WorldWideScience

Sample records for promax rotation yielded

  1. Pea yield and its components in different crop rotations

    OpenAIRE

    Seibutis, Vytautas; Deveikytė, Irena

    2006-01-01

    The effects of the crop rotations (2-4 course) differing in duration on the formation of pea productivity elements and the yield were investigated in stationary field experiments in Dotnuva during 1997-2004. Averaged experimental data showed that the highest pea yield (3.70 t ha-1) was recorded in the three-course crop rotation (sugar beet-spring barley-pea), in the four-course (pea-winter wheat-sugar beet-spring barley) and two-course (pea-winter wheat) crop rotations the grain yield consist...

  2. 26Al yields from rotating Wolf--Rayet star models

    OpenAIRE

    Vuissoz, C.; Meynet, G.; Knoedlseder, J.; Cervino, M.; Schaerer, D.; Palacios, A.; Mowlavi, N.

    2003-01-01

    We present new $^{26}$Al stellar yields from rotating Wolf--Rayet stellar models which, at solar metallicity, well reproduce the observed properties of the Wolf-Rayet populations. These new yields are enhanced with respect to non--rotating models, even with respect to non--rotating models computed with enhanced mass loss rates. We briefly discuss some implications of the use of these new yields for estimating the global contribution of Wolf-Rayet stars to the quantity of $^{26}$Al now present...

  3. Tropical rotation crops influence nematode densities and vegetable yields.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hochmuth, R C

    1994-09-01

    The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) 'Lemondrop L' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) 'Classic' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: 'Hale' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, 'SX- 17' sorghum-sudangrass (Sorghum bicolor x S. sudanense), 'Kirby' soybean (Glycine max), and 'Clemson Spineless' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.

  4. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  5. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Science.gov (United States)

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  6. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  7. Crop rotation biomass and arbuscular mycorrhizal fungi effects on sugarcane yield

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio; Guirado, Nivaldo; Teramoto, Juliana Rolim Salome [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicaba, SP (Brazil). Polo Regional Centro Sul; Azcon, Rozario [Consejo Superior de Investigaciones Cientificas (CSIC), Granada (Spain). Estacao Experimental de Zaidin; Cantarela, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Solos e Recursos Ambientais; Ambrosano, Glaucia Maria Bovi [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Fac. de Odontologia. Dept. de Odontologia Social], Email: ambrosano@apta.sp.gov.br; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Inst. de Zootecnia; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Ungaro, Maria Regina Goncalves [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Plantas Graniferas

    2010-07-01

    Sugarcane (Saccharum spp.) is an important crop for sugar production and agro-energy purposes in Brazil. In the sugarcane production system after a 4- to 8-year cycle crop rotation may be used before replanting sugarcane to improve soil conditions and give an extra income. This study had the objective of characterizing the biomass and the natural colonization of arbuscular mycorrhizal fungi (AMF) of leguminous green manure and sunflower (Helianthus annuus L.) in rotation with sugarcane. Their effect on stalk and sugar yield of sugarcane cv. IAC 87-3396 grown subsequently was also studied. Cane yield was harvested in three subsequent cuttings. Peanut cv. IAC-Caiapo, sunflower cv. IAC-Uruguai and velvet bean (Mucuna aterrimum Piper and Tracy) were the rotational crops that resulted in the greater percentage of AMF. Sunflower was the specie that most extracted nutrients from the soil, followed by peanut cv. IAC-Tatu and mung bean (Vigna radiata L. Wilczek). The colonization with AMF had a positive correlation with sugarcane plant height, at the first cut (p = 0.01 and R = 0.52) but not with the stalk or cane yields. Sunflower was the rotational crop that brought about the greatest yield increase of the subsequent sugarcane crop: 46% increase in stalk yield and 50% in sugar yield compared with the control. Except for both peanut varieties, all rotational crops caused an increase in net income of the cropping system in the average of three sugarcane harvests. (author)

  8. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    Science.gov (United States)

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  9. Influence of Maize Rotations on the Yield of Soybean Grown in Meloidogyne incognita Infested Soil

    OpenAIRE

    Kinloch, Robert A.

    1983-01-01

    A replicated field study was conducted from 1972 to 1980 involving soybeans grown in 2-, 3-, and 4-year rotations with maize in soil infested with Meloidogyne incognita. Monocultured soybeans were maintained as controls. Cropping regimes involved root-knot nematode susceptible and resistant soybean cultivars and soybeans treated and not treated with nematicides. Yields of susceptible cultivars declined with reduced length of rotation. Nematicide treatment significantly increased yields of sus...

  10. Long-term yield effects of establishment method and weed control in willow for short rotation coppice (SRC)

    DEFF Research Database (Denmark)

    Larsen, Søren Ugilt; Jørgensen, Uffe; Kjeldsen, Jens Bonderup

    2014-01-01

    matter (DM) yield was measured over 6 harvest rotations corresponding to 16 years. In 1st rotation, yield differed significantly between establishment methods with highest yield for 1.8 m rods (10.4 Mg ha−1 year−1), intermediate yield for cuttings and 0.2 m billets (8.6 and 8.5 Mg ha−1 year−1...... establishment methods; 1) vertical planting of standard 0.2 m cuttings; 2) horizontal planting of 0.1 m billets; 3) horizontal planting of 0.2 m billets; 4) horizontal planting of 1.8 m rods. All establishment methods were combined with mechanical and chemical weed control during the establishment year. Dry......, respectively) and lowest for 0.1 m billets (5.6 Mg ha−1 year−1). No differences were found in 2nd rotation. Over 1st and 2nd rotation, mechanical weed control resulted in significantly lower yield than chemical control when combined with 0.1 m billets. Cuttings and 1.8 m rods were compared over 1st, 2nd, 3rd...

  11. Initial vibrational and rotational yields from subexcitation electrons in molecular hydrogen

    International Nuclear Information System (INIS)

    Douthat, D.A.

    1987-01-01

    As the energy of a single source electron injected into a molecular gas is degraded through collisions, initial products include secondary electrons, ions, and excited molecules. Electrons with kinetic energies less than the minimum required for excitation of the lowest electronic state are given the designation subexcitation electrons. These electrons are still capable of exciting vibrational and rotational states of molecular gases. In this calculation, the initial numbers of vibrational and rotational excitations (yields) produced as the subexcitation electrons undergo further energy degradation are determined for molecular hydrogen. The calculation requires a complete set of cross section data for numerical solution of the Boltzmann equation. The initial energy distribution of electrons is taken to be the subexcitation distribution which was determined previously. The initial yields are tabulated for gas temperatures from 50 K to 1500 K for a source electron with initial energy 10 keV. 26 references

  12. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.

  13. Crop rotation in the Valle Calido del Alto Magdalena a sustainable focus of high yield

    International Nuclear Information System (INIS)

    Alfaro Rodriguez, Ricardo; Maria Caicedo, Antonio; Amezquita Collazos, Edgar; Castro Franco, Hugo Eduardo

    1996-01-01

    Experiments were carried out during five years at the Nataima Research Center, located at 431 m.a.s.l, with average temperature of 28 Celsius degrades and annual rainfall of 1274 Boyaca mm, on a soil classified as Arenic Haplustalf, to evaluate different crops rotation based on rice and sorghum; the combinations used were as follows; rice-rice (R-R), rice-- soybean (R-SY), rice-crotalaria-sorghum (R-C-S), sorghum-sorghum (S-S), sorghum-soybean (S-SY) and cotton-sorghum (Al-S). Simultaneously it was evaluated the response to four nitrogen levels, which allowed to find out yield functions and optimum economical. The rotations S-SY, R-SY and AI-S have been the best qualified from an environmental perspective. Sorghum-soybean rotation presents increases in yield compared with expected values, which allows thinking that it is a truly sustainable rotation. This rotation also had an excellent profitability and for that reason is considered the best option within the goals of this work

  14. Evaluation of the Effect of Rotation and Application Rate of Nitrogen on Yield, Yield Components and Nitrogen Efficiency Indexes in wheat

    Directory of Open Access Journals (Sweden)

    R Nasri

    2016-02-01

    seeding rate of 200 kg ha-1. Soil samples were collected after harvest of each crop from 0 to 30 cm and 31 to 60 cm soil depths using a soil auger. Wheat grain yield (according to 14% moisture obtained by harvesting the central area of 3 in 10 m in each plot. Yield components were determined from two randomly selected areas (2m2 within each plot. Plant samples collected at harvest were separated into grain and straw and oven-dried at 60˚C for 72hr. Biomass and grain sub samples analyzed for total N content using a micro-Kjeldahl digestion with sulfuric acid. The terminology of N efficiency parameters was considered according to Delogu et al, (11 and Lopez-Bellido & Lopez-Bellido, (22, Rahimizadeh et al. (30, Limon-Ortega et al. (20 methods. Results and Discussion The results showed that there were highly significant differences (P ≤ 0.01 in forage yield. There were also significant differences (P ≤ 0.05 in total dry weight, protein content and protein yield between treatments. Perko varieties produced higher fresh and dry matter yield with 69,586 (kg ha-1 and 7147 (kg ha-1, respectively compared to other varieties. Buko varieties showed greater protein percentage with 23.36 compared to the rest of the varieties. The highest and lowest grain yield, with 8345, and 4491 (kg ha-1 were obtained for Buko; wheat rotation and fallow, wheat rotation, respectively. The highest and lowest nitrogen uptake was obtained for Buko; wheat and clover, wheat rotation, respectively. The differences between the rotations were significant for various agronomic nitrogen efficiency. The rotation of oilseed radish and wheat showed greater nitrogen economic performance with 36.20 kg ha-1. By increasing nitrogen rate agronomic performance decreased with the exception in fallow- wheat. Physiological efficiency of nitrogen in fallow-wheat rotation was more than 39 (kg kg-1 of nitrogen. The maximum efficiency of nitrogen recovery was obtained for oilseed radish: wheat and Perko PVH; wheat

  15. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  16. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    Science.gov (United States)

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This

  17. Effect of integrated forage rotation and manure management on yield, nutrient balance and soil organic matter

    Directory of Open Access Journals (Sweden)

    Cesare Tomasoni

    2011-03-01

    Full Text Available This paper reports results from a field experiment established in 1995 and still on going. It is located in Lodi, in the irrigated lowlands of Lombardy, Northern Italy. The experiment compares two rotations: the annual double cropping system, Italian ryegrass + silage maize (R1; and the 6-year rotation, in which three years of double crop Italian ryegrass + silage maize are followed by three years of alfalfa harvested for hay (R6 Each rotation have received two types of dairy manure: i farmyard manure (FYM; ii semi-liquid manure (SLM. The intent was to apply to each unit land area the excreta produced by the number of adult dairy cows sustained, in terms of net energy, by the forage produced in each rotation, corresponding to about 6 adult cows ha-1 for R1 and 4 adult cows ha-1 for R6. Manure was applied with (N1 or without (N0 an extra supply of mineral N in the form of urea. The objectives of this study were: i to assess whether the recycling of two types of manure in two forage rotation systems can sustain crop yields in the medium and long term without additional N fertilization; ii to evaluate the nutrient balance of these integrated forage rotations and manure management systems; iii to compare the effects of farmyard manure and semi-liquid manure on soil organic matter. The application of FYM, compared to SLM, increased yield of silage maize by 19% and alfalfa by 23%, while Italian ryegrass was not influenced by the manure treatment. Yet, silage maize produced 6% more in rotation R6 compared to rotation R1. The mineral nitrogen fertilization increased yield of Italian ryegrass by 11% and of silage maize by 10%. Alfalfa, not directly fertilized with mineral nitrogen, was not influenced by the nitrogen applied to the other crops in rotation. The application of FYM, compared to SLM, increased soil organic matter (SOM by +37 % for the rotation R1, and by +20% for the rotation R6. Conversely, no significant difference on SOM was observed

  18. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    Science.gov (United States)

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  19. Effects of sewage sludge on the yield of plants in the rotation system of wheat-white head cabbage-tomato

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Özyazıcı

    2013-01-01

    Full Text Available This research was carried to determine the effects of sewage sludge applications on the yield and yield components of plants under crop rotation system. The field experiments were conducted in the Bafra Plain, located in the north region of Turkey. In this research, the “wheat-white head cabbage-tomato” crop rotation systems have been examined and the same crop rotation has been repeated in two separate years and field trials have been established. Seven treatments were compared: a control without application of sludge nor nitrogen fertilization, a treatment without sludge, but nitrogen and phosphorus fertilization, applied at before sowing of wheat and five treatments where, respectively 10, 20, 30, 40 and 50 tons sludge ha-1. The experimental design was a randomized complete block with three replications. The results showed that all the yield components of wheat and yield of white head cabbage and tomato increased significantly with increasing rates of sewage sludge as compared to control. As a result, 20 t ha-1 of sewage sludge application could be recommended the suitable dose for the rotation of wheat-white head cabbage-tomato in soil and climatic conditions of Bafra Plain.

  20. Cereal yield and quality as affected by N availability in organic and conventional crop rotations in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2011-01-01

    The effects of nitrogen (N) availability related to fertilizer type, catch crop management, and rotation composition on cereal yield and grain N were investigated in four organic and one conventional cropping systems in Denmark using the FASSET model. The four-year rotation studied was: spring...... loamy soil. DM yield and grain N content were mainly influenced by the type and amount of fertilizer-N at all three locations. Although a catch crop benefit in terms of yield and grain N was observed in most of the cases, a limited N availability affected the cereal production in the four organic...... systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark...

  1. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    Science.gov (United States)

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Growth, yield, and structure of extended rotation Pinus resinosa stands in Minnesota, USA

    Science.gov (United States)

    Anthony W. D' Amato; Brian J. Palik; Christel C. Kern

    2010-01-01

    Extended rotations are increasingly used to meet ecological objectives on forestland; however, information about long-term growth and yield of these systems is lacking for most forests in North America. Additionally, long-term growth responses to repeated thinnings in older stands have received little attention. We addressed these needs by examining the growth and...

  3. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  4. Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements

    Science.gov (United States)

    Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S.

    2018-05-01

    We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disc. We use a consistent chemical evolution model, metallicity-dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss, and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity-dependent function of the rotational velocities, constrained by observations as to obtain a primary-like 14N behaviour at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the Solar system isotopic composition can be reproduced to better than a factor of 2 for isotopes up to the Fe-peak, and at the 10 per cent level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A values of ^{12}C/^{13}C in halo red giants, which is rather due to internal processes in those stars.

  5. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    Science.gov (United States)

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  6. Biomass yield potential of short-rotation hardwoods in the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, W A [Kansas State Univ., Manhattan, KS (USA). Dept. of Forestry

    1989-01-01

    Wood for fuel has increased in importance. Its primary use in the world is for energy, increasingly coming from wood wastes and new biomass sources. One solution to the potential problem of using high-quality trees for fuel could be woody biomass grown under a short-rotation intensive culture system. Species, size, age and spacing are factors that affect biomass production of broadleafed trees. Trials of several species grown at close spacing (0.3 m x 0.3 m) and cut at various ages are described and related to the growth and yield of more conventionally spaced plantings on an alluvial site in eastern Kansas. (author).

  7. Growth and yield of mixed polyclonal stands of Populus in short-rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Benbrahim, Mohammed; Gavaland, Andre [INRA centre de Toulouse (France). Unite Agroforesterie et foret Paysanne; Gauvin, Jean [INRA centre d' Orleans (France). Unite d' Amelioration des arbres forestiers

    2000-07-01

    Eight clones of poplar were used to compare the growth and productivity of monoclonal and polyclonal mixed plantations in short-rotation coppice. At the end of the eight growing season, the diameter at breast height (DBH) and height of trees were measured and dry weight and yield were estimated. Polyclonal mixtures did not affect mortality. Few differences in growth were observed between clones in monoclonal plots. Polyclonal mixture slightly affected the growth and tree size of the clones compared with monoclonal plots. No increase in stand heterogeneity in relation to clone deployment was observed. A neighbourhood index was calculated for each tree and was significantly affected by polyclonal mixture. However, the relationship between the neighbourhood index and the DBH indicated that this effect did not cause a great change in DBH. Consequently, dry weight and yield productivity were not affected by clone deployment.

  8. Yield Responses of Black Spruce to Forest Vegetation Management Treatments: Initial Responses and Rotational Projections

    Directory of Open Access Journals (Sweden)

    Peter F. Newton

    2012-01-01

    Full Text Available The objectives of this study were to (1 quantitatively summarize the early yield responses of black spruce (Picea mariana (Mill. B.S.P. to forest vegetation management (FVM treatments through a meta-analytical review of the scientific literature, and (2 given (1, estimate the rotational consequences of these responses through model simulation. Based on a fixed-effects meta-analytic approach using 44 treated-control yield pairs derived from 12 experiments situated throughout the Great Lakes—St. Lawrence and Canadian Boreal Forest Regions, the resultant mean effect size (response ratio and associated 95% confidence interval for basal diameter, total height, stem volume, and survival responses, were respectively: 54.7% (95% confidence limits (lower/upper: 34.8/77.6, 27.3% (15.7/40.0, 198.7% (70.3/423.5, and 2.9% (−5.5/11.8. The results also indicated that early and repeated treatments will yield the largest gains in terms of mean tree size and survival. Rotational simulations indicated that FVM treatments resulted in gains in stand-level operability (e.g., reductions of 9 and 5 yr for plantations established on poor-medium and good-excellent site qualities, resp.. The challenge of maintaining coniferous forest cover on recently disturbed sites, attaining statutory-defined free-to-grow status, and ensuring long-term productivity, suggest that FVM will continue to be an essential silvicultural treatment option when managing black spruce plantations.

  9. Do green manures as winter cover crops impact the weediness and crop yield in an organic crop rotation?

    OpenAIRE

    Madsen, Helena; Talgre, Liina; Eremeev, Viacheslav; Alaru, Maarika; Kauer, Karin; Luik, Anne

    2016-01-01

    The effects of different winter cover crops and their combination with composted cattle manure on weeds and crop yields were investigated within a five-field crop rotation (barley undersown with red clover, red clover, winter wheat, pea, potato) in three organic cropping systems. The control system (Org 0) followed the rotation. In organic systems Org I and Org II the winter cover crops were used as follows: ryegrass (Lolium perenne L. in 2011/2012) and a mixture of winter oilseed-rape (Brass...

  10. Yield trends in the long-term crop rotation with organic and inorganic fertilisers on Alisols in Mata (Rwanda)

    NARCIS (Netherlands)

    Rutunga, V.; Neel, H.

    2006-01-01

    A crop rotation system with various species was established on Alisols at Mata grassland site, oriental side of Zaire-Nile Watershed Divide (CZN), Rwanda. Inorganic and organic fertilizers were applied in various plots under randomized complete blocs with three replicates. Crop yield data for each

  11. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    Full Text Available Introduction Winter wheat is an important, well-adapted grain crop under dryland condition of the northwest of Iran. Soil water is the most limiting resource for crop growth in dryland areas. Therefore, farmers need to use crop residues and minimum tillage to control the soil erosion and effectively store and to use the limited precipitation received for crop production. Crop rotation and tillage system could affect crop yield due to their effects on water conservation and soil chemical and physical properties. Galantini et al., (2000 studied the effect of crop rotation on wheat productivity in the Pampean semi-arid region of Argentina and found that a wheat–vetch (Vicia sativa L. rotation resulted in higher yield and protein content, and greater yield components than the other rotations.Payne et al. (2000 stated that where precipitation amount is marginal (400 mm, dry field pea offers a potential alternative to summer fallowing. The purpose of this study was to identify the optimal tillage system for increasing crop productivity in a vetch–wheat rotation in dryland farming of the northwest of Iran. Materials and Methods The field experiment was carried out from 2010 to 2014 at the Dryland Agricultural Research Station (latitude37° 12´N; longitude 46◦20´E; 1730 m a.s.l., 25 km east of Maragheh, East Azerbaijan Province, Iran. The long-term (10 years average precipitation, temperature and relative humidity of the station are 336.5 mm, 9.4 ◦C and 47.5%, respectively. The soil (Fine Mixed, Mesic, Vertic Calcixerepts, USDA system; Calcisols, FAO system at the study site had a clay loam texture in the 0–15 cm surface layer and a clay texture in the 15–80 cm depth. This study was conducted in vetch (Vicia pannonica- wheat (Triticum aestivum L. rotation. The experiment was arranged in a randomized complete block design with four replications. The tillage treatments consisted of (1 conventional tillage: moldboard plowing followed by one

  12. PRE-SUPERNOVA EVOLUTION OF ROTATING SOLAR METALLICITY STARS IN THE MASS RANGE 13-120 M {sub Sun} AND THEIR EXPLOSIVE YIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Chieffi, Alessandro [Istituto Nazionale di Astrofisica-Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Limongi, Marco, E-mail: alessandro.chieffi@inaf.it, E-mail: marco.limongi@oa-roma.inaf.it [Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, P.O. Box 28M, Monash University, Victoria 3800 (Australia)

    2013-02-10

    We present the first set of a new generation of models of massive stars with a solar composition extending between 13 and 120 M {sub Sun }, computed with and without the effects of rotation. We included two instabilities induced by rotation: the meridional circulation and the shear instability. We implemented two alternative schemes to treat the transport of the angular momentum: the advection-diffusion formalism and the simpler purely diffusive one. The full evolution from the pre-main sequence up to the pre-supernova stage is followed in detail with a very extended nuclear network. The explosive yields are provided for a variety of possible mass cuts and are available at the Web site http://www.iasf-roma.inaf.it/orfeo/public{sub h}tml. We find that both the He and the CO core masses are larger than those of their non-rotating counterparts. Also the C abundance left by the He burning is lower than in the non-rotating case, especially for stars with an initial mass of 13-25 M {sub Sun }, and this affects the final mass-radius relation, basically the final binding energy, at the pre-supernova stage. The elemental yields produced by a generation of stars rotating initially at 300 km s{sup -1} do not change substantially with respect to those produced by a generation of non-rotating massive stars, the main differences being a slight overproduction of the weak s-component and a larger production of F. Since rotation also affects the mass-loss rate, either directly or indirectly, we find substantial differences in the lifetimes as O-type and Wolf-Rayet subtypes between the rotating and non-rotating models. The maximum mass exploding as Type IIP supernova ranges between 15 and 20 M {sub Sun} in both sets of models (this value depends basically on the larger mass-loss rates in the red supergiant phase due to the inclusion of the dust-driven wind). This limiting value is in remarkably good agreement with current estimates.

  13. An evaluation of the psychometric properties of the Purdue Pharmacist Directive Guidance Scale using SPSS and R software packages.

    Science.gov (United States)

    Marr-Lyon, Lisa R; Gupchup, Gireesh V; Anderson, Joe R

    2012-01-01

    The Purdue Pharmacist Directive Guidance (PPDG) Scale was developed to assess patients' perceptions of the level of pharmacist-provided (1) instruction and (2) feedback and goal-setting-2 aspects of pharmaceutical care. Calculations of its psychometric properties stemming from SPSS and R were similar, but distinct differences were apparent. Using SPSS and R software packages, researchers aimed to examine the construct validity of the PPDG using a higher order factoring procedure; in tandem, McDonald's omega and Cronbach's alpha were calculated as means of reliability analyses. Ninety-nine patients with either type I or type II diabetes, aged 18 years or older, able to read and write English, and who could provide written-informed consent participated in the study. Data were collected in 8 community pharmacies in New Mexico. Using R, (1) a principal axis factor analysis with promax (oblique) rotation was conducted, (2) a Schmid-Leiman transformation was attained, and (3) McDonald's omega and Cronbach's alpha were computed. Using SPSS, subscale findings were validated by conducting a principal axis factor analysis with promax rotation; strict parallels and Cronbach's alpha reliabilities were calculated. McDonald's omega and Cronbach's alpha were robust, with coefficients greater than 0.90; principal axis factor analysis with promax rotation revealed construct similarities with an overall general factor emerging from R. Further subjecting the PPDG to rigorous psychometric testing revealed stronger quantitative support of the overall general factor of directive guidance and subscales of instruction and feedback and goal-setting. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Increasing crop diversity mitigates weather variations and improves yield stability.

    Science.gov (United States)

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  15. Nitrogen effects on maize yield following groundnut in rotation on ...

    African Journals Online (AJOL)

    Rotating maize (Zea mays L.) with groundnut (Arachis hypogaea L.) has been proposed as a way to maintain soil fertility and prevent maize productivity declines in the smallholder cropping systems of sub-humid Zimbabwe. Field experiments with fertilizer-N on maize in rotation with groundnut were conducted at three ...

  16. Contribution of Legume Rotations to the Nitrogen Requirements of a ...

    African Journals Online (AJOL)

    Cereal crop yield improvements following legume rotations ... effects of legumes rotation in meeting the N fertilizer requirements of maize. ... The effects of the rotations on increasing the maize yields were equivalent to application of 25, 19 and.

  17. Influence of Previous Crop on Durum Wheat Yield and Yield Stability in a Long-term Experiment

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2011-02-01

    Full Text Available Long-term experiments are leading indicators of sustainability and serve as an early warning system to detect problems that may compromise future productivity. So the stability of yield is an important parameter to be considered when judging the value of a cropping system relative to others. In a long-term rotation experiment set up in 1972 the influence of different crop sequences on the yields and on yield stability of durum wheat (Triticum durum Desf. was studied. The complete field experiment is a split-split plot in a randomized complete block design with two replications; the whole experiment considers three crop sequences: 1 three-year crop rotation: sugar-beet, wheat + catch crop, wheat; 2 one-year crop rotation: wheat + catch crop; 3 wheat continuous crop; the split treatments are two different crop residue managements; the split-split plot treatments are 18 different fertilization formulas. Each phase of every crop rotation occurred every year. In this paper only one crop residue management and only one fertilization treatment have been analized. Wheat crops in different rotations are coded as follows: F1: wheat after sugar-beet in three-year crop rotation; F2: wheat after wheat in three-year crop rotation; Fc+i: wheat in wheat + catch crop rotation; Fc: continuous wheat. The following two variables were analysed: grain yield and hectolitre weight. Repeated measures analyses of variance and stability analyses have been perfomed for the two variables. The stability analysis was conducted using: three variance methods, namely the coefficient of variability of Francis and Kannenberg, the ecovalence index of Wricke and the stability variance index of Shukla; the regression method of Eberhart and Russell; a method, proposed by Piepho, that computes the probability of one system outperforming another system. It has turned out that each of the stability methods used has enriched of information the simple variance analysis. The Piepho

  18. Influences of nitrogen and potassium top dressing on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... (K) top dressing on grain yield and yield components of rice (Oryza sativa cv. Tarrom) and to ... positive reciprocal effect on crops, and was an important approach in ..... dressing fertilization (Figures 2a, b and c), but nitrogen levels of upper fully .... (Brassica napus L.)–rice (Oryza sativa L.) rotation. Plant Soil ...

  19. Rotational Laser Cooling of MgH+ Ions and Rotational Rate Measurements

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Staanum, Peter; Højbjerre, Klaus

    by varying a delay between two such pairs of firings and measuring the yield of the second pair obtain the refilling rates. These rotational transition rate measurements are not only of direct interest for us to understand our rotational state preparation schemes, but will be important input to quantum...

  20. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  1. The rotational spectrum of IBr

    International Nuclear Information System (INIS)

    Tiemann, E.; Moeller, T.

