter of ~ 130 nm, and the size was more easily trapped into the tumor tissues. Chitosan modification can make liposomes carrying positive charges, which were inclined to combine with the negative charges on the surface of tumor cells, and then the CS-UA-L could release UA rapidly at pH 5.0 comparing with pH 7.4. Meanwhile, the CS-UA-L exhibited obvious anti-proliferative effect (76.46%) on HeLa cells and significantly antitumor activity (61.26%) in mice bearing U14 cervical cancer. The tumor tissues of CS-UA-L treated mice had enhanced cell apoptosis, extensive necrosis and low cell proliferation activity. These results demonstrated that the multifunctional CS-UA-L allowed a precision treatment for localized tumor, and reducing the total drug dose and side-effect, which hold a great promise in new safe and effective tumor therapy. - Graphical abstract: Schematic diagram representing the principle of synthesis of CS-UA-L and pH-triggered sequential UA release after treatment on tumor bearing mouse. - Highlights: • The novel chitosan-coated ursolic acid liposomes (CS-UA-L) were successfully prepared. • CS-UA-L possessed sensitive pH-response, which could release UA rapidly at pH 5.0 comparing with pH 7.4. • CS-UA-L exhibited obvious anti-proliferative effect (76.46%) on HeLa cells than UA and UA-L. • CS-UA-L suppressed tumor growth more efficiently than those with UA and UA-L in mice bearing U14 cervical cancer. • The CS-UA-L allow for precision treatment of the tumor and potential to reduce the total drug dose and side-effect.

  9. Design and Syntheses of Novel Fluoroporphyrin-Anthraquinone Complexes as Antitumor Agents.

    Science.gov (United States)

    Yang, Gu-Liang; Zhao, Sheng-Fang; Chen, Nian-You; Li, Shiming

    2016-01-01

    A novel fluoroporphyrin-anthraquinone hybrid with dipeptide link and its metal complexes were synthesized and evaluated for anti-proliferation activity in human cancer cell line HeLa. The preliminary results demonstrated that all the compounds showed moderate to excellent antitumor activities. Among the active compounds, compound 3 which contains fluorinated porphyrin-anthraquinone and zinc ion exhibited the highest potency with IC50 value of 8.83 µM, indicating that it was a promising antitumor candidate.

  10. The Promise of Neuroprotective Agents in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Judith ePotashkin

    2011-11-01

    Full Text Available Parkinson’s Disease is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available.

  11. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.

    Science.gov (United States)

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Maatouk, Mouna; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    in B16F10 and primary human keratinocyte cells. Our results indicate that hawthorn could be considered as a promising agent for the treatment of melanoma as it shows antitumor activity in vitro and in vivo. Moreover, hawthorn constituents are shown to be highly effective at inhibiting tyrosinase-mediated melanogenesis in vitro on melanoma cells by preventing oxidation in these cells and without affecting the viability of normal human keratinocyte cells. Then, hawthorn might also be used as a new candidate of natural skin depigmenting agents in skin care products.

  12. Deoxypodophyllotoxin: a promising therapeutic agent from herbal medicine.

    Science.gov (United States)

    Khaled, Meyada; Jiang, Zhen-Zhou; Zhang, Lu-Yong

    2013-08-26

    Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, is a potent antitumor and anti-inflammatory agent. However, DPT has not been used clinically yet. Also, DPT from natural sources seems to be unavailable. Hence, it is important to establish alternative resources for the production of such lignan; especially that it is used as a precursor for the semi-synthesis of the cytostatic drugs etoposide phosphate and teniposide. The update paper provides an overview of DPT as an effective anticancer natural compound and a leader for cytotoxic drugs synthesis and development in order to highlight the gaps in our knowledge and explore future research needs. The present review covers the literature available from 1877 to 2012. The information was collected via electronic search using Chinese papers and the major scientific databases including PubMed, Sciencedirect, Web of Science and Google Scholar using the keywords. All abstracts and full-text articles reporting database on the history and current status of DPT were gathered and analyzed. Plants containing DPT have played an important role in traditional medicine. In light of the in vitro pharmacological investigations, DPT is a high valuable medicinal agent that has anti-tumor, anti-proliferative, anti-inflammatory and anti-allergic properties. Further, DPT is an important precursor for the cytotoxic aryltetralin lignan, podophyllotoxin, which is used to obtain semisynthetic derivatives like etoposide and teniposide used in cancer therapy. However, most studies have focused on the in vitro data. Therefore, DPT has not been used clinically yet. DPT has emerged as a potent chemical agent from herbal medicine. Therefore, in vivo studies are needed to carry out clinical trials in humans and enable the development of new anti-cancer agents. In addition, DPT from commercial

  13. Menahydroquinone-4 Prodrug: A Promising Candidate Anti-Hepatocellular Carcinoma Agent.

    Science.gov (United States)

    Enjoji, Munechika; Watase, Daisuke; Matsunaga, Kazuhisa; Kusuda, Mariko; Nagata-Akaho, Nami; Karube, Yoshiharu; Takata, Jiro

    2015-07-22

    Recently, new therapeutics have been developed for hepatocellular carcinoma (HCC). However, the overall survival rate of HCC patients is still unsatisfactory; one of the reasons for this is the high frequency of recurrence after radical treatment. Consequently, to improve prognosis, it will be important to develop a novel anti-tumor agent that is especially effective against HCC recurrence. For clinical application, long-term safety, together with high anti-tumor efficacy, is desirable. Recent studies have proposed menahydroquinone-4 1,4-bis- N,N -dimethylglycinate hydrochloride (MKH-DMG), a prodrug of menahydroquinone-4 (MKH), as a promising candidate for HCC treatment including the inhibition of recurrence; MKH-DMG has been shown to achieve good selective accumulation of MKH in tumor cells, resulting in satisfactory inhibition of cell proliferation in des-γ-carboxyl prothrombin (DCP)-positive and DCP-negative HCC cell lines. In a spleen-liver metastasis mouse model, MKH-DMG has been demonstrated to have anti-proliferation and anti-metastatic effects in vivo . The characteristics of MKH-DMG as a novel anti-HCC agent are presented in this review article.

  14. The effect of anti-tumor necrosis factor alpha agents on postoperative anastomotic complications in Crohn's disease

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa Abdul-Hussein H; Krag, Aleksander; Olaison, Gunnar

    2013-01-01

    Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications.......Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications....

  15. Fermented Mistletoe Extract as a Multimodal Antitumoral Agent in Gliomas

    Directory of Open Access Journals (Sweden)

    Oliver Podlech

    2012-01-01

    Full Text Available In Europe, commercially available extracts from the white-berry mistletoe (Viscum album L. are widely used as a complementary cancer therapy. Mistletoe lectins have been identified as main active components and exhibit cytotoxic effects as well as immunomodulatory activity. Since it is still not elucidated in detail how mistle toe extracts such as ISCADOR communicate their effects, we analyzed the mechanisms that might be responsible for their antitumoral function on a molecular and functional level. ISCADOR-treated glioblastoma (GBM cells down-regulate central genes involved in glioblastoma progression and malignancy such as the cytokine TGF-β and matrix-metalloproteinases. Using in vitro glioblastoma/immune cell co-cultivation assays as well as measurement of cell migration and invasion, we could demonstrate that in glioblastoma cells, lectin-rich ISCADOR M and ISCADOR Q significantly enforce NK-cell-mediated GBM cell lysis. Beside its immune stimulatory effect, ISCADOR reduces the migratory and invasive potential of glioblastoma cells. In a syngeneic as well as in a xenograft glioblastoma mouse model, both pretreatment of tumor cells and intratumoral therapy of subcutaneously growing glioblastoma cells with ISCADOR Q showed delayed tumor growth. In conclusion, ISCADOR Q, showing multiple positive effects in the treatment of glioblastoma, may be a candidate for concomitant treatment of this cancer.

  16. Phase I trial with BMS-275183, a novel oral taxane with promising antitumor activity

    NARCIS (Netherlands)

    Broker, LE; de Vos, FYFL; van Groeningen, CJ; Kuenen, BC; Gall, HE; Woo, MH; Voi, M; Gietema, JA; deVries, EGE; Giaccone, G

    2006-01-01

    Purpose: BMS-275183 is an orally administered C-4 methyl carbonate analogue of paclitaxel. We did a dose-escalating phase I study to investigate its safety, tolerability, pharmacokinetics, and possible antitumor activity. Experimental Design: A cycle consisted of four weekly doses of BMS-275183. The

  17. N-cinnamoylated aminoquinolines as promising antileishmanial agents.

    Science.gov (United States)

    Vale-Costa, S; Costa-Gouveia, J; Pérez, B; Silva, T; Teixeira, C; Gomes, P; Gomes, M S

    2013-10-01

    A series of cinnamic acid conjugates of primaquine and chloroquine were evaluated for their in vitro antileishmanial activities. Although primaquine derivatives had modest activity, chloroquine conjugates exhibited potent activity against both promastigotes (50% inhibitory concentration [IC50] = 2.6 to 21.8 μM) and intramacrophagic amastigotes (IC50 = 1.2 to 9.3 μM) of Leishmania infantum. Both the high activity of these chloroquine analogues and their mild-to-low toxicity toward host cells make them promising leads for the discovery of new antileishmanial agents.

  18. Antitumor agent 25-epi Ritterostatin GN1N induces endoplasmic reticulum stress and autophagy mediated cell death in melanoma cells.

    Science.gov (United States)

    Riaz Ahmed, Kausar Begam; Kanduluru, Ananda Kumar; Feng, Li; Fuchs, Philip L; Huang, Peng

    2017-05-01

    Metastatic melanoma is the most aggressive of all skin cancers and is associated with poor prognosis owing to lack of effective treatments. 25-epi Ritterostatin GN1N is a novel antitumor agent with yet undefined mechanisms of action. We sought to delineate the antitumor mechanisms of 25-epi Ritterostatin GN1N in melanoma cells to determine the potential of this compound as a treatment for melanoma. Activation of the endoplasmic reticulum (ER) stress protein glucose-regulated protein 78 (GRP78) has been associated with increased melanoma progression, oncogenic signaling, drug resistance, and suppression of cell death. We found that 25-epi Ritterostatin GN1N induced cell death in melanoma cells at nanomolar concentrations, and this cell death was characterized by inhibition of GRP78 expression, increased expression of the ER stress marker CHOP, loss of mitochondrial membrane potential, and lipidation of the autophagy marker protein LC3B. Importantly, normal melanocytes exhibited limited sensitivity to 25-epi Ritterostatin GN1N. Subsequent in vivo results demonstrated that 25-epi Ritterostatin GN1N reduced melanoma growth in mouse tumor xenografts and did not affect body weight, suggesting minimal toxicity. In summary, our findings indicate that 25-epi Ritterostatin GN1N causes ER stress and massive autophagy, leading to collapse of mitochondrial membrane potential and cell death in melanoma cells, with minimal effects in normal melanocytes. Thus, 25-epi Ritterostatin GN1N is a promising anticancer agent that warrants further investigation.

  19. Promising oncolytic agents for metastatic breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Cody JJ

    2015-06-01

    Full Text Available James J Cody,1 Douglas R Hurst2 1ImQuest BioSciences, Frederick, MD, 2Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer. Keywords: oncolytic virus, virotherapy, breast cancer, metastasis 

  20. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview

    Directory of Open Access Journals (Sweden)

    Ida Genta

    2017-12-01

    Full Text Available A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting agent to the polymer portion of a colloidal drug delivery system loaded with an antitumor drug. The goal of this minireview is to report and discuss some recent results in epidermal growth factor receptor targeting by the GE11 peptide combined with colloidal drug delivery systems as smart carriers for antitumor drugs. The minireview chapters will focus on explaining and discussing: (i Epidermal growth factor receptor (EGFR structures and functions; (ii GE11 structure and biologic activity; (iii examples of GE11 conjugation and GE11-conjugated drug delivery systems. The rationale is to contribute in gathering information on the topic of active targeting to tumors. A case study is introduced, involving research on tumor cell targeting by the GE11 peptide combined with polymer nanoparticles.

  1. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents.

    Science.gov (United States)

    Murray, V

    1999-01-01

    This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.

  2. Antitumor efficacy of conventional anticancer drugs is enhanced by the vascular targeting agent ZD6126

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2002-01-01

    Purpose: The present report reviews the preclinical data on combined chemotherapy/vascular targeting agent treatments. Basic principles are illustrated in studies evaluating the antitumor efficacy of the vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) when combined with the anticancer drug cisplatin in experimental rodent (KHT sarcoma) and human renal (Caki-1) tumor models. Methods and Materials: C3H/HeJ and NCR/nu-nu mice bearing i.m. tumors were injected i.p. with ZD6126 (0-150 mg/kg) or cisplatin (0-20 mg/kg) either alone or in combination. Tumor response to treatment was assessed by clonogenic cell survival. Results: Treatment with ZD6126 was found to damage existing neovasculature, leading to a rapid vascular shutdown. Histologic evaluation showed dose-dependent morphologic damage of tumor cells within a few hours after drug exposure, followed by extensive central tumor necrosis and neoplastic cell death as a result of prolonged ischemia. ZD6126 doses that led to pathophysiologic effects also enhanced the tumor cell killing of cisplatin when administered either 24 h before or 1-24 h after chemotherapy. In both tumor models, the administration of a 150 mg/kg dose of ZD6126 1 h after a range of doses of cisplatin resulted in an increase in tumor cell kill 10-500-fold greater than that seen with chemotherapy alone. In contrast, the inclusion of the antivascular agent did not increase bone marrow stem cell toxicity associated with this anticancer drug. Conclusion: The results obtained in the KHT and Caki-1 tumor models indicate that ZD6126 effectively enhanced the antitumor effects of cisplatin therapy. These findings are representative of the marked enhancements generally observed when vascular targeting agents are combined with chemotherapy in solid tumor therapy

  3. Synthesis and Biological Evaluation of Novel Furozan-Based Nitric Oxide-Releasing Derivatives of Oridonin as Potential Anti-Tumor Agents

    Directory of Open Access Journals (Sweden)

    Hao Cai

    2012-06-01

    Full Text Available To search for novel nitric oxide (NO releasing anti-tumor agents, a series of novel furoxan/oridonin hybrids were designed and synthesized. Firstly, the nitrate/nitrite levels in the cell lysates were tested by a Griess assay and the results showed that these furoxan-based NO-releasing derivatives could produce high levels of NO in vitro. Then the anti-proliferative activity of these hybrids against four human cancer cell lines was also determined, among which, 9h exhibited the most potential anti-tumor activity with IC50 values of 1.82 µM against K562, 1.81 µM against MGC-803 and 0.86 µM against Bel-7402, respectively. Preliminary structure-activity relationship was concluded based on the experimental data obtained. These results suggested that NO-donor/natural product hybrids may provide a promising approach for the discovery of novel anti-tumor agents.

  4. Apoptosis by antitumor agents and other factors in relation to cell cycle checkpoints

    International Nuclear Information System (INIS)

    Kondo, Sohei

    1995-01-01

    More than a cancer patients died in 1993 after treatment with antineoplastic derivatives of 5-fluorouracil and the antiherpes drug Sorivudine. This paper gives a short review of previous reports showing that killing of cells by 5-fluorouracil and other antitumor agents, including radiation at high doses, results from activation of apoptosis in the G2 phase. On the other hand, apoptosis of lymphocytes by radiation at low doses and treatment with other agents is known to occur in the G1 phase. The cells dying in the G1 or G2 phase could share the same final self-killing steps. For these common steps, I assume a mitotic catastrophe model, in which commitment to self-killing results from premature activation of the mitosis machinery, and propose a concept of a 'G1/G2 death circuit' for cells dying in the G1/G2 phase by short circuit to the M phase. Based on this model, reported modes of cell death, spontaneously occurring or after treatment with various agents, are classified by the phase of dying cells. The associations of incomplete apoptosis with production of chromosomal aberrations and prevention of tumorigenesis by complete apoptosis of carcinogen-treated cells are discussed. A presumptive rule for differentiation of G1 apoptosis and G2 apoptosis is proposed. (author)

  5. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    Science.gov (United States)

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed.

  6. Modified Gadonanotubes as a Promising Novel MRI Contrasting Agent

    OpenAIRE

    Rouzbeh Jahanbakhsh; Fatemeh Atyabi; Saeed Shanehsazzadeh; Zahra Sobhani; Mohsen Adeli; Rassoul Dinarvand

    2013-01-01

    Background and purpose of the study Carbon nanotubes (CNTs) are emerging drug and imaging carrier systems which show significant versatility. One of the extraordinary characteristics of CNTs as Magnetic Resonance Imaging (MRI) contrasting agent is the extremely large proton relaxivities when loaded with gadolinium ion (Gdn 3+) clusters. Methods In this study equated Gdn 3+ clusters were loaded in the sidewall defects of oxidized multiwalled (MW) CNTs. The amount of loaded gadolinium ion into ...

  7. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor

    International Nuclear Information System (INIS)

    Hamdi, Hamdi K.; Castellon, Raquel

    2005-01-01

    Oleuropein, a non-toxic secoiridoid derived from the olive tree, is a powerful antioxidant and anti-angiogenic agent. Here, we show it to be a potent anti-cancer compound, directly disrupting actin filaments in cells and in a cell-free assay. Oleuropein inhibited the proliferation and migration of advanced-grade tumor cell lines in a dose-responsive manner. In a novel tube-disruption assay, Oleuropein irreversibly rounded cancer cells, preventing their replication, motility, and invasiveness; these effects were reversible in normal cells. When administered orally to mice that developed spontaneous tumors, Oleuropein completely regressed tumors in 9-12 days. When tumors were resected prior to complete regression, they lacked cohesiveness and had a crumbly consistency. No viable cells could be recovered from these tumors. These observations elevate Oleuropein from a non-toxic antioxidant into a potent anti-tumor agent with direct effects against tumor cells. Our data may also explain the cancer-protective effects of the olive-rich Mediterranean diet

  8. Alkanediamide-Linked Bisbenzamidines Are Promising Antiparasitic Agents

    Directory of Open Access Journals (Sweden)

    Jean J. Vanden Eynde

    2016-04-01

    Full Text Available A series of 15 alkanediamide-linked bisbenzamidines and related analogs was synthesized and tested in vitro against two Trypanosoma brucei (T.b. subspecies: T.b. brucei and T.b. rhodesiense, Trypanosoma cruzi, Leishmania donovani and two Plasmodium falciparum subspecies: a chloroquine-sensitive strain (NF54 and a chloroquine-resistant strain (K1. The in vitro cytotoxicity was determined against rat myoblast cells (L6. Seven compounds (5, 6, 10, 11, 12, 14, 15 showed high potency against both strains of T. brucei and P. falciparum with the inhibitory concentrations for 50% (IC50 in the nanomolar range (IC50 = 1–96 nM. None of the tested derivatives was significantly active against T. cruzi or L. donovani. Three of the more potent compounds (5, 6, 11 were evaluated in vivo in mice infected with the drug-sensitive (Lab 110 EATRO and KETRI 2002 or drug-resistant (KETRI 2538 and KETRI 1992 clinical isolates of T. brucei. Compounds 5 and 6 were highly effective in curing mice infected with the drug-sensitive strains, including a drug-resistant strain KETRI 2538, but were ineffective against KETRI 1992. Thermal melting of DNA and molecular modeling studies indicate AT-rich DNA sequences as possible binding sites for these compounds. Several of the tested compounds are suitable leads for the development of improved antiparasitic agents.

  9. Theoretical Study of Phosphoethanolamine: A Synthetic Anticancer Agent with Broad Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Vitor Prates Lorenzo

    2016-01-01

    Full Text Available Cancer is a major public health problem with limited success of available treatments, pointing to the need for new strategies to be developed. Phosphoethanolamine exhibits broad antitumor activity in a variety of tumor cells and potent inhibitor effects on tumor progress in vivo. Once-used organophosphates inhibit acetylcholinesterase (AChE, resulting in toxic effects to the user. As this group is present in phosphoethanolamine, we perform prediction of the in silico metabolism of phosphoethanolamine and submit this series to a docking study on AChE. A total of 10 metabolites were indicated by the prediction, including ammonia and hydroxylamine, which were not included in the study. Using a group of 8 organophosphorus whose pIC50 values ranged from 5.92 to 9.47 as template, we observed that no compound present in the phosphoethanolamine series had a binding energy lower than that of organophosphorus, suggesting that the series has low inhibitory power on AChE. In light of this, we conclude that phosphoethanolamine and its predicted metabolites do not significantly inhibit AChE to cause a cholinergic crisis. This finding highlights the importance of investigating this compound as lead for potential anticancer agents.

  10. Polyoxometalates as antitumor agents: Bioactivity of a new polyoxometalate with copper on a human osteosarcoma model.

    Science.gov (United States)

    León, I E; Porro, V; Astrada, S; Egusquiza, M G; Cabello, C I; Bollati-Fogolin, M; Etcheverry, S B

    2014-10-05

    Polyoxometalates (POMs) are early transition metal oxygen anion clusters. They display interesting biological effects mainly related to their antiviral and antitumor properties. On the other hand, copper compounds also show different biological and pharmacological effects in cell culture and in animal models. We report herein for the first time, a detailed study of the mechanisms of action of a copper(II) compound of the group of HPOMs with the formula K7Na3[Cu4(H2O)2(PW9034)2]20H2O (PW9Cu), in a model of human osteosarcoma derived cell line, MG-63. The compound inhibited selectively the viability of the osteosarcoma cells in the range of 25-100μM (pcells. Cytotoxicity studies also showed deleterious effects for PW9Cu. The increment of reactive oxygen species (ROS) and the decrease of the GSH/GSSG ratio were involved in the antiproliferative effects of PW9Cu. Moreover, the compound caused cell cycle arrest in G2 phase, triggering apoptosis as determined by flow cytometry. As a whole, these results showed the main mechanisms of the deleterious effects of PW9Cu in the osteosarcoma cell line MG-63, demonstrating that this compound is a promissory agent for cancer treatments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Interactions of serum albumins with antitumor agent benzo [a] phenazine-a spectroscopic study

    International Nuclear Information System (INIS)

    Sivakumar, Radhakrishnan; Naveenraj, Selvaraj; Anandan, Sambandam

    2011-01-01

    We present an investigation on the site specific interaction of antitumor agent benzo [a] phenazine (BAP) with serum albumins (HSA and BSA) and related photo-physical properties using absorption, emission and lifetime measurements. The absorption and emission measurements reveal that the binding of biomolecule benzo [a] phenazine took place near tryptophan moiety present in sub-domain IIA in serum albumins (HSA and BSA). In the selective excitation of benzo [a] phenazine at 365 nm, it was observed that the ground state of serum albumin quenches the excited benzo [a] phenazine through charge transfer exciplexation. The fluorescence decay analysis of serum albumins in the presence of benzo [a] phenazine shows decrease in lifetime, which confirms that photo-induced electron transfer takes place from serum albumins (HSA and BSA) to BAP. Also a suitable mechanism was proposed for the observed photo-induced electron transfer processes. Binding average distance (r) between the donor (serum albumins) and acceptor (benzo [a] phenazine) calculated using FRET theory confirmed their high probability of binding interaction. - Graphical Abstract: Highlights: → Benzo [a] phenazine (BAP) specifically bounds with tryptophan present in HSA and BSA. → Ground state of serum albumin quenches the excited BAP at 365 nm. → Lifetime of serum albumins decreases in the presence of BAP. → Photo-induced electron transfer from HSA and BSA to BAP takes place.

  12. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    Science.gov (United States)

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.

  13. [Experimental study of the relationships between activation of erythropoiesis and hematotoxicity of some antitumoral agents (author's transl)].

    Science.gov (United States)

    Pannacciulli, I; Bogliolo, G; Massa, G; Ronco, D; Fresco, G; Saviane, A; Dolcino, G; Celle, G

    1975-01-01

    The changes in the blood toxicity of some antitumoral chemotherapeutic agents in the presence of erythropoiesis activation by bleeding are evaluated. The general toxicity seems to be unaffected but the damage to erythropoiesis proved, in absolute terms, to be more severe in the bled animals. The recovery of hematopoiesis was slower after some drug than others. These results are discussed in the light of present knowledge of hematopoietic kinetics and of the relationships between antiblastic drugs and staminal hematopoietic compartments.

  14. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy.

    Science.gov (United States)

    Ganapathy-Kanniappan, S; Vali, M; Kunjithapatham, R; Buijs, M; Syed, L H; Rao, P P; Ota, S; Kwak, B K; Loffroy, R; Geschwind, J F

    2010-08-01

    The pyruvate analog, 3-bromopyruvate, is an alkylating agent and a potent inhibitor of glycolysis. This antiglycolytic property of 3-bromopyruvate has recently been exploited to target cancer cells, as most tumors depend on glycolysis for their energy requirements. The anticancer effect of 3-bromopyruvate is achieved by depleting intracellular energy (ATP) resulting in tumor cell death. In this review, we will discuss the principal mechanism of action and primary targets of 3-bromopyruvate, and report the impressive antitumor effects of 3-bromopyruvate in multiple animal tumor models. We describe that the primary mechanism of 3-bromopyruvate is via preferential alkylation of GAPDH and that 3-bromopyruvate mediated cell death is linked to generation of free radicals. Research in our laboratory also revealed that 3-bromopyruvate induces endoplasmic reticulum stress, inhibits global protein synthesis further contributing to cancer cell death. Therefore, these and other studies reveal the tremendous potential of 3-bromopyruvate as an anticancer agent.

  15. Risk of Lymphoma in Patients With Inflammatory Bowel Disease Treated With Anti-Tumor Necrosis Factor Alpha Agents: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Yang, Chen; Huang, Junlin; Huang, Xiaowen; Huang, Shaozhuo; Cheng, Jiaxin; Liao, Weixin; Chen, Xuewen; Wang, Xueyi; Dai, Shixue

    2018-05-12

    The association between anti-tumor necrosis factor alpha agents and the risk of lymphoma in patients with inflammatory bowel disease has already been sufficiently reported. However, the results of these studies are inconsistent. Hence, this analysis was conducted to investigate whether anti-tumor necrosis factor alpha agents can increase the risk of lymphoma in inflammatory bowel disease patients. MEDLINE, EMBASE and the Cochrane Library were searched to identify relevant studies which evaluated the risk of lymphoma in inflammatory bowel disease patients treated with anti-tumor necrosis factor alpha agents. A random-effects meta-analysis was performed to calculate the pooled incidence rate ratios as well as risk ratios. Twelve studies comprising 285811 participants were included. The result showed that there was no significantly increased risk of lymphoma between anti-tumor necrosis factor alpha agents exposed and anti-tumor necrosis factor alpha agents unexposed groups (random effects: incidence rate ratio [IRR], 1.43 95%CI, 0.91-2.25, p= 0.116; random effects: risk ratio [RR], 0.83 95%CI, 0.47-1.48, p=0.534). However, monotherapy of anti-tumor necrosis factor alpha agents (random effects: IRR=1.65, 95%CI, 1.16-2.35; p=0.006; random effects: RR=1.00, 95%CI, 0.39-2.59; p=0.996) or combination therapy (random effects: IRR=3.36, 95%CI, 2.23-5.05; ptumor necrosis factor alpha agents in patients with inflammatory bowel disease is not associated with a higher risk of lymphoma. Combination therapy and anti-tumor necrosis factor alpha agents monotherapy can significantly increase the risk of lymphoma in patients with inflammatory bowel disease.

  16. Synthesis of sulfadimethoxine based surfactants and their evaluation as antitumor agents

    Directory of Open Access Journals (Sweden)

    Manal Mohmed Khowdiary

    2016-01-01

    Summary: The main goal of cancer therapy is to attain the maximum therapeutic damage of tumor cells in combination with a minimum concentration of the drug. This can be achieved in principle via selective antitumor preparations, the cytostatic effects of which would be restricted within tumor tissue. While 100% selectivity may be impractical, the achievement of reasonably high selectivity seems to be a feasible aim. Platinum and cobalt complex surfactants in our research affect tumor tissue at a very low concentration at values lower than their CMC values; this indicate that the sulfadimethoxine complexes merit further investigation as potential antitumor drugs.

  17. Berberine as a promising safe anti-cancer agent - is there a role for mitochondria?

    Science.gov (United States)

    Diogo, Catia V; Machado, Nuno G; Barbosa, Inês A; Serafim, Teresa L; Burgeiro, Ana; Oliveira, Paulo J

    2011-06-01

    Metabolic regulation is largely dependent on mitochondria, which play an important role in energy homeostasis. Imbalance between energy intake and expenditure leads to mitochondrial dysfunction, characterized by a reduced ratio of energy production (ATP production) to respiration. Due to the role of mitochondrial factors/events in several apoptotic pathways, the possibility of targeting that organelle in the tumor cell, leading to its elimination is very attractive, although the safety issue is problematic. Berberine, a benzyl-tetra isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been extensively used for many centuries, especially in the traditional Chinese and Native American medicine. Several evidences suggest that berberine possesses several therapeutic uses, including anti-tumoral activity. The present review supplies evidence that berberine is a safe anti-cancer agent, exerting several effects on mitochondria, including inhibition of mitochondrial Complex I and interaction with the adenine nucleotide translocator which can explain several of the described effects on tumor cells.

  18. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment

    Directory of Open Access Journals (Sweden)

    Daria S. Chulpanova

    2018-03-01

    Full Text Available Mesenchymal stem cells (MSCs are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs, which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.

  19. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Science.gov (United States)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying

    2015-05-01

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  20. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying, E-mail: wyzhong@cpu.edu.cn [China Pharmaceutical University, Department of Analytical Chemistry (China)

    2015-05-15

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π–π interaction. DSPE–PEG–COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (−24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion (n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC{sub 50}: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  1. Properties of realgar bioleaching using an extremely acidophilic bacterium and its antitumor mechanism as an anticancer agent

    Directory of Open Access Journals (Sweden)

    Peng Chen

    Full Text Available Abstract Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese. It contains over 90% tetra-arsenic tetrasulfide (As4S4. Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans. Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method.

  2. Properties of realgar bioleaching using an extremely acidophilic bacterium and its antitumor mechanism as an anticancer agent.

    Science.gov (United States)

    Chen, Peng; Xu, Ruixiang; Yan, Lei; Wu, Zhengrong; Wei, Yan; Zhao, Wenbin; Wang, Xin; Xie, Qinjian; Li, Hongyu

    2017-05-22

    Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese). It contains over 90% tetra-arsenic tetra-sulfide (As 4 S 4 ). Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans). Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS) works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method.

  3. Taming the Wildness of "Trojan-Horse" Peptides by Charge-Guided Masking and Protease-Triggered Demasking for the Controlled Delivery of Antitumor Agents.

    Science.gov (United States)

    Shi, Nian-Qiu; Qi, Xian-Rong

    2017-03-29

    Cell-penetrating peptide (CPP), also called "Trojan Horse" peptide, has become a successful approach to deliver various payloads into cells for achieving the intracellular access. However, the "Trojan Horse" peptide is too wild, not just to "Troy", but rather widely distributed in the body. Thus, there is an urgent need to tame the wildness of "Trojan Horse" peptide for targeted delivery of antineoplastic agents to the tumor site. To achieve this goal, we exploit a masked CPP-doxorubicin conjugate platform for targeted delivery of chemotherapeutic drugs using charge-guided masking and protease-triggered demasking strategies. In this platform, the cell-penetrating function of the positively CPP (d-form nonaarginine) is abrogated by a negatively shielding peptide (masked CPP), and between them is a cleavable substrate peptide by the protease (MMP-2/9). Protease-triggered demasking would occur when the masked CPP reached the MMP-2/9-riched tumor. The CPP-doxorubicin conjugate (CPP-Dox) and the masked CPP-Dox conjugate (mCPP-Dox) were used as models for the evaluation of masking and demasking processes. It was found that exogenous MMP-2/9 could effectively trigger the reversion of CPP-cargo in this conjugate, and this trigger adhered to the Michaelis-Menten kinetics profile. This conjugate was sensitive to the trigger of endogenous MMP-2/9 and could induce enhanced cytotoxicity toward MMP-2/9-rich tumor cells. In vivo antitumor efficacy revealed that this masked conjugate had considerable antitumor activity and could inhibit the tumor growth at a higher level relative to CPP-cargo. Low toxicity in vivo showed the noticeably decreased wildness of this conjugate toward normal tissues and more controllable entry of antitumor agents into "Troy". On the basis of analyses in vitro and in vivo, this mCPP-cargo conjugate delivery system held an improved selectivity toward MMP-2/9-rich tumors and would be a promising strategy for tumor-targeted treatment.

  4. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    Science.gov (United States)

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  5. Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-11-01

    Full Text Available The potential anti-tumor agent wentilactones were produced by a newly isolated marine fungus Aspergillus dimorphicus. This fungus was derived from deep-sea sediment and identified by polyphasic approach, combining phenotypic, molecular, and extrolite profiles. However, wentilactone production was detected only under static cultures with very low yields. In order to improve wentilactone production, culture conditions were optimized using the response surface methodology. Under the optimal static fermentation conditions, the experimental values were closely consistent with the prediction model. The yields of wentilactone A and B were increased about 11-fold to 13.4 and 6.5 mg/L, respectively. The result was further verified by fermentation scale-up for wentilactone production. Moreover, some small-molecule elicitors were found to have capacity of stimulating wentilactone production. To our knowledge, this is first report of optimized production of tetranorlabdane diterpenoids by a deep-sea derived marine fungus. The present study might be valuable for efficient production of wentilactones and fundamental investigation of the anti-tumor mechanism of norditerpenoids.

  6. Effect of anhydrosophoradiol-3-acetate of Calotropis gigantea (Linn.) flower as antitumoric agent against Ehrlich's ascites carcinoma in mice.

    Science.gov (United States)

    Habib, Muhammad R; Karim, Muhammad R

    2013-01-01

    Over 60% of currently used anti-cancer agents are derived in one-way or another from natural sources, including plants, marine organisms and microorganisms. Calotropis gigantea (Linn.) (Family: Asclepiadaceae) is a perennial shrub and it is used as a traditional folk medicine for the treatment of various health complications. But there is no report on isolation of anticancerous chemicals from the flower of Calotropis gigantea. The objective of the present study is to explore the antitumor effect of anhydrosophoradiol-3-acetate (A3A), isolated from the flower of Calotropis gigantea (Linn.) against Ehrlich's ascites carcinoma (EAC) in Swiss albino mice. Antitumoric effect of A3A was assessed by evaluating viable tumor cell count, survival time, body weight gain due to tumor burden, hematological and biochemical (glucose, cholesterol, triglyceride, blood urea, SALP, SGPT and SGOT) parameters of EAC bearing host at doses of 10 and 20 mg/kg body weight. Treatment with A3A decreased the viable tumor cells and body weight gain thereby increasing the life span of EAC bearing mice. A3A also brought back the altered hematological (Hb, total RBC and total WBC) and biochemical parameters more or less to normal level. Results of this study conclude that in vivo the A3A was effective in inhibiting the growth of EAC with improving in cancer induced complications.

  7. Heterocyclic N-oxides - A Promising Class of Agents Against Tuberculosis, Malaria and Neglected Tropical Diseases.

    Science.gov (United States)

    Dos Santos Fernandes, Guilherme Felipe; Pavan, Aline Renata; Dos Santos, Jean Leandro

    2018-04-17

    Heterocyclic N-oxides have emerged as promising agents against a number of diseases and disorders, especially infectious diseases. This review analyzes the emergence and development of this scaffold in the medicinal chemistry, focusing mainly on the discovery of new heterocyclic N-oxide compounds with potent activity against tuberculosis, malaria and neglected tropical diseases (i.e. leishmaniasis and Chagas disease). A number of heterocyclic N-oxide are described herein, nevertheless, the following chemical classes deserve to be highlighted due to the large number of reports in the literature about their promising pharmacological effects: furoxan, benzofuroxan, quinoxaline 1,4-di-N-oxide, indolone N-oxide and benzimidazole N-oxide. In order to describe those most promising compounds, we included in this review only those most biologically active heterocyclic N-oxide published since 2000. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Maria P. Crespo-Ortiz

    2012-01-01

    Full Text Available Improvement of quality of life and survival of cancer patients will be greatly enhanced by the development of highly effective drugs to selectively kill malignant cells. Artemisinin and its analogs are naturally occurring antimalarials which have shown potent anticancer activity. In primary cancer cultures and cell lines, their antitumor actions were by inhibiting cancer proliferation, metastasis, and angiogenesis. In xenograft models, exposure to artemisinins substantially reduces tumor volume and progression. However, the rationale for the use of artemisinins in anticancer therapy must be addressed by a greater understanding of the underlying mechanisms involved in their cytotoxic effects. The primary targets for artemisinin and the chemical base for its preferential effects on heterologous tumor cells need yet to be elucidated. The aim of this paper is to provide an overview of the recent advances and new development of this class of drugs as potential anticancer agents.

  9. The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions.

    Science.gov (United States)

    Glick, Matthew; Biddle, Perry; Jantzi, Josh; Weaver, Samantha; Schirch, Doug

    2014-09-12

    Clinical research is currently exploring the validity of the anti-tumor candidate 3-bromopyruvate (3-BP) as a novel treatment for several types of cancer. However, recent publications have overlooked rarely-cited earlier work about the instability of 3-BP and its decay to 3-hydroxypyruvate (3-HP) which have obvious implications for its mechanism of action against tumors, how it is administered, and for precautions when preparing solutions of 3-BP. This study found the first-order decay rate of 3-BP at physiological temperature and pH has a half-life of only 77 min. Lower buffer pH decreases the decay rate, while choice of buffer and concentration do not affect it. A method for preparing more stable solutions is also reported. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Design, Synthesis and Biological Evaluation of C(6-Modified Celastrol Derivatives as Potential Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Kaiyong Tang

    2014-07-01

    Full Text Available New six C6-celastrol derivatives were designed, synthesized, and evaluated for their in vitro cytotoxic activities against nine human cancer cell lines (BGC-823, H4, Bel7402, H522, Colo 205, HepG2 and MDA-MB-468. The results showed that most of the compounds displayed potent inhibition against BGC823, H4, and Bel7402, with IC50s of 1.84–0.39 μM. The best compound NST001A was tested in an in vivo antitumor assay on nude mice bearing Colo 205 xenografts, and showed significant inhibition of tumor growth at low concentrations. Therefore, celastrol C-6 derivatives are potential drug candidates for treating cancer.

  11. Effects of oxygen radical scavengers on the inactivation of SS phi X174 DNA by the semi-quinone free radical of the antitumor agent etoposide

    NARCIS (Netherlands)

    van Maanen, M.J.; Mans, D.R.A.; Lafleur, M.V.M.; Van Schaik, M A; de Vries, J; Vermeulen, N P; Retèl, J.; Lankelma, J

    1990-01-01

    We have studied the effects of oxygen radical scavengers on the inactivation of ss phi X174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH greater than or equal to 7.4. A semi-quinone free radical of

  12. Poly-S-Nitrosated Albumin as a Safe and Effective Multifunctional Antitumor Agent: Characterization, Biochemistry and Possible Future Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Yu Ishima

    2013-01-01

    Full Text Available Nitric oxide (NO is a ubiquitous molecule involved in multiple cellular functions. Inappropriate production of NO may lead to disease states. To date, pharmacologically active compounds that release NO within the body, such as organic nitrates, have been used as therapeutic agents, but their efficacy is significantly limited by unwanted side effects. Therefore, novel NO donors with better pharmacological and pharmacokinetic properties are highly desirable. The S-nitrosothiol fraction in plasma is largely composed of endogenous S-nitrosated human serum albumin (Mono-SNO-HSA, and that is why we are testing whether this albumin form can be therapeutically useful. Recently, we developed SNO-HSA analogs such as SNO-HSA with many conjugated SNO groups (Poly-SNO-HSA which were prepared using chemical modification. Unexpectedly, we found striking inverse effects between Poly-SNO-HSA and Mono-SNO-HSA. Despite the fact that Mono-SNO-HSA inhibits apoptosis, Poly-SNO-HSA possesses very strong proapoptotic effects against tumor cells. Furthermore, Poly-SNO-HSA can reduce or perhaps completely eliminate the multidrug resistance often developed by cancer cells. In this review, we forward the possibility that Poly-SNO-HSA can be used as a safe and effective multifunctional antitumor agent.

  13. Aminolevulinic acid-photodynamic therapy combined with topically applied vascular disrupting agent vadimezan leads to enhanced antitumor responses.

    Science.gov (United States)

    Marrero, Allison; Becker, Theresa; Sunar, Ulas; Morgan, Janet; Bellnier, David

    2011-01-01

    The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a noninvasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. In addition, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared with ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  14. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    Science.gov (United States)

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-07-21

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  15. Action of the antitumor and antispermatogenic agent lonidamine on electron transport in Ehrlich ascites tumor mitochondria.

    Science.gov (United States)

    Floridi, A; Lehninger, A L

    1983-10-01

    The effect of lonidamine, an antispermatogenic and antitumor drug, on the oxygen consumption, ATPase activity, and redox state of the electron carriers of Ehrlich ascites tumor mitochondria has been studied. Lonidamine inhibits ADP- and uncoupler-stimulated respiration on various NAD- and FAD-linked substrates, but does not affect state 4 respiration. Experiments to determine its site of action showed that lonidamine does not significantly inhibit electron flow through cytochrome oxidase. Electron flow through site 2, the ubiquinone-cytochrome b-cytochrome c1 complex, also was unaffected by lonidamine, which failed to inhibit the oxidation of duroquinol. Moreover, inhibition of electron flow through site 2 was also excluded because of the inability of the N,N,N',N'-tetramethyl-p-phenylenediamine bypass to relieve the lonidamine inhibition of the oxidation of pyruvate + malate. The F0F1ATPase activity and vectorial H+ ejection are also unaffected by lonidamine. The inhibition of succinate oxidation by lonidamine was found to take place at a point between succinate and iron-sulfur center S3. Spectroscopic experiments demonstrated that lonidamine inhibits the reduction of mitochondrial NAD+ by pyruvate + malate and other NAD-linked substrates in the transition from state 1 to state 4. However, lonidamine does not inhibit reduction of added NAD+ by submitochondrial vesicles or by soluble purified NAD-linked dehydrogenases. These observations, together with other evidence, suggest that electron transport in tumor mitochondria is inhibited by lonidamine at the dehydrogenase-coenzyme level, particularly when the electron carriers are in a relatively oxidized state and/or when the inner membrane-matrix compartment is in the condensed state. The action of lonidamine in several respects resembles the selective inhibition of electron transport in tumor cells produced by cytotoxic macrophages (D. L. Granger and A. L. Lehninger (1982) J. Cell Biol. 95, 527).

  16. New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Oanh, Dao Thi Kim; Dung, Phan Thi Phuong

    2013-01-01

    Results from clinical studies have demonstrated that inhibitors of histone deacetylase (HDAC) enzymes possess promise for the treatment of several types of cancer. Zolinza(®) (widely known as SAHA) has been approved by the FDA for the treatment of T-cell lymphoma. As a continuity of our ongoing...

  17. Computational enzymology for degradation of chemical warfare agents: promising technologies for remediation processes

    Directory of Open Access Journals (Sweden)

    2017-03-01

    Full Text Available Chemical weapons are a major worldwide problem, since they are inexpensive, easy to produce on a large scale and difficult to detect and control. Among the chemical warfare agents, we can highlight the organophosphorus compounds (OP, which contain the phosphorus element and that have a large number of applications. They affect the central nervous system and can lead to death, so there are a lot of works in order to design new effective antidotes for the intoxication caused by them. The standard treatment includes the use of an anticholinergic combined to a central nervous system depressor and an oxime. Oximes are compounds that reactivate Acetylcholinesterase (AChE, a regulatory enzyme responsible for the transmission of nerve impulses, which is one of the molecular targets most vulnerable to neurotoxic agents. Increasingly, enzymatic treatment becomes a promising alternative; therefore, other enzymes have been studied for the OP degradation function, such as phosphotriesterase (PTE from bacteria, human serum paraoxonase 1 (HssPON1 and diisopropyl fluorophosphatase (DFPase that showed significant performances in OP detoxification. The understanding of mechanisms by which enzymes act is of extreme importance for the projection of antidotes for warfare agents, and computational chemistry comes to aid and reduce the time and costs of the process. Molecular Docking, Molecular Dynamics and QM/MM (quantum-mechanics/molecular-mechanics are techniques used to investigate the molecular interactions between ligands and proteins.

  18. Antitumor activity of sequence-specific alkylating agents: pyrolle-imidazole CBI conjugates with indole linker.

    Science.gov (United States)

    Shinohara, Ken-ichi; Bando, Toshikazu; Sasaki, Shunta; Sakakibara, Yogo; Minoshima, Masafumi; Sugiyama, Hiroshi

    2006-03-01

    DNA-targeting agents, including cisplatin, bleomycin and mitomycin C, are used routinely in cancer treatments. However, these drugs are extremely toxic, attacking normal cells and causing severe side effects. One important question to consider in designing anticancer agents is whether the introduction of sequence selectivity to DNA-targeting agents can improve their efficacy as anticancer agents. In the present study, the growth inhibition activities of an indole-seco 1,2,9,9a-tetrahydrocyclopropa[1,2-c]benz[1,2-e]indol-4-one (CBI) (1) and five conjugates with hairpin pyrrole-imidazole polyamides (2-6), which have different sequence specificities for DNA alkylation, were compared using 10 different cell lines. The average values of -log GI50 (50% growth inhibition concentration) for compounds 1-6 against the 10 cell lines were 8.33, 8.56, 8.29, 8.04, 8.23 and 8.83, showing that all of these compounds strongly inhibit cell growth. Interestingly, each alkylating agent caused significantly different growth inhibition patterns with each cell line. In particular, the correlation coefficients between the -log GI50 of compound 1 and its conjugates 2-6 showed extremely low values (Ralkylation lead to marked differences in biological activity. Comparison of the correlation coefficients between compounds 6 and 7, with the same sequence specificity as 6, and MS-247, with sequence specificity different from 6, when used against a panel of 37 human cancer cell lines further confirmed the above hypothesis.

  19. A microscale synthesis of a promising radiolabelled antitumor drug: cis-1,1-cyclobutanedicarboxylato (2R)-2-methyl-1,4-butanediamine platinum(II), NK121

    International Nuclear Information System (INIS)

    Suwa, Masato; Kogawa, Osamu; Hashimoto, Yutaka

    1992-01-01

    A promising antitumor drug, cis-1,1-cyclobutane-dicarboxylato (2R)-2-methyl-1,4-butanediamine platinum (II), NK121, was synthesized from radionuclides of platinum such as 193m Pt, 195m Pt and 191 Pt which were produced by neutron irradiation of enriched 192 Pt. The overall yield was 38.6% in a synthesis time of 10 hours. The radioactivities present in 8.39 mg of NK121 were 115.3 μCi as 193m Pt, 29.9 μCi as 197 Pt, 22.0 μCi as 195m Pt, and 4.8 μCi as 191 Pt at the end of synthesis. The specific activity of the NK121 was 13.7 μCi ( 193m Pt)/mg NK121 at the end of synthesis. The radiochemical purity of NK121 was typically 99%. HPLC analyses confirmed that NK121 was in an adequate chemical purity and suitable for animal experimentation. (author)

  20. A microscale synthesis of a promising radiolabelled antitumor drug: cis-1,1-cyclobutanedicarboxylato (2R)-2-methyl-1,4-butanediamine platinum(II), NK121

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, Masato; Kogawa, Osamu; Hashimoto, Yutaka (Nippon Kayaku Co. Ltd., Tokyo (Japan). Research Labs. of Pharmaceuticals Group); Nowatari, Hiroyoshi (Nippon Kayaku Co. Ltd., Takasaki, Gumma (Japan). Takasaki Research Labs.); Murase, Yuko; Homma, Yoshio (Kyoritsu Coll. of Pharmacy, Tokyo (Japan))

    1992-05-01

    A promising antitumor drug, cis-1,1-cyclobutane-dicarboxylato (2R)-2-methyl-1,4-butanediamine platinum (II), NK121, was synthesized from radionuclides of platinum such as {sup 193m}Pt, {sup 195m}Pt and {sup 191}Pt which were produced by neutron irradiation of enriched {sup 192}Pt. The overall yield was 38.6% in a synthesis time of 10 hours. The radioactivities present in 8.39 mg of NK121 were 115.3 {mu}Ci as {sup 193m}Pt, 29.9 {mu}Ci as {sup 197}Pt, 22.0 {mu}Ci as {sup 195m}Pt, and 4.8 {mu}Ci as {sup 191}Pt at the end of synthesis. The specific activity of the NK121 was 13.7 {mu}Ci ({sup 193m}Pt)/mg NK121 at the end of synthesis. The radiochemical purity of NK121 was typically 99%. HPLC analyses confirmed that NK121 was in an adequate chemical purity and suitable for animal experimentation. (author).

  1. The effect of anti-tumor necrosis factor alpha agents on the outcome in pediatric uveitis of diverse etiologies.

    Science.gov (United States)

    Deitch, Iris; Amer, Radgonde; Tomkins-Netzer, Oren; Habot-Wilner, Zohar; Friling, Ronit; Neumann, Ron; Kramer, Michal

    2018-04-01

    This study aimed to report the clinical outcome of children with uveitis treated with anti-tumor necrosis factor alpha (TNF-α) agents. This included a retrospective cohort study. Children with uveitis treated with infliximab or adalimumab in 2008-2014 at five dedicated uveitis clinics were identified by database search. Their medical records were reviewed for demographic data, clinical presentation, ocular complications, and visual outcome. Systemic side effects and the steroid-sparing effect of treatment were documented. The cohort included 24 patients (43 eyes) of whom 14 received infliximab and 10 received adalimumab after failing conventional immunosuppression therapy. Mean age was 9.3 ± 4.0 years. The most common diagnosis was juvenile idiopathic arthritis-related uveitis (n = 10), followed by Behçet's disease (n = 4), sarcoidosis (n = 1), and ankylosing spondylitis (n = 1); eight had idiopathic uveitis. Ocular manifestations included panuveitis in 20 eyes (46.5%), chronic anterior uveitis in 19 (44.2%), and intermediate uveitis in 4 (9.3%). The duration of biologic treatment ranged from 6 to 72 months. During the 12 months prior to biologic treatment, while on conventional immunosuppressive therapy, mean visual acuity deteriorated from 0.22 to 0.45 logMAR, with a trend of recovery to 0.25 at 3 months after initiation of biologic treatment, remaining stable thereafter. A full corticosteroid-sparing effect was demonstrated in 16 of the 19 patients (84.2%) for whom data were available. Treatment was well tolerated. Treatment of pediatric uveitis with anti-TNF-α agents may improve outcome while providing steroid-sparing effect, when conventional immunosuppression fails. The role of anti-TNF-α agents as first-line treatment should be further investigated in controlled prospective clinical trials.

  2. PPARγ and Its Ligands: Potential Antitumor Agents in the Digestive System.

    Science.gov (United States)

    Shu, Linjing; Huang, Renhuan; Wu, Songtao; Chen, Zhaozhao; Sun, Ke; Jiang, Yan; Cai, Xiaoxiao

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a versatile member of the ligand-activated nuclear hormone receptor superfamily of transcription factors, with expression in several different cell lines, especially in the digestive system. After being activated by its ligand, PPARγ can suppress the growth of oral, esophageal, gastric, colorectal, liver, biliary, and pancreatic tumor cells, suggesting that PPARγ ligand is a potential anticancer agent in PPARγ-expressing tumors. This review highlights key advances in understanding the effects of PPARγ ligands in the treatment of tumors in the digestive system.

  3. Trabectedina (Yondelis): un agente antitumoral aislado de la ascidia Ecteinascidia turbinata

    OpenAIRE

    González-Gallego Rivera, Isabel

    2016-01-01

    A lo largo del tiempo, innumerables formas de vida marina han evolucionado para producir una inmensa variedad de sustancias químicas. Entre éstas se encuentran moléculas que manifiestan una potente actividad biológica, desarrolladas como una forma de defensa bioquímica para sobrevivir en un entorno extremadamente competitivo. Este arsenal de moléculas (metabolitos) constituye una fuente constante de nuevos agentes terapéuticos con los cuales combatir todo tipo de enfermedades. La trabectedina...

  4. Organophosphorus pentavalent compounds: history, synthetic methods of preparation and application as insecticides and antitumor agents

    International Nuclear Information System (INIS)

    Santos, Viviane Martins Rebello dos; Donnici, Claudio Luis; DaCosta, Joao Batista Neves; Caixeiro, Janaina Marques Rodrigues

    2007-01-01

    This paper is a review of the history, synthesis and application of organophosphorus compounds, especially of those of pentavalent phosphorus, such as phosphoramidates, phosphorothioates, phosphonates and phosphonic acids with insecticide and anticancer activities. The organophosphorus compounds with agrochemical applications show great structural variety, They include not only insecticides, but also fungicides, herbicides, and others. The large variety of commercially available organophosphorus pesticides is remarkable. Even more interesting is the high efficiency of some organophosphorus compounds as anticancer agents such as cyclophosphamide and its derivatives. (author)

  5. Synthesis and Characterization of Some New Bis-Pyrazolyl-Thiazoles Incorporating the Thiophene Moiety as Potent Anti-Tumor Agents

    Directory of Open Access Journals (Sweden)

    Sobhi M. Gomha

    2016-09-01

    Full Text Available A new series of 1,4-bis(1-(5-(aryldiazenylthiazol-2-yl-5-(thiophen-2-yl-4,5-dihydro-1H-pyrazol-3-ylbenzenes 3a–i were synthesized via reaction of 5,5′-(1,4-phenylenebis(3-(thiophen-2-yl-4,5-dihydro-1H-pyrazole-1-carbothioamide (1 with hydrazonoyl halides 2a–i. In addition, reaction of 1 with ethyl chloroacetate afforded bis-thiazolone derivative 8 as the end product. Reaction of compound 8 with methyl glyoxalate gave bis-thiazolone derivative 10. The structures of the newly synthesized compounds were established on the basis of spectroscopic evidences and their alternative syntheses. All the synthesized compounds were evaluated for their anti-tumor activities against hepatocellular carcinoma (HepG2 cell lines, and the results revealed promising activities of compounds 3g, 5e, 3e, 10, 5f, 3i, and 3f with IC50 equal 1.37 ± 0.15, 1.41 ± 0.17, 1.62 ± 0.20, 1.86 ± 0.20, 1.93 ± 0.08, 2.03 ± 0.25, and 2.09 ± 0.19 μM, respectively.

  6. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent.

    Science.gov (United States)

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase-ligand interaction space in the PDB.

  7. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach.

    Science.gov (United States)

    Bhise, Ketki; Kashaw, Sushil Kumar; Sau, Samaresh; Iyer, Arun K

    2017-06-30

    Cancer is one of the leading causes of death worldwide. There are several hurdles in cancer therapy because of side-effects which limits its usage. Nanoparticulate drug delivery systems have been tested against cancer in a range of scientific studies. In the recent years, advanced research on Nanostructured Lipid Carriers (NLCs) has garnered considerable attention owing to the advantages over their first-generation counterparts, Solid Lipid Nanoparticles (SLN). NLCs facilitate efficient loading of poorly water soluble drugs with simple methods of drug loading. Recently, there is an increased interest in polyphenols because of the evidence of their promising role in prevention of cancer. Polyphenols are produced as secondary metabolites by plants. Their role in prevention of development of tumors through variety of mechanisms and reduction of tumor cell mass has been reported. This article aims to review the science behind development of NLCs and role of polyphenols as promising anticancer agents. Principles of Quality by Design (QbD) have also been explained which are used in formulation-development of many nanoparticles, including NLCs, as reported in literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.

    Science.gov (United States)

    Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-01

    Microbial infectious diseases are a global threat to human health. Excess and improper use of antibiotics has created antimicrobial-resistant microbes that can defy clinical treatment. The hunt for safe and alternate antimicrobial agents is on in order to overcome such resistant micro-organisms, and the birth of nanotechnology offers promise to combat infectious organisms. Over the past two decades, metal oxide nanoparticles (MeO-NPs) have become an attractive alternative source to combat microbes that are highly resistant to various classes of antibiotics. Their vast array of physicochemical properties enables MeO-NPs to act as antimicrobial agents through various mechanisms. Apart from exhibiting antimicrobial properties, MeO-NPs also serve as carriers of drugs, thus barely providing a chance for micro-organisms to develop resistance. These immense multiple properties exhibited by MeO-NPs will have an impact on the treatment of deadly infectious diseases. This review discusses the mechanisms of action of MeO-NPs against micro-organisms, safety concerns, challenges and future perspectives. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. A Review of Promising Natural Chemopreventive Agents for Head and Neck Cancer.

    Science.gov (United States)

    Crooker, Kyle; Aliani, Rana; Ananth, Megha; Arnold, Levi; Anant, Shrikant; Thomas, Sufi Mary

    2018-03-30

    Head and neck squamous cell carcinoma (HNSCC) accounts for 300,000 deaths per year worldwide and overall survival rates have shown little improvement over the past three decades. Current treatment methods including surgery, chemotherapy, and radiotherapy leave patients with secondary morbidities. Thus, treatment of HNSCC may benefit from exploration of natural compounds as chemopreventive agents. With excellent safety profiles, reduced toxicities, antioxidant properties, and general acceptance for use as dietary supplements, natural compounds are viewed as a desirable area of investigation for chemoprevention. Though most of the field is early in development, numerous studies display the potential utility of natural compounds against HNSCC. These compounds face additional challenges such as low bioavailability for systemic delivery, potential toxicities when consumed in pharmacological doses, and acquired resistance. However, novel delivery vehicles and synthetic analogs have shown overcome some of these challenges. This review covers eleven promising natural compounds in the chemoprevention of HNSCC including vitamin A, curcumin, isothiocyanate, green tea, luteolin, resveratrol, genistein, lycopene, bitter melon, withaferin A, and guggulsterone. The review discusses the therapeutic potential and associated challenges of these agents in the chemopreventive efforts against HNSCC. Copyright ©2018, American Association for Cancer Research.

  10. Standard of Care and Promising New Agents for Triple Negative Metastatic Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Patrizia, E-mail: patrizia.mancini@uniroma1.it [Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161 (Italy); Angeloni, Antonio [Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161 (Italy); Risi, Emanuela [Department of Radiology, Oncology and Human Pathology, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161 (Italy); Orsi, Errico [Department of Surgical Science, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161 (Italy); Mezi, Silvia [Department of Radiology, Oncology and Human Pathology, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161 (Italy)

    2014-10-24

    Triple negative breast cancer (TNBC) is a cluster of heterogeneous diseases, all of them sharing the lack of expression of estrogen and progesterone receptors and HER2 protein. They are characterized by different biological, molecular and clinical features, including a poor prognosis despite the increased sensitivity to the current cytotoxic therapies. Several studies have identified important molecular features which enable further subdivision of this type of tumor. We are drawing from genomics, transcription and translation analysis at different levels, to improve our knowledge of the molecular alterations along the pathways which are activated during carcinogenesis and tumor progression. How this information should be used for the rational selection of therapy is an ongoing challenge and the subject of numerous research studies in progress. Currently, the vascular endothelial growth factor (VEGF), poly (ADP-ribose) polymerase (PARP), HSP90 and Aurora inhibitors are most used as targeting agents in metastatic setting clinical trials. In this paper we will review the current knowledge about the genetic subtypes of TNBC and their different responses to conventional therapeutic strategies, as well as to some new promising molecular target agents, aimed to achieve more tailored therapies.

  11. Standard of Care and Promising New Agents for Triple Negative Metastatic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Patrizia Mancini

    2014-10-01

    Full Text Available Triple negative breast cancer (TNBC is a cluster of heterogeneous diseases, all of them sharing the lack of expression of estrogen and progesterone receptors and HER2 protein. They are characterized by different biological, molecular and clinical features, including a poor prognosis despite the increased sensitivity to the current cytotoxic therapies. Several studies have identified important molecular features which enable further subdivision of this type of tumor. We are drawing from genomics, transcription and translation analysis at different levels, to improve our knowledge of the molecular alterations along the pathways which are activated during carcinogenesis and tumor progression. How this information should be used for the rational selection of therapy is an ongoing challenge and the subject of numerous research studies in progress. Currently, the vascular endothelial growth factor (VEGF, poly (ADP-ribose polymerase (PARP, HSP90 and Aurora inhibitors are most used as targeting agents in metastatic setting clinical trials. In this paper we will review the current knowledge about the genetic subtypes of TNBC and their different responses to conventional therapeutic strategies, as well as to some new promising molecular target agents, aimed to achieve more tailored therapies.