    1975-01-01

    The microwave spectrum of IBr was measured in the low rotational transition J = 3 → 2 in order to resolve the hyperfine structure as completely as possible. Rotational constants and quadrupole coupling constants were derived for both nuclei. The observation of the rotational spectrum in different vibrational states yields the vibrational dependence of the rotational constants as well as of the hyperfine parameters. The Dunham potential coefficients α 0 , α 1 , α 2 , α 3 are given. (orig.) [de

  2. The consequent influence of crop rotation and six-year-long spring barley monoculture on yields and weed infestation of white mustard and oats

    Directory of Open Access Journals (Sweden)

    Cezary Kwiatkowski

    2012-12-01

    Full Text Available The present study was conducted in the years 2007- 2008, after 6-year-long experiments in the cultivation of spring barley in a crop rotation system and in monoculture. The other experimental factor was the spring barley protection method. Intensive protection involved comprehensive treatment of barley (in-crop harrowing, seed dressing, application of herbicides, fungicides, a retardant and an insecticide. Extensive protection consisted only in in-crop harrowing, without the application of crop protection agents, except for seed dressing. The above mentioned factors formed the background for the study on the cultivation of white mustard and oats, as phytosanitary species, in successive years. In the test plants, no mineral fertilization and crop protection were applied. Such agricultural method enabled an objective assessment of the consequent effect of monoculture, crop rotation and crop treatments. A hypothesis was made that the cultivation of the phytosanitary plants in the stand after 6-year-long barley monoculture would allow obtaining the level of yields and weed infestation similar to those of the crop rotation treatments. It was also assumed that the cultivation of white mustard and oats would eliminate differences in plant productivity caused by the negative influence of extensive protection. It was proved that the cultivation of the phytosanitary plants eliminated the negative influence of monoculture on the level of their yields and weed infestation. However, the test plants did not compensate negative consequences of extensive protection. In spite of this, white mustard and oats effectively competed with weeds, and the number and weight of weeds in a crop canopy did not cause a dramatic decline in yields. In the test plant canopy, the following short-lived weeds were predominant: Chenopodium album, Galinsoga parviflora, Echinochloa crus-galli. The absence of herbicide application resulted in the compensation of perennial species

  3. Effect of a 5-Year Multi-Crop Rotation on Mineral N and Hard Red Spring Wheat Yield, Protein, Test Weight and Economics in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2016-04-01

    The objectives of this non-irrigated cropping study was to employ the principles of soil health and determine the effect of rotation on seasonal mineral N, HRSW production, protein, test weight, and economics. Prior to the initiation of this research, the cropping study area had been previously seeded to hard red spring wheat (HRSW). The cropping systems consisted of a continuous HRSW control (C) compared to HRSW grown in a multi-crop 5-year rotation (R). The 5-yr rotation consisted of HRSW, cover crop (dual crop winter triticale-hairy vetch harvested for hay in June and immediately reseeded to a 7-species cover crop mix grazed by cows after weaning from mid-November to mid-December), forage corn, field pea-forage barley, and sunflower. The cereal grains, cover crops, and pea-barley intercrop were seeded using a JD 1590 no-till drill, 19 cm row spacing, and seed depth of 2.54 cm Cereal grain plant population was 3,088,750 plants/ha. The row crops were planted using a JD 7000 no-till planter, 76.2 cm row spacing, and seed depth of 5.08 cm. Plant population for the row crops was 46,947 plants/ha. Weeds were controlled using a pre-plant burn down and post-emergence control except for cover crops and pea-barley where a pre-plant burn down was the only chemical applied. Fertilizer application was based on soil test results and recommendations from the North Dakota State University Soil Testing Laboratory. During the 1st three years of the study 31.8 kg of N was applied to the C HRSW and then none the last two years of the 5-year period. The R HRSW was fertilized with 13.6 kg of N the 1st two years of the study and none the remaining three years of the 5-year period. However, chloride was low; therefore, 40.7-56.1 kg/ha were applied each year to both the C and R treatments. Based on 2014 and 2015 seasonal mineral N values, the data suggests that N levels were adequate to meet the 2690 kg/ha yield goal. In 2015, however, the R yield goal was exceeded by 673 kg/ha whereas

  4. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  5. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management

    International Nuclear Information System (INIS)

    Xue, Lihong; Yu, Yingliang; Yang, Linzhang

    2014-01-01

    In the Tailake region of China, heavy nitrogen (N) loss of rice–wheat rotation systems, due to high fertilizer-N input with low N use efficiency (NUE), was widely reported. To alleviate the detrimental impacts caused by N loss, it is necessary to improve the fertilizer management practices. Therefore, a 3 yr field experiments with different N managements including organic combined chemical N treatment (OCN, 390 kg N ha −1 yr −1 , 20% organic fertilizer), control–released urea treatment (CRU, 390 kg N ha −1 yr −1 , 70% resin-coated urea), reduced chemical N treatment (RCN, 390 kg N ha −1 yr −1 , all common chemical fertilizer), and site-specific N management (SSNM, 333 kg N ha −1 yr −1 , all common chemical fertilizer) were conducted in the Taihu Lake region with the ‘farmer’s N’ treatment (FN, 510 kg N ha −1 yr −1 , all common chemical fertilizer) as a control. Grain yield, plant N uptake (PNU), NUE, and N losses via runoff, leaching, and ammonia volatilization were assessed. In the rice season, the FN treatment had the highest N loss and lowest NUE, which can be attributed to an excessive rate of N application. Treatments of OCN and RCN with a 22% reduced N rate from FN had no significant effect on PNU nor the yield of rice in the 3 yr; however, the NUE was improved and N loss was reduced 20–32%. OCN treatment achieved the highest yield, while SSNM has the lowest N loss and highest NUE due to the lowest N rate. In wheat season, N loss decreased about 28–48% with the continuous reduction of N input, but the yield also declined, with the exception of OCN treatment. N loss through runoff, leaching and ammonia volatilization was positively correlated with the N input rate. When compared with the pure chemical fertilizer treatment of RCN under the same N input, OCN treatment has better NUE, better yield, and lower N loss. 70% of the urea replaced with resin-coated urea had no significant effect on yield and NUE improvement, but

  6. Yield gaps in Dutch arable farming systems

    NARCIS (Netherlands)

    Nunes Vieira da Silva, Joao; Reidsma, Pytrik; Ittersum, van Martin K.

    2017-01-01

    Arable farming systems in the Netherlands are characterized by crop rotations in which potato, sugar beet, spring onion, winter wheat and spring barley are the most important crops. The objectives of this study were to decompose crop yield gaps within such rotations into efficiency, resource and

  7. A complex-plane strategy for computing rotating polytropic models - Numerical results for strong and rapid differential rotation

    International Nuclear Information System (INIS)

    Geroyannis, V.S.

    1990-01-01

    In this paper, a numerical method, called complex-plane strategy, is implemented in the computation of polytropic models distorted by strong and rapid differential rotation. The differential rotation model results from a direct generalization of the classical model, in the framework of the complex-plane strategy; this generalization yields very strong differential rotation. Accordingly, the polytropic models assume extremely distorted interiors, while their boundaries are slightly distorted. For an accurate simulation of differential rotation, a versatile method, called multiple partition technique is developed and implemented. It is shown that the method remains reliable up to rotation states where other elaborate techniques fail to give accurate results. 11 refs

  8. Rotational Modulation and Activity Cycles at Rotational Extremes: 25 yrs of NURO Photometry for HII 1883

    Science.gov (United States)

    Milingo, Jackie; Saar, Steven; Marschall, Laurence

    2018-01-01

    We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period of ~ 0.24 d and displays significant rotational modulation due to non-uniform surface brightness or "starspots". Preliminary work yields a cycle period of ~ 9 yrs and rotational shear (ΔP_rot/) considerably less than solar. HII 1883 is one of the fastest rotating single stars with a known cycle. With additional data available we compare newly determined P_cyc and ΔP_rot/ values with those of other stars, putting HII 1883 into the broader context of dynamo properties in single cool dwarfs.

  9. Willow yield is highly dependent on clone and site

    DEFF Research Database (Denmark)

    Ugilt Larsen, Søren; Jørgensen, Uffe; Lærke, Poul Erik

    2014-01-01

    Use of high-yielding genotypes is one of the means to achieve high yield and profitability in willow (Salix spp.) short rotation coppice. This study investigated the performance of eight willow clones (Inger, Klara, Linnea, Resolution, Stina, Terra Nova, Tora, Tordis) on five Danish sites......, differing considerably in soil type, climatic conditions and management. Compared to the best clone, the yield was up to 36 % lower for other clones across sites and up to 51 % lower within sites. Tordis was superior to other clones with dry matter yields between 5.2 and 10.2 Mg ha−1 year−1 during the first...... 3-year harvest rotation, and it consistently ranked as the highest yielding clone on four of the five sites and not significantly lower than the highest yielding clone on the fifth site. The ranking of the other clones was more dependent on site with significant interaction between clone and site...

  10. Psychometric validation of the Columbia-Suicide Severity rating scale in Spanish-speaking adolescents.

    Science.gov (United States)

    Serrani Azcurra, Daniel

    2017-12-30

    Adolescent suicide is a major public health issue, and early and accurate detection is of great concern. There are many reliable instruments for this purpose, such as the Columbia-Suicide severity rating scale (C-SSRS), but no validation exists for Spanish speaking Latin American adolescents. To assess psychometric properties and cut-off scores of the C-SSRS in Spanish speaking adolescents. Exploratory assessment with principal component analysis (PCA) and Varimax rotation, and confirmatory analysis (CFA) were performed on two groups with 782 and 834 participants respectively (N=1616). Mean age was 24.8 years. A Receiver operator analysis was applied to distinguish between control and suicide-risk subgroups adolescents. Promax rotation yielded two 10-items factors, for suicide ideation and behavior respectively. C-SSRS was positively correlated with other suicide risk scales, such as Beck Depression Inventory-II, Suicidal Behaviors Questionnaire-Revised, or PHQ-9. Confirmatory factor analysis yielded a two-factor solution as the best goodness of fit model. C-SSRS showed adequate ability to detect suicide risk group with positive predictive value of 68.3%. ROC analyses showed cutoff scores of ≥ 6 and ≥ 4 for suicide ideation and behavior scales respectively. This research offers data supporting psychometric validity and reliability of C-SSRS in nonclinical Spanish-speaking students. Added benefits are flexible scoring and management easiness. This questionnaire yields data on distinct aspects of suicidality, being more parsimonious than separate administration of a bunch of questionnaires.

  11. Soil tillage practices and crops rotations effects on yields and ...

    African Journals Online (AJOL)

    Methodology and Results: Three soil tillage practices in main plot (T1 = no tillage with direct sowing, T2 = minimum tillage by soil scarifying with IR12 tool and T3 = conventional tillage with animals drawn plough) were compared and combined to four crops rotation systems, in a split-plot experimental design. Soil chemical ...

  12. Effect of fertilisation on biomass yield, ash and element uptake in SRC willow

    DEFF Research Database (Denmark)

    Ugilt Larsen, Søren; Jørgensen, Uffe; Kjeldsen, Jens Bonderup

    2016-01-01

    +0, 2) NPK120+0, 3) Slurry180+0, 4) NPK120+120, 5) NPK240+0, 6) Slurry360+0. Fertilization affected biomass yield significantly but interacted with rotation and clone. In first rotation, fertilization increased dry matter (DM) yield across clones significantly from 3.7 Mg ha−1 y−1 for Control0+0 to 6.......5, 6.4 and 5.6 for Slurry360+0, NPK120+120 and NPK240+0, respectively. In second rotation, yield increased from 6.2 Mg ha−1 y−1 to 8.8, 8.2, 7.8 and 7.4 for Slurry360+0, NPK240+0, Slurry180+0 and NPK120+120, respectively. Biomass dry matter yield per ha increased linearly at 15 kg kg−1 of applied total...

  13. Comparing predicted yield and yield stability of willow and Miscanthus across Denmark

    DEFF Research Database (Denmark)

    Larsen, Søren; Jaiswal, Deepak; Bentsen, Niclas Scott

    2016-01-01

    was 12.1 Mg DM ha−1 yr−1 for willow and 10.2 Mg DM ha−1 yr−1 for Miscanthus. Coefficent of variation as a measure for yield stability was poorest on the sandy soils of northern and western Jutland and the year-to-year variation in yield was greatest on these soils. Willow was predicted to outyield...... Miscanthus on poor, sandy soils whereas Miscanthus was higher yielding on clay-rich soils. The major driver of yield in both crops was variation in soil moisture, with radiation and precipitation exerting less influence. This is the first time these two major feedstocks for northern Europe have been compared....... The semi-mechanistic crop model BioCro was used to simulate the production of both short rotation coppice (SRC) willow and Miscanthus across Denmark. Predictions were made from high spatial resolution soil data and weather records across this area for 1990-2010. The potential average, rain-fed mean yield...

  14. Creep Modeling in a Composite Rotating Disc with Thickness Variation in Presence of Residual Stress

    Directory of Open Access Journals (Sweden)

    Vandana Gupta

    2012-01-01

    Full Text Available Steady-state creep response in a rotating disc made of Al-SiC (particle composite having linearly varying thickness has been carried out using isotropic/anisotropic Hoffman yield criterion and results are compared with those using von Mises yield criterion/Hill's criterion ignoring difference in yield stresses. The steady-state creep behavior has been described by Sherby's creep law. The material parameters characterizing difference in yield stresses have been used from the available experimental results in literature. Stress and strain rate distributions developed due to rotation have been calculated. It is concluded that the stress and strain distributions got affected from the thermal residual stress in an isotropic/anisotropic rotating disc, although the effect of residual stress on creep behavior in an anisotropic rotating disc is observed to be lower than those observed in an isotropic disc. Thus, the presence of residual stress in composite rotating disc with varying thickness needs attention for designing a disc.

  15. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    African Journals Online (AJOL)

    Primary nutrient (N, P and K) composition of the ... Crop rotation with fertilizer amendment improved the pH of the soil. Crop rotation and ..... Soil organic carbon contents declined regardless of inputs application for continuously cultivated land (Kapkiyai, 1996). Higher. Organic carbon content next to before planting (1.98 %).

  16. Elastic-plastic transition on rotating spherical shells in dependence of compressibility

    Directory of Open Access Journals (Sweden)

    Thakur Pankaj

    2017-01-01

    Full Text Available The purpose of this paper is to establish the mathematical model on the elastic-plastic transitions occurring in the rotating spherical shells based on compressibility of materials. The paper investigates the elastic-plastic stresses and angular speed required to start yielding in rotating shells for compressible and incompressible materials. The paper is based on the non-linear transition theory of elastic-plastic shells given by B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon at critical points & the solution obtained at these points generates stresses. The solution obtained does not require the use of semi-empirical yield condition like Tresca or Von Mises or other certain laws. Results are obtained numerically and depicted graphically. It has been observed that Rotating shells made of the incompressible material are on the safer side of the design as compared to rotating shells made of compressible material. The effect of density variation has been discussed numerically on the stresses. With the effect of density variation parameter, rotating spherical shells start yielding at the internal surface with the lower values of the angular speed for incompressible/compressible materials.

  17. Long-term rotation and tillage effects on soil structure and crop yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2013-01-01

    long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C......–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality...

  18. Firewood yield and profitability of a traditional Daniellia oliveri short-rotation coppice on fallow lands in Benin

    International Nuclear Information System (INIS)

    Avohou, T. Hermane; Houehounha, Remy; Glele-Kakai, Romain; Assogbadjo, Achille Ephrem; Sinsin, Brice

    2011-01-01

    Sub-Saharan Africa has a great diversity of local coppicing species which are exploited in traditional short coppice systems for firewood. Biomass yield and profitability of these systems as well as their responses to silvicultural improvement are little known. This study evaluated the firewood yield and the profitability of a traditional Daniellia oliveri short-rotation coppice on fallow lands in central Benin. Two weed management options were considered: (1) the weedy option, usually practiced by locals, which experienced grass competition and bushfires, and (2) the weed-free option, which consisted in periodic removal of grasses and other species. Destructive measurements and allometric equations were used to estimate biomass yield in 12 plots over 42 months. A cost-benefit analysis model based on the net present value and the benefit-cost ratio was used to compare the profitability of the two management options. Biomass accumulation rate averaged 1.08 ± 0.20 tonnes of dry matter ha -1 year -1 (t DM ha -1 year -1 ) in weedy conditions. Weed removal improved 3.5 times this rate in weed-free plots (3.83 ± 0.47 t DM ha -1 year -1 ). After 42 months, total biomass reached 3.67 ± 0.65 t DM ha -1 in weedy plots and 11.63 ± 0.76 t DM ha -1 in weed-free plots. Most of the biomass (≥88%) was marketable in local markets. Coppice exploitation was profitable after 24 months for both management options. Weed removal improved the profits three times. A sensitivity analysis showed that both options were still profitable with up to 25% increase of labour and transport costs, 25% decrease of biomass price and 12% increase of the discount rate. (author)

  19. Willow Short Rotation Coppice Trial in a Former Mining Area in Northern Spain: Effects of Clone, Fertilization and Planting Density on Yield after Five Years

    Directory of Open Access Journals (Sweden)

    María Castaño-Díaz

    2018-03-01

    Full Text Available A willow short rotation coppice (SRC trial was conducted on former mining land in northern Spain over a period of five years, with the purpose of evaluating the effects on yield of two planting densities (9876 and 14,815 cuttings ha−1, three treatments (control, two levels of nitrogen, phosphorus and potassium compound fertilizer (NPK plus weed control and three willow clones (Björn, Inger, Olof. The area was subsoiled, ploughed, harrowed and fertilized with NPK before trial establishment. A randomized block design was applied, with three replications of each treatment in a total of 54 plots, each of an area of 400 m2. The effects of the interactions between the various factors on yield and other growth parameters were also studied. The clone factor significantly affected the number of shoots per stool (greatest for the Inger clone and the Olof clone, which showed the lowest mortality rate and produced the largest trees and largest quantity of biomass. The combined application of fertilizer and herbicide also significantly increased the values of all response variables considered, except the mortality rate. The planting density did not significantly affect the response variables. Clone × treatment interactions were significant for the shoots per stool, height, diameter and biomass variables, and the Olof clone displayed the highest height and diameter growth and yield. The results obtained in the first rotation indicate that the Olof clone adapted well to the trial conditions and therefore would be appropriate for producing biomass in abandoned mine land in Asturias. These findings will help in the development of strategies for the establishment and management of SRC on marginal land.

  20. Construcción y valoración de las propiedades psicométricas del Cuestionario de Contextos de Consumo de Alcohol para Adolescentes (CCCA-A

    Directory of Open Access Journals (Sweden)

    Silvina A. Brussino

    2009-09-01

    Full Text Available A new measure of drinking contexts in adolescents was developed and validated. Phase 1: 212 participants answered three structured open format questions to gather information regarding why, with whom and where adolescents drink alcohol. The pool of items was analyzed by a group of three experts according to the following criteria: item correspondence with two different theoretical models and item semantic correctness. According with the evaluation of the agreement between judges, a set of 47 items was obtained. Phase 2: 275 participants answered the Drinking Contexts Questionnaire –Adolescent form (CCCA-A. Internal structure was analyzed through the use of exploratory factor analysis. A principal component analysis with oblimin rotation (promax yielded a four factor structure. The measure was found to demonstrate very good internal consistency for the four scales: social facilitation, peer pressure, stress control and parental control. These results indicate that CCCA-A is a valid and reliable measure to assess drinking contexts in Argentinean adolescents.

  1. Effects of nitrogen and phosphorus fertilizer on crop yields in a field pea-spring wheat-potato rotation system with calcareous soil in semi-arid environments

    Directory of Open Access Journals (Sweden)

    Chang-An Liu

    2016-06-01

    Full Text Available The object of the present study was to investigate the yield-affecting mechanisms influenced by N and P applications in rainfed areas with calcareous soil. The experimental treatments were as follows: NF (no fertilizer, N (nitrogen, P (phosphorus, and NP (nitrogen plus phosphorus in a field pea-spring wheat-potato cropping system. This study was conducted over six years (2003-2008 on China’s semi-arid Loess Plateau. The fertilizer treatments were found to decrease the soil water content more than the NF treatment in each of the growing seasons. The annual average yields of the field pea crops during the entire experimental period were 635, 677, 858, and 1117 kg/ha for the NF, N, P, and NP treatments, respectively. The annual average yields were 673, 547, 966, and 1056 kg/ha for the spring wheat crops for the NF, N, P, and NP treatments, respectively. Also, the annual average yields were 1476, 2120, 1480, and 2424 kg/ha for the potato crops for the NF, N, P, and NP treatments, respectively. In the second cycle of the three-year rotation, the pea and spring wheat yields in the P treatment were 1.2 and 2.8 times higher than that in the N treatment, respectively. Meanwhile, the potato crop yield in the N treatment was 3.1 times higher than that in the P treatment. In conclusion, the P fertilizer was found to increase the yields of the field pea and wheat crops, and the N fertilizer increased the potato crop yield in rainfed areas with calcareous soil.

  2. Effects of nitrogen and phosphorus fertilizer on crop yields in a field pea-spring wheat-potato rotation system with calcareous soil in semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.A.; Zhang, S.; Hua, S.; Rao, X.

    2016-11-01

    The object of the present study was to investigate the yield-affecting mechanisms influenced by N and P applications in rainfed areas with calcareous soil. The experimental treatments were as follows: NF (no fertilizer), N (nitrogen), P (phosphorus), and NP (nitrogen plus phosphorus) in a field pea-spring wheat-potato cropping system. This study was conducted over six years (2003-2008) on China’s semi-arid Loess Plateau. The fertilizer treatments were found to decrease the soil water content more than the NF treatment in each of the growing seasons. The annual average yields of the field pea crops during the entire experimental period were 635, 677, 858, and 1117 kg/ha for the NF, N, P, and NP treatments, respectively. The annual average yields were 673, 547, 966, and 1056 kg/ha for the spring wheat crops for the NF, N, P, and NP treatments, respectively. Also, the annual average yields were 1476, 2120, 1480, and 2424 kg/ha for the potato crops for the NF, N, P, and NP treatments, respectively. In the second cycle of the three-year rotation, the pea and spring wheat yields in the P treatment were 1.2 and 2.8 times higher than that in the N treatment, respectively. Meanwhile, the potato crop yield in the N treatment was 3.1 times higher than that in the P treatment. In conclusion, the P fertilizer was found to increase the yields of the field pea and wheat crops, and the N fertilizer increased the potato crop yield in rainfed areas with calcareous soil. (Author)

  3. An adapted yield criterion for the evolution of subsequent yield surfaces

    Science.gov (United States)

    Küsters, N.; Brosius, A.

    2017-09-01

    In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.

  4. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  5. Canola-Wheat Rotation versus Continuous Wheat for the Southern Plains

    OpenAIRE

    Duke, Jason C.; Epplin, Francis M.; Vitale, Jeffrey D.; Peeper, Thomas F.

    2009-01-01

    Crop rotations are not common in the wheat belt of the Southern Plains. After years of continuous wheat, weeds have become increasingly difficult and expensive to manage. Yield data were elicited from farmers and used to determine if canola-wheat-wheat rotations are economically competitive with continuous wheat in the region.

  6. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  7. A piezoelectric energy harvester for broadband rotational excitation using buckled beam

    Science.gov (United States)

    Xie, Zhengqiu; Kitio Kwuimy, C. A.; Wang, Zhiguo; Huang, Wenbin

    2018-01-01

    This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.

  8. A piezoelectric energy harvester for broadband rotational excitation using buckled beam

    Directory of Open Access Journals (Sweden)

    Zhengqiu Xie

    2018-01-01

    Full Text Available This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.

  9. Study of Axes Rotation during Simple Shear Tests on Aluminum Sheets

    International Nuclear Information System (INIS)

    Duchene, L.; Diouf, B.; Lelotte, T.; Flores, P.; Habraken, A. M.; Bouvier, S.

    2007-01-01

    In order to model accurately the anisotropic material behavior during finite element simulations, a precise description of the material yield locus is required. Beside the shape (linked to the material model used), the size (related to the isotropic hardening) and the position (kinematic hardening) of the yield locus, its orientation is of particular interest when large rotations of the material are encountered during the simulations. This paper proposes three distinct methods for the determination of the material yield locus rotation: a method based on the Constant Symmetric Local Velocity Gradient (CSLVG), a corotational method and a method based on the Mandel spin. These methods are compared during simple shear tests of an aluminum sheet

  10. Effects of crop rotation on weed density, biomass and yield of wheat (Titicum aestivum L.)

    OpenAIRE

    A. Zareafeizabadi; H.R. Rostamzadeh

    2016-01-01

    In order to study the weed populations in wheat, under different crop rotations an experiment was carried out at Agricultural Research Station of Jolgeh Rokh, Iran. During growing season this project was done in five years, based on Randomized Complete Bloch Design with three replications, on Crop rotations included: wheat monoculture for the whole period (WWWWW), wheat- wheat- wheat- canola- wheat (WWWCW), wheat- sugar beet- wheat-sugar beet- wheat (WSWSW), wheat- potato- wheat- potato- whea...

  11. Pollination and yield responses of cowpea (Vigna unguiculata L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... Key words: Apis mellifera adansonii, Vigna unguiculata, bee plant, foraging, pollination, increased yield. INTRODUCTION. There are ... several techniques such as fire-prone, crop rotations, ..... Inventory of melliferous plants.

  12. Nitrogen effects on maize yield following groundnut in rotation on ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    way cross hybrid 'R215' was hand-planted at two seeds per planting station on ... Maize grain. N uptake was calculated as the product of dry matter yield and .... saved from farmer crops and no fertilizer) on farmers' fields. Causes ...

  13. Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication

    Science.gov (United States)

    Rubin, Binyamin; George, Jason; Singhal, Riju

    2018-04-01

    Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.

  14. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.).

    Science.gov (United States)

    Yang, Ruiping; Mo, Yanling; Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012-2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality.

  15. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    Science.gov (United States)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover

  16. Experimental estimates of quasiparticle interactions for rotational nuclei

    International Nuclear Information System (INIS)

    Frauendorf, S.; Riedinger, L.L.

    1984-01-01

    Previously presented data on rotationally aligned quasiparticle bands in sup(160,161,162,163)Yb are analyzed to give experimental values of the quasiparticle interactions Vsub(μν) as a function of rotational frequency. The measured level energies are converted to the rotating frame of reference and expressed as routhians. The routhian of a multi-quasiparticle band is compared to the sum of the routhians of the component quasiparticles at a given frequency, the difference being the quasiparticle interaction. The experimental spectra of bands in these nuclei are consistent with the assumption of a binary interaction between the rotating quasiparticles, where most of the Vsub(μν) are in the range -0.3 to -0.1 MeV. Analysis of the shift in the observed crossing frequencies for bands of different quasiparticle number yields similar values. The extracted Vsub(μν) are found to have a frequency dependence, which is associated with the loss of alignment of a multi-quasiparticle state. An equidistant-level model is used to estimate the contributions to the quasiparticle interactions by polarization of the collective degrees of freedom. This model yields typical Vsub(μν) values of -0.15 MeV, which is only half of some values extracted from experiment. This suggests that the extracted Vsub(μν) contain a significant amount of nuclear-structure information. (orig.)

  17. Rotational partition functions for linear molecules

    International Nuclear Information System (INIS)

    McDowell, R.S.

    1988-01-01

    An accurate closed-form expression for the rotational partition function of linear polyatomic molecules in 1 summation electronic states is derived, including the effect of nuclear spin (significant at very low temperatures) and of quartic and sextic centrifugal distortion terms (significant at moderate and high temperatures). The proper first-order quantum correction to the classical rigid-rotator partition function is shown to yield Q/sub r/ ≅β -1 exp(β/3), where βequivalenthcB/kT and B is the rotational constant in cm -1 ; for β≥0.2 additional power-series terms in β are necessary. Comparison between the results of this treatment and exact summations are made for HCN and C 2 H 2 at temperatures from 2 to 5000 K, including separate evaluation of the contributions of nuclear spin and centrifugal distortion

  18. Economics and yields of energy plantations: Status and potential

    International Nuclear Information System (INIS)

    Kenney, W.A.; Gambles, R.L.; Zsuffa, L.