  12. Carnosol: a promising anti-cancer and anti-inflammatory agent.

    Science.gov (United States)

    Johnson, Jeremy J

    2011-06-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicinal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. An Efficient Synthesis of Novel Pyrazole-Based Heterocycles as Potential Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Magda A. Abdallah

    2017-08-01

    Full Text Available A new series of pyrazolylpyridines was prepared by reaction of ethyl-3-acetyl-1,5-diphenyl-1H-pyrazole-4-carboxylate with the appropriate aldehyde, malononitrile, or ethyl acetoacetate and an excess of ammonium acetate under reflux in acetic acid. Similarly, two novel bipyridine derivatives were prepared by the above reaction using terephthaldehyde in lieu of benzaldehyde derivatives. In addition, a series of 1,2,4-triazolo[4,3-a]pyrimidines was synthesized by a reaction of 6-(pyrazol-3-ylpyrimidine-2-thione with a number of hydrazonoyl chlorides in dioxane and in the presence of triethylamine. The structure of the produced compounds was established by elemental analyses and spectral methods, and the mechanisms of their formation was discussed. Furthermore, the pyrazolyl-pyridine derivatives were tested as anticancer agents and the results obtained showed that some of them revealed high activity against human hepatocellular carcinoma (HEPG2 cell lines.

  14. [Treatment of accidental extravasation of antitumor agents with dimethylsulfoxide and alpha-tocopherol].

    Science.gov (United States)

    Bonnetblanc, J M; Bordessoule, D; Fayol, J; Amici, J M

    1996-01-01

    The aim of this study was to test topical applications of dimethylsulfoxide and alpha-tocopherol for the prevention of ulcerations after antimitotic extravasation. An open prospective study was conducted in 10 patients in 4 different chemotherapy wards who had experienced infusion accidents leading to phlebitis (4 cases) or cellulitis (8 cases) including 2 at implant sites. Topical application of the dimethylsulfoxide alpha-tocopherol combination was initiated within the first hours and continued for 3 to 15 days. One patient was given dimethylsulfoxide alone. Necrosis was never observed. The implant sites were preserved and remained functional. The absence of secondary ulcerations and the preservation of the implant sites are clear advantages of this topical combination which should be used as first line treatment. Favorable results have been reported in the literature while other techniques used depend on the antimitotic agent and give variable results.

  15. The combined effect of interferon synthesis inductors, radiosensitizing and antitumoral agents on solid tumors

    International Nuclear Information System (INIS)

    Leonidze, D.L.

    1987-01-01

    In experiments with mice bearing solid sarcoma 37 a study was conducted on the combined effect of radiation and inductors of endogenous inerferon synthesis (IEIS), together with hyperthermia or together with an alkylating and carbomoilating agent, dimethinur. The effect was estimated by the tumor growth coefficient and by the number of animals with the regressed tumors. Poly I; polyC was not shiown to influence the efficiency of hyperthermia combined with radiation with radiation; dextransulphate and tiloron increased the radiosensitizing effect of hyperthermia. Dimethinur aggravated the effect of radiation, but with IEIS used together with dimethynur and radiation, the response of the tumor increased insignificantly as compared to the effect of IEIS together with radiation

  16. Acquisition of resistance to antitumor alkylating agent ACNU: a possible target of positron emission tomography monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Hideya [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Research Institute of Brain and Blood Vessels, Akita 010-0874 (Japan); Toyohara, Jun [Radiopharmaceutical Chemistry Section, Department of Medical Imaging, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Kado, Hirotsugu [Research Institute of Brain and Blood Vessels, Akita 010-0874 (Japan); Nakagawa, Takao [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Kubota, Toshihiko [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)]. E-mail: yfuji@fmsrsa.fukui-med.ac.jp

    2006-01-15

    Early detection of tumor response to chemotherapy is of great importance for appropriate treatment of tumors. In this study, characteristics of two positron emission tomography (PET) tracers, [{sup 18}F]2-fluoro-2-deoxy-D-glucose (FDG) and[{sup 18}F]3'-fluoro-3'-deoxy-thymidine (FLT), in the early detection of tumor cell response as well as tolerance development to chemotherapy was compared using rat C6 glioma cells and 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl) -3-nitrosoureahydrochloride (ACNU). ACNU is an alkylating agent known to induce drug resistance through expression of O {sup 6}-methylguanine-deoxyribonucleic acid methyl transferase (O {sup 6}-MGMT). We established an ACNU-resistant C6 glioma cell line (C6/ACNU) and investigated the effect of ACNU on the uptake of FLT and FDG. In C6 cells, DNA synthesis presented as [{sup 3}H]thymidine ([{sup 3}H]Thd) incorporation into DNA was quickly suppressed by ACNU. In C6/ACNU cells, the suppression was recovered promptly, indicating that DNA alkylation occurs initially but highly expressed O {sup 6}-MGMT repairs DNA, leading to the recovery of DNA synthesis. The patterns of FLT uptake in C6 and C6/ACNU were difficult to distinguish in the very early stage of the treatment, though it was reported that FLT uptake well correlated with proliferation in certain conditions. FDG uptake showed different patterns between the resistant and control cells, with significantly decreased uptake in C6 cells and unchanged uptake in C6/ACNU cells at 18-24 h after the treatment. Though difficult to be directly translated into clinical situation, the present study will provide a base to develop an appropriate protocol to assess tumor response to treatment by PET and to design effective treatment plans.

  17. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-07-01

    Full Text Available Wei Liu,1,* Jin-Feng Ning,2,* Qing-Wei Meng,1 Jing Hu,1 Yan-Bin Zhao,1 Chao Liu,3 Li Cai11The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 2The Thoracic Surgery Department, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China; 3General Surgery Department, Mudanjiang Guanliju Central Hospital, Mishan, Heilongjiang Province, People’s Republic of China*These authors contributed equally to this workAbstract: The epidermal growth factor receptor (EGFR family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC, particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB. Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10 against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB.Keywords: EGFR, kinase

  18. Gd (III) chelates adsorbed on TiO2 nanoparticles - promising MRI contrast agent

    International Nuclear Information System (INIS)

    Rehor, Ivan; Lukes, Ivan; Peters, Joop A.; Jirak, Daniel

    2009-01-01

    Full text: The project deals with a new contrast agent (CA) for magnetic resonance imaging (MRI). The CA consists of two main parts - diamagnetic core (TiO 2 nanoparticle) and Gd (III) chelates grafted on its surface. The presence of the nanoparticle core is responsible for significant increase of r1 millimolar relaxivity (which corresponds to the efficiency of the CA) due to the slowing down the rotation of the complex in solution. It also affects the biodistribution characteristics of the CA - the ability to penetrate through cell membranes is well known for nanoparticles, making them useful for cell labeling. The structure of the chelate is derived from DOTA ligand, whose Gd (III) complexes are commercially used as MRI CA in human medicine. The connection of the complex to the surface is realized via penylphosphonate, which is attached to the pendant arm of the ligand. Strong interaction of the phosphonate with the TiO 2 surface results in the full surface coverage. The complexation and MRI properties of Gd chelate were studied and exhibit analogy to the complexes of DOTA, The millimolar relaxivity (r1) of the Gd (III) complex significantly increases upon adsorption on the TiO 2 nanoparticles. PVA was added to the colloidal solutions of CA to stabilize them under biological conditions and such stabilized CA was utilized for MRI visualization of rat pancreatic islets (P1). The labeled islets were detected on MR images as hyperintense area and therefore our CA seems to be promising material for cellular MRI

  19. Novel amidines and analogues as promising agents against intracellular parasites: a systematic review.

    Science.gov (United States)

    Soeiro, M N C; Werbovetz, K; Boykin, D W; Wilson, W D; Wang, M Z; Hemphill, A

    2013-07-01

    Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.

  20. Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations.

    Science.gov (United States)

    Medhat, Dalia; Hussein, Jihan; El-Naggar, Mehrez E; Attia, Mohamed F; Anwar, Mona; Latif, Yasmine Abdel; Booles, Hoda F; Morsy, Safaa; Farrag, Abdel Razik; Khalil, Wagdy K B; El-Khayat, Zakaria

    2017-07-01

    Dextran-capped gold nanoparticles (Au-dextran NPs) were prepared exploiting the natural polysaccharide polymer as both reducing and stabilizing agent in the synthesis process, aiming at studying their antitumor effect on solid carcinoma and EAC-bearing mice. To this end, Au-dextran NPs were designed via simple eco-friendly chemical reaction and they were characterized revealing the monodispersed particles with narrow distributed size of around 49nm with high negative charge. In vivo experiments were performed on mice. Biochemical analysis of liver and kidney functions and oxidation stress ratio in addition to histopathological investigations of such tumor tissues were done demonstrating the potentiality of Au-dextran NPs as antitumor agent. The obtained results revealed that EAC and solid tumors caused significant increase in liver and kidney functions, liver oxidant parameters, alpha feto protein levels and diminished liver antioxidant accompanied by positive expression of tumor protein p53 of liver while the treatment with Au-dextran NPs for both types caused improvement in liver and kidney functions, increased liver antioxidant, increased the expression level of B-cell lymphoma 2 gene and subsequently suppressed the apoptotic pathway. As a result, the obtained data provides significant antitumor effects of the Au-dextran NPs in both Ehrlich ascites and solid tumor in mice models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2005-01-01

    Purpose: ZD6126 is a vascular-targeting agent that induces selective effects on the morphology of proliferating and immature endothelial cells by disrupting the tubulin cytoskeleton. The efficacy of ZD6126 was investigated in large vs. small tumors in a variety of animal models. Methods and Materials: Three rodent tumor models (KHT, SCCVII, RIF-1) and three human tumor xenografts (Caki-1, KSY-1, SKBR3) were used. Mice bearing leg tumors ranging in size from 0.1-2.0 g were injected intraperitoneally with a single 150 mg/kg dose of ZD6126. The response was assessed by morphologic and morphometric means as well as an in vivo to in vitro clonogenic cell survival assay. To examine the impact of tumor size on the extent of enhancement of radiation efficacy by ZD6126, KHT sarcomas of three different sizes were irradiated locally with a range of radiation doses, and cell survival was determined. Results: All rodent tumors and human tumor xenografts evaluated showed a strong correlation between increasing tumor size and treatment effect as determined by clonogenic cell survival. Detailed evaluation of KHT sarcomas treated with ZD6126 showed a reduction in patent tumor blood vessels that was ∼20% in small ( 90% in large (>1.0 g) tumors. Histologic assessment revealed that the extent of tumor necrosis after ZD6126 treatment, although minimal in small KHT sarcomas, became more extensive with increasing tumor size. Clonogenic cell survival after ZD6126 exposure showed a decrease in tumor surviving fraction from approximately 3 x 10 -1 to 1 x 10 -4 with increasing tumor size. When combined with radiotherapy, ZD6126 treatment resulted in little enhancement of the antitumor effect of radiation in small (<0.3 g) tumors but marked increases in cell kill in tumors larger than 1.0 g. Conclusions: Because bulky neoplastic disease is typically the most difficult to manage, the present findings provide further support for the continued development of vascular disrupting agents such as

  2. Antimitotic antitumor agents: synthesis, structure-activity relationships, and biological characterization of N-aryl-N'-(2-chloroethyl)ureas as new selective alkylating agents.

    Science.gov (United States)

    Mounetou, E; Legault, J; Lacroix, J; C-Gaudreault, R

    2001-03-01

    A series of N-aryl-N'-(2-chloroethyl)ureas (CEUs) and derivatives were synthesized and evaluated for antiproliferative activity against a wide panel of tumor cell lines. Systematic structure--activity relationship (SAR) studies indicated that: (i) a branched alkyl chain or a halogen at the 4-position of the phenyl ring or a fluorenyl/indanyl group, (ii) an exocyclic urea function, and (iii) a N'-2-chloroethyl moiety were required to ensure significant cytotoxicity. Biological experiments, such as immunofluorescence microscopy, confirmed that these promising compounds alter the cytoskeleton by inducing microtubule depolymerization via selective alkylation of beta-tubulin. Subsequent evaluations demonstrated that potent CEUs were weak alkylators, were non-DNA-damaging agents, and did not interact with the thiol function of either glutathione or glutathione reductase. Therefore, CEUs are part of a new class of antimitotic agents. Finally, among the series of CEUs evaluated, compounds 12, 15, 16, and 27 were selected for further in vivo trials.

  3. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    de Moraes ACM

    2015-11-01

    NPs within the tested concentration range. Transmission electronic microscopy images offered insights into how GO-Ag nanosheets interacted with bacterial cells. Conclusion: Our results indicate that the GO-Ag nanocomposite is a promising antibacterial agent against common nosocomial bacteria, particularly antibiotic-resistant MRSA. Morphological injuries on MRSA cells revealed a likely loss of viability as a result of the direct contact between bacteria and the GO-Ag sheets. Keywords: graphene oxide, silver nanoparticles, graphene oxide-silver nanocomposite, antibacterial agent, MRSA, Escherichia coli

  4. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    de Moraes, Ana Carolina Mazarin; Lima, Bruna Araujo; de Faria, Andreia Fonseca; Brocchi, Marcelo; Alves, Oswaldo Luiz

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for serious hospital infections worldwide. Nanomaterials are an alternative to conventional antibiotic compounds, because bacteria are unlikely to develop microbial resistance against nanomaterials. In the past decade, graphene oxide (GO) has emerged as a material that is often used to support and stabilize silver nanoparticles (AgNPs) for the preparation of novel antibacterial nanocomposites. In this work, we report the synthesis of the graphene-oxide silver nanocomposite (GO-Ag) and its antibacterial activity against relevant microorganisms in medicine. GO-Ag nanocomposite was synthesized through the reduction of silver ions (Ag(+)) by sodium citrate in an aqueous GO dispersion, and was extensively characterized using ultraviolet-visible absorption spectroscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. The antibacterial activity was evaluated by microdilution assays and time-kill experiments. The morphology of bacterial cells treated with GO-Ag was investigated via transmission electron microscopy. AgNPs were well distributed throughout GO sheets, with an average size of 9.4±2.8 nm. The GO-Ag nanocomposite exhibited an excellent antibacterial activity against methicillin-resistant S. aureus, Acinetobacter baumannii, Enterococcus faecalis, and Escherichia coli. All (100%) MRSA cells were inactivated after 4 hours of exposure to GO-Ag sheets. In addition, no toxicity was found for either pristine GO or bare AgNPs within the tested concentration range. Transmission electronic microscopy images offered insights into how GO-Ag nanosheets interacted with bacterial cells. Our results indicate that the GO-Ag nanocomposite is a promising antibacterial agent against common nosocomial bacteria, particularly antibiotic-resistant MRSA. Morphological injuries on MRSA cells revealed a likely loss of viability as a result of the

  5. Synthesis of 2-Phenylazonaphtho[1,8-ef][1,4]diazepines and 9-(3-Arylhydrazonopyrrolo[1,2-a]perimidines as Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Thoraya A. Farghaly

    2014-01-01

    Full Text Available Two series of naphtho[1,8-ef][1,4]diazepines and pyrrolo[1,2-a]perimidines were prepared starting from 1,8-diaminonaphthalene and hydrazonoyl chlorides. The structures of the products were determined on the basis of their spectral data and elemental analyses. The mechanism of formation of such products was also discussed. The prepared compounds were screened for their antitumor activity against three cell lines, namely, MCF-7, TK-10 and UACC-62, and some derivatives showed promising activity.

  6. Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review

    Directory of Open Access Journals (Sweden)

    Ghadamali Khodarahmi

    2015-01-01

    Full Text Available Benzofuran as an important heterocyclic compound is extensively found in natural products as well as synthetic materials. Since benzofuran drivatives display a diverse array of pharmacological activities, an interest in developing new biologically active agents from benzofuran is still under consideration. This review highlights recent findings on biological activities of benzofuran derivatives as antimicrobial and antibreast cancer agents and lays emphasis on the importance of benzofurans as a major source for drug design and development.

  7. Novel Antitumor Platinum(II) Conjugates Containing the Nonsteroidal Anti-inflammatory Agent Diclofenac: Synthesis and Dual Mechanisms of Antiproliferative Effects.

    Science.gov (United States)

    Intini, Francesco Paolo; Zajac, Juraj; Novohradsky, Vojtech; Saltarella, Teresa; Pacifico, Concetta; Brabec, Viktor; Natile, Giovanni; Kasparkova, Jana

    2017-02-06

    One concept how to improve anticancer effects of conventional metallodrugs consists in conjugation of these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, biological effects, and mechanisms of action of new Pt(II) derivatives containing one or two nonsteroidal anti-inflammatory diclofenac (DCF) ligands also known for their antitumor effects. The antiproliferative properties of these metallic conjugates show that these compounds are potent and cancer cell selective cytotoxic agents exhibiting activity in cisplatin resistant and the COX-2 positive tumor cell lines. One of these compounds, compound 3, in which DCF molecules are coordinated to Pt(II) through their carboxylic group, is more potent than parental conventional Pt(II) drug cisplatin, free DCF and the congeners of 3 in which DCF ligands are conjugated to Pt(II) via a diamine. The potency of 3 is due to several factors including enhanced internalization that correlates with enhanced DNA binding and cytotoxicity. Mechanistic studies show that 3 combines multiple effects. After its accumulation in cells, it releases Pt(II) drug capable of binding/damaging DNA and DCF ligands, which affect distribution of cells in individual phases of the cell cycle, inhibit glycolysis and lactate transport, collapse mitochondrial membrane potential, and suppress the cellular properties characteristic of metastatic progression.

  8. Herbal radiation countermeasure agents: promising role in the management of radiological/nuclear exigencies

    International Nuclear Information System (INIS)

    Arora, Rajesh; Sharma, A.; Kumar, R.; Tripathi, R.P.

    2008-01-01

    In the future, there is a need to substantially boost biomass production and employ elicitors/precursors for improving the production of radioprotective compounds from such alternative sources for ensuring a sustainable supply of the high-value, low volume radioprotective molecules. Chemical fingerprinting, identification and characterization of bioactive constituents using modem analytical techniques and evaluation of their multifaceted mode of action at genomic/proteomic level is also the need of the hour. Such data will help in the development of novel, safe and effective radiation countermeasure agents for human use. Herbal radiation countermeasure agents, including several dietary agents, are likely to find large-scale acceptance in most countries in view of their widespread acceptance, holistic mode of action, less toxicity and economical nature. Endeavours made at INMAS in this direction are likely to fructify in coming years and radiation countermeasure agents from several of these herbal sources would become available, possibly several would be obtainable over-the-counter, for use by civilians, military personnel, first emergency responders and other rescue and recovery personnel. (author)

  9. Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol.

    Science.gov (United States)

    Meng, Yao; Liu, Shuangfeng; Li, Juan; Meng, Yanfa; Zhao, Xiaojun

    2012-01-01

    Alpha-momorcharin (α-MMC) and momordica anti-HIV protein (MAP30) derived from Momordica charantia L. have been confirmed to possess antitumor and antivirus activities due to their RNA-N-glycosidase activity. However, strong immunogenicity and short plasma half-life limit their clinical application. To solve this problem, the two proteins were modified with (mPEG)(2)-Lys-NHS (20 kDa). In this article, a novel purification strategy for the two main type I ribosome-inactivating proteins (RIPs), α-MMC and MAP30, was successfully developed for laboratory-scale preparation. Using this dramatic method, 200 mg of α-MMC and about 120 mg of MAP30 was obtained in only one purification process from 200 g of Momordica charantia seeds. The homogeneity and some other properties of the two proteins were assessed by gradient SDS-PAGE, electrospray ionization quadruple mass spectrometry, and N-terminal sequence analysis as well as Western blot. Two polyethylene glycol (PEG)ylated proteins were synthesized and purified. Homogeneous mono-, di-, or tri-PEGylated proteins were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The analysis of antitumor and antivirus activities indicated that the serial PEGylated RIPs preserved moderate activities on JAR choriocarcinoma cells and herpes simplex virus-1. Furthermore, both PEGylated proteins showed about 60%-70% antitumor and antivirus activities, and at the same time decreased 50%-70% immunogenicity when compared with their unmodified counterparts. α-MMC and MAP30 obtained from this novel purification strategy can meet the requirement of a large amount of samples for research. Their chemical modification can solve the problem of strong immunogenicity and meanwhile preserve moderate activities. All these findings suggest the potential application of PEGylated α-MMC and PEGylated MAP30 as antitumor and antivirus agents. According to these results, PEGylated RIPs can be constructed with

  10. Bee Pollen as a Promising Agent in the Burn Wounds Treatment

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2016-01-01

    Full Text Available The aim of the present study was to visualize the benefits and advantages derived from preparations based on extracts of bee pollen as compared to pharmaceuticals commonly used in the treatment of burns. The bee pollen ointment was applied for the first time in topical burn treatment. Experimental burn wounds were inflicted on two white, domestic pigs. Clinical, histopathological, and microbiological assessment of specimens from burn wounds, inflicted on polish domestic pigs, treated with silver sulfadiazine or bee pollen ointment, was done. The comparative material was constituted by either tissues obtained from wounds treated with physiological saline or tissues obtained from wounds which were untreated. Clinical and histopathological evaluation showed that applied apitherapeutic agent reduces the healing time of burn wounds and positively affects the general condition of the animals. Moreover the used natural preparation proved to be highly effective antimicrobial agent, which was reflected in a reduction of the number of microorganisms in quantitative research and bactericidal activity of isolated strains. On the basis of the obtained bacteriological analysis, it may be concluded that the applied bee pollen ointment may affect the wound healing process of burn wounds, preventing infection of the newly formed tissue.

  11. Standoff Methods for the Detection of Threat Agents: A Review of Several Promising Laser-Based Techniques

    Directory of Open Access Journals (Sweden)

    J. Bruce Johnson

    2014-01-01

    Full Text Available Detection of explosives, explosive precursors, or other threat agents presents a number of technological challenges for optical sensing methods. Certainly detecting trace levels of threat agents against a complex background is chief among these challenges; however, the related issues of multiple target distances (from standoff to proximity and sampling time scales (from passive mines to rapid rate of march convoy protection for different applications make it unlikely that a single technique will be ideal for all sensing situations. A number of methods for spanning the range of optical sensor technologies exist which, when integrated, could produce a fused sensor system possessing a high level of sensitivity to threat agents and a moderate standoff real-time capability appropriate for portal screening of personnel or vehicles. In this work, we focus on several promising, and potentially synergistic, laser-based methods for sensing threat agents. For each method, we have briefly outlined the technique and report on the current level of capability.

  12. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.

    Science.gov (United States)

    Piotrowska, Urszula; Sobczak, Marcin; Oledzka, Ewa

    2017-12-01

    Micro-organism resistance is an important challenge in modern medicine due to the global uncontrolled use of antibiotics. Natural and synthetic antimicrobial peptides (AMPs) symbolize a new family of antibiotics, which have stimulated research and clinical interest as new therapeutic options for infections. They represent one of the most promising antimicrobial substances, due to their broad spectrum of biological activity, against bacteria, fungi, protozoa, viruses, yeast and even tumour cells. Besides, being antimicrobial, AMPs have been shown to bind and neutralize bacterial endotoxins, as well as possess immunomodulatory, anti-inflammatory, wound-healing, angiogenic and antitumour properties. In contrast to conventional antibiotics, which have very defined and specific molecular targets, host cationic peptides show varying, complex and very rapid mechanisms of actions that make it difficult to form an effective antimicrobial defence. Importantly, AMPs display their antimicrobial activity at micromolar concentrations or less. To do this, many peptide-based drugs are commercially available for the treatment of numerous diseases, such as hepatitis C, myeloma, skin infections and diabetes. Herein, we present an overview of the general mechanism of AMPs action, along with recent developments regarding carriers of AMPs and their potential applications in medical fields. © 2017 John Wiley & Sons A/S.

  13. Synthesis and Biological Evaluation of Liguzinediol Mono- and Dual Ester Prodrugs as Promising Inotropic Agents

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-11-01

    Full Text Available The potent positive inotropic effect, together with the relatively low safety risk of liguzinediol (LZDO, relative to currently available inotropic drugs, has prompted us to intensively research and develop LZDO as a potent positive inotropic agent. In this study, to obtain LZDO alternatives for oral chronic administration, a series of long-chain fatty carboxylic mono- and dual-esters of LZDO were synthesized, and preliminarily evaluated for physicochemical properties and bioconversion. Enhanced lipophilic properties and decreased solubility of the prodrugs were observed as the side chain length increased. All esters showed conspicuous chemical stability in phosphate buffer (pH 7.4. Moreover, the enzymatic hydrolysis of esters in human plasma and human liver microsomes confirmed that the majority of esters were converted to LZDO, with release profiles that varied due to the size and structure of the side chain. In vivo pharmacokinetic studies following oral administration of monopivaloyl (M5, monodecyl (M10 and monododecyl (M12 esters demonstrated the evidently extended half-lives relative to LZDO dosed alone. In particular the monopivaloyl ester M5 exhibited an optimal pharmacokinetic profile with appropriate physiochemical characteristics.

  14. Technetium-99m dextran: a promising new protein-losing enteropathy imaging agent

    International Nuclear Information System (INIS)

    Bhatnagar, A.; Singh, A.K.; Lahoti, D.; Singh, T.; Khanna, C.M.

    1996-01-01

    The purpose of this study was to evaluate technetium-99m dextran ( 99m Tc-Dx; molecular weight 81000) as a prospective protein-losing enteropathy (PLE) imaging agent. Twenty-two patients iwth diseases commonly associated with PLE and 12 healthy control subjects underwent intravenous 99m Tc-Dx scintigraphy. All of the 22 test patients showed significant radiotracer accumulation in the intestines within 3-4 h post injection. The focal, regional or generalised nature of the enteropathy and involvement of the large or small intestine could be identified in most cases. Four of the 12 apparently healthy subjects also showed minimal accumulation in the abdominal area occurring late in the study period. This could have been physiological, related to food habits or due to unsuspected intestinal worms. We attribute the high sensitivity of 99m Tc-Dx to its relatively fast blood (background) clearance. The radiotracer may have several other advantages over 99m Tc-labelled human serum albumin in imaging PLE. (orig.)

  15. Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol

    Directory of Open Access Journals (Sweden)

    Meng Y

    2012-06-01

    virus-1. Furthermore, both PEGylated proteins showed about 60%–70% antitumor and antivirus activities, and at the same time decreased 50%–70% immunogenicity when compared with their unmodified counterparts.Conclusion/significance: α-MMC and MAP30 obtained from this novel purification strategy can meet the requirement of a large amount of samples for research. Their chemical modification can solve the problem of strong immunogenicity and meanwhile preserve moderate activities. All these findings suggest the potential application of PEGylated α-MMC and PEGylated MAP30 as antitumor and antivirus agents. According to these results, PEGylated RIPs can be constructed with nanomaterials to be a targeting drug that can further decrease immunogenicity and side effects. Through nanotechnology we can make them low-release drugs, which can further prolong their half-life period in the human body.Keywords: ribosome-inactivating proteins, alpha-momorcharin, momordica anti-HIV protein, antitumor, antivirus, (mPEG2-Lys-NHS (20 kDa, immunogenicity

  16. 99mTc-GHA: A promising agent for assessing tumour viability

    International Nuclear Information System (INIS)

    Choudhury, P.S.; Gupta, A.; Sharma, P.K.; Bhatia, S.; Nambiar, U.; Jena, A.

    2004-01-01

    chemotherapy had decreased intensity of GHA concentration in serial studies correlating with clinical improvement. 12 patients in the primary brain tumour group had further 15 studies during follow-up. The findings correlated modality, to raise the level of confidence in interpretation. Further studies should be directed towards its mechanism of action and its specificity as a simple and cheap tumour viability agent. (author)

  17. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents.

    Science.gov (United States)

    Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian

    2015-10-01

    The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents. © 2015 John Wiley & Sons A/S.

  18. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    Science.gov (United States)

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  19. Acute and subchronic toxicity of the antitumor agent rhodium (II citrate in Balb/c mice after intraperitoneal administration

    Directory of Open Access Journals (Sweden)

    Marcella L.B. Carneiro

    2015-01-01

    Full Text Available This study aimed to investigate potential acute and subchronic toxicity of rhodium (II citrate in female Balb/c mice after intraperitoneal injections. In the acute test, independent groups received five doses; the highest dose (107.5 mg/kg was equivalent to 33 times that used in our previous reports. The other doses were chosen as proportions of the highest, being 80.7 (75%, 53.8 (50%, 26.9 (25% or 13.8 mg/kg (12.5%. Animals were monitored over 38 days and no severe signs of toxicity were observed, according to mortality, monitoring of adverse symptoms, hematological, biochemical and genotoxic parameters. We conclude that the median lethal dose (LD50 could be greater than 107.5 mg/kg. In the subchronic test, five doses of Rh2Cit (80, 60, 40, 20 or 10 mg/kg were evaluated and injections were conducted on alternate days, totaling five applications per animal. Paclitaxel (57.5 mg/kg and saline solution were controls. Clinical observations, histopathology of liver, lung and kidneys and effects on hematological, biochemistry and genotoxic records indicated that Rh2Cit induced no severe toxic effects, even at an accumulated dose up to 400 mg/kg.We suggest Rh2Cit has great potential as an antitumor drug without presenting acute and subchronic toxicity.

  20. 6-Nitro-2-(3-hydroxypropyl-1H-benz[de]isoquinoline-1,3-dione, a potent antitumor agent, induces cell cycle arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Singh Shashank K

    2010-12-01

    Full Text Available Abstract Background Anticancer activities of several substituted naphthalimides (1H-benz[de]isoquinoline-1,3-diones are well documented. Some of them have undergone Phase I-II clinical trials. Presently a series of ten N-(hydroxyalkyl naphthalimides (compounds 1a-j were evaluated as antitumor agents. Methods Compounds 1a-j were initially screened in MOLT-4, HL-60 and U-937 human tumor cell lines and results were compared with established clinical drugs. Cytotoxicities of compounds 1d and 1i were further evaluated in a battery of human tumor cell lines and in normal human peripheral blood mononuclear cells. Cell cycle analysis of compound 1i treated MOLT-4 cells was studied by flow cytometry. Its apoptosis inducing effect was carried out in MOLT-4 and HL-60 cells by flow cytometry using annexin V-FITC/PI double staining method. The activities of caspase-3 and caspase-6 in MOLT-4 cells following incubation with compound 1i were measured at different time intervals. Morphology of the MOLT-4 cells after treatment with 1i was examined under light microscope and transmission electron microscope. 3H-Thymidine and 3H-uridine incorporation in S-180 cells in vitro following treatment with 8 μM concentration of compounds 1d and 1i were studied. Results 6-Nitro-2-(3-hydroxypropyl-1H-benz[de]isoquinoline-1,3-dione (compound 1i, has exhibited maximum activity as it induced significant cytotoxicity in 8 out of 13 cell lines employed. Interestingly it did not show any cytotoxicity against human PBMC (IC50 value 273 μM. Cell cycle analysis of compound 1i treated MOLT-4 cells demonstrated rise in sub-G1 fraction and concomitant accumulation of cells in S and G2/M phases, indicating up-regulation of apoptosis along with mitotic arrest and/or delay in exit of daughter cells from mitotic cycle respectively. Its apoptosis inducing effect was confirmed in flow cytometric study in MOLT-4 and the action was mediated by activation of both caspase 3 and 6. Light and

  1. Vascular Targeting in Pancreatic Cancer: The Novel Tubulin-Binding Agent ZD6126 Reveals Antitumor Activity in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Axel Kleespies

    2005-10-01

    Full Text Available ZD6126 is a novel vascular-targeting agent that acts by disrupting the tubulin cytoskeleton of an immature tumor endothelium, leading to an occlusion of tumor blood vessels and a subsequent tumor necrosis. We wanted to evaluate ZD6126 in primary and metastatic tumor models of human pancreatic cancer. Nude mice were injected orthotopically with L3.6pl pancreatic cancer cells. In single and multiple dosing experiments, mice received ZD6126, gemcitabine, a combination of both agents, or no treatment. For the induction of metastatic disease, additional groups of mice were injected with L3.6pl cells into the spleen. Twenty-four hours after a single-dose treatment, ZD6126 therapy led to an extensive central tumor necrosis, which was not seen after gemcitabine treatment. Multiple dosing of ZD6126 resulted in a significant growth inhibition of primary tumors and a marked reduction of spontaneous liver and lymph node metastases. Experimental metastatic disease could be significantly controlled by a combination of ZD6126 and gemcitabine, as shown by a reduction of the number and size of established liver metastases. As shown by additional in vitro and in vivo experiments, possible mechanisms involve antivascular activities and subsequent antiproliferative and proapoptotic effects of ZD6126 on tumor cells, whereas direct activities against tumor cells seem unlikely. These data highlight the antitumor and antimetastatic effects of ZD6126 in human pancreatic cancer and reveal benefits of adding ZD6126 to standard gemcitabine therapy.

  2. Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence

    Directory of Open Access Journals (Sweden)

    Marchal JA

    2013-10-01

    Full Text Available Juan Antonio Marchal,1,2 Esther Carrasco,1 Alberto Ramirez,1,3 Gema Jiménez,1,2 Carmen Olmedo,4 Macarena Peran,1,3 Ahmad Agil,5 Ana Conejo-García,6 Olga Cruz-López,6 Joaquin María Campos,6 María Ángel García4,7 1Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, 2Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 3Department of Health Sciences, University of Jaén, Jaén, 4Experimental Surgery Research Unit, Virgen de las Nieves University Hospital, Granada, 5Department of Pharmacology and Neurosciences Institute, Faculty of Medicine, 6Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, 7Department of Oncology, Virgen de las Nieves University Hospital, Granada, Spain Abstract: Bozepinib [(RS-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl-1,2,3,5-tetrahydro-4,1- benzoxazepin-3-yl]-9H-purine] is a potent antitumor compound that is able to induce apoptosis in breast cancer cells. In the present study, we show that bozepinib also has antitumor activity in colon cancer cells, showing 50% inhibitory concentration (IC50 values lower than those described for breast cancer cells and suggesting great potential of this synthetic drug in the treatment of cancer. We identified that the double-stranded RNA-dependent protein kinase (PKR is a target of bozepinib, being upregulated and activated by the drug. However, p53 was not affected by bozepinib, and was not necessary for induction of apoptosis in either breast or colon cancer cells. In addition, the efficacy of bozepinib was improved when combined with the interferon-alpha (IFNα cytokine, which enhanced bozepinib-induced apoptosis with involvement of protein kinase PKR. Moreover, we report here, for the first time, that in combined therapy, IFNα induces a clear process of autophagosome formation, and prior treatment with chloroquine, an autophagy inhibitor, is able to

  3. Quantitative determination of the anti-tumor agent tasquinimod in human urine by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    van de Merbel, Nico C; Walland, Peter; Tiensuu, Mikael; Sennbro, Carl J

    2014-06-15

    Tasquinimod is an anti-tumor drug that is currently in clinical development for the treatment of solid cancers. After oral administration, tasquinimod and a number of its metabolites are excreted in the urine. The quantitative determination of tasquinimod in urine is challenging because of the required sensitivity (down to 0.1nM or 40pg/mL), the highly variable nature of this biological matrix and the presence of potentially unstable metabolites, which may convert back to the parent drug. In this article, an LC-MS/MS method is described for the determination of tasquinimod in human urine in the concentration range 0.1-200nM. Liquid-liquid extraction with n-chlorobutane was used to extract tasquinimod from 100μL human urine and to remove interfering endogenous urinary constituents. Reversed-phase liquid chromatography coupled to a triple quadrupole mass spectrometer equipped with an ESI source was used for quantification of tasquinimod in a 2.5-min run. A stable-isotope labeled internal standard was used for response normalization. The intra- and inter-day coefficients of variation (precision) as well as the bias (accuracy) of the method were below 7%. Although considerable conversion of conjugated tasquinimod metabolites back to parent drug was observed when incurred samples were stored at 37°C for a prolonged time, tasquinimod as well as its metabolites were sufficiently stable under all relevant sampling, storage and analysis conditions. The method was successfully applied to determine the urinary excretion of tasquinimod in healthy volunteers and patients with renal impairment after a 0.5-mg oral dose. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. How should immunomodulators be optimized when used as combination therapy with anti-tumor necrosis factor agents in the management of inflammatory bowel disease?

    Science.gov (United States)

    Ward, Mark G; Irving, Peter M; Sparrow, Miles P

    2015-10-28

    In the last 15 years the management of inflammatory bowel disease has evolved greatly, largely through the increased use of immunomodulators and, especially, anti-tumor necrosis factor (anti-TNF) biologic agents. Within this time period, confidence in the use of anti-TNFs has increased, whilst, especially in recent years, the efficacy and safety of thiopurines has been questioned. Yet despite recent concerns regarding the risk: benefit profile of thiopurines, combination therapy with an immunomodulator and an anti-TNF has emerged as the recommended treatment strategy for the majority of patients with moderate-severe disease, especially those who are recently diagnosed. Concurrently, therapeutic drug monitoring has emerged as a means of optimizing the dosage of both immunomodulators and anti-TNFs. However the recommended therapeutic target levels for both drug classes were largely derived from studies of monotherapy with either agent, or studies underpowered to analyze outcomes in combination therapy patients. It has been assumed that these target levels are applicable to patients on combination therapy also, however there are few data to support this. Similarly, the timing and duration of treatment with immunomodulators when used in combination therapy remains unknown. Recent attention, including post hoc analyses of the pivotal registration trials, has focused on the optimization of anti-TNF agents, when used as either monotherapy or combination therapy. This review will instead focus on how best to optimize immunomodulators when used in combination therapy, including an evaluation of recent data addressing unanswered questions regarding the optimal timing, dosage and duration of immunomodulator therapy in combination therapy patients.

  5. Synthesis and evaluation of a class of 1,4,7-triazacyclononane derivatives as iron depletion antitumor agents.

    Science.gov (United States)

    Wang, Sheng; Gai, Yongkang; Zhang, Shasha; Ke, Lei; Ma, Xiang; Xiang, Guangya

    2018-01-15

    Iron depletion has been confirmed as an efficient strategy for cancer treatment. In the current study, a series of 1,4,7-triazacyclononane derivatives HE-NO2A, HP-NO2A and NE2P2A, as well as the bifunctional chelators p-NO 2 -PhPr-NE3TA and p-NH 2 -PhPr-NE3TA were synthesized and evaluated as iron-depleting agents for the potential anti-cancer therapy against human hepatocellular carcinoma. The cytotoxicity of these chelators was measured using hepatocellular cancer cells and compared with the clinically available iron depletion agent DFO and the universal metal chelator DTPA. All these 1,4,7-triazacyclononane-based chelators exhibited much stronger antiproliferative activity than DFO and DTPA. Among them, chelators with phenylpropyl side chains, represented by p-NO 2 -PhPr-NE3TA and p-NH 2 -PhPr-NE3TA, displayed the highest antiproliferative activity against HepG2 cells. Hence, these compounds are attractive candidates for the advanced study as iron depletion agents for the potential anti-cancer therapy, and could be further in conjugation with a targeting moiety for the future development in targeted iron depletion therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Coffey Matthew C

    2009-07-01

    Full Text Available Abstract Background Reovirus type 3 Dearing strain (ReoT3D has an inherent propensity to preferentially infect and destroy cancer cells. The oncolytic activity of ReoT3D as a single agent has been demonstrated in vitro and in vivo against various cancers, including colon, pancreatic, ovarian and breast cancers. Its human safety and potential efficacy are currently being investigated in early clinical trials. In this study, we investigated the in vitro combination effects of ReoT3D and chemotherapeutic agents against human non-small cell lung cancer (NSCLC. Results ReoT3D alone exerted significant cytolytic activity in 7 of 9 NSCLC cell lines examined, with the 50% effective dose, defined as the initial virus dose to achieve 50% cell killing after 48 hours of infection, ranging from 1.46 ± 0.12 ~2.68 ± 0.25 (mean ± SD log10 pfu/cell. Chou-Talalay analysis of the combination of ReoT3D with cisplatin, gemcitabine, or vinblastine demonstrated strong synergistic effects on cell killing, but only in cell lines that were sensitive to these compounds. In contrast, the combination of ReoT3D and paclitaxel was invariably synergistic in all cell lines tested, regardless of their levels of sensitivity to either agent. Treatment of NSCLC cell lines with the ReoT3D-paclitaxel combination resulted in increased poly (ADP-ribose polymerase cleavage and caspase activity compared to single therapy, indicating enhanced apoptosis induction in dually treated NSCLC cells. NSCLC cells treated with the ReoT3D-paclitaxel combination showed increased proportions of mitotic and apoptotic cells, and a more pronounced level of caspase-3 activation was demonstrated in mitotically arrested cells. Conclusion These data suggest that the oncolytic activity of ReoT3D can be potentiated by taxanes and other chemotherapeutic agents, and that the ReoT3D-taxane combination most effectively achieves synergy through accelerated apoptosis triggered by prolonged mitotic arrest.

  7. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    Science.gov (United States)

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  8. Yeast caspase-dependent apoptosis in Saccharomyces cerevisiae BY4742 induced by antifungal and potential antitumor agent clotrimazole.

    Science.gov (United States)

    Kavakçıoğlu, Berna; Tarhan, Leman

    2018-01-01

    Clotrimazole is an antifungal medication commonly used in the treatment of fungal infections. There is also promising research on using clotrimazole against other diseases such as malaria, beriberi, tineapedis and cancer. It was aimed to investigate the apoptotic phenotype in Saccharomyces cerevisiae induced by clotrimazole. The exposure of S. cerevisiae to 10 µM clotrimazole for 3, 6 and 9 h caused to decrease in cell viability by 24.82 ± 0.81, 56.00 ± 1.54 and 77.59 ± 0.53%, respectively. It was shown by Annexin V-PI assay that 110 µM clotrimazole treatment caused to death by 35.5 ± 2.48% apoptotic and only 13.1 ± 0.08% necrotic pathway within 30 min. The occurrence of DNA strand breaks and condensation could be visualised by the TUNEL and DAPI stainings, respectively. Yeast caspase activity was induced 12.34 ± 0.71-fold after 110 µM clotrimazole treatment for 30 min compared to the control. The dependency of clotrimazole-induced apoptosis to caspase was also shown using Δyca1 mutant.

  9. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent.

    Science.gov (United States)

    Zhang, Hongjiao; Gao, Yuntao; Xiong, Huabin

    2017-04-01

    The citric acid fermentation broth was prepared and it was employed to washing remediation of heavy metal-polluted soil. A well-defined washing effect was obtained, the removal percentages using citric acid fermentation broth are that 48.2% for Pb, 30.6% for Cu, 43.7% for Cr, and 58.4% for Cd and higher than that using citric acid solution. The kinetics of heavy metals desorption can be described by the double constant equation and Elovich equation and is a heterogeneous diffusion process. The speciation analysis shows that the citric acid fermentation broth can effectively reduce bioavailability and environmental risk of heavy metals. Spectroscopy characteristics analysis suggests that the washing method has only a small effect on the mineral composition and does not destroy the framework of soil system. Therefore, the citric acid fermentation broth is a promising washing agent and possesses a potential practical application value in the field of remediation of soils with a good washing performance.

  10. Coral-Associated Bacteria as a Promising Antibiofilm Agent against Methicillin-Resistant and -Susceptible Staphylococcus aureus Biofilms

    Directory of Open Access Journals (Sweden)

    Shanmugaraj Gowrishankar

    2012-01-01

    Full Text Available The current study deals with the evaluation of two coral-associated bacterial (CAB extracts to inhibit the biofilm synthesis in vitro as well as the virulence production like hemolysin and exopolysaccharide (EPS, and also to assess their ability to modify the adhesion properties, that is cell surface hydrophobicity (CSH of methicillin-resistant (MRSA and -susceptible Staphylococcus aureus (MSSA. Out of nine CAB screened, the ethyl acetate extract of CAB-E2 (Bacillus firmus and CAB-E4 (Vibrio parahemolyticus have shown excellent antibiofilm activity against S. aureus. CAB-E2 reduced the production of EPS (57–79% and hemolysin (43–70%, which ultimately resulted in the significant inhibition of biofilms (80–87% formed by both MRSA and MSSA. Similarly, CAB-E4 was also found to decrease the production of EPS (43–57%, hemolysin (43–57% and biofilms (80–85% of test pathogens. CLSM analysis also proved the antibiofilm efficacy of CAB extracts. Furthermore, the CAB extracts strongly decreased the CSH of S. aureus. Additionally, FT-IR analysis of S. aureus treated with CAB extracts evidenced the reduction in cellular components compared to their respective controls. Thus, the present study reports for the first time, B. firmus—a coral-associated bacterium, as a promising source of antibiofilm agent against the recalcitrant biofilms formed by multidrug resistant S. aureus.

  11. Synthesis and antitumor activity evaluation of a novel combi-nitrosourea prodrug: Designed to release a DNA cross-linking agent and an inhibitor of O(6)-alkylguanine-DNA alkyltransferase.

    Science.gov (United States)

    Sun, Guohui; Zhang, Na; Zhao, Lijiao; Fan, Tengjiao; Zhang, Shufen; Zhong, Rugang

    2016-05-01

    The drug resistance of CENUs induced by O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs the O(6)-alkylated guanine and subsequently inhibits the formation of dG-dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer(+) glioma cells compared with ACNU, BCNU, and their respective combinations with O(6)-benzylguanine (O(6)-BG). Quantifications of dG-dC cross-links induced by 6 were performed using HPLC-ESI-MS/MS. Higher levels of dG-dC cross-link were observed in 6-treated human glioma SF763 cells (mer(+)), whereas lower levels of dG-dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O(6)-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O(6)-BG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Specific Inhibitor of TGF-β Receptor Kinase, SB-431542, as a Potent Antitumor Agent for Human Cancers

    Directory of Open Access Journals (Sweden)

    Sunil K. Halder

    2005-05-01

    Full Text Available Small molecule inhibitors of signaling pathways have proven to be extremely useful for the development of therapeutic strategies for human cancers. Blocking the tumor-promoting effects of transforming growth factor-β (TGF-β in advanced stage carcinogenesis provides a potentially interesting drug target for therapeutic intervention. Although very few TGF-β receptor kinase inhibitors (TRKI are now emerging in preclinical studies, nothing is known about how these inhibitors might regulate the tumor-suppressive or tumor-promoting effects of TGF-β, or when these inhibitors might be useful for treatment during cancer progression. We have investigated the potential of TRKI in new therapeutic approaches in preclinical models. Here, we demonstrate that the TRKI, SB-431542, inhibits TGF-β-induced transcription, gene expression, apoptosis, and growth suppression. We have observed that SB-431542 attenuates the tumor-promoting effects of TGF-β, including TGF-β-induced EMT, cell motility, migration and invasion, and vascular endothelial growth factor secretion in human cancer cell lines. Interestingly, SB-431542 induces anchorage independent growth of cells that are growth-inhibited by TGF-β, whereas it reduces colony formation by cells that are growth-promoted by TGF-β. However, SB-431542 has no effect on a cell line that failed to respond to TGF-β. This represents a novel potential application of these inhibitors as therapeutic agents for human cancers with the goal of blocking tumor invasion, angiogenesis, and metastasis, when tumors are refractory to TGF-β-induced tumor-suppressor functions but responsive to tumor-promoting effects of TGF-β.

  13. HBV Reactivation in Patients Treated with Antitumor Necrosis Factor-Alpha (TNF-α Agents for Rheumatic and Dermatologic Conditions: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Fabrizio Cantini

    2014-01-01

    Full Text Available Introduction. Antitumor necrosis factor-alpha (TNF-α agents are widely used for treatment of rheumatic and dermatological diseases. We conducted the systematic review and meta-analysis to assess the prevalence of HBV reactivation among patients treated with anti-TNF-α. Methods and Findings. A comprehensive literature search of MEDLINE, Scopus, and ISI Web of Knowledge databases was conducted. From 21 studies included in the systematic review, 9 included patients with occult chronic HBV infection and 6 included patients with overt infection while 6 addressed both groups. Based on 10 studies eligible for meta-analysis we report pooled estimate of HBV reactivation of 4.2% (95% CI: 1.4–8.2%, I2: 74.7%. The pooled prevalence of reactivation was 3.0% (95% CI: 0.6–7.2, I2: 77.1% for patients with occult infection, and 15.4% (95% CI: 1.2–41.2%, I2: 79.9% for overt infection. The prevalence of reactivation was 3.9% (95% CI: 1.1–8.4%, I2: 51.1% for treatment with etanercept and 4.6% (95% CI: 0.5–12.5%, I2: 28.7% for adalimumab. For subgroup of patients without any antiviral prophylaxis the pooled reactivation was 4.0% (95% CI: 1.2–8.3%, I2: 75.6%. Conclusion. Although HBV reactivation rate is relatively low in patients treated with anti-TNF-α for rheumatic and dermatological conditions, the antiviral prophylaxis would be recommended in patients with overt chronic HBV infection.

  14. Properties of a non-bioactive fluorescent derivative of differentiation-inducing factor-3, an anti-tumor agent found in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Yuzuru Kubohara

    2014-03-01

    Full Text Available Differentiation-inducing factor-3 (DIF-3, found in the cellular slime mold Dictyostelium discoideum, and its derivatives, such as butoxy-DIF-3 (Bu-DIF-3, are potent anti-tumor agents. To investigate the activity of DIF-like molecules in tumor cells, we recently synthesized a green fluorescent DIF-3 derivative, BODIPY-DIF-3G, and analyzed its bioactivity and cellular localization. In this study, we synthesized a red (orange fluorescent DIF-3 derivative, BODIPY-DIF-3R, and compared the cellular localization and bioactivities of the two BODIPY-DIF-3s in HeLa human cervical cancer cells. Both fluorescent compounds penetrated the extracellular membrane within 0.5 h and localized mainly to the mitochondria. In formalin-fixed cells, the two BODIPY-DIF-3s also localized to the mitochondria, indicating that the BODIPY-DIF-3s were incorporated into mitochondria independently of the mitochondrial membrane potential. After treatment for 3 days, BODIPY-DIF-3G, but not BODIPY-DIF-3R, induced mitochondrial swelling and suppressed cell proliferation. Interestingly, the swollen mitochondria were stainable with BODIPY-DIF-3G but not with BODIPY-DIF-3R. When added to isolated mitochondria in vitro, BODIPY-DIF-3G increased dose-dependently the rate of O2 consumption, but BODIPY-DIF-3R did not. These results suggest that the bioactive BODIPY-DIF-3G suppresses cell proliferation, at least in part, by altering mitochondrial activity, whereas the non-bioactive BODIPY-DIF-3R localizes to the mitochondria but does not affect mitochondrial activity or cell proliferation.

  15. Mitochondria are the target organelle of differentiation-inducing factor-3, an anti-tumor agent isolated from Dictyostelium discoideum [corrected].

    Directory of Open Access Journals (Sweden)

    Yuzuru Kubohara

    Full Text Available Differentiation-inducing factor-3 (DIF-3, found in the cellular slime mold Dictyostelium discoideum, and its derivatives such as butoxy-DIF-3 (Bu-DIF-3 are potent anti-tumor agents. However, the precise mechanisms underlying the actions of DIF-3 remain to be elucidated. In this study, we synthesized a green fluorescent derivative of DIF-3, BODIPY-DIF-3, and a control fluorescent compound, Bu-BODIPY (butyl-BODIPY, and investigated how DIF-like molecules behave in human cervical cancer HeLa cells by using both fluorescence and electron microscopy. BODIPY-DIF-3 at 5-20 µ M suppressed cell growth in a dose-dependent manner, whereas Bu-BODIPY had minimal effect on cell growth. When cells were incubated with BODIPY-DIF-3 at 20 µM, it penetrated cell membranes within 0.5 h and localized mainly in mitochondria, while Bu-BODIPY did not stain the cells. Exposure of cells for 1-3 days to DIF-3, Bu-DIF-3, BODIPY-DIF-3, or CCCP (a mitochondrial uncoupler induced substantial mitochondrial swelling, suppressing cell growth. When added to isolated mitochondria, DIF-3, Bu-DIF-3, and BOIDPY-DIF-3, like CCCP, dose-dependently promoted the rate of oxygen consumption, but Bu-BODIPY did not. Our results suggest that these bioactive DIF-like molecules suppress cell growth, at least in part, by disturbing mitochondrial activity. This is the first report showing the cellular localization and behavior of DIF-like molecules in mammalian tumor cells.

  16. Miscoding properties of 1,N{sup 6}-ethanoadenine, a DNA adduct derived from reaction with antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Bo; Guliaev, Anton B.; Chenna, Ahmed; Singer, B.

    2003-03-05

    1,N{sup 6}-Ethanoadenine (EA) is an exocyclic adduct formed from DNA reaction with the antitumor agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). To understand the role of this adduct in the mechanism of mutagenicity or carcinogenicity by BCNU, an oligonucleotide with a site-specific EA was synthesized using phosphoramidite chemistry. We now report the in vitro miscoding properties of EA in translesion DNA synthesis catalyzed by mammalian DNA polymerases (pols) {alpha}, {beta}, {eta} and {iota}. These data were also compared with those obtained for the structurally related exocyclic adduct, 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using a primer extension assay, both pols {alpha} and {beta} were primarily blocked by EA or {var_epsilon}A with very minor extension. Pol {eta} a member of the Y family of polymerases, was capable of catalyzing a significant amount of bypass across both adducts. Pol {eta} incorporated all four nucleotides opposite EA and {var_epsilon}A, but with differential preferences and mainly in an error-prone manner. Human pol {iota}, a paralog of human pol {eta}, was blocked by both adducts with a very small amount of synthesis past {var_epsilon}A. It incorporated C and, to a much lesser extent, T, opposite either adduct. In addition, the presence of an A adduct, e.g. {var_epsilon}A, could affect the specificity of pol {iota} toward the template T immediately 3 feet to the adduct. In conclusion, the four polymerases assayed on templates containing an EA or {var_epsilon}A showed differential bypass capacity and nucleotide incorporation specificity, with the two adducts not completely identical in influencing these properties. Although there was a measurable extent of error-free nucleotide incorporation, all these polymerases primarily misincorporated opposite EA, indicating that the adduct, similar to {var_epsilon}A, is a miscoding lesion.

  17. Incidence and complications of interstitial lung disease in users of tocilizumab, rituximab, abatacept and anti-tumor necrosis factor α agents, a retrospective cohort study.

    Science.gov (United States)

    Curtis, Jeffrey R; Sarsour, Khaled; Napalkov, Pavel; Costa, Laurie A; Schulman, Kathy L

    2015-11-11

    Interstitial lung disease (ILD) is a common extra-articular condition in rheumatoid arthritis (RA), but few studies have systematically investigated its incidence and risk factors in patients receiving anti-tumor necrosis factor-alpha (anti-TNFα) agents or alternate mechanisms of action (MOAs) (e.g., T-cell, B-cell, and interleukin-6 inhibitors). RA patients at least 18 years old were selected from the MarketScan databases (2010-2012) if they had at least one prescription/administration of abatacept, rituximab, tocilizumab, or anti-TNF after having discontinued a different biologic agent and meeting enrollment criteria. Cox models estimated the risk of incident ILD and ILD-related hospitalization. Sensitivity analyses used an alternate ILD case definition. We identified 13,795 episodes of biologic exposure in 11,219 patients. Mean (standard deviation) follow-up was 0.7 (0.5) years. Patients receiving alternate MOA agents were more likely to have had recent exposure to steroids, prior exposure to a greater number of biologics, and history of ILD, anemia, chronic obstructive pulmonary disease, and other pulmonary conditions. When the sensitive definition was used, unadjusted ILD incidence rates (95% confidence interval, or CI) ranged from 4.0 (1.6-8.2, abatacept) to 12.2 (5.6-23.2, infliximab) per 1000 person-years. Being older (hazard ratio (HR) 3.5; 95% CI 2.1-6.0), being male (HR 3.1; 95% CI 1.2-8.4), and having another pulmonary condition (HR 4.8; 95% CI 1.7-13.7) were associated with increased ILD incidence in either sensitive and/or specific models. There were no significant differences by biologic class. Hospitalization rates (95% CI) when the sensitive definition was used ranged from 55.6 (6.7-200.7, tocilizumab) to 262.5 (71.5-672.2, infliximab). In Cox models, recent methotrexate exposure was associated with reduced ILD hospitalization (HR 0.16; 95% CI 0.06-0.46), whereas being male (HR 2.5; 95% CI 1.3-4.8) and having had a hospitalization for asthma (HR 3

  18. Antitumor effect of degalactosylated gc-globulin on orthotopic grafted lung cancer in mice.

    Science.gov (United States)

    Hirota, Keiji; Nakagawa, Yoshinori; Takeuchi, Ryota; Uto, Yoshihiro; Hori, Hitoshi; Onizuka, Shinya; Terada, Hiroshi

    2013-07-01

    Group-specific component (Gc)-globulin-derived macrophage-activating factor (GcMAF) generated by a cascade of catalytic reactions with deglycosidase enzymes exerts antitumor activity. We hypothesized that degalactosyl Gc-globulin (DG3), a precursor of GcMAF, also plays a role in recovery from cancer as well as GcMAF due to progression of deglycosylation by generally resident sialidases and mannosidases. We prepared the subtypes of DG3, such as 1f1f and 1s1s and its 22 homodimers, by using vitamin D3-binding Sepharose CL-6B and examined their antitumor activity in mice bearing Lewis lung carcinoma cells, by counting the number of nodules formed in their lungs. Antitumor activity of DG3 was observed regardless of its subtype, being equivalent to that of GcMAF. The injection route of DG3 affected its antitumor activity, with subcutaneous and intramuscular administration being more favorable than the intraperitoneal or intravenous route. In order to obtain significant antitumor activity, more than 160 ng/kg of DG3 were required. DG3 proved to be promising as an antitumor agent, similarly to GcMAF.

  19. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Luo, Qingqiong; Hu, Dan; Hu, Shuiqing; Yan, Ming; Sun, Zujun; Chen, Fuxiang

    2012-01-01

    Metformin, which is widely used as an antidiabetic agent, has recently been reported to reduce cancer risk and improve prognosis in certain malignancies. However, the specific mechanisms underlying the effect of metformin on the development and progression of several cancers including oral squamous cell carcinoma (OSCC) remain unclear. In the present study, we investigated the effects of metformin on OSCC cells in vitro and in vivo. OSCC cells treated with or without metformin were counted using a hemocytometer. The clonogenic ability of OSCC cells after metformin treatment was determined by colony formation assay. Cell cycle progression and apoptosis were assessed by flow cytometry, and the activation of related signaling pathways was examined by immunoblotting. The in vivo anti-tumor effect of metformin was examined using a xenograft mouse model. Immunohistochemistry and TUNEL staining were used to determine the expression of cyclin D1 and the presence of apoptotic cells in tumors from mice treated with or without metformin. Metformin inhibited proliferation in the OSCC cell lines CAL27, WSU-HN6 and SCC25 in a time- and dose-dependent manner, and significantly reduced the colony formation of OSCC cells in vitro. Metformin induced an apparent cell cycle arrest at the G0/G1 phase, which was accompanied by an obvious activation of the AMP kinase pathway and a strongly decreased activation of mammalian target of rapamycin and S6 kinase. Metformin treatment led to a remarkable decrease of cyclin D1, cyclin-dependent kinase (CDK) 4 and CDK6 protein levels and phosphorylation of retinoblastoma protein, but did not affect p21 or p27 protein expression in OSCC cells. In addition, metformin induced apoptosis in OSCC cells, significantly down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulating the pro-apoptotic protein Bax. Metformin also markedly reduced the expression of cyclin D1 and increased the numbers of apoptotic cells in vivo, thus inhibiting

  20. Combretastatin A-4 based thiophene derivatives as antitumor agent: Development of structure activity correlation model using 3D-QSAR, pharmacophore and docking studies

    Directory of Open Access Journals (Sweden)

    Vijay K. Patel

    2017-12-01

    Full Text Available The structure and ligand based synergistic approach is being applied to design ligands more correctly. The present report discloses the combination of structure and ligand based tactics i.e., molecular docking, energetic based pharmacophore, pharmacophore and atom based 3D-QSAR modeling for the analysis of thiophene derivatives as anticancer agent. The main purpose of using structure and ligand based synergistic approach is to ascertain a correlation between structure and its biological activity. Thiophene derivatives have been found to possess cytotoxic activity in several cancer cell lines and its mechanism of action basically involves the binding to the colchicine site on β-tubulin. The structure based approach (molecular docking was performed on a series of thiophene derivatives. All the structures were docked to colchicine binding site of β tubulin for examining the binding affinity of compounds for antitumor activity. The pharmacophore and atom based 3D-QSAR modeling was accomplished on a series of thiophene (32 compounds analogues. Five-point common pharmacophore hypotheses (AAAAR.38 were selected for alignment of all compounds. The atom based 3D-QSAR models were developed by selection of 23 compounds as training set and 9 compounds as test set, demonstrated good partial least squares statistical results. The generated common pharmacophore hypothesis and 3D-QSAR models were validated further externally by measuring the activity of database compounds and assessing it with actual activity. The common pharmacophore hypothesis AAAAR.38 resulted in a 3D-QSAR model with excellent PLSs data for factor two characterized by the best predication coefficient Q2 (cross validated r2 (0.7213, regression R2 (0.8311, SD (0.3672, F (49.2, P (1.89E-08, RMSE (0.3864, Stability (0.8702, Pearson-r (0.8722. The results of these molecular modeling studies i.e., molecular docking, energetic based pharmacophore, pharmacophore and atom based 3D-QSAR modeling

  1. TP53 modulating agent, CP-31398 enhances antitumor effects of ODC inhibitor in mouse model of urinary bladder transitional cell carcinoma.

    Science.gov (United States)

    Madka, Venkateshwar; Mohammed, Altaf; Li, Qian; Zhang, Yuting; Kumar, Gaurav; Lightfoot, Stan; Wu, Xueru; Steele, Vernon; Kopelovich, Levy; Rao, Chinthalapally V

    2015-01-01

    Mutations of the tumor suppressor p53 and elevated levels of polyamines are known to play key roles in urothelial tumorigenesis. We investigated the inhibition of polyamines biosynthesis and the restoration of p53 signaling as a possible means of preventing muscle invasive urothelial tumors using DFMO, an ODC-inhibiting agent, and CP-31398 (CP), a p53 stabilizing agent. Transgenic UPII-SV40T male mice at 6weeks age (n=15/group) were fed control diet (AIN-76A) or experimental diets containing DFMO (1000 and 2000 ppm) or 150 ppm CP or both. At 40 weeks of age, all mice were euthanized and urinary bladders were evaluated to determine tumor weight and histopathology. Low-dose DFMO had a moderate significant inhibitory effect on tumor growth (38%, P0.05). CP at 150 ppm alone had a strong inhibitory effect on tumor growth by 80% (PCP (150 ppm) led to significant decrease in tumor weight (70%, PCP and DFMO appears to be a promising strategy for urothelial TCC prevention.

  2. Biology and life history of Argopistes tsekooni (Coleoptera: Chrysomelidae) in China, a promising biological control agent of Chinese privet.

    Science.gov (United States)

    Y-Z Zhang; J. Sun; J.L. Hanula

    2009-01-01

    The biology and life history of Argopistes tsekooni Chen (Coleoptera: Chrysomelidae), a potential biological control agent of Chinese privet, Ligustrum sinense Lour., was studied under laboratory and outdoor conditions in Huangshan City of Anhui Province, China, in 2006. A. tsekooni larvae are leafminers that...

  3. Newly Synthesized Water Soluble Cholinium-Purpurin Photosensitizers and Their Stabilized Gold Nanoparticles as Promising Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Young Key Shim

    2008-05-01

    Full Text Available For possible future use in Photodynamic Therapy (PDT and/or Photothermal Therapy (PTT of cancer and screening of cancer cells a new type of ionic liquid photosensitizer –Cholinium-Purpurin-18 (Chol-Pu-18 – was synthesized and small gold (Au nanoparticles, stabilized by this photosensitizer were prepared without adding any particular reducing agents and CTAB. UV-Vis spectroscopy and Transmission Electron Microscopy (TEM were used for characterization of the nanoparticles and FAB-MS and NMR of the ionic liquid choline hydroxide, purpurin carboxylate and their ionic liquid type of photosensitizer were obtained.

  4. Acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells: application of metabolomics in mechanistic studies of antitumor agents.

    Directory of Open Access Journals (Sweden)

    Yini Wang

    Full Text Available A new acridone derivative, 2-aminoacetamido-10-(3, 5-dimethoxy-benzyl-9(10H-acridone hydrochloride (named 8a synthesized in our lab shows potent antitumor activity, but the mechanism of action remains unclear. Herein, we report the use of an UPLC/Q-TOF MS metabolomic approach to study the effects of three compounds with structures optimized step-by-step, 9(10H-acridone (A, 10-(3,5-dimethoxybenzyl-9(10H-acridone (I, and 8a, on CCRF-CEM leukemia cells and to shed new light on the probable antitumor mechanism of 8a. Acquired data were processed by principal component analysis (PCA and orthogonal partial least squares discriminant analysis (OPLS-DA to identify potential biomarkers. Comparing 8a-treated CCRF-CEM leukemia cells with vehicle control (DMSO, 23 distinct metabolites involved in five metabolic pathways were identified. Metabolites from glutathione (GSH and glycerophospholipid metabolism were investigated in detail, and results showed that GSH level and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in 8a-treated cells, while L-cysteinyl-glycine (L-Cys-Gly and glutamate were greatly increased. In glycerophospholipid metabolism, cell membrane components phosphatidylcholines (PCs were decreased in 8a-treated cells, while the oxidative products lysophosphatidylcholines (LPCs were significantly increased. We further found that in 8a-treated cells, the reactive oxygen species (ROS and lipid peroxidation product malondialdehyde (MDA were notably increased, accompanied with decrease of mitochondrial transmembrane potential, release of cytochrome C and activation of caspase-3. Taken together our results suggest that the acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells. The UPLC/Q-TOF MS based metabolomic approach provides novel insights into the mechanistic studies of antitumor drugs from a point distinct from traditional biological investigations.

  5. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate.

    Science.gov (United States)

    Shi, Jia; Zhou, Songlei; Kang, Le; Ling, Hu; Chen, Jiepeng; Duan, Lili; Song, Yanzhi; Deng, Yihui

    2018-02-01

    Numerous studies have recently shown that vitamin K 2 (VK 2 ) has antitumor effects in a variety of tumor cells, but there are few reports demonstrating antitumor effects of VK 2 in vivo. The antitumor effects of VK 2 in nanoemulsions are currently not known. Therefore, we sought to characterize the antitumor potential of VK 2 nanoemulsions in S180 tumor cells in the present study. Furthermore, a ligand conjugate sialic acid-cholesterol, with enhanced affinity towards the membrane receptors overexpressed in tumors, was anchored on the surface of the nanoemulsions to increase VK 2 distribution to the tumor tissue. VK 2 was encapsulated in oil-in-water nanoemulsions, and the physical and chemical stability of the nanoemulsions were characterized during storage at 25 °C. At 25 °C, all nanoemulsions remained physically and chemically stable with little change in particle size. An in vivo study using syngeneic mice with subcutaneously established S180 tumors demonstrated that intravenous or intragastric administration of VK 2 nanoemulsions significantly suppressed the tumor growth. The VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate showed higher tumor growth suppression than the VK 2 nanoemulsions, while neither of them exhibited signs of drug toxicity. In summary, VK 2 exerted effective antitumor effects in vivo, and VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate enhanced the antitumor activity, suggesting that these VK 2 may be promising agents for the prevention or treatment of tumor in patients.

  6. Novel 20(S)-sulfonylamidine derivatives of camptothecin and the use thereof as a potent antitumor agent: a patent evaluation of WO2015048365 (A1).

    Science.gov (United States)

    Beretta, Giovanni Luca; Zaffaroni, Nadia; Varchi, Greta

    2016-05-01

    A series of camptothecin (CPT) derivatives featuring acyl-esterification of the 20(S)-hydroxyl group with a residue containing a sulfonylamidine moiety is synthesized via a Cu catalyzed three-component reaction. The compounds show remarkable cytotoxicity against a panel of tumor cells, including a cell line exhibiting Multi-Drug Resistant (MDR) phenotype. The patent develops 9a, the best derivative of the series, that i) selectively poisons DNA Topoisomerase I (TopoI); ii) induces cell-cycle S-phase arrest with activation of the DNA damage response pathway and apoptosis induction and iii) shows considerable in vivo antitumor potency. We envision that the peculiar modification of the 20(S)-hydroxyl group of CPT with a sulfonylamidine residue will play a continuing role in affording new TopoI poison drug candidates for therapeutic applications.

  7. Synthesis of 1-Substituted Carbazolyl-1,2,3,4-tetrahydro- and Carbazolyl-3,4-dihydro-β-carboline Analogs as Potential Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Ji-Wang Chern

    2011-02-01

    Full Text Available A series of 1-substituted carbazolyl-1,2,3,4-tetrahydro- and carbazolyl-3,4-dihydro-b-carboline analogs have been synthesized and evaluated for antitumor activity against human tumor cells including KB, DLD, NCI-H661, Hepa, and HepG2/A2 cell lines. Among these, compounds 2, 6, 7, and 9 exhibited the most potent and selective activity against the tested tumor cells. As for inhibition of topoisomerase II, compounds 1–14 and 18 showed better activity than etoposide. Among them, compounds 3, 4, 7, 9, and 10 exhibited potent activity. The structure and activity relationship (SAR study revealed correlation between carbon numbers of the side chain and biological activities. The molecular complex with DNA for compound 2 was proposed.

  8. Bringing Radiotracing to Titanium-Based Antineoplastics: Solid Phase Radiosynthesis, PET and ex Vivo Evaluation of Antitumor Agent [45Ti](salan)Ti(dipic)

    DEFF Research Database (Denmark)

    Severin, Gregory; Nielsen, Carsten H.; Jensen, Andreas Tue Ingemann

    2015-01-01

    We present a novel solid-phase based 45Ti radiolabeling methodology and the implementation of 45Ti-PET in titanium-based antineoplastics using the showcase compound [45Ti](salan)Ti(dipic). This development is intended to allow elucidation of the biodistribution and pharmacokinetics of promising new...

  9. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Xu HL

    2015-05-01

    Full Text Available Huanli Xu,1 Xin Zhao,2 Xiaohui Liu,1 Pingxiang Xu,1 Keming Zhang,2 Xiukun Lin11Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, 2Department of Hepatobiliary Surgery, 302 Hospital of Chinese People’s Liberation Army, Beijing, People’s Republic of ChinaAbstract: Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented.Keywords: traditional Chinese medicine, antitumor effects, apoptotic pathway

  10. Cellular internalization and morphological analysis after intravenous injection of a highly hydrophilic octahedral rhenium cluster complex - a new promising X-ray contrast agent.

    Science.gov (United States)

    Krasilnikova, Anna A; Solovieva, Anastasiya O; Trifonova, Kristina E; Brylev, Konstantin A; Ivanov, Anton A; Kim, Sung-Jin; Shestopalov, Michael A; Fufaeva, Maria S; Shestopalov, Alexander M; Mironov, Yuri V; Poveshchenko, Alexander F; Shestopalova, Lidia V

    2016-11-01

    The octahedral cluster compound Na 2 H 8 [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] has been shown to be highly radio dense, thus becoming a promising X-ray contrast agent. It was also shown that this compound had low cytotoxic effect in vitro, low acute toxicity in vivo and was eliminated rapidly from the body through the urinary tract. The present contribution describes a more detailed cellular internalization assay and morphological analysis after intravenous injection of this hexarhenium cluster compound at different doses. The median lethal dose (LD 50 ) of intravenously administrated compound was calculated (4.67 ± 0.69 g/kg). Results of the study clearly indicated that the cluster complex H n [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] n-10 was not internalized into cells in vitro and induced only moderate morphological alterations of kidneys at high doses without any changes in morphology of liver, spleen, duodenum, or heart of mice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. The HSP90 inhibitor 17-AAG exhibits potent antitumor activity for pheochromocytoma in a xenograft model.

    Science.gov (United States)

    Xu, Yunze; Zhu, Qi; Chen, Dongning; Shen, Zhoujun; Wang, Weiqing; Ning, Guang; Zhu, Yu

    2015-07-01

    This study aims to investigate the effect of heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in the malignant pheochromocytoma using a xenograft mouse model. Treatment with 17-AAG induced a marked reduction in the volume and weight of PC12 pheochromocytoma cell tumor xenografts in mice. Furthermore, 17-AAG also significantly inhibited the expression of HSP90 and its client proteins. Our results validated HSP90 as an important target in pheochromocytoma and provided rationale for the testing of HSP90 inhibitors as a promising therapeutic agent in the antitumor therapy of pheochromocytoma.

  12. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach.

    Science.gov (United States)

    Kim, Peter S; Lee, Peter P

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.

  13. In vitro evaluation of the cyto-genotoxic potential of Ruthenium(II) SCAR complexes: a promising class of antituberculosis agents.

    Science.gov (United States)

    De Grandis, Rone Aparecido; Resende, Flávia Aparecida; da Silva, Monize Martins; Pavan, Fernando Rogério; Batista, Alzir Azevedo; Varanda, Eliana Aparecida

    2016-03-01

    Tuberculosis is a top infectious disease killer worldwide, caused by the bacteria Mycobacterium tuberculosis. Increasing incidences of multiple drug-resistance (MDR) strains are emerging as one of the major public health threats. However, the drugs in use are still incapable of controlling the appalling upsurge of MDR. In recent years a marked number of research groups have devoted their attention toward the development of specific and cost-effective antimicrobial agents against targeted MDR-Tuberculosis. In previous studies, ruthenium(II) complexes (SCAR) have shown a promising activity against MDR-Tuberculosis although few studies have indeed considered ruthenium toxicity. Therefore, within the preclinical requirements, we have sought to determine the cyto-genotoxicity of three SCAR complexes in this present study. The treatment with the SCARs induced a concentration-dependent decrease in cell viability in CHO-K1 and HepG2 cells. Based on the clonogenic survival, SCAR 5 was found to be more cytotoxic while SCAR 6 exhibited selectivity action on tumor cells. Although SCAR 4 and 5 did not indicate any mutagenic activity as evidenced by the Ames and Cytokinesis block micronucleus cytome assays, the complex SCAR 6 was found to engender a frameshift mutation detected by Salmonella typhimurium in the presence of S9. Similarly, we observed a chromosomal damage in HepG2 cells with significant increases of micronuclei and nucleoplasmic bridges. These data indicate that SCAR 4 and 5 complexes did not show genotoxicity in our models while SCAR 6 was considered mutagenic. This study presented a comprehensive genotoxic evaluation of SCAR complexes were shown to be genotoxic in vitro. All in all, further studies are required to fully elucidate how the properties can affect human health. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Carbamoylating activity associated with the activation of the antitumor agent laromustine inhibits angiogenesis by inducing ASK1-dependent endothelial cell death.

    Directory of Open Access Journals (Sweden)

    Weidong Ji

    Full Text Available The anticancer agent 1,2-bis(methylsulfonyl-1-(2-chloroethyl-2-[(methylaminocarbonyl]hydrazine (laromustine, upon decomposition in situ, yields methyl isocyanate and the chloroethylating species 1,2-bis(methylsulfonyl-1-(2-chloroethylhydrazine (90CE. 90CE has been shown to kill tumor cells via a proposed mechanism that involves interstrand DNA cross-linking. However, the role of methyl isocyanate in the antineoplastic function of laromustine has not been delineated. Herein, we show that 1,2-bis(methylsulfonyl-1-[(methylaminocarbonyl]hydrazine (101MDCE, an analog of laromustine that generates only methyl isocyanate, activates ASK1-JNK/p38 signaling in endothelial cells (EC. We have previously shown that ASK1 forms a complex with reduced thioredoxin (Trx1 in resting EC, and that the Cys residues in ASK1 and Trx1 are critical for their interaction. 101MDCE dissociated ASK1 from Trx1, but not from the phosphoserine-binding inhibitor 14-3-3, in whole cells and in cell lysates, consistent with the known ability of methyl isocyanate to carbamoylate free thiol groups of proteins. 101MDCE had no effect on the kinase activity of purified ASK1, JNK, or the catalytic activity of Trx1. However, 101MDCE, but not 90CE, significantly decreased the activity of Trx reductase-1 (TrxR1. We conclude that methyl isocyanate induces dissociation of ASK1 from Trx1 either directly by carbamoylating the critical Cys groups in the ASK1-Trx1 complex or indirectly by inhibiting TrxR1. Furthermore, 101MDCE (but not 90CE induced EC death through a non-apoptotic (necroptotic pathway leading to inhibition of angiogenesis in vitro. Our study has identified methyl isocyanates may contribute to the anticancer activity in part by interfering with tumor angiogenesis.

  15. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Kang-Jian

    2012-02-01

    Full Text Available Abstract Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.

  16. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    Science.gov (United States)

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  17. Rhenium–platinum antitumor systems

    Directory of Open Access Journals (Sweden)

    A. V. Shtemenko

    2017-04-01

    Full Text Available This review provides an overlook of design (in short, antitumor and other biological activity of quadruple-bonded cluster dirhenium(III compounds and their synergism with cisplatin. In particular, we describe the work of the rhenium-platinum antitumor system (introduction of rhenium and platinum compounds. Among known metal-based anticancer drugs and drug candidates dirhenium(III compounds differ profoundly due to their strong antiradical and antioxidant properties determined by quadruple bond unsaturation. Such advantages of metal complexes as more expressed redox chemical propertie should be exploited for creating more efficient anticancer drugs. Combination of drugs leads to synergistic effects and/or to lowe­ring toxicity of platinides and is very promising in cancer chemotherapy. The review covers the follo­wing items: design of quadruple bonded dirhenium(III clusters, their spectral and antiradical properties (in short; interaction of the dirhenium(III compounds with lipids and formation of liposomes; interaction of the dirhenium(III compounds with erythrocytes and their antihemolytic activity in the models of hemolytic anemia; anticancer activity of dirhenium clusters and work of the rhenium-platinum antitumor system; antianemic and antioxidant properties of the dirhenium(III compounds in the model of tumor growth; interaction of the dirhenium(III compounds with nucleobases and DNA. Some modern trends in the field of bioinorganic and medicinal chemi­stry are also considered regarding their connection to the rhenium-platinum system efficiency: use of combinational therapy and nanomaterials; involvement of some biologically active ligands and redox-activation strategy, etc.

  18. Hypoxia-targeting antitumor prodrugs and photosensitizers

    International Nuclear Information System (INIS)

    Zhang Zhouen; Nishimoto, S.I.

    2006-01-01

    Tumor hypoxia has been identified as a key subject for tumor therapy, since hypoxic tumor cells show resistance to treatment of tumor tissues by radiotherapy, chemotherapy and phototherapy. For improvement of tumor radiotherapy, we have proposed a series of radiation-activated prodrugs that could selectively release antitumor agent 5-fluorouracil or 5-fluorodeoxyuridine under hypoxic conditions. Recently, we attempted to develop two families of novel hypoxia-targeting antitumor agents, considering that tumor-hypoxic environment is favorable to biological and photochemical reductions. The first family of prodrugs was derived from camptothecin as a potent topoisomerase I inhibitor and several bioreductive motifs. These prodrugs could be activated by NADPH-cytochrome P450 reductase or DT-diaphorase to release free camptothecin, and thereby showed hypoxia-selective cytotoxictiy towards tumor cells. These prodrugs were also applicable to the real-time monitoring of activation and antitumor effect by fluorometry. Furthermore, the camptothecin-bioreductive motif conjugates was confirmed to show an oxygen-independent DAN photocleaving activity, which could overcome a drawback of back electron transfer occurring in the photosensitized one-electron oxidation of DNA. Thus, these camptothecin derivatives could be useful to both chemotherapy and phototherapy for hypoxic tumor cells. The second family of prodrugs harnessed UV light for cancer therapy, incorporating the antitumor agent 5-fluorourcil and the photolabile 2-nitrobenzyl chromophores. The attachment of a tumor-homing cyclic peptide CNGRC was also employed to construct the prototype of tumor-targeting photoactiaved antitumor prodrug. These novel prodrugs released high yield of 5-fluorourcil upon UV irradiation at λ ex =365 nm, while being quite stable in the dark. The photoactivation mechanism was also clarified by means of nanosecond laser flash photolysis. (authors)

  19. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.

    Science.gov (United States)

    Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P

    2018-05-07

    Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.

  20. Fuzzy promises

    DEFF Research Database (Denmark)

    Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas

    2012-01-01

    as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....

  1. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    International Nuclear Information System (INIS)

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-01-01

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  2. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    Science.gov (United States)

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  3. A review of electroporation-based antitumor skin therapies and investigation of betulinic acid-loaded ointment.

    Science.gov (United States)

    Bakonyi, Monika; Berko, Szilvia; Eros, Gabor; Varju, Gabor; Dehelean, Cristina; Szucs, Maria Budai; Csanyi, Erzsebet

    2017-11-13

    Electrochemotherapy is a novel treatment for cutaneous and subcutaneous tumors utilizing the combination of electroporation and chemotherapeutic agents. Since tumors have an increasing incidence nowadays as a result of environmental and genetic factors, electrochemotherapy could be a promising treatment for cancer patients. The aim of this article is to summarize the novel knowledge about the use of electroporation for antitumor treatments and to present a new application of electrochemotherapy with a well-known plant derived antitumor drug betulinic acid. For the review we have searched the databases of scientific and medical research to collect the available publications about the use of electrochemotherapy in the treatment of various types of cancer. By the utilization of the available knowledge, we investigated the effect of electroporation on the penetration of a topically applied betulinic acid formulation into the skin by ex vivo Raman spectroscopy on hairless mouse skin Results: Raman measurements have demonstrated that the penetration depth of betulinic acid can be remarkably ameliorated by the use of electroporation, so this protocol can be a possibility for the treatment of deeper localized cancer nodules. Furthermore, it proved the influence of various treatment times, since they caused different spatial distributions of the drug in the skin. The review demonstrates that electrochemotherapy is a promising tool to treat different kinds of tumors with high efficiency and with only a few moderate adverse effects. Moreover, it presents a non-invasive method to enhance the penetration of antitumor agents, which can offer novel prospects for antitumor therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Whole-genome sequence of Pseudomonas fluorescens EK007-RG4, a promising biocontrol agent against a broad range of bacteria, including the fire blight bacterium Erwinia amylovora

    DEFF Research Database (Denmark)

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad

    2017-01-01

    Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several...

  5. Antitumor Activities of Kushen: Literature Review

    Directory of Open Access Journals (Sweden)

    Mingyu Sun

    2012-01-01

    Full Text Available To discover and develop novel natural compounds with therapeutic selectivity or that can preferentially kill cancer cells without significant toxicity to normal cells is an important area in cancer chemotherapy. Kushen, the dried roots of Sophora flavescens Aiton, has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As and kushen flavonoids (KS-Fs are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anticancer drugs. More potent antitumor activities were identified in KS-Fs than in KS-As in vitro and in vivo. KS-Fs may be developed as novel antitumor agents.

  6. Synthesis and Antitumor Molecular Mechanism of Agents Based on Amino 2-(3′,4′,5′-Trimethoxybenzoyl)-benzo[b]furan: Inhibition of Tubulin and Induction of Apoptosis

    Science.gov (United States)

    Baraldi, Pier Giovanni; Lopez-Cara, Carlota; Cruz-Lopez, Olga; Carrion, Maria Dora; Salvador, Maria Kimatrai; Bermejo, Jaime; Estévez, Sara; Estévez, Francisco; Balzarini, Jan; Brancale, Andrea; Ricci, Antonio; Chen, Longchuan; Kim, Jae Gwan; Hamel, Ernest

    2011-01-01

    Induction of apoptosis is a promising strategy that could lead to the discovery of new molecules active in cancer chemotherapy. This property is generally observed when cells are treated with agents that target microtubules, dynamic structures that play a crucial role in cell division. Small molecules such as benzo[b]furans are attractive as inhibitors of tubulin polymerization. A new class of inhibitors of tubulin polymerization based on the 2-(3′,4′,5′-trimethoxybenzoyl)benzo[b]furan molecular skeleton, with the amino group placed at different positions on the benzene ring, were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell-cycle effects. The methoxy substitution pattern on the benzene portion of the benzo[b]furan moiety played an important role in affecting antiproliferative activity. In the series of 5-amino derivatives, the greatest inhibition of cell growth oc curred if the methoxy substituent is placed at the C6 position, whereas C7 substitution decreases potency. The most promising compound in this series is 2-(3′,4′,5′-trimethoxybenzoyl)-3-methyl-5-amino-6-methoxybenzo[b]furan (3h), which inhibits cancer cell growth at nanomolar concentrations (IC50=16–24 nm), and interacts strongly with tubulin by binding to the colchicine site. Sub-G1 apoptotic cells in cultures of HL-60 and U937 cells were observed by flow cytometric analysis after treatment with 3h in a concentration-dependent manner. We also show that compound 3h induces apoptosis by activation of caspase-3, -8, and -9, and this is associated with cytochrome c release from mitochondria. The introduction of an α-bromoacryloyl group increased antiproliferative activity with respect to the parent amino derivatives. PMID:21805646

  7. Assessment of antitumoral and antimicrobial effects of a maslinic acid derivative

    Directory of Open Access Journals (Sweden)

    Ioana Z. Pavel

    2016-12-01

    Full Text Available INTRODUCTION Maslinic acid, a naturally occurring triterpene, has been reported to possess several therapeutic effects including antioxidant, anti-inflammatory and antiparasitic properties. Structural changes of the compound led to the development of new derivatives in order to expand the spectrum of activities. OBJECTIVES AND BACKGROUND The present study was purposed to assess the in vitro antitumoral and antibacterial effects of a maslinic acid derivative, namely benzyl (2α, 3β 2,3-diacetoxy-olean-12- en-28-amide (EM2. MATERIALS AND METHODS Four compound concentrations (12.5, 25, 50 and 100 µM were evaluated for their cytotoxic effect on A375 human melanoma and B164A5 murine melanoma cell lines using the MTT assay. Furthermore, EM2 was tested on ten bacterial strains by means of agar disk diffusion method with the assessment of the inhibition zone diameters at 24h period of time. RESULTS EM2 elicited a dose-dependent cytotoxic effect on both melanoma cell lines. Regarding the antibacterial activity, EM2 determined a significant growth inhibition on Streptococcus pyogenes (20 ± 0.26 mm and Staphylococcus aureus (13 ± 0.19 mm. CONCLUSIONS The tested maslinic acid derivative is a promising antitumoral agent against skin cancer and antimicrobial agent against cocci bacteria. Graphical abstract: EM2 in vitro effects

  8. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-03-01

    Full Text Available Yi Liu,1 Hongyu Piao,1 Ying Gao,1 Caihong Xu,2 Ye Tian,1 Lihong Wang,1 Jinwen Liu,1 Bo Tang,1 Meijuan Zou,1 Gang Cheng1 1Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People’s Republic of China; 2Department of Food Science, Shenyang Normal University, Shenyang, Liaoning Province, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN38, an active metabolite of irinotecan (CPT-11, is a remarkably potent antitumor agent. The clinical application of SN38 has been extremely restricted by its insolubility in water. In this study, we successfully synthesized two macromolecular prodrugs of SN38 with different conjugate positions (chitosan-(C10-OHSN38 and chitosan-(C20-OHSN38 to improve the water solubility and antitumor activity of SN38. These prodrugs can self-assemble into micelles in aqueous medium. The particle size, morphology, zeta potential, and in vitro drug release of SN38 and its derivatives, as well as their cytotoxicity, pharmacokinetics, and in vivo antitumor activity in a xenograft BALB/c mouse model were studied. In vitro, chitosan-(C10-OHSN38 (CS-(10sSN38 and chitosan-(C20-OHSN38 (CS-(20sSN38 were 13.3- and 25.9-fold more potent than CPT-11 in the murine colon adenocarcinoma cell line CT26, respectively. The area under the curve (AUC0–24 of SN38 after intravenously administering CS-(10sSN38 and CS-(20sSN38 to Sprague Dawley rats was greatly improved when compared with CPT-11 (both P<0.01. A larger AUC0–24 of CS-(20sSN38 was observed when compared to CS-(10sSN38 (P<0.05. Both of the novel self-assembled chitosan-SN38 prodrugs demonstrated superior anticancer activity to CPT-11 in the CT26 xenograft BALB/c mouse model. We have also investigated the differences between these macromolecular prodrug micelles with regards to enhancing the antitumor activity of SN38. CS-(20sSN38 exhibited better in vivo antitumor activity than CS-(10sSN38 at a dose of 2.5 mg/kg (P<0

  9. Delivery of antifibroblast agents as adjuncts to filtration surgery. Part I--Periocular clearance of cobalt-57 bleomycin in experimental drug delivery: pilot study in the rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Kay, J.S.; Litin, B.S.; Woolfenden, J.M.; Chvapil, M.; Herschler, J.

    1986-10-01

    Antitumor and antifibroblast agents show promise as adjuncts after glaucoma filtration surgery in reducing postoperative scarring and failure. We used nuclear imaging in rabbits to investigate periocular clearance of one such agent (/sup 57/Co-bleomycin). Sub-Tenon injection was compared to other delivery techniques. Our results showed that a collagen sponge and a silastic disc implant with a microhole prolonged drug delivery when compared to sub-Tenon injection alone or injection with a viscosity enhancing agent (0.5% sodium hyaluronate). We theorize that if an antifibroblast agent can be delivered in small and sustained amounts after filtration surgery, this may prolong bleb longevity and avoid unnecessary drug toxicity.

  10. Delivery of antifibroblast agents as adjuncts to filtration surgery. Part I--Periocular clearance of cobalt-57 bleomycin in experimental drug delivery: pilot study in the rabbit

    International Nuclear Information System (INIS)

    Kay, J.S.; Litin, B.S.; Woolfenden, J.M.; Chvapil, M.; Herschler, J.

    1986-01-01

    Antitumor and antifibroblast agents show promise as adjuncts after glaucoma filtration surgery in reducing postoperative scarring and failure. We used nuclear imaging in rabbits to investigate periocular clearance of one such agent ( 57 Co-bleomycin). Sub-Tenon injection was compared to other delivery techniques. Our results showed that a collagen sponge and a silastic disc implant with a microhole prolonged drug delivery when compared to sub-Tenon injection alone or injection with a viscosity enhancing agent (0.5% sodium hyaluronate). We theorize that if an antifibroblast agent can be delivered in small and sustained amounts after filtration surgery, this may prolong bleb longevity and avoid unnecessary drug toxicity

  11. 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective "small molecule" anti-cancer agent taken from labside to bedside: introduction to a special issue.

    Science.gov (United States)

    Pedersen, Peter L

    2012-02-01

    Although the "Warburg effect", i.e., elevated glucose metabolism to lactic acid (glycolysis) even in the presence of oxygen, has been recognized as the most common biochemical phenotype of cancer for over 80 years, its biochemical and genetic basis remained unknown for over 50 years. Work focused on elucidating the underlying mechanism(s) of the "Warburg effect" commenced in the author's laboratory in 1969. By 1985 among the novel findings made two related most directly to the basis of the "Warburg effect", the first that the mitochondrial content of tumors exhibiting this phenotype is markedly decreased relative to the tissue of origin, and the second that such mitochondria have markedly elevated amounts of the enzyme hexokinase-2 (HK2) bound to their outer membrane. HK2 is the first of a number of enzymes in cancer cells involved in metabolizing the sugar glucose to lactic acid. At its mitochondrial location HK2 binds at/near the protein VDAC (voltage dependent anion channel), escapes inhibition by its product glucose-6-phosphate, and gains access to mitochondrial produced ATP. As shown by others, it also helps immortalize cancer cells, i.e., prevents cell death. Based on these studies, the author's laboratory commenced experiments to elucidate the gene basis for the overexpression of HK2 in cancer. These studies led to both the discovery of a unique HK2 promoter region markedly activated by both hypoxic conditions and moderately activated by several metabolites (e.g., glucose), Also discovered was the promoter's regulation by epigenetic events (i.e., methylation, demethylation). Finally, the author's laboratory turned to the most important objective. Could they selectively and completely destroy cancerous tumors in animals? This led to the discovery in an experiment conceived, designed, and conducted by Young Ko that the small molecule 3-bromopyruvate (3BP), the subject of this mini-review series, is an incredibly powerful and swift acting anticancer agent

  12. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens.

    Science.gov (United States)

    Manukumar, H M; Umesha, S; Kumar, H N Naveen

    2017-09-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made an exciting area of drug delivery research. The present study investigated novel and simple route for synthesis of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) using chitosan and thymol as reducing, capping agent respectively to understand the therapeutic efficacy. The UV-vis spectroscopy, DLS, FT-IR, SEM, EDS, XRD used for characterization and radical scavenging activity, anti-microbial and biocompatibility was taken to ascertain an efficacy of novel T-C@AgNPs. The T-C@AgNPs intense peak at 490nm indicates the formation of nanoparticles and had average particle size of 28.94nm with spherical shape, monodisperse state in water, also exhibited excellent biocompatibility of cubic shaped pure silver element containing T-C@AgNPs. The antibacterial activity was studied for gram positive and gram negative food-borne pathogens and effective inhibition at 100μgmL -1 to S. aureus, S. epidermidis, S. haemolyticus (10.08, 10.00, 11.23mm) and S. typhimurium, P. aeruginosa and S. flexneri (9.28, 9.33, 12.03mm) compared to antibiotic Streptomycin. This study revealed the efficacy against multiple food-borne pathogens and therapeutic efficacy of T-C@AgNPs offers a valuable contribution in the area of nanotechnology. This proved to be a first-class novel antimicrobial material for the first time in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transient receptor potential ankyrin 1 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising anti-tussive therapeutic.

    Directory of Open Access Journals (Sweden)

    Indranil Mukhopadhyay

    Full Text Available Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1 is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca(+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1.

  14. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses

    Directory of Open Access Journals (Sweden)

    Arodola OA

    2015-11-01

    Full Text Available Olayide A Arodola, Mahmoud ES SolimanMolecular Modelling and Drug Design Lab, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South AfricaAbstract: Based on experimental data, the anticancer activity of nelfinavir (NFV, a US Food and Drug Administration (FDA-approved HIV-1 protease inhibitor (PI, was reported. Nevertheless, the mechanism of action of NFV is yet to be verified. It was hypothesized that the anticancer activity of NFV is due to its inhibitory effect on heat shock protein 90 (Hsp90, a promising target for anticancer therapy. Such findings prompted us to investigate the potential anticancer activity of all other FDA-approved HIV-1 PIs against human Hsp90. To accomplish this, “loop docking” – an enhanced in-house developed molecular docking approach – followed by molecular dynamic simulations and postdynamic analyses were performed to elaborate on the binding mechanism and relative binding affinities of nine FDA-approved HIV-1 PIs against human Hsp90. Due to the lack of the X-ray crystal structure of human Hsp90, homology modeling was performed to create its 3D structure for subsequent simulations. Results showed that NFV has better binding affinity (ΔG =−9.2 kcal/mol when compared with other PIs: this is in a reasonable accordance with the experimental data (IC50 3.1 µM. Indinavir, saquinavir, and ritonavir have close binding affinity to NFV (ΔG =−9.0, −8.6, and −8.5 kcal/mol, respectively. Per-residue interaction energy decomposition analysis showed that hydrophobic interaction (most importantly with Val534 and Met602 played the most predominant role in drug binding. To further validate the docking outcome, 5 ns molecular dynamic simulations were performed in order to assess the stability of the docked complexes. To our knowledge, this is the first account of detailed computational investigations aimed to investigate the potential anticancer activity and the binding

  15. Uptake of {sup 99m}Tc-labeled chondroitin sulfate by chondrocytes and cartilage: a promising agent for imaging of cartilage degeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Sobal, Grazyna [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)], E-mail: grazyna.sobal@meduniwien.ac.at; Menzel, Johannes [Institute of Immunology, Medical University of Vienna, Vienna 1090 (Austria); Sinzinger, Helmut [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)

    2009-01-15

    of in vitro cartilage tissue uptake. These data show that {sup 99m}TcCS accumulates in cartilage tissue, either by acting as a substrate for proteoglycan synthesis or by adsorption to cartilage. {sup 99m}TcCS could therefore be a possible agent to target and radioimage osteoarthritis.

  16. Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft model.

    Science.gov (United States)

    Raben, David; Bianco, Cataldo; Damiano, Vincenzo; Bianco, Roberto; Melisi, Davide; Mignogna, Chiara; D'Armiento, Francesco Paolo; Cionini, Luca; Bianco, A Raffaele; Tortora, Giampaolo; Ciardiello, Fortunato; Bunn, Paul

    2004-08-01

    Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis

  17. Antitumor and immunomodulatory effects of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin

    Directory of Open Access Journals (Sweden)

    Rodrigo Rezende Kitagawa

    2011-12-01

    Full Text Available Large number of quinones has been associated with antitumor, antibacterial, antimalarial and antifungal activities. In this work we describe the effect of the naphthoquinone, 5-methoxy-3,4-dehydroxanthomegnin, on murine tumor cells (LP07 and LM2 and its immunomodulatory effect on nitric oxide (NO production on LPS-stimulated macrophages. The results have shown that 5-methoxy-3,4-dehydroxanthomegnin was a significant inhibitor of LPS-stimulated NO generation from macrophage (inhibition percentage ranged from 97.4 to 98.9% and a strong cytotoxic agent against both tumor cells LP07 and LM2 (CI50 6.2±0.36 µM and 74.6±1.9 µM, respectively. These results indicate that the 5-methoxy-3,4-dehydroxanthomegnin may show promising activity in the treatment of murine breast and lung cancer by immunomodulatory and antiproliferative activities.

  18. Antitumor and immunomodulatory effects of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin

    Directory of Open Access Journals (Sweden)

    Rodrigo Rezende Kitagawa

    2011-08-01

    Full Text Available Large number of quinones has been associated with antitumor, antibacterial, antimalarial and antifungal activities. In this work we describe the effect of the naphthoquinone, 5-methoxy-3,4-dehydroxanthomegnin, on murine tumor cells (LP07 and LM2 and its immunomodulatory effect on nitric oxide (NO production on LPS-stimulated macrophages. The results have shown that 5-methoxy-3,4-dehydroxanthomegnin was a significant inhibitor of LPS-stimulated NO generation from macrophage (inhibition percentage ranged from 97.4 to 98.9% and a strong cytotoxic agent against both tumor cells LP07 and LM2 (CI50 6.2±0.36 µM and 74.6±1.9 µM, respectively. These results indicate that the 5-methoxy-3,4-dehydroxanthomegnin may show promising activity in the treatment of murine breast and lung cancer by immunomodulatory and antiproliferative activities.

  19. An Update on Antitumor Activity of Naturally Occurring Chalcones

    Directory of Open Access Journals (Sweden)

    En-Hui Zhang

    2013-01-01

    Full Text Available Chalcones, which have characteristic 1,3-diaryl-2-propen-1-one skeleton, are mainly produced in roots, rhizomes, heartwood, leaves, and seeds of genera Angelica, Sophora, Glycyrrhiza, Humulus, Scutellaria, Parartocarpus, Ficus, Dorstenia, Morus, Artocarpus, and so forth. They have become of interest in the research and development of natural antitumor agents over the past decades due to their broad range of mechanisms including anti-initiation, induction of apoptosis, antiproliferation, antimetastasis, antiangiogenesis, and so forth. This review summarizes the studies on the antitumor activity of naturally occurring chalcones and their underlying mechanisms in detail during the past decades.

  20. Enhanced antitumor effects of novel intracellular delivery of an active form of menaquinone-4, menahydroquinone-4, into hepatocellular carcinoma.

    Science.gov (United States)

    Setoguchi, Shuichi; Watase, Daisuke; Matsunaga, Kazuhisa; Matsubara, Misa; Kubo, Yohei; Kusuda, Mariko; Nagata-Akaho, Nami; Enjoji, Munechika; Nakashima, Manabu; Takeshita, Morishige; Karube, Yoshiharu; Takata, Jiro

    2015-02-01

    Reduced cellular uptake of menaquinone-4 (MK-4), a vitamin K2 homolog, in human hepatocellular carcinoma (HCC) limits its usefulness as a safe long-term antitumor agent for recurrent HCC and produces des-γ-carboxy prothrombin (DCP). We hypothesized that effective delivery of menahydroquinone-4 (MKH), the active form of MK-4 for γ-glutamyl carboxylation, into HCC cells is critical for regulating HCC growth, and may enable it to be applied as a safe antitumor agent. In this study, we verified this hypothesis using menahydroquinone-4 1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG), a prodrug of MKH, and demonstrated its effectiveness. Intracellular delivery of MKH and subsequent growth inhibition of PLC/PRF/5 and Hep3B (DCP-positive) and SK-Hep-1 (DCP-negative) cells after MKH-DMG administration were determined and compared with MK-4. The activity of MKH-DMG against tumor progression in the liver alongside DCP formation was determined in a spleen-liver metastasis mouse model. MKH-DMG exhibited greater intracellular delivery of MKH in vitro (AUC0-72 hour of MKH) and increased growth-inhibitory activity against both DCP-positive and DCP-negative HCC cell lines. The phenomena of MKH delivery into cells in parallel with simultaneous growth inhibition suggested that MKH is the active form for growth inhibition of HCC cells. Cell-cycle arrest was determined to be involved in the growth inhibition mechanisms of MKH-DMG. Furthermore, MKH-DMG showed significant inhibition of tumor progression in the liver, and a substantial decrease in plasma DCP levels in the spleen-liver metastasis mouse model. Our results suggest that MKH-DMG is a promising new candidate antitumor agent for safe long-term treatment of HCC. ©2014 American Association for Cancer Research.

  1. Antioxidant Activity, Antitumor Effect, and Antiaging Property of Proanthocyanidins Extracted from Kunlun Chrysanthemum Flowers

    Directory of Open Access Journals (Sweden)

    Siqun Jing

    2015-01-01

    Full Text Available The objective of the present study was to evaluate the antioxidant activity, antitumor effect, and antiaging property of proanthocyanidins from Kunlun Chrysanthemum flowers (PKCF grown in Xinjiang. In vitro antioxidant experiments results showed that the total antioxidant activity and the scavenging capacity of hydroxyl radicals (•OH and 1,1-diphenyl-2-picrylhydrazyl (DPPH• radicals increased in a concentration-dependent manner and were stronger than those of vitamin C. To investigate the antioxidant activity of PKCF in vivo, we used serum, liver, and kidney from mouse for the measurement of superoxide dismutase (SOD, malondialdehyde (MDA, and total antioxidant capacity (T-AOC. Results indicated that PKCF had antioxidative effect in vivo which significantly improved the activity of SOD and T-AOC and decreased MDA content. To investigate the antitumor activity of PKCF, we used H22 cells, HeLa cells, and Eca-109 cells with Vero cells as control. Inhibition ratio and IC50 values were measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay; PKCF showed great inhibitory activity on H22 cells and HeLa cells. We also used fruit flies as a model for analyzing the anti-aging property of PKCF. Results showed that PKCF has antiaging effect on Drosophila. Results of the present study demonstrated that PKCF could be a promising agent that may find applications in health care, medicine, and cosmetics.

  2. Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites

    International Nuclear Information System (INIS)

    Santos, Daniela P.; Ruiz, M. Adolfina; Gallardo, Visitación; Zanoni, Maria Valnice B.; Arias, José L.

    2011-01-01

    The development of anticancer drug delivery systems based on biodegradable nanoparticles has been intended to maximize the localization of chemotherapy agents within tumor interstitium, along with negligible drug distribution into healthy tissues. Interestingly, passive and active drug targeting strategies to cancer have led to improved nanomedicines with great tumor specificity and efficient chemotherapy effect. One of the most promising areas in the formulation of such nanoplatforms is the engineering of magnetically responsive nanoparticles. In this way, we have followed a chemical modification method for the synthesis of magnetite/chitosan-l-glutamic acid (core/shell) nanostructures. These magnetic nanocomposites (average size ≈340 nm) exhibited multifunctional properties based on its capability to load the antitumor drug doxorubicin (along with an adequate sustained release) and its potential for hyperthermia applications. Compared to drug surface adsorption, doxorubicin entrapment into the nanocomposites matrix yielded a higher drug loading and a slower drug release profile. Heating characteristics of the magnetic nanocomposites were investigated in a high-frequency alternating magnetic gradient: a stable maximum temperature of 46 °C was successfully achieved within 40 min. To our knowledge, this is the first time that such kind of stimuli-sensitive nanoformulation with very important properties (i.e., magnetic targeting capabilities, hyperthermia, high drug loading, and little burst drug release) has been formulated for combined antitumor therapy against cancer.

  3. Multifunctional antitumor magnetite/chitosan- l-glutamic acid (core/shell) nanocomposites

    Science.gov (United States)

    Santos, Daniela P.; Ruiz, M. Adolfina; Gallardo, Visitación; Zanoni, Maria Valnice B.; Arias, José L.

    2011-09-01

    The development of anticancer drug delivery systems based on biodegradable nanoparticles has been intended to maximize the localization of chemotherapy agents within tumor interstitium, along with negligible drug distribution into healthy tissues. Interestingly, passive and active drug targeting strategies to cancer have led to improved nanomedicines with great tumor specificity and efficient chemotherapy effect. One of the most promising areas in the formulation of such nanoplatforms is the engineering of magnetically responsive nanoparticles. In this way, we have followed a chemical modification method for the synthesis of magnetite/chitosan- l-glutamic acid (core/shell) nanostructures. These magnetic nanocomposites (average size ≈340 nm) exhibited multifunctional properties based on its capability to load the antitumor drug doxorubicin (along with an adequate sustained release) and its potential for hyperthermia applications. Compared to drug surface adsorption, doxorubicin entrapment into the nanocomposites matrix yielded a higher drug loading and a slower drug release profile. Heating characteristics of the magnetic nanocomposites were investigated in a high-frequency alternating magnetic gradient: a stable maximum temperature of 46 °C was successfully achieved within 40 min. To our knowledge, this is the first time that such kind of stimuli-sensitive nanoformulation with very important properties (i.e., magnetic targeting capabilities, hyperthermia, high drug loading, and little burst drug release) has been formulated for combined antitumor therapy against cancer.

  4. Selective anti-tumor activity of the novel fluoropyrimidine polymer F10 towards G48a orthotopic GBM tumors.

    Science.gov (United States)

    Gmeiner, William H; Lema-Tome, Carla; Gibo, Denise; Jennings-Gee, Jamie; Milligan, Carol; Debinski, Waldemar

    2014-02-01

    F10 is a novel anti-tumor agent with minimal systemic toxicity in vivo and which displays strong cytotoxicity towards glioblastoma (GBM) cells in vitro. Here we investigate the cytotoxicity of F10 towards GBM cells and evaluate the anti-tumor activity of locally-administered F10 towards an orthotopic xenograft model of GBM. The effects of F10 on thymidylate synthase (TS) inhibition and Topoisomerase 1 (Top1) cleavage complex formation were evaluated using TS activity assays and in vivo complex of enzyme bioassays. Cytotoxicity of F10 towards normal brain was evaluated using cortices from embryonic (day 18) mice. F10 displays minimal penetrance of the blood-brain barrier and was delivered by intra-cerebral (i.c.) administration and prospective anti-tumor response towards luciferase-expressing G48a human GBM tumors in nude mice was evaluated using IVIS imaging. Histological examination of tumor and normal brain tissue was used to assess the selectivity of anti-tumor activity. F10 is cytotoxic towards G48a, SNB-19, and U-251 MG GBM cells through dual targeting of TS and Top1. F10 is not toxic to murine primary neuronal cultures. F10 is well-tolerated upon i.c. administration and induces significant regression of G48a tumors that is dose-dependent. Histological analysis from F10-treated mice revealed tumors were essentially completely eradicated in F10-treated mice while vehicle-treated mice displayed substantial infiltration into normal tissue. F10 displays strong efficacy for GBM treatment with minimal toxicity upon i.c. administration establishing F10 as a promising drug-candidate for treating GBM in human patients.

  5. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xu, Qin; Zhang, Zhiyuan; Zhang, Ping; Chen, Wantao

    2008-01-01

    Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma

  6. Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells.

    Science.gov (United States)

    Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Nonomura, Takako; Masaki, Tsutomu; Uchida, Naohito; Yoshiji, Hitoshi; Kuriyama, Shigeki

    2007-08-01

    Although a number of studies have shown that vitamin K possesses antitumor activities on various neoplastic cell lines, there are few reports demonstrating in vivo antitumor effects of vitamin K, and the antitumor effect on colorectal cancer (CRC) remains to be examined. Therefore, antitumor effects of vitamin K on CRC were examined both in vitro and in vivo. Vitamins K2, K3 and K5 suppressed the proliferation of colon 26 cells in a dose-dependent manner, while vitamin K1 did not. On flow cytometry, induction of apoptosis by vitamins K2, K3 and K5 was suggested by population in sub-G1 phase of the cell cycle. Hoechst 33342 staining and a two-color flow cytometric assay using fluorescein isothiocyanate-conjugated annexin V and propidium iodide confirmed that vitamins K2, K3 and K5 induced apoptotic death of colon 26 cells. Enzymatic activity of caspase-3 in colon 26 cells was significantly up-regulated by vitamins K2, K3 and K5. The pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, substantially prevented vitamin K-mediated apoptosis. In vivo study using syngeneic mice with subcutaneously established colon 26 tumors demonstrated that intravenous administration of vitamins K2, K3 and K5 significantly suppressed the tumor growth. The number of apoptotic tumor cells was significantly larger in the vitamin K-treated groups than in the control group. These results suggest that vitamins K2, K3 and K5 exerted effective antitumor effects on CRC in vitro and in vivo by inducing caspase-dependent apoptotic death of tumor cells, suggesting that these K vitamins may be promising agents for the treatment of patients with CRC.

  7. Smart Mesoporous Nanomaterials for Antitumor Therapy

    Directory of Open Access Journals (Sweden)

    Marina Martínez-Carmona

    2015-11-01

    Full Text Available The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc. or external (temperature, light, magnetic field, etc. stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment.

  8. New cysteamine (2-chloroethyl)nitrosoureas. Synthesis and preliminary antitumor results.

    Science.gov (United States)

    Madelmont, J C; Godeneche, D; Parry, D; Duprat, J; Chabard, J L; Plagne, R; Mathe, G; Meyniel, G

    1985-09-01

    Three chemical pathways were used for the synthesis of four new N'-(2-chloroethyl)-N-[2-(methylsulfinyl)ethyl]- and N'-(2-chloroethyl)-N-[2-(methylsulfonyl)ethyl]-N- or N'-nitrosoureas. These compounds are plasma metabolites of CNCC, a promising antineoplastic (2-chloroethyl)nitrosourea. Preliminary antitumor evaluation was performed against L1210 leukemia implanted intraperitoneally in mice. Among these compounds, two of them exhibited a greater antitumor activity compared to that of the parent mixture.

  9. Antitumor mechanisms of metformin: Signaling, metabolism, immunity and beyond

    OpenAIRE

    Duque, Jorge Eduardo; Grupo de Terapia Celular y Molecular, Pontificia Universidad Javeriana, Bogotá D.C.; López, Catalina; Grupo de Investigación en Terapia Regenerativa, Universidad de Caldas, Manizales; Cruz, Nataly; Grupo de Terapia Celular y Molecular, Pontificia Universidad Javeriana, Bogotá D.C.; Samudio, Ismael; Grupo de Terapia Celular y Molecular, Pontificia Universidad Javeriana, Bogotá D.C.

    2010-01-01

    Metformin is a synthetic biguanide first described in the 1920´s as a side product of the synthesis of N,N-dimethylguanidine. Like other related biguanides, metformin displays antihyperglycemic properties, and has become the most widely prescribed oral antidiabetic medicine around the world. Intriguing recent evidence suggests that metformin has chemopreventive and direct antitumor properties, and several ongoing clinical studies around the world are using this agent alone or in combi...

  10. Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Miller Joseph D

    2008-05-01

    Full Text Available Abstract Background Interleukin-12 (IL-12 is a cytokine well known for its role in immunity. A lesser known function of IL-12 is its role in hematopoiesis. The promising data obtained in the preclinical models of antitumor immunotherapy raised hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity, largely due to repeat dose regimens, and modest clinical response observed in the clinical trials have pointed to the necessity to design protocols that minimize toxicity without affecting the anti-tumor effect of IL-12. We have focused on the lesser known role of IL-12 in hematopoiesis and hypothesized that an important clinical role for IL-12 in cancer may be as an adjuvant hematological cancer therapy. In this putative clinical function, IL-12 is utilized for the prevention of cancer therapy-related cytopenias, while providing concomitant anti-tumor responses over and above responses observed with the primary therapy alone. This putative clinical function of IL-12 focuses on the dual role of IL-12 in hematopoiesis and immunity. Methods We assessed the ability of IL-12 to facilitate hematopoietic recovery from radiation (625 rad and chemotherapy (cyclophosphamide in two tumor-bearing murine models, namely the EL4 lymphoma and the Lewis lung cancer models. Antitumor effects and changes in bone marrow cellularity were also assessed. Results We show herein that carefully designed protocols, in mice, utilizing IL-12 as an adjuvant to radiation or chemotherapy yield facile and consistent, multilineage hematopoietic recovery from cancer therapy-induced cytopenias, as compared to vehicle and the clinically-utilized cytokine granulocyte colony-stimulating factor (G-CSF (positive control, while still providing concomitant antitumor responses over and above the effects of the primary therapy alone. Moreover, our protocol design utilizes single, low doses of IL-12 that did not yield any apparent toxicity

  11. Antitumor activity of ginseng sapogenins, 25-OH-PPD and 25-OCH3-PPD, on gastric cancer cells.

    Science.gov (United States)

    Zhao, Chen; Su, Guangyue; Wang, Xude; Zhang, Xiaoshu; Guo, Shuang; Zhao, Yuqing

    2016-01-01

    25-Hydroxyprotopanaxadiol (25-OH-PPD) and 25-methoxylprotopanaxadiol (25-OCH3-PPD), two ginseng sapogenins, have potent antitumor activity and their effects on gastric cancer (BGC-823, SGC-7901, MKN-28) cells and a gastric mucosa (GES-1) cell line are reported. Both compounds significantly inhibited the growth of gastric cancer cells, while having lesser inhibitory effects on GES-1 cells by MTT assay. A mechanistic study revealed that the two ginseng sapogenins could induce apoptosis in BGC-823 cells by morphological observation, DNA fragmentation, flow cytometry and western blot analysis. Besides, the apoptosis was inhibited by Ac-DEVD-CHO, a caspase 3 inhibitor, which was confirmed by cell viability analysis. These results indicate that 25-OH-PPD and 25-OCH3-PPD have potential to be promising agents for the treatment of gastric cancer.

  12. Probing vibrational activities, electronic properties, molecular docking and Hirshfeld surfaces analysis of 4-chlorophenyl ({[(1E)-3-(1H-imidazol-1-yl)-1-phenylpropylidene]amino}oxy)methanone: A promising anti-Candida agent

    Science.gov (United States)

    Jayasheela, K.; Al-Wahaibi, Lamya H.; Periandy, S.; Hassan, Hanan M.; Sebastian, S.; Xavier, S.; Daniel, Joseph C.; El-Emam, Ali A.; Attia, Mohamed I.

    2018-05-01

    The promising anti-Candida agent, 4-chlorophenyl ({[1E-3(1H-imidazole-1-yl)-1-phenylpropylidene}oxy)methanone (4-CPIPM) was comprehensively characterized by FT-IR, FT-Raman, UV, as well as 1H and 13C spectroscopic techniques. The theoretical calculations in the current study utilized Gaussian 09 W software with DFT approach of the B3LYP/6-311++G(d,p) method. The experimental X-ray diffraction data of the 4-CPIPM molecule were compared with the optimized structure and showed well agreement. Intermolecular electronic interactions and their stabilization energies have been analyzed by natural bond orbital method. Potential energy distribution confirmed the normal fundamental mode of vibration with the aid of MOLVIB software. The chemical shift values of the 1H and 13C spectra of the title compound were computed using gauge independent atomic orbital and the results were compared with the experimental values. The time-dependent density function theory method was used to predict the electronic, absorption wavelength and frontier molecular orbital energies. The HOMO-LUMO plots proved the charge transfer in the molecular system of the title compound through conjugated paths. The molecular electrostatic potential analysis provided the electrophilic and nucleophilic reactive sites in the title molecule which have been analyzed using Hirshfeld surface and two dimensions fingerprint plots. Non covalent interactions were also studied using reduced density gradient analysis and color filled electron density diagram. Molecular docking studies of the ligand-protein interactions along with their binding energies were carried out aiming to explain the potent anti-Candida activity of the title molecule.

  13. Utilization of metabonomics to identify serum biomarkers in murine H22 hepatocarcinoma and deduce antitumor mechanism of Rhizoma Paridis saponins.

    Science.gov (United States)

    Qiu, Peiyu; Man, Shuli; Yang, He; Fan, Wei; Yu, Peng; Gao, Wenyuan

    2016-08-25

    Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the

  14. Synthesis and antitumor testing of certain new fused triazolopyrimidine and triazoloquinazoline derivatives

    Directory of Open Access Journals (Sweden)

    Ghada S. Hassan

    2017-02-01

    Full Text Available New series of 1,2,4-triazolopyrimidine and 1,2,4-triazoloquinazoline derivatives were designed, synthesized, and evaluated for their antitumor activity. Compounds 6, 11, 26, 29, 41, 44, 48, 49 and 58 were tested as antitumor agents by the use of DNA-binding assay on TLC-plates, colorimetric assay for the degree of DNA-binding (Methyl green-DNA displacement assay, evaluation of antineoplastic activity against Ehrlich Ascites Carcinoma in mice, and finally modulation of apoptosis. 5-Flurouracil, vitamin C and ethidium bromide were used as positive controls in these techniques. Compound 26 proved to be the most active member of these series as antitumor agent with IC50 value of 47 ± 1. Several characteristic features were observed to be essential for activity such as the morpholine group and the phenylazo group, in addition the electron-withdrawing groups favor the activity than the electron-donating ones.

  15. Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant

    NARCIS (Netherlands)

    Overwijk, Willem W.; de Visser, Karin E.; Tirion, Felicia H.; de Jong, Laurina A.; Pols, Thijs W. H.; van der Velden, Yme U.; van den Boorn, Jasper G.; Keller, Anna M.; Buurman, Wim A.; Theoret, Marc R.; Blom, Bianca; Restifo, Nicholas P.; Kruisbeek, Ada M.; Kastelein, Robert A.; Haanen, John B. A. G.

    2006-01-01

    The promising, but modest, clinical results of many human cancer vaccines indicate a need for vaccine adjuvants that can increase both the quantity and the quality of vaccine-induced, tumor-specific T cells. In this study we tested the immunological and antitumor effects of the proinflammatory

  16. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies.