    1992-01-01

    A study was carried out to: determine the factors affecting the cost of energy conversion feedstocks in short rotation intensive culture plantations of trees; determine the factors influencing biomass yield; identify interrelationships between the previous two objectives; present estimates of potential biomass yields and associated economics; and to identify gaps in the knowledge of the economics and yields of biomass production and their interrelationships. Reported costs for most aspects had a wide range. Currently, yields of 10-15 dry Mg/hectare/y are readily achievable. Using the cost and yield data, and assuming a biomass price of $40/dry Mg, a series of cash flow analyses were performed. For the low cost inputs, all scenarios were marginally profitable. For the high cost inputs, none of the scenarios were profitable. A current scenario, using figures for contract farming, was not profitable, however this system would break even with a yield of 23.3 dry Mg/hectare/y, within the range of some production clones. A future scenario using farm labour with increased productivity, product values, and machinery efficiencies yielded a profit-making situation. The addition of incentives increased profitability. There is great potential for the production of woody biomass in Canada as a feedstock for energy and other products. Continued and more intensive breeding and selection to develop high yielding stress tolerant clones, cost efficient harvesting systems, continued research into optimization of planting density, rotation length and cultural techniques, and characterization of promising clones with respect to nutrient-use efficiency, site requirements and pest/disease resistance are important areas for further work. 81 refs., 3 figs., 13 tabs

  19. Adapting crop rotations to climate change in regional impact modelling assessments.

    Science.gov (United States)

    Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank

    2018-03-01

    The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used

  20. Site establishment practices influence loblolly pine mortality throughout the stand rotation

    Science.gov (United States)

    Felipe G. Sanchez; Robert J. Eaton

    2010-01-01

    During a rotation, land managers need to estimate yields, update inventories, and evaluate stand dynamics. All of these factors in land management are heavily influenced by tree mortality. Tree mortality can, in turn, be influenced by land management practices from the inception of the stand and throughout the rotation. We describe the impact of organic matter removal...

  1. SEWAGE SLUDGE EFFECTS ON POTATO, WINTER WHEAT AND MAIZE YIELD CULTIVATED IN ROTATION, AND SOIL PROPERTY MODIFICATION

    Directory of Open Access Journals (Sweden)

    Gh. Lixandru

    2005-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of sewage sludge as phosphorus and nitrogen amendment for cambic chernozem soils in comparison with inorganic fertilizers (NH4NO3 and KCl. The experiment reported here were conducted during 10 years in two rotation: 1 potato – winter wheat – maize, and 2 maize – potato – winter wheat. Sewage sludge rates applied in potato was 65, 130 and 195 t/ha respectively, and in maize 30, 60 and 90 t/ha, sewage sludge rates applied alone or in combination with N and K as mineral fertilizers. The results led to the following conclusions: 1 The air-dried sewage sludge from plot Iaşi contained about 200 kg organic matter, 6 kg N, 8 kg P, 2 kg K, 30 kg Ca and 10 kg soluble salts in 1000 kg. The heavy metals content was under the maximum limits allowable, excepting Zn which was found between 4140 and 5378 ppm Zn. 2 At potato crops resulted in an yield increase of 100 kg tubers for one ton sewage sludge in case of rate of 65 t/ha, at higher rates the yield increase being lower. Annual rainfall had a significant influence on yield increase. 3 The nitrogen utilization from sewage sludge was of 8.5 % at a rate of 65 t/ha and 2.5 % at a rate of 195 t/ha. From 100 kg N as mineral fertilizer, potato used 30 % and produced 60 kg tubers/1 kg N applied in soil. The yield increase at 1 kg N from sewage sludge was of 17 kg tubers at a rate of 65 t/ha. Therefore, the nitrogen efficiency from mineral fertilizer was about three times higher compared to N from sewage sludge. 4 Applied in maize crop, resulted an yield increase of 23.2 kg grains for 1 ton sewage sludge at a rate of 30 t/ha and only 13.2 kg/1 t at a rates 90 t/ha. By comparing to manure, the yield increased was lower. The nitrogen utilization from sewage sludge by maize was of 11 % at 3o t/ha and 6.6 % at 90 t/ha. From mineral fertilizer, maize used 25.9 % of 100 kg N/ha. 5 Residual effect of sewage sludge in second year in wheat crop was of 7

  2. Rotational covariance and light-front current matrix elements

    International Nuclear Information System (INIS)

    Keister, B.D.

    1994-01-01

    Light-front current matrix elements for elastic scattering from hadrons with spin 1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements

  3. Calculation of restricted rotational states in the methyl group

    CERN Document Server

    Ozaki, Y

    2002-01-01

    A methyl group attached to a molecule in the solid phase has a certain amount of hindrance in its rotational motion. The rotational potential can usually be expressed by the 3rd-order and the 6th-order terms of periodic functions. In the intermediate region with respect to the field strength and also the degree of mixing of two components, much variety appears in the structure of the rotational energy levels. The energy values correspond to the various molecular surroundings. The matrix elements are also derived, which yield the intensity of inelastic neutron scattering spectra. One example of calculated intensities is given. (orig.)

  4. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.)

    Science.gov (United States)

    Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012–2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality. PMID:27258145

  5. Management of Soilborne Diseases in Strawberry Using Vegetable Rotations

    OpenAIRE

    Subbarao, Krishna V

    2007-01-01

    The influence of crop rotation on soilborne diseases and yield of strawberry (Fragaria × ananassa) was determined at a site infested with Verticillium dahliae microsclerotia and at another with no known history of V. dahliae infestation during 1997 to 2000. The rotations studied at the V. dahliae-infested site were (i) broccoli-broccoli-strawberry, (ii) Brussels sproutsstrawberry, and (iii) lettuce-lettuce-strawberry; the treatments at the site with no history of V. dahliae were (i) broccoli-...

  6. Enhanced Yields in Organic Arable Crop Production by Eco-Functional Intensification using Intercropping

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Bedoussac, Laurent; Carlsson, Georg

    2015-01-01

    for enhancing yields in OA. EFI involves activating more knowledge and intensifying the beneficial effects of ecosystem functions, including agrobiodiversity (planned and associated) and soil fertility, and refocusing the importance of ecosystems services in agriculture. Organic farmers manage agrobiodiversity...... in space by intercropping, fitted into the organic crop rotation, has a strong potential to increase yield and hereby reduce the global environmental effects performance such as GHG per kg organic grain. Finally, we discuss likely barriers for increased use of intercropping in organic farming and suggest...... by planned crop diversification in time (crop rotation). However, cultivating genetically identical plants in OA sole crops (SC), limits resource use efficiency and yield per unit area. Intercropping (IC) of annual species or cultivars, perennial polycultures of forage or grain crops and agroforestry...

  7. Yields of crops on a rhodic ferralsol in southern Brazil in relation to ...

    African Journals Online (AJOL)

    Even though no-tillage, crop rotation management systems have been accepted as useful for sustaining crop production, there is the need to identify which crops can be used for such rotations. This study evaluated the dry matter and grain yields of eight winter and two summer crops (maize, Zea mays L. and soybean, ...

  8. Ultrasound of the rotator cuff with MRI and anatomic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, Matthieu J.C.M. [Department of Radiology, Jeroen Bosch Hospital, Nieuwstraat 34, 5211 NL ' s-Hertogenbosch (Netherlands)]. E-mail: M.Rutten@JBZ.nl; Maresch, Bas J. [Department of Radiology, Hospital Gelderse Vallei, Willy Brandtlaan 10, 6710 HN Ede (Netherlands)]. E-mail: MareschB@zgv.nl; Jager, Gerrit J. [Department of Radiology, Jeroen Bosch Hospital, Nieuwstraat 34, 5211 NL ' s-Hertogenbosch (Netherlands)]. E-mail: G.Jager@JBZ.nl; Blickman, Johan G. [Department of Radiology, University Medical Center Nijmegen, Geert Grooteplein Zuid 18, 6500 HB Nijmegen (Netherlands)]. E-mail: J.Blickman@rad.umcn.nl; Holsbeeck, Marnix T. van [Department of Radiology, Henry Ford Hospital, 2799 W Grand Boulevard, Detroit, MI 48202 (United States)]. E-mail: vanholsbeeck@comcast.net

    2007-06-15

    Magnetic resonance imaging and high-resolution ultrasound (US) are frequently used for the detection of rotator cuff tears. The diagnostic yield of US is influenced by several factors as technique, knowledge of the imaging characteristics of anatomic and pathologic findings and of pitfalls. The purpose of this article is to illustrates that the standardized high-resolution US examination of the shoulder covers the entire rotator cuff and correlates with MR imaging and anatomic sections.

  9. Rabi oscillations in the dissociative continuum: Rotation and alignment effects

    Science.gov (United States)

    Granucci, Giovanni; Magnier, Sylvie; Persico, Maurizio

    2002-01-01

    We have simulated a set of experiments in which Rabi oscillations are induced in bound-free and free-free transitions of a diatomic molecule. Dissociative vibrational states belonging to different electronic terms are involved. We show analytically and confirm computationally that a simple relationship exists between the one-dimensional dynamics of a molecule with fixed orientation with respect to the polarization of the radiation field and the three-dimensional dynamics of a rotating system. It is demonstrated that sufficiently short laser pulses can induce oscillations in the probabilities of two coupled electronic states, and in the yields of the respective dissociation products, as functions of the radiation intensity. As a result of molecular rotation the oscillations are damped but not washed out. The initial thermal distribution on several rotational levels has a negligible effect on the photodissociation yields and other experimentally relevant quantities. Since the molecule undergoes a strong alignment along the polarization axis of the laser field, the ejection of atoms and ions is anisotropic. We have chosen the well known diatomic ion Na2+ as a convenient example.

  10. Variational formulation based analysis on growth of yield front in ...

    African Journals Online (AJOL)

    user

    The analysis of rotating disk behavior has been of great interest to many ... strain hardening using Tresca's yield condition and its associated flow rule ...... Determination of Stresses in Gas-Turbine Disks Subjected to Plastic Flow and Creep.

  11. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    Science.gov (United States)

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  12. Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models

    DEFF Research Database (Denmark)

    Doltra, Jordi; Nuñoz, P

    2010-01-01

    to a higher nitrate concentration in percolated water. Comparison of the observed and predicted yield response to N applications with EU-Rotate_N demonstrated that the best fertigation strategy could be identified and the risk of nitrate leaching quantified with this model. The results showed......Two different modeling approaches were used to simulate the N leached during an intensively fertigated crop rotation: a recently developed crop-based simulation model (EU-Rotate_N) and a widely recognized solute transport model (Hydrus-2D). Model performance was evaluated using data from...... an experiment where four N fertigation levels were applied to a bell pepper-cauliflower-Swiss chard rotation in a sandy loam soil. All the input data were obtained from measurements, transfer functions or were included in the model databases. Model runs were without specific site calibration. The use of soil...

  13. A range modulator to produce uniform 38K yield

    International Nuclear Information System (INIS)

    Eilbert, R.F.; Koehler, A.M.; Sisterson, J.M.

    1976-01-01

    A range modulator has been designed for use with a monoenergetic proton beam to achieve uniform yield of a nuclear reaction with depth in a tissue equivalent medium. Uniform yield to +- 1.5% over a 10 cm depth for the reaction 40 Ca(p, 2pn) 38 K has been demonstrated using protons of 160 MeV initial energy. The modulator is a rotating stepped absorber made of stacked acrylic plastic sheets. The angular extent of each sheet is determined by a computer program which also calculates the resultant depth of dose curve. Peaks in the dose curve may be reduced with slight effect on the yield curve. (author)

  14. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Science.gov (United States)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  15. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    African Journals Online (AJOL)

    amendment enabled maize yields and soil fertility to be maintained at a higher level. Multiple ... Higher grain yield and high net return of maize were realized following Niger seed, ...... Generation, Transfer and Gap Analysis Workshop. Nekemt ...

  16. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    Science.gov (United States)

    Li, Xiaoqiong; Ye, Duo; Liang, Hongwen; Zhu, Hongguang; Qin, Lin; Zhu, Yuling; Wen, Yuanguang

    2015-01-01

    Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR) and a second rotation (SR) stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC) did not significantly differ between rotations, while understory vegetation (UC) and soil organic matter (SOC) stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1) and 70.68 vs. 81.08 Mg. ha(-1), respectively) and forest floor carbon (FFC) conversely stored more (2.80 vs. 2.34 Mg. ha(-1)). The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool) of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  17. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    Directory of Open Access Journals (Sweden)

    Xiaoqiong Li

    Full Text Available Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR and a second rotation (SR stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC did not significantly differ between rotations, while understory vegetation (UC and soil organic matter (SOC stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1 and 70.68 vs. 81.08 Mg. ha(-1, respectively and forest floor carbon (FFC conversely stored more (2.80 vs. 2.34 Mg. ha(-1. The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential.

  18. The application of a Bessel transform to the determination of stellar rotational velocities

    International Nuclear Information System (INIS)

    Deeming, T.J.

    1977-01-01

    A method for analysing line profiles by means of a transform using Bessel functions is described. This yields the stellar rotational velocity γ sin i, to an accuracy of about +-1 km s -1 for rotational velocities greater than about 5 km s -1 , provided that rotation is the major source of line broadening. The theory of the method is a special case of a general theory of linear transforms in data analysis, which is outlined in an appendix. (Auth.)

  19. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    Science.gov (United States)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  20. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    Science.gov (United States)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  1. Impacts of Rotation Schemes on Ground-Dwelling Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2016-10-01

    Crop rotation alters agroecosystem diversity temporally, and increasing the number of crops in rotation schemes can increase crop yields and reduce reliance on pesticides. We hypothesized that increasing the number of crops in annual rotation schemes would positively affect ground-dwelling beneficial arthropod communities. During 2012 and 2013, pitfall traps were used to measure activity-density and diversity of ground-dwelling communities within three previously established, long-term crop rotation studies located in Wisconsin and Illinois. Rotation schemes sampled included continuous corn, a 2-yr annual rotation of corn and soybean, and a 3-yr annual rotation of corn, soybean, and wheat. Insects captured were identified to family, and non-insect arthropods were identified to class, order, or family, depending upon the taxa. Beneficial arthropods captured included natural enemies, granivores, and detritivores. The beneficial community from continuous corn plots was significantly more diverse compared with the community in the 2-yr rotation, whereas the community in the 3-yr rotation did not differ from either rotation scheme. The activity-density of the total community and any individual taxa did not differ among rotation schemes in either corn or soybean. Crop species within all three rotation schemes were annual crops, and are associated with agricultural practices that make infield habitat subject to anthropogenic disturbances and temporally unstable. Habitat instability and disturbance can limit the effectiveness and retention of beneficial arthropods, including natural enemies, granivores, and detritivores. Increasing non-crop and perennial species within landscapes in conjunction with more diverse rotation schemes may increase the effect of biological control of pests by natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The effect of cover crop and crop rotation on soil water storage and on sorghum yield Efeito de cultura de cobertura e de rotação de cultura no armazenamento de água do solo e no rendimento de sorgo

    Directory of Open Access Journals (Sweden)

    Demóstenes Marcos Pedrosa de Azevedo

    1999-03-01

    Full Text Available Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years to investigate the effect of oat (Avena sativa L. cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.. The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.Rotação de cultura e cultura de cobertura constituem importantes meios para melhoria do rendimento de culturas em áreas de sequeiro como a região "Coastal Bend" do Estado do Texas. Um ensaio foi conduzido em 1995, como parte de um experimento de longa duração (7 anos, com o objetivo de investigar o efeito da aveia (Avena sativa L. como cultura de cobertura, e da rotação de cultura, no armazenamento da água do solo e no rendimento do sorgo (Sorghum bicolor L.. O delineamento experimental adotado foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. As rotações foram alocadas nas parcelas, e a cultura de cobertura, nas subparcelas. A cultura de cobertura reduziu o rendimento do sorgo. Este efeito foi atribuído à reduzida concentração de N disponível do solo. Por atraso no extermínio e incorporação da aveia, seu resíduo, com elevada relação C/N, atuou como dreno, pela imobilização, em lugar de ser fonte

  3. Bingham liquid flow between two cylinders induced by inner ring rotation

    Science.gov (United States)

    Jaroslav, Štigler; Simona, Fialová

    2017-09-01

    This paper deals with the fluid flow between two cylinders induced by inner ring rotation. The gap width between the cylinders, in case that they are both concentric, is 1mm, the gap and inner ring radius ratio 0.013 and the radius ratio 0.987. Attention is focused on rotation speed and eccentricity influence on the flow. Calculations were done for both Newtonian liquid and Bingham plastic liquid with the yield stress threshold 50 Pa.

  4. Modeling Long Term Corn Yield Response to Nitrogen Rate and Crop Rotation

    Directory of Open Access Journals (Sweden)

    Laila Alejandra Puntel

    2016-11-01

    Full Text Available Improved prediction of optimal N fertilizer rates for corn (Zea mays L. can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM to simulate corn and soybean (Glycine max L. yields, the economic optimum N rate (EONR using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1 applied to corn. Our objectives were to: a quantify model prediction accuracy before and after calibration, and report calibration steps; b compare crop model-based techniques in estimating optimal N rate for corn; and c utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simultaneously simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration, which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration. For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-yr mean differences in EONR’s were within the historical N rate error range (40 to 50 kg N ha-1. However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching with precipitation. We concluded that long term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add

  5. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation.

    Science.gov (United States)

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J; Moore, Kenneth J; Thorburn, Peter; Archontoulis, Sotirios V

    2016-01-01

    Improved prediction of optimal N fertilizer rates for corn ( Zea mays L. ) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean ( Glycine max L. ) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha -1 ) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR's were within the historical N rate error range (40-50 kg N ha -1 ). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward

  6. Effect of Tropical Rotation Crops on Meloidogyne incognita and Other Plant-Parasitic Nematodes.

    Science.gov (United States)

    McSorley, R; Dickson, D W

    1995-12-01

    In a field experiment conducted on sandy soil in Florida during the 1993 season, rotation crops of castor (Ricinus communis), velvetbean (Mucuna deeringina), 'Mississippi Silver' cowpea (Vigna unguiculata), American jointvetch (Aeschynomene americana), 'Dehapine 51' cotton (Gossypium hirsutum), and 'SX-17' sorghum-sudangrass (Sorghum bicolor x S. sudanense) were effective in maintaining low population densities (450/100 cm(3) soil) resulted after 'Clemson Spineless' okra (Hibiscus esculentus) and 'Kirby' soybean (Glycine max). Following a winter cover crop of rye (Secale cereale), densities of M. incognita following the six most effective rotation crops (1993 season) remained relatively low (crop planted in 1994, but increased by the end of the eggplant crop. The rotation crops planted during 1993 had little effect on yield of eggplant in 1994. Eggplant yield was inversely correlated with preplant densities (Pi) of Belonolaimus longicaudatus (r = -0.282; P crop cultivars were lower (P crops intended for suppression of individual Meloidogyne spp. be evaluated for their response to other nematode pests as well.

  7. Yield response and economics of shallow subsurface drip irrigation systems

    Science.gov (United States)

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  8. Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.

    2018-03-01

    An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.

  9. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    .e. visual evaluation of soil structure (VESS), overall visual structure (OVS) and overall soil structure (OSS)) were employed to differentiate the effects of these alternative management practices on soil structural quality and relative crop yield (RY). A Pearson correlation was also employed to find...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...... correlations were found in most cases between soil quality indices (including M-SQR) and RY. This highlights the influence of soil quality (as measured by the selected indicators) – and soil structure in particular – on crop yield potential....

  10. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  11. Mean-field theory of differential rotation in density stratified turbulent convection

    Science.gov (United States)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  12. Rotation Period Determination for 5143 Heracles

    Science.gov (United States)

    Pilcher, Frederick; Briggs, John W.; Franco, Lorenzo; Inasaridze, Raguli Ya.; Krugly, Yurij N.; Molotiv, Igor E.; Klinglesmith, Daniel A., III; Pollock, Joe; Pravec, Petr

    2012-07-01

    The Earth crossing minor planet 5143 Heracles made in late 2011 its closest approach to Earth since discovery. A consortium of observers found a synodic rotation period near 2.706 hours and amplitude increasing from 0.08 ±0.02 magnitudes at phase angle 20 degrees to 0.18 ±0.03 magnitudes at phase angle 87 degrees, with 3 unequal maxima and minima per cycle. Magnitude parameters H = 14.10 ±0.04 and G = 0.08 ±0.02 are found, and the color index V-R = 0.42 ±0.07. For an asteroid of taxonomic class Q, a suggested albedo pv = 0.20 ±0.05 yields estimated diameter D = 4.5 ±0.7 km. Three possible binary events were recorded, but these are insufficient for binary detection to be secure. Retrograde rotation is suggested.

  13. Variational formulation based analysis on growth of yield front in ...

    African Journals Online (AJOL)

    The present study investigates the growth of elastic-plastic front in rotating solid disks of non-uniform thickness having exponential and parabolic geometry variation. The problem is solved through an extension of a variational method in elastoplastic regime. The formulation is based on von-Mises yield criterion and linear ...

  14. Using NDVI to estimate carbon fluxes from small rotationally grazed pastures

    Science.gov (United States)

    Satellite-based Normalized Difference Vegetation Index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northea...

  15. Examining the relationships between attention deficit/hyperactivity disorder and developmental coordination disorder symptoms, and writing performance in Japanese second grade students.

    Science.gov (United States)

    Noda, Wataru; Ito, Hiroyuki; Fujita, Chikako; Ohnishi, Masafumi; Takayanagi, Nobuya; Someki, Fumio; Nakajima, Syunji; Ohtake, Satoko; Mochizuki, Naoto; Tsujii, Masatsugu

    2013-09-01

    The purpose of this study was to explore the relationships between attention deficit/hyperactivity disorder and developmental coordination disorder symptoms and writing performance in Japanese second grade students from regular classrooms. The second grade students (N=873) in Japanese public elementary schools participated in this study. We examined a variety of writing tasks, such as tracing, copying, handwriting (Hiragana and Katakana), and spelling (Hiragana, Katakana, and Kanji). We employed the Japanese version of the home form ADHD-rating scale (ADHD-RS) and the Japanese version of the Developmental Coordination Disorder Questionnaire (DCDQ-J) to assess the developmental characteristics of the participating children. Seven writing performance scores were submitted to a principal component analysis with a promax rotation, which yielded three composite scores (Spelling Accuracy, Tracing and Copying Accuracy, and Handwriting Fluency). A multiple regression analysis found that inattention predicted Spelling Accuracy and Handwriting Fluency and that hyperactive-impulsive predicted Handwriting Fluency. In addition, fine motor ability predicted Tracing and Copying Accuracy. The current study offered empirical evidence suggesting that developmental characteristics such as inattention and fine motor skill are related to writing difficulties in Japanese typical developing children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Regulating forest rotation to increase CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, P.; Kristroem, B.

    1999-06-01

    Previous studies have shown that the optimal forest rotation age increases considerably if the benefits of CO{sub 2} sequestration are included in rotation decisions. While these studies provide some guidelines for managing public forests, private forest owners may not choose the socially optimal rotation age. This paper discusses a regulation measure to increase CO{sub 2} sequestration in privately owned forests. The regulation problem is treated as a sequential game, where the regulator chooses a subsidy scheme and forest owners respond by changing rotation ages. A private forest owner receives a subsidy at the time of harvesting if he/she changes the rotation age towards the socially optimal one. The subsidy is proportional to the associated change in timber yield. The forest owner`s objective is to maximize the net present value of after-tax timber production profits and subsidies. The regulator`s decision problem is to find the subsidy rate that maximizes the net benefits of implementing the policy (the net of increased CO{sub 2} sequestration benefits, subsidy costs, and changes in forestry taxation income). Empirical results for Swedish examples show that the optimal subsidy rate is sensitive to the marginal benefit of CO{sub 2} sequestration, the social discount rate, and site quality. The optimal subsidy rate is found to be significantly lower than the marginal benefit of CO{sub 2} sequestration. With the proposed subsidy scheme, private forest owners will choose rotation ages longer than the Faustmann rotation, but significantly shorter than the socially optimal rotation age 21 refs, 6 tabs. Arbetsrapport 272

  17. Rotational dependence of Fermi-type resonance interactions in molecules

    Science.gov (United States)

    Mikhailov, Vladimir M.; Smirnov, M. A.

    1997-03-01

    In Pasadena, (Milliken Lab., USA, 1930) F. Rossetti has observed in Raman spectrum of carbon-dioxide molecule the full symmetric vibration of carbon dioxide appeared as the group of four near lying lines instead of the waited single line. The true interpretation of this enigmatic effect (in that time) was given by E. Fermi -- accidental degeneration of the first excited state of the full symmetric vibration in carbon dioxide. It was the first example of the event observed later in various organic molecules. This event was named as resonance Fermi. The rotational dependence of Fermi type resonance interactions in quasirigid molecules in dominant approximation can be selected in an expansion of the effective vibration-rotation Hamiltonian Hvib- roteff by the operator H(g)(Fermi) equals H30 plus (Sigma) nH3n(g). Let us consider in detail the problem of the construction of the effective vibration-rotational Hamiltonian HVR yields Heff from the point of view of various ordering schemes (grouping) of the vibrational-rotational interactions with sequential analysis of the choice of the convenient grouping adequate to the spectroscopic problem.

  18. Glenohumeral position during CT arthrography with arthroscopic correlation: optimization of diagnostic yield

    Energy Technology Data Exchange (ETDEWEB)

    Simeone, F.J.; Gill, Corey M.; Torriani, Martin; Bredella, Miriam A. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Taneja, Atul K. [Hospital Israelita Albert Einstein, Hospital do Coracao (HCor) and Teleimagem, Musculoskeletal Imaging, Sao Paulo, SP (Brazil)

    2017-06-15

    To evaluate the diagnostic yield of two acquisitions of single-contrast CT arthrography (CTA) of the shoulder in internal, neutral, or external glenohumeral rotation with arthroscopic correlation. The CT study was obtained using two acquisitions (first the humerus positioned in maximum tolerated external rotation with the arm along the body and the second with the humerus in internal rotation with the palm placed flat on the table). Two independent readers blinded to the arthroscopic results evaluated the CTA images for labral tears, glenoid bone loss/fractures, and cartilage loss. For each CTA acquisition, sensitivity and specificity for detection of the aforementioned pathology were assessed. Inter-reader agreement was quantified by weighted k statistics. Sensitivity and specificity for detecting anteroinferior or posterior labral tears was highest with neutral rotation (sensitivity 91-100%, specificity 61-100%). For glenoid fracture, sensitivity (67%) was highest with external rotation and specificity (100%) was highest with internal rotation. For cartilage loss, sensitivity (64%) and specificity (89%) was highest with external rotation and neutral rotation, respectively. Neutral rotation showed high sensitivity and specificity for glenoid fractures and cartilage loss. Inter-reader agreement ranged from fair to very good. Neutral glenohumeral position in shoulder CT arthrography was adequately sensitive and specific for the detection of intra-articular pathology, avoiding the use of more than one acquisition. (orig.)

  19. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  20. Molecular Viscosity Sensors with Two Rotators for Optimizing the Fluorescence Intensity-Contrast Trade-Off.

    Science.gov (United States)

    Lee, Seung-Chul; Lee, Chang-Lyoul; Heo, Jeongyun; Jeong, Chan-Uk; Lee, Gyeong-Hui; Kim, Sehoon; Yoon, Woojin; Yun, Hoseop; Park, Sung O; Kwak, Sang Kyu; Park, Sung-Ha; Kwon, O-Pil

    2018-02-26

    A series of fluorescent molecular rotors obtained by introducing two rotational groups ("rotators"), which exhibit different rotational and electron-donating abilities, are discussed. Whereas the control molecular rotor, PH, includes a single rotator (the widely used phenyl group), the PO molecular rotors consist of two rotators (a phenyl group and an alkoxy group), which exhibit simultaneous strongly electron-donating and easy rotational abilities. Compared with the control rotor PH, PO molecular rotors exhibited one order of magnitude higher quantum yield (fluorescence intensity) and simultaneously exhibited significantly higher fluorescence contrast. These properties are directly related to the strong electron-donating ability and low energy barrier of rotation of the alkoxy group, as confirmed by dynamic fluorescence experiments and quantum chemical calculations. The PO molecular rotors exhibited two fluorescence relaxation pathways, whereas the PH molecular rotor exhibited a single fluorescence relaxation pathway. Cellular fluorescence imaging with PO molecular rotors for mapping cellular viscosity was successfully demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Measuring strain and rotation fields at the dislocation core in graphene

    Science.gov (United States)

    Bonilla, L. L.; Carpio, A.; Gong, C.; Warner, J. H.