    Science.gov (United States)

    Sioud, Mouldy; Westby, Phuong; Vasovic, Vlada; Fløisand, Yngvar; Peng, Qian

    2018-04-16

    mAbs have emerged as a promising strategy for the treatment of cancer. However, in several malignancies, no effective antitumor mAbs are yet available. Identifying therapeutic mAbs that recognize common tumor antigens could render the treatment widely applicable. Here, a human single-chain variable fragment (scFv) antibody library was sequentially affinity selected against a panel of human cancer cell lines and an antibody fragment (named MS5) that bound to solid and blood cancer cells was identified. The MS5 scFv was fused to the human IgG1 Fc domain to generate an antibody (MS5-Fc fusion) that induced antibody-dependent cellular cytotoxicity and phagocytosis of cancer cells by macrophages. In addition, the MS5-Fc antibody bound to primary leukemia cells and induced antibody-dependent cellular cytotoxicity. In the majority of analyzed cancer cells, the MS5-Fc antibody induced cell surface redistribution of the receptor complexes, but not internalization, thus maximizing the accessibility of the IgG1 Fc domain to immune effector cells. In vitro stability studies showed that the MS5-Fc antibody was stable after 6 d of incubation in human serum, retaining ∼60% of its initial intact form. After intravenous injections, the antibody localized into tumor tissues and inhibited the growth of 3 different human tumor xenografts (breast, lymphoma, and leukemia). These antitumor effects were associated with tumor infiltration by macrophages and NK cells. In the Ramos B-cell lymphoma xenograft model, the MS5-Fc antibody exhibited a comparable antitumor effect as rituximab, a chimeric anti-CD20 IgG1 mAb. These results indicate that human antibodies with pan-cancer abilities can be generated from phage display libraries, and that the engineered MS5-Fc antibody could be an attractive agent for further clinical investigation.-Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., Peng, Q. Development of a new high-affinity human antibody with antitumor activity against solid and

  17. Anti-tumor Study of Chondroitin Sulfate-Methotrexate Nanogels

    Science.gov (United States)

    Wang, Jinyu; Zhao, Weibo; Chen, Haixiao; Qin, An; Zhu, Peizhi

    2017-10-01

    Self-assembly nanogels (NGs) were formed by bioconjugating methotrexate (MTX) with chondroitin sulfate (CS). MTX-CS NGs can greatly enhance the solubility and improve the delivery efficacy of MTX due to the CD44 binding property of CS. Vivo experiments revealed that MTX-CS NGs showed less toxicity than MTX. MTX-CS NGs can improve the anti-tumor effect while reducing the side effects of MTX. Due to their CD44 binding property, chondroitin sulfate-drug conjugates could be a promising and efficient platform for improving the solubility of sparingly soluble drug molecules as well as targeted delivery to cancer cells and tumor tissues.

  18. Electrostatic Interaction of Negatively Charged Core–Shell Nanoparticles with Antitumoral Cationic Platinum-Based Complexes

    Czech Academy of Sciences Publication Activity Database

    Gál, Miroslav; Híveš, J.; Laus, M.; Sparnacci, K.; Ravera, M.; Gabano, E.; Osella, D.

    -, č. 22 (2011), s. 3289-3294 ISSN 1434-1948 R&D Projects: GA ČR GP203/09/P502 Institutional research plan: CEZ:AV0Z40400503 Keywords : platinum * Antitumor agents * nanoparticles Subject RIV: CG - Electrochemistry Impact factor: 3.049, year: 2011

  19. RhoB mediates antitumor synergy of combined ixabepilone and sunitinib in human ovarian serous cancer.

    Science.gov (United States)

    Vishnu, Prakash; Colon-Otero, Gerardo; Kennedy, Gregory T; Marlow, Laura A; Kennedy, William P; Wu, Kevin J; Santoso, Joseph T; Copland, John A

    2012-03-01

    The aim was to evaluate antitumor activity of the combination of ixabepilone and sunitinib in pre-clinical models of chemotherapy naïve and refractory epithelial ovarian tumors, and to investigate the mechanism of synergy of such drug combination. HOVTAX2 cell line was derived from a metastatic serous papillary epithelial ovarian tumor (EOC) and a paclitaxel-resistant derivative was established. Dose response curves for ixabepilone and sunitinib were generated and synergy was determined using combination indexes. The molecular mechanism of antitumor synergy was examined using shRNA silencing. The combination of ixabepilone and sunitinib demonstrated robust antitumor synergy in naïve and paclitaxel-resistant HOVTAX2 cell lines due to increased apoptosis. The GTPase, RhoB, was synergistically upregulated in cells treated with ixabepilone and sunitinib. Using shRNA, RhoB was demonstrated to mediate antitumor synergy. These results were validated in two other EOC cell lines. Ixabepilone plus sunitinib demonstrated antitumor synergy via RhoB in naïve and paclitaxel-resistant cells resulting in apoptosis. This study demonstrates a novel mechanism of action leading to antitumor synergy and provides 'proof-of-principle' for combining molecular targeted agents with cytotoxic chemotherapy to improve antitumor efficacy. RhoB could be envisioned as an early biomarker of response to therapy in a planned Phase II clinical trial to assess the efficacy of ixabepilone combined with a receptor tyrosine kinase inhibitor such as sunitinib. To the best of our knowledge, this is the first demonstration of antitumor synergy between these two classes of drugs in EOC and the pivotal role of RhoB in this synergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Antitumor Effect of Burchellin Derivatives Against Neuroblastoma.

    Science.gov (United States)

    Kurita, Masahiro; Takada, Tomomi; Wakabayashi, Noriko; Asami, Satoru; Ono, Shinichi; Uchiyama, Taketo; Suzuki, Takashi

    2018-02-01

    Neuroblastoma is one of the most commonly encountered malignant solid tumors in the pediatric age group. We examined the antitumor effects of five burchellin derivatives against human neuroblastoma cell lines. We evaluated cytotoxicity by the MTT assay for four human neuroblastoma and two normal cell lines. We also performed analysis of the apoptotic induction effect by flow cytometry, and examined the expression levels of apoptosis- and cell growth-related proteins by western blot analysis. We found that one of the burchellin derivatives (compound 4 ) exerted cytotoxicity against the neuroblastoma cell lines. Compound 4 induced caspase-dependent apoptosis via a mitochondrial pathway. The apoptosis mechanisms induced by compound 4 involved caspase-3, -7 and -9 activation and poly (ADP-ribose) polymerase cleavage. In addition, compound 4 induced cell death through inhibition of the cell growth pathway (via extracellular signal-regulated kinase 1 and 2, AKT8 virus oncogene cellular homolog, and signal transducer and activator of transcription 3). Compound 4 exerted cellular cytotoxicity against neuroblastoma cells via induction of caspase-dependent apoptosis, and may offer promise for further development as a useful drug for the treatment of advanced neuroblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Synthesis and Antitumor Activity of Triazole-Containing Sorafenib Analogs

    Directory of Open Access Journals (Sweden)

    Wenjing Ye

    2017-10-01

    Full Text Available Using a highly effective binuclear Cu complex as the catalyst, the 1,3-dipolar cycloaddition reactions between 16 alkynes and two azides were successfully performed and resulted in the production of 25 new triazole-containing sorafenib analogs. Several compounds were evaluated as potent antitumor agents. Among them, 4-(4-(4-(3-fluorophenyl-1H-1,2,3-triazol-1-ylphenoxy-N-methylpicolinamide (8f potently suppressed the proliferation of HT-29 cancer cells by inducing apoptosis and almost completely inhibited colony formation at a low micromolar concentration.

  2. Elicited vs. voluntary promises

    NARCIS (Netherlands)

    Ismayilov, H.; Potters, Jan

    2017-01-01

    We set up an experiment with pre-play communication to study the impact of promise elicitation by trustors from trustees on trust and trustworthiness. When given the opportunity a majority of trustors solicits a promise from the trustee. This drives up the promise making rate by trustees to almost

  3. [The role of nanotechnology in creating novel antitumor agents].

    Science.gov (United States)

    Semiglazov, V F; Paltuev, R M; Remizov, A S; Semiglazov, V V; Dashian, G A; Bessonov, A A; Pen'kov, K D; Vasil'ev, A G; Semiglazova, T Iu; Kolar'kova, V V

    2011-01-01

    Nanobiotechnology, defined as an arm of a nano-system is a rapidly developing area of medicine. Nanomaterials ranging from 1 to 1000 nm in size offer unique advantages of interaction with biological systems on the molecular level. Nanobiotechnologies can be used in definition, diagnosis and treatment of cancer thus leading to the new development of a new discipline--nanooncology. The potential of nanoparticles to be used in in-vivo tumor visualization, biomolecular profiling of tumor growth factors and targeted drug delivery is being studied. These methods stemming from nanotechnology may soon find a broad application in oncology.

  4. Antitumoral activity of marine organism

    International Nuclear Information System (INIS)

    Valdes Iglesias, O; Perez Gil, R; Colom, Y

    2010-01-01

    The study of the natural products from marine organism constitute a relatively recent scientific researcher field with high potentialities tanking in consideration that the oceans cover the three of the four parts of the earth. Poryphera and Bryozoans have been the Phylum more studied owning to the vulnerability, their soft body, their habitat on rocks, their slow movement and bright colors, for these reason these organisms are able to produce chemical substances as defense methods against depredators. Same mechanism is exhibit by the seaweeds with the production of secondary metabolites . In the present communication are exposed the main results obtained on the world a Cuba until the present in the looking for of substances with antitumor action from marine organism

  5. Antitumor potential of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles in human bladder cancer cells.

    Science.gov (United States)

    Tessmann, Josiane Weber; Buss, Julieti; Begnini, Karine Rech; Berneira, Lucas Moraes; Paula, Favero Reisdorfer; de Pereira, Claudio Martin Pereira; Collares, Tiago; Seixas, Fabiana Kömmling

    2017-10-01

    Bladder cancer is a genitourinary malignant disease common worldwide. Current chemotherapy is often limited mainly due to toxicity and drug resistance. Thus, there is a continued need to discover new therapies. Recently evidences shows that pyrazoline derivatives are promising antitumor agents in many types of cancers, but there are no studies with bladder cancer. In order to find potent and novel chemotherapy drugs for bladder cancer, a series of pyrazoline derivatives 2a-2d were tested for their antitumor activity in two human bladder cancer cell lines 5647 and T24. The MTT assay showed that the compounds 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-1H-pyrazole (2a) and 1-thiocarbamoyl-5-(4-chlorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazole (2c) decrease the cell viability of 5637 cells. Molecular modeling indicated that these compounds had a good oral bioavailability and low toxicities. Clonogenic assay and flow cytometric analysis were used to assess colony formation, apoptosis induction and cell cycle distribution. Overall, our results suggest that pyrazoline 2a and 2c, with the substituents hydrogen and chlorine respectively, may decrease cell viability and colony formation of bladder cancer 5637 cell line by inhibition of cell cycle progression, and for pyrazoline 2a, by induction of apoptosis. As indicated by the physicochemical properties of these compounds, the steric factor influences the activity. Therefore, these pyrazoline derivatives can be considered promising anticancer agents for the treatment of bladder cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

    Directory of Open Access Journals (Sweden)

    Jin-Lian Chen

    2016-10-01

    Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

  7. Evaluation of radiolabeled ruthenium compounds as tumor-localizing agents

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Richards, P.; Meinken, G.E.; Som, P.; Atkins, H.L.; Larson, S.M.; Grunbaum, Z.; Rasey, J.S.; Clarke, M.H.; Dowling, M.

    1979-01-01

    This work introduces a new class of radiopharmaceuticals based on ruthenium-97. The excellent physical properties of Ru-97, the high chemical reactivity of Ru, the potential antitumor activity of several Ru coordination compounds, and BLIP production of Ru-97, provide a unique combination for the application of this isotope in nuclear oncology. A systematic study was undertaken on the synthesis, characterization, and evaluation of a number of ruthenium-labeled compounds. In a variety of animal tumor models, several compounds show considerable promise as tumor-localizing agents when compared to gallium-67 citrate. The compounds studied (with Ru in different oxidation states) include ionic Ru, a number of hydrophilic and lipophilic chelates, and various ammine derivatives

  8. Keeping the Promise

    Science.gov (United States)

    Whissemore, Tabitha

    2016-01-01

    Since its launch in September 2015, Heads Up America has collected information on nearly 125 promise programs across the country, many of which were instituted long before President Barack Obama announced the America's College Promise (ACP) plan in 2015. At least 27 new free community college programs have launched in states, communities, and at…

  9. Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Zong Sheng eGuo

    2014-04-01

    Full Text Available Oncolytic viruses (OVs are novel immunotherapeutic agents whose anticancer effects come from both oncolysis and elicited antitumor immunity. OVs induce mostly immunogenic cancer cell death (ICD, including immunogenic apoptosis, necrosis/necroptosis, pyroptosis and autophagic cell death, leading to exposure of calreticulin and heat-shock proteins to the cell surface, and/or released ATP, high mobility group box-1 [HMGB1], uric acid, and other DAMPs as well as PAMPs as danger signals, along with tumor-associated antigens, to activate dendritic cells (DCs and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive antitumor immunity. The mode of cancer cell death may be modulated by individual OVs and cancer cells as they often encode and express genes that inhibit/promote apoptosis, necroptosis or autophagic cell death. We can genetically engineer OVs with death-pathway-modulating genes and thus skew the infected cancer cells towards certain death pathways for the enhanced immunogenicity. Strategies combining with some standard therapeutic regimens may also change the immunological consequence of cancer cell death. In this review, we discuss recent advances in our understanding of danger signals, modes of cancer cell death induced by OVs, the induced danger signals and functions in eliciting subsequent antitumor immunity. We also discuss potential combination strategies to target cells into specific modes of ICD and enhance cancer immunogenicity, including blockade of immune checkpoints, in order to break immune tolerance, improve antitumor immunity and thus the overall therapeutic efficacy.

  10. Local and global trust based on the concept of promises

    NARCIS (Netherlands)

    Bergstra, J.; Burgess, M.

    2009-01-01

    We use the notion of a promise to define local trust between agents possessing autonomous decision-making. An agent is trustworthy if it is expected that it will keep a promise. This definition satisfies most commonplace meanings of trust. Reputation is then an estimation of this expectation value

  11. Compostos organofosforados pentavalentes: histórico, métodos sintéticos de preparação e aplicações como inseticidas e agentes antitumorais Organophosphorus pentavalent compounds: history, synthetic methods of preparation and application as insecticides and antitumor agents

    Directory of Open Access Journals (Sweden)

    Viviane Martins Rebello dos Santos

    2007-02-01

    Full Text Available This paper is a review of the history, synthesis and application of organophosphorus compounds, especially of those of pentavalent phosphorus, such as phosphoramidates, phosphorothioates, phosphonates and phosphonic acids with insecticide and anticancer activities. The organophosphorus compounds with agrochemical applications show great structural variety, They include not only insecticides, but also fungicides, herbicides, and others. The large variety of commercially available organophosphorus pesticides is remarkable. Even more interesting is the high efficiency of some organophosphorus compounds as anticancer agents such as cyclophosphamide and its derivatives.

  12. The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: promise of molecular genetics for guiding mechanistic and translational research in the field1234

    Science.gov (United States)

    Neuringer, Martha

    2012-01-01

    Age-related macular degeneration (AMD) is the primary cause of vision loss in elderly people of western European ancestry. Genetic, dietary, and environmental factors affect tissue concentrations of macular xanthophylls (MXs) within retinal cell types manifesting AMD pathology. In this article we review the history and state of science on the putative role of the MXs (lutein, zeaxanthin, and meso-zeaxanthin) in AMD and report findings on AMD-associated genes encoding enzymes, transporters, ligands, and receptors affecting or affected by MXs. We then use this context to discuss emerging research opportunities that offer promise for meaningful investigation and inference in the field. PMID:23053548

  13. Promise Zones for Applicants

    Data.gov (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  14. Enhanced antitumor efficacy of folate-linked liposomal doxorubicin with TGF-β type I receptor inhibitor

    International Nuclear Information System (INIS)

    Taniguchi, Yukimi; Kawano, Kumi; Minowa, Takuya; Shimojo, Yuki; Maitani, Yoshie; Sugino, Takashi

    2010-01-01

    Tumor cell targeting of drug carriers is a promising strategy and uses the attachment of various ligands to enhance the therapeutic potential of chemotherapy agents. Folic acid is a high-affinity ligand for folate receptor, which is a functional tumor-specific receptor. The transforming growth factor (TGF)-β type I receptor (TβR-I) inhibitor A-83-01 was expected to enhance the accumulation of nanocarriers in tumors by changing the microvascular environment. To enhance the therapeutic effect of folate-linked liposomal doxorubicin (F-SL), we co-administrated F-SL with A-83-01. Intraperitoneally injected A-83-01-induced alterations in the cancer-associated neovasculature were examined by magnetic resonance imaging (MRI) and histological analysis. The targeting efficacy of single intravenous injections of F-SL combined with A-83-01 was evaluated by measurement of the biodistribution and the antitumor effect in mice bearing murine lung carcinoma M109. A-83-01 temporarily changed the tumor vasculature around 3 h post injection. A-83-01 induced 1.7-fold higher drug accumulation of F-SL in the tumor than liposome alone at 24 h post injection. Moreover F-SL co-administrated with A-83-01 showed significantly greater antitumor activity than F-SL alone. This study shows that co-administration of TβR-I inhibitor will open a new strategy for the use of folate receptor (FR)-targeting nanocarriers for cancer treatment. (author)

  15. An experimental study on the antitumor effect of 131I-17-AAG in vitro and in vivo.

    Science.gov (United States)

    Wenyong, Tu; Lu, Liu; Daozhen, Chen; Weidong, Yin; Ying, Huang

    2009-02-01

    To observe the antitumor effect of (131)I-17-allylamino-17-demethoxygeldanamycin ((131)I-17-AAG) in vitro/in vivo and explore its antitumor mechanism with a view to its potential therapeutic application. (131)I-17-AAG was prepared by the reaction of 17-AAG with Na [(131)I] in the presence of hydrogen peroxide. The effects of (131)17-AAG on cell growth inhibition and cell cycle distribution in vitro were studied in BEL-7402 cells lines. Following BEL-7402 tumor implantation by subcutaneous xenografts into nude mice, the reagents were injected through the tail vein, and the tumor volume was measured and analyzed. At the end of the experiment, tumor specimens were processed for histopathological analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis. The expression change of Akt2 was tested by Western-blot analysis. Methyl-thiazolyl-tetrazolium assay showed inhibition rates of 27.7 +/- 5.3%, 57.3 +/- 4.3%, and 63.7 +/- 3.1%, in Na(131)I group, 17-AAG group, and (131)I-17-AAG group, respectively. The inhibition rate in the (131)I-17-AAG group differed significantly between N(a131)I group and 17-AAG group (F = 229.49, P AAG group, and (131)I-17-AAG group, respectively. Following infusion for 32 days, the tumor volumes in the (131)I-17-AAG group were significantly smaller than those in the DMSO group (F = 24.18, P AAG inhibited the proliferation of tumor cells and induced apoptosis. The expression of Akt2 in (131)I-17-AAG was significantly lower than that in the DMSO group or (131)I group. (131)I-17-AAG can effectively inhibit the growth of BEL-7402 tumor cells in vitro and in vivo. (131)I-17-AAG is a promising agent for the treatment of BEL-7402 cell tumor.

  16. In Vitro and In Vivo Antitumor Activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Muscella, Antonella; Vetrugno, Carla; Cossa, Luca Giulio; Antonaci, Giovanna; De Nuccio, Francesco; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Marsigliante, Santo

    2016-01-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy. There is an urgent need for effective therapy inasmuch as resistance, intrinsic and acquired, to conventional therapies is common. Among Pt(II) antitumor drugs, [Pt(O,O'-acac)(γ-acac)(DMS)] (Ptac2S) has recently attracted considerable attention due to its strong in vitro and in vivo antiproliferative activity and reduced toxicity. The purpose of this study was to examine the efficacy of Ptac2S treatment in MPM. We employed the ZL55 human mesothelioma cell line in vitro and in a murine xenograft model in vivo, to test the antitumor activity of Ptac2S. Cytotoxicity assays and Western blottings of different apoptosis and survival proteins were thus performed. Ptac2S increases MPM cell death in vitro and in vivo compared with cisplatin. Ptac2S was more efficacious than cisplatin also in inducing apoptosis characterized by: (a) mitochondria depolarization, (b) increase of bax expression and its cytosol-to-mitochondria translocation and decrease of Bcl-2 expression, (c) activation of caspase-7 and -9. Ptac2S activated full-length PKC-δ and generated a PKC-δ fragment. Full-length PKC-δ translocated to the nucleus and membrane, whilst PKC-δ fragment concentrated to mitochondria. Ptac2S was also responsible for the PKC-ε activation that provoked phosphorylation of p38. Both PKC-δ and PKC-ε inhibition (by PKC-siRNA) reduced the apoptotic death of ZL55 cells. Altogether, our results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, providing a solid starting point for its validation as a suitable candidate for further pharmacological testing.

  17. Partial characterization, antioxidant and antitumor activities of polysaccharides from Philomycusbilineatus.

    Science.gov (United States)

    He, Rongjun; Ye, Jiaming; Zhao, Yuejun; Su, Weike

    2014-04-01

    Four polysaccharides (PBP60-A, PBP60-B, PBP60-C and PBP60-D) were purified from slug (Philomycusbilineatus) by ion-exchange chromatography. The antioxidant activities were studied by ABTS, DPPH, hydroxyl radical, superoxide radical and reducing power assay. In vitro antitumor activities were evaluated by MTT assay. Results demonstrated that PBP60-A was mainly composed of Man, Rha, Glc, Gal, Xyl and Fuc in a mole ratio of 6.13:3.08:8.97:5.22:2.46:1.13. PBP60-B was composed of Man, GlcN, Rha, GalN, GlcU, Glc, Gal, Xyl and Fuc in a mole ratio of 0.90:0.31:1.15:0.37:0.24:1.02:3.84:0.93:1.99. PBP60-C and PBP60-D were composed of Man, GlcN, Rha, GalN, GlcU, Glc, Gal, Xyl, Fuc and an unknown monosaccharide. Antioxidant tests indicated that four polysaccharides exhibited significant antioxidant activities in a dose-dependent manner. PBP60-D presented relative stronger antioxidant activity. PBP60-C showed higher antitumor activity against A549 and MCF-7 cells in vitro. At concentration of500 μg/mL, the antitumor activities of PBP60-C on theA549 and MCF-7 cells were 65.30% and 42.45%, respectively. These results indicated that polysaccharides from Philomycusbilineatus could be explored as potential natural antioxidants and cancer prevention agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. [Biological agents].

    Science.gov (United States)

    Amano, Koichi

    2009-03-01

    There are two types of biological agents for the treatment of rheumatoid arthritis (RA); monoclonal antibodies and recombinant proteins. Among the latter, etanercept, a recombinant fusion protein of soluble TNF receptor and IgG was approved in 2005 in Japan. The post-marketing surveillance of 13,894 RA patients revealed the efficacy and safety profiles of etanercept in the Japanese population, as well as overseas studies. Abatacept, a recombinant fusion protein of CTLA4 and IgG, is another biological agent for RA. Two clinical trials disclosed the efficacy of abatacept for difficult-to-treat patients: the AIM for MTX-resistant cases and the ATTAIN for patients who are resistant to anti-TNF. The ATTEST trial suggested abatacept might have more acceptable safety profile than infliximab. These biologics are also promising for the treatment of RA for not only relieving clinical symptoms and signs but retarding structural damage.

  19. Promising More Information

    Science.gov (United States)

    2003-01-01

    When NASA needed a real-time, online database system capable of tracking documentation changes in its propulsion test facilities, engineers at Stennis Space Center joined with ECT International, of Brookfield, Wisconsin, to create a solution. Through NASA's Dual-Use Program, ECT developed Exdata, a software program that works within the company's existing Promise software. Exdata not only satisfied NASA s requirements, but also expanded ECT s commercial product line. Promise, ECT s primary product, is an intelligent software program with specialized functions for designing and documenting electrical control systems. An addon to AutoCAD software, Promis e generates control system schematics, panel layouts, bills of material, wire lists, and terminal plans. The drawing functions include symbol libraries, macros, and automatic line breaking. Primary Promise customers include manufacturing companies, utilities, and other organizations with complex processes to control.

  20. Advances in the use of biologic agents for the treatment of systemic vasculitis

    Science.gov (United States)

    Chung, Sharon A.; Seo, Philip

    2010-01-01

    Purpose of review Due to the well-known toxicities of cyclophosphamide, substantial interest exists in finding other therapies to treat primary systemic vasculitis. Biologic agents have been proposed as an alternative to cyclophosphamide for these disorders because of their recent success in treating other rheumatic diseases. This article reviews the current state-of-the-art with regards to the use of biologic agents as a treatment for systemic vasculitis. Recent findings The greatest amount of experience with these agents for the treatment of systemic vasculitis is with anti-tumor necrosis factor agents, pooled intravenous immunoglobulin, and anti-B cell therapies such as rituximab. Intravenous immunoglobulin is already a standard therapy for Kawasaki's disease, but should also be considered for the treatment of ANCA-associated vasculitis when standard therapies are either ineffective or contraindicated. Early experience with tumor necrosis factor inhibitors indicates that they may be effective for the treatment of Takayasu's arteritis, but their role in the treatment of other forms of vasculitis remains controversial. Early experience with rituximab for the treatment of several forms of vasculitis has been quite promising, but must be confirmed by ongoing randomized clinical trials. Summary Biologic agents represent the next evolution in treatment for the primary systemic vasculitides. Greater understanding of these diseases has allowed use to move further away from non-specific, highly toxic therapies towards a more directed approach. As our experience with these agents increases, they will likely form the keystone of treatment in the near future. PMID:19077713

  1. Development of CAR T cells designed to improve antitumor efficacy and safety

    OpenAIRE

    Jaspers, Janneke E.; Brentjens, Renier J.

    2017-01-01

    Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy against hematologic malignancies. Antitumor activity of CAR T cells, however, needs to be improved to increase therapeutic efficacy in both hematologic and solid cancers. Limitations to overcome are ‘on-target, off-tumor’ toxicity, antigen escape, short CAR T cell persistence, little expansion, trafficking to the tumor and inhibition of T cell activity by an inhibitory tumor microenvironment. Here we will discuss how ...

  2. Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects.

    Science.gov (United States)

    Garde, Seema V; Forté, André J; Ge, Michael; Lepekhin, Eugene A; Panchal, Chandra J; Rabbani, Shafaat A; Wu, Jinzi J

    2007-11-01

    In an effort to develop new agents and molecular targets for the treatment of cancer, aspargine-glycine-arginine (NGR)-targeted liposomal doxorubicin (TVT-DOX) is being studied. The NGR peptide on the surface of liposomal doxorubicin (DOX) targets an aminopeptidase N (CD13) isoform, specific to the tumor neovasculature, making it a promising strategy. To further understand the molecular mechanisms of action, we investigated cell binding, kinetics of internalization as well as cytotoxicity of TVT-DOX in vitro. We demonstrate the specific binding of TVT-DOX to CD13-expressing endothelial [human umbilical vein endothelial cells (HUVEC) and Kaposi sarcoma-derived endothelial cells (SLK)] and tumor (fibrosarcoma, HT-1080) cells in vitro. Following binding, the drug was shown to internalize through the endosomal pathway, eventually leading to the localization of doxorubicin in cell nuclei. TVT-DOX showed selective toxicity toward CD13-expressing HUVEC, sparing the CD13-negative colon-cancer cells, HT-29. Additionally, the nontargeted counterpart of TVT-DOX, Caelyx, was less cytotoxic to the CD13-positive HUVECs demonstrating the advantages of NGR targeting in vitro. The antitumor activity of TVT-DOX was tested in nude mice bearing human prostate-cancer xenografts (PC3). A significant growth inhibition (up to 60%) of PC3 tumors in vivo was observed. Reduction of tumor vasculature following treatment with TVT-DOX was also apparent. We further compared the efficacies of TVT-DOX and free doxorubicin in the DOX-resistant colon-cancer model, HCT-116, and observed the more pronounced antitumor effects of the TVT-DOX formulation over free DOX. The potential utility of TVT-DOX in a variety of vascularized solid tumors is promising.

  3. Potential Antitumor Effects of Pomegranates and Its Ingredients.

    Science.gov (United States)

    Rahmani, Arshad H; Alsahli, Mohammed A; Almatroodi, Saleh A

    2017-01-01

    The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy.

  4. Spontaneous Translocation of Antitumor Oxaliplatin, its Enantiomeric Analogue, and Cisplatin from One Strand to Another in Double-Helical DNA

    Czech Academy of Sciences Publication Activity Database

    Malina, Jaroslav; Natile, G.; Brabec, Viktor

    2013-01-01

    Roč. 19, č. 36 (2013), s. 11984-11991 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GAP205/11/0856; GA ČR(CZ) GAP301/10/0598 Institutional support: RVO:68081707 Keywords : antitumor agents * calorimetry * DNA Subject RIV: BO - Biophysics Impact factor: 5.696, year: 2013

  5. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    Science.gov (United States)

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  6. A promising action of riboflavin as a mediator of leukaemia cell death

    NARCIS (Netherlands)

    de Souza, Ana Carolina Santos; Kodach, Liudmila; Gadelha, Fernanda R.; Bos, Carina L.; Cavagis, Alexandre D. Martins; Aoyama, Hiroshi; Peppelenbosch, Maikel P.; Ferreira, Carmen Veríssima

    2006-01-01

    Besides having a pivotal biological function as a component of coenzymes, riboflavin appears a promissing antitumoral agent, but the underlying molecular mechanism remains unclear. In this work, we demonstrate that irradiated riboflavin, when applied at microM concentrations, induces an orderly

  7. A promising action of riboflavin as a mediator of leukaemia cell death

    NARCIS (Netherlands)

    De Souza, A.C.; Kodach, L.; Gadelha, F.R.; Bos, C.L.; Cavagis, A.D.M.; Aoyama, H.; Peppelenbosch, Maikel; Ferreira, C.V.

    2006-01-01

    Besides having a pivotal biological function as a component of coenzymes, riboflavin appears a promissing antitumoral agent, but the underlying molecular mechanism remains unclear. In this work, we demonstrate that irradiated riboflavin, when applied at mu M concentrations, induces an orderly

  8. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Gao D

    2012-07-01

    Full Text Available Dawei Gao, Shengnan Tang, Qi TongApplied Chemical Key Laboratory of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, ChinaBackground: Oleanolic acid is a pentacyclic triterpene present in many fruits and vegetables, and has received much attention on account of its biological properties. However, its poor solubility and low bioavailability limit its use. The objective of this study was to encapsulate oleanolic acid into nanoliposomes using the modified ethanol injection method.Methods: The liposomes contain a hydrophobic oleanolic acid core, an amphiphilic soybean lecithin monolayer, and a protective hydrophilic polyethylene glycol (PEG coating. During the preparation process, the formulations described were investigated by designing 34 orthogonal experiments as well as considering the effects of different physical characteristics. The four factors were the ratios of drug to soybean phosphatidylcholine (w/w, cholesterol (w/w, PEG-2000 (w/w, and temperature of phosphate-buffered saline at three different levels. We identified the optimized formulation which showed the most satisfactory lipid stability and particle formation. The morphology of the liposomes obtained was determined by transmission electron microscopy and atomic force microscopy. The existence of PEG in the liposome component was validated by Fourier transform infrared spectrum analysis.Results: The PEGylated liposomes dispersed individually and had diameters of around 110–200 nm. Encapsulation efficiency was more than 85%, as calculated by high-performance liquid chromatography and Sephadex® gel filtration. Furthermore, when compared with native oleanolic acid, the liposomal formulations showed better stability in vitro. Finally, the cytotoxicity of the oleanolic acid liposomes was evaluated using a microtiter tetrazolium assay.Conclusion: These results suggest that PEGylated liposomes would serve as a potent delivery vehicle for oleanolic acid in future cancer therapy.Keywords: oleanolic acid, liposomes, ethanol injection, polyethylene glycol

  9. Binding studies of the antitumoral radiopharmaceutical 125I-Crotoxin to Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Silveira, Marina B.; Santos, Raquel G. dos; Dias, Consuelo L. Fortes; Cassali, Geovanni D.

    2009-01-01

    The development of tools for functional diagnostic imaging is mainly based on radiopharmaceuticals that specifically target membrane receptors. Crotoxin (Crtx), a polypeptide isolated from Crotalus durissus terrificus venom, has been shown to have an antitumoral activity and is a promising bioactive tracer for tumor detection. More specific radiopharmaceuticals are being studied to complement the techniques applied in the conventional medicine against breast cancer, the most frequent cause of death from malignant disease in women. Crtx's effect has been shown to be related with the overexpression of epidermal growth factor receptor (EGFR), present in high levels in 30 to 60% of breast tumor cells. Our objective was to evaluate Crtx as a tracer for cancer diagnosis, investigating its properties as an EGFR-targeting agent. Ehrlich ascites tumor cells (EAT cells) were used due to its origin and similar characteristics to breast tumor cells, specially the presence of EGFR. Crtx was labeled with 125I and binding experiments were performed. To evaluate the specific binding in vitro of Crtx, competition binding assay was carried out in the presence of increasing concentrations of non-labelled crotoxin and epidermal growth factor (EGF). Specific binding of 125I-Crtx to EAT cells was determined and the binding was considered saturable, with approximately 70% of specificity, high affinity (Kd = 19.7 nM) and IC50 = 1.6 x 10-11 M. Our results indicate that Crtx's interaction with EAT cells is partially related with EGFR and increases the biotechnological potential of Crtx as a template for radiopharmaceutical design for cancer diagnosis. (author)

  10. Binding studies of the antitumoral radiopharmaceutical 125I-Crotoxin to Ehrlich ascites tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marina B.; Santos, Raquel G. dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Dias, Consuelo L. Fortes [Fundacao Ezequiel Dias (FUNED), Belo Horizonte, MG (Brazil)], e-mail: consuelo@pq.cnpq.br; Cassali, Geovanni D. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Patologia Comparada], e-mail: cassalig@icb.ufmg.br

    2009-07-01

    The development of tools for functional diagnostic imaging is mainly based on radiopharmaceuticals that specifically target membrane receptors. Crotoxin (Crtx), a polypeptide isolated from Crotalus durissus terrificus venom, has been shown to have an antitumoral activity and is a promising bioactive tracer for tumor detection. More specific radiopharmaceuticals are being studied to complement the techniques applied in the conventional medicine against breast cancer, the most frequent cause of death from malignant disease in women. Crtx's effect has been shown to be related with the overexpression of epidermal growth factor receptor (EGFR), present in high levels in 30 to 60% of breast tumor cells. Our objective was to evaluate Crtx as a tracer for cancer diagnosis, investigating its properties as an EGFR-targeting agent. Ehrlich ascites tumor cells (EAT cells) were used due to its origin and similar characteristics to breast tumor cells, specially the presence of EGFR. Crtx was labeled with 125I and binding experiments were performed. To evaluate the specific binding in vitro of Crtx, competition binding assay was carried out in the presence of increasing concentrations of non-labelled crotoxin and epidermal growth factor (EGF). Specific binding of 125I-Crtx to EAT cells was determined and the binding was considered saturable, with approximately 70% of specificity, high affinity (Kd = 19.7 nM) and IC50 = 1.6 x 10-11 M. Our results indicate that Crtx's interaction with EAT cells is partially related with EGFR and increases the biotechnological potential of Crtx as a template for radiopharmaceutical design for cancer diagnosis. (author)

  11. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  12. Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn

    Science.gov (United States)

    Wu, Yuanhao; He, Guanping; Zhang, Yu; Liu, Yang; Li, Mei; Wang, Xiaolan; Li, Nan; Li, Kang; Zheng, Guan; Zheng, Yufeng; Yin, Qingshui

    2016-02-01

    In clinical practice, tumor recurrence and metastasis after orthopedic prosthesis implantation is an intensely troublesome matter. Therefore, to develop implant materials with antitumor property is extremely necessary and meaningful. Magnesium (Mg) alloys possess superb biocompatibility, mechanical property and biodegradability in orthopedic applications. However, whether they possess antitumor property had seldom been reported. In recent years, it showed that zinc (Zn) not only promote the osteogenic activity but also exhibit good antitumor property. In our present study, Zn was selected as an alloying element for the Mg-1Ca-0.5Sr alloy to develop a multifunctional material with antitumor property. We investigated the influence of the Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, 6 wt%) alloys extracts on the proliferation rate, cell apoptosis, migration and invasion of the U2OS cell line. Our results show that Zn containing Mg alloys extracts inhibit the cell proliferation by alteration the cell cycle and inducing cell apoptosis via the activation of the mitochondria pathway. The cell migration and invasion property were also suppressed by the activation of MAPK (mitogen-activated protein kinase) pathway. Our work suggests that the Mg-1Ca-0.5Sr-6Zn alloy is expected to be a promising orthopedic implant in osteosarcoma limb-salvage surgery for avoiding tumor recurrence and metastasis.

  13. Curcuma increasing antitumor effect of Rhizoma paridis saponins through absorptive enhancement of paridis saponins.

    Science.gov (United States)

    Man, Shuli; Li, Yuanyuan; Fan, Wei; Gao, Wenyuan; Liu, Zhen; Li, Nan; Zhang, Yao; Liu, Changxiao

    2013-09-15

    Rhizoma paridis saponins (RPS) played a good antitumor role in many clinical applications. However, low oral bioavailability limited its application. In this research, water extract of Curcuma (CW) significantly increased antitumor effect of Rhizoma paridis saponins (RPS). GC-MS was used to identify its polar composition. HPLC was applied for determination of the content of curcuminoids in CW. As a result, 47 analytes with 0.65% of curcuminoids were identified in CW. According to the in vivo anti-tumor data, the best proportion of curcuminoids in CW with RPS was 16:500 (w/w). Using this ratio, curcuminoids significantly increased absorption of RPS in the everted rat duodenum sac system. In addition, curcuminoids decreased the promotion of RPS on rhodamine 123 efflux. The effect of curcuminoids was similar to that of the P-gp inhibitor, cyclosporin A in combination with RPS. In conclusion, drug combination of water extract of Curcuma with RPS was a good method to increase the antitumor effect of RPS. This combination would be a potent anticancer agent used in the prospective application. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Macková, Hana [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine); Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich [R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 45 Vasylkivska St., 03022 Kiev (Ukraine); Kuzmenko, Oleksandr Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine)

    2015-04-15

    Maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe{sub 2}O{sub 3} nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe{sub 2}O{sub 3} nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe{sub 2}O{sub 4} particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed.

  15. Redox cycling of potential antitumor aziridinylquinones

    NARCIS (Netherlands)

    Lusthof, Klaas J.; de Mol, Nicolaas J.; Richter, Wilma; Janssen, Lambert H.M.; Butler, John; Hoey, Brigid M.; Verboom, Willem; Reinhoudt, David

    1992-01-01

    The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthetized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase

  16. Promising new developments in cancer chemotherapy.

    Science.gov (United States)

    Ferrante, K; Winograd, B; Canetta, R

    1999-01-01

    The positive impact on survival of traditional chemotherapeutic agents has renewed interest in developing newer cytotoxic agents and orally active compounds with improved therapeutic indices. In addition, new insights into the pathways of human tumorigenesis have led to novel approaches aimed at specific mechanism-based targets. The taxane class, of which paclitaxel was the first member, has the unique ability to promote and stabilize microtubule function directly, thereby inhibiting mitotic progression and inducing apoptotic cell death. Paclitaxel provides treatment benefit in a broad range of solid tumors including breast, ovarian, and lung cancer. The success with paclitaxel stimulated interest in the microtubule as a new therapeutic target. Taxane analogues with improved preclinical efficacy have been identified and are entering clinical trials. The enthusiasm for oral anticancer agents and the therapeutic importance of platinum compounds has led to the development of JM216 (satraplatin), a novel platinum IV coordination complex with oral activity in cisplatin-resistant cell lines, which is now in phase III trials in prostate cancer. Another compound in late development is DPPE, a chemopotentiator that enhances the in vivo antitumor effects of cytotoxic agents such as doxorubicin, cyclophosphamide, and cisplatin. Agents that inhibit topoisomerase I and II have also been of interest. TAS-103 is a dual topoisomerase I and II inhibitor with preclinical efficacy in a broad spectrum of tumors and in multidrug-resistant tumor cell lines. Vaccination strategies represent a rational therapeutic approach in the minimal residual disease or high-risk adjuvant therapy setting. The GMK and MGV vaccines utilizing ganglioside antigens overexpressed on human tumors such as melanoma and small cell lung cancer appear to induce antibody production reliably at tolerable doses and are under further clinical investigation. Inhibition of matrix metalloproteinases (MMPs) is another

  17. Promising change, delivering continuity

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Sungusia, Eliezeri; Mabele, Mathew Bukhi

    2017-01-01

    REDD+ is an ambition to reduce carbon emissions from deforestation and forest degradation in the Global South. This ambition has generated unprecedented commitment of political support and financial funds for the forest-development sector. Many academics and people-centered advocacy organizations...... have conceptualized REDD+ as an example of ‘‘green grabbing” and have voiced fears of a potential global rush for land and trees. In this paper we argue that, in practice and up until now, REDD+ resembles longstanding dynamics of the development and conservation industry, where the promise of change...... becomes a discursive commodity that is constantly reproduced and used to generate value and appropriate financial resources. We thus argue for a re-conceptualization of REDD+ as a conservation fad within the broader political economy of development and conservation. We derive this argument from a study...

  18. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    Directory of Open Access Journals (Sweden)

    Ali Moghadam

    Full Text Available In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.

  19. Synergistic combination therapy of antitumor agents, membrane modification agents and irradiation

    International Nuclear Information System (INIS)

    Watarai, Jiro; Itagaki, Takatomo; Akutsu, Thoru; Yamaguchi, Kouichi; Kato, Isao

    1983-01-01

    Larygeal cancer were treated with synergistic combination therapy of Futraful in suppository, vitamin A, cepharanthin and irradiation from April 1981 to June 1982. This combination therapy resulted in high percentage of the tumor regression in the case of the invading laryngeal cancer and negligible complication. (author)

  20. Recent advance on the antitumor and antioxidant activity of grape seed extracts

    Directory of Open Access Journals (Sweden)

    Zhu FM

    2015-05-01

    Full Text Available Fengmei Zhu, Bin Du, Jun Li College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province, People's Republic of China Abstract: The grape pomace (including seeds and stems poses potential disposal and pollution problems along with loss of valuable biomass and nutrients. The utilization of grape seeds processing as a source of functional ingredients is a promising field. Grape seed extract provides a concentrated source of polyphenols. Grape seed extract is known as an effective antioxidant that protects the body from premature aging and disease. A number of phytochemicals including resveratrol, proanthocyanidins, etc, have demonstrated significant benefits in cancer chemoprevention. In this review, we summarize the existing knowledge on the antitumor and antioxidant activity of grape seeds polyphenols. Keywords: grape seed, antitumor activity, antioxidant activity, polyphenol, proanthocyanidin

  1. Synthetic analogues of natural semiochemicals as promising insect control agents

    International Nuclear Information System (INIS)

    Ujvary, Istvan; Toth, Miklos; Guerin, Patrick

    2000-01-01

    After decades of research and development, insect pheromones and other semiochemicals became indispensable tools of ecologically based agricultural pest and disease vector management programmes with main uses as: 1) detection and population monitoring of emerging and migrating insects, 2) mass trapping of insects, 3) combined formulation of semiochemicals and insecticides ('lure-and-kill'), and 4) mating disruption with specially formulated pheromone components. In spite of their demonstrated safety and biodegradability, the direct application of these semiochemicals for pest control has not fulfilled initial expectations. Nonetheless considerable field experience has been accumulated (Carde and Minks 1995). Evidently, two important factors limit the practical potential of these substances: 1) inherent in their particular mode of action, semiochemicals, especially pheromones, are effectively cleared by specific enzymes in the insect antennae, and 2) some of these compounds contain labile functional moieties that are prone to degradation (oxidation, isomerisation and polymerisation) under field conditions. Appropriate chemical modifications of these natural compounds, however, can circumvent these problems by providing synthetic analogues (sometimes also called parapheromones or antipheromones; for early studies, see Roelofs and Comeau 1971, Payne et al. 1973) which in ideal cases are not only more potent and environmentally acceptable but more economical as well. It should also be mentioned that many effective attractants have been discovered through the empirical screening of synthetic chemicals, some of which have actually turned out to be structural relatives of natural semiochemicals of the particular insect. In this paper, selected case studies of analogues of sex pheromones and kairomones will be presented. The examples from our work include nitrile bioisosteres of labile aldehyde pheromone components of the cranberry girdler moth, Chrysoteuchia topiaria Zeller; analogues of (Z)-11-hexadecenyl acetate, a principal component of several important lepidopteran species and analogues of 1-octen-3-ol and 3-n-propylphenol, two kairomonal cattle odour components attractive to tsetse flies (Glossina spp.)

  2. Cannabinoids: New Promising Agents in the Treatment of Neurological Diseases

    OpenAIRE

    Sabrina Giacoppo; Giuseppe Mandolino; Maria Galuppo; Placido Bramanti; Emanuela Mazzon

    2014-01-01

    Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on ...

  3. Cannabinoids: New Promising Agents in the Treatment of Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Sabrina Giacoppo

    2014-11-01

    Full Text Available Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.

  4. Antitumor and immunomodulatory activity of Inonotus obliquus

    Directory of Open Access Journals (Sweden)

    Staniszewska Justyna

    2017-06-01

    Full Text Available The article presents the antitumor and immunomodulatory activity of compounds and extracts from Inonotus obliquus. Polysaccharides isolated from sclerotium have a direct antitumor effect due to protein synthesis inhibition in tumor cells. Polysaccharides derived from the mycelium function by activating the immune system. Due to the limited toxicity of these substances, both extracts as well as isolated and purified chemicals may be a good alternative to current chemotherapy and play a role in cancer prevention. In vitro experiments have shown the inhibition of inflammation with the influence of action of I. obliquus extracts; however, in vivo experiments on animals implanted with tumor cells of different types have shown the activation of the host immune system. This led to decrease in tumor mass and prolonged survival. The immunomodulatory mechanism of action is complex and it seems that stimulation of macrophages and induction of apoptosis in cancer cells is of great importance.

  5. Impact of antitumor therapy on nutrition

    International Nuclear Information System (INIS)

    Kokal, W.A.

    1985-01-01

    The treatment of the cancer patient by surgery, chemotherapy or radiation therapy can impose significant nutritional disabilities on the host. The nutritional disabilities seen in the tumor-bearing host from antitumor therapy are produced by factors which either limit oral intake or cause malabsorption of nutrients. The host malnutrition caused as a consequence of surgery, chemotherapy or radiation therapy assumes even more importance when one realizes that many cancer patients are already debilitated from their disease

  6. Antitumor Immunity Is Controlled by Tetraspanin Proteins

    Directory of Open Access Journals (Sweden)

    Fleur Schaper

    2018-05-01

    Full Text Available Antitumor immunity is shaped by the different types of immune cells that are present in the tumor microenvironment (TME. In particular, environmental signals (for instance, soluble factors or cell–cell contact transmitted through the plasma membrane determine whether immune cells are activated or inhibited. Tetraspanin proteins are emerging as central building blocks of the plasma membrane by their capacity to cluster immune receptors, enzymes, and signaling molecules into the tetraspanin web. Whereas some tetraspanins (CD81, CD151, CD9 are widely and broadly expressed, others (CD53, CD37, Tssc6 have an expression pattern restricted to hematopoietic cells. Studies using genetic mouse models have identified important immunological functions of these tetraspanins on different leukocyte subsets, and as such, may be involved in the immune response against tumors. While multiple studies have been performed with regards to deciphering the function of tetraspanins on cancer cells, the effect of tetraspanins on immune cells in the antitumor response remains understudied. In this review, we will focus on tetraspanins expressed by immune cells and discuss their potential role in antitumor immunity. New insights in tetraspanin function in the TME and possible prognostic and therapeutic roles of tetraspanins will be discussed.

  7. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms.

    Science.gov (United States)

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Khazak, Vladimir; El-Deiry, Wafik S

    2018-01-22

    Small molecule ONC201 is an investigational anti-tumor agent that upregulates intra-tumoral TRAIL expression and the integrated stress response pathway. A Phase I clinical trial using ONC201 therapy in advanced cancer patients has been completed and the drug has progressed into Phase II trials in several cancer types. Colorectal cancer (CRC) remains one of the leading causes of cancer worldwide and metastatic disease has a poor prognosis. Clinical trials in CRC and other tumor types have demonstrated that therapeutics targeting the vascular endothelial growth factor (VEGF) pathway, such as bevacizumab, are effective in combination with certain chemotherapeutic agents. We investigated the potential combination of VEGF inhibitors such as bevacizumab and its murine-counterpart; along with other anti-angiogenic agents and ONC201 in both CRC xenograft and patient-derived xenograft (PDX) models. We utilized non-invasive imaging and immunohistochemistry to determine potential mechanisms of action. Our results demonstrate significant tumor regression or complete tumor ablation in human xenografts with the combination of ONC201 with bevacizumab, and in syngeneic MC38 colorectal cancer xenografts using a murine VEGF-A inhibitor. Imaging demonstrated the impact of this combination on decreasing tumor growth and tumor metastasis. Our results indicate that ONC201 and anti-angiogenic agents act through distinct mechanisms while increasing tumor cell death and inhibiting proliferation. With the use of both a murine VEGF inhibitor in syngeneic models, and bevacizumab in human cell line-derived xenografts, we demonstrate that ONC201 in combination with anti-angiogenic therapies such as bevacizumab represents a promising approach for further testing in the clinic for the treatment of CRC.

  8. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Wan, Jingyuan; Luo, Fuling [Department of Pharmacology, Chongqing Medical University, Chongqing (China); Li, Hongyuan [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: rgs726@163.com [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2013-10-01

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.

  9. Anti-tumor effects of an engineered 'killer' transfer RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-hui [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States); Lee, Jiyoung; Frankenberger, Casey [Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 (United States); Geslain, Renaud, E-mail: rgeslain@depaul.edu [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States); Department of Biology, DePaul University, Chicago, IL 60614 (United States); Rosner, Marsha, E-mail: m-rosner@uchicago.edu [Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 (United States); Pan, Tao, E-mail: taopan@uchicago.edu [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer tRNA with anti-cancer effects. Black-Right-Pointing-Pointer tRNA induced protein misfolding. Black-Right-Pointing-Pointer tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA{sup Ser}(AAU) is an engineered human tRNA{sup Ser} with an anticodon coding for isoleucine. Here we test the possibility that tRNA{sup Ser}(AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA{sup Ser}(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA{sup Ser}(AAU) in both tumorigenic and non-tumorigenic cells. tRNA{sup Ser}(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA{sup Ser}(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA{sup Ser}(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA{sup Ser}(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  10. Anti-tumor effects of an engineered “killer” transfer RNA

    International Nuclear Information System (INIS)

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey; Geslain, Renaud; Rosner, Marsha; Pan, Tao

    2012-01-01

    Highlights: ► tRNA with anti-cancer effects. ► tRNA induced protein misfolding. ► tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA Ser (AAU) is an engineered human tRNA Ser with an anticodon coding for isoleucine. Here we test the possibility that tRNA Ser (AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA Ser (AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA Ser (AAU) in both tumorigenic and non-tumorigenic cells. tRNA Ser (AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA Ser (AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA Ser (AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA Ser (AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  11. Mechanisms of resistance to alkylating agents

    OpenAIRE

    Damia, G.; D‘Incalci, M.

    1998-01-01

    Alkylating agents are the most widely used anticancer drugs whose main target is the DNA, although how exactly the DNA lesions cause cell death is still not clear. The emergence of resistance to this class of drugs as well as to other antitumor agents is one of the major causes of failure of cancer treatment. This paper reviews some of the best characterized mechanisms of resistance to alkylating agents. Pre- and post-target mechanisms are recognized, the former able to limit the formation of...

  12. Promising pesticide results

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    wastewater. For example, DDT has been linked to diabetes and liver, pancreatic and breast cancer, and is a 'probable' carcinogen, according to the US Environmental Protection Agency.” DDT has a half-life of up to 30 years in soil, which means only half its toxicity is naturally depleted through chemical breakdown over a 30-year period. Arsenic, however, which was used in DDT pesticides, does not breakdown at all over time. Moreover, epidemiological studies suggest that DDT and DDE cause serious illness. “Perhaps more worrying is the finding that DDT and its breakdown products are transported from warmer to colder climates around the world by a process called global distillation, thereby concentrating in colder climates and accumulating in the food web, leading to long-term ecological damage,” said Barros. By reducing DDT in the environment, these findings have the potential to aid in the sustainable global management of legacy pesticide contamination. For example, Virotec notes there are some 347 former cattle dip sites inthe region of Kyogle Shire Council in northern NSW, 259 in Lismore Shire Council and a further 211 in Richmond Valley Shire Council. The number of sheep dip sites throughout NSW and Queensland, which are also contaminated with arsenic and DDT, are of a comparable scale. Barros went on to point out that while the treatment of arsenic in soil is relatively straightforward, irrespective of whether treated in situ or ex situ, the treatment of DDT in soil is highly problematic. “Most soil treatments designed to destroy organic compounds in soil involve the introduction of key bacterial agents, because lower sources of energy simply do not have the requisite power to breakdown the long-chain organic molecules. However, as DDT is a pesticide it tends to kill both indigenous and introduced bacteria before they can break down the DDT molecule, thereby eliminating the source of potential remediation,” said Barros. Another challenge relates to the stability

  13. Agent-Based Optimization

    CERN Document Server

    Jędrzejowicz, Piotr; Kacprzyk, Janusz

    2013-01-01

    This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve  difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.

  14. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  15. An experimental study on the antitumor effect of 131I-17-AAG in vitro and in vivo

    International Nuclear Information System (INIS)

    Tu Wenyong; Liu Lu; Chen Daozhen; Huang Ying; Yin Weidong

    2009-01-01

    The objective of this study was to observe the antitumor effect of 131 I-17-allylamino-17-demethoxygeldanamycin ( 131 I-17-AAG) in vitro/in vivo and explore its antitumor mechanism with a view to its potential therapeutic application. 131 I-17-AAG was prepared by the reaction of 17-AAG with Na [ 131 I] in the presence of hydrogen peroxide. The effects of 131 17-AAG on cell growth inhibition and cell cycle distribution in vitro were studied in BEL-7402 cells lines. Following BEL-7402 tumor implantation by subcutaneous xenografts into nude mice, the reagents were injected through the tail vein, and the tumor volume was measured and analyzed. At the end of the experiment, tumor specimens were processed for histopathological analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis. The expression change of Akt2 was tested by Western-blot analysis. Methyl-thiazolyl-tetrazolium assay showed inhibition rates of 27.7±5.3%, 57.3±4.3%, and 63.7±3.1%, in Na 131 I group, 17-AAG group, and 131 I-17-AAG group, respectively. The inhibition rate in the 131 I-17-AAG group differed significantly between Na 131 I group and 17-AAG group (F=229.49, P 131 I group, 17-AAG group, and 131 I-17-AAG group, respectively. Following infusion for 32 days, the tumor volumes in the 131 I-17-AAG group were significantly smaller than those in the DMSO group (F=24.18, P 131 I group (F=20.68, P 131 I-17-AAG inhibited the proliferation of tumor cells and induced apoptosis. The expression of Akt2 in 131 I-17-AAG was significantly lower than that in the DMSO group or 131 I group. 131 I-17-AAG can effectively inhibit the growth of BEL-7402 tumor cells in vitro and in vivo. 131 I-17-AAG is a promising agent for the treatment of BEL-7402 cell tumor. (author)

  16. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  17. Immunological effects of hypomethylating agents.

    Science.gov (United States)

    Lindblad, Katherine E; Goswami, Meghali; Hourigan, Christopher S; Oetjen, Karolyn A

    2017-08-01

    Epigenetic changes resulting from aberrant methylation patterns are a recurrent observation in hematologic malignancies. Hypomethylating agents have a well-established role in the management of patients with high-risk myelodysplastic syndrome or acute myeloid leukemia. In addition to the direct effects of hypomethylating agents on cancer cells, there are several lines of evidence indicating a role for immune-mediated anti-tumor benefits from hypomethylating therapy. Areas covered: We reviewed the clinical and basic science literature for the effects of hypomethylating agents, including the most commonly utilized therapeutics azacitidine and decitabine, on immune cell subsets. We summarized the effects of hypomethylating agents on the frequency and function of natural killer cells, T cells, and dendritic cells. In particular, we highlight the effects of hypomethylating agents on expression of immune checkpoint inhibitors, leukemia-associated antigens, and endogenous retroviral elements. Expert commentary: In vitro and ex vivo studies indicate mixed effects on the function of natural killer, dendritic cells and T cells following treatment with hypomethylating agents. Clinical correlates of immune function have suggested that hypomethylating agents have immunomodulatory functions with the potential to synergize with immune checkpoint therapy for the treatment of hematologic malignancy, and has become an active area of clinical research.

  18. Antitumor activity of Annona squamosa seed oil.

    Science.gov (United States)

    Chen, Yong; Chen, Yayun; Shi, Yeye; Ma, Chengyao; Wang, Xunan; Li, Yue; Miao, Yunjie; Chen, Jianwei; Li, Xiang

    2016-12-04

    Custard apple (Annona squamosa Linn.) is an edible tropical fruit, and its seeds have been used to treat "malignant sore" (cancer) and other usage as insecticide. A comparison of extraction processes, chemical composition analysis and antitumor activity of A. squamosa seed oil (ASO) were investigated. The optimal extraction parameters of ASO were established by comparing percolation, soxhlet, ultrasonic and SFE-CO 2 extraction methods. The chemical composition of fatty acid and content of total annonaceous acetogenins (ACGs) of ASO was investigated by GC-MS and colorimetric assay, and anti-tumor activity of ASO was tested using H 22 xenografts bearing mice. The optimal extraction parameters of ASO were obtained as follows: using soxhlet extraction method with extraction solvent of petroleum ether, temperature of 80°C, and extraction time of 90min. Under these conditions, the yield of ASO was 22.65%. GC-MS analysis results showed that the main chemical compositions of fatty acid of ASO were palmitic acid (9.92%), linoleic acid (20.49%), oleic acid (56.50%) and stearic acid (9.14%). The total ACGs content in ASO was 41.00mg/g. ASO inhibited the growth of H 22 tumor cells in mice with a maximum inhibitory rate of 53.54% by oral administration. Furthermore, it was found that ASO exerted an antitumor effect via decreasing interleukin-6 (IL-6), janus kinase (Jak) and phosphorylated signal transducers and activators of transcription (p-Stat3) expression. The results demonstrated that ASO suppressed the H 22 solid tumor development may due to its main chemical constituents unsaturated fatty acid and ACGs via IL-6/Jak/Stat3 pathway. ASO may be a potential candidate for the treatment of cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2014-08-01

    Full Text Available Accumulating evidence demonstrates important roles for histone deacetylase in tumorigenesis (HDACs, highlighting them as attractive targets for antitumor drug development. Histone deactylase inhibitors (HDACIs, which have shown favorable anti-tumor activity with low toxicity in clinical investigations, are a promising class of anticancer therapeutics. Here, we screened our compound library to explore small molecules that possess anti-HDAC activity and identified a novel HDACI, YF479. Suberoylanilide hydroxamic acid (SAHA, which was the first approved HDAC inhibitor for clinical treatment by the FDA, was as positive control in our experiments. We further demonstrated YF479 abated cell viability, suppressed colony formation and tumor cell motility in vitro. To investigate YF479 with superior pharmacodynamic properties, we developed spontaneous and experimental breast cancer animal models. Our results showed YF479 significantly inhibited breast tumor growth and metastasis in vivo. Further study indicated YF479 suppressed both early and end stages of metastatic progression. Subsequent adjuvant chemotherapy animal experiment revealed the elimination of local-regional recurrence (LRR and distant metastasis by YF479. More important, YF479 remarkably prolonged the survival of tumor-bearing mice. Intriguingly, YF479 displayed more potent anti-tumor activity in vitro and in vivo compared with SAHA. Together, our results suggest that YF479, a novel HDACI, inhibits breast tumor growth, metastasis and recurrence. In light of these results, YF479 may be an effective therapeutic option in clinical trials for patients burdened by breast cancer.

  20. The roots of modern oncology: from discovery of new antitumor anthracyclines to their clinical use.

    Science.gov (United States)

    Cassinelli, Giuseppe

    2016-06-02

    In May 1960, the Farmitalia CEO Dr. Bertini and the director of the Istituto Nazionale dei Tumori of Milan Prof. Bucalossi (talent scout and city's Mayor) signed a research agreement for the discovery and development up to clinical trials of new natural antitumor agents. This agreement can be considered as a pioneering and fruitful example of a translational discovery program with relevant transatlantic connections. Owing to an eclectic Streptomyces, found near Castel del Monte (Apulia), and to the skilled and motivated participants of both institutions, a new natural antitumor drug, daunomycin, was ready for clinical trials within 3 years. Patent interference by the Farmitalia French partner was overcome by the good quality of the Italian drug and by the cooperation between Prof. Di Marco, director of the Istituto Ricerche Farmitalia Research Laboratories for Microbiology and Chemotherapy, and Prof. Karnofsky, head of the Sloan-Kettering Cancer Institute of New York, leading to the first transatlantic clinical trials. The search for daunomycin's sister anthracyclines led to the discovery and development of adriamycin, one of the best drugs born in Milan. This was the second act prologue of the history of Italian antitumor discovery and clinical oncology, which started in July 1969 when Prof. Di Marco sent Prof. Bonadonna the first vials of adriamycin (doxorubicin) to be tested in clinical trials. This article reviews the Milan scene in the 1960s, a city admired and noted for the outstanding scientific achievements of its private and public institutions in drugs and industrial product discovery.

  1. Increasing antitumor effects of chemoradiotherapy by drug efflux inhibition with encapsulated anti-RLIP-76

    International Nuclear Information System (INIS)

    Harada, Satoshi; Ehara, Shigeru; Ishii, Keizo

    2011-01-01

    Microencapsulated anti-RLIP76 was tested in vivo using C3He/J mice to determine the increasing of antitumor effects by chemotherapeutic agent efflux inhibition during chemoradiotherapy. Microcapsules were produced by spraying a mixture of 3.0% hyaluronic acid, 2.0% alginate, 3.0% H 2 O 2 , and 0.3 mmol carboplatin onto a mixture of 0.3 mol FeCl 2 and 0.15 mol CaCl 2 . Microcapsules were subcutaneously injected into MM46 tumors previously inoculated into the left hind legs of C3He/J mice. Subsequent radiotherapy consisted of tumor irradiation with 10 Gy or 20 Gy 60 Co. The antitumor effects of microcapsules were tested by measuring tumor size and monitoring tumor growth. Three types of adverse effects were considered: fuzzy hair, loss of body weight, and mortality. Carboplatin levels were monitored using particle-induced X-ray emission (PIXE) and a micro-PIXE camera. Anti-RLIP76 inhibited the efflux of carboplatin from tumor tissue, which led to an increase in the concentration of carboplatin. Higher carboplatin concentration significantly increased the combined antitumor effect of radiation and chemotherapy. A significant decrease in adverse effects was also observed with microencapsulated anti-RLIP76. (author)

  2. Effects of Different Temperatures on the Chemical Structure and Antitumor Activities of Polysaccharides from Cordyceps militaris

    Directory of Open Access Journals (Sweden)

    Eliyas Nurmamat

    2018-04-01

    Full Text Available The effects of different extraction temperatures (4 and 80 °C on the physicochemical properties and antitumor activity of water soluble polysaccharides (CMPs-4 and CMPs-80 from Cordyceps militaris (C. militaris were evaluated in this study. The results of gas chromatography (GC and high-performance gel permeation chromatography (HPGPC showed that a higher extraction temperature could degrade the polysaccharides with 188 kDa, mainly composed of glucose, and increase the dissolution rate of polysaccharides about 308 kDa, mainly consisting of rhamnose and galactose. In addition, the CMPs displayed the same sugar ring and category of glycosidic linkage based on Fourier-transform infrared spectroscopy (FTIR analysis, however, their invisible structural difference occurred in the specific rotation and conformational characteristics according to the results of specific optical rotation measurement and Congo red test. In vitro antitumor experiments indicated that CMPs-4 possessed stronger inhibitory effects on human esophagus cancer Eca-109 cells by inducing cell apoptosis more than CMPs-80 did. These findings demonstrated that the polysaccharides extracted with cold water (4 °C could be applied as a novel alternative chemotherapeutic agent or dietary supplement with its underlying antitumor property.

  3. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice.

    Science.gov (United States)

    Wang, Cheng-Li; Lu, Chiu-Ying; Hsueh, Ying-Chao; Liu, Wen-Hsiung; Chen, Chun-Jen

    2014-11-01

    Fungi of the genus Ganoderma are basidiomycetes that have been used as traditional medicine in Asia and have been shown to exhibit various pharmacological activities. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the maturation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response in vivo. In this study, we investigated whether the immune adjuvant function of PS-F2 can stimulate antitumor immune responses in tumor-bearing mice. Continuous intraperitoneal or oral administration of PS-F2 effectively suppressed the growth of colon 26 (C26) adenocarcinoma, B16 melanoma, and sarcoma 180 (S180) tumor cells in mice without adverse effects on the animals' health. PS-F2 did not cause direct cytotoxicity on tumor cells, and it lost the antitumor effect in mice with severe combined immunodeficiency (SCID). CD4(+) T cells, CD8(+) T cells, and serum from PS-F2-treated tumor-bearing mice all exhibited antitumor activities when adoptively transferred to naïve animals, indicating that PS-F2 treatment stimulates tumor-specific cellular and humoral immune responses. These data demonstrate that continuous administration of G. formosanum polysaccharide PS-F2 can activate host immune responses against ongoing tumor growth, suggesting that PS-F2 can potentially be developed into a preventive/therapeutic agent for cancer immunotherapy.

  4. Antitumor Effects of Saffron-Derived Carotenoids in Prostate Cancer Cell Models

    Directory of Open Access Journals (Sweden)

    Claudio Festuccia

    2014-01-01

    Full Text Available Crocus sativus L. extracts (saffron are rich in carotenoids. Preclinical studies have shown that dietary intake of carotenoids has antitumor effects suggesting their potential preventive and/or therapeutic roles. We have recently reported that saffron (SE and crocin (CR exhibit anticancer activity by promoting cell cycle arrest in prostate cancer (PCa cells. It has also been demonstrated that crocetin esters are produced after SE gastrointestinal digestion by CR hydrolysis. The aim of the present report was to investigate if SE, crocetin (CCT, and CR affected in vivo tumor growth of two aggressive PCa cell lines (PC3 and 22rv1 which were xenografted in male nude mice treated by oral gavage with SE, CR, and CCT. We demonstrated that the antitumor effects of CCT were higher when compared to CR and SE and treatments reverted the epithelial-mesenchymal transdifferentiation (EMT as attested by the significant reduction of N-cadherin and beta-catenin expression and the increased expression of E-cadherin. Additionally, SE, CR, and CCT inhibited PCa cell invasion and migration through the downmodulation of metalloproteinase and urokinase expression/activity suggesting that these agents may affect metastatic processes. Our findings suggest that CR and CCT may be dietary phytochemicals with potential antitumor effects in biologically aggressive PCa cells.

  5. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    NARCIS (Netherlands)

    Dolen, Y.; Kreutz, M.; Gileadi, U.; Tel, J.; Vasaturo, A.; Dinther, E.A.W. van; Hout-Kuijer, M.A. van; Cerundolo, V.; Figdor, C.G.

    2016-01-01

    Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here,

  6. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications.

    Science.gov (United States)

    Deslouches, Berthony; Di, Y Peter

    2017-07-11

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.

  7. Meroterpenoids with Antitumor Activities from Guava (Psidium guajava).

    Science.gov (United States)

    Qin, Xu-Jie; Yu, Qian; Yan, Huan; Khan, Afsar; Feng, Mi-Yan; Li, Pan-Pan; Hao, Xiao-Jiang; An, Lin-Kun; Liu, Hai-Yang

    2017-06-21

    Psidium guajava L., a species native to South America, has been widely cultivated in the tropical and subtropical areas of China for its popular fruits. The preliminary analysis by liquid chromatography-ultraviolet (LC-UV) indicated the presence of meroterpenoids in the fruits of P. guajava (guava). Subsequent fractionation of the petroleum ether extract resulted in the identification of two new meroterpenoids, psiguajavadials A (1) and B (2), together with 14 previously described meroterpenoids (3-16). Their structures were fully elucidated by comprehensive spectroscopic techniques and theoretical calculations. All of the meroterpenoids showed cytotoxicities against five human cancer cell lines, with guajadial B (12) being the most effective having an IC 50 value of 150 nM toward A549 cells. Furthermore, biochemical topoisomerase I (Top1) assay revealed that psiguajavadial A (1), psiguajavadial B (2), guajadial B (12), guajadial C (14), and guajadial F (16) acted as Top1 catalytic inhibitors and delayed Top1 poison-mediated DNA damage. The flow cytometric analysis indicated that the new meroterpenoids psiguajavadials A (1) and B (2) could induce apoptosis of HCT116 cells. These data suggest that meroterpenoids from guava fruit could be used for the development of antitumor agents.

  8. In vivo antitumor and antimetastatic effects of flavokawain B in 4T1 breast cancer cell-challenged mice

    Directory of Open Access Journals (Sweden)

    Abu N

    2015-03-01

    Full Text Available Nadiah Abu,1,2 Nurul Elyani Mohamed,2 Swee Keong Yeap,3 Kian Lam Lim,4 M Nadeem Akhtar,5 Aimi Jamil Zulfadli,3 Beh Boon Kee,2 Mohd Puad Abdullah,2 Abdul Rahman Omar,3 Noorjahan Banu Alitheen2 1Bright Sparks Unit, Universiti Malaya, Kuala Lumpur, Malaysia; 2Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 3Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia; 4Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT, Jalan Sungai Long, Bandar Sungai Long, Cheras, Selangor, Malaysia; 5Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan Pahang, Malaysia Abstract: Flavokawain B (FKB is a naturally occurring chalcone that can be isolated through the root extracts of the kava-kava plant (Piper methysticum. It can also be synthesized chemically to increase the yield. This compound is a promising candidate as a biological agent, as it is reported to be involved in a wide range of biological activities. Furthermore, FKB was reported to have antitumorigenic effects in several cancer cell lines in vitro. However, the in vivo antitumor effects of FKB have not been reported on yet. Breast cancer is one of the major causes of cancer-related deaths in the world today. Any potential treatment should not only impede the growth of the tumor, but also modulate the immune system efficiently and inhibit the formation of secondary tumors. As presented in our study, FKB induced apoptosis in 4T1 tumors in vivo, as evidenced by the terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining of the tumor. FKB also regulated the immune system by increasing both helper and cytolytic T-cell and natural killer cell populations. In addition, FKB also enhanced the levels of interleukin 2 and interferon gamma but suppressed interleukin 1B. Apart from that, FKB was also found to inhibit

  9. Anti-tumor effect of polysaccharides from rhizome of Curculigo ...

    African Journals Online (AJOL)

    The anti-tumor effect of PDC on cervical cancer was investigated in vivo in mice injected with Hela cells. The parameters measured were tumor volume and weight. In vitro anti-tumor effects of PDC were assessed by measuring expressions of caspase-3, caspase-9 and P53 proteins in Hela cells via ELISA assay. Thymus ...

  10. Induction of antitumor immunity through xenoplacental immunization

    Directory of Open Access Journals (Sweden)

    Agadjanyan Michael G

    2006-05-01

    Full Text Available Abstract Historically cancer vaccines have yielded suboptimal clinical results. We have developed a novel strategy for eliciting antitumor immunity based upon homology between neoplastic tissue and the developing placenta. Placenta formation shares several key processes with neoplasia, namely: angiogenesis, activation of matrix metalloproteases, and active suppression of immune function. Immune responses against xenoantigens are well known to break self-tolerance. Utilizing xenogeneic placental protein extracts as a vaccine, we have successfully induced anti-tumor immunity against B16 melanoma in C57/BL6 mice, whereas control xenogeneic extracts and B16 tumor extracts where ineffective, or actually promoted tumor growth, respectively. Furthermore, dendritic cells were able to prime tumor immunity when pulsed with the placental xenoantigens. While vaccination-induced tumor regression was abolished in mice depleted of CD4 T cells, both CD4 and CD8 cells were needed to adoptively transfer immunity to naïve mice. Supporting the role of CD8 cells in controlling tumor growth are findings that only freshly isolated CD8 cells from immunized mice were capable of inducing tumor cell caspases-3 activation ex vivo. These data suggest feasibility of using xenogeneic placental preparations as a multivalent vaccine potently targeting not just tumor antigens, but processes that are essential for tumor maintenance of malignant potential.

  11. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Directory of Open Access Journals (Sweden)

    María Losada-Echeberría

    2017-11-01

    Full Text Available Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs and epidermal growth factor receptor 2 (HER2. Tumors with none of these receptors are classified as triple negative breast cancer (TNBC and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.

  12. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Science.gov (United States)

    Herranz-López, María; Micol, Vicente

    2017-01-01

    Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation. PMID:29112149

  13. Albendazole as a promising molecule for tumor control.

    Science.gov (United States)

    Castro, L S E P W; Kviecinski, M R; Ourique, F; Parisotto, E B; Grinevicius, V M A S; Correia, J F G; Wilhelm Filho, D; Pedrosa, R C

    2016-12-01

    This work evaluated the antitumor effects of albendazole (ABZ) and its relationship with modulation of oxidative stress and induction of DNA damage. The present results showed that ABZ causes oxidative cleavage on calf-thymus DNA suggesting that this compound can break DNA. ABZ treatment decreased MCF-7 cell viability (EC 50 =44.9 for 24h) and inhibited MCF-7 colony formation (~67.5% at 5μM). Intracellular ROS levels increased with ABZ treatment (~123%). The antioxidant NAC is able to revert the cytotoxic effects, ROS generation and loss of mitochondrial membrane potential of MCF-7 cells treated with ABZ. Ehrlich carcinoma growth was inhibited (~32%) and survival time was elongated (~50%) in animals treated with ABZ. Oxidative biomarkers (TBARS and protein carbonyl levels) and activity of antioxidant enzymes (CAT, SOD and GR) increased, and reduced glutathione (GSH) was depleted in animals treated with ABZ, indicating an oxidative stress condition, leading to a DNA damage causing phosphorylation of histone H2A variant, H2AX, and triggering apoptosis signaling, which was confirmed by increasing Bax/Bcl-xL rate, p53 and Bax expression. We propose that ABZ induces oxidative stress promoting DNA fragmentation and triggering apoptosis and inducing cell death, making this drug a promising leader molecule for development of new antitumor drugs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. An update on anti-TNF agents in ulcerative colitis

    NARCIS (Netherlands)

    Samaan, Mark A.; Bagi, Preet; Vande Casteele, Niels; D'Haens, Geert R.; Levesque, Barrett G.

    2014-01-01

    Anti-tumor necrosis factor-α agents are key therapeutic options for the treatment of ulcerative colitis. Their efficacy and safety have been shown in large randomized controlled trials. The key evidence gained from these trials of infliximab, adalimumab, and golimumab is reviewed along with their

  15. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Directory of Open Access Journals (Sweden)

    Pham Phuc V

    2011-12-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs. Methods We isolated a breast cancer cell population (CD44+CD24- cells from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44+CD24- phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs. Results Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs. Conclusions Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.

  16. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    Science.gov (United States)

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  17. Cellular effects of the microtubule-targeting agent peloruside A in hypoxia-conditioned colorectal carcinoma cells.

    Science.gov (United States)

    Řehulka, Jiří; Annadurai, Narendran; Frydrych, Ivo; Znojek, Pawel; Džubák, Petr; Northcote, Peter; Miller, John H; Hajdúch, Marián; Das, Viswanath

    2017-07-01

    Hypoxia is a prominent feature of solid tumors, dramatically remodeling microtubule structures and cellular pathways and contributing to paclitaxel resistance. Peloruside A (PLA), a microtubule-targeting agent, has shown promising anti-tumor effects in preclinical studies. Although it has a similar mode of action to paclitaxel, it binds to a distinct site on β-tubulin that differs from the classical taxane site. In this study, we examined the unexplored effects of PLA in hypoxia-conditioned colorectal HCT116 cancer cells. Cytotoxicity of PLA was determined by cell proliferation assay. The effects of a pre-exposure to hypoxia on PLA-induced cell cycle alterations and apoptosis were examined by flow cytometry, time-lapse imaging, and western blot analysis of selected markers. The hypoxia effect on stabilization of microtubules by PLA was monitored by an intracellular tubulin polymerization assay. Our findings show that the cytotoxicity of PLA is not altered in hypoxia-conditioned cells compared to paclitaxel and vincristine. Furthermore, hypoxia does not alter PLA-induced microtubule stabilization nor the multinucleation of cells. PLA causes cyclin B1 and G2/M accumulation followed by apoptosis. The cellular and molecular effects of PLA have been determined in normoxic conditions, but there are no reports of PLA effects in hypoxic cells. Our findings reveal that hypoxia preconditioning does not alter the sensitivity of HCT116 to PLA. These data report on the cellular and molecular effects of PLA in hypoxia-conditioned cells for the first time, and will encourage further exploration of PLA as a promising anti-tumor agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    Science.gov (United States)

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit.

  19. Silkworm: A Promising Model Organism in Life Science.

    Science.gov (United States)

    Meng, Xu; Zhu, Feifei; Chen, Keping

    2017-09-01

    As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  20. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models.

    Science.gov (United States)

    Desale, Swapnil S; Raja, Srikumar M; Kim, Jong Oh; Mohapatra, Bhopal; Soni, Kruti S; Luan, Haitao; Williams, Stetson H; Bielecki, Timothy A; Feng, Dan; Storck, Matthew; Band, Vimla; Cohen, Samuel M; Band, Hamid; Bronich, Tatiana K

    2015-06-28

    ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full

  1. Political Reputations and Campaign Promises

    OpenAIRE

    Aragones, Enriqueta; Palfrey, Thomas R.; Postlewaite, Andrew

    2006-01-01

    We analyze conditions under which candidates' reputations may affect voters' beliefs over what policy will be implemented by the winning candidate of an election. We develop a model of repeated elections with complete information in which candidates are purely ideological. We analyze an equilibrium in which voters' strategies involve a credible threat to punish candidates who renege on their campaign promises and in which all campaign promises are believed by voters and honored by candidates....

  2. A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases

    International Nuclear Information System (INIS)

    Hayakawa, F; Sugimoto, K; Harada, Y; Hashimoto, N; Ohi, N; Kurahashi, S; Naoe, T

    2013-01-01

    Signal transduction and activator of transcription (STAT) proteins are extracellular ligand-responsive transcription factors that mediate cell proliferation, apoptosis, differentiation, development and the immune response. Aberrant signals of STAT induce uncontrolled cell proliferation and apoptosis resistance and are strongly involved in cancer. STAT has been identified as a promising target for antitumor drugs, but to date most trials have not been successful. Here, we demonstrated that a novel STAT inhibitor, OPB-31121, strongly inhibited STAT3 and STAT5 phosphorylation without upstream kinase inhibition, and induced significant growth inhibition in various hematopoietic malignant cells. Investigation of various cell lines suggested that OPB-31121 is particularly effective against multiple myeloma, Burkitt lymphoma and leukemia harboring BCR–ABL, FLT3/ITD and JAK2 V617F, oncokinases with their oncogenicities dependent on STAT3/5. Using an immunodeficient mouse transplantation system, we showed the significant antitumor effect of OPB-31121 against primary human leukemia cells harboring these aberrant kinases and its safety for normal human cord blood cells. Finally, we demonstrated a model to overcome drug resistance to upstream kinase inhibitors with a STAT inhibitor. These results suggested that OPB-31121 is a promising antitumor drug. Phase I trials have been performed in Korea and Hong Kong, and a phase I/II trial is underway in Japan

  3. Evaluation of cytotoxic and antitumoral properties of Tessaria absinthioides (Hook & Arn DC, "pájaro bobo", aqueous extract

    Directory of Open Access Journals (Sweden)

    Fabio A. Persia

    2017-08-01

    Full Text Available Higher plants have provided various natural derived drugs used currently in western medicine. Tessaria absinthioides (Hook. & Arn. DC, Asteraceae, is a native plant from South-America with reported ethnopharmacological and culinary uses. Despite recent scientific reports about plants properties, there is not a well conducted research about its anticancer and potential toxic effects. The current work demonstrates the plant aqueous extract composition; the in vitro induced cytotoxicity, and explores, in vivo, its oral toxicity and antitumoral effects. Composition of aqueous extract was determined by phytochemical reactions. Cytotoxicity was tested in tumoral (Hela, Gli-37, HCT-116 and MCF-7 and non-tumoral (HBL-100 cells, using MTT assay. Oral toxicity and the antitumor activity against colorectal carcinoma were studied in rodents. The chemical analysis revealed the presence of flavonoids, carbohydrates, sterols, terpenes and tannins. Cytotoxicity towards tumoral cells was observed (CV50: 3.0 to 14.8 ug/ml; while in non-tumoral cells, extracts evidenced a selective reduced toxicity (CV50: 29.5 ug/ml. Oral administration of the extract does not induce acute nor dose-repeated toxicity at doses up to 2000 mg/kg and 1000 mg/kg/day, respectively. The antitumoral effect was confirmed by a significant increase in a median survival from 24 weeks (non-treated to 30 weeks (T. absinthioides treated. The present data indicate that T. absinthioides extract exhibits cytotoxicity against cancer cell lines, with no-toxic effects and significant antitumoral effects in colorectal cancer when is orally administrated. In conclusion, T. absinthioides possesses selective cytotoxicity and antitumoral activities, making its plant derivatives products promising for cancer research and treatment.

  4. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-04-01

    Full Text Available Ying Liu,1,* Man He,1,* Mengmeng Niu,1 Yiqing Zhao,1 Yuanzhang Zhu,1 Zhenhua Li,2 Nianping Feng1 1Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 2Cedars-Sinai Medical Center, Los Angeles, CA, USA *These authors contributed equally to this work Abstract: Rapid drug release at the specific site of action is still a challenge for antitumor therapy. Development of stimuli-responsive hybrid nanocarriers provides a promising strategy to enhance therapeutic effects by combining the unique features of each component. The present study explored the use of drug–gold nanoparticle conjugates incorporated into liposomes to enhance antitumor efficiency. A model drug, vincristine sulfate, was physically conjugated with gold nanoparticles and verified by UV-visible and fourier transform infrared spectroscopy, and differential scanning calorimetry. The conjugates were incorporated into liposomes by film dispersion to yield nanoparticles (113.4 nm with light-responsive release properties, as shown by in vitro release studies. Intracellular uptake and distribution was studied in HeLa cells using transmission electron microscopy and confocal laser scanning microscopy. This demonstrated liposome internalization and localization in endosomal–lysosomal vesicles. Fluorescence intensity increased in cells exposed to UV light, indicating that this stimulated intracellular drug release; this finding was confirmed by quantitative analyses using flow cytometry. Antitumor efficacy was evaluated in HeLa cells, both in culture and in implants in vivo in nude mice. HeLa cell viability assays showed that light exposure enhanced liposome cytotoxicity and induction of apoptosis. Furthermore, treatment with the prepared liposomes coupled with UV light exposure produced greater antitumor effects in nude mice and reduced side effects, as compared with free vincristine sulfate

  5. Evaluation of antitumor activity and in vivo antioxidant status of Anthocephalus cadamba on Ehrlich ascites carcinoma treated mice.

    Science.gov (United States)

    Dolai, Narayan; Karmakar, Indrajit; Suresh Kumar, R B; Kar, Biswakanth; Bala, Asis; Haldar, Pallab Kanti

    2012-08-01

    Anthocephalus cadamba (Roxb.) Miq. (Family: Rubiaceae) is commonly known as "Kadamba" in Sanskrit and Hindi in India. Various parts of this plant have been used as a folk medicine for the treatment of tumor, wound healing, inflammation and as a hypoglycemic agent. The purpose of this investigation was to evaluate the antitumor activity and antioxidant status of defatted methanol extract of A. cadamba (MEAC) on Ehrlich ascites carcinoma (EAC) treated mice. In vitro cytotoxicity assay has been evaluated by using the trypan blue method. The determination of in vivo antitumor activity was performed by using different EAC cells (2 × 10(6) cells, i.p.) inoculated mice groups (n=12). The groups were treated for 9 consecutive days with MEAC at the doses of 200 and 400 mg/kg b.w. respectively. After 24h of last dose and 18 h of fasting, half of the mice were sacrificed and the rest were kept alive for assessment of increase in life span. The antitumor potential of MEAC was assessed by evaluating tumor volume, viable and nonviable tumor cell count, tumor weight, hematological parameters and biochemical estimations. Furthermore, antioxidant parameters were assayed by estimating liver and kidney tissue enzymes. MEAC showed direct cytotoxicity on EAC cell line in a dose dependant manner. MEAC exhibited significant (P<0.01) decrease in the tumor volume, viable cell count, tumor weight and elevated the life span of EAC tumor bearing mice. The hematological profile, biochemical estimations and tissue antioxidant assay were reverted to normal level in MEAC treated mice. Experimental results revealed that MEAC possesses potent antitumor and antioxidant properties. Further research is going on to find out the active principle(s) of MEAC for better understanding of mechanism of its antitumor and antioxidant activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins.

    Science.gov (United States)

    Moltedo, Bruno; Faunes, Fernando; Haussmann, Denise; De Ioannes, Pablo; De Ioannes, Alfredo E; Puente, Javier; Becker, María Inés

    2006-12-01

    We determined the antitumor properties of a newly available hemocyanin obtained from the Chilean gastropod Concholepas concholepas (Biosonda Corp., Santiago, Chile) in a syngeneic heterotopic mouse bladder carcinoma model. Since keyhole limpet hemocyanin (Pierce, Rockford, Illinois) is used increasingly in biomedicine as a carrier for vaccines and an immunotherapeutic agent for bladder transitional cell carcinoma, there is a growing interest in finding new substances that share its potent immunomodulatory properties. Considering that keyhole limpet hemocyanin and Concholepas concholepas hemocyanin differ significantly, it was not possible to predict a priori the antitumor properties of Concholepas concholepas hemocyanin. C3H/He mice were primed with Concholepas concholepas hemocyanin before subcutaneous implantation of mouse bladder tumor-2 cells. Treatment consisted of a subcutaneous dose of Concholepas concholepas hemocyanin (1 mg or 100 mug) at different intervals after implantation. Keyhole limpet hemocyanin and phosphate buffered saline served as positive and negative controls, respectively. In addition, experiments were designed to determine which elements of the immune response were involved in its adjuvant immunostimulatory effect. Mice treated with Concholepas concholepas hemocyanin showed a significant antitumor effect, as demonstrated by decreased tumor growth and incidence, prolonged survival and lack of toxic effects. These effects were similar to those achieved with keyhole limpet hemocyanin. We found that each hemocyanin increased natural killer cell activity but the effect of Concholepas concholepas hemocyanin was stronger. Analysis of serum from treated mice showed an increased interferon-gamma and low interleukin-4, which correlated with antibody isotypes, confirming that hemocyanins induce a T helper type 1 cytokine profile. To our knowledge our results are the first demonstration of the antitumor effect of a hemocyanin other than keyhole limpet

  7. Assessment of in vitro antitumoral and antimicrobial activities of ...

    African Journals Online (AJOL)

    Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean sea. ... African Journal of Biotechnology ... algal extracts obtained from the marine algae Scytosiphon lomentaria, Padina pavonica, Cystoseira mediterranea (Phaeophyceae), Hypnea musciformis and ...

  8. Effects of Androgen Ablation on Anti-Tumor Immunity

    National Research Council Canada - National Science Library

    Kast, Martin

    2004-01-01

    .... This AA induced autoimmune-like response exerts limited anti-tumor activity in a murine prostate cancer model, but could be synergistic with CTLA-4 blockade that promotes the development of autoreactive T cell...

  9. Gut microbiome can control antitumor immune function in liver

    Science.gov (United States)

    An NCI study in mice that found a connection between gut bacteria and antitumor immune responses in the liver has implications for understanding mechanisms that lead to liver cancer and for potential treatments. The study was published in Science.

  10. GU81, a VEGFR2 antagonist peptoid, enhances the anti-tumor activity of doxorubicin in the murine MMTV-PyMT transgenic model of breast cancer

    International Nuclear Information System (INIS)

    Lynn, Kristi D; Udugamasooriya, D Gomika; Roland, Christina L; Castrillon, Diego H; Kodadek, Thomas J; Brekken, Rolf A

    2010-01-01

    Vascular endothelial growth factor (VEGF) is a primary stimulant of angiogenesis under physiological and pathological conditions. Anti-VEGF therapy is a clinically proven strategy for the treatment of a variety of cancers including colon, breast, lung, and renal cell carcinoma. Since VEGFR2 is the dominant angiogenic signaling receptor, it has become an important target in the development of novel anti-angiogenic therapies. We have reported previously the development of an antagonistic VEGFR2 peptoid (GU40C4) that has promising anti-angiogenic activity in vitro and in vivo. In the current study, we utilize a derivative of GU40C4, termed GU81 in therapy studies. GU81 was tested alone or in combination with doxorubicin for in vivo efficacy in the MMTV-PyMT transgenic model of breast cancer. The derivative GU81 has increased in vitro efficacy compared to GU40C4. Single agent therapy (doxorubicin or GU81 alone) had no effect on tumor weight, histology, tumor fat content, or tumor growth index. However, GU81 is able to significantly to reduce total vascular area as a single agent. GU81 used in combination with doxorubicin significantly reduced tumor weight and growth index compared to all other treatment groups. Furthermore, treatment with combination therapy significantly arrested tumor progression at the premalignant stage, resulting in increased tumor fat content. Interestingly, treatment with GU81 alone increased tumor-VEGF levels and macrophage infiltration, an effect that was abrogated when used in combination with doxorubicin. This study demonstrates the VEGFR2 antagonist peptoid, GU81, enhances the anti-tumor activity of doxorubicin in spontaneous murine MMTV-PyMT breast tumors

  11. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    OpenAIRE

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ga...

  12. Analogues of the Potent Antitumor Compound Leiodermatolide from a Deep-Water Sponge of the Genus Leiodermatium.

    Science.gov (United States)

    Wright, Amy E; Roberts, Jill C; Guzmán, Esther A; Pitts, Tara P; Pomponi, Shirley A; Reed, John K

    2017-03-24

    Two new analogues of the potent antitumor compound leiodermatolide, which we call leiodermatolides B and C, have been isolated from specimens of a deep-water sponge of the genus Leiodermatium collected off Florida. The compounds were purified using standard chromatographic methods, and the structures defined through interpretation of the HRMS and 1D and 2D NMR data. Leiodermatolide B (2) lacks the C-21 hydroxy group found in leiodermatolide and has equal potency as the parent compound, providing a simpler analogue for possible clinical development. It inhibits the proliferation of the AsPC-1 human pancreatic adenocarcinoma cell line with an IC 50 of 43 nM. Leiodermatolide C (3) has a modified macrolide ring and is over 85-fold less potent with an IC 50 of 3.7 μM against the same cell line. These compounds add to the knowledge of the pharmacophore of this class of potent antitumor agents.

  13. Oligodeoxynucleotides Expressing Polyguanosine Motifs Promote Anti-Tumor Activity through the Up-Regulation of IL-2

    Science.gov (United States)

    Kobayashi, Nobuaki; Hong, Choongman; Klinman, Dennis M.; Shirota, Hidekazu

    2012-01-01

    The primary goal of cancer immunotherapy is to elicit an immune response capable of eliminating the tumor. One approach towards accomplishing that goal utilizes general (rather than tumor-specific) immunomodulatory agents to boost the number and activity of pre-existing cytotoxic T lymphocytes. We find that the intra-tumoral injection of poly-G ODN has such an effect, boosting anti-tumor immunity and promoting tumor regression. The anti-tumor activity of polyguanosine (poly-G) oligonucleotides (ODN) was mediated through CD8 T cells in a TLR9 independent manner. Mechanistically, poly-G ODN directly induced the phosphorylation of Lck (an essential element of the T cell signaling pathway), thereby enhancing the production of IL-2 and CD8 T cell proliferation. These findings establish poly-G ODN as a novel type of cancer immunotherapy. PMID:23296706

  14. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Kim, Dong Hoon; Lee, Jiyong; Kim, Kyung Noo; Kim, Hye Jin; Jeung, Hei Cheul; Chung, Hyun Cheol; Kwon, Ho Jeong

    2007-01-01

    Histone deacetylase (HDAC), a key enzyme in gene expression and carcinogenesis, is considered an attractive target molecule for cancer therapy. Here, we report a new synthetic small molecule, N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), as a HDAC inhibitor with anti-tumor activity both in vitro and in vivo. The compound inhibited HDAC enzyme activity as well as proliferation of human fibrosarcoma cells (HT1080) in vitro. Treatment of cells with HNHA elicited histone hyperacetylation leading to an up-regulation of p21 transcription, cell cycle arrest, and an inhibition of HT1080 cell invasion. Moreover, HNHA effectively inhibited the growth of tumor tissue in a mouse xenograph assay in vivo. Together, these data demonstrate that this novel HDAC inhibitor could be developed as a potential anti-tumor agent targeting HDAC

  15. Mastering JavaScript promises

    CERN Document Server

    Hussain, Muzzamil

    2015-01-01

    This book is for all the software and web engineers wanting to apply the promises paradigm to their next project and get the best outcome from it. This book also acts as a reference for the engineers who are already using promises in their projects and want to improve their current knowledge to reach the next level. To get the most benefit from this book, you should know basic programming concepts, have a familiarity with JavaScript, and a good understanding of HTML.

  16. The antibiotic drug tigecycline: A focus on its promising anticancer properties

    Directory of Open Access Journals (Sweden)

    Zhijie Xu

    2016-12-01

    Full Text Available Tigecycline (TIG, the first member of glycylcycline bacteriostatic agents, has been approved to treat complicated infections in the clinic because of its expanded-spectrum antibiotic potential. Recently, an increasing number of studies have emphasized the anti-tumor effects of TIG. The inhibitory effects of TIG on cancer depend on several activating signaling pathways and abnormal mitochondrial function in cancer cells. The aim of this review is to summarize the cumulative anti-tumor evidence supporting TIG activity against different cancer types, including acute myeloid leukemia (AML, glioma, non-small cell lung cancer (NSCLC, among others. In addition, future clinical trials are discussed that will evaluate the security and validate the underlying the tumor-killing properties of TIG.

  17. [Alkylating agents].

    Science.gov (United States)

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  18. Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots.

    Science.gov (United States)

    Sahreen, Sumaira; Khan, Muhammad Rashid; Khan, Rahmat Ali; Hadda, Taibi Ben

    2015-07-03

    Being a part of Chinese as well as ayurdic herbal system, roots of Rumex hastatus D. Don (RH) is highly medicinal, used to regulated blood pressure. It is also reported that the plant is diuretic, laxative, tonic, used against microbial skin diseases, bilious complaints and jaundice. The present study is conducted to evaluate phytochemical, antimicrobial, antitumor and cytotoxic activities of extract obtained from R. hastatus roots. RH roots were powdered and extracted with methanol to get crude extract. Crude extract was further fractioned on the basis of increasing polarity, with n-hexane (HRR), chloroform (CRR), ethyl acetate (ERR), n-butanol (BRR) and residual aqueous fraction (ARR). Methanol extract and its derived fractions were subjected to phytochemical screening and assayed for antibacterial activities via agar well diffusion method. Antifungal activities were checked through agar tube dilution method whereas potato disc assay was employed for the determination of antitumor activity. On the other hand cytotoxic activities were conducted using brine shrimps procedures. The results obtained from phytochemical analysis indicate the presence of alkaloids, anthraquinones, flavonoids and saponins in all the fractions. Most of the plant fractions showed substantial antimicrobial activities, which is in accordance with the spacious use of tested plant samples in primary healthcare center. Fractions of R. hastatus roots for cytotoxicity were tested as an effective cytotoxic was found as BRR > MRR > CRR > ARR > ERR > HRR. Ranking order of fractions of R. hastatus roots for effective antitumor screening was found as MRR > BRR > ARR > CRR > ERR > HRR. These results showed that R. hastatus appeared as an important source for the discovery of new antimicrobial drugs and antitumor agents; verify its traditional uses and its exploitation as therapeutic agent.

  19. Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts.

    Directory of Open Access Journals (Sweden)

    Kiersten Marie Miles

    Full Text Available The Notch ligand Delta-like 4 (Dll4 is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC.Severe combined immunodeficiency (SCID mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36-62% that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38-54% and ziv-aflibercept (46%. Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72-80% growth inhibition, including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model.Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC.

  20. Nitrosoureas: a review of experimental antitumor activity.

    Science.gov (United States)

    Schabel, F M

    1976-06-01

    The chemical class of drugs known as the nitrosoureas are a recently developed group of very active alkylating-agent anticancer drugs which are best represented by BCNU, CCNU, and methyl-CCNU (meCCNU). The nitrosoureas are among the most active, if not the most active, anticancer drugs both quantitatively (log kill of sensitive tumor cells in vivo) and qualitatively (spectrum of mouse, rat, and hamster tumors responding to treatment). Therapeutic anticancer activity of the nitrosoureas has been consistently observed with oral as well as parenteral administration. The nitrosoureas are clearly the most active group of anticancer drugs observed against experimental meningeal leukemias and intracerebrally implanted transplantable primary tumors of central nervous system origin (eg, gliomas, ependymoblastomas, and astrocytomas in mice and hamsters). The nitrosoureas have been observed to be less than additive in lethal toxicity for vital normal cells in the mouse in combination with representatives of the other major classes of anticancer agents, eg, purine antagonists, pyrimidine antagonists, inhibitors of DNA polymerase(s) or ribonucleotide reductase(s), mitotic inhibitors, drugs that bind to or intercalate with DNA, and other alkylating agents. Therapeutic synergism against one or more transplantable or spontaneous tumors of mice, rats, or hamsters with one of several nitrosoureas in two-drug combinations with representatives of most of the major classes of anticancer agents listed above has been reported. With a number of advanced-stages mouse tumors, generally considered to be refractory to treatment with most anticancer agents, long-term cures have been obtained with combination-drug or combined-modality (surgery plus chemotherapy) treatment. The demonstrated lack of cross-resistance of several leukemias and solid tumors of mice selected for resistance to BCNU, meCCNU, or other alkylating agents suggests that the widely held opinion that all alkylating agents are

  1. Advanced nanocarriers for an antitumor peptide

    Energy Technology Data Exchange (ETDEWEB)

    Pippa, Natassa [National and Kapodistrian University of Athens, Department of Pharmaceutical Technology, Faculty of Pharmacy (Greece); Pispas, Stergios [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute (Greece); Demetzos, Costas, E-mail: demetzos@pharm.uoa.gr [National and Kapodistrian University of Athens, Department of Pharmaceutical Technology, Faculty of Pharmacy (Greece); Sivolapenko, Gregory [University of Patras, Laboratory of Pharmacokinetics, Department of Pharmacy (Greece)

    2013-11-15

    In this work, tigapotide (PCK3145) was incorporated into novel nanocarriers based on polymeric, lipidic, and dendrimeric components, in order to maximize the advantages of the drug delivery process and possibly its biological properties. PCK3145 was incorporated into lipidic nanocarriers composed of Egg phosphatidylcholine (EggPC) and dipalmytoylphosphatidylcholine (DPPC) (EggPC:PCK3145 and DPPC:PCK3145, 9:0.2 molar ratio), into cationic liposomes composed of EggPC:SA:PCK3145 and DPPC:SA:PCK3145 (9:1:0.2 molar ratio) into complexes with the block polyelectrolyte (quaternized poly[3,5-bis(dimethylaminomethylene)hydroxystyrene]-b-poly(ethylene oxide) (QNPHOSEO) and finally into dendrimeric structures (i.e., PAMAM G4). Light scattering techniques are used in order to examine the size, the size distribution and the Z-potential of the nanocarriers in aqueous and biological media. Fluorescence spectroscopy was utilized in an attempt to extract information on the internal nanostructure and microenvironment of polyelectrolyte/PCK3145 aggregates. Therefore, these studies could be a rational roadmap for producing various effective nanocarriers in order to ameliorate the pharmacokinetic behavior and safety issues of antitumor and anticancer biomolecules.

  2. Advanced nanocarriers for an antitumor peptide

    International Nuclear Information System (INIS)

    Pippa, Natassa; Pispas, Stergios; Demetzos, Costas; Sivolapenko, Gregory

    2013-01-01

    In this work, tigapotide (PCK3145) was incorporated into novel nanocarriers based on polymeric, lipidic, and dendrimeric components, in order to maximize the advantages of the drug delivery process and possibly its biological properties. PCK3145 was incorporated into lipidic nanocarriers composed of Egg phosphatidylcholine (EggPC) and dipalmytoylphosphatidylcholine (DPPC) (EggPC:PCK3145 and DPPC:PCK3145, 9:0.2 molar ratio), into cationic liposomes composed of EggPC:SA:PCK3145 and DPPC:SA:PCK3145 (9:1:0.2 molar ratio) into complexes with the block polyelectrolyte (quaternized poly[3,5-bis(dimethylaminomethylene)hydroxystyrene]-b-poly(ethylene oxide) (QNPHOSEO) and finally into dendrimeric structures (i.e., PAMAM G4). Light scattering techniques are used in order to examine the size, the size distribution and the Z-potential of the nanocarriers in aqueous and biological media. Fluorescence spectroscopy was utilized in an attempt to extract information on the internal nanostructure and microenvironment of polyelectrolyte/PCK3145 aggregates. Therefore, these studies could be a rational roadmap for producing various effective nanocarriers in order to ameliorate the pharmacokinetic behavior and safety issues of antitumor and anticancer biomolecules

  3. Zoledronic acid produces combinatory anti-tumor effects with cisplatin on mesothelioma by increasing p53 expression levels.

    Directory of Open Access Journals (Sweden)

    Shinya Okamoto

    Full Text Available We examined anti-tumor effects of zoledronic acid (ZOL, one of the bisphosphonates agents clinically used for preventing loss of bone mass, on human mesothelioma cells bearing the wild-type p53 gene. ZOL-treated cells showed activation of caspase-3/7, -8 and -9, and increased sub-G1 phase fractions. A combinatory use of ZOL and cisplatin (CDDP, one of the first-line anti-cancer agents for mesothelioma, synergistically or additively produced the cytotoxicity on mesothelioma cells. Moreover, the combination achieved greater anti-tumor effects on mesothelioma developed in the pleural cavity than administration of either ZOL or CDDP alone. ZOL-treated cells as well as CDDP-treated cells induced p53 phosphorylation at Ser 15, a marker of p53 activation, and up-regulated p53 protein expression levels. Down-regulation of p53 levels with siRNA however did not influence the ZOL-mediated cytotoxicity but negated the combinatory effects by ZOL and CDDP. In addition, ZOL treatments augmented cytotoxicity of adenoviruses expressing the p53 gene on mesothelioma. These data demonstrated that ZOL-mediated augmentation of p53, which was not linked with ZOL-induced cytotoxicity, played a role in the combinatory effects with a p53 up-regulating agent, and suggests a possible clinical use of ZOL to mesothelioma with anti-cancer agents.

  4. Selected anti-tumor vaccines merit a place in multimodal tumor therapies

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Eva-Maria; Wunderlich, Roland [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Ebel, Nina [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Rubner, Yvonne [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Schlücker, Eberhard [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Meyer-Pittroff, Roland [Competence Pool Weihenstephan, Technische Universität München, Freising (Germany); Ott, Oliver J.; Fietkau, Rainer; Gaipl, Udo S.; Frey, Benjamin, E-mail: benjamin.frey@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany)

    2012-10-09

    Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected

  5. Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.

    Science.gov (United States)

    Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P

    2015-05-21

    The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.

  6. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo

    Science.gov (United States)

    Shi, Dayong; Li, Jing; Guo, Shuju; Su, Hua; Fan, Xiao

    2009-05-01

    To investigate the antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo, six bromophenol derivatives 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (1), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (2), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethyl-pyrocatechol (3), 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxy-diphenylmethane (4), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (5), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane (6) were isolated from brown alga Leathesia nana, and their cytotoxicity were tested by MTT assays in human cancer cell lines A549, BGC-823, MCF-7, B16-BL6, HT-1080, A2780, Bel7402 and HCT-8. Their inhibitory activity against protein tyrosine kinase (PTK) with over-expression of c-kit was analyzed also by ELISA. The antitumor activity of ethanolic extraction of Leathesia nana (EELN) was evaluated on S180-bearing mice. All compounds showed very potent cytotoxicity against all of the eight cancer cell lines with IC50 below 10 μg/mL. In PTK inhibition study, all bromophenol derivatives showed moderate inhibitory activity and compounds 2, 5 and 6 showed significant bioactivity with the inhibition ratio of 77.5%, 80.1% and 71.4%, respectively. Pharmacological studies reveal that EELN could inhibit the growth of Sarcoma 180 tumor and increase the indices of thymus and spleen to improve the immune system remarkably in vivo. Results indicated that the bromophenol derivatives and EELN can be used as potent antitumor agents for PTK over-expression of c-kit and considered in a new therapeutic strategy for treatment of cancer.

  7. A New in Vitro Anti-Tumor Polypeptide Isolated from Arca inflata

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2013-12-01

    Full Text Available A new in vitro anti-tumor polypeptide, coded as J2-C3, was isolated from Arca inflata Reeve and purified by diethyl-aminoethanol (DEAE-sepharose Fast Flow anion exchange and phenyl sepharose CL-4B hydrophobic chromatography. J2-C3 was identified to be a homogeneous compound by native polyacrylamide gel electrophoresis (Native-PAGE. The purity of J2-C3 was over 99% in reversed phase-high performance liquid chromatography (RP-HPLC. The molecular weight was determined as 20,538.0 Da by electrospray-ionization mass spectrometry (ESI-MS/MS. J2-C3 was rich in Glx (Gln + Glu, Lys, and Asx (Asp + Asn according to amino acid analysis. Four partial amino acid sequences of this peptide were determined as L/ISMEDVEESR, KNGMHSI/LDVNHDGR, AMKI/LI/LNPKKGI/LVPR and AMGAHKPPKGNEL/IGHR via MALDI-TOF/TOF-MS and de novo sequencing. Secondary structural analysis by CD spectroscopy revealed that J2-C3 had the α-helix (45.2%, β-sheet (2.9%, β-turn (26.0% and random coil (25.9%. The anti-tumor effect of J2-C3 against human tumor cells was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and the IC50 values of J2-C3 were 65.57, 93.33 and 122.95 µg/mL against A549, HT-29 and HepG2 cell lines, respectively. Therefore, J2-C3 might be developed as a potential anti-tumor agent.

  8. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    International Nuclear Information System (INIS)

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2011-01-01

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost

  9. Nuclear energy: obstacles and promises

    International Nuclear Information System (INIS)

    Bacher, P.

    2003-01-01

    Nuclear energy has distinctive merits (sustainable resources, low costs, no greenhouse gases) but its development must overcome serious hurdles (fear of accidents, radio-phobia, waste management). The large unit size of present-day reactors is compatible only with large electrical grids, and involves a high capital cost. Taking into account these different factors, the paper outlines how nuclear energy may contribute to the reduction of greenhouse gases, and which are the most promising developments. (author)

  10. The promise of cyborg intelligence.

    Science.gov (United States)

    Brown, Michael F; Brown, Alexander A

    2017-03-01

    Yu et al. (2016) demonstrated that algorithms designed to find efficient routes in standard mazes can be integrated with the natural processes controlling rat navigation and spatial choices, and they pointed out the promise of such "cyborg intelligence" for biorobotic applications. Here, we briefly describe Yu et al.'s work, explore its relevance to the study of comparative cognition, and indicate how work involving cyborg intelligence would benefit from interdisciplinary collaboration between behavioral scientists and engineers.

  11. Freedom: A Promise of Possibility.

    Science.gov (United States)

    Bunkers, Sandra Schmidt

    2015-10-01

    The idea of freedom as a promise of possibility is explored in this column. The core concepts from a research study on considering tomorrow (Bunkers, 1998) coupled with humanbecoming community change processes (Parse, 2003) are used to illuminate this notion. The importance of intentionality in human freedom is discussed from both a human science and a natural science perspective. © The Author(s) 2015.

  12. Antitumor activity of a novel and orally available inhibitor of serine palmitoyltransferase

    International Nuclear Information System (INIS)

    Yaguchi, Masahiro; Shibata, Sachio; Satomi, Yoshinori; Hirayama, Megumi; Adachi, Ryutaro; Asano, Yasutomi; Kojima, Takuto; Hirata, Yasuhiro; Mizutani, Akio; Kiba, Atsushi; Sagiya, Yoji

    2017-01-01

    Metabolic reprogramming is an essential hallmark of neoplasia. Therefore, targeting cancer metabolism, including lipid synthesis, has attracted much interest in recent years. Serine palmitoyltransferase (SPT) plays a key role in the initial and rate-limiting step of de novo sphingolipid biosynthesis, and inhibiting SPT activity prevents the proliferation of certain cancer cells. Here, we identified a novel and orally available SPT inhibitor, compound-2. Compound-2 showed an anti-proliferative effect in several cancer cell models, reducing the levels of the sphingolipids ceramide and sphingomyelin. In the presence of compound-2, exogenously added S1P partially compensated the intracellular sphingolipid levels through the salvage pathway by partially rescuing compound-2-induced cytotoxicity. This suggested that the mechanism underlying the anti-proliferative effect of compound-2 involved the reduction of sphingolipid levels. Indeed, compound-2 promoted multinuclear formation with reduced endogenous sphingomyelin levels specifically in a compound-2-sensitive cell line, indicating that the effect was induced by sphingolipid reduction. Furthermore, compound-2 showed potent antitumor activity without causing significant body weight loss in the PL-21 acute myeloid leukemia mouse xenograft model. Therefore, SPT may be an attractive therapeutic anti-cancer drug target for which compound-2 may be a promising new drug. - Highlights: • We discovered compound-2, a novel and orally available SPT inhibitor. • Compound-2 was cytotoxic against PL-21 acute myeloid leukemia cells. • Compound-2 showed antitumor activity in the PL-21 mouse xenograft model.

  13. Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2.

    Science.gov (United States)

    van Zoggel, Hanneke; Carpentier, Gilles; Dos Santos, Célia; Hamma-Kourbali, Yamina; Courty, José; Amiche, Mohamed; Delbé, Jean

    2012-01-01

    Recently, we have found that the skin secretions of the Amazonian tree frog Phyllomedusa bicolor contains molecules with antitumor and angiostatic activities and identified one of them as the antimicrobial peptide dermaseptin (Drs) B2. In the present study we further explored the in vitro and in vivo antitumor activity of this molecule and investigated its mechanism of action. We showed that Drs B2 inhibits the proliferation and colony formation of various human tumor cell types, and the proliferation and capillary formation of endothelial cells in vitro. Furthermore, Drs B2 inhibited tumor growth of the human prostate adenocarcinoma cell line PC3 in a xenograft model in vivo. Research on the mechanism of action of Drs B2 on tumor PC3 cells demonstrated a rapid increasing amount of cytosolic lactate dehydrogenase, no activation of caspase-3, and no changes in mitochondrial membrane potential. Confocal microscopy analysis revealed that Drs B2 can interact with the tumor cell surface, aggregate and penetrate the cells. These data together indicate that Drs B2 does not act by apoptosis but possibly by necrosis. In conclusion, Drs B2 could be considered as an interesting and promising pharmacological and therapeutic leader molecule for the treatment of cancer.

  14. Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2.

    Directory of Open Access Journals (Sweden)

    Hanneke van Zoggel

    Full Text Available Recently, we have found that the skin secretions of the Amazonian tree frog Phyllomedusa bicolor contains molecules with antitumor and angiostatic activities and identified one of them as the antimicrobial peptide dermaseptin (Drs B2. In the present study we further explored the in vitro and in vivo antitumor activity of this molecule and investigated its mechanism of action. We showed that Drs B2 inhibits the proliferation and colony formation of various human tumor cell types, and the proliferation and capillary formation of endothelial cells in vitro. Furthermore, Drs B2 inhibited tumor growth of the human prostate adenocarcinoma cell line PC3 in a xenograft model in vivo. Research on the mechanism of action of Drs B2 on tumor PC3 cells demonstrated a rapid increasing amount of cytosolic lactate dehydrogenase, no activation of caspase-3, and no changes in mitochondrial membrane potential. Confocal microscopy analysis revealed that Drs B2 can interact with the tumor cell surface, aggregate and penetrate the cells. These data together indicate that Drs B2 does not act by apoptosis but possibly by necrosis. In conclusion, Drs B2 could be considered as an interesting and promising pharmacological and therapeutic leader molecule for the treatment of cancer.

  15. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    Science.gov (United States)

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  16. Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma.

    Science.gov (United States)

    Canitano, Andrea; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Federici, Cristina; Fais, Stefano

    2016-07-01

    Multiple Myeloma (MM) is the second most common hematological malignancy and is responsive to a limited number of drugs. Unfortunately, to date, despite the introduction of novel drugs, no relevant increase in survival rates has been obtained. Proton pump inhibitors (PPIs) have been shown to have significant antitumor action as single agents as well as in combination with chemotherapy. This study investigates the potential anti-tumor effectiveness of two PPIs, Lansoprazole and Omeprazole, against human MM cells. We found that Lansoprazole exerts straightforward efficacy against myeloma cells, even at suboptimal concentrations (50 µM), while Omeprazole has limited cytotoxic action. The Lansoprazole anti-MM effect was mostly mediated by a caspase-independent apoptotic-like cytotoxicity, with only a secondary anti-proliferative action. This study provides clear evidence supporting the use of Lansoprazole in the strive against MM with an efficacy proven much higher than current therapeutical approaches and without reported side effects. It is however conceivable that, consistent with the results obtained in other human tumors, Lansoprazole may well be combined with existing anti-myeloma therapies with the aim to improve the low level of efficacy of the current strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity.

    Directory of Open Access Journals (Sweden)

    Akihiro Ohashi

    Full Text Available Centromere-associated protein E (CENP-E regulates both chromosome congression and the spindle assembly checkpoint (SAC during mitosis. The loss of CENP-E function causes chromosome misalignment, leading to SAC activation and apoptosis during prolonged mitotic arrest. Here, we describe the biological and antiproliferative activities of a novel small-molecule inhibitor of CENP-E, Compound-A (Cmpd-A. Cmpd-A inhibits the ATPase activity of the CENP-E motor domain, acting as a time-dependent inhibitor with an ATP-competitive-like behavior. Cmpd-A causes chromosome misalignment on the metaphase plate, leading to prolonged mitotic arrest. Treatment with Cmpd-A induces antiproliferation in multiple cancer cell lines. Furthermore, Cmpd-A exhibits antitumor activity in a nude mouse xenograft model, and this antitumor activity is accompanied by the elevation of phosphohistone H3 levels in tumors. These findings demonstrate the potency of the CENP-E inhibitor Cmpd-A and its potential as an anticancer therapeutic agent.

  18. Enhancement of antitumor activity of OK-432 (picibanil) by Triton X-114 phase partitioning.

    Science.gov (United States)

    Hashimoto, Masahito; Takashige, Katsuhiro; Furuyashiki, Maiko; Yoshidome, Keitaro; Sano, Ryoko; Kawamura, Yutaka; Ijichi, Shinji; Morioka, Hirofumi; Koide, Hiroyuki; Oku, Naoto; Moriya, Yoichiro; Kusumoto, Shoich; Suda, Yasuo

    2008-01-01

    OK-432 (Picibanil), a Streptococcal immunotherapeutic agent, has been used for immunotherapy of various cancers as a biological response modifier (BRM). However, OK-432 contains multiple components consisting of immunotherapeutic ones and contaminants which may weaken the effects or exert side-effects. In this study, we investigated extraction of contaminants from OK-432 using Triton X-114 (TX-114)-water phase partitioning and examined an antitumor effect of the resulting preparation. OK-432 was subjected to TX-114 partitioning to give residual precipitate designated as OK-TX-ppt. OK-TX-ppt exerted no TLR2-mediated activity, but induced interleukin (IL)-6 in human PBMC. OK-TX-ppt also induced tumor necrosis factor (TNF)-alpha, IL-10, IL-12, and interferon (IFN)-gamma in PBMC. Moreover, IFN-gamma-inducing activity of OK-TX-ppt was significantly higher and IL-10 production was lower than that of OK-432. In tumor-bearing mice model, administration of OK-TX-ppt i.p. extended the survival time of Meth-A-bearing mice compared to OK-432. OK-TX-ppt also increased the levels of IL-12 and IFN-gamma in mouse spleen cells in vitro. These results indicated that TX-114 partitioning removed some contaminants, which attenuates the antitumor effect, from OK-432 and increase the immunotherapeutic effects of OK-432.

  19. Antivascular and antitumor properties of the tubulin-binding chalcone TUB091.

    Science.gov (United States)

    Canela, María-Dolores; Noppen, Sam; Bueno, Oskía; Prota, Andrea E; Bargsten, Katja; Sáez-Calvo, Gonzalo; Jimeno, María-Luisa; Benkheil, Mohammed; Ribatti, Domenico; Velázquez, Sonsoles; Camarasa, María-José; Díaz, J Fernando; Steinmetz, Michel O; Priego, Eva-María; Pérez-Pérez, María-Jesús; Liekens, Sandra

    2017-02-28

    We investigated the microtubule-destabilizing, vascular-targeting, anti-tumor and anti-metastatic activities of a new series of chalcones, whose prototype compound is (E)-3-(3''-amino-4''-methoxyphenyl)-1-(5'-methoxy-3',4'-methylendioxyphenyl)-2-methylprop-2-en-1-one (TUB091). X-ray crystallography showed that these chalcones bind to the colchicine site of tubulin and therefore prevent the curved-to-straight structural transition of tubulin, which is required for microtubule formation. Accordingly, TUB091 inhibited cancer and endothelial cell growth, induced G2/M phase arrest and apoptosis at 1-10 nM. In addition, TUB091 displayed vascular disrupting effects in vitro and in the chicken chorioallantoic membrane (CAM) assay at low nanomolar concentrations. A water-soluble L-Lys-L-Pro derivative of TUB091 (i.e. TUB099) showed potent antitumor activity in melanoma and breast cancer xenograft models by causing rapid intratumoral vascular shutdown and massive tumor necrosis. TUB099 also displayed anti-metastatic activity similar to that of combretastatin A4-phosphate. Our data indicate that this novel class of chalcones represents interesting lead molecules for the design of vascular disrupting agents (VDAs). Moreover, we provide evidence that our prodrug approach may be valuable for the development of anti-cancer drugs.

  20. Antitumor effects of pristimerin on human osteosarcoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Mori Y

    2017-11-01

    Full Text Available Yuki Mori,1 Toshiharu Shirai,1 Ryu Terauchi,1 Shinji Tsuchida,1 Naoki Mizoshiri,1 Daichi Hayashi,1 Yuji Arai,2 Tunao Kishida,3 Osam Mazda,3 Toshikazu Kubo1 1Department of Orthopaedics, 2Department of Sports and Para-Sports Medicine, 3Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan Abstract: There are very few treatments for musculoskeletal tumors, compared to other cancers; thus, novel therapeutic drugs are needed. Pristimerin (PM is a triterpene compound isolated from plant extracts that reportedly has antitumor effects on various cancers, such as of the breast and prostate. The purpose of this study was to evaluate the antitumor effects of PM on human osteosarcoma cells. Treatment of the human osteosarcoma cell lines, MNNG and 143B, with PM led to a dose-dependent decrease in cell viability. The effects of PM on apoptosis were evaluated with the Annexin V/propidium iodide assay and analysis of caspases 3, 8, and 9 activities. Western blot analysis showed that PM caused a decrease in the expression of Akt, mTOR, and NF-κB. The volumes and weights of human osteosarcoma xenografts decreased significantly with PM treatment. The results of this study revealed that PM can inhibit human osteosarcoma growth in vitro and in vivo, and may be a novel therapeutic agent for the disease. Keywords: pristimerin, osteosarcoma, apoptosis, caspase, Akt 

  1. Antitumor effects of pristimerin on human osteosarcoma cells in vitro and in vivo.

    Science.gov (United States)

    Mori, Yuki; Shirai, Toshiharu; Terauchi, Ryu; Tsuchida, Shinji; Mizoshiri, Naoki; Hayashi, Daichi; Arai, Yuji; Kishida, Tunao; Mazda, Osam; Kubo, Toshikazu

    2017-01-01

    There are very few treatments for musculoskeletal tumors, compared to other cancers; thus, novel therapeutic drugs are needed. Pristimerin (PM) is a triterpene compound isolated from plant extracts that reportedly has antitumor effects on various cancers, such as of the breast and prostate. The purpose of this study was to evaluate the antitumor effects of PM on human osteosarcoma cells. Treatment of the human osteosarcoma cell lines, MNNG and 143B, with PM led to a dose-dependent decrease in cell viability. The effects of PM on apoptosis were evaluated with the Annexin V/propidium iodide assay and analysis of caspases 3, 8, and 9 activities. Western blot analysis showed that PM caused a decrease in the expression of Akt, mTOR, and NF-κB. The volumes and weights of human osteosarcoma xenografts decreased significantly with PM treatment. The results of this study revealed that PM can inhibit human osteosarcoma growth in vitro and in vivo, and may be a novel therapeutic agent for the disease.