    2015-10-01

    Strain fields, dislocations, and defects may be used to control electronic properties of graphene. By using advanced imaging techniques with high-resolution transmission electron microscopes, we have measured the strain and rotation fields about dislocations in monolayer graphene with single-atom sensitivity. These fields differ qualitatively from those given by conventional linear elasticity. However, atom positions calculated from two-dimensional (2D) discrete elasticity and three-dimensional discrete periodized Föppl-von Kármán equations (dpFvKEs) yield fields close to experiments when determined by geometric phase analysis. 2D theories produce symmetric fields whereas those from experiments exhibit asymmetries. Numerical solutions of dpFvKEs provide strain and rotation fields of dislocation dipoles and pairs that also exhibit asymmetries and, compared with experiments, may yield information on out-of-plane displacements of atoms. While discrete theories need to be solved numerically, analytical formulas for strains and rotation about dislocations can be obtained from 2D Mindlin's hyperstress theory. These formulas are very useful for fitting experimental data and provide a template to ascertain the importance of nonlinear and nonplanar effects. Measuring the parameters of this theory, we find two characteristic lengths between three and four times the lattice spacings that control dilatation and rotation about a dislocation. At larger distances from the dislocation core, the elastic fields decay to those of conventional elasticity. Our results may be relevant for strain engineering in graphene and other 2D materials of current interest.

  2. Rotator Cuff Repair in Adolescent Athletes.

    Science.gov (United States)

    Azzam, Michael G; Dugas, Jeffrey R; Andrews, James R; Goldstein, Samuel R; Emblom, Benton A; Cain, E Lyle

    2018-04-01

    -thickness and complete rotator cuff tears yielded successful outcomes among adolescents, with excellent functional outcomes at midterm follow-up. However, overhead athletes may have difficulty playing the same position after surgery.

  3. Economics and yields of energy plantations: Status and potential, 1992-1993 update

    International Nuclear Information System (INIS)

    Gambles, R.L.; Kenney, W.A.

    1994-01-01

    An update is presented of a study carried out to: determine the factors affecting the cost of energy conversion feedstocks in short rotation intensive culture plantations of trees; determine the factors influencing biomass yield; identify interrelationships between the previous two objectives; present estimates of potential biomass yields and associated economics; and to identify gaps in the knowledge of the economics and yields of biomass production and their interrelationships. Developments in economics and yields in short rotation intensive silviculture for the production of biomass energy since 1991 are documented. The most substantial changes have been: the introduction of new clones in Sweden with a 20% increase in yield; illustrating the potential genetic gains achievable through selection and breeding; and halving of harvesting costs with new machinery. Harvesting costs with chipping incorporated have fallen to $51.21/dry tonne. The twin row ESM and Frobbester harvesters have lower estimated costs of $36.62 and $ 33.69 respectively. Agricultural based machines have further reduced costs to $19.42 and $26.12/dry tonne. Using these new data, three new scenarios were developed for cost of production analysis, using contract labour, farm labour or farm labour plus a subsidy. A contracted operation is now viable with an annual equivalent net value (AENV) of $35/ha. With the use of farm labour for most operations and omitting land rent, profitability increased to $127/ha. With a subsidy of $75/ha, the AENV increases to $205/ha. 25 refs., 1 fig., 3 tabs

  4. Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation

    Science.gov (United States)

    Gerault, M.; Coltice, N.

    2017-12-01

    Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the

  5. Experimental study and CFD simulation of rotational eccentric cylinder in a magnetorheological fluid

    International Nuclear Information System (INIS)

    Omidbeygi, F.; Hashemabadi, S.H.

    2012-01-01

    In this study, a magnetorheological (MR) fluid is prepared using carbonyl iron filings and low viscosity lubricating oil. The effects of magnetic field and weight percentage of particles on the viscosity of the MR fluid have been measured using a rotational viscometer. The yield stress under an applied magnetic field was also obtained experimentally. In the absence of an applied magnetic field, the MR fluid behaves as a Newtonian fluid. When the magnetic field is applied, the MR fluid behaves like Bingham plastics with a magnetic field dependent yield stress. Afterward, the results compared with those of CFD simulation of two eccentric cylinders in the MR fluid. Results show that the influences of MR effects, caused by the applied magnetic field, on the model characteristics are significant and not negligible. The viscosity is enhanced by increasing of the magnetic field, eccentricity ratio and weight percentage of suspensions. The MR effects and increasing of weight percentage and eccentricity ratio also provide an enhancement in the yield stresses and required total torque for rotation of inner cylinder. Also the simulation results indicate a good representation of the experiment by the model. - Highlights: ► Preparation of a magnetorheological fluid with carbonyl iron particles in lubricating oil. ► Rheological measurement for influence of solid content and magnetic field intensity. ► Simulation of eccentric rotating cylinder in prepared MR fluid with CFD techniques.

  6. Economic Sustainability of Payments for Water Yield in Slash Pine Plantations in Florida

    Directory of Open Access Journals (Sweden)

    Andres Susaeta

    2016-09-01

    Full Text Available Forests play an important role with respect to water resources, and can be managed to increase surface- and groundwater recharge. With the creation of a forest water yield payment system, privately-owned forests, which comprise the majority of forest area in the Southeastern US, could become an important potential source of additional water supply. The economic tradeoffs between timber revenues and water yield are not well understood. To address this, we use the example case of slash pine production in Florida, and employ a forest stand-level optimal rotation model that incorporates forest management, and assessed a range of feasible water yield prices on forest profitability. Our analysis was limited to a range of water yield prices ($0.03, $0.07, and $0.30 kL−1 that would make water yield from slash pine economically competitive with water supply alternatives (e.g., reservoir construction. Even at relatively low water prices, we found that managing slash pine forests for both timber and water yield was preferred to managing just for timber when assuming an initial tree density less than 2200 trees·ha−1. However, with higher levels of initial tree planting density and low water prices, managing slash pine for timber production alone was more profitable unless stands are heavily-thinned, suggesting that even mid-rotation stands could be included in a forest water yield payments program. Compared to low-tree planting density and lightly thinned slash pine forests, an intensive approach of planting a lot of trees and then heavily thinning them generated 8% to 33% higher profits, and 11% more ($192 ha−1 on average. We conclude that payments for water yield are economically feasible for slash pine stands in Florida, and would benefit forest landowners, particularly with higher prices for water yield.

  7. Rotator cuff ruptures of the shoulder joint, sonography - arthrography

    International Nuclear Information System (INIS)

    Triebel, H.J.; Wening, V.; Witte, G.; Hamburg Univ.

    1986-01-01

    47 patients suspected of rutpure of the rotator cuff were sonographed and arthrographed. Rupture of the rotator cuff was diagnosed in 12 cases, both diagnostic methods yielding the same result. In 29 patients sonography and arthrography did not reveal any abnormal findings. Six ruptures evident in sonography were not confirmed by arthrography and were considered false positive. Direct pointers towards rupture of the cuff would be: echoless defects, cuff cannot be visualised fully or in part and irregularities of movement during dynamic examination. Echoless 'cystic' areas in the periarticular soft parts must be considered an indirect pointer. Echorich focal findings in the echopoor cuff represent a differential diagnostic problem and we cannot give a final assessment as yet. Shoulder sonography is justified as a screening method in suspicion of rotator cuff rupture before initiating arthrography. If sonography reveals no abnormal findings, shoulder arthrography need not be performed. (orig.) [de

  8. Long-Term Effects of Rotational Tillage On Visual Evaluation of Soil Structure, Soil Quality and Crop Yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard; Deen, Bill

    year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Measurements were carried out in the topsoil for three different rotations: R1 (C-C-C-C) continuous corn (Zea mays L.), R6. (C-C-O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare...... L.) and R8, (C-C-S-S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard plowing, MP. Topsoil...

  9. Life-cycle assessment of eucalyptus short-rotation coppices for bioenergy production in Southern France

    OpenAIRE

    Gabrielle , Benoit; Nguyen The , Nicolas; Maupu , Pauline; Vial , Estelle

    2011-01-01

    Short rotation coppices (SRCs) are considered prime candidates for biomass production, yielding good-quality feedstock that is easy to harvest. Besides technical, social and economical aspects, environmental issues are important to take into account when developing SRCs. Here, we evaluated the environmental impacts of delivering 1 GJ of heat from eucalyptus SRC using life cycle assessment (LCA), based on management scenarios involving different rotations lengths, fertilizer input rates, stem ...

  10. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  11. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  12. Rendimento de soja em sistema de integração lavoura-pecuária: efeito de métodos e intensidades de pastejo Soybean yield in an animal-crop rotation system: effects of grazing methods and intensities

    Directory of Open Access Journals (Sweden)

    Robson Lunardi

    2008-06-01

    Full Text Available Sistemas de integração lavoura-pecuária têm despertado o interesse de produtores que buscam a diversificação das atividades e o aumento da rentabilidade. O objetivo deste trabalho foi avaliar a influência de métodos e intensidades de pastejo de ovinos no rendimento da soja cultivada em dois espaçamentos entre linhas, em um sistema de integração lavoura-pecuária. O experimento foi conduzido no município de Eldorado do Sul - RS, na Estação Experimental Agronômica - UFRGS na safra 2003/2004, cujas coordenadas geográficas são 30005'22" S de latitude e 51039'08" W de longitude. O delineamento experimental foi em blocos casualizados num fatorial com duas intensidades de pastejo, baixa e moderada, dois métodos de pastejo, contínuo e rotacionado, e dois espaçamentos entre fileiras de soja, 0,2 e 0,4m, com quatro repetições. Uma área foi adicionada como testemunha sem pastejo. Avaliaram-se o rendimento e os componentes do rendimento da soja. A produção de soja foi superior nos tratamentos submetidos a pastejo em comparação aos não-pastejados. Dentre os pastejados, o rendimento de soja foi superior na intensidade de pastejo baixa em comparação com a intensidade moderada. A intensidade de pastejo utilizada no inverno é o principal determinante do sucesso desse sistema de integração lavoura-pecuária.Animal-crop rotation systems are fostering the interest of farmers searching for diversification and the increase of profitability. The experiment aimed to evaluate the influence of grazing methods and intensities applied on winter pastures grazed by lambs and its consequence for soybean yield cultivated in succession. This crop-animal rotation trial was conducted in 2003/2004 at UFRGS Agricultural Research Station (Universidade Federal do Rio Grande do Sul in Eldorado do Sul, Rio Grande do Sul state, Brazil, whose geographical coordinates are 30005'22" S latitude and 51039'08" W longitude. The experimental design was a

  13. On the experimental prediction of the stability threshold speed caused by rotating damping

    Science.gov (United States)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  14. Growth and yield models for Eucalyptus grandis grown in Swaziland ...

    African Journals Online (AJOL)

    The aim of this study was to develop a stand-level growth and yield model for short-rotationEucalyptus grandis grown for pulp wood production at Piggs Peak in Swaziland. The data were derived from a Nelder 1a spacing trial established with E. grandis clonal cuttings in 1998 and terminated in 2005. Planting density ...

  15. The influence of material properties on plastic hinge rotational capacity and strength

    NARCIS (Netherlands)

    Steenbergen, H.M.G.M.; Bijlaard, F.S.K.; Daniels, B.J.

    1996-01-01

    In this article the effects of standardised material stress-strain behaviours on plastic hinge length, moment and rotational capacity are investigated using a specially developed computer program. Material properties are described using three standard post-yield stress-strain characteristics, as

  16. Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester

    Science.gov (United States)

    Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro

    2013-12-01

    It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.

  17. Rotational temperature determinations in molecular gas lasers

    International Nuclear Information System (INIS)

    Weaver, L.A.; Taylor, L.H.; Denes, L.J.

    1975-01-01

    The small-signal gain expressions for vibrational-rotational transitions are examined in detail to determine possible methods of extracting the rotational temperature from experimental gain measurements in molecular gas lasers. Approximate values of T/subr/ can be deduced from the rotational quantum numbers for which the P- and R-branch gains are maximum. Quite accurate values of T/subr/ and the population inversion density (n/subv//sub prime/-n/subv//sub double-prime/) can be determined by fitting data to suitably linearized gain relationships, or by performing least-squares fits of the P- and R-branch experimental data to the full gain expressions. Experimental gain measurements for 15 P-branch and 12 R-branch transitions in the 10.4-μm CO 2 band have been performed for pulsed uv-preionized laser discharges in CO 2 : N 2 : He=1 : 2 : 3 mixtures at 600 Torr. These data are subjected to the several gain analyses described herein, yielding a rotational temperature of 401plus-or-minus10 degreeK and an inversion density of (3.77plus-or-minus0.07) times10 17 cm -3 for conditions of maximum gain. These techniques provide accurate values of the gas temperature in molecular gas lasers with excellent temporal and spatial resolution, and should be useful in extending the conversion efficiency and arcing limits of high-energy electrically exc []ted lasers

  18. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  19. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  20. Realization of mechanical rotation in superfluid helium

    Science.gov (United States)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.

    2017-09-01

    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  1. Crop rotation biomass and arbuscular mycorrhizal fungi effects on sugarcane yield Produção de biomassa e presença de fungos micorrízicos arbusculares em culturas utilizadas em rotação com a cana-de-açúcar

    Directory of Open Access Journals (Sweden)

    Edmilson José Ambrosano

    2010-12-01

    natural colonization of arbuscular mycorrhizal fungi (AMF of leguminous green manure and sunflower (Helianthus annuus L. in rotation with sugarcane. Their effect on stalk and sugar yield of sugarcane cv. IAC 87-3396 grown subsequently was also studied. Cane yield was harvested in three subsequent cuttings. Peanut cv. IAC-Caiapó, sunflower cv. IAC-Uruguai and velvet bean (Mucuna aterrimum Piper and Tracy were the rotational crops that resulted in the greater percentage of AMF. Sunflower was the specie that most extracted nutrients from the soil, followed by peanut cv. IAC-Tatu and mung bean (Vigna radiata L. Wilczek. The colonization with AMF had a positive correlation with sugarcane plant height, at the first cut (p = 0.01 and R = 0.52 but not with the stalk or cane yields. Sunflower was the rotational crop that brought about the greatest yield increase of the subsequent sugarcane crop: 46% increase in stalk yield and 50% in sugar yield compared with the control. Except for both peanut varieties, all rotational crops caused an increase in net income of the cropping system in the average of three sugarcane harvests.

  2. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons

    2016-09-01

    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  3. Effect of crop sequence and crop residues on soil C, soil N and yield of maize

    International Nuclear Information System (INIS)

    Shafi, M.; Bakht, J.; Attaullah; Khan, M.A.

    2010-01-01

    Improved management of nitrogen (N) in low N soils is critical for increased soil productivity and crop sustainability. The objective of the present study was to evaluate the effects of residues incorporation, residues retention on soil surface as mulch, fertilizer N and legumes in crop rotation on soil fertility and yield of maize (Zea may L.). Fertilizer N was applied to maize at the rate of 160 kg ha/sup -1/, and to wheat at the rate of 120 kg ha/sup -1/ or no fertilizer N application. Crop rotation with the sequence of maize after wheat (Triticum aestivum L.), maize after lentil (Lens culinaris Medic) or wheat after mash bean (Vigna mungo L.) arranged in a split plot design was followed. Post-harvest incorporation of crop residues and residues retention on soil surface as mulch had significantly (p=0.05) affected grain and stover yield during 2004 and 2005. Two years average data revealed that grain yield was increased by 3.31 and 6.72% due to mulch and residues incorporation. Similarly, stover yield was also enhanced by 5.39 and 10.27% due to the same treatment respectively. Mulch and residues incorporation also improved stover N uptake by 2.23 and 6.58%, respectively. Total soil N and organic matter was non significantly (p=0.05) increased by 5.63 and 2.38% due to mulch and 4.13, 7.75% because of crop residues incorporation in the soil. Maize grain and stover yield responded significantly (p=0.05) to the previous legume (lentil) crop when compared with the previous cereal crop (wheat). The treatment of lentil - maize(+N), on the average, increased grain yield of maize by 15.35%, stover yield by 16.84%, total soil N by 10.31% and organic matter by 10.17%. Similarly, fertilizer N applied to the previous wheat showed carry over effect on grain yield (6.82%) and stover yield (11.37%) of the following maize crop. The present study suggested that retention of residues on soil surface as mulch, incorporation of residues in soil and legume (lentil - maize) rotation

  4. Spin-rotation and NMR shielding constants in HCl

    Energy Technology Data Exchange (ETDEWEB)

    Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz [Laboratory of NMR Spectroscopy, Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2013-12-21

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl}  = −53.914 kHz and C{sub H}  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

  5. Spin-rotation and NMR shielding constants in HCl

    International Nuclear Information System (INIS)

    Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz

    2013-01-01

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of 1 H 35 Cl are C Cl   = −53.914 kHz and C H   = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values

  6. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain.

    Science.gov (United States)

    Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin

    2018-03-15

    The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.

  7. The Role of Iron and Zinc on Tuber Yield and Yield Components of Potato

    Directory of Open Access Journals (Sweden)

    Elham Jam

    2015-08-01

    Full Text Available The soils of potato production fields in Ardabil due to alkalinity and not having a proper crop rotations are deficient in micronutrients. To evaluate the effect of these micronutrients on the yield and some traits affecting potato tubers an experiment was conducted in a complete randomized block design with three replications in Ardabil during 2012. Micronutrient treatments used were the various concentrations of iron and zinc (0.002, 0.004 and 0.008 concentrations of these elements as Fe1Zn1, Fe1Zn2, Fe1Zn3, Fe2Zn1, Fe2Zn2, Fe2Zn3, Fe3Zn1 and Fe3Zn2 and a control treatment (Fe0Zn0. Analysis of variance of traits under study showed statistically significant differences among treatments in terms of tuber yield, number of tubers per plant, tuber size, skin thickness and volumetric weight and dry weight of tubers. The highest tuber yield (48.10 t.ha-1 and maximum skin thickness were obtained from Fe1Zn3 treatment. The highest tuber number belonged to Fe2Zn1 (0.004 and 0.002 concentrations of iron and zinc and Fe1Zn3 (0.002 and 0.008 concentrations of iron and zinc. Tuber weights higher than 35 grams and higest volumetric tuber weight were produced by using Fe3Zn2. The conclusion is this that using Fe1Zn3 traetment (0.002 and 0.008 concentrations resulted in highest tuber yield and thickness of tuber skin.

  8. Hydropyrolysis of n-Hexane and Toluene to Acetylene in Rotating-Arc Plasma

    Directory of Open Access Journals (Sweden)

    Jie Ma

    2017-07-01

    Full Text Available Thermal plasma pyrolysis is a powerful technology for converting waste or low-value materials to valuable gaseous hydrocarbons. This paper presents for the first time the hydropyrolysis of n-hexane and toluene in a rotating-arc plasma reactor. Effects of the mole ratio of H/C in the feed, power input and magnetic induction were investigated to evaluate the reaction performance. A lower H/C ratio could lead to a lower yield of C2H2 and lower specific energy consumption, and there existed an optimum range of power input for both n-hexane and toluene pyrolysis within the investigated range. The yield of C2H2 in n-hexane and toluene pyrolysis could reach 85% and 68%, respectively, with respective specific energy consumption (SEC of 13.8 kWh/kg·C2H2 and 19.9 kWh/kg·C2H2. Compared with the results reported in literature, the rotating-arc plasma process showed higher C2H2 yield and lower energy consumption, which is attributed to the better initial mixing of the reactant with the hot plasma gas and the more uniform temperature distribution.

  9. Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change

    International Nuclear Information System (INIS)

    Folberth, Christian; Yang, Hong; Gaiser, Thomas; Liu, Junguo; Wang, Xiuying; Williams, Jimmy; Schulin, Rainer

    2014-01-01

    Much of Africa is among the world’s regions with lowest yields in staple food crops, and climate change is expected to make it more difficult to catch up in crop production in particular in the long run. Various agronomic measures have been proposed for lifting agricultural production in Africa and to adapt it to climate change. Here, we present a projection of potential climate change impacts on maize yields under different intensification options in Sub-Saharan Africa (SSA) using an agronomic model, GIS-based EPIC (GEPIC). Fallow and nutrient management options taken into account are (a) conventional intensification with high mineral N supply and a bare fallow, (b) moderate mineral N supply and cowpea rotation, and (c) moderate mineral N supply and rotation with a fast growing N fixing tree Sesbania sesban. The simulations suggest that until the 2040s rotation with Sesbania will lead to an increase in yields due to increasing N supply besides improving water infiltration and soils’ water holding capacity. Intensive cultivation with a bare fallow or an herbaceous crop like cowpea in the rotation is predicted to result in lower yields and increased soil erosion during the same time span. However, yields are projected to decrease in all management scenarios towards the end of the century, should temperature increase beyond critical thresholds. The results suggest that the effect of eco-intensification as a sole means of adapting agriculture to climate change is limited in Sub-Saharan Africa. Highly adverse temperatures would rather have to be faced by improved heat tolerant cultivars, while strongly adverse decreases in precipitation would have to be faced by expanding irrigation where feasible. While the evaluation of changes in agro-environmental variables like soil organic carbon, erosion, and soil humidity hints that these are major factors influencing climate change resilience of the field crop, no direct relationship between these factors, crop yields

  10. Combining Biophysical and Price Simulations to Assess the Economics of Long-Term Crop Rotations

    OpenAIRE

    Murray-Prior, Roy B.; Whish, J.; Carberry, Peter S.; Dalgleish, N.

    2003-01-01

    Biophysical simulation models (e.g. APSIM) using historical rainfall data are increasingly being used to provide yield and other data on crop rotations in various regions of Australia. However, to analyse the economics of these rotations it is desirable to incorporate the other main driver of profitability, price variation. Because the context was that APSIM was being used to simulate an existing trial site being monitored by a farmer group Gross Margin output was considered most appropriate....

  11. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  12. Effects of Different Soil Tillage Intensity on Yields of Spring Barley

    Directory of Open Access Journals (Sweden)

    Alena Pernicová

    2014-01-01

    Full Text Available Within the period 1990–2012, effects of different soil tillage intensity on yields of spring barley were studied in a field experiment in the sugar-beet producing region (Ivanovice na Hané, Czech Republic. The forecrop of the spring barley was always sugar beet; following in three different crop rotations, after maize for silage, winter wheat and spring barley. Four variants of tillage were evaluated: Variant 1 – ploughing to the depth of 0.22 m; Variant 2 – shallow ploughing to the depth of 0.15 m; Variant 3 – no tillage; Variant 4 – shallow loosening soil to the depth of 0.10 m.Effect of different tillage on yields of spring barley was statistically insignificant. In all three crop rotations, the highest and the lowest average yields were obtained in Variant 2 (ploughing to the depth of 0.15 m and Variant 1 (ploughing to the depth of 0.22 m, respectively. Average yields in variants of soil tillage were these: variant 1 – 6.42 t.ha−1; variant 2 – 6.57 t.ha−1, variant 3 – 6.53 t.ha−1, variant 4 – 6.50 t.ha−1. The obtained results indicate that in these pedo-climatic conditions reduction of intensity soil tillage represented a very suitable alternative in case of growing spring barley after sugar beet as compared with the conventional method of tillage by ploughing to the depth of 0.22 m.

  13. Evaluation of the Agronomic Impacts on Yield-Scaled N2O Emission from Wheat and Maize Fields in China

    Directory of Open Access Journals (Sweden)

    Wenling Gao

    2017-07-01

    Full Text Available Contemporary crop production faces dual challenges of increasing crop yield while simultaneously reducing greenhouse gas emission. An integrated evaluation of the mitigation potential of yield-scaled nitrous oxide (N2O emission by adjusting cropping practices can benefit the innovation of climate smart cropping. This study conducted a meta-analysis to assess the impact of cropping systems and soil management practices on area- and yield-scaled N2O emissions during wheat and maize growing seasons in China. Results showed that the yield-scaled N2O emissions of winter wheat-upland crops rotation and single spring maize systems were respectively 64.6% and 40.2% lower than that of winter wheat-rice and summer maize-upland crops rotation systems. Compared to conventional N fertilizer, application of nitrification inhibitors and controlled-release fertilizers significantly decreased yield-scaled N2O emission by 41.7% and 22.0%, respectively. Crop straw returning showed no significant impacts on area- and yield-scaled N2O emissions. The effect of manure on yield-scaled N2O emission highly depended on its application mode. No tillage significantly increased the yield-scaled N2O emission as compared to conventional tillage. The above findings demonstrate that there is great potential to increase wheat and maize yields with lower N2O emissions through innovative cropping technique in China.

  14. The role of short-rotation woody crops in sustainable development

    International Nuclear Information System (INIS)

    Shepard, J.P.; Tolbert, V.R.

    1996-01-01

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society's needs

  15. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-10-01

    We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes less cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.

  16. Design of rotating mirror for ultra-high speed camera based on dynamic characteristic

    International Nuclear Information System (INIS)

    Li Chunbo; Chai Jinlong; Liang Yexing; Liu Chunping; Wang Hongzhi; Yu Chunhui; Li Jingzhen; Huang Hongbin

    2011-01-01

    A systematic design method has been proposed for studying the dynamic design of rotating mirror for ultra-high speed camera. With the finite element software, the numerical analyses of static, modal, harmonic responses and natural frequency sensitivity for the preliminary-designed rotating mirror were done based on the static and dynamic theories. Some experiments were done to verify the results. The physical dimensions of the rotating mirror were modified repeatedly according to the results for designing a new rotating mirror. Then simulation and experiments of fatigue life for the new rotating mirror under alternating force were done. The results show that the maximum static stress is less than the yield stress of the rotating mirror material, which proves the new rotating mirror will not be subjected to static strength failure. However, the results of modal and harmonic response analyses indicate that the dynamic characteristic of the new rotating mirror can not meet the design requirement for the first critical speed is less than the service speed. In all the physical dimensions of the rotating mirror, the circum radius of mirror body and natural frequency are negatively correlated and the degree of correlation is maximal. The first-order natural frequency in- creases from 459.4 Hz to 713.6 Hz, the rate of change is 55.3%, the first critical speed is up to 42 816 r/min, avoiding resonance successfully, and the fatigue strength of the new rotating mirror can meet the design requirement. (authors)

  17. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice

    Directory of Open Access Journals (Sweden)

    Motior M. Rahman

    2014-01-01

    Full Text Available Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE, nitrogen recovery efficiency (NRE, N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.

  18. The Dependence of Tropical Cyclone Count and Size on Rotation Rate

    Science.gov (United States)

    Chavas, D. R.; Reed, K. A.

    2017-12-01

    Both theory and idealized equilibrium modeling studies indicate that tropical cyclone size decreases with background rotation rate. In contrast, in real-world observations size tends to increase with latitude. Here we seek to resolve this apparent contradiction via a set of reduced-complexity global aquaplanet simulations with varying planetary rotation rates using the NCAR Community Atmosphere Model 5. The latitudinal distribution of both storm count and size are found to vary markedly with rotation rate, yielding insight into the dynamical constraints on tropical cyclone activity on a rotating planet. Moreover, storm size is found to vary non-monotonically with latitude, indicating that non-equilibrium effects are crucial to the life-cycle evolution of size in nature. Results are then compared to experiments in idealized, time-dependent limited-area modeling simulations using CM1 in axisymmetric and three-dimensional geometry. Taken together, this hierarchy of models is used to quantify the role of equilibrium versus transient controls on storm size and the relevance of each to real storms in nature.