  2. Antitumor activity of biflorin, an o-naphthoquinone isolated from Capraria biflora.

    Science.gov (United States)

    Vasconcellos, Marne Carvalho de; Bezerra, Daniel Pereira; Fonseca, Aluísio Marques; Pereira, Márcio Roberto Pinho; Lemos, Telma Leda Gomes; Pessoa, Otília Deusdênia Loiola; Pessoa, Cláudia; Moraes, Manoel Odorico de; Alves, Ana Paula Negreiros Nunes; Costa-Lotufo, Letícia Veras

    2007-08-01

    Pharmacological studies with an aqueous extract obtained from leaves of Capraria biflora showed potent cytotoxic, analgesic, antimicrobial and anti-inflammatory activities. It has been demonstrated that biflorin possesses an in vitro cytotoxic activity against tumor cells. The in vivo antitumor activity of biflorin was evaluated on two mouse models, sarcoma 180 and Ehrlich carcinoma. Biflorin was active against both tumors with a very similar profile. In addition, biflorin was also able to increase the response elicited by 5-FU in mice inoculated with both tumors. The results showed a decrease in Ki67 staining in tumor cells from treated-animals when compared with non-treated groups, which suggests an inhibition of tumor proliferation rate. Histopathological analysis from kidneys and liver showed that biflorin possessed weak and reversible toxic effects. It was also demonstrated that biflorin acts as an immunoadjuvant agent, rising the production of ovalbumin-specific antibodies and inducing a discreet increase of the white pulp and nest of megakaryocytic in spleen of treated mice, which can be related to its antitumor properties.

  3. Carcinogenic and antitumor effects of aminotriazole on acatalasemic and normal catalase mice

    International Nuclear Information System (INIS)

    Feinstein, R.N.; Fry, R.J.M.; Staffeidt, E.F.

    1978-01-01

    Dietary 3-amino-1H-1,2,4-triazole (AT), although carcinogenic when administered alone, was an antitumor agent when combined with certain other carcinogenic stimuli. The carcinogenic effect was prominent in the livers of C3H mice; thyroid tumors were less common because they required a longer period of development, and the life-span of the animal was shortened by the AT diet. The antitumor effects of AT included: delay in appearance of mammary tumors, striking reduction in γ-radiation-induced lymphomas, and sharp reduction in neutron radiation-induced harderian gland and ovarian tumors. On an AT diet, the inbred C3H acatalasemic mouse substrain developed more liver tumors, starting earlier, than did the C3H normal catalase substrain. We suggest that our findings pointed to a possible relevance of catalase and H 2 O 2 in carcinogenesis. The most probable mechanism for the increased incidence of liver tumors in AT-treated acatalasemic mice was the diminished rate of degradation of endogenous H 2 O 2

  4. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum

    Science.gov (United States)

    Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen

    2017-10-01

    This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.

  5. Research progress of PARP-1 inhibitors in antitumor drugs and radionuclide markers

    International Nuclear Information System (INIS)

    Zhao Lingzhou; Zhang Huabei

    2011-01-01

    Poly(ADP-ribose)polymerase (PARP) is a new target in the cancer treatment nowadays. PARP not only can repair DNA damage, regulate and control transcription, maintain the stability of intracellular environment and genome, regulate the process of cell survival and death, but also is the main transcription factor in the development of inflammation and the process of cancer. To inhibit PARP activity can reduce the DNA repair function in tumor cells, and increase the sensibility to DNA damage agents, so as to improve the efficacy of radiation therapy and chemotherapy for tumor. A number of studies have suggested that, whether used alone or combination with other chemotherapy drugs, PARP inhibitors show the potential in the anti-tumor therapeutic areas. In this paper, PARP-1 inhibitors were reviewed in antitumor research progress. According to the stage of development , PARP-1 inhibitors are classified. Several representative PARP-1 inhibitors, in clinical trials, with potential clinical value were introduced. Positron emission tomography (PET), uses the main short half-life elementary in human body as tracer, and at the molecular level, achieve the no wound, quantitative and dynamic observation about the different changes of metabolites or drugs in the body. PET is the most advanced contemporary video diagnostic technology, and this paper simply introduce the research progress of PARP-1 inhibitors labeled with radioactive nuclides. (authors)

  6. Fluorescent nanodiamonds engage innate immune effector cells: A potential vehicle for targeted anti-tumor immunotherapy.

    Science.gov (United States)

    Suarez-Kelly, Lorena P; Campbell, Amanda R; Rampersaud, Isaac V; Bumb, Ambika; Wang, Min S; Butchar, Jonathan P; Tridandapani, Susheela; Yu, Lianbo; Rampersaud, Arfaan A; Carson, William E

    2017-04-01

    Fluorescent nanodiamonds (FNDs) are nontoxic, infinitely photostable, and emit fluorescence in the near infrared region. Natural killer (NK) cells and monocytes are part of the innate immune system and are crucial to the control of carcinogenesis. FND-mediated stimulation of these cells may serve as a strategy to enhance anti-tumor activity. FNDs were fabricated with a diameter of 70±28 nm. Innate immune cell FND uptake, viability, surface marker expression, and cytokine production were evaluated in vitro. Evaluation of fluorescence emission from the FNDs was conducted in an animal model. In vitro results demonstrated that treatment of immune cells with FNDs resulted in significant dose-dependent FND uptake, no compromise in cell viability, and immune cell activation. FNDs were visualized in an animal model. Hence, FNDs may serve as novel agents with "track and trace" capabilities to stimulate innate immune cell anti-tumor responses, especially as FNDs are amenable to surface-conjugation with immunomodulatory molecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    International Nuclear Information System (INIS)

    Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.

    2014-01-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor

  8. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Diane E. [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA (United States); Hoover, Benjamin [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Cloud, Loretta Grey [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Liu, Shihui [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Molinolo, Alfredo A. [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Leppla, Stephen H. [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Bugge, Thomas H., E-mail: thomas.bugge@nih.go [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor

  9. Chemical Agents

    Science.gov (United States)

    ... CR) see Riot Control Agents Digitalis Distilled mustard (HD) see Sulfur mustard E Ethylene glycol F Fentanyls and other opioids H Hydrazine Hydrofluoric acid (hydrogen fluoride) Hydrogen chloride Hydrogen cyanide (AC) Hydrogen ...

  10. Chimeric HCMV/HSV-1 and Δγ134.5 oncolytic herpes simplex virus elicit immune mediated antigliomal effect and antitumor memory

    Directory of Open Access Journals (Sweden)

    Mohammed G. Ghonime

    2018-02-01

    Full Text Available Malignant gliomas are the most common primary brain tumor and are characterized by rapid and highly invasive growth. Because of their poor prognosis, new therapeutic strategies are needed. Oncolytic virotherapy (OV is a promising strategy for treating cancer that incorporates both direct viral replication mediated and immune mediated mechanisms to kill tumor cells. C134 is a next generation Δγ134.5 oHSV-1 with improved intratumoral viral replication. It remains safe in the CNS environment by inducing early IFN signaling which restricts its replication in non-malignant cells. We sought to identify how C134 performed in an immunocompetent tumor model that restricts its replication advantage over first generation viruses. To achieve this we identified tumors that have intact IFN signaling responses that restrict C134 and first generation virus replication similarly. Our results show that both viruses elicit a T cell mediated anti-tumor effect and improved animal survival but that subtle difference exist between the viruses effect on median survival despite equivalent in vivo viral replication. To further investigate this we examined the anti-tumor activity in immunodeficient mice and in syngeneic models with re-challenge. These studies show that the T cell response is integral to C134 replication independent anti-tumor response and that OV therapy elicits a durable and circulating anti-tumor memory. The studies also show that repeated intratumoral administration can extend both OV anti-tumor effects and induce durable anti-tumor memory that is superior to tumor antigen exposure alone.

  11. Antitumor Activity of Kielmeyera Coriacea Leaf Constituents in Experimental Melanoma, Tested in Vitro and in Vivo in Syngeneic Mice

    Directory of Open Access Journals (Sweden)

    Carlos Rogério Figueiredo

    2014-10-01

    Full Text Available Purpose: The antitumor activity of Kielmeyera coriacea (Clusiaceae, a medicinal plant used in the treatment of parasitic, as well as fungal and bacterial infections by the Brazilian Cerrado population, was investigated. Methods: A chloroform extract (CE of K. coriacea was tested in the murine melanoma cell line (B16F10-Nex2 and a panel of human tumor cell lines. Tumor cell migration was determined by the wound-healing assay and the in vivo antitumor activity of CE was investigated in a melanoma cell metastatic model. 1H NMR and GC/MS were used to determine CE chemical composition. Results: We found that CE exhibited strong cytotoxic activity against murine melanoma cells and a panel of human tumor cell lines in vitro. CE also inhibited growth of B16F10-Nex2 cells at sub lethal concentrations, inducing cell cycle arrest at S phase, and inhibition of tumor cell migration. Most importantly, administration of CE significantly reduced the number of melanoma metastatic nodules in vivo. Chemical analysis of CE indicated the presence of the long chain fatty compounds, 1-eicosanol, 1-docosanol, and 2-nonadecanone as main constituents. Conclusion: These results indicate that K. coriacea is a promising medicinal plant in cancer therapy exhibiting antitumor activity both in vitro and in vivo against different tumor cell lines.

  12. A new compound of thiophenylated pyridazinone IMB5043 showing potent antitumor efficacy through ATM-Chk2 pathway.

    Directory of Open Access Journals (Sweden)

    Jianhua Gong

    Full Text Available Through cell-based screening models, we have identified a new compound IMB5043, a thiophenylated pyridazinone, which exerted cytotoxicity against cancer cells. In the present study, we evaluated its antitumor efficacy and the possible mechanism. By MTT assay, IMB5043 inhibited the proliferation of various human cancer cells lines, especially hepatocarcinoma SMMC-7721 cells. IMB5043 blocked cell cycle with G2/M arrest, induced cell apoptosis, and inhibited the migration and invasion of SMMC-7721 cells. As verified by comet assay and γ-H2AX foci formation, IMB5043 caused DNA damage and activated ATM, Chk2 and p53 through phosphorylation. As shown by Gene microarray analysis, the differentially expressed genes in SMMC-7721 cells treated with IMB5043 were highly related to cell death and apoptosis. IMB5043 suppressed the growth of hepatocarcinoma SMMC-7721 xenograft in athymic mice. By histopathological examination, no lesions were found in bone marrow and various organs of the treated mice. Our findings reveal that IMB5043 as an active compound consisting of both pyridazinone and thiophene moieties exerts antitumor efficacy through activation of ATM-Chk2 pathway. IMB5043 may serve as a promising leading compound for the development of antitumor drugs.

  13. Identification of TRAIL-inducing compounds highlights small molecule ONC201/TIC10 as a unique anti-cancer agent that activates the TRAIL pathway.

    Science.gov (United States)

    Allen, Joshua E; Krigsfeld, Gabriel; Patel, Luv; Mayes, Patrick A; Dicker, David T; Wu, Gen Sheng; El-Deiry, Wafik S

    2015-05-01

    We previously reported the identification of ONC201/TIC10, a novel small molecule inducer of the human TRAIL gene that improves efficacy-limiting properties of recombinant TRAIL and is in clinical trials in advanced cancers based on its promising safety and antitumor efficacy in several preclinical models. We performed a high throughput luciferase reporter screen using the NCI Diversity Set II to identify TRAIL-inducing compounds. Small molecule-mediated induction of TRAIL reporter activity was relatively modest and the majority of the hit compounds induced low levels of TRAIL upregulation. Among the candidate TRAIL-inducing compounds, TIC9 and ONC201/TIC10 induced sustained TRAIL upregulation and apoptosis in tumor cells in vitro and in vivo. However, ONC201/TIC10 potentiated tumor cell death while sparing normal cells, unlike TIC9, and lacked genotoxicity in normal fibroblasts. Investigating the effects of TRAIL-inducing compounds on cell signaling pathways revealed that TIC9 and ONC201/TIC10, which are the most potent inducers of cell death, exclusively activate Foxo3a through inactivation of Akt/ERK to upregulate TRAIL and its pro-apoptotic death receptor DR5. These studies reveal the selective activity of ONC201/TIC10 that led to its selection as a lead compound for this novel class of antitumor agents and suggest that ONC201/TIC10 is a unique inducer of the TRAIL pathway through its concomitant regulation of the TRAIL ligand and its death receptor DR5.

  14. Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Margarita González-Vallinas

    Full Text Available Colorectal and pancreatic cancers remain important contributors to cancer mortality burden and, therefore, new therapeutic approaches are urgently needed. Rosemary (Rosmarinus officinalis L. extracts and its components have been reported as natural potent antiproliferative agents against cancer cells. However, to potentially apply rosemary as a complementary approach for cancer therapy, additional information regarding the most effective composition, its antitumor effect in vivo and its main molecular mediators is still needed. In this work, five carnosic acid-rich supercritical rosemary extracts with different chemical compositions have been assayed for their antitumor activity both in vivo (in nude mice and in vitro against colon and pancreatic cancer cells. We found that the antitumor effect of carnosic acid together with carnosol was higher than the sum of their effects separately, which supports the use of the rosemary extract as a whole. In addition, gene and microRNA expression analyses have been performed to ascertain its antitumor mechanism, revealing that up-regulation of the metabolic-related gene GCNT3 and down-regulation of its potential epigenetic modulator miR-15b correlate with the antitumor effect of rosemary. Moreover, plasmatic miR-15b down-regulation was detected after in vivo treatment with rosemary. Our results support the use of carnosic acid-rich rosemary extract as a complementary approach in colon and pancreatic cancer and indicate that GCNT3 expression may be involved in its antitumor mechanism and that miR-15b might be used as a non-invasive biomarker to monitor rosemary anticancer effect.

  15. Antitumoral activity of marine organism; Actividad antitumoral de los organismos marinos

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Iglesias, O [Centro de Bioproductos Marinos, La Habana (Cuba); Perez Gil, R; Colom, Y [Instituno Nacional de Oncologia y Radiobiologia (INOR), La Habana (Cuba)

    2010-07-01

    The study of the natural products from marine organism constitute a relatively recent scientific researcher field with high potentialities tanking in consideration that the oceans cover the three of the four parts of the earth. Poryphera and Bryozoans have been the Phylum more studied owning to the vulnerability, their soft body, their habitat on rocks, their slow movement and bright colors, for these reason these organisms are able to produce chemical substances as defense methods against depredators. Same mechanism is exhibit by the seaweeds with the production of secondary metabolites . In the present communication are exposed the main results obtained on the world a Cuba until the present in the looking for of substances with antitumor action from marine organism.

  16. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  17. Fractionated photothermal antitumor therapy with multidye nanoparticles

    Directory of Open Access Journals (Sweden)

    Gutwein LG

    2012-01-01

    Full Text Available Luke G Gutwein1, Amit K Singh2, Megan A Hahn2, Michael C Rule3, Jacquelyn A Knapik4, Brij M Moudgil2, Scott C Brown2, Stephen R Grobmyer11Division of Surgical Oncology, Department of Surgery, College of Medicine, 2Particle Engineering Research Center, 3Cell and Tissue Analysis Core, McKnight Brain Institute, 4Department of Pathology, University of Florida, Gainesville, FL, USAPurpose: Photothermal therapy is an emerging cancer treatment paradigm which involves highly localized heating and killing of tumor cells, due to the presence of nanomaterials that can strongly absorb near-infrared (NIR light. In addition to having deep penetration depths in tissue, NIR light is innocuous to normal cells. Little is known currently about the fate of nanomaterials post photothermal ablation and the implications thereof. The purpose of this investigation was to define the intratumoral fate of nanoparticles (NPs after photothermal therapy in vivo and characterize the use of novel multidye theranostic NPs (MDT-NPs for fractionated photothermal antitumor therapy.Methods: The photothermal and fluorescent properties of MDT-NPs were first characterized. To investigate the fate of nanomaterials following photothermal ablation in vivo, novel MDT-NPs and a murine mammary tumor model were used. Intratumoral injection of MDT-NPs and real-time fluorescence imaging before and after fractionated photothermal therapy was performed to study the intratumoral fate of MDT-NPs. Gross tumor and histological changes were made comparing MDT-NP treated and control tumor-bearing mice.Results: The dual dye-loaded mesoporous NPs (ie, MDT-NPs; circa 100 nm retained both their NIR absorbing and NIR fluorescent capabilities after photoactivation. In vivo MDT-NPs remained localized in the intratumoral position after photothermal ablation. With fractionated photothermal therapy, there was significant treatment effect observed macroscopically (P = 0.026 in experimental tumor-bearing mice

  18. The Pig as a Large Animal Model for Studying Anti-Tumor Immune Responses

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr

    but also generates a selective pressure, which may lead to selection of tumor cell variants with reduced immunogenicity; thereby, increasing the risk of tumor escape. Cancer immunotherapy includes treatment strategies aimed at activating anti-tumor immune responses or inhibiting suppressive and tumor......-favorable immune mechanisms. One of the promising arms of cancer immunotherapy is peptide-based therapeutic vaccines; yet, no such vaccine has been approved for use in human oncology. For many years, mouse models have provided invaluable understanding of complex immunological pathways; however, the majority...... tolerance towards IDO and the establishment of an antigen-specific cell-mediated immune (CMI) response. When comparing the different CAF09-formulated antigen doses, we demonstrate the induction of a CMI-dominant response upon exposure to a low endogenous peptide dose. In contrast, a mixed CMI and humoral...

  19. Multi-agent Cooperation in a Planning Framework

    NARCIS (Netherlands)

    De Weerdt, M.M.; Bos, A.; Tonino, J.F.M.; Witteveen, C.

    2000-01-01

    The promise of multi-agent systems is that multiple agents can solve problems more efficiently than single agents can. In this paper we propose a method to implement cooperation between agents in the planning phase, in order to achive more cost-effective solutions than without cooperation. Two

  20. Production, Structural Elucidation, and In Vitro Antitumor Activity of Trehalose Lipid Biosurfactant from Nocardia farcinica Strain.

    Science.gov (United States)

    Christova, Nelly; Lang, Siegmund; Wray, Victor; Kaloyanov, Kaloyan; Konstantinov, Spiro; Stoineva, Ivanka

    2015-04-01

    The objective of this study was to isolate and identify the chemical structure of a biosurfactant produced by Nocardia farcinica strain BN26 isolated from soil, and evaluate its in vitro antitumor activity on a panel of human cancer cell lines. Strain BN26 was found to produce glycolipid biosurfactant on n-hexadecane as the sole carbon source. The biosurfactant was purified using medium-pressure liquid chromatography and characterized as trehalose lipid tetraester (THL) by nuclear magnetic resonance spectroscopy and mass spectrometry. Subsequently, the cytotoxic effects of THL on cancer cell lines BV-173, KE-37 (SKW-3), HL-60, HL-60/DOX, and JMSU-1 were evaluated by MTT assay. It was shown that THL exerted concentration-dependent antiproliferative activity against the human tumor cell lines and mediated cell death by the induction of partial oligonucleosomal DNA fragmentation. These findings suggest that THL could be of potential to apply in biomedicine as a therapeutic agent.

  1. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  2. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    International Nuclear Information System (INIS)

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  3. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  4. Anti-tumor activity of metformin: from metabolic and epigenetic perspectives

    Science.gov (United States)

    Zhai, Yansheng; Tong, Chong; Liu, Min; Ma, Lixin; Yu, Xiaolan; Li, Shanshan

    2017-01-01

    Metformin has been used to treat type 2 diabetes for over 50 years. Epidemiological, preclinical and clinical studies suggest that metformin treatment reduces cancer incidence in diabetes patients. Due to its potential as an anti-cancer agent and its low cost, metformin has gained intense research interest. Its traditional anti-cancer mechanisms involve both indirect and direct insulin-dependent pathways. Here, we discussed the anti-tumor mechanism of metformin from the aspects of cell metabolism and epigenetic modifications. The effects of metformin on anti-cancer immunity and apoptosis were also described. Understanding these mechanisms will shed lights on application of metformin in clinical trials and development of anti-cancer therapy. PMID:27902459

  5. The hTERT promoter enhances the antitumor activity of an oncolytic adenovirus under a hypoxic microenvironment.

    Directory of Open Access Journals (Sweden)

    Yuuri Hashimoto

    Full Text Available Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin, in which the human telomerase reverse transcriptase (hTERT promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5. In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen or a hypoxic (1% oxygen condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells.

  6. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2000 micelles

    Directory of Open Access Journals (Sweden)

    Cai LL

    2013-12-01

    Full Text Available Lulu Cai,1,* Neng Qiu,2,* Mingli Xiang,3,* Rongsheng Tong,1 Junfeng Yan,1 Lin He,1 Jianyou Shi,1 Tao Chen,4 Jiaolin Wen,3 Wenwen Wang,3 Lijuan Chen31Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, 2College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 3State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China; 4Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada *These authors contributed equally to this paperAbstract: The clinical application of gambogic acid, a natural component with promising antitumor activity, is limited due to its extremely poor aqueous solubility, short half-life in blood, and severe systemic toxicity. To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa methoxy poly(ethylene glycol methyl ether (mPEG to gambogic acid (GA-mPEG2000 through an ester linkage and characterized by 1H nuclear magnetic resonance. The GA-mPEG2000 conjugates self-assembled to form nanosized micelles, with mean diameters of less than 50 nm, and a very narrow particle size distribution. The properties of the GA-mPEG2000 micelles, including morphology, stability, molecular modeling, and drug release profile, were evaluated. MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyl tetrazolium bromide tests demonstrated that the GA-mPEG2000 micelle formulation had obvious cytotoxicity to tumor cells and human umbilical vein endothelial cells. Further, GA-mPEG2000 micelles were effective in inhibiting tumor growth and prolonged survival in subcutaneous B16-F10 and C26 tumor models. Our findings suggest that GA-mPEG2000 micelles may have promising applications in tumor therapy.Keywords: gambogic acid, poly(ethylene glycol-drug conjugate, micelle, antitumor, toxicity

  7. Homeostatic T Cell Expansion to Induce Anti-Tumor Autoimmunity in Breast Cancer

    National Research Council Canada - National Science Library

    Baccala, Roberto

    2007-01-01

    ... that (a) homeostatic T-cell proliferation consistently elicits anti-tumor responses; (b) irradiation is more effective than Tcell depletion by antibodies in inducing anti-tumor responses mediated by homeostatic T-cell proliferation...

  8. Hydroxyurea derivatives of irofulven with improved antitumor efficacy.

    Science.gov (United States)

    Staake, Michael D; Kashinatham, Alisala; McMorris, Trevor C; Estes, Leita A; Kelner, Michael J

    2016-04-01

    Irofulven is a semi-synthetic derivative of Illudin S, a toxic sesquiterpene isolated from the mushroom Omphalotus illudens. Irofulven has displayed significant antitumor activity in various clinical trials but displayed a limited therapeutic index. A new derivative of irofulven was prepared by reacting hydroxyurea with irofulven under acidic conditions. Acetylation of this new compound with acetic anhydride produced a second derivative. Both of these new derivatives displayed significant antitumor activity in vitro and in vivo comparable to or exceeding that of irofulven. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modification of carcinogenic and antitumor radiation effects (biomedical aspects)

    International Nuclear Information System (INIS)

    Vilenchik, M.M.

    1985-01-01

    In the book the data on modification of carcinogenic radiation effects by physiologicaly active compounds (caffeine, hormones, promoters and others) as well as on potentiation of antitumor radiation effects by means of hyperthermia are systematized. It is shown that as a basis of synergetic (superadditive) carcinogenic or antitumor radiation effects combined with other factor can be the inhibiting effects of the latter on the reparation process of radiation-induced DNA injuries. The results of experimental investigations and the data on quantitative analysis can be used as a theoretical basis for improvement of the ways and means of the prophylaxis of tumor diseases as well as for increasing the efficiency of radiotherapy

  10. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo.

    Science.gov (United States)

    Hitomi, Misuzu; Yokoyama, Fumi; Kita, Yuko; Nonomura, Takako; Masaki, Tsutomu; Yoshiji, Hitoshi; Inoue, Hideyuki; Kinekawa, Fumihiko; Kurokohchi, Kazutaka; Uchida, Naohito; Watanabe, Seishiro; Kuriyama, Shigeki

    2005-03-01

    A number of studies have shown that various K vitamins, specifically vitamins K2 and K3, possess antitumor activity on various types of rodent- and human-derived neoplastic cell lines. In the present study, we examined the antitumor effects of vitamins K1, K2 and K3 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vitro and in vivo. Furthermore, we examined the mechanisms of antitumor actions of these vitamins in vitro and in vivo. Although vitamin K1 did not inhibit proliferation of PLC/PRF/5 cells at a 90-microM concentration (the highest tested), vitamins K2 and K3 suppressed proliferation of the cells at concentrations of 90 and 9 microM, respectively. By flow cytometric analysis, it was shown that not only vitamin K1, but also vitamin K2 did not induce apoptosis or cell cycle arrest on PLC/PRF/5 cells. In contrast, vitamin K3 induced G1 arrest, but not apoptosis on PLC/PRF/5 cells. Subsequent in vivo study using subcutaneous HCC-bearing athymic nude mice demonstrated that both vitamins K2 and K3 markedly suppressed the growth of HCC tumors to similar extent. Protein expression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4), but not p16INK4a Cdk inhibitor in the tumor was significantly reduced by vitamin K2 or K3 treatment, indicating that vitamins K2 and K3 may induce G1 arrest of cell cycle on PLC/PRF/5 cells in vivo. Taken collectively, vitamins K2 and K3 were able to induce potent antitumor effects on HCC in vitro and in vivo, at least in part, by inducing G1 arrest of the cell cycle. The results indicate that vitamins K2 and K3 may be useful agents for the treatment of patients with HCC.

  11. Regorafenib: Antitumor Activity upon Mono and Combination Therapy in Preclinical Pediatric Malignancy Models.

    Directory of Open Access Journals (Sweden)

    Estelle Daudigeos-Dubus

    Full Text Available The multikinase inhibitor regorafenib (BAY 73-4506 exerts both anti-angiogenic and anti-tumorigenic activity in adult solid malignancies mainly advanced colorectal cancer and gastrointestinal stromal tumors. We intended to explore preclinically the potential of regorafenib against solid pediatric malignancies alone and in combination with anticancer agents to guide the pediatric development plan. In vitro effects on cell proliferation were screened against 33 solid tumor cell lines of the Innovative Therapies for Children with Cancer (ITCC panel covering five pediatric solid malignancies. Regorafenib inhibited cell proliferation with a mean half maximal growth inhibition of 12.5 μmol/L (range 0.7 μmol/L to 28 μmol/L. In vivo, regorafenib was evaluated alone at 10 or 30 mg/kg/d or in combination with radiation, irinotecan or the mitogen-activated protein kinase kinase (MEK inhibitor refametinib against various tumor types, including patient-derived brain tumor models with an amplified platelet-derived growth factor receptor A (PDGFRA gene. Regorafenib alone significantly inhibited tumor growth in all xenografts derived from nervous system and connective tissue tumors. Enhanced effects were observed when regorafenib was combined with irradiation and irinotecan against PDGFRA amplified IGRG93 glioma and IGRM57 medulloblastoma respectively, resulting in 100% tumor regressions. Antitumor activity was associated with decreased tumor vascularization, inhibition of PDGFR signaling, and induction of apoptotic cell death. Our work demonstrates that regorafenib exhibits significant antitumor activity in a wide spectrum of preclinical pediatric models through inhibition of angiogenesis and induction of apoptosis. Furthermore, radio- and chemosensitizing effects were observed with DNA damaging agents in PDGFR amplified tumors.

  12. Regorafenib: Antitumor Activity upon Mono and Combination Therapy in Preclinical Pediatric Malignancy Models.

    Science.gov (United States)

    Daudigeos-Dubus, Estelle; Le Dret, Ludivine; Lanvers-Kaminsky, Claudia; Bawa, Olivia; Opolon, Paule; Vievard, Albane; Villa, Irène; Pagès, Mélanie; Bosq, Jacques; Vassal, Gilles; Zopf, Dieter; Geoerger, Birgit

    2015-01-01

    The multikinase inhibitor regorafenib (BAY 73-4506) exerts both anti-angiogenic and anti-tumorigenic activity in adult solid malignancies mainly advanced colorectal cancer and gastrointestinal stromal tumors. We intended to explore preclinically the potential of regorafenib against solid pediatric malignancies alone and in combination with anticancer agents to guide the pediatric development plan. In vitro effects on cell proliferation were screened against 33 solid tumor cell lines of the Innovative Therapies for Children with Cancer (ITCC) panel covering five pediatric solid malignancies. Regorafenib inhibited cell proliferation with a mean half maximal growth inhibition of 12.5 μmol/L (range 0.7 μmol/L to 28 μmol/L). In vivo, regorafenib was evaluated alone at 10 or 30 mg/kg/d or in combination with radiation, irinotecan or the mitogen-activated protein kinase kinase (MEK) inhibitor refametinib against various tumor types, including patient-derived brain tumor models with an amplified platelet-derived growth factor receptor A (PDGFRA) gene. Regorafenib alone significantly inhibited tumor growth in all xenografts derived from nervous system and connective tissue tumors. Enhanced effects were observed when regorafenib was combined with irradiation and irinotecan against PDGFRA amplified IGRG93 glioma and IGRM57 medulloblastoma respectively, resulting in 100% tumor regressions. Antitumor activity was associated with decreased tumor vascularization, inhibition of PDGFR signaling, and induction of apoptotic cell death. Our work demonstrates that regorafenib exhibits significant antitumor activity in a wide spectrum of preclinical pediatric models through inhibition of angiogenesis and induction of apoptosis. Furthermore, radio- and chemosensitizing effects were observed with DNA damaging agents in PDGFR amplified tumors.

  13. Triclosan treatment decreased the antitumor effect of sorafenib on hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Wu M

    2018-05-01

    Full Text Available Man Wu,1,2 Guanren Zhao,2 Xiaomei Zhuang,1 Tianhong Zhang,1 Ce Zhang,2 Wenpeng Zhang,1 Zhenqing Zhang1 1State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China; 2Department of Pharmacy, The 309th Hospital of PLA, Beijing, China Background: Triclosan is a widely applied antimicrobial agent which affects the endocrine system and homeostasis; it may also promote the cirrhosis and hepatocellular carcinoma (HCC growth in a mice model. The exact roles of triclosan in regulating human hepatocellular carcinoma development and treatment remain unknown. Methods: MHCC97-H, a highly aggressive HCC cell line, was treated with indicated concentration of triclosan or sorafenib. The expression of drug-resistance genes was examined by qPCR. The clearance or metabolism of sorafenib was determined by liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS. MTT assay was used to examine the MHCC97-H cell proliferation. Nude mice were used to exam the anti-tumor effect of sorafenib on subcutaneous and intrahepatic growth of MHCC97-H cells. Results: In the present study, triclosan could induce the expression of drug-resistance genes in MHCC97-H cells (a highly aggressive HCC cell line, accelerate the clearance of sorafenib, and attenuate the anti-proliferation effect of this molecular targeted agent in MHCC97-H cells. Triclosan decreased the antitumor effect of sorafenib on subcutaneous and intrahepatic growth of MHCC97-H in nude mice. Conclusion: By discovering the fact that triclosan treatment enhances sorafenib resistance in HCC cells, this work suggests exposure of triclosan is detrimental to HCC patients during chemotherapy. Keywords: HCC, triclosan, sorafenib resistance, drug clearance 

  14. Antibody complementarity-determining regions (CDRs can display differential antimicrobial, antiviral and antitumor activities.

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    Full Text Available BACKGROUND: Complementarity-determining regions (CDRs are immunoglobulin (Ig hypervariable domains that determine specific antibody (Ab binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here. METHODOLOGY/PRINCIPAL FINDINGS: CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a a protein epitope of Candida albicans cell wall stress mannoprotein; b a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains. CONCLUSIONS/SIGNIFICANCE: The high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small

  15. MFTF-progress and promise

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) has been in construction at Lawrence Livermore National Laboratory (LLNL) for 3 years, and most of the major subsystems are nearing completion. Recently, the scope of this project was expanded to meet new objectives, principally to reach plasma conditions corresponding to energy break-even. To fulfill this promise, the single-cell minimum-B mirror configuration will be replaced with a tandem mirror configuration (MFTF-B). The facility must accordingly be expanded to accomodate the new geometry. This paper briefly discusses the status of the major MFTF subsystems and describes how most of the technological objectives of MFTF will be demonstrated before we install the additional systems necessary to make the tandem. It also summarizes the major features of the expanded facility

  16. The promising opportunity of dismantlement

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Civil engineering, mechanics and waste conditioning companies are thriving around the market of nuclear facilities dismantlement which is promised to a huge development in the coming decade. This paper presents a map of the opportunities of the dismantlement market throughout Europe (research and power reactors, fuel fabrication plants, spent fuel reprocessing plants) and a cost estimation of a given dismantling work with respect to the different steps of the work. In France a small core of about twenty companies is involved in nuclear dismantlement but the French market is also looking towards foreign specialists of this activity. The British market is also targeted by the French companies but for all the actors the technological or commercial advance gained today will be determining for the future markets. (J.S.)

  17. The anti-tumor effect and biological activities of the extract JMM6 ...

    African Journals Online (AJOL)

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the ...

  18. Antitumor Properties of Modified Detonation Nanodiamonds and Sorbed Doxorubicin on the Model of Ehrlich Ascites Carcinoma.

    Science.gov (United States)

    Medvedeva, N N; Zhukov, E L; Inzhevatkin, E V; Bezzabotnov, V E

    2016-01-01

    We studied antitumor properties of modified detonation nanodiamonds loaded with doxorubicin on in vivo model of Ehrlich ascites carcinoma. The type of tumor development and morphological characteristics of the liver, kidneys, and spleen were evaluated in experimental animals. Modified nanodiamonds injected intraperitoneally produced no antitumor effect on Ehrlich carcinoma. However, doxorubicin did not lose antitumor activity after sorption on modified nanodiamonds.

  19. Golimumab and certolizumab: The two new anti-tumor necrosis factor kids on the block

    Directory of Open Access Journals (Sweden)

    Mittal Mohit

    2010-01-01

    Full Text Available Anti-tumor necrosis factor (anti-TNF agents have revolutionized treatment of psoriasis and many other inflammatory diseases of autoimmune origin. They have considerable advantages over the existing immunomodulators. Anti-TNF agents are designed to target a very specific component of the immune-mediated inflammatory cascades. Thus, they have lower risks of systemic side-effects. In a brief period of 10 years, a growing number of biological therapies are entering the clinical arena while many more biologicals remain on the horizon. With time, the long-term side-effects and efficacies of these individual agents will become clearer and help to determine which ones are the most suitable for long-term care. Golimumab (a human monoclonal anti-TNF-α antibody and Certolizumab (a PEGylated Fab fragment of humanized monoclonal TNF-α antibody are the two latest additions to the anti-TNF regimen. Here, we are providing a brief description about these two drugs and their uses.

  20. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    Science.gov (United States)

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.

  1. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action.

    Science.gov (United States)

    Mohamed, Shimaa Ibrahim Abdelmonym; Jantan, Ibrahim; Haque, Md Areeful

    2017-09-01

    Natural products with immunomodulatory activity are widely used in treatment of many diseases including autoimmune diseases, inflammatory disorders in addition to cancer. They gained a great interest in the last decades as therapeutic agents since they provide inexpensive and less toxic products than the synthetic chemotherapeutic agents. Immunomodulators are the agents that have the ability to boost or suppress the host defense response that can be used as a prophylaxis as well as in combination with other therapeutic modalities. The anticancer activity of these immunomodulators is due to their anti-inflammatory, antioxidant, and induction of apoptosis, anti-angiogenesis, and anti-metastasis effect. These natural immunomodulators such as genistein, curcumin, and resveratrol can be used as prophylaxis against the initiation of cancer besides the inhibition of tumor growth and proliferation. Whereas, immunostimulants can elicit and activate humoral and cell-mediated immune responses against the tumor that facilitate the recognition and destruction of the already existing tumor. This review represents the recent studies on various natural immunomodulators with antitumor effects. We have focused on the relationship between their anticancer activity and immunomodulatory mechanisms. The mechanisms of action of various immunomodulators such as polyphenolic compounds, flavonoids, organosulfur compounds, capsaicin, vinca alkaloids, bromelain, betulinic acid and zerumbone, the affected cancerous cell lines in addition to the targeted molecules and transcriptional pathways have been review and critically analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Guo LG

    2012-03-01

    Full Text Available Liangran Guo1,2,4, Li Fan1,2, Jinfeng Ren1,2, Zhiqing Pang1,2, Yulong Ren1,2, Jingwei Li1,2, Ziyi Wen1,3, Yong Qian1,2, Lin Zhang1,2, Hang Ma4, Xinguo Jiang1,2 1School of Pharmacy, Fudan University, Zhangheng Road, Shanghai, 2Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai, 3School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China; 4College of Pharmacy, University of Rhode Island, RI, USAAbstract: The intractability of non-small cell lung cancer (NSCLC to multimodality treatments plays a large part in its extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising cytokine for selective induction of apoptosis in cancer cells; however, many NSCLC cell lines are resistant to TRAIL-induced apoptosis. The therapeutic effect can be restored by treatments combining TRAIL with chemotherapeutic agents. Actinomycin D (ActD can sensitize NSCLC cells to TRAIL-induced apoptosis by upregulation of death receptor 4 (DR4 or 5 (DR5. However, the use of ActD has significant drawbacks due to the side effects that result from its nonspecific biodistribution in vivo. In addition, the short half-life of TRAIL in serum also limits the antitumor effect of treatments combining TRAIL and ActD. In this study, we designed a combination treatment of long-circulating TRAIL liposomes and ActD liposomes with the aim of resolving these problems. The combination of TRAIL liposomes and ActD liposomes had a synergistic cytotoxic effect against A-549 cells. The mechanism behind this combination treatment includes both increased expression of DR5 and caspase activation. Moreover, systemic administration of the combination of TRAIL liposomes and ActD liposomes suppressed both tumor formation and growth of established subcutaneous NSCLC xenografts in nude mice, inducing apoptosis without causing significant general toxicity. These results provide preclinical proof

  3. Anti-tumor activity of Aloe vera against DMBA/croton oil-induced skin papillomagenesis in Swiss albino mice.

    Science.gov (United States)

    Saini, M; Goyal, Pradeep Kumar; Chaudhary, Geeta

    2010-01-01

    Human populations are increasingly exposed to various carcinogens such as chemicals, radiation, and viruses in the environment. Chemopreventive drugs of plant origin are a promising strategy for cancer control because they are generally nontoxic or less toxic than synthetic che-mopreventive agents, and can be effective at different stages of carcinogenesis. The present investigation was undertaken to explore the antitumor activity of topical treatment with aloe vera (Aloe vera) gel, oral treatment with aloe vera extract, and topical and oral treatment with both gel and extract in stage-2 skin carcinogenesis in Swiss albino mice induced by 7,12-dim ethylbenz(a)anthracene (DMBA) and promoted croton (Croton tiglium) oil. The animals were randomly divided into 4 groups and treated as follows: Group I, DMBA + croton oil only (controls); Group II, DMBA + croton oil + topical aloe vera gel; Group III, DMBA + croton oil + oral aloe vera extract; Group I V, DMBA + croton oil + topical aloe vera gel + oral aloe vera extract. Results showed that body weight was significantly increased from 78.6% in the control group (Group I) to 92.5%, 87.5%, and 90.0% in Groups II, III, and I V, respectively. A 100% incidence of tumor development was noted in Group I, which was decreased to 50%, 60%, and 40% in Groups II, III, and I V, respectively. Also in Groups II, III, and IV, the cumulative number of papillomas was reduced significantly from 36 to 12, 15, and 11; tumor yield from 3.6 to 1.2, 1.5, and 1.1; and tumor burden from 3.6 to 2.4, 2.50, and 2.75, respectively, after treatment with aloe vera. Conversely, the average latent period increased significantly from 4.9 (Group I) to 5.23, 5.0, and 6.01 weeks in Groups II, III, and I V, respectively. We conclude that aloe vera protects mice against DMBA/croton oil-induced skin papillomagenesis, likely due to the chemopreventive activity of high concentrations of antioxidants such as vitamins A, C, and E; glutathione peroxidase; several

  4. Ectopic expression of X-linked lymphocyte-regulated protein pM1 renders tumor cells resistant to antitumor immunity.

    Science.gov (United States)

    Kang, Tae Heung; Noh, Kyung Hee; Kim, Jin Hee; Bae, Hyun Cheol; Lin, Ken Y; Monie, Archana; Pai, Sara I; Hung, Chien-Fu; Wu, T-C; Kim, Tae Woo

    2010-04-15

    Tumor immune escape is a major obstacle in cancer immunotherapy, but the mechanisms involved remain poorly understood. We have previously developed an immune evasion tumor model using an in vivo immune selection strategy and revealed Akt-mediated immune resistance to antitumor immunity induced by various cancer immunotherapeutic agents. In the current study, we used microarray gene analysis to identify an Akt-activating candidate molecule overexpressed in immune-resistant tumors compared with parental tumors. X-linked lymphocyte-regulated protein pM1 (XLR) gene was the most upregulated in immune-resistant tumors compared with parental tumor cells. Furthermore, the retroviral transduction of XLR in parental tumor cells led to activation of Akt, resulting in upregulation of antiapoptotic proteins and the induction of immune resistance phenotype in parental tumor cells. In addition, we found that transduction of parental tumor cells with other homologous genes from the mouse XLR family, such as synaptonemal complex protein 3 (SCP3) and XLR-related, meiosis-regulated protein (XMR) and its human counterpart of SCP3 (hSCP3), also led to activation of Akt, resulting in the upregulation of antiapoptotic proteins and induction of immune resistance phenotype. Importantly, characterization of a panel of human cervical cancers revealed relatively higher expression levels of hSCP3 in human cervical cancer tissue compared with normal cervical tissue. Thus, our data indicate that ectopic expression of XLR and its homologues in tumor cells represents a potentially important mechanism for tumor immune evasion and serves as a promising molecular target for cancer immunotherapy. (c) 2010 AACR.

  5. Pifithrin-μ, an inhibitor of heat-shock protein 70, can increase the antitumor effects of hyperthermia against human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kazumasa Sekihara

    Full Text Available Hyperthermia (HT improves the efficacy of anti-cancer radiotherapy and chemotherapy. However, HT also inevitably evokes stress responses and increases the expression of heat-shock proteins (HSPs in cancer cells. Among the HSPs, HSP70 is known as a pro-survival protein. In this study, we investigated the sensitizing effect of pifithrin (PFT-μ, a small molecule inhibitor of HSP70, when three human prostate cancer cell lines (LNCaP, PC-3, and DU-145 were treated with HT (43°C for 2 h. All cell lines constitutively expressed HSP70, and HT further increased its expression in LNCaP and DU-145. Knockdown of HSP70 with RNA interference decreased the viability and colony-forming ability of cancer cells. PFT-μ decreased the viabilities of all cell lines at one-tenth the dose of Quercetin, a well-known HSP inhibitor. The combination therapy with suboptimal doses of PFT-μ and HT decreased the viability of cancer cells most effectively when PFT-μ was added immediately before HT, and this combination effect was abolished by pre-knockdown of HSP70, suggesting that the effect was mediated via HSP70 inhibition. The combination therapy induced cell death, partially caspase-dependent, and decreased proliferating cancer cells, with decreased expression of c-Myc and cyclin D1 and increased expression of p21(WAF1/Cip, indicating arrest of cell growth. Additionally, the combination therapy significantly decreased the colony-forming ability of cancer cells compared to therapy with either alone. Furthermore, in a xenograft mouse model, the combination therapy significantly inhibited PC-3 tumor growth. These findings suggest that PFT-μ can effectively enhance HT-induced antitumor effects via HSP70 inhibition by inducing cell death and arrest of cell growth, and that PFT-μ is a promising agent for use in combination with HT to treat prostate cancer.

  6. Anti-tumor effects of novel 5-O-acyl plumbagins based on the inhibition of mammalian DNA replicative polymerase activity.

    Directory of Open Access Journals (Sweden)

    Moe Kawamura

    Full Text Available We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone inhibits the activity of human mitochondrial DNA polymerase γ (pol γ. In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins. These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin showed the strongest suppression of human colon carcinoma (HCT116 cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin.

  7. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T

    Science.gov (United States)

    Burga, Rachel A.; Thorn, Mitchell; Point, Gary R.; Guha, Prajna; Nguyen, Cang T.; Licata, Lauren A.; DeMatteo, Ronald P.; Ayala, Alfred; Espat, N. Joseph; Junghans, Richard P.; Katz, Steven C.

    2015-01-01

    Chimeric antigen receptor modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded three-fold in response to LM and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials. PMID:25850344

  8. Knigth's Move in the Periodic Table, From Copper to Platinum, Novel Antitumor Mixed Chelate Copper Compounds, Casiopeinas, Evaluated by an in Vitro Human and Murine Cancer Cell Line Panel.

    Science.gov (United States)

    Gracia-Mora, I; Ruiz-Ramírez, L; Gómez-Ruiz, C; Tinoco-Méndez, M; Márquez-Quiñones, A; Lira, L R; Marín-Hernández, A; Macías-Rosales, L; Bravo-Gómez, M E

    2001-01-01

    We synthesized a novel anticancer agents based on mixed chelate copper (II) complexes, named Casiopeínas((R)) has of general formula [Cu(N-N)(N-O)H(2)O]NO(3) (where, N-N = diimines as 1,10- phenanthroline, 2,2-bipyridine, or substituted and N-O=aminoeidate or [Cu(N-N)(O-O)H(2)O]NO(3) (where NN= diimines as 10-phenanthroline, 2,2-bipyridine or substituted Casiopeínas I, II, IV, V, VI, VII VIII and O-O=acetylacetonate, salicylaldehidate Casiopínas III). We evaluated the in vitro antitumor activity using a human cancer cell panel and some nurine cancer cells. Eleven Casiopeinas are evaluated in order to acquire some structure-activity correlations and some monodentated Casiopeinäs analogues; cisplatinum was used as control drug. The 50% growth inhibition observed is, in all cases reach with concentrations of Casiopeina's 10 or 100 times lower than cisplatinum. In a previous work we reported the induction of apoptosis by Casiopeina II. The results indicate that Casiopeinass are a promising new anticancer drug candidates to be developed further toward clinical trials.

  9. Antitumor Effects and Biological Mechanism of Action of the Aqueous Extract of the Camptotheca acuminata Fruit in Human Endometrial Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chi-Shian Lin

    2014-01-01

    Full Text Available The aqueous extracts of the leaves and fruit of Camptotheca acuminata have long been used in traditional Chinese medicine (TCM for treating cancer patients. The chemotherapeutic drug, camptothecin (CPT, and related analogs were first isolated from C. acuminata in the 1970s. Although the antitumor effects of CPT have been characterized in recent years, the antitumor effects of aqueous extracts of C. acuminata have not been clarified. The aims of our current study were to determine the tumor-suppression efficiency of an aqueous extract of the fruit of C. acuminata (AE-CA in the human endometrial carcinoma cell lines, HEC-1A, HEC-1B, and KLE, and compare its antitumor effects with those of CPT. Cell viability assays indicated that a dosage of AE-CA containing 0.28 mg/mL of CPT demonstrated enhanced cytotoxicity, compared with CPT treatment. The effects of AE-CA on the induction of cell cycle arrest, the accumulation of cyclin-A2 and -B1, and the activation of caspase-3 and caspase-7 were similar to those of CPT. Furthermore, AE-CA exhibited a synergistic effect on the cytotoxicity of cisplatin in HEC-1A and HEC-1B cells. These results indicated that AE-CA is a potent antitumor agent and can be combined with cisplatin for the treatment of human endometrial cancer.

  10. Bioavailability of curcumin: problems and promises.

    Science.gov (United States)

    Anand, Preetha; Kunnumakkara, Ajaikumar B; Newman, Robert A; Aggarwal, Bharat B

    2007-01-01

    Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.

  11. Biochemical and histological evidences for the antitumor potential of ...

    African Journals Online (AJOL)

    Biochemical and histological evidences for the antitumor potential of Teucrium Oliverianum and Rhazya stricta in chemically-induced hepatocellular carcinoma. ... Photomicrograph of liver tissue sections of rats in HCC revealed hepatic parenchyma with foci of anaplastic hepatocellular carcinoma as well as other foci of ...

  12. Cisplatin carbonato complexes. Implications for uptake, antitumor properties, and toxicity.

    Science.gov (United States)

    Centerwall, Corey R; Goodisman, Jerry; Kerwood, Deborah J; Dabrowiak, James C

    2005-09-21

    The reaction of aquated cisplatin with carbonate which is present in culture media and blood is described. The first formed complex is a monochloro monocarbonato species, which upon continued exposure to carbonate slowly forms a biscarbonato complex. The formation of carbonato species under conditions that simulate therapy may have important implications for uptake, antitumor properties, and toxicity of cisplatin.

  13. Juglans regia Hexane Extract Exerts Antitumor Effect, Apoptosis ...

    African Journals Online (AJOL)

    Original Research Article. Juglans regia Hexane Extract Exerts Antitumor Effect,. Apoptosis Induction and Cell Circle Arrest in Prostate. Cancer Cells In vitro. Wei Li1, De-Yuan Li2*, ... composition of walnut is juglone (5-hydroxy-1, 4- naphthoquinone), the .... extract was confirmed by studying apoptotic body formation using ...

  14. Anti-tumor activity of polysaccharides extracted from Senecio ...

    African Journals Online (AJOL)

    *, Bao Zhang, Mingming Han, Xin Jin, Liyuan Sun and Tao Li. Department of ..... Yang J, Li X, Xue Y, Wang N, Liu W. Anti-hepatoma activity and mechanism of corn ... Peng W, Wu JG, Jiang YB, Liu YJ, Sun T, Wu N, Wu CJ. Antitumor activity of ...

  15. Indicine-N-oxide: the antitumor principle of Heliotropium indicum.

    Science.gov (United States)

    Kugelman, M; Liu, W C; Axelrod, M; McBride, T J; Rao, K V

    1976-01-01

    Extracts of Heliotropium indicum Linn. (Boraginaceae) showed significant activity in several experimental tumor systems. The active principle is isolated and shown to be the N-oxide of the alkaloid, indicine, previously isolated from this plant. Supporting structural data and anti-tumor data are provided.

  16. Mechanisms of reduction of antitumor drug toxicity by liposome encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Y. E.; Hanson, W. R.; Bharucha, J.; Ainsworth, E. J.; Jaroslow, B.

    1977-01-01

    The antitumor drug Actinomycin D is effective against the growth of some human solid tumors but its use is limited by its extreme toxicity. The development of a method of administering Act. D to reduce its systemic toxicity by incorporating the drug within liposomes reduced its toxicity but its tumoricidal activity was retained.

  17. Antitumor activity of doxorubicine-loaded nanoemulsion against ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights ... Keywords: Doxorubicine, Anti-tumor activity, Mean survival time, Heart histology, Nanoemulsion, Lipid profile .... the standard kit methods using fully Automated ..... effects of this new formulation in human patients.

  18. Reprogramming Antitumor Immune Responses with microRNAs

    Science.gov (United States)

    2013-10-01

    disease, including cancer etiology (4) and the generation and inhibition of antitumor immune responses (5–9). Biologically active miRNAs bind to MREs...breast, colorectal, lung, pancreatic , and thyroid carcinomas and in liquid tumors including lymphomas and some acute myeloid leukemias (9, 35). The...immunity [9], underscoring the potential of targeting this major microenvironmental compartment. Accumulating evidence suggests that chronic

  19. Anti-tumor effect of polysaccharides isolated from Taraxacum ...

    African Journals Online (AJOL)

    The effects of extraction temperature, liquid-solid ratio and extraction time on the yield of PTM were investigated using a Box-Behnken design (BBD). The in vitro anti-tumor effect of PTM on MCF-7 cells was investigated by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, while the mechanism of PTM-induced ...

  20. Anti-tumor activity of polysaccharides extracted from Senecio ...

    African Journals Online (AJOL)

    Purpose: To optimize the extraction conditions of polysaccharides from the root of Senecio scandens Buch,-Ham. (PRS) and evaluate its anti-tumor effect on hepatocellular carcinoma. Methods: Response surface methodology (RSM) applied with a Box-Behnken design (BBD, three levels and three factors) was employed to ...

  1. Antitumor effects and mechanisms of Ganoderma extracts and spores oil.

    Science.gov (United States)

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-11-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC 50 ) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC 50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle.

  2. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    Science.gov (United States)

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle. PMID:27900038

  3. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México.

    Science.gov (United States)

    Reyna-Martinez, Raul; Gomez-Flores, Ricardo; López-Chuken, Ulrico; Quintanilla-Licea, Ramiro; Caballero-Hernandez, Diana; Rodríguez-Padilla, Cristina; Beltrán-Rocha, Julio Cesar; Tamez-Guerra, Patricia

    2018-01-01

    Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae) and Scenedesmus sp. (Chlorococcales: Scenedesmaceae). Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant ( p  < 0.05) 61.89% ± 3.26% and 74.77% ± 1.84% tumor cytotoxicity by C. sorokiniana and Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources.

  4. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México

    Science.gov (United States)

    Beltrán-Rocha, Julio Cesar

    2018-01-01

    Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae) and Scenedesmus sp. (Chlorococcales: Scenedesmaceae). Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant (p Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources. PMID:29441241

  5. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México

    Directory of Open Access Journals (Sweden)

    Raul Reyna-Martinez

    2018-02-01

    Full Text Available Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae and Scenedesmus sp. (Chlorococcales: Scenedesmaceae. Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant (p < 0.05 61.89% ± 3.26% and 74.77% ± 1.84% tumor cytotoxicity by C. sorokiniana and Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources.

  6. RRx-001: a systemically non-toxic M2-to-M1 macrophage stimulating and prosensitizing agent in Phase II clinical trials.

    Science.gov (United States)

    Oronsky, Bryan; Paulmurugan, Ramasamy; Foygel, Kira; Scicinski, Jan; Knox, Susan J; Peehl, Donna; Zhao, Hongjuan; Ning, Shoucheng; Cabrales, Pedro; Summers, Thomas A; Reid, Tony R; Fitch, William L; Kim, Michelle M; Trepel, Jane B; Lee, Min-Jung; Kesari, Santosh; Abrouk, Nacer D; Day, Regina M; Oronsky, Arnold; Ray, Carolyn M; Carter, Corey A

    2017-01-01

    According to Hanahan and Weinberg, cancer manifests as six essential physiologic hallmarks: (1) self-sufficiency in growth signals, (2) insensitivity to growth-inhibitory signals, (3) evasion of programmed cell death, (4) limitless replicative potential, (5) sustained angiogenesis, and (6) invasion and metastasis. As a facilitator of these traits as well as immunosuppression and chemoresistance, the presence of tumor-associated macrophages (TAMs) may serve as the seventh hallmark of cancer. Anticancer agents that successfully reprogram TAMs to target rather than support tumor cells may hold the key to better therapeutic outcomes. Areas covered: This article summarizes the characteristics of the macrophage-stimulating agent RRx-001, a molecular iconoclast, sourced from the aerospace industry, with a particular emphasis on the cell-to-cell transfer mechanism of action (RBCs to TAMs) underlying its antitumor activity as well as its chemo and radioprotective properties, consolidated from various preclinical and clinical studies. Expert opinion: RRx-001 is macrophage-stimulating agent with the potential to synergize with chemotherapy, radiotherapy and immunotherapy while simultaneously protecting normal tissues from their cytotoxic effects. Given the promising indications of activity in multiple tumor types and these normal tissue protective properties, RRx-001 may be used to treat a broad spectrum of malignancies, if it is approved in the future.

  7. Complexos de escorpionato: papel biológico como potenciais agentes anti-tumor

    OpenAIRE

    Veiga, Kelly

    2011-01-01

    Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina O cancro é uma doença genética com origem em células somáticas desordenadas à nível celular, que sofreram alterações permitindo escapar à vigilância do sistema imunitário. O tratamento por quimioterapia pretende controlar a disseminação da doença por metastização. Sendo assim, a investigação de compostos com acção citostática é de grande importância. Tendo sido comprovado a existência de complexos de escorpi...

  8. Kahalalide F, an antitumor depsipeptide in clinical trials, and its analogues as effective antileishmanial agents.

    NARCIS (Netherlands)

    Cruz, L.J.; Luque-Ortega, J.R.; Rivas, L.; Albericio, F.

    2009-01-01

    Leishmaniasis is a human parasitic disease caused by infection by the protozoan Leishmania spp. Chemotherapy is currently the only treatment available, but its efficacy is increasingly challenged by the rising incidence of resistance and the frequent severe side effects associated with first-line

  9. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    Science.gov (United States)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  10. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis

    Czech Academy of Sciences Publication Activity Database

    Bildziukevich, Uladzimir; Rárová, L.; Šaman, David; Wimmer, Zdeněk

    2018-01-01

    Roč. 145, FEB 10 (2018), s. 41-50 ISSN 0223-5234 R&D Projects: GA MPO(CZ) FV10599 Institutional support: RVO:61389030 ; RVO:61388963 Keywords : Amide * Betulinic acid * Cytotoxicity * Picolyl amine * Therapeutic index Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 4.519, year: 2016

  11. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis.

    Science.gov (United States)

    Bildziukevich, Uladzimir; Rárová, Lucie; Šaman, David; Wimmer, Zdeněk

    2018-02-10

    A series of picolyl amides of betulinic acid (3a-3c and 6a-6c) was prepared and subjected to the cytotoxicity screening tests. Structure-activity relationships studies resulted in finding differences in biological activity in dependence on o-, m- and p-substitution of the pyridine ring in the target amides, when cytotoxicity data of 3a-3c and 6a-6c were obtained and compared. The amides 3b and 3a displayed cytotoxicity (given in the IC 50 values) in G-361 (0.5 ± 0.1 μM and 2.4 ± 0.0 μM, respectively), MCF7 (1.4 ± 0.1 μM and 2.2 ± 0.2 μM, respectively), HeLa (2.4 ± 0.4 μM and 2.3 ± 0.5 μM, respectively) and CEM (6.5 ± 1.5 μM and 6.9 ± 0.4 μM, respectively) tumor cell lines, and showed weak effect in the normal human fibroblasts (BJ). Selectivity against all tested cancer cells was determined and compared to normal cells with therapeutic index (TI) between 7 and 100 for compounds 3a and 3b. The therapeutic index (TI = 100) was calculated for human malignant melanoma cell line (G-361) versus normal human fibroblasts (BJ). The cytotoxicity of other target amides (3c and 6a-6c) revealed lower effects than 3a and 3b in the tested cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Alkaloid-rich fraction of Himatanthus lancifolius contains anti-tumor agents against leukemic cells

    Directory of Open Access Journals (Sweden)

    Melissa Pires de Lima

    2010-06-01

    Full Text Available The effects of the alkaloid-rich fraction of Himatanthus lancifolius (Müll. Arg Woodson on normal marrow cells and leukemic cell lines were investigated. After 48 h exposure, the proliferation assay showed significant cell growth inhibition for Daudi (0.1-10 µg/mL, K-562 (1-10 µg/mL, and REH cells (10-100 µg/mL, yet was inert for normal marrow cells. A similar inhibition profile was observed in clonogenic assays. This alkaloid-rich fraction, in which uleine is the main compound, showed no signs of toxicity to any cells up to 10 µg/mL. Cell feature analyses after induction of differentiation showed maintenance of the initial phenotype. Flow cytometric expression of Annexin-V and 7-AAD in K-562 and Daudi cells has indicated that the cells were not undergoing apoptosis or necrosis, suggesting cytostatic activity for tumor cellsOs efeitos da fração rica em alcalóides indólicos de Himatanthus lancifolius (Müll. Arg Woodson sobre células normais de medula óssea e linhagens celulares leucêmicas foram investigados. Após 48 horas de exposição, os ensaios de proliferação demonstraram efeitos inibitórios significativos para as linhagens Daudi (0,1-10 µg/mL, K-562 (1-10 µg/mL e REH (10-100 µg/mL, enquanto mostrou-se inerte sobre células normais de medula óssea. Os perfis de inibição se repetiram nos ensaios clonogênicos. A fração rica em alcalóides, na qual a uleína é a substância majoritária, não demonstrou toxicidade até a dose de 10 µg/mL para nenhuma das células incluídas no estudo. Da mesma forma, não se observou influência dessa fração sobre a diferenciação celular dessas linhagens, mas manutenção de seu estado maturacional inicial. O conjunto de dados descritos associado à baixa co-expressão de anexina-V e 7-AAD sugerem que esta fração exerce atividade citostática para células tumorais.