  19. Mental rotation of letters, pictures, and three-dimensional objects in German dyslexic children.

    Science.gov (United States)

    Rüsseler, Jascha; Scholz, Janka; Jordan, Kirsten; Quaiser-Pohl, Claudia

    2005-12-01

    This study examines mental rotation ability in children with developmental dyslexia. Prior investigations have yielded equivocal results that might be due to differences in stimulus material and testing formats employed. Whereas some investigators found dyslexic readers to be impaired in mental rotation, others did not report any performance differences or even superior spatial performance for dyslexia. Here, we report a comparison of mental rotation for letters, three-dimensional figures sensu Shepard and Metzler, and colored pictures of animals or humans in second-grade German dyslexic readers. Findings indicate that dyslexic readers are impaired in mental rotation for all three kinds of stimuli. Effects of general intelligence were controlled. Furthermore, dyslexic children were deficient in other spatial abilities like identifying letters or forms among distracters. These results are discussed with respect to the hypotheses of a developmental dysfunction of the parietal cortex or a subtle anomaly in cerebellar function in dyslexic readers.

  20. Isolated Subscapularis Repair in Irreparable Posterosuperior Massive Rotator Cuff Tears Involving the Subscapularis Tendon.

    Science.gov (United States)

    Kim, Sung-Jae; Choi, Yun-Rak; Jung, Min; Lee, Won-Yong; Chun, Yong-Min

    2017-05-01

    No previous study has examined whether isolated subscapularis tendon repair in irreparable posterosuperior massive rotator tears involving the subscapularis tendon in relatively young patients without arthritis can yield satisfactory outcomes. We hypothesized that this procedure would produce favorable outcomes in patients who might otherwise be candidates for reverse arthroplasty. Case series; Level of evidence, 4. This retrospective study included 24 patients in their 50s and 60s, without shoulder arthritis, who underwent arthroscopic isolated subscapularis repair for an irreparable massive rotator cuff tear involving the subscapularis tendon. Preoperative and postoperative visual analog scale (VAS) pain scores, subjective shoulder values (SSVs), University of California at Los Angeles (UCLA) shoulder scores, American Shoulder and Elbow Surgeons (ASES) scores, subscapularis strength (modified bell-press test; maximum of 5), and shoulder active range of motion (ROM) were assessed. Postoperative magnetic resonance arthrography (MRA) was performed 6 months postoperatively to assess structural integrity of the repaired subscapularis. At a mean 34.8 months (range, 24-49 months) of follow-up, VAS pain scores (improved from 7.1 to 2.5), SSVs (33.3 to 75.2), ASES scores (35.9 to 76.0), UCLA shoulder scores (11.6 to 24.8), subscapularis strength, and ROM were significantly improved compared with preoperative measurements ( P rotation improved significantly ( P rotation exhibited no significant improvement. Follow-up MRA was performed in 22 patients (92%) and showed retear of the repaired subscapularis in 6 (27% of the 22). Isolated repair of the subscapularis tendon in irreparable massive rotator cuff tears involving the subscapularis tendon yielded satisfactory short-term outcomes and structural integrity in patients in their 50s and 60s without arthritis. If patients with irreparable massive rotator cuff tears involving the subscapularis tendon are relatively young or

  1. [Responses of rice-wheat rotation system in south Jiangsu to organic-inorganic compound fertilizers].

    Science.gov (United States)

    Tian, Heng-Da; Zhang, Li; Zhang, Jian-Chao; Wang, Qiu-Jun; Xu, Da-Bing; Yibati, Halihashi; Xu, Jia-Le; Huang, Qi-Wei

    2011-11-01

    In 2006-2007, a field trial was conducted to study the effects of applying three kinds of organic-inorganic compound fertilizers [rapeseed cake compost plus inorganic fertilizers (RCC), pig manure compost plus inorganic fertilizers (PMC), and Chinese medicine residues plus inorganic fertilizers (CMC)] on the crop growth and nitrogen (N) use efficiency of rice-wheat rotation system in South Jiangsu. Grain yield of wheat and rice in the different fertilization treatments was significantly higher than the control (no fertilization). In treatments RCC, PMC and CMC, the wheat yield was 13.1%, 32.2% and 39.3% lower than that of the NPK compound fertilizer (CF, 6760 kg x hm(-2)), respectively, but the rice yield (8504-9449 kg x hm(-2)) was significantly higher than that (7919 kg x hm(-2)) of CF, with an increment of 7.4%-19.3%. In wheat season, the aboveground dry mass, N accumulation, and N use efficiency in treatments RCC, PMC, and CMC were lower than those of CF, but in rice season, these parameters were significantly higher than or as the same as CF. In sum, all the test three compound fertilizers had positive effects on the rice yield and its nitrogen use efficiency in the rice-wheat rotation system, being most significant for RCC.

  2. Green Gram Rotation Effects on Maize Growth Parameters and Soil Quality in Myanmar

    Directory of Open Access Journals (Sweden)

    Myo Kywe

    2008-10-01

    Full Text Available At present maize–green gram crop rotations are not widely practiced among farmers in Myanmar. However, this cropping system might become more popular in the future given raising prices for green gram and maize grain and scarcity of mineral nitrogen (N fertilizers in this Asian country. The results of a cropping systems experiment with continuous maize versus a green gram-maize rotation, manure application (0 and 2 t ha−1 and phosphorus (P fertilization (0 and 15 kg P ha−1 in each of five consecutive seasons revealed a strong decline in total dry matter and grains yields for both crops irrespective of the treatment. Treatment effects on yield components, nutrient concentrations, mycorrhizal infection and nematode infestation were small or negligible. The data show that in addition to manure used at 2 t ha−1, application of mineral N fertilizers is essential to maintain particularly maize yields. A comparison of different green gram cultivars did not indicate genotype specific effects on maize growth. The incorporation of legume residues, unless they are used as animal feed, is recommended to increase the recycling of N and to balance N fluxes when green gram is cultivated for seed.

  3. Experimental study and CFD simulation of rotational eccentric cylinder in a magnetorheological fluid

    Science.gov (United States)

    Omidbeygi, F.; Hashemabadi, S. H.

    2012-07-01

    In this study, a magnetorheological (MR) fluid is prepared using carbonyl iron filings and low viscosity lubricating oil. The effects of magnetic field and weight percentage of particles on the viscosity of the MR fluid have been measured using a rotational viscometer. The yield stress under an applied magnetic field was also obtained experimentally. In the absence of an applied magnetic field, the MR fluid behaves as a Newtonian fluid. When the magnetic field is applied, the MR fluid behaves like Bingham plastics with a magnetic field dependent yield stress. Afterward, the results compared with those of CFD simulation of two eccentric cylinders in the MR fluid. Results show that the influences of MR effects, caused by the applied magnetic field, on the model characteristics are significant and not negligible. The viscosity is enhanced by increasing of the magnetic field, eccentricity ratio and weight percentage of suspensions. The MR effects and increasing of weight percentage and eccentricity ratio also provide an enhancement in the yield stresses and required total torque for rotation of inner cylinder. Also the simulation results indicate a good representation of the experiment by the model.

  4. Kinoform design with an optimal-rotation-angle method.

    Science.gov (United States)

    Bengtsson, J

    1994-10-10

    Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.

  5. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads

    Energy Technology Data Exchange (ETDEWEB)

    Goudfrooij, Paul; Correnti, Matteo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Girardi, Léo, E-mail: goudfroo@stsci.edu [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2017-09-01

    Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotation velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.

  6. Hydroxyl (6−2 airglow emission intensity ratios for rotational temperature determination

    Directory of Open Access Journals (Sweden)

    R. P. Lowe

    Full Text Available OH(6–2 Q1/P1 and R1/P1 airglow emission intensity ratios, for rotational states up to j' = 4.5, are measured to be lower than implied by transition probabilities published by various authors including Mies, Langhoff et al. and Turnbull and Lowe. Experimentally determined relative values of j' transitions yield OH(6–2 rotational temperatures 2 K lower than Langhoff et al., 7 K lower than Mies and 13 K lower than Turnbull and Lowe.Key words: Atmospheric composition and structure (airglow and aurora; pressure, density and temperature

  7. The yield of natural trembling aspen (populus tremula L.) stands (northern and eastern anatolia)

    International Nuclear Information System (INIS)

    Misir, M.; Misir, N.

    2013-01-01

    Trembling aspen (Populus tremula L.) is one of the most resistant to cold natural species in Turkey. In spite of its importance, there is no research on the yield. Hence, site productivity was determined and yield Table for undisturbed natural trembling aspen stands in Turkey was developed. Data were obtained from a total of 46 plots ranging in age from 17 to 82 years. Yield Table indicates that trembling aspen is very slow growing in young and middle age and Current Annual Increment (CAI) and Mean Annual Increment (MAI) values do not reach its maximum value, even at age 70. This is a proof that trembling aspen is not a fast growing species as expected. The reason for its slow growth is attributed to very short period of growth at very high altitudes. However, in the event of 50 years rotation age, mean annual volume increments of 8.0, 3.6 and 1.1 m3 are estimated for trembling aspen for site classes I, II and III, respectively. At extended rotations, trees of pole sizes could be obtained on all site classes. (author)

  8. Effects of rotation on the evolution of primordial stars

    Science.gov (United States)

    Ekström, S.; Meynet, G.; Chiappini, C.; Hirschi, R.; Maeder, A.

    2008-10-01

    evolution. The high rotation rate at death probably leads to a much stronger explosion than previously expected, changing the fate of the models. The inclusion of our yields in a chemical evolution model of the Galactic halo predicts log values of N/O, C/O and 12C/13C ratios of -2.2, -0.95 and 50 respectively at log O/H +12 = 4.2.

  9. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    Science.gov (United States)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  10. Yields of Selected Catch Crops in Dry Conditions

    Directory of Open Access Journals (Sweden)

    Martina Handlířová

    2016-01-01

    Full Text Available Catch crops mainly reduce soil erosion and leaching of nutrients as well as enrich the soil organic matter. The aim of this research is to evaluate the yields of catch crops of Sinapis alba, Phacelia tanacetifolia, Fagopyrum esculentum, Carthamus tinctorius and Secale cereale v. multicaule, and thus determine the possible applicability of catch crops in areas with high average annual temperature and low precipitation totals. The small-plot field experiment was performed on clay-loam gleyic fluvisol at the Field Experimental Station in Žabčice, Southern Moravia, Czech Republic, within the period of 2006-2014. The catch crops were set up after winter wheat in mid-August. The results have shown a statistically significant difference among different catch crops in yield of dry matter and even among years. The yield of catch crops is mainly dependent on a sufficient supply of water in the soil and the appropriate amount and distribution of rainfall over the growing season. Sinapis alba and Phacelia tanacetifolia regularly reached the highest yields. High yields were also achieved with Fagopyrum esculentum. Due to the method of crop rotation in the Czech Republic, with a predominance of Brassica napus var. napus, it is inappropriate to include Sinapis alba. It is the best to grow Phacelia tanacetifolia and even Fagopyrum esculentum, or a mixture thereof, depending on the use of catch crops.

  11. The silviculture, nutrition and economics of short rotation willow coppice in the uplands of mid-Wales

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R J; Randerson, P F; Slater, F M

    2000-07-01

    The potential of short rotation coppice as a biomass crop on land over 250m (the uplands) of mid Wales was studied. The results found in this study indicate that growing short rotation coppice willow in the uplands is a viable proposition with regard to establishment success and yields. In the event of a secure wood chip market in Wales, returns to the grower would be comparable to those from sheep production. (author)

  12. Population dynamics of plant nematodes in cultivated soil: length of rotation in newly cleared and old agricultural land.

    Science.gov (United States)

    Good, J M; Murphy, W S; Brodie, B B

    1973-04-01

    During a 6-year study of 1-, 2-, and 3-year crop rotations, population densities of Pratylenchus brachyurus, Trichodorus christiei, and Meloidogyne incognita were significantly affected by the choice of crops but not by length of crop rotation. The density of P. brachyurus and T. christiei increased rapidly on milo (Sorghum vulgate). In addition, populations of P. brachyurus increased significantly in cropping systems that involved crotalaria (C. rnucronata), millet (Setaria italica), and sudangrass (Sorghum sudanense). Lowest numbers of P. brachyurus occurred where okra (Hibiscus esculentus) was grown or where land was fallow. The largest increase in populations of T. christiei occurred in cropping systems that involved millet, sudangrass, and okra whereas the smallest increase occurred in cropping systems that involved crotalaria or fallow. A winter cover of rye (Secale cereale) had no distinguishable effect on population densities of P. brachyurus or T. christiei. Meloidogyne incognita was detected during the fourth year in both newly cleared and old agricultural land when okra was included in the cropping system. Detectable populations of M. incognita did not develop in any of the other cropping systems. Yields of tomato transplants were higher on the newly cleared land than on the old land. Highest yields were obtained when crotalaria was included in the cropping system. Lowest yields were obtained when milo, or fallow were included in the cropping system. Length of rotation had no distinguishable effect on yields of tomato transplants.

  13. Low Barrier Methyl Rotation in 3-PENTYN-1-OL as Observed by Microwave Spectroscopy

    Science.gov (United States)

    Eibl, Konrad; Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Kleiner, Isabelle

    2016-06-01

    It is known that the barrier to internal rotation of the methyl groups in ethane (1) is about 1000 wn. If a C-C-triple bond is inserted between the methyl groups as a spacer (2), the torsional barrier is assumed to be dramatically lower, which is a common feature of ethinyl groups in general. To study this effect of almost free internal rotation, we measured the rotational spectrum of 3-pentyn-1-ol (3) by pulsed jet Fourier transform microwave spectroscopy in the frequency range from 2 to 26.5 GHz. Quantum chemical calculations at the MP2/6-311++G(d,p) level of theory yielded five stable conformers on the potential energy surface. The most stable conformer, which possesses C1 symmetry, was assigned and fitted using two theoretical approaches treating internal rotations, the rho axis method (BELGI-C1) and the combined axis method (XIAM). The molecular parameters as well as the internal rotation parameters were determined. A very low barrier to internal rotation of the methyl group of only 9.4545(95) wn was observed. R. M. Pitzer, Acc. Chem. Res., 1983, 16, 207-210

  14. Critical rotation of general-relativistic polytropic models revisited

    Science.gov (United States)

    Geroyannis, V.; Karageorgopoulos, V.

    2013-09-01

    We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.

  15. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Köster, Oliver, E-mail: oliver.koester@cern.ch; Fiscarelli, Lucio, E-mail: lucio.fiscarelli@cern.ch; Russenschuck, Stephan, E-mail: stephan.russenschuck@cern.ch

    2016-05-11

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  16. Asynchronous Magnetic Bead Rotation (AMBR Microviscometer for Label-Free DNA Analysis

    Directory of Open Access Journals (Sweden)

    Yunzi Li

    2014-03-01

    Full Text Available We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.

  17. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, Kurt C; Kollas, Chris

    2017-01-01

    Realistic estimation of grain nitrogen (N; N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simul...

  18. A new representation of rotational flow fields satisfying Euler's equation of an ideal compressible fluid

    International Nuclear Information System (INIS)

    Kambe, Tsutomu

    2013-01-01

    A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)

  19. Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators

    Science.gov (United States)

    Karki, Dolendra; Stenger, Vincent; Pollick, Andrea; Levy, Miguel

    2017-06-01

    This report describes the fabrication, characterization, and transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth-substituted rare-earth iron garnets were produced from commercially available materials by mechanical lapping, dice polishing, and crystal-ion-slicing. Eleven- μ m -thick films were shown to retain the 45 ° Faraday rotation of the bulk material to within 2 ° at 1.55 μ m wavelength without re-poling. Anti-reflection coated films evince 0.09 dB insertion loses and better than -20 dB extinction ratios. Lower extinction ratios than the bulk are ascribed to multimode propagation. Significantly larger extinction ratios are predicted for single-mode waveguides. Faraday rotation, extinction ratios, and insertion loss tests on He-ion implanted slab waveguides of the same material yielded similar results. The work culminated with bond alignment and transfer of 7 μ m -thick crystal-ion-sliced 50 × 480 μ m 2 films onto silicon photonic substrates.

  20. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    OpenAIRE

    Kuo, S.; Huang, B.; Bembenek, R.

    2001-01-01

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation sin...

  1. Yield stress determination from miniaturized disk bend test data

    International Nuclear Information System (INIS)

    Sohn, D.S.; Kohse, G.; Harling, O.K.

    1985-04-01

    Methodology for testing 3.0 mm diameter by 0.25 mm thick disks by bending in a punch and die has been described previously. This paper describes the analysis of load/deflection data from such miniaturized disk bend tests (MDBT) using a finite element simulation. Good simulation has been achieved up to a point just beyond the predominantly elastic response, linear initial region. The load at which deviation from linearity begins has been found to correlate with yield stress, and yield stress has been successfully extracted from disk bend tests of a number of known materials. Although finite element codes capable of dealing with large strains and large rotations have been used, simulation of the entire load/deflection curve up to fracture of the specimen has not yet been achieved

  2. Chromospheric rotation. II. Dependence on the size of chromospheric features

    Energy Technology Data Exchange (ETDEWEB)

    Azzarelli, L; Casalini, P; Cerri, S; Denoth, F [Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Elaborazione della Informazione

    1979-08-01

    The dependence of solar rotation on the size of the chromospheric tracers is considered. On the basis of an analysis of Ca II K/sub 3/ daily filtergrams taken in the period 8 May-14 August, 1972, chromospheric features can be divided into two classes according to their size. Features with size falling into the range 24 000-110 000 km can be identified with network elements, while those falling into the range 120 000-300 000 km with active regions, or brightness features of comparable size present at high latitudes. The rotation rate is determined separately for the two families of chromospheric features by means of a cross-correlation technique directly yields the average daily displacement of tracers due to rotation. Before computing the cross-correlation functions, chromospheric brightness data have been filtered with appropriate bandpass and highpass filters for separating spatial periodicities whose wavelengths fall into the two ranges of size, characteristic of the network pattern and of the activity centers. A difference less than 1% of the rotation rate of the two families of chromospheric features has been found. This is an indication for a substantial corotation at chromospheric levels of different short-lived features, both related to solar activity and controlled by the convective supergranular motions.

  3. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  4. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  5. Analysis of shape isomer yields of Pu in the framework of dynamical ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 78, No. 2 ... Abstract. Data on shape isomer yield for α+235U reaction at Elab α. = 20–29 MeV are ... a fissionable nucleus via different channels can be calculated using a standard Monte ... the liquid drop potential energy Vld(r, J) of a rotating nucleus with an angular momentum. J and the ...

  6. Breakdown of the large-scale circulation in Γ=1/2 rotating Rayleigh-Bénard flow.

    Science.gov (United States)

    Stevens, Richard J A M; Clercx, Herman J H; Lohse, Detlef

    2012-11-01

    Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a large-scale circulation (LSC), consisting of a single convection roll, at no or weak rotation to a regime dominated by vertically aligned vortices at strong rotation. For a sample with an aspect ratio Γ=D/L=1 (D is the sample diameter and L is its height) the transition between the two regimes is indicated by a strong decrease in the LSC strength. In contrast, for Γ=1/2, Weiss and Ahlers [J. Fluid Mech. 688, 461 (2011)] revealed the presence of a LSC-like sidewall temperature signature beyond the critical rotation rate. They suggested that this might be due to the formation of a two-vortex state, in which one vortex extends vertically from the bottom into the sample interior and brings up warm fluid while another vortex brings down cold fluid from the top; this flow field would yield a sidewall temperature signature similar to that of the LSC. Here we show by direct numerical simulations for Γ=1/2 and parameters that allow direct comparison with experiment that the spatial organization of the vertically aligned vortical structures in the convection cell do indeed yield (for the time average) a sinusoidal variation of the temperature near the sidewall, as found in the experiment. This is also the essential and nontrivial difference with the Γ=1 sample, where the vertically aligned vortices are distributed randomly.

  7. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2013-12-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  8. Elastic-plastic stresses in a thin rotating disk with shafthaving density variation parameter under steady-state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Steady thermal stresses in a rotating disc with shaft having density variation parameter subjected to thermal load have been derived by using Seth's transition theory. Neither the yields criterion nor the associated flow rule is assumed here. Results are depicted graphically. It has been seen that compressible material required higher percentage increased angular speed to become fully-plastic as compare to rotating disc made of incompressible material. Circumferential stresses are maximal at the outer surface of the rotating disc. With the introduction of thermal effect it decreases the value of radial and circumferential stresses at inner and outer surface for fully-plastic state.

  9. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?

    Science.gov (United States)

    Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Lehtonen, Heikki

    2016-01-01

    Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers' land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer's diversification actions.

  10. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  11. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  12. Performance of process-based models for simulation of grain N in crop rotations across Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, KC; Kollas, C

    2017-01-01

    The accurate estimation of crop grain nitrogen (N; N in grain yield) is crucial for optimizing agricultural N management, especially in crop rotations. In the present study, 12 process-based models were applied to simulate the grain N of i) seven crops in rotations, ii) across various pedo...... (Brassica napus L.). These differences are linked to the intensity of parameterization with better parameterized crops showing lower prediction errors. The model performance was influenced by N fertilization and irrigation treatments, and a majority of the predictions were more accurate under low N...

  13. ECONOMIC BACKGROUND CROP ROTATION AS A WAY TO PREVENT THE DEGRADATION OF AGRICULTURAL LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Shevchenko O.

    2017-05-01

    Full Text Available This article explores that to successfully combat land degradation on lands occupied in agriculture, it is necessary to conduct complex soil conservation measures constitute a single interconnected system and protect soil from degradation. Found that rotation – a reasonable compromise between the main requirements of production, organization of territory and environment, placing crops in view of a favorable combination; compliance with acceptable saturation parameters optimally varying cultures, and thus the possible timing of a return to their previous cultivation while taking into account the duration of the accepted rotation. Determined that the implementation and observance of crop rotation and better ensure the replenishment of nutrients of the soil, improving and maintaining its favorable physical properties, prevent the emergence of weeds, pests and pathogens cultivated crops and preventing the depletion of soil degradation processes and development. Found that scientifically based crop rotation is the basis for the use of all complex farming practices, differentiated cultivation, rational use of fertilizers and caring for plants. Rotation is correct – it agroecosystem, which created the best conditions for growth and development of various crops, thus providing a growing high and stable yields, obtaining high quality products. Soil and climatic conditions, specialty farms, crops structure and their biological characteristics defined as the type of crop rotation and crop rotation order. Each rotation should be selected such status, which would provide the greatest yield per unit area of rational use of all land. Therefore, proper placement crops in crop rotation must necessarily take into account the requirements of crops to their predecessor, thus it must evaluate not only the direct action of the first culture, but also take into account the impact of the latter on the following crops rotation. On unproductive and degraded lands is

  14. Three-dimensional evaluation of cyclic displacement in single-row and double-row rotator cuff reconstructions under static external rotation.

    Science.gov (United States)

    Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter M; Pape, Dietrich

    2013-01-01

    The double-row suture bridge repair was recently introduced and has demonstrated superior biomechanical results and higher yield load compared with the traditional double-row technique. It therefore seemed reasonable to compare this second generation of double-row constructs to the modified single-row double mattress reconstruction. The repair technique, initial tear size, and tendon subregion will have a significant effect on 3-dimensional (3D) cyclic displacement under additional static external rotation of a modified single-row compared with a double-row rotator cuff repair. Controlled laboratory study. Rotator cuff tears (small to medium: 25 mm; medium to large: 35 mm) were created in 24 human cadaveric shoulders. Rotator cuff repairs were performed as modified single-row or double-row repairs, and cyclic loading (10-60 N, 10-100 N) was applied under 20° of external rotation. Radiostereometric analysis was used to calculate cyclic displacement in the anteroposterior (x), craniocaudal (y), and mediolateral (z) planes with a focus on the repair constructs and the initial tear size. Moreover, differences in cyclic displacement of the anterior compared with the posterior tendon subregions were calculated. Significantly lower cyclic displacement was seen in small to medium tears for the single-row compared with double-row repair at 60 and 100 N in the x plane (P = .001) and y plane (P = .001). The results were similar in medium to large tears at 100 N in the x plane (P = .004). Comparison of 25-mm versus 35-mm tears did not show any statistically significant differences for the single-row repairs. In the double-row repairs, lower gap formation was found for the 35-mm tears (P ≤ .05). Comparison of the anterior versus posterior tendon subregions revealed a trend toward higher anterior gap formation, although this was statistically not significant. The tested single-row reconstruction achieved superior results in 3D cyclic displacement to the tested double

  15. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2012-01-01

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  16. FITTING HELICAL SNAKE AND ROTATOR FIELD STRENGTH MEASUREMENTS IN RHIC

    International Nuclear Information System (INIS)

    RANJBAR, V.; LUCCIO, A.U.; MACKAY, W.W.; TSOUPAS, N.

    2001-01-01

    We examined recent multi-pole measurements for the helical snakes and rotators in RHIC to generate a full field map. Since multi-pole measurements yield real field values for B, field components we developed a unique technique to evaluate the full fields using a traditional finite element analysis software [1]. From these measurements we employed SNIG [2] to generate orbit and Spin plots. From orbit values we generated a transfer matrix for the first snake

  17. Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt

    Energy Technology Data Exchange (ETDEWEB)

    Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gelfand, Ilya; Hurtt, George C.

    2014-10-01

    Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands.

  18. Spectroscopy of molecules in very high rotational states using an optical centrifuge.

    Science.gov (United States)

    Yuan, Liwei; Toro, Carlos; Bell, Mack; Mullin, Amy S

    2011-01-01

    We have developed a high power optical centrifuge for measuring the spectroscopy of molecules in extreme rotational states. The optical centrifuge has a pulse energy that is more than 2 orders of magnitude greater than in earlier instruments. The large pulse energy allows us to drive substantial number densities of molecules to extreme rotational states in order to measure new spectroscopic transitions that are not accessible with traditional methods. Here we demonstrate the use of the optical centrifuge for measuring IR transitions of N2O from states that have been inaccessible until now. In these studies, the optical centrifuge drives N2O molecules into states with J ~ 200 and we use high resolution transient IR probing to measure the appearance of population in states with J = 93-99 that result from collisional cooling of the centrifuged molecules. High resolution Doppler broadened line profile measurements yield information about the rotational and translational energy distributions in the optical centrifuge.

  19. Rotator cuff exercises

    Science.gov (United States)

    ... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

  20. Tile Drainage Nitrate Losses and Corn Yield Response to Fall and Spring Nitrogen Management.

    Science.gov (United States)

    Pittelkow, Cameron M; Clover, Matthew W; Hoeft, Robert G; Nafziger, Emerson D; Warren, Jeffery J; Gonzini, Lisa C; Greer, Kristin D

    2017-09-01

    Nitrogen (N) management strategies that maintain high crop productivity with reduced water quality impacts are needed for tile-drained landscapes of the US Midwest. The objectives of this study were to determine the effect of N application rate, timing, and fall nitrapyrin addition on tile drainage nitrate losses, corn ( L.) yield, N recovery efficiency, and postharvest soil nitrate content over 3 yr in a corn-soybean [ (L.) Merr.] rotation. In addition to an unfertilized control, the following eight N treatments were applied as anhydrous ammonia in a replicated, field-scale experiment with both corn and soybean phases present each year in Illinois: fall and spring applications of 78, 156, and 234 kg N ha, fall application of 156 kg N ha + nitrapyrin, and sidedress (V5-V6) application of 156 kg N ha. Across the 3-yr study period, increases in flow-weighted NO concentrations were found with increasing N rate for fall and spring N applications, whereas N load results were variable. At the same N rate, spring vs. fall N applications reduced flow-weighted NO concentrations only in the corn-soybean-corn rotation. Fall nitrapyrin and sidedress N treatments did not decrease flo8w-weighted NO concentrations in either rotation compared with fall and spring N applications, respectively, or increase corn yield, crop N uptake, or N recovery efficiency in any year. This study indicates that compared with fall N application, spring and sidedress N applications (for corn-soybean-corn) and sidedress N applications (for soybean-corn-soybean) reduced 3-yr mean flow-weighted NO concentrations while maintaining yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Nitrogen, corn, and forest genetics: the agricultural yield strategy-implications for Douglas-fir management.

    Science.gov (United States)

    Roy R. Silen

    1982-01-01

    Agricultural yield strategy simply aims to increase number of grain bearing stalks per acre. Forestry strategies look to thinning, fertilizer, and genetics, each to provide gains. The agricultural strategies applied to Douglas-fir appear to be impractical for long rotations. Concern is expressed for commitments to perpetual inputs of materials and energy to keep a...

  2. Climate change impacts on maize and dry bean yields of smallholder farmers in Honduras

    Directory of Open Access Journals (Sweden)

    MENDOZA, Carlos O.

    2013-06-01

    Full Text Available The rotation maize and dry bean provides the main food supply of smallholder farmers in Honduras. Crop model assessment of climate change impacts (2070–2099 compared to a 1961–1990 baseline on a maize–dry bean rotation for several sites across a range of climatic zones and elevations in Honduras. Low productivity systems, together with an uncertain future climate, pose a high level of risk for food security. The cropping systems simulation dynamic model CropSyst was calibrated and validated upon field trail site at Zamorano, then run with baseline and future climate scenarios based upon general circulation models (GCM and the ClimGen synthetic daily weather generator. Results indicate large uncertainty in crop production from various GCM simulations and future emissions scenarios, but generally reduced yields at low elevations by 0 % to 22 % in suitable areas for crop production and increased yield at the cooler, on the hillsides, where farming needs to reduce soil erosion with conservation techniques. Further studies are needed to investigate strategies to reduce impacts and to explore adaptation tactics.

  3. A planning and delivery study of a rotational IMRT technique with burst delivery

    International Nuclear Information System (INIS)

    Kainz, Kristofer; Chen, Guang-Pei; Chang, Yu-Wen; Prah, Douglas; Sharon Qi, X.; Shukla, Himanshu P.; Stahl, Johannes; Allen Li, X.

    2011-01-01

    Purpose: A novel rotational IMRT (rIMRT) technique using burst delivery (continuous gantry rotation with beam off during MLC repositioning) is investigated. The authors evaluate the plan quality and delivery efficiency and accuracy of this dynamic technique with a conventional flat 6 MV photon beam. Methods: Burst-delivery rIMRT was implemented in a planning system and delivered with a 160-MLC linac. Ten rIMRT plans were generated for five anonymized patient cases encompassing head and neck, brain, prostate, and prone breast. All plans were analyzed retrospectively and not used for treatment. Among the varied plan parameters were the number of optimization points, number of arcs, gantry speed, and gantry angle range (alpha) over which the beam is turned on at each optimization point. Combined rotational/step-and-shoot rIMRT plans were also created by superimposing multiple-segment static fields at several optimization points. The rIMRT trial plans were compared with each other and with plans generated using helical tomotherapy and VMAT. Burst-mode rotational IMRT plans were delivered and verified using a diode array, ionization chambers, thermoluminescent dosimeters, and film. Results: Burst-mode rIMRT can achieve plan quality comparable to helical tomotherapy, while the former may lead to slightly better OAR sparing for certain cases and the latter generally achieves slightly lower hot spots. Few instances were found in which increasing the number of optimization points above 36, or superimposing step-and-shoot IMRT segments, led to statistically significant improvements in OAR sparing. Using an additional rIMRT partial arc yielded substantial OAR dose improvements for the brain case. Measured doses from the rIMRT plan delivery were within 4% of the plan calculation in low dose gradient regions. Delivery time range was 228-375 s for single-arc rIMRT 200-cGy prescription with a 300 MU/min dose rate, comparable to tomotherapy and VMAT. Conclusions: Rotational IMRT

  4. Tomato Yield and Water Use Efficiency - Coupling Effects between Growth Stage Specific Soil Water Deficits

    DEFF Research Database (Denmark)

    Chen, Si; Zhenjiang, Zhou; Andersen, Mathias Neumann

    2015-01-01

    To investigate the sensitivity of tomato yield and water use efficiency (WUE) to soil water content at different growth stages, the central composite rotatable design (CCRD) was employed in a five-factor-five-level pot experiment under regulated deficit irrigation. Two regression models concerning...... the effects of stage-specific soil water content on tomato yield and WUE were established. The results showed that the lowest available soil water (ASW) content (around 28%) during vegetative growth stage (here denoted θ1) resulted in high yield and WUE. Moderate (around 69% ASW) during blooming and fruit...... effects of ASW in two growth stages were between θ2 and θ5, θ3. In both cases a moderate θ2 was a precondition for maximum yield response to increasing θ5 and θ3. Sensitivity analysis revealed that yield was most sensitive to soil water content at fruit maturity (θ5). Numerical inspection...

  5. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gulshani, P., E-mail: matlap@bell.net [NUTECH Services, 3313 Fenwick Crescent, Mississauga, Ontario, L5L 5N1 (Canada)

    2016-07-07

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  6. Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.; Frey, H. (Technical Monitor)

    2000-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.

  7. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    Science.gov (United States)

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Pairing vibrational and isospin rotational states in a particle number and isospin projected generator coordinate method

    International Nuclear Information System (INIS)

    Chen, H.T.; Muether, H.; Faessler, A.

    1978-01-01

    Pairing vibrational and isospin rotational states are described in different approximations based on particle number and isospin projected, proton-proton, neutron-neutron and proton-neutron pairing wave functions and on the generator coordinate method (GCM). The investigations are performed in models for which an exact group theoretical solution exists. It turns out that a particle number and isospin projection is essential to yield a good approximation to the ground state or isospin yrast state energies. For strong pairing correlations (pairing force constant equal to the single-particle level distance) isospin cranking (-ωTsub(x)) yields with particle number projected pairing wave function also good agreement with the exact energies. GCM wave functions generated by particle number and isospin projected BCS functions with different amounts of pairing correlations yield for the lowest T=0 and T=2 states energies which are practically indistinguishable from the exact solutions. But even the second and third lowest energies of charge-symmetric states are still very reliable. Thus it is concluded that also in realistic cases isospin rotational and pairing vibrational states may be described in the framework of the GCM method with isospin and particle number projected generating wave functions. (Auth.)

  9. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  10. Gamma rays role in the improvement of yield and early maturity in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Moualla, M Y; Ali, N M [Atomic Energy Commission, P.O.Box 6091, Damascus (Syrian Arab Republic)

    1995-10-01

    Seeds from soybean variety glycine max (L) Merr., were irradiated with three doses of gamma rays: 100, 150 and 200 Gray in order to obtain high yielding and early maturity mutants to grown after wheat in a two crop rotation. All the three doses induced morphological and physiological variation and malformation that increased with increasing the dose. Coefficient of variation values were higher in M2 than in their respective values of M3. The results showed no selection efficiency under the non optimal environmental growing conditions with this lack of efficiency being more evident for yield than for early maturity. Using FTAB statistical programme 20 M2 and M3 plant were selected for each character and when evaluated in the following generation, it was clear that selection efficiency was higher for early maturity than for yield; the latter being high yielding and 4 early maturing m 4 mutants were obtained. 3 tabs.

  11. Gamma rays role in the improvement of yield and early maturity in soybean

    International Nuclear Information System (INIS)

    Moualla, M.Y.; Ali, N.M.

    1995-01-01

    Seeds from soybean variety glycine max (L) Merr., were irradiated with three doses of gamma rays: 100, 150 and 200 Gray in order to obtain high yielding and early maturity mutants to grown after wheat in a two crop rotation. All the three doses induced morphological and physiological variation and malformation that increased with increasing the dose. Coefficient of variation values were higher in M2 than in their respective values of M3. The results showed no selection efficiency under the non optimal environmental growing conditions with this lack of efficiency being more evident for yield than for early maturity. Using FTAB statistical programme 20 M2 and M3 plant were selected for each character and when evaluated in the following generation, it was clear that selection efficiency was higher for early maturity than for yield; the latter being high yielding and 4 early maturing m 4 mutants were obtained. 3 tabs

  12. Observation of rotationally mediated focused inelastic resonances in D2 scattering from Cu(001)

    International Nuclear Information System (INIS)

    Bertino, M.F.; Miret-Artes, S.; Toennies, J.P.; Benedek, G.

    1997-01-01

    Rotationally mediated focused inelastic resonances (RMFIR s) in the angular distributions of D 2 scattered from Cu(001) are observed. The FIR effect involves a phonon-assisted focusing of an incident beam of arbitrary energy and direction into a final channel of one single well-defined energy and direction. Surprisingly for an incident energy E i =27meV the RMFIR conditions for the scattered beam coincide with the kinematic conditions required for a further elastic selective adsorption mechanism called the rotationally mediated critical kinematic (RMCK) effect. By taking advantage of the RMFIR and elastic RMCK effects, three effective bound states of energy ε n,J =-21.5meV, -12.4meV, and -10.3meV are determined. They are attributed to the lowest bound states ε 0 =-28.9meV and ε 1 =-19.8meV combined with the rotational excitation energy for J=1 to be B rot J(J+1)=7.41meV, respectively, and ε 3 =-10.3meV combined with the rotational ground state (J=0). While the ε 1 and ε 3 states appear as maxima in the angular distribution at RMFIR conditions, the ε 0 yields a striking minimum which represents the first evidence of what we call an anti-FIR feature. Theoretical arguments to explain the different FIR signatures observed are provided. A fit of a phenomenological interaction potential to the experimental bound-state values yields a value for the well depth D=32.5meV which is somewhat deeper than that found previously. copyright 1997 The American Physical Society

  13. Rotational bed therapy to prevent and treat respiratory complications: a review and meta-analysis.

    Science.gov (United States)

    Goldhill, David R; Imhoff, Michael; McLean, Barbara; Waldmann, Carl

    2007-01-01

    Immobility is associated with complications involving many body systems. To review the effect of rotational therapy (use of therapeutic surfaces that turn on their longitudinal axes) on prevention and/or treatment of respiratory complications in critically ill patients. Published articles evaluating prophylaxis and/or treatment were reviewed. Prospective randomized controlled trials were assessed for quality and included in meta-analyses. A literature search yielded 15 nonrandomized, uncontrolled, or retrospective studies. Twenty prospective randomized controlled trials on rotational therapy were published between 1987 and 2004. Various types of beds were studied, but few details on the rotational parameters were reported. The usual control was manual turning of patients by nurses every 2 hours. One animal investigation and 12 clinical trials addressed the effectiveness of rotational therapy in preventing respiratory complications. Significant benefits were reported in the animal study and 4 of the trials. Significant benefits to patients were reported in 2 of another 4 studies focused on treatment of established complications. Researchers have examined the effects of rotational therapy on mucus transport, intrapulmonary shunt, hemodynamic effects, urine output, and intracranial pressure. Little convincing evidence is available, however, on the most effective rotation parameters (eg, degree, pause time, and amount of time per day). Meta-analysis suggests that rotational therapy decreases the incidence of pneumonia but has no effect on duration of mechanical ventilation, number of days in intensive care, or hospital mortality. Rotational therapy may be useful for preventing and treating respiratory complications in selected critically ill patients receiving mechanical ventilation.

  14. Velocity-dependent changes of rotational axes in the non-visual control of unconstrained 3D arm motions.

    Science.gov (United States)

    Isableu, B; Rezzoug, N; Mallet, G; Bernardin, D; Gorce, P; Pagano, C C

    2009-12-29

    We examined the roles of inertial (e(3)), shoulder-centre of mass (SH-CM) and shoulder-elbow articular (SH-EL) rotation axes in the non-visual control of unconstrained 3D arm rotations. Subjects rotated the arm in elbow configurations that yielded either a constant or variable separation between these axes. We hypothesized that increasing the motion frequency and the task complexity would result in the limbs' rotational axis to correspond to e(3) in order to minimize rotational resistances. Results showed two velocity-dependent profiles wherein the rotation axis coincided with the SH-EL axis for S and I velocities and then in the F velocity shifted to either a SH-CM/e(3) trade-off axis for one profile, or to no preferential axis for the other. A third profile was velocity-independent, with the SH-CM/e(3) trade-off axis being adopted. Our results are the first to provide evidence that the rotational axis of a multi-articulated limb may change from a geometrical axis of rotation to a mass or inertia based axis as motion frequency increases. These findings are discussed within the framework of the minimum inertia tensor model (MIT), which shows that rotations about e(3) reduce the amount of joint muscle torque that must be produced by employing the interaction torque to assist movement.

  15. Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals.

    Science.gov (United States)

    Ma, J; Pesin, D A

    2017-03-10

    We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.

  16. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  17. Boreside rotating ultrasonic tester for wastage determination of LMFBR-type steam generator tubes

    International Nuclear Information System (INIS)

    Neely, H.H.; Renger, H.L.

    1979-01-01

    Large sodium-water reaction (SWR) leak tests are being run in near-prototypic steam generators at prototypic plant conditions of the Liquid Metal Fast Breeder Reactor (LMFBR). These tests simulate various types of steam tube failure at predetermined locations. A SWR results in a highly energetic-exothermic-caustic reaction which erodes neighboring tubes. A boreside-rotating ultrasonic inspection device was developed to measure wall thickness and inside diameter of the 2/one quarter/Cr-1 Mo, 10.1 mm I.D. steam tubes. Rotation of the UT beam yields a complimentary scan of the full tube in a single pass. The UT system was designed with a 15 MHz transducer in pulse-echo compression-wave mode at a pulse rate of 10,000/second. The UT beam is rotated at 20 r/s on a 1.27 mm pitch. System outputs are diameter, wall thickness, attitude, and axial position. Measurements are processed, then fed to a CRT and computer for later retrieval and plotting

  18. The rotating universe

    International Nuclear Information System (INIS)

    Ruben, G.; Treder, H.J.

    1987-01-01

    For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected

  19. Rotation sensor switch

    International Nuclear Information System (INIS)

    Sevec, J.B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal

  20. Imaging a non-singular rotating black hole at the center of the Galaxy

    Science.gov (United States)

    Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.

    2018-06-01

    We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.

  1. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  2. The Karush–Kuhn–Tucker optimality conditions in minimum weight design of elastic rotating disks with variable thickness and density

    Directory of Open Access Journals (Sweden)

    Sanaz Jafari

    2011-10-01

    Full Text Available Rotating discs work mostly at high angular velocity. High speed results in large centrifugal forces in discs and induces large stresses and deformations. Minimizing weight of such disks yields various benefits such as low dead weights and lower costs. In order to attain a certain and reliable analysis, disk with variable thickness and density is considered. Semi-analytical solutions for the elastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption by authors in previous works. The optimum disk profile for minimum weight design is achieved by the Karush–Kuhn–Tucker (KKT optimality conditions. Inequality constrain equation is used in optimization to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk.

  3. Measurements of coronal Faraday rotation at 4.6 R ☉

    International Nuclear Information System (INIS)

    Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.; Spangler, Steven R.

    2014-01-01

    Many competing models for the coronal heating and acceleration mechanisms of the high-speed solar wind depend on the solar magnetic field and plasma structure in the corona within heliocentric distances of 5 R ☉ . We report on sensitive Very Large Array (VLA) full-polarization observations made in 2011 August, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C 228 through the solar corona at heliocentric distances of 4.6-5.0 R ☉ . Observations at 5.0 GHz permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faraday rotation observations provide unique information on the magnetic field in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Our data on 3C 228 provide two lines of sight (separated by 46'', 33,000 km in the corona). We detected three periods during which there appeared to be a difference in the Faraday rotation measure between these two closely spaced lines of sight. These measurements (termed differential Faraday rotation) yield an estimate of 2.6-4.1 GA for coronal currents. Our data also allow us to impose upper limits on rotation measure fluctuations caused by coronal waves; the observed upper limits were 3.3 and 6.4 rad m –2 along the two lines of sight. The implications of these results for Joule heating and wave heating are briefly discussed.

  4. Constructing the spectral web of rotating plasmas

    Science.gov (United States)

    Goedbloed, Hans

    2012-10-01

    Rotating plasmas are ubiquitous in nature. The theory of MHD stability of such plasmas, initiated a long time ago, has severely suffered from the wide spread misunderstanding that it necessarily involves non-self-adjoint operators. It has been shown (J.P. Goedbloed, PPCF 16, 074001, 2011; Goedbloed, Keppens and Poedts, Advanced Magnetohydrodynamics, Cambridge, 2010) that, on the contrary, spectral theory of moving plasmas can be constructed entirely on the basis of energy conservation and self-adjointness of the occurring operators. The spectral web is a further development along this line. It involves the construction of a network of curves in the complex omega-plane associated with the complex complementary energy, which is the energy needed to maintain harmonic time dependence in an open system. Vanishing of that energy, at the intersections of the mentioned curves, yields the eigenvalues of the closed system. This permits to consider the enormous diversity of MHD instabilities of rotating tokamaks, accretion disks about compact objects, and jets emitted from those objects, from a single view point. This will be illustrated with results obtained with a new spectral code (ROC).

  5. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  6. Importance of body rotation during the flight of a butterfly.

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  7. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  8. CONTRIBUTIONS TO THE DEVELOPMENT OF THE FIELD CROPS YIELD IN TEISANI AREA HOUSEHOLDS, PRAHOVA COUNTY

    Directory of Open Access Journals (Sweden)

    Cristina Elena ANGELESCU

    2015-06-01

    Full Text Available The aim of the paper was to analyze the technological performance of the field crops on luvisoils in Teisani area, Prahova County, where corn and potato are cultivated for personal consumption and beet for animal nutrition. The cultivation of wheat and fodder plants has been an exception. Studies conducted have firstly referred to the introduction of crops in rotation system, through cooperation and exchange between households and within their own household for those with larger surfaces. To compare the productivity of crops, the yield energy value has been used as a measure unit, which facilitates the comparison. The yields was reduced up to the lower limit of crop potential because of monocultures and the lack of appropriate technologies, even for small farming machinery. The results showed that using improved technologies, in 2013 and 2014, the yields were significantly superior, the highest ones, for potatoes and alfalfa, the last one as jumper field. Introducing alfalfa in the crop rotation system has led to the potato yield doubling, but also of those of wheat, corn and beet. Using manure and organic material available and degradable in the form of compost made in their own household, to which are added small amounts of nitrogen and phosphorus, there were obtained average yields by 40% higher than the average of the experience and by 139%, i.e. 2.4 times higher than the unfertilized variant, very much used in the area. Therefore, it was demonstrated, that there are huge resources to produce agricultural products and primary food in the Teisani rural area. Small peasant households should be encouraged and financially supported to participate to food production both for their own consumption, but also for the market.

  9. Performance of spring barley varieties and variety mixtures as affected by manure application and their order in an organic crop rotation

    DEFF Research Database (Denmark)

    Askegaard, Margrethe; Thomsen, Ingrid Kaag; Berntsen, Jørgen

    2011-01-01

    In order to obtain a high and stable yield of organic spring barley, production should be optimized according to the specific environment. To test the performance of spring barley varieties under varying cropping conditions, a field experiment was carried out in 2003 and 2004 in a six-field mixed...... with low manure input than others, variety mixtures that give a robust and stable organic production may potentially be developed....... organic crop rotation. We investigated the choice of variety, the order in a rotation, and the application of manure (slurry and farmyard manure; 0 to 120 total-N ha−1) on grain yields of six selected varieties with different characteristics grown in either pure stands or in two spring barley mixtures...

  10. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    International Nuclear Information System (INIS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-01-01

    Inelastic structure factors for rotational transitions of uniaxial NH 3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling

  11. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    Science.gov (United States)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  12. SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Nazé, Yaël [GAPHE, Département AGO, Université de Liège, Allée du 6 Août 19c, Bat. B5C, B-4000-Liège (Belgium); Wade, Gregg A. [Department of Physics, Royal Military College of Canada, P.O. Box 17000 Station Forces, Kingston, ON, Canada K7K 7B4 (Canada); Bagnulo, Stefano [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Barbá, Rodolfo H. [Departamento de Física y Astronomía, Universidad de La Serena, Cisternas 1200 Norte, La Serena (Chile); Apellániz, Jesús Maíz [Centro de Astrobiología, CSIC-INTA, Campus ESAC, Apartado Postal 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Howarth, Ian D. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Evans, Christopher J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Sota, Alfredo, E-mail: walborn@stsci.edu, E-mail: nmorrell@lco.cl, E-mail: naze@astro.ulg.ac.be, E-mail: wade-g@rmc.ca, E-mail: sba@arm.ac.uk, E-mail: rbarba@dfuls.cl, E-mail: jmaiz@cab.inta-csic.es, E-mail: idh@star.ucl.ac.uk [Instituto de Astrofísica de Andalucía—CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2015-10-15

    Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.

  13. SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Walborn, Nolan R.; Morrell, Nidia I.; Nazé, Yaël; Wade, Gregg A.; Bagnulo, Stefano; Barbá, Rodolfo H.; Apellániz, Jesús Maíz; Howarth, Ian D.; Evans, Christopher J.; Sota, Alfredo

    2015-01-01

    Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses

  14. B0 insensitive multiple-quantum resolved sodium imaging using a phase-rotation scheme

    Science.gov (United States)

    Fiege, Daniel P.; Romanzetti, Sandro; Tse, Desmond H. Y.; Brenner, Daniel; Celik, Avdo; Felder, Jörg; Jon Shah, N.

    2013-03-01

    Triple-quantum filtering has been suggested as a mechanism to differentiate signals from different physiological compartments. However, the filtering method is sensitive to static field inhomogeneities because different coherence pathways may interfere destructively. Previously suggested methods employed additional phase-cycles to separately acquire pathways. Whilst this removes the signal dropouts, it reduces the signal-to-noise per unit time. In this work we suggest the use of a phase-rotation scheme to simultaneously acquire all coherence pathways and then separate them via Fourier transform. Hence the method yields single-, double- and triple-quantum filtered images. The phase-rotation requires a minimum of 36 instead of six cycling steps. However, destructive interference is circumvented whilst maintaining full signal-to-noise efficiency for all coherences.

  15. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  16. Rotations with Rodrigues' vector

    International Nuclear Information System (INIS)

    Pina, E

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  17. Effect of rotation on convective mass transfer in rotating channels

    International Nuclear Information System (INIS)

    Pharoah, J.G.; Djilali, N.

    2002-01-01

    Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)

  18. A new approach to defining rotation ages on the basis of productive and technological aspects. Application to natural Pinus sylvestris L. stands in Central Spain

    International Nuclear Information System (INIS)

    Rojo-Alboreca, A.; García-Villabrille, J.D.; Corral-Rivas, J.J.; Alía, R.; Montero, G.

    2017-01-01

    Aim of study: To propose a new approach to defining rotation ages on the basis of productive and technological aspects and to present an example of application of the methodology to natural Pinus sylvestris stands in relation to silvicultural treatment (light or heavy thinning) and site index. Area of study: Central Spain. Material and methods: We assumed that the price per m3 of logwood suitable for veneer is four times higher than logwood not apt for veneer. Considering the yield distribution for different technological and commercial classes, a model of diameter distributions and yield tables, the variation in an average price index for different age classes, site indexes and silvicultural treatments was calculated. The age at which the price index rises by less than 3%, the proportion of trees with d.b.h. higher than 40 cm, and other aspects such as the possible presence of fungal decay in old-growth stands were also taken into account to establish three criteria for defining rotation ages. Main results: The proposed methodology generates a wide range of rotation ages between 100 and 140 years for lightly thinned stands, and between 90 and 140 years for heavily thinned stands, depending on the site index. Research highlights: The proposed approach is based on technological and productive criteria, with the limitations imposed by sanitary risks. The methodology can be applied to generate rotation ages in relation to different site indexes and silvicultural treatments, provided that the timber market prices and the yield distribution for different technological and commercial classes are known, and that a model of diameter distributions and yield tables are available.

  19. A new approach to defining rotation ages on the basis of productive and technological aspects. Application to natural Pinus sylvestris L. stands in Central Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rojo-Alboreca, A.; García-Villabrille, J.D.; Corral-Rivas, J.J.; Alía, R.; Montero, G.

    2017-11-01

    Aim of study: To propose a new approach to defining rotation ages on the basis of productive and technological aspects and to present an example of application of the methodology to natural Pinus sylvestris stands in relation to silvicultural treatment (light or heavy thinning) and site index. Area of study: Central Spain. Material and methods: We assumed that the price per m3 of logwood suitable for veneer is four times higher than logwood not apt for veneer. Considering the yield distribution for different technological and commercial classes, a model of diameter distributions and yield tables, the variation in an average price index for different age classes, site indexes and silvicultural treatments was calculated. The age at which the price index rises by less than 3%, the proportion of trees with d.b.h. higher than 40 cm, and other aspects such as the possible presence of fungal decay in old-growth stands were also taken into account to establish three criteria for defining rotation ages. Main results: The proposed methodology generates a wide range of rotation ages between 100 and 140 years for lightly thinned stands, and between 90 and 140 years for heavily thinned stands, depending on the site index. Research highlights: The proposed approach is based on technological and productive criteria, with the limitations imposed by sanitary risks. The methodology can be applied to generate rotation ages in relation to different site indexes and silvicultural treatments, provided that the timber market prices and the yield distribution for different technological and commercial classes are known, and that a model of diameter distributions and yield tables are available.

  20. THE YIELD OF LETTUCE BREEDING LINE UNDER LED LAMPS IN WINTER GREENHOUSE IN THE NORTH

    Directory of Open Access Journals (Sweden)

    I. V. Dalke

    2017-01-01

    Full Text Available The lettuce (Lactuca sativa L. is widely known and favorite vegetable crop among people. In Europe the main production of lettuce is performed on protected ground with application of  artificial  light  sources. The artificially-lighted  culture  of salad became very actually acquired in the north. Previously, on the basis of multi-year studies on yield registration and experiments with different regimes of lighting we have defined the appropriate parameters of supplementary lighting for lettuce with sodium high-pressure lamps that provided the production in different seasons per year. The aim was to study the accumulation of biomass and yield quality in lettuce ‘Aphytsion’ being grown in winter rotation under light-emitting diodes lamps. The accumulation of biomass and yield quality was studied in ‘Aphytsion’,  grown in winter rotation under lightemitting diodes lamps ECOLED-BIO-112-185WD120 UniversaLED (ООО ‘GK’  ‘CET’, Perm, in  industrial greenhouse OOO ‘Prigorodniy’  at Syktyvkar city. The commodity  output  was obtained  for  two  cycle  of  cultivation, November-December  and  December-January.  Yield  of foliage biomass was 2.4 kg/m2 with flow density PAR (Photosynthetically active radiation about 90 μmole quantum/m2  s. at 20 W/m2 with total light energy 54 MJ/m2  supplied to plants from LED lamps. The plants produced about 0.5 g. of dry weight calculated on one mole of spent light energy. Energy efficiency of PAR was 3% that corresponded with data observed earlier with sodium high-pressure lamps. The conclusion was made about the suitableness of this type of light-emitting diode lamps for lettuce cultivation in winter rotation in first photic zone. It was recommended to increase duration of supplemental lighting up to 22-24 hours in December and up to 20-22 hours in January to improve the productivity and biological value of plant output. It enables to raise RAP income in plants by 35 %, on

  1. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  2. Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation

    DEFF Research Database (Denmark)

    Weiss, Michael M; Wolbers, Thomas; Peller, Martin

    2008-01-01

    Functional neuroimaging studies have identified a set of areas in the intraparietal sulcus and dorsal precentral cortex which show a linear increase in activity with the angle of rotation across a variety of mental rotation tasks. This linear increase in activity with angular disparity suggests t...... modulated by angular disparity during the stimulus categorization task. These results suggest that at least for alphanumerical characters, areas implicated in mental rotation will only be called into action if the task requires a rotational transformation....