  13. Anti-tumor effect of bisphosphonate (YM529 on non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Date Hiroshi

    2007-01-01

    Full Text Available Abstract Background YM529 is a newly developed nitrogen-containing bisphosphonate (BP classified as a third-generation BP that shows a 100-fold greater potency against bone resorption than pamidronate, a second-generation BP. This agent is, therefore expected to be extremely useful clinically for the treatment of osteoporosis and hypercalcemia. Recently, YM529 as well as other third-generation BPs have also been shown to exert anti-tumor effects against various types of cancer cells both in vitro or/and in vivo. In this study, we investigate the anti-tumor effect of YM529 on non-small cell lung cancer (NSCLC. Methods Direct anti-tumor effect of YM529 against 8 NSCLC cell lines (adenocarcinoma: H23, H1299, NCI-H1819, NCI-H2009, H44, A549, adenosquamous cell carcinoma: NCI-H125, squamous cell carcinoma: NCI-H157 were measured by MTS assay and calculated inhibition concentration 50 % (IC50 values. YM529 induced apoptosis of NCI-H1819 was examined by DNA fragmentation of 2 % agarose gel electrophoresis and flowcytometric analysis (sub-G1 method. We examined where YM529 given effect to apoptosis of NSCLC cells in signaling pathway of the mevalonate pathway by western blotting analysis. Results We found that there was direct anti-tumor effect of YM529 on 8 NSCLC cell lines in a dose-dependent manner and their IC50 values were 2.1 to 7.9 μM and YM529 induced apoptosis and G1 arrest cell cycle with dose-dependent manner and YM529 caused down regulation of phospholyration of ERK1/2 in signaling pathways of NSCLC cell line (NCI-H1819. Conclusion Our study demonstrate that YM529 showed direct anti-tumor effect on NSCLC cell lines in vitro, which supports the possibility that third-generation BPs including YM529 can be one of therapeutic options for NSCLC.

  14. Antitumor activity of zoledronic acid in primary breast cancer cells determined by the ATP tumor chemosensitivity assay

    International Nuclear Information System (INIS)

    Fehm, Tanja; Zwirner, Manfred; Wallwiener, Diethelm; Seeger, Harald; Neubauer, Hans

    2012-01-01

    The NeoAzure study has demonstrated that the use of the bisphosphonate zoledronic acid (Zol) in the neoadjuvant setting increases the rate of complete response in primary breast cancer and therefore indicates direct antitumor activity. The purpose of this study was to compare the antitumor effect of Zol with standard chemotherapy in primary breast cancer cells using ATP-tumor chemosensitivity assay (ATP-TCA). Breast cancer specimens were obtained from patients with breast cancer who underwent primary breast cancer surgery at the Department of Obstetrics and Gynecology, Tübingen, Germany, between 2006 through 2009. Antitumor effects of Zol, TAC (Docetaxel, Adriamycin, Cyclophosphamide) and FEC (5-Fluorouracil, Epirubicin, Cyclophosphamide) were tested in 116 fresh human primary breast cancer specimens using ATP-TCA. ATP-TCA results were analyzed with different cut-off levels for the half maximal inhibitory concentration (IC50), for IC90 and for the sensitivity index (IndexSUM). Each single agent or combination was tested at six doubling dilutions from 6.25, 12.5, 25, 50, 100, and 200% of test drug concentrations (TDC) derived from the plasma peak concentrations determined by pharmacokinetic data. The assay was carried out in duplicate wells with positive and negative controls. The median IndexSUM value was lower for Zol than for the combined regimen FEC (36.8%) and TAC (12.9%), respectively, indicating increased antitumor activity of Zol in primary breast cancer cells. The difference regarding Zol and FEC was significant (p < 0.05). The median IC50 value for Zol (8.03% TDC) was significantly lower than the IC50 values for FEC (33.5% TDC) and TAC (19.3% TDC) treatment (p < 0.05). However, the median IC90 value for Zol (152.5% TDC) was significantly higher than the IC90 value obtained with TAC (49.5% TDC; p < 0.05), but similar to the IC90 value for FEC (180.9% TDC). In addition a significant positive correlation was observed for the IndexSum of Zol and the ER status

  15. Novel production method of innovative antiangiogenic and antitumor small peptides in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Setrerrahmane S

    2017-11-01

    Full Text Available Sarra Setrerrahmane,1 Jian Yu,1 Jingchao Hao,1,2 Heng Zheng,3 Hanmei Xu1,3 1The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 2College of Pharmacy & the Provincial Key Laboratory of Natural Drug and Pharmacology, Kunming, Yunnan, 3State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China Background: Developing innovative drugs with potent efficacy, specificity, and high safety remains an ongoing task in antitumor therapy development. In the last few years, peptide drugs have become attractive agents in cancer therapy. HM-3, mainly with antiangiogenic effect, and AP25, with an additional antiproliferative effect, are two peptides designed in our laboratory targeting αvβ3 and α5β1 integrins, respectively. The low molecular weight of the two peptides renders their recombinant expression very difficult, and the complicated structure of AP25 makes its chemical synthesis restricted, which presents a big challenge for its development.Methods: Bifunctional peptides designed by the ligation of HM-3 and AP25, using linkers with different flexibility, were prepared using recombinant DNA technology in Escherichia coli. The fusion peptides were expressed in a modified auto-induction medium based on a mixture of glucose, glycerol, and lactose as carbon substrates and NH4+ as nitrogen source without any amino acid or other elements. Subsequently, the antiangiogenic, antiproliferative, and cell adhesion assays were conducted to evaluate the bioactivity of the two fusion peptides.Results: The peptides were successfully expressed in a soluble form without any induction, which allows the culture to reach higher cell density before protein expression occurs. Human umbilical vein endothelial cell migration assay and chick embryo chorioallantoic membrane assay showed, at low doses, a significantly

  16. Antitumor effects of cecropin B-LHRH’ on drug-resistant ovarian and endometrial cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaoyong; Shen, Bo; Chen, Qi; Zhang, Xiaohui; Ye, Yiqing; Wang, Fengmei; Zhang, Xinmei

    2016-01-01

    Luteinizing hormone-releasing hormone receptor (LHRHr) represents a promising therapeutic target for treating sex hormone-dependent tumors. We coupled cecropin B, an antimicrobial peptide, to LHRH’, a form of LHRH modified at carboxyl-terminal residues 4–10, which binds to LHRHr without interfering with luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. This study aimed to assess the antitumor effects of cecropin B-LHRH’ (CB-LHRH’) in drug-resistant ovarian and endometrial cancers. To evaluate the antitumor effects of CB-LHRH’, three drug resistant ovarian cancer cell lines (SKOV-3, ES-2, NIH:OVCAR-3) and an endometrial cancer cell line (HEC-1A) were treated with CB-LHRH’. Cell morphology changes were assessed using inverted and electron microscopes. In addition, cell growth and cell cytotoxicity were measured by MTT assay and LDH release, respectively. In addition, hemolysis was measured. Furthermore, radioligand receptor binding, hypersensitization and minimal inhibitory concentrations (against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, and Acinetobacter baumannii) were determined. Finally, the impact on tumor growth in BALB/c-nu mice was assessed in an ES-2 xenograft model. CB-LHRH’ bound LHRHr with high-affinity (dissociation constant, Kd = 0.252 ± 0.061nM). Interestingly, CB-LHRH’ significantly inhibited the cell viability of SKOV-3, ES-2, NIH:OVCAR-3 and HEC-1A, but not that of normal eukaryotic cells. CB-LHRH’ was active against bacteria at micromolar concentrations, and caused no hypersensitivity in guinea pigs. Furthermore, CB-LHRH’ inhibited tumor growth with a 23.8 and 20.4 % reduction in tumor weight at 50 and 25 mg/kg.d, respectively. CB-LHRH’ is a candidate for targeted chemotherapy against ovarian and endometrial cancers

  17. Antitumor activity of pan-HER inhibitors in HER2-positive gastric cancer.

    Science.gov (United States)

    Yoshioka, Takahiro; Shien, Kazuhiko; Namba, Kei; Torigoe, Hidejiro; Sato, Hiroki; Tomida, Shuta; Yamamoto, Hiromasa; Asano, Hiroaki; Soh, Junichi; Tsukuda, Kazunori; Nagasaka, Takeshi; Fujiwara, Toshiyoshi; Toyooka, Shinichi

    2018-04-01

    Molecularly targeted therapy has enabled outstanding advances in cancer treatment. Whereas various anti-human epidermal growth factor receptor 2 (HER2) drugs have been developed, trastuzumab is still the only anti-HER2 drug presently available for gastric cancer. In this study, we propose novel treatment options for patients with HER2-positive gastric cancer. First, we determined the molecular profiles of 12 gastric cancer cell lines, and examined the antitumor effect of the pan-HER inhibitors afatinib and neratinib in those cell lines. Additionally, we analyzed HER2 alteration in 123 primary gastric cancers resected from Japanese patients to clarify possible candidates with the potential to respond to these drugs. In the drug sensitivity analysis, both afatinib and neratinib produced an antitumor effect in most of the HER2-amplified cell lines. However, some cells were not sensitive to the drugs. When the molecular profiles of the cells were compared based on the drug sensitivities, we found that cancer cells with lower mRNA expression levels of IGFBP7, a tumor suppressor gene that inhibits the activation of insulin-like growth factor-1 receptor (IGF-1R), were less sensitive to pan-HER inhibitors. A combination therapy consisting of pan-HER inhibitors and an IGF-1R inhibitor, picropodophyllin, showed a notable synergistic effect. Among 123 clinical samples, we found 19 cases of HER2 amplification and three cases of oncogenic mutations. In conclusion, afatinib and neratinib are promising therapeutic options for the treatment of HER2-amplified gastric cancer. In addition to HER2 amplification, IGFBP7 might be a biomarker of sensitivity to these drugs, and IGF-1R-targeting therapy can overcome drug insensitiveness in HER2-amplified gastric cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  18. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells.

    Science.gov (United States)

    Kwak, Tae Won; Kim, Do Hyung; Jeong, Young-Il; Kang, Dae Hwan

    2015-09-26

    The aim of this study is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(DL-lactide-co-glycolide)/poly(ethylene glycol) copolymer. Vorinostat-NPs exhibited spherical shapes with sizes Vorinostat-NPs have anticancer activity similar to that of vorinostat in vitro. Vorinostat-NPs as well as vorinostat itself increased acetylation of histone-H3. Furthermore, vorinostat-NPs have similar effectiveness in the suppression or expression of histone deacetylase, mutant type p53, p21, and PARP/cleaved caspase-3. However, vorinostat-NPs showed improved antitumor activity against HuCC-T1 cancer cell-bearing mice compared to vorinostat, whereas empty nanoparticles had no effect on tumor growth. Furthermore, vorinostat-NPs increased the expression of acetylated histone H3 in tumor tissue and suppressed histone deacetylase (HDAC) expression in vivo. The improved antitumor activity of vorinostat-NPs can be explained by molecular imaging studies using near-infrared (NIR) dye-incorporated nanoparticles, i.e. NIR-dye-incorporated nanoparticles were intensively accumulated in the tumor region rather than normal one. Our results demonstrate that vorinostat and vorinostat-NPs exert anticancer activity against HuCC-T1 cholangiocarcinoma cells by specific inhibition of HDAC expression. Thus, we suggest that vorinostat-NPs are a promising candidate for anticancer chemotherapy in cholangiocarcinoma. Graphical abstract Local delivery strategy of vorinostat-NPs against cholangiocarcinomas.

  19. Synthesis, Antitumor Evaluation and Molecular Docking of New Morpholine Based Heterocycles

    Directory of Open Access Journals (Sweden)

    Zeinab A. Muhammad

    2017-07-01

    Full Text Available A series of new morpholinylchalcones was prepared and then used as building blocks for constructing a series of 7-morpholino-2-thioxo-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H-ones via their reaction with 6-aminothiouracil. The latter thiones reacted with the appropriate hydrazonoyl chloride to give the corresponding pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H-ones. The assigned structures for all the newly synthesized compounds were confirmed on the basis of elemental analyses and spectral data and the mechanisms of their formation were also discussed. Most of the synthesized compounds were tested for in vitro activity against human lung cancer (A-549 and human hepatocellular carcinoma (HepG-2 cell lines compared with the employed standard antitumor drug (cisplatin and the results revealed that compounds 8, 4e and 7b have promising activities against the A-549 cell line (IC50 values of 2.78 ± 0.86 μg/mL, 5.37 ± 0.95 μg/mL and 5.70 ± 0.91 μg/mL, respectively while compound 7b has promising activity against the HepG-2 cell lines (IC50 = 3.54 ± 1.11 μg/mL. Moreover, computational studies using MOE 2014.09 software supported the biological activity results.

  20. Ibrutinib, a Bruton's tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma.

    Science.gov (United States)

    Wang, Jin; Liu, Xiaoyang; Hong, Yongzhi; Wang, Songtao; Chen, Pin; Gu, Aihua; Guo, Xiaoyuan; Zhao, Peng

    2017-07-17

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, is a novel anticancer drug used for treating several types of cancers. In this study, we aimed to determine the role of ibrutinib on GBM. Cell proliferation was determined by using cell viability, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and cell apoptosis were analyzed by flow cytometry. Cell migratory ability was evaluated by wound healing assays and trans-well migration assays. ATG7 expression was knocked-down by transfection with Atg7-specific small interfering RNA. Overexpression of active Akt protein was achieved by transfecting the cells with a plasmid expressing constitutively active Akt (CA-Akt). Transmission electron microscopy was performed to examine the formation of autophagosomes in cells. Immunofluorescence and western blot analyses were used to analyze protein expression. Tumor xenografts in nude mice and immunohistochemistry were performed to evaluate the effect of ibrutinib on tumor growth in vivo. Ibrutinib inhibited cellular proliferation and migration, and induced apoptosis and autophagy in LN229 and U87 cells. Overexpression of the active Akt protein decreased ibrutinib-induced autophagy, while inhibiting Akt by LY294002 treatment enhanced ibrutinib-induced autophagy. Specific inhibition of autophagy by 3-methyladenine (3MA) or Atg7 targeting with small interfering RNA (si-Atg7) enhanced the anti-GBM effect of ibrutinib in vitro and in vivo. Our results indicate that ibrutinib exerts a profound antitumor effect and induces autophagy through Akt/mTOR signaling pathway in GBM cells. Autophagy inhibition promotes the antitumor activity of ibrutinib in GBM. Our findings provide important insights into the action of an anticancer agent combining with autophagy inhibitor for malignant glioma.

  1. Structure and Antitumor and Immunomodulatory Activities of a Water-Soluble Polysaccharide from Dimocarpus longan Pulp

    Science.gov (United States)

    Meng, Fa-Yan; Ning, Yuan-Ling; Qi, Jia; He, Zhou; Jie, Jiang; Lin, Juan-Juan; Huang, Yan-Jun; Li, Fu-Sen; Li, Xue-Hua

    2014-01-01

    A new water-soluble polysaccharide (longan polysaccharide 1 (LP1)) was extracted and successfully purified from Dimocarpus longan pulp via diethylaminoethyl (DEAE)-cellulose anion-exchange and Sephacryl S-300 HR gel chromatography. The chemical structure was determined using Infrared (IR), gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. The results indicated that the molecular weight of the sample was 1.1 × 105 Da. Monosaccharide composition analysis revealed that LP1 was composed of Glc, GalA, Ara and Gal in a molar ratio of 5.39:1.04:0.74:0.21. Structural analysis indicated that LP1 consisted of a backbone of →4)-α-d-Glcp-(1→4)-α-d-GalpA-(1→4)-α-d-Glcp-(1→4)-β-d-Glcp-(1→ units with poly saccharide side chains composed of →2)-β-d-Fruf-(1→2)-l-sorbose-(1→ attached to the O-6 position of the α-d-Glcp residues. In vitro experiments indicated that LP1 had significantly high antitumor activity against SKOV3 and HO8910 tumor cells, with inhibition percentages of 40% and 50%, respectively. In addition, LP1 significantly stimulated the production of the cytokine interferon-γ (IFN-γ), increased the activity of murine macrophages and enhanced B- and T-lymphocyte proliferation. The results of this study demonstrate that LP1 has potential applications as a natural antitumor agent with immunomodulatory activity. PMID:24663085

  2. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines.

    Science.gov (United States)

    Massi, Paola; Vaccani, Angelo; Ceruti, Stefania; Colombo, Arianna; Abbracchio, Maria P; Parolaro, Daniela

    2004-03-01

    Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines. The addition of CBD to the culture medium led to a dramatic drop of mitochondrial oxidative metabolism [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide test] and viability in glioma cells, in a concentration-dependent manner that was already evident 24 h after CBD exposure, with an apparent IC(50) of 25 microM. The antiproliferative effect of CBD was partially prevented by the CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; SR2) and alpha-tocopherol. By contrast, the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716; SR1), capsazepine (vanilloid receptor antagonist), the inhibitors of ceramide generation, or pertussis toxin did not counteract CBD effects. We also show, for the first time, that the antiproliferative effect of CBD was correlated to induction of apoptosis, as determined by cytofluorimetric analysis and single-strand DNA staining, which was not reverted by cannabinoid antagonists. Finally, CBD, administered s.c. to nude mice at the dose of 0.5 mg/mouse, significantly inhibited the growth of subcutaneously implanted U87 human glioma cells. In conclusion, the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.

  3. In vitro and in vivo antitumor effects of chloroquine on oral squamous cell carcinoma

    Science.gov (United States)

    Jia, Lihua; Wang, Juan; Wu, Tong; Wu, Jinan; Ling, Junqi; Cheng, Bin

    2017-01-01

    Chloroquine, which is a widely used antimalarial drug, has been reported to exert anticancer activity in some tumor types; however, its potential effects on oral squamous cell carcinoma (OSCC) remain unclear. The present study aimed to explore the effects and possible underlying mechanisms of chloroquine against OSCC. MTT and clonogenic assays were conducted to evaluate the effects of chloroquine on the human OSCC cell lines SCC25 and CAL27. Cell cycle progression and apoptosis were detected using flow cytometry. Autophagy was monitored using microtubule-associated protein 1A/1B-light chain 3 as an autophagosomal marker. In order to determine the in vivo antitumor effects of chloroquine on OSCC, a CAL27 xenograft model was used. The results demonstrated that chloroquine markedly inhibited the proliferation and the colony-forming ability of both OSCC cell lines in a dose- and time-dependent manner in vitro. Chloroquine also disrupted the cell cycle, resulting in the cell cycle arrest of CAL27 and SCC25 cells at G0/G1 phase, via downregulation of cyclin D1. In addition, chloroquine inhibited autophagy, and induced autophagosome and autolysosome accumulation in the cytoplasm, thus interfering with degradation; however, OSCC apoptosis was barely affected by chloroquine. The results of the in vivo study demonstrated that chloroquine effectively inhibited OSCC tumor growth in the CAL27 xenograft model. In conclusion, the present study reported the in vitro and in vivo antitumor effects of chloroquine on OSCC, and the results indicated that chloroquine may be considered a potent therapeutic agent against human OSCC. PMID:28849182

  4. In vitro antitumor actions of extracts from endemic plant Helichrysum zivojinii

    Directory of Open Access Journals (Sweden)

    Matić Ivana Z

    2013-02-01

    zivojinii may represent an important source of novel potential antitumor agents due to their pronounced and selective cytotoxic actions towards malignant cells.

  5. In vitro antitumor actions of extracts from endemic plant Helichrysum zivojinii.

    Science.gov (United States)

    Matić, Ivana Z; Aljančić, Ivana; Žižak, Željko; Vajs, Vlatka; Jadranin, Milka; Milosavljević, Slobodan; Juranić, Zorica D

    2013-02-18

    antitumor agents due to their pronounced and selective cytotoxic actions towards malignant cells.

  6. Activation of the Unfolded Protein Response Contributes toward the Antitumor Activity of Vorinostat

    Directory of Open Access Journals (Sweden)

    Soumen Kahali

    2010-01-01

    Full Text Available Histone deacetylase (HDAC inhibitors represent an emerging class of anticancer agents progressing through clinical trials. Although their primary target is thought to involve acetylation of core histones, several nonhistone substrates have been identified, including heat shock protein (HSP 90, which may contribute towards their antitumor activity. Glucose-regulated protein 78 (GRP78 is a member of the HSP family of molecular chaperones and plays a central role in regulating the unfolded protein response (UPR. Emerging data suggest that GRP78 is critical in cellular adaptation and survival associated with oncogenesis and may serve as a cancer-specific therapeutic target. On the basis of shared homology with HSP family proteins, we sought to determine whether GRP78 could serve as a molecular target of the HDAC inhibitor vorinostat. Vorinostat treatment led to GRP78 acetylation, dissociation, and subsequent activation of its client protein double-stranded RNA-activated protein-like endoplasmic reticulum kinase (PERK. Investigations in a panel of cancer cell lines identified that UPR activation after vorinostat exposure is specific to certain lines. Mass spectrometry performed on immunoprecipitated GRP78 identified lysine-585 as a specific vorinostat-induced acetylation site of GRP78. Downstream activation of the UPR was confirmed, including eukaryotic initiating factor 2α phosphorylation and increase in ATF4 and C/EBP homologous protein expression. To determine the biologic relevance of UPR activation after vorinostat, RNA interference of PERK was performed, demonstrating significantly decreased sensitivity to vorinostat-induced cytotoxicity. Collectively, these findings indicate that GRP78 is a biologic target of vorinostat, and activation of the UPR through PERK phosphorylation contributes toward its antitumor activity.

  7. Trading Agents

    CERN Document Server

    Wellman, Michael

    2011-01-01

    Automated trading in electronic markets is one of the most common and consequential applications of autonomous software agents. Design of effective trading strategies requires thorough understanding of how market mechanisms operate, and appreciation of strategic issues that commonly manifest in trading scenarios. Drawing on research in auction theory and artificial intelligence, this book presents core principles of strategic reasoning that apply to market situations. The author illustrates trading strategy choices through examples of concrete market environments, such as eBay, as well as abst

  8. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors.

    Science.gov (United States)

    Sun, Wen; Fan, Jiangli; Wang, Suzhen; Kang, Yao; Du, Jianjun; Peng, Xiaojun

    2018-03-07

    Tumor-targeted drug delivery systems have been increasingly used to improve the therapeutic efficiency of anticancer drugs and reduce their toxic side effects in vivo. Focused on this point, doxorubicin (DOX)-loaded hydroxyapatite (HAP) nanorods consisting of folic acid (FA) modification (DOX@HAP-FA) were developed for efficient antitumor treatment. The DOX-loaded nanorods were synthesized through in situ coprecipitation and hydrothermal method with a DOX template, demonstrating a new procedure for drug loading in HAP materials. DOX could be efficiently released from DOX@HAP-FA within 24 h in weakly acidic buffer solution (pH = 6.0) because of the degradation of HAP nanorods. With endocytosis under the mediation of folate receptors, the nanorods exhibited enhanced cellular uptake and further degraded, and consequently, the proliferation of targeted cells was inhibited. More importantly, in a tumor-bearing mouse model, DOX@HAP-FA treatment demonstrated excellent tumor growth inhibition. In addition, no apparent side effects were observed during the treatment. These results suggested that DOX@HAP-FA may be a promising nanotherapeutic agent for effective cancer treatment in vivo.

  9. Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma.

    Science.gov (United States)

    Motoyama, Keiichi; Onodera, Risako; Tanaka, Nao; Kameyama, Kazuhisa; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

    2015-01-01

    Melanoma is a life-threatening disorder and its incidence is increasing gradually. Despite the numerous treatment approaches, conventional systemic chemotherapy has not reduced the mortality rate among melanoma patients, probably due to the induction of toxicity to normal tissues. Recently, we have developed folate-conjugated methyl-β-cyclodextrin (FA-M-β-CyD) and clarified its potential as a new antitumor agent involved in autophagic cell death. However, it remains uncertain whether FA-M-β-CyD exerts anticancer effects against melanomas. Therefore, in this study, we investigated the effects of FA-M-β-CyD on the folate receptor-α (FR-α)-expressing melanoma cell-selective cytotoxic effect. FA-M-β-CyD showed cytotoxic effects in Ihara cells, a human melanoma cell line expressing FR-α. In sharp contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered Ihara cells [FR-α(+)] through FR-α-mediated endocytosis. Additionally, FA-M-β-CyD elicited the formation of autophagosomes in Ihara cells. Notably, FA-M-β-CyD suppressed melanoma growth in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double deficient mice bearing Ihara cells. Therefore, these results suggest that FA-M-β-CyD could be utilized as a potent anticancer agent for melanoma chemotherapy by regulating autophagy.

  10. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Franco-Molina Moisés A

    2010-11-01

    Full Text Available Abstract Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL and LD100 (14 ng/mL (*P Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  11. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.

    Science.gov (United States)

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Sierra-Rivera, Crystel A; Gómez-Flores, Ricardo A; Zapata-Benavides, Pablo; Castillo-Tello, Paloma; Alcocer-González, Juan Manuel; Miranda-Hernández, Diana F; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2010-11-16

    Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P colloidal silver. The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  12. Studies on anti-tumor effect of electromagnetic waves

    International Nuclear Information System (INIS)

    Kadota, Ikuhito; Wakabayashi, Toshio; Ogoshi, Kyoji; Kamijo, Akemi

    1995-01-01

    Hyperthermia have treated cancer with thermal effect of electromagnetic waves for biological systems, but the expected effect is not shown. Also non-thermal effect of electromagnetic waves is out of consideration. If irradiation conditions of electromagnetic waves with non-thermal anti-tumor effect are obtained, we can expect newly spread in cancer therapy. We had in vivo experiments that electromagnetic waves were irradiated to mice. In some irradiation conditions, the non-thermal anti-tumor effect of electromagnetic waves showed. In order to specify the irradiation conditions, we had in vitro experiments. We found that activity ratio of tumor cells which was measured by MTT method depended on irradiation time and power of electromagnetic waves. These results are useful for the cancer therapy. (author)

  13. Antitumor Activity of Monoterpenes Found in Essential Oils

    Directory of Open Access Journals (Sweden)

    Marianna Vieira Sobral

    2014-01-01

    Full Text Available Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented.

  14. Antitumor evaluation of epigallocatechin gallate by colorimetric methods

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Soon Ok [Korean Ginseng and Tobacco Research institute, Daejon (Korea, Republic of); Kim, Il Kwang; Baek, Seung Hwa; Han, Du Seok [Wonkwang Unvi., Iksan (Korea, Republic of)

    1998-08-01

    In the present study, we were evaluated cytotoxic effects of epigallocatechin gallate in human skin melanoma cells such as HTB-69. The light microscopic study showed morphological changes of the treated cells. Disruptions in cell organelles were determined by colorimetric methods; 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, neutral red (NR) assay and sulforhodamine B protein (SRB) as-say. These results suggest that epigallocatechin gallate retains a potential antitumor activity.

  15. Jungle Honey Enhances Immune Function and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  16. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.

    Science.gov (United States)

    Alam, Badrul; Majumder, Rajib; Akter, Shahina; Lee, Sang-Han

    2015-02-01

    The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (PPiper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.

  17. In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora trichocarpha

    Directory of Open Access Journals (Sweden)

    D.A. Saúde-Guimarães

    2014-06-01

    Full Text Available The sesquiterpene lactones lychnopholide and eremantholide C were isolated from Lychnophora trichocarpha Spreng. (Asteraceae, which is a plant species native to the Brazilian Savannah or Cerrado and popularly known as arnica. Sesquiterpene lactones are known to present a variety of biological activities including antitumor activity. The present paper reports on the evaluation of the in vitro antitumor activity of lychnopholide and eremantholide C, in the National Cancer Institute, USA (NCI, USA, against a panel of 52 human tumor cell lines of major human tumors derived from nine cancer types. Lychnopholide disclosed significant activity against 30 cell lines of seven cancer types with IC100 (total growth concentration inhibition values between 0.41 µM and 2.82 µM. Eremantholide C showed significant activity against 30 cell lines of eight cancer types with IC100 values between 21.40 µM and 53.70 µM. Lychnopholide showed values of lethal concentration 50% (LC50 for 30 human tumor cell lines between 0.72 and 10.00 µM, whereas eremantholide C presented values of LC50 for 21 human tumor cell lines between 52.50 and 91.20 µM. Lychnopholide showed an interesting profile of antitumor activity. The α-methylene-γ-lactone present in the structure of lychnopholide, besides two α,β- unsaturated carbonyl groups, might be responsible for the better activity and higher cytotoxicity of this compound in relation to eremantholide C.

  18. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin.

    Science.gov (United States)

    Hattori, Yoshiyuki; Shibuya, Kazuhiko; Kojima, Kaori; Miatmoko, Andang; Kawano, Kumi; Ozaki, Kei-Ichi; Yonemochi, Etsuo

    2015-07-01

    Previously, we found that the injection of zoledronic acid (ZOL) into mice bearing tumor induced changes of the vascular structure in the tumor. In this study, we examined whether ZOL treatment could decrease interstitial fluid pressure (IFP) via change of tumor vasculature, and enhance the antitumor efficacy of liposomal doxorubicin (Doxil®). When ZOL solution was injected at 40 µg/mouse per day for three consecutive days into mice bearing murine Lewis lung carcinoma LLC tumor, depletion of macrophages in tumor tissue and decreased density of tumor vasculature were observed. Furthermore, ZOL treatments induced inflammatory cytokines such as interleukin (IL)-10 and -12, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α in serum of LLC tumor-bearing mice, but not in normal mice, indicating that ZOL treatments might induce an inflammatory response in tumor tissue. Furthermore, ZOL treatments increased antitumor activity by Doxil in mice bearing a subcutaneous LLC tumor, although they did not significantly increase the tumor accumulation of doxorubicin (DXR). These results suggest that ZOL treatments might increase the therapeutic efficacy of Doxil via improvement of DXR distribution in a tumor by changing the tumor vasculature. ZOL treatment can be an alternative approach to increase the antitumor effect of liposomal drugs.

  19. Snake venoms components with antitumor activity in murine melanoma cells

    International Nuclear Information System (INIS)

    Queiroz, Rodrigo Guimaraes

    2012-01-01

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  20. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  1. Radioprotective Agents

    Directory of Open Access Journals (Sweden)

    Ilker Kelle

    2008-01-01

    Full Text Available Since1949, a great deal of research has been carried out on the radioprotective activity of various chemical substances. Thiol compounds, compounds which contain –SH radical, different classes of pharmacological agents and other compounds such as vitamine C and WR-2721 have been shown to reduce mortality when administered prior to exposure to a lethal dose of radiation. Recently, honey bee venom as well as that of its components melittin and histamine have shown to be valuable in reduction of radiation-induced damage and also provide prophylactic alternative treatment for serious side effects related with radiotherapy. It has been suggested that the radioprotective activity of bee venom components is related with the stimulation of the hematopoetic system.

  2. EVALUATION OF THE ANTITUMOR AND ANTICACHEXIA ACTIVITY OF GRATIOLA OFFICINALIS L. EXTRACT IN RATS WITH TRANSPLANTED SARCOMA 45

    Directory of Open Access Journals (Sweden)

    N. A. Navolokin

    2016-01-01

    Full Text Available Cachexia is a severe complication of cancer and currently there are no drugs that would effectively deal with exhaustion and intoxication in various diseases.Materials and methods. In this paper a study and evaluation of the antitumor and anticachexia activities of the extract of Gratiola officinalis l. in rats with transplanted sarcoma 45 in experiment in vivo was conducted. Gratiola officinalis l. extract is received by patented method and is not toxic to animals. The study was conducted on 40 white male rats line Wistar weighing 150 ± 50 g. Animals were divided into 4 groups (10 rats per group: control group, comparison group with sarcoma without affecting, group with sarcoma with intramuscular and group with sarcoma with oral administration of the extract in a dosage of 110 mg/kg. The extract was administered intramuscularly or orally 72 hours after transplantation of sarcoma 45. The tumor volume and the weight of the animals were assessed daily.Results. The extract of leaves and flowers of Gratiola officinalis l. obtained by patented method has a strong antitumor activity, reducing the growth rate of the tumor and causing marked changes in the tumor, as well as providing stable anticachexia effect. Index of tumor weight inhibition was 70.6 % on average. Intramuscular administration was more effective in reducing of tumor growth, but less effectively increases the weight of animals than oral administration. In both administration methods Gratiola officinalis extract has no toxic effect on peripheral blood. We have previously found that the extract has antioxidant activity so that anticachexia effect is pathogenic, meaning it occurs by reducing toxicity.Conclusions. Gratiola officinalis extract has a broad spectrum of biological activity, in particular antitumor, anticachexia, it is not toxic, so it is advisable to investigate as a promising tool for the treatment of tumor diseases and cancer cachexia, and cachexia caused by other chronic

  3. Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy.

    Science.gov (United States)

    Son, Keum-Joo; Choi, Ki Ryung; Lee, Seog Jae; Lee, Hyunah

    2016-02-01

    Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT(+) CD11c(+) cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

  4. Comparison of the oncogenic potential of several chemotherapeutic agents

    International Nuclear Information System (INIS)

    Miller, R.C.; Hall, E.J.; Osmak, R.S.

    1981-01-01

    Several chemotherapeutic drugs that have been routinely used in cancer treatment were tested for their carcinogenic potential. Two antitumor antibiotics (adriamycin and vincristine), an alkalating agent (melphalan), 5-azacytidine and the bifunctional agent cis-platinum that mimics alkylating agents and/or binds Oxygen-6 or Nitrogen-7 atoms of quanine were tested. Cell killing and cancer induction was assessed using in vitro transformation system. C3H/10T 1/2 cells, while normally exhibiting contact inhibition, can undergo transformation from normal contact inhibited cells to tumorgenic cells when exposed to chemical carcinogens. These cells have been used in the past by this laboratory to study oncogenic transformation of cells exposed to ionizing radiation and electron affinic compounds that sensitize hypoxic cells to x-rays. The endpoints of cell killing and oncogenic transformation presented here give an estimate of the carcinogenic potential of these agents

  5. Dual actions of albumin packaging and tumor targeting enhance the antitumor efficacy and reduce the cardiotoxicity of doxorubicin in vivo

    Directory of Open Access Journals (Sweden)

    Zheng K

    2015-08-01

    Full Text Available Ke Zheng,1 Rui Li,2 Xiaolei Zhou,2 Ping Hu,2 Yaxin Zhang,2 Yunmei Huang,3 Zhuo Chen,2 Mingdong Huang2 1College of Chemistry, Fuzhou University, Fuzhou, People’s Republic of China; 2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People’s Republic of China; 3Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China Abstract: Doxorubicin (DOX is an effective chemotherapy drug used to treat different types of cancers. However, DOX has severe side effects, especially life-threatening cardiotoxicity. We herein report a new approach to reduce the toxicity of DOX by embedding DOX inside human serum albumin (HSA. HSA is further fused by a molecular biology technique with a tumor-targeting agent, amino-terminal fragment of urokinase (ATF. ATF binds with a high affinity to urokinase receptor, which is a cell-surface receptor overexpressed in many types of tumors. The as-prepared macromolecule complex (ATF–HSA:DOX was not as cytotoxic as free DOX to cells in vitro, and was mainly localized in cell cytosol in contrast to DOX that was localized in cell nuclei. However, in tumor-bearing mice, ATF–HSA:DOX was demonstrated to have an enhanced tumor-targeting and antitumor efficacy compared with free DOX. More importantly, histopathological examinations of the hearts from the mice treated with ATF–HSA:DOX showed a significantly reduced cardiotoxicity compared with hearts from mice treated with free DOX. These results demonstrate the feasibility of this approach in reducing the cardiotoxicity of DOX while strengthening its antitumor efficacy. Such a tumor-targeted albumin packaging strategy can also be applied to other antitumor drugs. Keywords: amino-terminal fragment of urokinase, urokinase receptor, drug carrier, human serum albumin, doxorubicin, cytotoxicity

  6. The MET/AXL/FGFR Inhibitor S49076 Impairs Aurora B Activity and Improves the Antitumor Efficacy of Radiotherapy.

    Science.gov (United States)

    Clémenson, Céline; Chargari, Cyrus; Liu, Winchygn; Mondini, Michele; Ferté, Charles; Burbridge, Mike F; Cattan, Valérie; Jacquet-Bescond, Anne; Deutsch, Eric

    2017-10-01

    Several therapeutic agents targeting HGF/MET signaling are under clinical development as single agents or in combination, notably with anti-EGFR therapies in non-small cell lung cancer (NSCLC). However, despite increasing data supporting a link between MET, irradiation, and cancer progression, no data regarding the combination of MET-targeting agents and radiotherapy are available from the clinic. S49076 is an oral ATP-competitive inhibitor of MET, AXL, and FGFR1-3 receptors that is currently in phase I/II clinical trials in combination with gefitinib in NSCLC patients whose tumors show resistance to EGFR inhibitors. Here, we studied the impact of S49076 on MET signaling, cell proliferation, and clonogenic survival in MET-dependent (GTL16 and U87-MG) and MET-independent (H441, H460, and A549) cells. Our data show that S49076 exerts its cytotoxic activity at low doses on MET-dependent cells through MET inhibition, whereas it inhibits growth of MET-independent cells at higher but clinically relevant doses by targeting Aurora B. Furthermore, we found that S49076 improves the antitumor efficacy of radiotherapy in both MET-dependent and MET-independent cell lines in vitro and in subcutaneous and orthotopic tumor models in vivo In conclusion, our study demonstrates that S49076 has dual antitumor activity and can be used in combination with radiotherapy for the treatment of both MET-dependent and MET-independent tumors. These results support the evaluation of combined treatment of S49076 with radiation in clinical trials without patient selection based on the tumor MET dependency status. Mol Cancer Ther; 16(10); 2107-19. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity

    International Nuclear Information System (INIS)

    Liu, Lily; Yu, Haijia; Huang, Xin; Tan, Hongzhi; Li, Song; Luo, Yan; Zhang, Li; Jiang, Sumei; Jia, Huifeng; Xiong, Yao; Zhang, Ruliang; Huang, Yi; Chu, Charles C; Tian, Wenzhi

    2015-01-01

    Relatively poor penetration and retention in tumor tissue has been documented for large molecule drugs including therapeutic antibodies and recombinant immunoglobulin constant region (Fc)-fusion proteins due to their large size, positive charge, and strong target binding affinity. Therefore, when designing a large molecular drug candidate, smaller size, neutral charge, and optimal affinity should be considered. We engineered a recombinant protein by molecular engineering the second domain of VEGFR1 and a few flanking residues fused with the Fc fragment of human IgG1, which we named HB-002.1. This recombinant protein was extensively characterized both in vitro and in vivo for its target-binding and target-blocking activities, pharmacokinetic profile, angiogenesis inhibition activity, and anti-tumor therapeutic efficacy. HB-002.1 has a molecular weight of ~80 kDa, isoelectric point of ~6.7, and an optimal target binding affinity of <1 nM. The pharmacokinetic profile was excellent with a half-life of 5 days, maximal concentration of 20.27 μg/ml, and area under the curve of 81.46 μg · days/ml. When tested in a transgenic zebrafish embryonic angiogenesis model, dramatic inhibition in angiogenesis was exhibited by a markedly reduced number of subintestinal vessels. When tested for anti-tumor efficacy, HB-002.1 was confirmed in two xenograft tumor models (A549 and Colo-205) to have a robust tumor killing activity, showing a percentage of inhibition over 90% at the dose of 20 mg/kg. Most promisingly, HB-002.1 showed a superior therapeutic efficacy compared to bevacizumab in the A549 xenograft model (tumor inhibition: 84.7% for HB-002.1 versus 67.6% for bevacizumab, P < 0.0001). HB-002.1 is a strong angiogenesis inhibitor that has the potential to be a novel promising drug for angiogenesis-related diseases such as tumor neoplasms and age-related macular degeneration

  8. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, Peter [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Multhoff, Gabriele [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Helmholtz Zentrum Muenchen, Institute for innovative Radiotherapy (iRT), Experimental Immune Biology, Neuherberg (Germany)

    2016-05-15

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.) [German] Untersuchungen des bioenergetischen Status ergaben, dass Tumorhypoxie neben vielen anderen bedeutsamen biologischen Effekten zu einem starken

  9. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity

    Directory of Open Access Journals (Sweden)

    Mari Hirvinen

    2016-01-01

    Full Text Available In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate—and eventually the long-lasting adaptive immunity against cancer.

  10. Synergy of irofulven in combination with other DNA damaging agents: synergistic interaction with altretamine, alkylating, and platinum-derived agents in the MV522 lung tumor model.

    Science.gov (United States)

    Kelner, Michael J; McMorris, Trevor C; Rojas, Rafael J; Estes, Leita A; Suthipinijtham, Pharnuk

    2008-12-01

    Irofulven (MGI 114, NSC 683863) is a semisynthetic derivative of illudin S, a natural product present in the Omphalotus illudins (Jack O'Lantern) mushroom. This novel agent produces DNA damage, that in contrast to other agents, is predominately ignored by the global genome repair pathway of the nucleotide excision repair (NER)(2) system. The aim of this study was to determine the antitumor activity of irofulven when administered in combination with 44 different DNA damaging agents, whose damage is in general detected and repaired by the genome repair pathway. The human lung carcinoma MV522 cell line and its corresponding xenograft model were used to evaluate the activity of irofulven in combination with different DNA damaging agents. Two main classes of DNA damaging agents, platinum-derived agents, and select bifunctional alkylating agents, demonstrated in vivo synergistic or super-additive interaction with irofulven. DNA helicase inhibiting agents also demonstrated synergy in vitro, but an enhanced interaction with irofulven could not be demonstrated in vivo. There was no detectable synergistic activity between irofulven and agents capable of inducing DNA cleavage or intercalating into DNA. These results indicate that the antitumor activity of irofulven is enhanced when combined with platinum-derived agents, altretamine, and select alkylating agents such as melphalan or chlorambucil. A common factor between these agents appears to be the production of intrastrand DNA crosslinks. The synergistic interaction between irofulven and other agents may stem from the nucleotide excision repair system being selectively overwhelmed at two distinct points in the pathway, resulting in prolonged stalling of transcription forks, and subsequent initiation of apoptosis.

  11. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway

  12. In vitro and in vivo studies of pharmacokinetics and antitumor efficacy of D07001-F4, an oral gemcitabine formulation.

    Science.gov (United States)

    Hao, Wei-Hua; Wang, Jong-Jing; Hsueh, Shu-Ping; Hsu, Pei-Jing; Chang, Li-Chien; Hsu, Chang-Shan; Hsu, Kuang-Yang

    2013-02-01

    The chemotherapy agent gemcitabine is currently administered intravenously because the drug has poor oral bioavailability. In order to assess the pharmacokinetics and antitumor activity of D07001-F4, a new self-microemulsifying oral drug delivery system preparation of gemcitabine, this study was performed to compare the effect of D07001-F4 with administered gemcitabine in vitro and in vivo. D07001-F4 pharmacokinetics was examined by evaluation of in vitro deamination of D07001-F4 and gemcitabine hydrochloride by recombinant human cytidine deaminase (rhCDA) and in vivo evaluation of D07001-F4 pharmacokinetics in mice. Antitumor activity was evaluated by comparing the effect of D07001-F4 and gemcitabine hydrochloride in inhibiting growth in nine cancer cell lines and by examining the effect of D07001-F4 and gemcitabine in two xenograft tumor models in mice. In vitro deamination of D07001-F4 by rhCDA was 3.3-fold slower than deamination of gemcitabine hydrochloride. Growth inhibition by D07001-F4 of 7 of the 8 cancer cell lines was increased compared with that seen with gemcitabine hydrochloride, and D07001-F4 inhibited the growth of pancreatic and colon cancer xenografts. In vivo pharmacokinetics showed the oral bioavailability of D07001-F4 to be 34%. D07001-F4 was effective against several cancer types, was metabolized more slowly than gemcitabine hydrochloride, and exhibited enhanced oral bioavailability.

  13. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer.

    Science.gov (United States)

    Liu, Bing; Huang, XinPing; Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-09-06

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer.

  14. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2014-01-01

    Full Text Available Chinese propolis has been reported to possess various biological activities such as antitumor. In present study, anticancer activity of ethanol extract of Chinese propolis (EECP at 25, 50, 100, and 200 μg/mL was explored by testing the cytotoxicity in MCF-7 (human breast cancer ER(+ and MDA-MB-231 (human breast cancer ER(− cells. EECP revealed a dose- and time-dependent cytotoxic effect. Furthermore, annexin A7 (ANXA7, p53, nuclear factor-κB p65 (NF-κB p65, reactive oxygen species (ROS levels, and mitochondrial membrane potential were investigated. Our data indicated that treatment of EECP for 24 and 48 h induced both cells apoptosis obviously. Exposure to EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically. The effects of EECP on p53 level were different in MCF-7 and MDA-MB-231 cells, which indicated that EECP exerted its antitumor effects in MCF-7 and MDA-MB-231 cells by inducing apoptosis, regulating the levels of ANXA7, p53, and NF-κB p65, upregulating intracellular ROS, and decreasing mitochondrial membrane potential. Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs. These results suggest that EECP is a potential alternative agent on breast cancer treatment.

  15. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wei-Hong [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Yang, Li-Yun [Department of Blood Transfusion, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Cao, Zhong-Yi, E-mail: m18070383032@163.com [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Qian, Yong, E-mail: yfykqkqy@163.com [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China)

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.

  16. Cytotoxic, Antitumor and Immunomodulatory Effects of the Water-Soluble Polysaccharides from Lotus (Nelumbo nucifera Gaertn. Seeds

    Directory of Open Access Journals (Sweden)

    Yafeng Zheng

    2016-11-01

    Full Text Available Lotus is an edible and medicinal plant, and the extracts from its different parts exhibit various bioactivities. In the present study, the hot water–soluble polysaccharides from lotus seeds (LSPS were evaluated for their cancer cell cytotoxicity, immunomodulatory and antitumor activities. LSPS showed significant inhibitory effects on the mouse gastric cancer MFC cells, human liver cancer HuH-7 cells and mouse hepatocarcinoma H22 cells. The animal studies showed that LSPS inhibited tumor growth in H22 tumor-bearing mice with the highest inhibition rate of 45.36%, which is comparable to that induced by cyclophosphamide (30 mg/kg treatment (50.79%. The concentrations of white blood cells were significantly reduced in cyclophosphamide-treated groups (p < 0.01, while LSPS showed much fewer side effects according to the hematology analysis. LSPS improved the immune response in H22 tumor-bearing mice by enhancing the spleen and thymus indexes, and increasing the levels of serum cytokines including tumor necrosis factor-α and interleukin-2. Moreover, LSPS also showed in vivo antioxidant activity by increasing superoxide dismutase activity, thus reducing the malondialdehyde level in the liver tissue. These results suggested that LSPS can be used as an antitumor and immunomodulatory agent.

  17. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, EEM; Akkerman, [No Value; Koulman, A; Kamermans, P; Reith, H; Barbosa, MJ; Sipkema, D; Wijffels, RH

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  18. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, E.E.M.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; Wijffels, R.H.

    2003-01-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  19. Tennessee Promise: A Response to Organizational Change

    Science.gov (United States)

    Littlepage, Ben; Clark, Teresa; Wilson, Randal; Stout, Logan

    2018-01-01

    Community colleges in Tennessee, either directly or indirectly, experienced unprecedented change as a result of Tennessee Promise. The present study explored how student support service administrators at three community colleges responded to organizational change as a result of the Tennessee Promise legislation. Investigators selected community…

  20. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV.

    Science.gov (United States)

    Zhang, C; Wu, S; Xue, X; Li, M; Qin, X; Li, W; Han, W; Zhang, Y

    2008-01-01

    Blockade of the programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) pathway can delay tumor growth and prolong the survival of tumor-bearing mice. The extracellular immunoglobulin (Ig) V domain of PD-1 is important for the interaction between PD-1 and PD-L1, suggesting that PD-1-IgV may be a potential target for anti-tumor immunotherapy. The extracellular sequence of human PD-1-IgV (hPD-1-IgV) was expressed in Escherichia coli and purified. The anti-tumor effect of hPD-1-IgV on tumor-bearing mice was tested. hPD-1-IgV recombinant protein could bind PD-L1 at molecular and cellular levels and enhance Cytotoxic T Lymphocyte (CTL) activity and anti-tumor effect on tumor-bearing mice in vivo. The percentage of CD4(+)CD25(+) T cells in tumor-bearing mice was decreased compared with control mice after administration of the recombinant protein. Our results suggest that inhibition of the interaction between PD-1 and PD-L1 by hPD-1-IgV may be a promising strategy for specific tumor immunotherapy.

  1. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

    Directory of Open Access Journals (Sweden)

    Hyo-Jeong Lee

    2012-01-01

    Full Text Available Although cryptotanshinone (CT was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent.

  2. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system.

    Science.gov (United States)

    Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Feng, Yanling; Xie, Mingyong

    2014-02-19

    Ganoderma is a precious health-care edible medicinal fungus in China. A novel Ganoderma atrum polysaccharide (PSG-1) is the main bioactive component. We investigated the antitumor effect and molecular mechanisms of PSG-1. It exhibited no significant effect on cell proliferation directly. In contrast, administration of PSG-1 markedly suppressed tumor growth in CT26 tumor-bearing mice. It was observed that PSG-1 caused apoptosis in CT26 cells. Apoptosis was associated with loss of mitochondrial membrane potential, enhancement of mitochondrial cytochrome c release and intracellular ROS production, elevation of p53 and Bax expression, downregulation of Bcl-2, and the activation of caspase-9 and -3. Moreover, PSG-1 enhanced immune organ index and promoted lymphocyte proliferation as well as cytokine levels in serum. Taken together, our data indicate that PSG-1 has potential antitumor activity in vivo by inducing apoptosis via mitochondria-mediated apoptotic pathway and enhances host immune system function. Therefore, PSG-1 could be a safe and effective antitumor, bioactive agent or functional food.

  3. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase α

    International Nuclear Information System (INIS)

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki

    2007-01-01

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol α from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol α with IC 50 value of 0.5 μM, and did not influence the activities of other replicative pols such as pols δ and ε, but also showed no effect on pol α activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD 50 values of 38.0-44.4 μM. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol α-specific inhibitor, but also as a candidate drug for anti-cancer treatment

  4. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    Science.gov (United States)

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  5. Antitumor and Antibacterial Derivatives of Oridonin: A Main Composition of Dong-Ling-Cao

    Directory of Open Access Journals (Sweden)

    Dahong Li

    2016-04-01

    Full Text Available Isodon rubescens has been used as a traditional green tea for more than 1000 years and many medicinal functions of I. rubescens are also very useful, such as its well-known antitumor and antibacterial activities. Oridonin, a bioactive ent-kaurane diterpenoid, is the major ingredient of this medicinal tea. Herein, 22 novel oridonin derivatives were designed and synthesized. The antibacterial activity was evaluated for the first time. Compound 12 was the most promising one with MIC of 2.0 μg/mL against B. subtilis, which was nearly 3-fold stronger than positive control chloromycetin. The antiproliferative property was also assayed and compound 19 showed stronger activity than taxol. The apoptosis-inducing ability, cell cycle arrest effect at S phase and influence of mitochondrial membrane potential by 19 in CaEs-17 cancer cells were first disclosed. Based on the above results, the cell apoptosis induced by compound 19 in CaEs-17 cells was most probably involved in the intrinsic apoptotic pathway.

  6. Design, Synthesis and Antitumor Activity of Novel 4-Methyl-(3'S,4'S-cis-khellactone Derivatives

    Directory of Open Access Journals (Sweden)

    Taigang Liang

    2013-04-01

    Full Text Available An asymmetric synthesis of a series of novel 4-methyl-(3'S,4'S-cis-khellactone derivatives 3a–o is reported for the first time. Their structures were confirmed by 1H-NMR, 13C-NMR and MS. Their cytotoxic activity was evaluated by the MTT assay against three selected human cancer cell lines: HEPG-2 (human liver carcinoma, SGC-7901 (human gastric carcinoma, LS174T (human colon carcinoma. Some compounds showed high inhibitory activity against these human cancer cell lines. Among them, compound 3a exhibited strong cytotoxicity, with IC50 values ranging from 8.51 to 29.65 μM. The results showed that 4-methyl-cis-khellactone derivatives with S,S configuration could be a potential antitumor agents.

  7. Intensive fibrosarcoma-binding capability of the reconstituted analog and its antitumor activity.

    Science.gov (United States)

    Xu, Jian; Du, Yue; Liu, Wen-Juan; Li, Liang; Li, Yi; Wang, Xiao-Fei; Yi, Hong-Fei; Shan, Chuan-Kun; Xia, Gui-Min; Liu, Xiu-Jun; Zhen, Yong-Su

    2018-11-01

    Fibrosarcomas are highly aggressive malignant tumors. It is urgently needed to explore targeted drugs and modalities for more effective therapy. Matrix metalloproteinases (MMPs) play important roles in tumor progression and metastasis, while several MMPs are highly expressed in fibrosarcomas. In addition, tissue inhibitor of metalloproteinase 2 (TIMP2) displays specific interaction with MMPs. Therefore, TIMP2 may play an active role in the development of fibrosarcoma-targeting agents. In the current study, a TIMP2-based recombinant protein LT and its enediyne-integrated analog LTE were prepared; furthermore, the fibrosarcoma-binding intensity and antitumor activity were investigated. As shown, intense and selective binding capability of the protein LT to human fibrosarcoma specimens was confirmed by tissue microarray. Moreover, LTE, the enediyne-integrated analog of LT, exerted highly potent cytotoxicity to fibrosarcoma HT1080 cells, induced apoptosis, and caused G2/M arrest. LTE at 0.1 nM markedly suppressed the migration and invasion of HT1080 cells. LTE at tolerated dose of 0.6 mg/kg inhibited the tumor growth of fibrosarcoma xenograft in athymic mice. The study provides evidence that the TIMP2-based reconstituted analog LTE may be useful as a targeted drug for fibrosarcome therapy.

  8. Antitumor effects of celecoxib in COX-2 expressing and non-expressing canine melanoma cell lines.

    Science.gov (United States)

    Seo, Kyoung-Won; Coh, Ye-Rin; Rebhun, Robert B; Ahn, Jin-Ok; Han, Sei-Myung; Lee, Hee-Woo; Youn, Hwa-Young

    2014-06-01

    Cyclooxygenase-2 (COX-2) is a potential target for chemoprevention and cancer therapy. Celecoxib, a selective COX-2 inhibitor, inhibits cell growth of various types of human cancer including malignant melanoma. In dogs, oral malignant melanoma represents the most common oral tumor and is often a fatal disease. Therefore, there is a desperate need to develop additional therapeutic strategies. The purpose of this study was to investigate the anticancer effects of celecoxib on canine malignant melanoma cell lines that express varying levels of COX-2. Celecoxib induced a significant anti-proliferative effect in both LMeC and CMeC-1 cells. In the CMeC cells, treatment of 50 μM celecoxib caused an increase in cells in the G0/G1 and a decreased proportion of cells in G-2 phase. In the LMeC cells, 50 μM of celecoxib led to an increase in the percentage of cells in the sub-G1 phase and a significant activation of caspase-3 when compared to CMeC-1 cells. In conclusion, these results demonstrate that celecoxib exhibits antitumor effects on canine melanoma LMeC and CMeC-1 cells by induction of G1-S cell cycle arrest and apoptosis. Our data suggest that celecoxib might be effective as a chemotherapeutic agent against canine malignant melanoma. Copyright © 2014. Published by Elsevier Ltd.

  9. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wang

    2016-01-01

    Full Text Available Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.

  10. Herbal Medicine Goshajinkigan Prevents Paclitaxel-Induced Mechanical Allodynia without Impairing Antitumor Activity of Paclitaxel

    Directory of Open Access Journals (Sweden)

    Muh. Akbar Bahar

    2013-01-01

    Full Text Available Chemotherapy-induced peripheral neuropathy is a major dose-limiting side effect of commonly used chemotherapeutic agents. However, there are no effective strategies to treat the neuropathy. We examined whether Goshajinkigan, a herbal medicine, would prevent paclitaxel-induced allodynia without affecting the anticancer action in mice. Murine breast cancer 4T1 cells were inoculated into the mammary fat pad. Paclitaxel (10 and 20 mg/kg, intraperitoneal, alternate day from day 7 postinoculation inhibited the tumor growth, and Goshajinkigan (1 g/kg, oral, daily from day 2 postinoculation did not affect the antitumor action of paclitaxel. Mechanical allodynia developed in the inoculated region due to tumor growth and in the hind paw due to paclitaxel-induced neuropathy. Paclitaxel-induced allodynia was markedly prevented by Goshajinkigan, although tumor-associated allodynia was not inhibited by Goshajinkigan. These results suggest that Goshajinkigan prevents paclitaxel-induced peripheral neuropathy without interfering with the anti-cancer action of paclitaxel.

  11. Detoxifying antitumoral drugs via nanoconjugation: the case of gold nanoparticles and cisplatin.

    Directory of Open Access Journals (Sweden)

    Joan Comenge

    Full Text Available Nanoparticles (NPs have emerged as a potential tool to improve cancer treatment. Among the proposed uses in imaging and therapy, their use as a drug delivery scaffold has been extensively highlighted. However, there are still some controversial points which need a deeper understanding before clinical application can occur. Here the use of gold nanoparticles (AuNPs to detoxify the antitumoral agent cisplatin, linked to a nanoparticle via a pH-sensitive coordination bond for endosomal release, is presented. The NP conjugate design has important effects on pharmacokinetics, conjugate evolution and biodistribution and results in an absence of observed toxicity. Besides, AuNPs present unique opportunities as drug delivery scaffolds due to their size and surface tunability. Here we show that cisplatin-induced toxicity is clearly reduced without affecting the therapeutic benefits in mice models. The NPs not only act as carriers, but also protect the drug from deactivation by plasma proteins until conjugates are internalized in cells and cisplatin is released. Additionally, the possibility to track the drug (Pt and vehicle (Au separately as a function of organ and time enables a better understanding of how nanocarriers are processed by the organism.

  12. Potentiation of ALA-PDT antitumor activity in mice using topical DMXAA

    Science.gov (United States)

    Marrero, Allison; Sunar, Ulas; Sands, Theresa; Oseroff, Allan; Bellnier, David

    2009-06-01

    Photodynamic treatment of subcutaneously implanted Colon 26 tumors in BALB/c mice using the aminolevulinic acid (ALA)-induced photosensitizer protoporphyrin IX (PpIX) was shown to be enhanced by the addition of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic-acid (DMXAA; Novartis ASA404). DMXAA increases vascular permeability and decreases blood flow in both murine and human tumors. Sufficiently high parenteral DMXAA doses can lead to tumor collapse and necrosis. We have previously reported marked enhancement of antitumor activity when PDT, using either Photofrin or HPPH, is combined with low-dose intraperitoneal DMXAA. We now describe the first attempt to combine topically-applied DMXAA with PDT. For this, DMXAA was applied two hours before PpIX-activating light delivery. PDT with ALA-PDT alone (ALA 20%; 80 J/cm2 delivered at 75 mW/cm2) caused a 39% decrease in tumor volume compared to unirradiated controls. Addition of topical DMXAA to ALA-PDT resulted in a 74% reduction in tumor volume. Diffuse correlation spectroscopy (DCS), a non-invasive blood flow imaging method, is being used to understand the mechanism of this effect and to aid in the proper design of the therapy. For instance, our most recent DCS data suggests that the 2-hour interval between the DMXAA and light applications may not be optimum. This preliminary study suggests a potential role for topical DMXAA in combination with PDT for dermatologic tumors.