  3. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  4. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  5. Rotator cuff - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000358.htm Rotator cuff - self-care To use the sharing features on ... and shoulder exercises may help ease your symptoms. Rotator Cuff Problems Common rotator cuff problems include: Tendinitis , which ...

  6. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  7. Yield Stability in Winter Wheat Production: A Survey on German Farmers’ and Advisors’ Views

    Directory of Open Access Journals (Sweden)

    Janna Macholdt

    2017-06-01

    Full Text Available Most of the available research studies have focused on the production of high grain yields of wheat and have neglected yield stability. However, yield stability is a relevant factor in agronomic practice and, therefore, is the focus of this comprehensive survey. The aim was to first describe the importance of yield stability as well as currently used practical management strategies that ensure yield stability in wheat production and secondly, to obtain potential research areas supporting yield stability in the complex system of agronomy. The target groups were German farmers with experience in wheat production and advisors with expertise in the field of wheat cultivation or research. A sample size of 615 completed questionnaires formed the data basis of this study. The study itself provides evidence that the yield stability of winter wheat is even more important than the amount of yield for a large proportion of farmers (48% and advisors (47%. Furthermore, in the view of the majority of the surveyed farmers and advisors, yield stability is gaining importance in climate change. Data analysis showed that site adapted cultivar choice, favorable crop rotations and integrated plant protection are ranked as three of the most important agronomic management practices to achieve high yield stability of wheat. Soil tillage and fertilization occupied a middle position, whereas sowing date and sowing density were estimated with lower importance. However, yield stability is affected by many environmental, genetic and agronomic factors, which subsequently makes it a complex matter. Hence, yield stability in farming practice must be analyzed and improved in a systems approach.

  8. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    Science.gov (United States)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in

  9. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition

    Science.gov (United States)

    Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas

    2018-01-01

    We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.

  10. The Rotation Rates of Massive Stars: The Role of Binary Interaction through Tides, Mass Transfer, and Mergers

    NARCIS (Netherlands)

    de Mink, S.E.; Langer, N.; Izzard, R.G.; Sana, H.; de Koter, A.

    2013-01-01

    Rotation is thought to be a major factor in the evolution of massive stars—especially at low metallicity—with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive

  11. Drop deformation and breakup in a partially filled horizontal rotating cylinder

    Science.gov (United States)

    White, Andrew; Pereira, Caroline; Hyacinthe, Hyaquino; Ward, Thomas

    2014-11-01

    Drop deformation and breakup due to shear flow has been studied extensively in Couette devices as well as in gravity-driven flows. In these cases shear is generated either by the moving wall or the drop's motion. For such flows the drop shape remains unperturbed at low capillary number (Ca), deforms at moderate Ca , and can experience breakup as Ca --> 1 and larger. Here single drops of NaOH(aq) will be placed in a horizontal cylindrical rotating tank partially filled with vegetable oil resulting in 10-2 saponification, can yield lower minimum surface tensions and faster adsorption than non-reactive surfactant systems. Oil films between the wall and drop as well as drop shape will be observed as rotation rates and NaOH(aq) concentration are varied. Results will be presented in the context of previous work on bubble and drop shapes and breakup. NSF CBET #1262718.

  12. Rotating bed reactor for CLC: Bed characteristics dependencies on internal gas mixing

    International Nuclear Information System (INIS)

    Håkonsen, Silje Fosse; Grande, Carlos A.; Blom, Richard

    2014-01-01

    Highlights: • A mathematical model for the rotating CLC reactor has been developed. • The model reflects the gas distribution in the reactor during CLC operation. • Radial dispersion in the rotating bed is the main cause for internal gas mixing. • The model can be used to optimize the reactor design and particle characteristics. - Abstract: A newly designed continuous lab-scale rotating bed reactor for chemical looping combustion using CuO/Al 2 O 3 oxygen carrier spheres and methane as fuel gives around 90% CH 4 conversion and >90% CO 2 capture efficiency based on converted methane at 800 °C. However, from a series of experiments using a broad range of operating conditions potential CO 2 purities only in the range 20–65% were yielded, mostly due to nitrogen slip from the air side of the reactor into the effluent CO 2 stream. A mathematical model was developed intending to understand the air-mixing phenomena. The model clearly reflects the gas slippage tendencies observed when varying the process conditions such as rotation frequency, gas flow and the flow if inert gas in the two sectors dividing the air and fuel side of the reactor. Based on the results, it is believed that significant improvements can be made to reduce gas mixing in future modified and scaled-up reactor versions

  13. Vib--rotational energy distributions and relaxation processes in pulsed HF chemical lasers

    International Nuclear Information System (INIS)

    Ben-Shaul, A.; Kompa, K.L.; Schmailzl, U.

    1976-01-01

    The rate equations governing the temporal evolution of photon densities and level populations in pulsed F+H 2 →HF+H chemical lasers are solved for different initial conditions. The rate equations are solved simultaneously for all relevant vibrational--rotational levels and vibrational--rotational P-branch transitions. Rotational equilibrium is not assumed. Approximate expressions for the detailed state-to-state rate constants corresponding to the various energy transfer processes (V--V, V--R,T, R--R,T) coupling the vib--rotational levels are formulated on the basis of experimental data, approximate theories, and qualitative considerations. The main findings are as follows: At low pressures, R--T transfer cannot compete with the stimulated emission, and the laser output largely reflects the nonequilibrium energy distribution in the pumping reaction. The various transitions reach threshold and decay almost independently and simultaneous lasing on several lines takes place. When a buffer gas is added in excess to the reacting mixture, the enhanced rotational relaxation leads to nearly single-line operation and to the J shift in lasing. Laser efficiency is higher at high inert gas pressures owing to a better extraction of the internal energy from partially inverted populations. V--V exchange enhances lasing from upper vibrational levels but reduces the total pulse intensity. V--R,T processes reduce the efficiency but do not substantially modify the spectral output distribution. The photon yield ranges between 0.4 and 1.4 photons/HF molecule depending on the initial conditions. Comparison with experimental data, when available, is fair

  14. Establishment and monitoring of large scale trials of short rotation coppice for energy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, C.; Stevens, E.A.; Watters, M.P.

    1998-09-01

    The overall objective of the trials was to obtain information on costs, logistics, productivity and biology of short rotation coppice crops in order to evaluate their potential for producing wood for fuel. More specifically, the objectives of the final and most recent phase of the research work were: the continuing management and monitoring of the coppice trial sites established during phases 1 and 2 of the project; to provide technical and economic data on the management and maintenance of the continuing coppice trail sites; to identify appropriate methods for stool removal and land reclamation and provide technical and economic data on those operations; and to undertake yield assessment at the remaining sites using appropriate methods of yield estimation. (author)

  15. Rotation, Stability and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J. W.

    2007-07-01

    Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

  16. WE-EF-207-02: The Rotate-Plus-Shift C-Arm Trajectory: Theory and First Clinical Results

    International Nuclear Information System (INIS)

    Ritschl, L; Kachelriess, M; Kuntz, J

    2015-01-01

    Purpose: The proposed method enables the acquisition of a complete dataset for 3D reconstruction of C-Arm data using less than 180° rotation. Methods: Typically a C–arm cone–beam CT scan is performed using a circle–like trajectory around a region of interest. Therefore an angular range of at least 180° plus fan–angle must be covered to ensure a completely sampled data set. This fact defines some constraints on the geometry and technical specifications of a C–arm system, for example a larger C radius or a smaller C opening respectively. This is even more important for mobile C-arm devices which are typically used in surgical applications.To overcome these limitations we propose a new trajectory which requires only 180° minusfan–angle of rotation for a complete data set. The trajectory consists of three parts: A rotation of the C around a defined iso–center and two translational movements parallel to the detector plane at the begin and at the end of the rotation (rotate plus shift trajectory). This enables the acquisition of a completely sampled dataset using only 180° minus fan–angle of rotation. Results: For the evaluation of the method we show simulated and measured data. The results show, that the rotate plus shift scan yields equivalent image quality compared to the short scan which is assumed to be the gold standard for C-arm CT today. Compared to the pure rotational scan over only 165°, the rotate plus shift scan shows strong improvements in image quality. Conclusion: The proposed method makes 3D imaging using C–arms with less than 180° rotation range possible. This enables integrating full 3D functionality into a C- arm device without any loss of handling and usability for 2D imaging

  17. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  18. Rotation, activity, and lithium abundance in cool binary stars

    Science.gov (United States)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  19. Picosecond rotationally resolved stimulated emission pumping spectroscopy of nitric oxide

    International Nuclear Information System (INIS)

    Tanjaroon, Chakree; Reeve, Scott W.; Ford, Alan; Murry, W. Dean; Lyon, Kevin; Yount, Bret; Britton, Dan; Burns, William A.; Allen, Susan D.; Bruce Johnson, J.

    2012-01-01

    Highlights: ► Stimulated emission pumping for nitric oxide was studied using picosecond lasers. ► Weak and tightly focused pulses provide sufficient energy for population transfer. ► Selective excitation at the bandhead yields strong fluorescence depletion signals. ► We observe 19% population transfer to v″ = 2 of the X 2 Π 1/2 ground electronic state. - Abstract: Stimulated emission pumping (SEP) experiments were performed on the nitric oxide molecule in a flow cell environment using lasers with pulse widths of 17–25 ps. A lambda excitation scheme, or ‘‘pump–dump” arrangement, was employed with the pump laser tuned to the T 00 vibronic band origin (λ pump =226.35(1)nm) of the A 2 Σ + (v′ = 0, J′) ← X 2 Π 1/2 (v″ = 0, J″) and the dump laser scanned from 246–248 nm within the A 2 Σ + (v′ = 0, J′) → X 2 Π 1/2 (v″ = 2, J″) transition. The rotationally resolved SEP spectra were measured by observing the total fluorescence within the A 2 Σ + (v′ = 0, J′) → X 2 Π 1/2 (v″ = 1, J″) transition between 235 nm and 237.2 nm while scanning the dump laser wavelengths. Multiple rotational states were excited due to the broad laser bandwidth. Measurements showed that the resolved rotational structure depended on the energy and bandwidth of the applied pump and dump laser pulses. Analysis of the observed fluorescence depletion signals yielded an average percent fluorescence depletion of about 19% when λ pump =226.35(1)nm and λ dump =247.91(1)nm. This value reflects the percent transfer of the NO population from the A 2 Σ + (V′ = 0, J′) excited electronic state to the X 2 Π 1/2 (v″ = 2, J″) ground electronic state. The maximum expected depletion is 50% in the limit of dump saturation. Selective excitation of NO at the bandhead provides good spectral discrimination from the background emission and noise and unambiguously confirms the identity of the emitter.

  20. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  1. Rotating reactors : a review

    NARCIS (Netherlands)

    Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

    2013-01-01

    This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

  2. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    Science.gov (United States)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  3. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  4. Dynamics of molecular rotors confined in two dimensions: transition from a 2D rotational glass to a 2D rotational fluid in a periodic mesoporous organosilica.

    Science.gov (United States)

    Vogelsberg, Cortnie S; Bracco, Silvia; Beretta, Mario; Comotti, Angiolina; Sozzani, Piero; Garcia-Garibay, Miguel A

    2012-02-09

    orientationally disordered 2D rotational glass and its transition from rigid to soft at increasing temperature. The spectral narrowing observed in the (2)H NMR experiments at higher temperatures (310-420 K) is consistent with fast rotational dynamics, which remain anisotropic in nature within the robust lamellar architecture. This study suggests that exploiting reduced dimensionality in the design of solid-state artificial molecular machines and functional materials may yield access to behavior previously unrealized in 3D materials. © 2012 American Chemical Society

  5. Produtividade do algodoeiro herbáceo em plantio direto no Cerrado com rotação de culturas Herbaceous cotton yield in no-till system in rainfed Savannah conditions with crop rotation

    Directory of Open Access Journals (Sweden)

    José Carlos Corrêa

    2004-01-01

    Full Text Available O experimento, instalado em um Latossolo Vermelho-Amarelo muito argiloso, teve o objetivo de avaliar o efeito da rotação de culturas na produtividade do algodoeiro herbáceo (Gossypium hirsutum L. r. latifolium Hutch em plantio direto sob condições de sequeiro no Cerrado. O delineamento experimental foi de blocos casualizados com cinco tratamentos e quatro repetições. Os tratamentos consistiram das rotações soja-milheto-soja-milheto-algodoeiro; soja-amaranto-soja-nabo forrageiro-soja-algodoeiro; soja-sorgo granífero-soja-sorgo granífero-algodoeiro; soja-aveia preta-soja-aveia preta-algodoeiro e soja-soja-algodoeiro. A maior produtividade do algodoeiro foi obtida com a rotação de soja e milheto, em que houve melhor controle de plantas daninhas.The experiment was carried out in a heavy red yellow latosol and aimed at evaluating crop rotation on herbaceous cotton yields in no-till system under rainfed Savannah conditions. The experimental design used was a completely randomised blocks with five treatments: soybean-millet-soybean-millet-cotton; soybean-amaranth-soybean-forage radish-soybean-cotton; soybean-grain sorghum-soybean-grain sorghum-cotton; soybean-black rye-soybean-black rye-cotton and soybean-soybean-cotton and four replications. The highest cotton seed yield was obtained in the sequence soybean-millet-soybean-millet-cotton, in which best weed control also occurred.

  6. Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system

    NARCIS (Netherlands)

    Li, Qi; Yang, Yue; Bao, Xuelian; Zhu, Jianguo; Liang, Wenju; Bezemer, T. Martijn

    2016-01-01

    Abstract Tropospheric ozone has been recognized as one of the most important air pollutants. Many studies have shown that elevated ozone negatively impacts yields of important crops such as wheat or rice, but how ozone influences soil ecosystems of these crops and plant growth in rotation systems is

  7. On Job Rotation

    OpenAIRE

    Metin M. Cosgel; Thomas J. Miceli

    1998-01-01

    A fundamental principle of economics with which Adam Smith begins The Wealth of Nations is the division of labor. Some firms, however, have been pursuing a practice called job rotation, which assigns each worker not to a single and specific task but to a set of several tasks among which he or she rotates with some frequency. We examine the practice of job rotation as a serious alternative to specialization, with three objectives. The first is to consider current and historical examples of job...

  8. Rotator cuff tears in children and adolescents: experience at a large pediatric hospital

    International Nuclear Information System (INIS)

    Zbojniewicz, Andrew M.; Emery, Kathleen H.; Maeder, Matthew E.; Salisbury, Shelia R.

    2014-01-01

    Prior literature, limited to small case series and case reports, suggests that rotator cuff tears are rare in adolescents. However, we have identified rotator cuff tears in numerous children and adolescents who have undergone shoulder MRI evaluation. The purpose of this study is to describe the prevalence and characteristics of rotator cuff tears in children and adolescents referred for MRI evaluation of the shoulder at a large pediatric hospital and to correlate the presence of rotator cuff tears with concurrent labral pathology, skeletal maturity and patient activity and outcomes. We reviewed reports from 455 consecutive non-contrast MRI and magnetic resonance arthrogram examinations of the shoulder performed during a 2-year period, and following exclusions we yielded 205 examinations in 201 patients (ages 8-18 years; 75 girls, 126 boys). Rotator cuff tears were classified by tendon involved, tear thickness (partial or full), surface and location of tear (when partial) and presence of delamination. We recorded concurrent labral pathology when present. Physeal patency of the proximal humerus was considered open, closing or closed. Statistical analysis was performed to evaluate for a relationship between rotator cuff tears and degree of physeal patency. We obtained patient activity at the time of injury, surgical reports and outcomes from clinical records when available. Twenty-five (12.2%) rotator cuff tears were identified in 17 boys and 7 girls (ages 10-18 years; one patient had bilateral tears). The supraspinatus tendon was most frequently involved (56%). There were 2 full-thickness and 23 partial-thickness tears with articular-side partial-thickness tears most frequent (78%). Insertional partial-thickness tears were more common (78%) than critical zone tears (22%) and 10 (43%) partial-thickness tears were delamination tears. Nine (36%) patients with rotator cuff tears had concurrent labral pathology. There was no statistically significant relationship between

  9. Rotator cuff tears in children and adolescents: experience at a large pediatric hospital

    Energy Technology Data Exchange (ETDEWEB)

    Zbojniewicz, Andrew M.; Emery, Kathleen H. [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Maeder, Matthew E. [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Lenox Hill Hospital, Department of Radiology, New York, NY (United States); Salisbury, Shelia R. [University of Cincinnati College of Medicine, Division of Biostatistics and Epidemiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2014-06-15

    Prior literature, limited to small case series and case reports, suggests that rotator cuff tears are rare in adolescents. However, we have identified rotator cuff tears in numerous children and adolescents who have undergone shoulder MRI evaluation. The purpose of this study is to describe the prevalence and characteristics of rotator cuff tears in children and adolescents referred for MRI evaluation of the shoulder at a large pediatric hospital and to correlate the presence of rotator cuff tears with concurrent labral pathology, skeletal maturity and patient activity and outcomes. We reviewed reports from 455 consecutive non-contrast MRI and magnetic resonance arthrogram examinations of the shoulder performed during a 2-year period, and following exclusions we yielded 205 examinations in 201 patients (ages 8-18 years; 75 girls, 126 boys). Rotator cuff tears were classified by tendon involved, tear thickness (partial or full), surface and location of tear (when partial) and presence of delamination. We recorded concurrent labral pathology when present. Physeal patency of the proximal humerus was considered open, closing or closed. Statistical analysis was performed to evaluate for a relationship between rotator cuff tears and degree of physeal patency. We obtained patient activity at the time of injury, surgical reports and outcomes from clinical records when available. Twenty-five (12.2%) rotator cuff tears were identified in 17 boys and 7 girls (ages 10-18 years; one patient had bilateral tears). The supraspinatus tendon was most frequently involved (56%). There were 2 full-thickness and 23 partial-thickness tears with articular-side partial-thickness tears most frequent (78%). Insertional partial-thickness tears were more common (78%) than critical zone tears (22%) and 10 (43%) partial-thickness tears were delamination tears. Nine (36%) patients with rotator cuff tears had concurrent labral pathology. There was no statistically significant relationship between

  10. Predictive models of biomass for poplar and willow. Short rotation coppice in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, A.C.; Morgan, G.W.; Poole, E.J.; Baldwin, M.E.; Tubby, I. (Biometrics, Surveys and Statistics Division, Forest Research, Farnham (United Kingdom))

    2007-07-01

    A series of forty-nine experimental trials on short rotation coppice (SRC) were conducted throughout the United Kingdom using a selection of varieties of poplar and willow with the aim of evaluating their performance for wood fuel production under a representative range of UK conditions. Observations on the crops and on a range of site and climatic conditions during the growth of the crops were taken over two three-year cutting cycles. These observations were used to develop a suite of empirical models for poplar and willow SRC growth and yield from which systems were constructed to provide a- priori predictions of biomass yield for any site in the UK with known characteristics (predictive yield models), and estimates of biomass yield from a standing crop (standing biomass models). The structure of the series of field trials and the consequent approach and methodology used in the construction of the suite of empirical models are described, and their use in predicting biomass yields of poplar and willow SRC is discussed. (orig.)

  11. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  12. Rotated balance in humans due to repetitive rotational movement

    Science.gov (United States)

    Zakynthinaki, M. S.; Madera Milla, J.; López Diaz De Durana, A.; Cordente Martínez, C. A.; Rodríguez Romo, G.; Sillero Quintana, M.; Sampedro Molinuevo, J.

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  13. Managing Southeastern US Forests for Increased Water Yield

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  14. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  15. The rotation of P/Halley

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Szegoe, K.; Kondor, A.; Merenyi, E.; Smith, B.A.; Larson, S.; Toth, I.

    1987-11-01

    The nucleus of the comet Halley rotates as a slightly asymmetric top, the orientation of the rotation axis (the orientation of the angular momentum vector) is b=54 deg +-15 deg, l=219 deg +-15 deg in the ecliptic system. In the case of the rotation of an asymmetric top the rotation axis is not fixed rigidly to the body, which means that while the nucleus rotates around the axis with a period of 2.2+-0.05 d, its long axis 'nods' periodically with a period of 7.4+-0.05 d. The amplitude of the 'nodding' is about 15 deg +-3 deg in both directions relative to a plane perpendicular to the rotation axis. (author) 21 refs.; 6 figs.; 2 tabs

  16. Rotating circular strings, and infinite non-uniqueness of black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto

    2004-01-01

    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings. (author)

  17. Muon spin rotation studies involving muonium at high pH

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.M.; Walker, D.C.

    1983-06-01

    The muon spin rotation method was used to determine the muon yields in concentrated KOH solutions and to evaluate Arrhenius parameters for the reaction of muonium with hydroxyl ions in dilute aqueous solutions. This latter reaction is relatively slow due to a substantial activation energy, yet there is no kinetic isotope effect at room temperature. The kinetics are well represented by the relationship log ksub(M) = 14.38 - 2100(+-260)/T. The observed enhancement of the diamagentic muon yield (Psub(D)) from 0.62 to 0.79 as the (KOH) was increased from 0 to 20 M can be accounted for in terms of a 'hot-model' mechanism, by allowing Ksub(M) (or the hot fraction) to vary somewhat. The failure of Psub(D) to reach 1.0 in such concentrated OH - solutions shows that the muons do not all emerge from the epithermal processes of the track as free μ + ions

  18. Water requirements of short rotation poplar coppice: Experimental and modelling analyses across Europe

    Czech Academy of Sciences Publication Activity Database

    Fischer, Milan; Zenone, T.; Trnka, Miroslav; Orság, Matěj; Montagnani, L.; Ward, E. J.; Tripathi, Abishek; Hlavinka, Petr; Seufert, G.; Žalud, Zdeněk; King, J.; Ceulemans, R.

    2018-01-01

    Roč. 250, MAR (2018), s. 343-360 ISSN 0168-1923 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : energy-balance closure * dual crop coefficient * radiation use efficiency * simulate yield response * below-ground carbon * vs. 2nd rotation * flux data * biomass production * forest model * stand-scale * Bioenergy * Bowen ratio and energy balance * Crop coefficient * Eddy covariance * Evapotranspiration * Water balance Subject RIV: GC - Agronomy OBOR OECD: Agriculture Impact factor: 3.887, year: 2016

  19. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    Science.gov (United States)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  20. A Tool for Simulating Rotating Coil Magnetometers

    CERN Document Server

    Bottura, L; Schnizer, P; Smirnov, N

    2002-01-01

    When investigating the quality of a magnetic measurement system, one observes difficulties to identify the "trouble maker" of such a system as different effects can yield similar influences on the measurement results.We describe a tool in this paper that allows to investigate numerically the effects produced by different imperfections of components of such a system, including, but not limited to vibration and movements of the rotating coil, influence of electrical noise on the system, angular encoder imperfections. This system can simulate the deterministic and stochastic parts of those imperfections. We outline the physical models used that are generally based on experience or first principles. Comparisons to analytical results are shown. The modular structure of the general design of this tool permits to include new modules for new devices and effects.

  1. Characteristics of manipulator for industrial robot with three rotational pairs having parallel axes

    Science.gov (United States)

    Poteyev, M. I.

    1986-01-01

    The dynamics of a manipulator with three rotatinal kinematic pairs having parallel axes are analyzed, for application in an industrial robot. The system of Lagrange equations of the second kind, describing the motion of such a mechanism in terms of kinetic energy in generalized coordinates, is reduced to equations of motion in terms of Newton's laws. These are useful not only for either determining the moments of force couples which will produce a prescribed motion or, conversely determining the motion which given force couples will produce but also for solving optimization problems under constraints in both cases and for estimating dynamic errors. As a specific example, a manipulator with all three axes of vertical rotation is considered. The performance of this manipulator, namely the parameters of its motion as functions of time, is compared with that of a manipulator having one rotational and two translational kinematic pairs. Computer aided simulation of their motion on the basis of ideal models, with all three links represented by identical homogeneous bars, has yielded velocity time diagrams which indicate that the manipulator with three rotational pairs is 4.5 times faster.

  2. On the Long-Term "Hesitation Waltz" Between the Earth's Figure and Rotation Axes

    Science.gov (United States)

    Couhert, A.; Mercier, F.; Bizouard, C.

    2017-12-01

    The principal figure axis of the Earth refers to its axis of maximum inertia. In the absence of external torques, the latter should closely coincide with the rotation pole, when averaged over many years. However, because of tidal and non-tidal mass redistributions within the Earth system, the rotational axis executes a circular motion around the figure axis essentially at seasonal time scales. In between, it is not clear what happens at decadal time spans and how well the two axes are aligned. The long record of accurate Satellite Laser Ranging (SLR) observations to Lageos makes possible to directly measure the long time displacement of the figure axis with respect to the crust, through the determination of the degree 2 order 1 geopotential coefficients for the 34-year period 1983-2017. On the other hand, the pole coordinate time series (mainly from GNSS and VLBI data) yield the motion of the rotation pole with even a greater accuracy. This study is focused on the analysis of the long-term behavior of the two time series, as well as the derivation of possible explanations for their discrepancies.

  3. Estimation of the yield of poplars in plantations of fast-growing species within current results

    Directory of Open Access Journals (Sweden)

    Martin Fajman

    2009-01-01

    Full Text Available Current results are presented of allometric yield estimates of the poplar short rotation coppice. According to a literature review it is obvious that yield estimates, based on measurable quantities of a growing stand, depend not only on the selected tree specie or its clone, but also on the site location. The Jap-105 poplar clone (P. nigra x P. maximowiczii allometric relations were analyzed by regression methods aimed at the creation of the yield estimation methodology at a testing site in Domanínek. Altogether, the twelve polynomial dependences of particular measured quantities approved the high empirical data conformity with the tested regression model (correlation index from 0.9033 to 0.9967. Within the forward stepwise regression, factors were selected, which explain best examined estimates of the total biomass DM; i.e. d.b.h. and stem height. Furthermore, the KESTEMONT’s (1971 mo­del was verified with a satisfying conformity as well. Approving presented yield estimation methods, the presented models will be checked in a large-scale field trial.

  4. THE OPTIMAL ROTATIONS OF GMELINA STAND ON TWO CARBON PROJECTS: LENGTHENING ROTATION AND AFFORESTATION

    Directory of Open Access Journals (Sweden)

    Yonky Indrajaya

    2016-12-01

    Full Text Available Forest plantation may contribute economically and socially as a provider of wood raw materials for industry and providing jobs for local people. In addition, forest plantation may also contribute as watershed protection and carbon sequestration. Projects on carbon sequestration from plantation forest can be conducted in two types: (1 afforestation and (2 lengthening forest rotation. One of the potential carbon markets operationalized in the field is voluntary market with Verified Carbon Standard mechanism. This study aimed to analyze the optimal rotations of gmelina forests on two carbon projects: lengthening rotation and afforestation. The method used in this study was by using Hartman model ( i.e. Faustmann by maximizing profit with the revenue source from timber and carbon sequestration project. The results of this study showed that carbon price will affect the optimal rotation for lengthening forest rotation of VCS project. Meanwhile, for VCS afforestation project, carbon price had no effect on the optimal rotation on gmelina forest. The NPV value of afforestation project was relatively higher than that of NPV value of lengthening forest rotation project, since the amount of carbon that can be credited relatively higher in afforestation project.

  5. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

    2013-01-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...