  13. Tuftsin: a hormone-like tetrapeptide with antimicrobial and antitumor activities

    International Nuclear Information System (INIS)

    Nishioka, K.; Amoscato, A.A.; Babcock, G.F.

    1981-01-01

    A specific fraction of immunoglobulin G binds to polymorphonuclear neutrophils and stimulates their phagocytic activity. This phagocytosis-stimulating activity resides solely in a small peptide termed tuftsin, of the sequence Thr-Lys-Pro-Arg, which has been isolated from the leukophilic immunoglobulin G fraction. The physiological significance of tuftsin has been demonstrated in splenectomized patients and patients with a congenital tuftsin abnormality, in whom the low levels of tuftsin in sera (measurable by radioimmunoassay) coincides with a high incidence of infection. Tuftsin has also been shown to enhance bactericidal activity in addition to phagocytosis. Its biological activities appear to be mediated via specific tuftsin receptors which have been found on macrophages, monocytes and granulocytes. In addition, tuftsin possesses chemotactic, migration-enhancing and mitogenic properties for leukocytes and has recently been shown to enhance their anti-tumor activity in vitro as well as in vivo. Other known activities of tuftsin include effects on the activity of the hexose monophosphate shunt, on the concentrations of intracellular cyclic nucleotides and on the efflux of Ca 2+ in leukocytes. Tuftsin has been chemically synthesized in various laboratories using different procedures and also is available commercially. The above features of tuftsin plus the expected low toxicity of this peptide make tuftsin a very attractive agent for immunotherapy against infection and cancer. However, a great deal of caution needs to be exercised when using tuftsin due to inhibitory contaminants found in certain commercial preparations

  14. Synthesis and evaluation of novel caged DNA alkylating agents bearing 3,4-epoxypiperidine structure.

    Science.gov (United States)

    Kawada, Yuji; Kodama, Tetsuya; Miyashita, Kazuyuki; Imanishi, Takeshi; Obika, Satoshi

    2012-07-14

    Previously, we reported that the 3,4-epoxypiperidine structure, whose design was based on the active site of DNA alkylating antitumor antibiotics, azinomycins A and B, possesses prominent DNA cleavage activity. In this report, novel caged DNA alkylating agents, which were designed to be activated by UV irradiation, were synthesized by the introduction of four photo-labile protecting groups to a 3,4-epoxypiperidine derivative. The DNA cleavage activity and cytotoxicity of the caged DNA alkylating agents were examined under UV irradiation. Four caged DNA alkylating agents showed various degrees of bioactivity depending on the photosensitivity of the protecting groups.

  15. Birth Outcomes in Children Fathered by Men Treated with Anti-TNF-α Agents Before Conception

    DEFF Research Database (Denmark)

    Larsen, Michael Due; Friedman, Sonia; Magnussen, Bjarne

    2016-01-01

    OBJECTIVES: The safety of paternal use of anti-tumor necrosis factor-α (TNF-α) agents immediately prior to conception is practically unknown. On the basis of nationwide data from Danish health registries, we examined the association between paternal use of anti-TNF-α agents within 3 months before...... the safety of paternal preconceptional use of anti-TNF-α agents. The result regarding SGA should, however, be interpreted with caution as we found an increased risk, although not significantly increased....

  16. DNA strand scission by the novel antitumor antibiotic leinamycin

    International Nuclear Information System (INIS)

    Hara, Mitsunobu; Saitoh, Yutaka; Nakano, Hirofumi

    1990-01-01

    Leinamycin is a recently discovered antitumor antibiotic with an unusual 1,3-dioxo-1,2-dithiolane structure. It preferentially inhibits the incorporation of [ 3 H]thymidine into the acid-insoluble fraction of Bacillus subtilis. In vitro, leinamycin causes single-strand cleavage of supercoiled double-helical pBR322 DNA in the presence of thiol cofactors. Scavengers of oxygen radical did not suppress the DNA-cleaving activity. Thiol-activated leinamycin binds calf thymus DNA at 4 degree C and thermal treatment of the leinamycin-DNA adduct released a chemically modified leinamycin from the complex. The lack of cytotoxicity and DNA-cleaving activity for S-deoxyleinamycin indicates that the 1,3-dioxo-1,2-dithiolane moiety is essential for the activity of leinamycin. Thus, the primary cellular target of leinamycin appears to be DNA. It binds DNA and causes single-strand break at low concentrations, which may account for the potent antitumor activity

  17. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes

    Science.gov (United States)

    Yuan, Jiani; Zhou, Xuanxuan; Cao, Wei; Bi, Linlin; Zhang, Yifang; Yang, Qian; Wang, Siwang

    2017-11-01

    Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

  18. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.

    Science.gov (United States)

    Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J

    2001-06-26

    Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.

  19. Enhanced antitumor activity of 3-bromopyruvate in combination with rapamycin in vivo and in vitro.

    Science.gov (United States)

    Zhang, Qi; Pan, Jing; Lubet, Ronald A; Komas, Steven M; Kalyanaraman, Balaraman; Wang, Yian; You, Ming

    2015-04-01

    3-Bromopyruvate (3-BrPA) is an alkylating agent and a well-known inhibitor of energy metabolism. Rapamycin is an inhibitor of the serine/threonine protein kinase mTOR. Both 3-BrPA and rapamycin show chemopreventive efficacy in mouse models of lung cancer. Aerosol delivery of therapeutic drugs for lung cancer has been reported to be an effective route of delivery with little systemic distribution in humans. In this study, 3-BrPA and rapamycin were evaluated in combination for their preventive effects against lung cancer in mice by aerosol treatment, revealing a synergistic ability as measured by tumor multiplicity and tumor load compared treatment with either single-agent alone. No evidence of liver toxicity was detected by monitoring serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzymes. To understand the mechanism in vitro experiments were performed using human non-small cell lung cancer (NSCLC) cell lines. 3-BrPA and rapamycin also synergistically inhibited cell proliferation. Rapamycin alone blocked the mTOR signaling pathway, whereas 3-BrPA did not potentiate this effect. Given the known role of 3-BrPA as an inhibitor of glycolysis, we investigated mitochondrial bioenergetics changes in vitro in 3-BrPA-treated NSCLC cells. 3-BrPA significantly decreased glycolytic activity, which may be due to adenosine triphosphate (ATP) depletion and decreased expression of GAPDH. Our results demonstrate that rapamycin enhanced the antitumor efficacy of 3-BrPA, and that dual inhibition of mTOR signaling and glycolysis may be an effective therapeutic strategy for lung cancer chemoprevention. ©2015 American Association for Cancer Research.

  20. Animal venoms as antimicrobial agents.

    Science.gov (United States)

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Financial Technology: The Promise of Blockchain

    OpenAIRE

    Demary, Markus; Demary, Vera

    2017-01-01

    Digitization affects all sectors of the economy. A new and possibly disruptive digital technology is the blockchain, a decentralized ledger, which seems to offer great promise for many financial and business applications.

  2. 9th KES Conference on Agent and Multi-Agent Systems : Technologies and Applications

    CERN Document Server

    Howlett, Robert; Jain, Lakhmi

    2015-01-01

    Agents and multi-agent systems are related to a modern software paradigm which has long been recognized as a promising technology for constructing autonomous, complex and intelligent systems. The topics covered in this volume include agent-oriented software engineering, agent co-operation, co-ordination, negotiation, organization and communication, distributed problem solving, specification of agent communication languages, agent privacy, safety and security, formalization of ontologies and conversational agents. The volume highlights new trends and challenges in agent and multi-agent research and includes 38 papers classified in the following specific topics: learning paradigms, agent-based modeling and simulation, business model innovation and disruptive technologies, anthropic-oriented computing, serious games and business intelligence, design and implementation of intelligent agents and multi-agent systems, digital economy, and advances in networked virtual enterprises. Published p...

  3. Antitumor, antibiotic and antileishmanial properties of the Pyranonaphthoquinone Psychorubrin from Mitracarpus frigidus

    Directory of Open Access Journals (Sweden)

    Rodrigo L. Fabri

    2012-12-01

    Full Text Available The bioactivity guided fractionation of the dichloromethane extract of Mitracarpus frigidus afforded the pyranonaphthoquinone psychorubrin. This compound, hitherto unknown in the genus Mitracarpus, had its biological activity evaluated against one panel of bacteria and two fungi, three tumor cell lines (HL60, Jurkat and MCF-7 and four Leishmania species. Its identity was confirmed unambiguously by ¹H, 13C, ¹H-COSY, IR and UV-Vis spectroscopy and mass spectrometry. Psychorubrin displayed a very promising antitumor with IC50 of 4.5, 5.6 and 1.1 µM for HL60, Jurkat and MCF-7 cell lines, respectively. Antimicrobial activity, mainly against Cryptococcus neoformans (MIC of 87.3 µM was observed. A pronounced antileishmanial potential was also verified with IC50 varying from 1.7 to 2.7 µM for the Leishmania species tested. This is the first report of the presence of pyranonapthoquinones in the Mitracarpus genus, which may serve as a chemotaxonomical marker.O fracionamento biomonitorado do extrato diclorometânico de Mitracarpus frigidus forneceu a piranonaftoquinona psicorubrina. Essa substância, até então desconhecida no gênero Mitracarpus, teve sua atividade biológica avaliada contra várias bactérias e dois fungos, três linhagens de células tumorais (HL60, Jurkat e MCF-7 e quatro espécies de Leishmania. Sua estrutura foi confirmada por meio de ¹H, 13C, ¹H-COSY, IR e UV-Vis e espectrometria de massas. Psicorubrina exibiu uma atividade antitumoral promissora com CI50 de 4,5, 5,6 e 1,1 µM para HL60, Jurkat e MCF-7, respectivamente. Atividade antimicrobiana, principalmente contra Cryptococcus neoformans (CIM de 87,3 µM, foi observada. Um pronunciado potencial leishmanicida também foi verificado com CI50 variando de 1,7 - 2,7 µM para as diferentes espécies de Leishmania testadas. Este é o primeiro relato da presença de piranonaftoquinonas no gênero Mitracarpus, que poderão ser úteis como marcadores quimiotaxonômicos.

  4. Novel synergistic antitumor effects of rapamycin with bortezomib on hepatocellular carcinoma cells and orthotopic tumor model

    Directory of Open Access Journals (Sweden)

    Wang Cun

    2012-05-01

    Full Text Available Abstract Background Despite recent advances in the treatment of hepatocellular carcinoma (HCC, the chemotherapy efficacy against HCC is still unsatisfactory. The mammalian target of rapamycin (mTOR has been emerged as an important cancer therapeutic target. However, HCC cells often resistant to rapamycin because of the paradoxical activation of Akt by rapamycin. In this study, we investigated whether bortezomib could enhance the antitumor effects of rapamycin. Methods The effects of rapamycin and bortezomib on HCC proliferation, apoptosis, migration, and invasiveness in vitro were assessed by CCK-8 analysis, flow cytometry, Hoechst 33342 staining and transwell assays, respectively. Total and phosphorylated protein levels of Akt were detected by Western blotting. The effects of rapamycin and/or bortezomib on the mRNA expression levels of p53, p27, p21 and Bcl-2 family in HCCLM3 cells were evaluated by RT-PCR. The roles of rapamycin and bortezomib on HCC growth and metastasis in xenograft models were evaluated by tumor volumes and fluorescent signals. The effects of rapamycin and bortezomib on cell proliferation and apoptosis in vivo were test by PCNA and TUNEL staining. Results Bortezomib synergized with rapamycin to reduce cell growth, induce apoptosis, and inhibit cell mobility in vitro. Further mechanistic studies showed that bortezomib inhibited rapamycin-induced phosphorylated Akt, which in turn enhanced apoptosis of HCC cell lines. The alteration of the mRNA expression of cell cycle inhibitors p53, p27, p21 and apoptosis associated genes Bcl-2, Bax were also involved in the synergistic antitumor effects of rapamycin and bortezomib. P53 inhibitor PFT-α significantly attenuate the effect of rapamycin and bortezomib on cell apoptosis, which indicated that the pro-apoptotic effect of rapamycin and bortezomib may be p53-dependent. Treatment of HCCLM3-R bearing nude mice with rapamycin and bortezomib significantly enhanced tumor growth

  5. Anti-tumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Qin JM

    2012-01-01

    stable, and had a slow-releasing effect. BIN targeted the cell membrane of the liver cancer cell SMMC-7721 and significantly inhibited the growth, adhesion, invasion, and metastasis of SMMC-7721 cells. As a novel drug carrier system, BIN are a potentially promising targeting treatment for liver cancer.Keywords: cancer targeting, hepatocellular carcinoma, nanoparticles, targeted drug delivery, anti-tumor effect

  6. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities.

    Science.gov (United States)

    Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.

  7. Interacting agents in finance

    NARCIS (Netherlands)

    Hommes, C.; Durlauf, S.N.; Blume, L.E.

    2008-01-01

    Interacting agents in finance represent a behavioural, agent-based approach in which financial markets are viewed as complex adaptive systems consisting of many boundedly rational agents interacting through simple heterogeneous investment strategies, constantly adapting their behaviour in response

  8. Riot Control Agents

    Science.gov (United States)

    ... Submit What's this? Submit Button Facts About Riot Control Agents Interim document Recommend on Facebook Tweet Share Compartir What riot control agents are Riot control agents (sometimes referred to ...

  9. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    Science.gov (United States)

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with

  10. Preferential antitumor effect of the Src inhibitor dasatinib associated with a decreased proportion of aldehyde dehydrogenase 1-positive cells in breast cancer cells of the basal B subtype

    Directory of Open Access Journals (Sweden)

    Watanabe Mika

    2010-10-01

    Full Text Available Abstract Background Recent studies have suggested that the Src inhibitor dasatinib preferentially inhibits the growth of breast cancer cells of the basal-like subtype. To clarify this finding and further investigate combined antitumor effects of dasatinib with cytotoxic agents, a panel of breast cancer cell lines of various subtypes was treated with dasatinib and/or chemotherapeutic agents. Methods Seven human breast cancer cell lines were treated with dasatinib and/or seven chemotherapeutic agents. Effects of the treatments on c-Src activation, cell growth, cell cycle, apoptosis and the proportion of aldehyde dehydrogenase (ALDH 1-positive cells were examined. Results The 50%-growth inhibitory concentrations (IC50s of dasatinib were much lower in two basal B cell lines than those in the other cell lines. The IC50s of chemotherapeutic agents were not substantially different among the cell lines. Dasatinib enhanced antitumor activity of etoposide in the basal B cell lines. Dasatinib induced a G1-S blockade with a slight apoptosis, and a combined treatment of dasatinib with etoposide also induced a G1-S blockade in the basal B cell lines. Dasatinib decreased the expression levels of phosphorylated Src in all cell lines. Interestingly, dasatinib significantly decreased the proportion of ALDH1-positive cells in the basal B cell lines but not in the other cell lines. Conclusions The present study indicates that dasatinib preferentially inhibits the growth of breast cancer cells of the basal B subtype associated with a significant loss of putative cancer stem cell population. A combined use of dasatinib with etoposide additively inhibits their growth. Further studies targeting breast cancers of the basal B subtype using dasatinib with cytotoxic agents are warranted.

  11. Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes

    Directory of Open Access Journals (Sweden)

    Li K

    2017-12-01

    Full Text Available Kai Li,1,* Yongxing Zhang,2,* Mengting Chen,1 Yangyang Hu,1 Weiliang Jiang,1 Li Zhou,1 Sisi Li,1 Min Xu,1 Qinghua Zhao,2 Rong Wan1 1Department of Gastroenterology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 2Department of Orthopaedics, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: To improve the antitumor efficacy of doxorubicin (DOX and provide novel clinical treatment of gastric cancer, halloysite nanotubes (HNTs loaded with DOX were encapsulated by soybean phospholipid (LIP and the formed HNTs/DOX/LIP was systematically characterized via different techniques. The in vitro anticancer activity of HNTs/DOX/LIP was examined using an MTT assay. The antitumor efficacy and biocompatibility were monitored by measuring the tumor volume and assessing the blood routine and serum biochemistry using an ectopic implantation cancer model. The results show that when the concentration of HNTs was 3 mg/mL and the concentration of DOX was 1 mg/mL the optimal DOX loading efficiency was as high as 22.01%±0.43%. In vitro drug release behavior study demonstrated that HNTs/DOX/LIP shows a pH-responsive release property with fast drug release under acidic conditions (pH =5.4. MTT assays and in vivo experimental results revealed that HNTs/DOX/LIP exhibits a significantly higher inhibitory efficacy on the growth of mouse gastric cancer cells than free DOX at the same drug concentration. In addition, the life span of tumor-bearing mice in the HNTs/DOX/LIP-treated group was obviously prolonged compared with the control groups. Moreover, HNTs/DOX/LIP possessed excellent hemocompatibility as shown in the blood and histology studies. These findings indicated that the formed HNTs/DOX/LIP possesses higher antitumor efficacy and may be used as a targeted

  12. Antitumor function and mechanism of phycoerythrin from Porphyra haitanensis

    Directory of Open Access Journals (Sweden)

    Qunwen Pan

    2013-01-01

    Full Text Available The anti-tumor effect of R-Phycoerythrin (R-PE from Porphyra haitanensis was studied using cell line HeLa as an in vitro model and Sarcoma-180 (S180 tumor-bearing mice as an in vivo model. The results showed that the combination treatment of R-PE and photodynamic therapy PDT significantly inhibited the growth of HeLa cells up to 81.5%, with a fair dose-effect relationship, but did not inhibit endothelial cells. The annexin v-fitc/PI fluorescence staining experiments demonstrated that at doses between 0~60µg/mL, apoptosis cells and later stage apoptosis cells or necrosis cells increased significantly as the R-PE dosage increased. DNA electrophoresis showed that after R-PE+PDT treatment of HeLa cells for 24 hours, a light "smear" band between 100~400bp appeared to indicate the degradation of genomic DNA. The QRT-PCR results showed that R-PE+PDT treatment increased caspase-3 and caspase-10 gene expression and decreased the Bcl-2 gene expression level significantly as the R-PE dose increased, implying that R-PE promoted HeLa cell apoptosis. Compared with untreated S180 tumor-bearing mice, R-PE injection significantly inhibited the growth of S180 in tumor-bearing mice up to 41.3% at a dose of 300mg-kg-1. Simultaneously, the significant increase of superoxide dismutase (SOD activity in serum (p < 0.01 and the decrease of the malondialdehyde (MDA level in liver suggests that R-PE improved the anti-oxidant ability of the S180 tumor-bearing mice, which may related to its antitumor effect. In addition, the R-PE caused a significant increase (p < 0.05 in the spleen index and thymus index, and a significant increase (p < 0.01 in lymphocyte proliferation, NK cell kill activity and the TNF-α level in the serum of S180 tumor-bearing mice. These results strongly suggest that the antitumor effect of R-PE from Porphyra haitanensis functioned by increasing the immunity and antioxidant ability of S180 tumor-bearing mice, promoting apoptosis by increasing protease

  13. Semiotics, Multi-Agent Systems and Organizations

    NARCIS (Netherlands)

    Gazendam, H.W.M.; Jorna, René J.

    1998-01-01

    Multi-agent systems are promising as models of organization because they are based on the idea that most work in human organizations is done based on intelligence, communication, cooperation, and massive parallel processing. They offer an alternative for system theories of organization, which are

  14. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Ran-yi; Zhou, Ling; Zhang, Yan-ling; Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min; Li, Li-xia; Fu, Xiang; Wu, Jiang-xue; Huang, Wenlin

    2013-01-01

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC

  15. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhou, Ling [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhang, Yan-ling [School of Biotechnology, Southern Medical University, Guangzhou 510515 (China); Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Li, Li-xia [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Fu, Xiang; Wu, Jiang-xue [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Huang, Wenlin, E-mail: hwenl@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Guangdong Provincial Key Laboratory of Tumor-Targeted Drug, Doublle Bioproducts Inc., Guangzhou 510663 (China)

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  16. Injectable agents affecting subcutaneous fats.

    Science.gov (United States)

    Chen, David Lk; Cohen, Joel L; Green, Jeremy B

    2015-09-01

    Mesotherapy is an intradermal or subcutaneous injection of therapeutic agents to induce local effects, and was pioneered in Europe during the 1950s. For the past 2 decades, there has been significant interest in the use of mesotherapy for minimally invasive local fat contouring. Based on the theorized lipolytic effects of the agent phosphatidylcholine, initial attempts involved its injection into subcutaneous tissue. With further studies, however, it became apparent that the activity attributed to phosphatidylcholine mesotherapy was due to the adipolytic effects of deoxycholate, a detergent used to solubilize phosphatidylcholine. Since then, clinical trials have surfaced that demonstrate the efficacy of a proprietary formulation of deoxycholate for local fat contouring. Current trials on mesotherapy with salmeterol, a b-adrenergic agonist and lipolysis stimulator, are underway-with promising preliminary results as well. ©2015 Frontline Medical Communications.

  17. Pharmocokinetics of the antitumor drug oxoplatinum labelled with 191Pt

    International Nuclear Information System (INIS)

    Lobanova, E.A.

    1985-01-01

    A pharmacokinetic study of the antitumor drug oxoplatinum labeled with 191 Pt when agministered to control mice and mice with B-16 melanoma have shown that distribution of the drug in organs and tissues in both groups of animals is nonuniform. The drug is more tropic to the kidneys, liver, spleen, adrenals, thymus, skin and tumor. Correlation was established between the values of the coefficient ratios of differential accumulation (CDA) of the organ/blood in the f;.nal and initial periods of observation and the period of the drug half-life in the organs. The higher the CDA of the organ/blood the longer the period of the drug half-life. The excretion of the drug from the blood and most other organs is described by a bioexponential curve

  18. Antitumor effects of radioiodinated antisense oligonucleotide mediated by VIP receptor

    International Nuclear Information System (INIS)

    Ou Xiaohong; Tan Tianzhi; Li Yunchun; Kuang Anren

    2004-01-01

    Purpose: we had constructed a targeting delivery system based on intestinal peptide (VIP) for antisense oligonucleotide (ASON) transfer into VIP receptor-positive cells in previous study. The aims of present studies are to observe the antitumor effect of VIP-131I-ASON in HT29 human colon adenocarcinoma xenografts. Methods: A 15-met phosphorothioate ASON, which was complementary to the translation start region of the C-myc oncogene mRNA, was labeled with 131I and the labelled compound was linked to the VIP bound covalently 'to a polylysine chain so as to deliver oligonucleotide into tumor cells. Distribution experiments for evaluating the radiolabeled antisense complexe uptake in tumor tissue were performed in BALB/c nude mice bearing with HT29 tumor xenografts. Nude mice beating HT29 tumor xenografts were adminstered VIP-131I-ASON (3.7,7.4 MBq) or 131I-ASON (3.7 MBq), 131I labeled control sense and nosense DNA (3.7 MBq), or saline. Antitumor effects were assessed using endpoints of tumor growth delay. C-myc-encoded protein expression of tumor was measured by immunocytohistochemical staining. Results: Distribution experiment performed with athymic mice bearing human colon tumor xenografts revealed maximal accumulation of conjugated ASON in the tumor tissue 2 h after administration and significantly higher than that in nude mice injected unconjngated ASON [(5.89±1.03)%ID/g and(1.56±0.31)%ID/g, respectively; t=7.7954 P<0.001]. The radioratio of tumor to muscle was peaked 4h after administration. VIP-131I-ASON exhibited strong antitumor effects against HT29 xenografts, decreasing their growth rate 7-fold compare with that in saline-treated mice(tumor growth delay, 25.4±0.89 day). The antitumor effects of unconjugated 131I-ASON were much less profound than VIP-131I-ASON (tumor growth delay, 3.2±1.3 and 25.4±0.89 day, respectively; q=51.4126 P<0.01). Sense, nosense control ON with VIP carder caused no therapeutic effect. There was no progressive weight loss or

  19. Do promises matter? An exploration of the role of promises in psychological contract breach.

    Science.gov (United States)

    Montes, Samantha D; Zweig, David

    2009-09-01

    Promises are positioned centrally in the study of psychological contract breach and are argued to distinguish psychological contracts from related constructs, such as employee expectations. However, because the effects of promises and delivered inducements are confounded in most research, the role of promises in perceptions of, and reactions to, breach remains unclear. If promises are not an important determinant of employee perceptions, emotions, and behavioral intentions, this would suggest that the psychological contract breach construct might lack utility. To assess the unique role of promises, the authors manipulated promises and delivered inducements separately in hypothetical scenarios in Studies 1 (558 undergraduates) and 2 (441 employees), and they measured them separately (longitudinally) in Study 3 (383 employees). The authors' results indicate that breach perceptions do not represent a discrepancy between what employees believe they were promised and were given. In fact, breach perceptions can exist in the absence of promises. Further, promises play a negligible role in predicting feelings of violation and behavioral intentions. Contrary to the extant literature, the authors' findings suggest that promises may matter little; employees are concerned primarily with what the organization delivers.

  20. OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY

    Directory of Open Access Journals (Sweden)

    E. R. Nemtsova

    2016-01-01

    Full Text Available This is a review of modern literature data of official medications for anti-tumor gene therapy as well as of medications that finished clinical trials.The article discusses the concept of gene therapy, the statistical analysis results of initiated clinical trials of gene products, the most actively developing directions of anticancer gene therapy, and the characteristics of anti-tumor gene medications.Various delivery systems for gene material are being examined, including viruses that are defective in  replication (Gendicine™ and Advexin and oncolytic (tumor specific conditionally replicating viruses (Oncorine™, ONYX-015, Imlygic®.By now three preparations for intra-tumor injection have been introduced into oncology clinical practice: two of them – Gendicine™ and Oncorine™ have been registered in China, and one of them – Imlygic® has been registered in the USA. Gendicine™ and Oncorine™ are based on the wild type p53 gene and are designed for treatment of patients with head and neck malignancies. Replicating adenovirus is the delivery system in Gendicine™, whereas oncolytic adenovirus is the vector for gene material in Oncorine™. Imlygic® is based on the  recombinant replicating HSV1 virus with an introduced GM–CSF gene and is designed for treatment of  melanoma patients. These medications are well tolerated and do not cause any serious adverse events. Gendicine™ and Oncorine™ are not effective in monotherapy but demonstrate pronounced synergism with chemoand radiation therapy. Imlygic® has just started the post marketing trials.

  1. Radiation protection and antitumor effects in Hatakeshimeji (Lyophyllum decastes sing)

    International Nuclear Information System (INIS)

    Ukawa, Yuuichi; Gu, Yeunhwa; Suzuki, Ikukatsu; Park, Sangrae; Hasegawa, Takeo; Tsukada, Sekihito; Terai, Kaoru; Tawaraya, Hitoshi

    2002-01-01

    The effect on an anti-tumor is admitted in the lyophyllum decastes sing extraction thing, and it has the action mechanism cleared to depend on the immunity action. The existence of the synergistic effect in effect on an anti-tumor radiation irradiation, an individual with the medication of lyophyllum decastes sing and effect on combination and the effect on protection of the leukocyte decrease by the radiation was examined by this research. After about 2x10 6 inoculated sarcoma 180 on the ICR mice, a lyophyllum decastes sing extraction thing gave 100mg/kg for 2 weeks in endoceliac at the every other day. After that, the radiation irradiation of 2 Gy was done three times, and it went to the sutra time target the number of the leukocytes, the lymph node ball some prizes of measurement. And, weight and tumor size were measured after the cancer cell inoculation two weeks. The decrease of the clear tumor size was recognized by the group that only a cancer cell was inoculated by the radiation independent irradiation group, lyophyllum decastes sing and the radiation combination group though tumor size increased as it passed. It faced by the group that only a cancer cell was inoculated after the irradiation 15 days though it died the precedent, and a half existed by lyophyllum decastes sing and the radiation combination group. And, the numbers of the leukocytes, the number of the lymphocyte were on the increase regardless of the existence of the radiation irradiation by the medication of lyophyllum decastes sing. It thinks with the thing that the effect is shown for the effect on immunity recovery in the radiotherapy and the prevention of a side effect of the radiation from this result. Showing the effect for not only effect on prevention of the cancer and effect on healing but also the effect on immunity recovery in the radiotherapy, the prevention of a side effect by taking lyophyllum decastes sing is considered

  2. Antitumor and angiostatic peptides from frog skin secretions.

    Science.gov (United States)

    van Zoggel, Hanneke; Hamma-Kourbali, Yamina; Galanth, Cécile; Ladram, Ali; Nicolas, Pierre; Courty, José; Amiche, Mohamed; Delbé, Jean

    2012-01-01

    The discovery of new molecules with potential antitumor activity continues to be of great importance in cancer research. In this respect, natural antimicrobial peptides isolated from various animal species including humans and amphibians have been found to be of particular interest. Here, we report the presence of two anti-proliferative peptides active against cancer cells in the skin secretions of the South American tree frog, Phyllomedusa bicolor. The crude skin exudate was fractioned by size exclusion gel followed by reverse-phase HPLC chromatography. After these two purification steps, we identified two fractions that exhibited anti-proliferative activity. Sequence analysis indicated that this activity was due to two antimicrobial α-helical cationic peptides of the dermaseptin family (dermaseptins B2 and B3). This result was confirmed using synthetic dermaseptins. When tested in vitro, synthetic B2 and B3 dermaseptins inhibited the proliferation of the human prostatic adenocarcinoma PC-3 cell line by more than 90%, with an EC(50) of around 2-3 μM. No effect was observed on the growth of the NIH-3T3 non-tumor mouse cell line with Drs B2, whereas a slight inhibiting effect was observed with Drs B3 at high dose. In addition, the two fractions obtained after size exclusion chromatography also inhibited PC-3 cell colony formation in soft agar. Interestingly, inhibition of the proliferation and differentiation of activated adult bovine aortic endothelial cells was observed in cells treated with these two fractions. Dermaseptins B2 and B3 could, therefore, represent interesting new pharmacological molecules with antitumor and angiostatic properties for the development of a new class of anticancer drugs.

  3. The path to fulfilling the promise

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, J. [Canadian Nuclear Association, Ottawa, ON (Canada)

    2014-07-01

    'Full text:'Countries work together to develop effective governance and regulation. Canada has made big investments in these areas and it carries a premium for us. The rapid build-out of nuclear technology around the Pacific Rim holds vast promise for our populations in better climate, better air, affordable and reliable electricity, and longer lives. The biggest risk is not another accident: rather, it is the risk of failing to fulfill that promise to our people. Every country that wants the benefits of nuclear must also want to be sure that those benefits are realized and sustained by good governance and regulation. Canada has the people, laws, organizations, public institutions, and relationships that can help our partners fulfill the whole and lasting promise of nuclear technology. (author)

  4. A pilot study of JI-101, an inhibitor of VEGFR-2, PDGFR-β, and EphB4 receptors, in combination with everolimus and as a single agent in an ovarian cancer expansion cohort.

    Science.gov (United States)

    Werner, Theresa L; Wade, Mark L; Agarwal, Neeraj; Boucher, Kenneth; Patel, Jesal; Luebke, Aaron; Sharma, Sunil

    2015-12-01

    JI-101 is an oral multi-kinase inhibitor that targets vascular endothelial growth factor receptor type 2 (VEGFR-2), platelet derived growth factor receptor β (PDGFR-β), and ephrin type-B receptor 4 (EphB4). None of the currently approved angiogenesis inhibitors have been reported to inhibit EphB4, and therefore, JI-101 has a novel mechanism of action. We conducted a pilot trial to assess the pharmacokinetics (PK), tolerability, and efficacy of JI-101 in combination with everolimus in advanced cancers, and pharmacodynamics (PD), tolerability, and efficacy of JI-101 in ovarian cancer. This was the first clinical study assessing anti-tumor activity of JI-101 in a combinatorial regimen. In the PK cohort, four patients received single agent 10 mg everolimus on day 1, 10 mg everolimus and 200 mg JI-101 combination on day 8, and single agent 200 mg JI-101 on day 15. In the PD cohort, eleven patients received single agent JI-101 at 200 mg twice daily for 28 day treatment cycles. JI-101 was well tolerated as a single agent and in combination with everolimus. No serious adverse events were observed. Common adverse events were hypertension, nausea, and abdominal pain. JI-101 increased exposure of everolimus by approximately 22%, suggestive of drug-drug interaction. The majority of patients had stable disease at their first set of restaging scans (two months), although no patients demonstrated a response to the drug per RECIST criteria. The novel mechanism of action of JI-101 is promising in ovarian cancer treatment and further prospective studies of this agent may be pursued in a less refractory patient population or in combination with cytotoxic chemotherapy.

  5. Promising Compilation to ARMv8 POP

    OpenAIRE

    Podkopaev, Anton; Lahav, Ori; Vafeiadis, Viktor

    2017-01-01

    We prove the correctness of compilation of relaxed memory accesses and release-acquire fences from the "promising" semantics of [Kang et al. POPL'17] to the ARMv8 POP machine of [Flur et al. POPL'16]. The proof is highly non-trivial because both the ARMv8 POP and the promising semantics provide some extremely weak consistency guarantees for normal memory accesses; however, they do so in rather different ways. Our proof of compilation correctness to ARMv8 POP strengthens the results of the Kan...

  6. Reasoning about emotional agents

    OpenAIRE

    Meyer, J.-J.

    2004-01-01

    In this paper we discuss the role of emotions in artificial agent design, and the use of logic in reasoning about the emotional or affective states an agent can reside in. We do so by extending the KARO framework for reasoning about rational agents appropriately. In particular we formalize in this framework how emotions are related to the action monitoring capabilities of an agent.

  7. Effects of Photo-chemically Activated Alkylating Agents of the FR900482 Family on Chromatin

    OpenAIRE

    Subramanian, Vidya; Ducept, Pascal; Williams, Robert M.; Luger, Karolin

    2007-01-01

    Bioreductive alkylating agents are an important class of clinical antitumor antibiotics that cross-link and mono-alkylate DNA. Here we use a synthetic photochemically activated derivative of FR400482 to investigate the molecular mechanism of this class of drugs in a biologically relevant context. We find that the organization of DNA into nucleosomes effectively protects it against drug-mediated cross-linking, while permitting mono-alkylation. This modification has the potential to form covale...

  8. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pan Dipanjan [Department of Medicine, Washington University Medical School, St. Louis, MO (United States)], E-mail: dipanjan@wustl.edu; Lanza, Gregory M.; Wickline, Samuel A. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Caruthers, Shelton D. [Department of Medicine, Washington University Medical School, St. Louis, MO (United States); Philips Healthcare, Andover, MA (United States)], E-mail: scaruthers@cmrl.wustl.edu

    2009-05-15

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  9. Nanomedicine: Perspective and promises with ligand-directed molecular imaging

    International Nuclear Information System (INIS)

    Pan Dipanjan; Lanza, Gregory M.; Wickline, Samuel A.; Caruthers, Shelton D.

    2009-01-01

    Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.

  10. Quantitative and qualitative analysis of the novel antitumor 1,3,4-oxadiazole derivative (GLB) and its metabolites using HPLC-UV and UPLC-QTOF-MS

    Science.gov (United States)

    Li, Pu; Wang, Xin; Li, Jian; Meng, Zhi-Yun; Li, Shu-Chun; Li, Zhong-Jun; Lu, Ying-Yuan; Ren, Hong; Lou, Ya-Qing; Lu, Chuang; Dou, Gui-Fang; Zhang, Guo-Liang

    2015-01-01

    Fructose-based 3-acetyl-2,3-dihydro-1,3,4-oxadiazole (GLB) is a novel antitumor agent and belongs to glycosylated spiro-heterocyclic oxadiazole scaffold derivative. This research first reported a simple, specific, sensitive and stable high performance liquid chromatography -ultraviolet detector (HPLC-UV) method for the quantitative determination of GLB in plasma. In this method, the chromatographic separation was achieved with a reversed phase C18 column. The calibration curve for GLB was linear at 300 nm. The lower limit of quantification was 10 ng/mL. The precision, accuracy and stability of the method were validated adequately. This method was successfully applied to the pharmacokinetic study in rats for detection of GLB after oral administration. Moreover, the structures of parent compound GLB and its two major metabolites M1 and M2 were identified in plasma using an ultra performance liquid chromatography- electrospray ionization-quadrupole-time of flight- mass spectrometry (UPLC-ESI-QTOF-MS) method. Our results indicated that the di-hydroxylation (M1) and hydroxylation (M2) of GLB are the major metabolites. In conclusion, the present study provided valuable information on an analytical method for the determination of GLB and its metabolites in rats, can be used to support further developing of this antitumor agent. PMID:26148672

  11. Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis.

    Science.gov (United States)

    Chong, Dianlong; Ma, Linyan; Liu, Fang; Zhang, Zhirui; Zhao, Surong; Huo, Qiang; Zhang, Pei; Zheng, Hailun; Liu, Hao

    2017-09-01

    3-Bromopyruvic acid (3-BP) is a well-known inhibitor of energy metabolism. It has been proposed as an anticancer agent as well as a chemosensitizer for use in combination with anticancer drugs. 5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent for colorectal cancer; however, most patients develop resistance to 5-FU through various mechanisms. The aim of this study was to investigate whether 3-BP has a synergistic antitumor effect with 5-FU on human colorectal cancer cells. In our study, combined 3-BP and 5-FU treatment upregulated p53 and p21, whereas cyclin-dependent kinase CDK4 and CDK2 were downregulated, which led to G0/G1 phase arrest. Furthermore, there was an increase in reactive oxygen species levels and a decrease in adenosine triphosphate levels. It was also observed that Bax expression increased, whereas Bcl-2 expression reduced, which were indicative of mitochondria-dependent apoptosis. In addition, the combination of 3-BP and 5-FU significantly suppressed tumor growth in the BALB/c mice in vivo. Therefore, 3-BP inhibits tumor proliferation and induces S and G2/M phase arrest. It also exerts a synergistic antitumor effect with 5-FU on SW480 cells.

  12. The Promise of Zoomable User Interfaces

    Science.gov (United States)

    Bederson, Benjamin B.

    2011-01-01

    Zoomable user interfaces (ZUIs) have received a significant amount of attention in the 18 years since they were introduced. They have enjoyed some success, and elements of ZUIs are widely used in computers today, although the grand vision of a zoomable desktop has not materialised. This paper describes the premise and promise of ZUIs along with…

  13. Promising carbons for supercapacitors derived from fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hui; Wang, Xiaolei; Yang, Fan; Yang, Xiurong [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2011-06-24

    Activated carbons with promising performance in capacitors are produced from fungi via a hydrothermal assistant pyrolysis approach. This study introduces a facile strategy to discover carbonaceous materials and triggers interest in exploring fungi for material science applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Seaweed: Promising plant of the millennium

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Pereira, N.

    Seaweeds, one of the important marine living resources could be termed as the futuristically promising plants. These plants have been a source of food, feed and medicine in the orient as well as in the west, since ancient times. Although, seaweeds...

  15. Complexity of Propositional Proofs Under a Promise

    Czech Academy of Sciences Publication Activity Database

    Dershowitz, N.; Tzameret, Iddo

    2010-01-01

    Roč. 11, č. 3 (2010), s. 1-29 ISSN 1529-3785 Institutional research plan: CEZ:AV0Z10190503 Keywords : theory * promise problems * propositional proof complexity * random 3CNF * resolution Subject RIV: BA - General Mathematics Impact factor: 1.391, year: 2010 http://dl.acm.org/ citation .cfm?doid=1740582.1740586

  16. Complexity of Propositional Proofs Under a Promise

    Czech Academy of Sciences Publication Activity Database

    Dershowitz, N.; Tzameret, Iddo

    2010-01-01

    Roč. 11, č. 3 (2010), s. 1-29 ISSN 1529-3785 Institutional research plan: CEZ:AV0Z10190503 Keywords : theory * promise problems * propositional proof complexity * random 3CNF * resolution Subject RIV: BA - General Mathematics Impact factor: 1.391, year: 2010 http://dl.acm.org/citation.cfm?doid=1740582.1740586

  17. 76 FR 13152 - Promise Neighborhoods Program

    Science.gov (United States)

    2011-03-10

    ... comprehensive education reforms that are linked to improved educational outcomes for children and youth in... parents or family members who report talking with their child about the importance of college and career... DEPARTMENT OF EDUCATION RIN 1855-ZA07 Promise Neighborhoods Program Catalog of Federal Domestic...

  18. Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues.

    Science.gov (United States)

    Li, Feng; Mao, Yi-Dan; Wang, Yi-Fan; Raza, Aun; Qiu, Li-Peng; Xu, Xiu-Quan

    2017-03-06

    extraction yield and enhance the antioxidant and antitumor activities of the extracts. The phenolic extracts from the stems of T. quadrispinosa had significant antioxidant and antitumor activities, which could be used as a source of potential antioxidant and antitumor agents.

  19. Enabling Agility through Coordinating Temporally Constrained Planning Agents

    NARCIS (Netherlands)

    Steenhuisen, J.R.; De Weerdt, M.M.; Witteveen, C.

    2007-01-01

    In crisis response, hierarchical organizations are being replaced by dynamic assemblies of autonomous agents that promise more agility. However, these autonomous agents might cause a decrease in effectiveness when individually constructed plans for moderately-coupled tasks are not jointly feasible.

  20. Autonomous parsing of behavior in a multi-agent setting

    NARCIS (Netherlands)

    Vanderelst, D.; Barakova, E.I.; Rutkowski, L.; Tadeusiewicz, R.

    2008-01-01

    Imitation learning is a promising route to instruct robotic multi-agent systems. However, imitating agents should be able to decide autonomously what behavior, observed in others, is interesting to copy. Here we investigate whether a simple recurrent network (Elman Net) can be used to extract

  1. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review).

    Science.gov (United States)

    Cho, Minsoo; So, Insuk; Chun, Jung Nyeo; Jeon, Ju-Hong

    2016-05-01

    Geraniol is a dietary monoterpene alcohol that is found in the essential oils of aromatic plants. To date, experimental evidence supports the therapeutic or preventive effects of geraniol on different types of cancer, such as breast, lung, colon, prostate, pancreatic, and hepatic cancer, and has revealed the mechanistic basis for its pharmacological actions. In addition, geraniol sensitizes tumor cells to commonly used chemotherapy agents. Geraniol controls a variety of signaling molecules and pathways that represent tumor hallmarks; these actions of geraniol constrain the ability of tumor cells to acquire adaptive resistance against anticancer drugs. In the present review, we emphasize that geraniol is a promising compound or chemical moiety for the development of a safe and effective multi-targeted anticancer agent. We summarize the current knowledge of the effects of geraniol on target molecules and pathways in cancer cells. Our review provides novel insight into the challenges and perspectives with regard to geraniol research and to its application in future clinical investigation.

  2. Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats

    NARCIS (Netherlands)

    Manohar, Srirang; Ungureanu, C.; van Leeuwen, Ton

    2011-01-01

    Rod-shaped gold nanoparticles exhibit intense and narrow absorption peaks for light in the far-red and near-infrared wavelength regions, owing to the excitation of longitudinal plasmons. Light absorption is followed predominantly by non radiative de-excitation, and the released heat and subsequent

  3. New promising antifouling agent based on polymeric biocide polyhexamethylene guanidine molybdate.

    Science.gov (United States)

    Protasov, Alexander; Bardeau, Jean-Francois; Morozovskaya, Irina; Boretska, Mariia; Cherniavska, Tetiana; Petrus, Lyudmyla; Tarasyuk, Oksana; Metelytsia, Larisa; Kopernyk, Iryna; Kalashnikova, Larisa; Dzhuzha, Oleg; Rogalsky, Sergiy

    2017-09-01

    A new polymeric biocide polyhexamethylene guanidine (PHMG) molybdate has been synthesized. The obtained cationic polymer has limited water solubility of 0.015 g/100 mL and is insoluble in paint solvents. The results of acute toxicity studies indicate moderate toxicity of PHMG molybdate, which has a median lethal dose at 48 h of 0.7 mg/L for Daphnia magna and at 96 h of 17 mg/L for Danio rerio (zebrafish) freshwater model organisms. Commercial ship paint was then modified by the addition of a low concentration of polymeric biocide 5% (w/w). The painted steel panels were kept in Dnipro River water for the evaluation of the dynamics of fouling biomass. After 129-d exposure, Bryozoa dominated in biofouling of tested substrates, forming 86% (649 g/m 2 ) of the total biomass on control panel surfaces. However, considerably lower Bryozoa fouling biomass (15 g/m 2 ) was detected for coatings containing PHMG molybdate. Dreissenidae mollusks were found to form 88% (2182 g/m 2 ) of the fouling biomass on the control substrates after 228 d of exposure, whereas coatings containing PHMG molybdate showed a much lower biomass value of 23.6 g/m 2 . The leaching rate of PHMG molybdate in water was found to be similar to rates for conventional booster biocides ranging from 5.7 μg/cm 2 /d at the initial stage to 2.2 μg/cm 2 /d at steady state. Environ Toxicol Chem 2017;36:2543-2551. © 2017 SETAC. © 2017 SETAC.

  4. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions.

    Science.gov (United States)

    Adiwidjaja, Jeffry; McLachlan, Andrew J; Boddy, Alan V

    2017-09-01

    Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.

  5. Aqueous citric acid as a promising cleaning agent of whey evaporators

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; P. Johansen, Nikolaj; Garcia, André Castilho

    2017-01-01

    concentration of citric acid was the most effective for all the investigated volumes. From the citric acid solutions, spontaneously supersaturated in calcium citrate tetrahydrate during scale dissolution in the smaller volumes for all citric acid concentrations, calcium citrate tetrahydrate slowly precipitated...... in acceptable purity for technical use. Dissolution efficiency of aqueous solutions of 0.200 mol L−1 nitric acid combined with 0.100, 0.500, and 1.00 mol L−1 citric acid with final volumes of 100, 50, and 25 mL showed synergistic effect especially for the higher concentrations and lower volumes of two acids...

  6. Plant latex: a promising antifungal agent for post harvest disease control.

    Science.gov (United States)

    Sibi, G; Wadhavan, Rashmi; Singh, Sneha; Shukla, Abhilasha; Dhananjaya, K; Ravikumar, K R; Mallesha, H

    2013-12-01

    Bioactive compounds from plant latex are potential source of antifungic against post harvest pathogens. Latex from a total of seven plant species was investigated for its phytochemical and antifungal properties. Six fungi namely Aspergillus fumigatus, A. niger, A. terreus, F. solani, P. digitatum and R. arrhizus were isolated from infected fruits and vegetables and tested against various solvent extracts of latex. Analysis of latex extracts with phytochemical tests showed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids, tannins and terpenoids. Antifungal assay revealed the potential inhibitory activity of petroleum ether extracts against the postharvest fungal isolates. Various degree of sensitivity was observed irrespective of plant species studied with A. terreus and P. digitatum as the most susceptible ones. F. solani and A. fumigatus were moderately sensitive to the latex extracts tested. Among the plants, latex of Thevetia peruviana (75.2%) and Artocarpus heterophyllus (64.8%) were having potential antifungal activity against the isolates followed by Manilkara zapota (51.1%). In conclusion, use of plant latex makes interest to control postharvest fungal diseases and is fitting well with the concept of safety for human health and environment.

  7. Can propolis and caffeic acid phenethyl ester (CAPE be promising agents against cyclophosphamide toxicity?

    Directory of Open Access Journals (Sweden)

    Sumeyya Akyol

    2016-03-01

    Full Text Available Propolis is a mixture having hundreds of polyphenols including caffeic acid phenethyl ester (CAPE. They have been using in several medical conditions/diseases in both in vitro and in vivo experimental setup. Cyclophosphamide has been used to treat a broad of malignancies including Hodgkin’s and non-Hodgking’s lymphoma, Burkitt’s lymphoma, chronic lymphocytic leukemia, Ewing’s sarcoma, breast cancer, testicular cancer, etc. It may cause several side effects after treatment. In this mini review, the protective effects of propolis and CAPE were compared each other in terms of effectiveness against cyclophosphamide-induced injuries. [J Complement Med Res 2016; 5(1.000: 105-107

  8. Lansoprazole-sulfide, pharmacokinetics of this promising anti-tuberculous agent.

    Science.gov (United States)

    Mdanda, Sipho; Baijnath, Sooraj; Shobo, Adeola; Singh, Sanil D; Maguire, Glenn E M; Kruger, Hendrik G; Arvidsson, Per I; Naicker, Tricia; Govender, Thavendran

    2017-12-01

    Lansoprazole (LPZ) is a commercially available proton-pump inhibitor whose primary metabolite, lansoprazole sulfide (LPZS) was recently reported to have in vitro and in vivo activity against Mycobacterium tuberculosis. It was also reported that a 300 mg kg -1 oral administration of LPZS was necessary to reach therapeutic levels in the lung, with the equivalent human dose being unrealistic. A validated liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for the simultaneous quantification LPZ and LPZS in rat plasma and lung homogenates was developed. We administered 15 mg kg -1 oral doses of LPZ to a healthy rat model to determine the pharmacokinetics of its active metabolite, LPZS, in plasma and lung tissue. We found that the LPZS was present in amounts that were below the limit of quantification. This prompted us to administer the same dose of LPZS to the experimental animals intraperitoneally (i.p.). Using this approach, we found high concentrations of LPZS in plasma and lung, 7841.1 and 9761.2 ng mL -1 , respectively, which were significantly greater than the minimum inhibitory concentration (MIC) for Mycobacterium tuberculosis. While oral and i.p. administration of LPZ resulted in significant concentrations in the lung, it did not undergo sufficient cellular conversion to its anti-TB metabolite. However, when LPZS itself was administered i.p., significant amounts penetrated the tissue. These results have implications for future in vivo studies exploring the potential of LPZS as an anti-TB compound. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)

    Science.gov (United States)

    Anju Gupta; William Simmons; Gregory T. Schueneman; Eric A. Mintz

    2016-01-01

    We report the effect of lignin-coated cellulose nanocrystals (L-CNCs) on the crystallization behavior of poly(lactic acid) (PLA). PLA/L-CNC nanocomposites were prepared by melt mixing, and the crystallization behavior of PLA was investigated using differential scanning calorimetry. Isothermal crystallization data were analyzed using Avrami and Lauritzen–Hoffman...

  10. Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders.

    Science.gov (United States)

    Pałasz, Artur; Lapray, Damien; Peyron, Christelle; Rojczyk-Gołębiewska, Ewa; Skowronek, Rafał; Markowski, Grzegorz; Czajkowska, Beata; Krzystanek, Marek; Wiaderkiewicz, Ryszard

    2014-01-01

    Insomnia is a serious medical and social problem, its prevalence in the general population ranges from 9 to 35% depending on the country and assessment method. Often, patients are subject to inappropriate and therefore dangerous pharmacotherapies that include prolonged administration of hypnotic drugs, benzodiazepines and other GABAA receptor modulators. This usually does not lead to a satisfactory improvement in patients' clinical states and may cause lifelong drug dependence. Brain state transitions require the coordinated activity of numerous neuronal pathways and brain structures. It is thought that orexin-expressing neurons play a crucial role in this process. Due to their interaction with the sleep-wake-regulating neuronal population, they can activate vigilance-promoting regions and prevent unwanted sleep intrusions. Understanding the multiple orexin modulatory effects is crucial in the context of pathogenesis of insomnia and should lead to the development of novel treatments. An important step in this process was the synthesis of dual antagonists of orexin receptors. Crucially, these drugs, as opposed to benzodiazepines, do not change the sleep architecture and have limited side-effects. This new pharmacological approach might be the most appropriate to treat insomnia.

  11. Acetaldoxime - a promising reducing agent for Pu and Np ions in the Purex process

    International Nuclear Information System (INIS)

    Koltunov, V.S.; Baranov, S.M.; Mezhov, E.A.; Pastuschak, V.G.; Koltunov, G.V.; Taylor, R.J.

    2000-01-01

    This paper discusses the properties of acetaldoxime as an example of a novel class of salt-free organic reductants for Np and Pu ions, the monoximes. The products of its reactions with Np(VI) and Pu(IV) are Np(V), Pu(III), N 2 O, CH 3 CHO and CH 3 COOH. The rate of the Np(VI) - CH 3 CHNOH reaction is first order relative to both reagents and negative first order relative to HNO 3 . The rate constant is k 1 = 254 ± 10 min -1 at 26 deg. C and the activation energy is E = 62.6 ± 2.6 kJ/mol. The orders of the Pu(IV) - CH 3 CHNOH reaction for Pu(IV), Pu(III), CH 3 CHNOH and HNO 3 are equal to 2, -1, 1.1 and -2.2, respectively, and the rate constant is k 2 25.3 ± 1.9 M 1.1 min -1 at 19.5 deg. C. The activation energy is 87.7 ± 2.8 kJ/mol. The likely mechanisms of these reactions are reviewed. Acetaldoxime is stable in HNO 3 solutions when [HNO 3 ] 3 ] = 3.8 - 3.9 M at 35.5 deg. C) a rapid process of HNO 2 formation and acetaldoxime oxidation occurs. Investigations were implemented to study the kinetics of the acetaldoxime oxidation with HNO 2 when [HNO 3 ] 3 under 'critical' conditions. (authors)

  12. Carboxymethylated chitosan-stabilized copper nanoparticles: a promise to contribute a potent antifungal and antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Tantubay, Sangeeta, E-mail: sang.chem2@gmail.com [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Mukhopadhyay, Sourav K. [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Kalita, Himani; Konar, Suraj [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Dey, Satyahari [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in; Pramanik, Panchanan, E-mail: ppramanik1946@yahoo.in, E-mail: pramanik1946@gmail.com [Indian Institute of Technology Kharagpur, Department of Chemistry (India)

    2015-06-15

    Carboxymethylated chitosan (CMC)-stabilized copper nanoparticles (Cu-NPs) have been synthesized via chemical reduction of copper(II)–CMC complex in aqueous medium by hydrazine under microwave irradiation in ambient atmosphere. Structural morphology, phase, and chemical compositions of CMC-stabilized Cu-NPs (CMC–Cu-NPs) have been analyzed through high-resolution transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Antifungal and antibacterial activities of CMC–Cu-NPs have been evaluated against Candida tropicalis and Escherichia coli through agar well diffusion method, broth microdilution assay, live–dead assay, and microscopic observation. Antimicrobial activity of spherical CMC–Cu-NPs (∼4–15 nm of diameters) has been observed to be significant for both C. tropicalis and E. coli. The cytotoxicity study indicates that CMC–Cu-NPs have no significant toxic effect against normal cell line, L929.

  13. Fisetin as a promising antifungal agent against Cryptocococcus neoformans species complex.

    Science.gov (United States)

    Reis, M P C; Carvalho, C R C; Andrade, F A; Fernandes, O F L; Arruda, W; Silva, M R R

    2016-08-01

    The aim of this study was to investigate the mechanisms of action of fisetin, a flavonol with antifungal activity previously evaluated against the Cryptococcus neoformans species complex. Ergosterol content and flow cytometry analysis were determined for the C. neoformans species complex in the presence of fisetin and ultrastructural analysis of morphology was performed on Cryptococcus gattii and C. neoformans. Decrease in the total cellular ergosterol content after exposure to fisetin ranged from 25·4% after exposure to 128 μg ml(-1) to 21·6% after exposure to 64 μg ml(-1) of fisetin compared with the control (without fisetin). The fisetin effects obtained with flow cytometry showed metabolic impairment, and alterations in its normal morphology caused by fisetin in C. neoformans cells were verified using scanning electron microscopy. Fisetin is a compound that acts in the biosynthesis of ergosterol. Flow cytometry showed that fisetin reduced viability of the metabolically active cells of C. gattii, while morphological changes explain the action of fisetin in inhibiting growth of these fungi. This study supports the idea that fisetin may represent a good starting point for the development of future therapeutic substances for cryptococcosis. © 2016 The Society for Applied Microbiology.

  14. Neurosteroids and Ischemic Stroke: Progesterone a Promising Agent in Reducing the Brain Injury in Ischemic Stroke.

    Science.gov (United States)

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2017-01-01

    Progesterone (P4), a well-known neurosteroid, is produced by ovaries and placenta in females and by adrenal glands in both sexes. Progesterone is also synthesized by central nervous system (CNS) tissues to perform various vital neurological functions in the brain. Apart from performing crucial reproductive functions, it also plays a pivotal role in neurogenesis, regeneration, cognition, mood, inflammation, and myelination in the CNS. A substantial body of experimental evidence from animal models documents the neuroprotective role of P4 in various CNS injury models, including ischemic stroke. Extensive data have revealed that P4 elicits neuroprotection through multiple mechanisms and systems in an integrated manner to prevent neuronal and glial damage, thus reducing mortality and morbidity. Progesterone has been described as safe for use at the clinical level through different routes in several studies. Data regarding the neuroprotective role of P4 in ischemic stroke are of great interest due to their potential clinical implications. In this review, we succinctly discuss the biosynthesis of P4 and distribution of P4 receptors (PRs) in the brain. We summarize our work on the general mechanisms of P4 mediated via the modulation of different PR and neurotransmitters. Finally, we describe the neuroprotective mechanisms of P4 in ischemic stroke models and related clinical prospects.

  15. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides.

    Science.gov (United States)

    Ramalho, Teodorico C; de Castro, Alexandre A; Silva, Daniela R; Silva, Maria Cristina; Franca, Tanos C C; Bennion, Brian J; Kuca, Kamil

    2016-01-01

    The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.

  16. Aspirin as a Promising Agent for Decreasing Incidence of Cerebral Aneurysm Rupture

    NARCIS (Netherlands)

    Hasan, David M.; Mahaney, Kelly B.; Brown, Robert D.; Meissner, Irene; Piepgras, David G.; Huston, John; Capuano, Ana W.; Torner, James C.; Groen, R.J.M.

    2011-01-01

    Background and Purpose-Chronic inflammation is postulated as an important phenomenon in intracranial aneurysm wall pathophysiology. This study was conducted to determine if aspirin use impacts the occurrence of intracranial aneurysm rupture. Methods-Subjects enrolled in the International Study of

  17. Carnosol: A promising anti-cancer and anti-inflammatory agent

    OpenAIRE

    Johnson, Jeremy J.

    2011-01-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsle...

  18. OSU-2S/sorafenib synergistic antitumor combination against hepatocellular carcinoma: The role of PKCδ/p53

    Directory of Open Access Journals (Sweden)

    Hany A Omar

    2016-11-01

    Full Text Available Background: Sorafenib (Nexavar® is an FDA-approved systemic therapy for advanced hepatocellular carcinoma (HCC. However, the low efficacy and adverse effects at high doses limit the clinical application of sorafenib and strongly recommend its combination with other agents aiming at ameliorating its drawbacks. OSU-2S, a PKCδ activator, was selected as a potential candidate anticancer agent to be combined with sorafenib to promote the anti-cancer activity through synergistic interaction. Methods: The antitumor effects of sorafenib, OSU-2S and their combination were assessed by MTT assay, caspase activation, Western blotting, migration/invasion assays in four different HCC cell lines. The synergistic interactions were determined by Calcusyn analysis. PKCδ knockdown was used to elucidate the role of PKCδ activation as a mechanism for the synergy. The knockdown/over-expression of p53 was used to explain the differential sensitivity of HCC cell lines to sorafenib and/or OSU-2S. Results: OSU-2S synergistically enhanced the anti-proliferative effects of sorafenib in the four used HCC cell lines with combination indices < 1. This effect was accompanied by parallel increases in caspase 3/7 activity, PARP cleavage, PKCδ activation and HCC cell migration/invasion. In addition, PKCδ knockdown abolished the synergy between sorafenib and OSU-2S. Furthermore, p53 restoration in Hep3B cells through the over-expression rendered them more sensitive to both agents while p53 knockdown from HepG2 cells increased their resistance to both agents. Conclusions: OSU-2S augments the anti-proliferative effect of sorafenib in HCC cell lines, in part, through the activation of PKCδ. The p53 status in HCC cells predicts their sensitivity towards both sorafenib and OSU-2S. The proposed combination represents a therapeutically relevant approach that can lead to a new HCC therapeutic protocol.

  19. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models.

    Directory of Open Access Journals (Sweden)

    Shujing Shi

    Full Text Available INTRODUCTION: Cytokine-induced killer cells (CIK cells are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer ther