  6. Rotator cuff preservation in arthroscopic treatment of calcific tendinitis.

    Science.gov (United States)

    Maier, Dirk; Jaeger, Martin; Izadpanah, Kaywan; Bornebusch, Lutz; Suedkamp, Norbert Paul; Ogon, Peter

    2013-05-01

    We sought to evaluate (1) clinical and radiologic results after arthroscopic calcific deposit (CD) removal and (2) the relevance of remnant calcifications (RCs). The study included 102 patients undergoing arthroscopic CD removal, preserving integrity of the rotator cuff. Postoperatively, we divided patients into 2 groups according to the extent of CD removal achieved. Group 1 consisted of patients with complete CD removal. Group 2 included patients showing minor RCs. Ninety-three patients (99 shoulders) completed follow-up. The mean patient age was 50.6 years (31 to 68 years), and the mean follow-up period was 37.3 months (24 to 83 months). We obtained anteroposterior (AP) and outlet radiographs before surgery, postoperatively, and at follow-up. We used the absolute and age- and sex-related Constant scores (CSabs, CSrel) as outcome measures. We compared both groups statistically (Mann-Whitney U test; P rotator cuff yielded good to excellent results in 90% of patients and avoided iatrogenic tendon defects in all patients. Minor RCs did not impair clinical outcome and spontaneously resolved at follow-up. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    International Nuclear Information System (INIS)

    Epstein, Courtney R.; Pinsonneault, Marc H.

    2014-01-01

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M ☉ . Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M ☉ stars.

  8. Short-rotation forestry for energy production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, V.C.; Liu, W. [Univ. of Hawaii, Honolulu, HI (United States); Merriam, R.A.

    1993-12-31

    In Hawaii, imports of fossil fuels continue to accelerate and now provide over 90% of the total energy supply at a cost exceeding $1 {times} 10{sup 9} annually exported from the local economy. Concurrently, sugarcane and pineapple crops, the traditional mainstays of the state`s economy, have declined such that as much as 80,000 hectares of agricultural land are now available for alternative land uses. The feasibility of short-rotation forestry for sustainable energy production on these former sugarcane and pineapple plantation lands is being evaluated using species- and site-specific empirical models to predict yields of Eucalyptus grandis, E. saligna, and Leucaena leucocephala, a system model to estimate delivered costs, and a geographic information system to extend the analysis to areas where no field trials exist and to present results in map form. The island of Hawaii is showcased as an application of the methodology. Modeling results of methanol, ethanol, and electricity production from tropical hardwoods are presented. Short-rotation forestry appears to hold promise for the greening of Hawaii`s energy system and agricultural lands for the benefit of the state`s citizens and visitors. The methodology is readily transferable to other regions of the United States and rest of the world.

  9. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    Science.gov (United States)

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system

  10. Perioperative Serum Lipid Status and Statin Use Affect the Revision Surgery Rate After Arthroscopic Rotator Cuff Repair.

    Science.gov (United States)

    Cancienne, Jourdan M; Brockmeier, Stephen F; Rodeo, Scott A; Werner, Brian C

    2017-11-01

    Recent animal studies have demonstrated that hyperlipidemia is associated with poor tendon-bone healing after rotator cuff repair; however, these findings have not been substantiated in human studies. To examine any association between hyperlipidemia and the failure of arthroscopic rotator cuff repair requiring revision surgery and to investigate whether the use of statin lipid-lowering agents had any influence on observed associations. Cohort study; Level of evidence, 3. From a national insurance database, patients who underwent arthroscopic rotator cuff repair with perioperative lipid levels (total cholesterol, low-density lipoprotein [LDL], and triglycerides) recorded were reviewed. For each lipid test, patients were stratified into normal, moderate, and high groups based on published standards. For the total cholesterol and LDL cohorts, a subgroup analysis of patients stratified by statin use was performed. The primary outcome measure was ipsilateral revision rotator cuff surgery, including revision repair or debridement. A logistic regression analysis controlling for patient demographics and comorbidities was utilized for comparison. There were 30,638 patients included in the study. The rate of revision rotator cuff surgery was significantly increased in patients with moderate (odds ratio [OR], 1.20; 95% CI, 1.03-1.40; P = .022) and high total cholesterol levels (OR, 1.36; 95% CI, 1.10-1.55; P = .006) compared with patients with normal total cholesterol levels perioperatively. Within each of these groups, patients without statin use had significantly higher rates of revision surgery, while those with statin prescriptions did not. The absolute risk reduction for statin use ranged from 0.24% to 1.87% when stratified by the total cholesterol level, yielding a number needed to treat from 54 to 408 patients. The rate of revision surgery was significantly increased in patients with moderate (OR, 1.24; 95% CI, 1.10-1.41; P = .001) and high LDL levels (OR, 1.46; 95

  11. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    De Mink, S. E. [Space Telescope Science Institute, Baltimore, MD (United States); Langer, N.; Izzard, R. G. [Argelander-Institut fuer Astronomie der Universitaet Bonn, D-53121 Bonn (Germany); Sana, H.; De Koter, A. [Astronomical Institute Anton Pannekoek, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  12. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    Science.gov (United States)

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  13. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro

    1954-01-01

    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  14. The role of rotational hand movements and general motor ability in children’s mental rotation performance

    Directory of Open Access Journals (Sweden)

    Petra eJansen

    2015-07-01

    Full Text Available Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular seem to have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N= 83; Age range: 7.0-8.3 and 9.0-10.11 years. In addition, we assessed the role of motor ability in this relationship. Boys in the 7-8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.

  15. A compact rotating dilution refrigerator

    Science.gov (United States)

    Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.

    2013-10-01

    We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

  16. Genotype x environment interactions in milk yield and quality in Angus, Brahman, and reciprocal-cross cows on different forage systems.

    Science.gov (United States)

    Brown, M A; Brown, A H; Jackson, W G; Miesner, J R

    2001-07-01

    Milk yield and quality were observed on 93 Angus, Brahman, and reciprocal-cross cows over 3 yr to evaluate the interactions of direct and maternal breed effects and heterosis with forage environment. Forage environments were common bermudagrass (BG), endophyte-infected tall fescue (E+), and a rotational system (ROT) of both forages, in which each forage (BG or E+) was grazed during its appropriate season, usually June through October for BG and November through May for E+. Milk yield was estimated each of 6 mo (April through September) via milking machine and converted to a 24-h basis. Milk fat, milk protein, and somatic cell count were analyzed by a commercial laboratory. Heterosis for milk yield was similar among forages, averaging 2.4 kg (P 0.30). Heterosis for somatic cell counts as percentages of purebred means was similar for BG (-68.3%) and E+ (-68.9%) and less favorable for ROT (-31.6%). Maternal breed effects for somatic cell count favored Angus on ROT (P < 0.10) with a similar nonsignificant trend on BG and E+. Direct breed effects for somatic cell count favored Brahman on ROT (P < 0.10) with similar nonsignificant trends on BG and E+. These results suggested that a rotation of cows from E+ to BG in the summer can partially alleviate negative effects of E+ on milk yield. Conclusions also indicated an advantage to crossbred cows in somatic cell count and provided evidence of both direct and maternal breed effects for this trait. The results also suggested that direct breed effects for milk yield, milk fat, and somatic cell count and heterosis for milk yield and somatic cell count (as percentages of purebred means) tended to vary with forage environment, indicating a potential for genotype x environment interaction for these traits.

  17. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  18. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  19. Validation of the Rotation Ratios Method

    International Nuclear Information System (INIS)

    Foss, O.A.; Klaksvik, J.; Benum, P.; Anda, S.

    2007-01-01

    Background: The rotation ratios method describes rotations between pairs of sequential pelvic radiographs. The method seems promising but has not been validated. Purpose: To validate the accuracy of the rotation ratios method. Material and Methods: Known pelvic rotations between 165 radiographs obtained from five skeletal pelvises in an experimental material were compared with the corresponding calculated rotations to describe the accuracy of the method. The results from a clinical material of 262 pelvic radiographs from 46 patients defined the ranges of rotational differences compared. Repeated analyses, both on the experimental and the clinical material, were performed using the selected reference points to describe the robustness and the repeatability of the method. Results: The reference points were easy to identify and barely influenced by pelvic rotations. The mean differences between calculated and real pelvic rotations were 0.0 deg (SD 0.6) for vertical rotations and 0.1 deg (SD 0.7) for transversal rotations in the experimental material. The intra- and interobserver repeatability of the method was good. Conclusion: The accuracy of the method was reasonably high, and the method may prove to be clinically useful

  20. Refueling system with small diameter rotatable plugs

    International Nuclear Information System (INIS)

    Ritz, W.C.

    1987-01-01

    This patent describes a liquid-metal fastbreeder nuclear reactor comprising a reactor pressure vessel and closure head therefor, a reactor core barrel disposed within the reactor vessel and enclosing a reactor core having therein a large number of closely spaced fuel assemblies, and the reactor core barrel and the reactor core having an approximately concentric circular cross-sectional configuration with a geometric center in predetermined location within the reactor vessel. The improved refueling system described here comprises: a large controllably rotatable plug means comprising the substantial portion of the closure head, a reactor upper internals structure mounted from the large rotatable plug means. The large rotatable plug means has an approximately circular configuration which approximates the cross-sectional configuration of the reactor core barrel with a center of rotation positioned a first predetermined distance from the geometric center of the reactor core barrel so that the large rotatable plug means rotates eccentrically with respect to the reactor core barrel; a small controllably rotatable plug means affixed to the large rotatable plug means and rotatable with respect thereto. The small rotatable plug means has a center of rotation which is offset a second predetermined distance from the rotational center of the large rotatable plug means so that the small rotatable plug means rotates eccentrically with respect to the large rotatable plug means

  1. The stability of second sound waves in a rotating Darcy–Brinkman porous layer in local thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, I A; Elbashir, T B A, E-mail: ieltayeb@squ.edu.om, E-mail: elbashir@squ.edu.om [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat 123 (Oman)

    2017-08-15

    The linear and nonlinear stabilities of second sound waves in a rotating porous Darcy–Brinkman layer in local thermal non-equilibrium are studied when the heat flux in the solid obeys the Cattaneo law. The simultaneous action of the Brinkman effect (effective viscosity) and rotation is shown to destabilise the layer, as compared to either of them acting alone, for both stationary and overstable modes. The effective viscosity tends to favour overstable modes while rotation tends to favour stationary convection. Rapid rotation invokes a negative viscosity effect that suppresses the stabilising effect of porosity so that the stability characteristics resemble those of the classical rotating Benard layer. A formal weakly nonlinear analysis yields evolution equations of the Landau–Stuart type governing the slow time development of the amplitudes of the unstable waves. The equilibrium points of the evolution equations are analysed and the overall development of the amplitudes is examined. Both overstable and stationary modes can exhibit supercritical stability; supercritical instability, subcritical instability and stability are not possible. The dependence of the supercritical stability on the relative values of the six dimensionless parameters representing thermal non-equilibrium, rotation, porosity, relaxation time, thermal diffusivities and Brinkman effect is illustrated as regions in regime diagrams in the parameter space. The dependence of the heat transfer and the mean heat flux on the parameters of the problem is also discussed. (paper)

  2. An out-of-plane rotational energy harvesting system for low frequency environments

    International Nuclear Information System (INIS)

    Febbo, M.; Machado, S.P.; Gatti, C.D.; Ramirez, J.M.

    2017-01-01

    Highlights: • An alternative to cantilever beam-type systems for energy harvesting is proposed. • The device generates energy in a low frequency rotational environment. • It comprises two beams, a spring and two heavy masses joined by the spring. • By varying the flexibility of one beam, the device increments output DC power. • The generated DC power suffices to feed low power wireless transmitters. - Abstract: We present a novel design of a rotational power scavenging system as an alternative to cantilever beams attached to a hub. The device is meant to provide energy to wireless autonomous monitoring systems in low frequency environments such as wind turbines of 30 kW with rotational speeds of between 50 and 150 rpm. These characteristics define the bandwidth of the rotational energy harvesting system (REH) and its physical dimensions. A versatile geometric configuration with two elastic beams and two heavy masses joined by a spring is proposed. A piezoelectric sheet is mounted on the primary beam while the REH is placed on a rotating hub with the gravitational force acting as a periodic source. This kind of double-beam system offers the possibility to modify the vibration characteristics of the harvester for achieving high power density. An analytical framework using the Lagrangian formulation is derived to describe the motion of the system and the voltage output as a function of rotation speed. Several sets of experiments were performed to characterize the system and to validate the assumed hypothesis. In the experimental setup, a wireless data acquisition system based on Arduino technology was implemented to avoid slip-ring mechanisms. The results show very good agreement between the theoretical and experimental tests. Moreover, the output power of a simple harvesting circuit, which serves as an energy storage device, yields values ranging 26–105 μW over the whole frequency range. This allows us to use the proposed device for the designed purpose

  3. On the stability of rotational discontinuities

    International Nuclear Information System (INIS)

    Richter, P.; Scholer, M.

    1989-01-01

    The stability of symmetric rotational discontinuities in which the magnetic field rotates by 180 degree is investigated by means of a one-dimensional self-consistent hybrid code. Rotational discontinuities with an angle Θ > 45 degree between the discontinuity normal direction and the upstream magnetic field are found to be relatively stable. The discontinuity normal is in the x direction and the initial magnetic field has finite y component only in the transition region. In the case of the ion (left-handed) sense of rotation of the tangential magnetic field, the transition region does not broaden with time. In the case of the electron (right-handed) sense of rotation, a damped wavetrain builds up in the B y component downstream of the rotational discontinuity and the discontinuity broadens with time. Rotational discontinuities with smaller angles, Θ, are unstable. Examples for a rotational discontinuity with Θ = 30 degree and the electron sense of rotation as well as a rotational discontinuity with Θ = 15 degree and the ion sense of rotation show that these discontinuities into waves. These waves travel approximately with Alfven velocity in the upstream direction and are therefore phase standing in the simulation system. The magnetic hodograms of these disintegrated discontinuities are S-shaped. The upstream portion of the hodogram is always right-handed; the downstream portion is always left-handed

  4. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths.

    Science.gov (United States)

    Yeh, Yi-Jou; Black, Adam J; Akkin, Taner

    2013-10-10

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.

  5. La necesidad de evaluar distrés emocional en psico-oncología: ciencia o ficción?

    Directory of Open Access Journals (Sweden)

    Manolete S. Moscoso

    2010-12-01

    Full Text Available El propósito de este estudio es avanzar en la construcción del Inventario de Distrés Emocional (IDE como un instrumento de screening, fácilmente accesible, administrable, ypsicométricamente válido y confiable, en la medición del distrés emocional en pacientes con cáncer. Se llevó a cabo un análisis factorial mediante componentes principales y método de rotación promax en una muestra de 238 pacientes con cáncer que iniciaron sus tratamientos con radioterapia y/o quimioterapia en el Hospital Morton Plant en la ciudad de Clearwater, Florida, EE. UU. Los resultados obtenidos nos indican que el IDE presenta una estructura factorial consistente con el marco conceptual en el cual se basó la construcción del instrumento, como también un elevado nivel de consistencia interna y validez convergente. -- The purpose of this study is to evaluate the factor structure of the Emotional Distress Inventory (EDI in a sample of 238 cancer patients. The conceptual framework that guided thedevelopment of the EDI, factor structure, internal consistency, and convergent validity are reported. Emotional distress items were developed and administered to cancer patientswho initiated chemotherapy and/or radiation treatments at Morton Plant Hospital Cancer Center in Clearwater, Florida, USA. Item responses were examined by factor analyses ofprincipal components with promax rotations. The EDI presents three subscales that assess anxiety/depression, hopelessness, and anger expression as components of emotional distress. We also discuss the important implications of these subscales, particularly the inclusion ofanger expression and hopelessness in the assessment of emotional distress in cancer patients.

  6. Anatomical glenohumeral internal rotation deficit and symmetric rotational strength in male and female young beach volleyball players.

    Science.gov (United States)

    Saccol, Michele Forgiarini; Almeida, Gabriel Peixoto Leão; de Souza, Vivian Lima

    2016-08-01

    Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student's t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (pvolleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  8. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu

    2017-08-01

    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  9. Scaling laws for the rotational velocity of a J x B driven rotating plasma

    International Nuclear Information System (INIS)

    Igarashi, Yasuhito; Kataoka, Tomohiro; Ikehata, Takashi; Sato, Naoyuki; Tanabe, Toshio; Mase, Hiroshi

    1994-01-01

    Rapidly rotating plasmas of helium and argon have been extracted from a coaxial plasma gun operated in pulsed glow mode. The rotational velocity and its parametric dependence have been analyzed systematically by means of visible - emission spectroscopy. The plasma is observed to rotate rigidly inside the diameter of the gun anode while outside the velocity decreases rapidly ; furthermore, different ions are found to rotate at different angular frequencies as ω (Ar + ) = 0.5 x 10 6 rad/sec, ω (Ar 2+ ) = 1.1 x 10 6 rad/sec, ω (C 2+ ) = 1.8 x 10 6 rad/sec, ω (N + ) = 1.2 x 10 6 rad/sec. The plasma density and rotational velocity have been measured as a function of the discharge current and magnetic field to derive experimental scaling laws. They are summarized as : 1. Ion density is proportional to the square of discharge current. 2. Rotational and axial velocities are proportional to the driving force per ion. These results are confirmed to agree well with a theoretical prediction. (author)

  10. Visual perception of axes of head rotation

    Science.gov (United States)

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is

  11. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  12. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  13. SMAP Faraday Rotation

    Science.gov (United States)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  14. [Rotator cuff tear athropathy prevalence].

    Science.gov (United States)

    Guerra-Soriano, F; Encalada-Díaz, M I; Ruiz-Suárez, M; Valero-González, F S

    2017-01-01

    Glenohumeral arthritis secondary to massive rotator cuff tear presents with a superior displacement and femoralization of the humeral head with coracoacromial arch acetabularization. The purpose of this study was to establish prevalence of rotator cuff tear artropathy (CTA) at our institution. Four hundred electronic records were reviewed from which we identified 136 patients with rotator cuff tears. A second group was composed with patients with massive cuff tears that were analized and staged by the Seebauer cuff tear arthropathy classification. Thirty four patients with massive rotator cuff tears were identified, 8 male and 26 female (age 60.1 ± 10.26 years). Massive rotator cuff tear prevalence was 25%. CTA prevalence found in the rotator cuff group was 19 and 76% in the massive cuff tears group. Patients were staged according to the classification with 32% in stage 1a, 11% 1b, 32% 2a and 0% 2b. CTA prevalence in patients with rotator cuff tears and massive cuff tears is higher than the one reported in American population. We consider that a revision of the Seebauer classification to be appropriate to determine its reliability.

  15. Rotational discontinuities in anisotropic plasmas

    International Nuclear Information System (INIS)

    Omidi, N.

    1992-01-01

    The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense

  16. Determination of the ultimate load in concrete slabs by the yield line finite element method

    International Nuclear Information System (INIS)

    Vaz, L.E.; Feijo, B.; Martha, L.F.R.; Lopes, M.M.

    1984-01-01

    A method for calculating the ultimate load in reinforced concrete slabs is proposed. The method follows the finite element aproach representating the continuum slab as an assembly of rigid triangular plates connected along their sides through yield line elements. This approach leads to the definition of the displacement configuration of the plate only as a function of the transversal displacement at the nodes of the mesh (1 DOF per node) reducing significantly the number of DOF's in relation to the conventional formulation by means of the finite element method (minimum of 3 DOF per node). Nonlinear behaviour of the reinforced concrete section is considered in the definition of the moment rotation curve of the yield lines. The effect of the in plane forces acting in the middle surface of the plate is also taken into account. The validity of the model is verified comparing the numerical solutions with the results of the classical yield line theory. (Author) [pt

  17. Winter cereal yields as affected by animal manure and green manure in organic arable farming

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Askegaard, Margrethe; Rasmussen, Ilse Ankjær

    2009-01-01

    The effect of nitrogen (N) supply through animal and green manures on grain yield of winter wheat and winter rye was investigated from 1997 to 2004 in an organic farming crop rotation experiment in Denmark on three different soil types varying from coarse sand to sandy loam. Two experimental....... Adjusting for these model-estimated side-effects resulted in wheat grain yields gains from manure application of 0.7-1.1 Mg DM ha-1. The apparent recovery efficiency of N in grains (N use efficiency, NUE) from NH4-N in applied manure varied from 23% to 44%. The NUE in the winter cereals of N accumulated......-estimated benefit of increasing N input in grass-clover from 100 to 500 kg N ha-1 varied from 0.8 to 2.0 Mg DM ha-1 between locations. This is a considerably smaller yield increase than obtained for manure application, and it suggests that the productivity in this system may be improved by removing the cuttings...

  18. The methyl rotational potentials of Ga(CH sub 3) sub 3 derived by neutron spectroscopy

    CERN Document Server

    Prager, M; Parker, S F; Desmedt, A; Lechner, R E

    2002-01-01

    High resolution neutron spectra of Ga(CH sub 3) sub 3 show tunnelling transitions between 4.5 and 19 mu eV. The spectrum can be explained within the single-particle model on the basis of the monoclinic C2/c (Z = 16) low temperature crystal structure of Ga(CH sub 3) sub 3 with six inequivalent methyl groups in the unit cell. The overlapping tunnelling lines prevent the extraction of temperature dependent linewidths which would allow us to assign the librational energies measured in the phonon density of states. Classical rotational motion is studied by quasielastic neutron scattering. Three activation energies could be extracted. Methyl librations, tunnelling energies and barrier heights are combined with consistent intensities into rotational potentials. Only the concerted application of all spectroscopic techniques yields a conclusive description.

  19. Impact of initial spacing on yield per acre and wood quality of unthinned loblolly pine at age 21

    Science.gov (United States)

    Alexander, III Clark; Richard F. Daniels; Lewis Jordan; Laurie Schimleck

    2010-01-01

    The market for southern pine first thinnings is soft. Thus, forest managers are planting at wider spacings, and using weed control and fertilization to grow chipping-saw and sawtimber trees in shorter rotations. A 21-year-old unthinned spacing study was sampled to determine the effect of initial spacing on wood quality and yield per acre of planted loblolly pine (

  20. Relaxation processes in rotational motion

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1986-01-01

    At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs

  1. Lunar Rotation, Orientation and Science

    Science.gov (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  2. Rotating positron tomographs revisited

    International Nuclear Information System (INIS)

    Townsend, D.; Defrise, M.; Geissbuhler, A.

    1994-01-01

    We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

  3. Stability and control of resistive wall modes in high beta, low rotation DIII-D plasmas

    International Nuclear Information System (INIS)

    Garofalo, A.M.; Jackson, G.L.; Haye, R.J. La; Okabayashi, M.; Reimerdes, H.; Strait, E.J.; Ferron, J.R.; Groebner, R.J.; In, Y.; Lanctot, M.J.; Matsunaga, G.; Navratil, G.A.; Solomon, W.M.; Takahashi, H.; Takechi, M.; Turnbull, A.D.

    2007-01-01

    Recent high-β DIII-D (Luxon J.L. 2002 Nucl. Fusion 42 64) experiments with the new capability of balanced neutral beam injection show that the resistive wall mode (RWM) remains stable when the plasma rotation is lowered to a fraction of a per cent of the Alfven frequency by reducing the injection of angular momentum in discharges with minimized magnetic field errors. Previous DIII-D experiments yielded a high plasma rotation threshold (of order a few per cent of the Alfven frequency) for RWM stabilization when resonant magnetic braking was applied to lower the plasma rotation. We propose that the previously observed rotation threshold can be explained as the entrance into a forbidden band of rotation that results from torque balance including the resonant field amplification by the stable RWM. Resonant braking can also occur naturally in a plasma subject to magnetic instabilities with a zero frequency component, such as edge localized modes. In DIII-D, robust RWM stabilization can be achieved using simultaneous feedback control of the two sets of non-axisymmetric coils. Slow feedback control of the external coils is used for dynamic error field correction; fast feedback control of the internal non-axisymmetric coils provides RWM stabilization during transient periods of low rotation. This method of active control of the n = 1 RWM has opened access to new regimes of high performance in DIII-D. Very high plasma pressure combined with elevated q min for high bootstrap current fraction, and internal transport barriers for high energy confinement, are sustained for almost 2 s, or 10 energy confinement times, suggesting a possible path to high fusion performance, steady-state tokamak scenarios

  4. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  5. Increasing the productivity of short-rotation Populus plantations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C. [Forest Service, Olympia, WA (United States). Pacific Northwest Research Station

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  6. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  7. Wave-Driven Rotation In Centrifugal Mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  8. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation

    Directory of Open Access Journals (Sweden)

    Babbu Singh Brar

    2015-06-01

    Full Text Available Balanced and integrated use of organic and inorganic fertilizers may enhance the accumulation of soil organic matter and improves soil physical properties. A field experiment having randomized complete block design with four replications was conducted for 36 years at Punjab Agricultural University (PAU, Ludhiana, India to assess the effects of inorganic fertilizers and farmyard manure (FYM on soil organic carbon (SOC, soil physical properties and crop yields in a maize (Zea mays–wheat (Triticum aestivum rotation. Soil fertility management treatments included were non-treated control, 100% N, 50% NPK, 100% NP, 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + W, 100% NPK (-S and 100% NPK + FYM. Soil pH, bulk density (BD, electrical conductivity (EC, cation exchange capacity, aggregate mean weight diameter (MWD and infiltration were measured 36 years after the initiation of experiment. Cumulative infiltration, infiltration rate and aggregate MWD were greater with integrated use of FYM along with 100% NPK compared to non-treated control. No significant differences were obtained among fertilizer treatments for BD and EC. The SOC pool was the lowest in control at 7.3 Mg ha−1 and increased to 11.6 Mg ha−1 with 100%NPK+FYM. Improved soil physical conditions and increase in SOC resulted in higher maize and wheat yields. Infiltration rate, aggregate MWD and crop yields were positively correlated with SOC. Continuous cropping and integrated use of organic and inorganic fertilizers increased soil C sequestration and crop yields. Balanced application of NPK fertilizers with FYM was best option for higher crop yields in maize–wheat rotation.

  9. Staff rotation: implications for occupational therapy.

    Science.gov (United States)

    Taylor, A; Andriuk, M L; Langlois, P; Provost, E

    1995-10-01

    Occupational therapy departments of tertiary care hospitals can provide staff with opportunities to gain diverse clinical experience if they rotate through the various services such as surgery, medicine, geriatrics, plastic surgery and orthopaedics. The system of rotation offers both advantages and disadvantages for the staff and the institution. The Royal Victoria Hospital in Montreal, a large university teaching hospital, had traditionally offered staff the opportunity to rotate. Changes in staffing and their needs however, resulted in rotation becoming an important issue within the department. This article presents the pros and the cons of rotation and non-rotation systems as identified by therapists and administrators across Canada. Staff rotation was found to have an effect on job satisfaction and a therapist's career orientation. Given these findings, administrators may want to reconsider the role of the generalist and specialist in their facilities.

  10. Relativistic rotation and the anholonomic object

    International Nuclear Information System (INIS)

    Corum, J.F.

    1977-01-01

    The purpose of this communication is to call attention to the conceptual economy provided by the object of anholonomity for the theory of relativity. This geometric object expresses certain consequences of relativity theory and provides a single, simple framework for discussing a variety of phenomena. It particularly clarifies the description of relativistic rotation. The relativistic rotational transformation of the four coordinate differentials of flat space--time generates a set of anholonomic, or inexact differentials, whose duals are an orthogonal set of basis vectors. How should a rotating observer interpret physical events referred to such orthogonal, but anholonomic frames The answer to this question rests upon the origin and physical significance of the object of anholonomity. It is demonstrated that not only is the rotational Lorentz transformation an anholonomic transformation, but that the intrinsic anholonomic effects are essential to interpreting rotational phenomena. In particular, the Sagnac effect may be interpreted as the physical manifestation of temporal anholonomity under rotation. The Thomas precession of a reference axis may be interpreted as a consequence of the spatial anholonomity of the rotating frame. Further, the full four-dimensional covariance of Maxwellian electrodynamics, under a relativistic Lorentz rotation, is possible only with the inclusion of anholonomic effects. The anholonomic approach clarifies the distinction between the physically different operations of source rotation and observer rotation in a flat space--time. It is finally concluded that a consistant theory of relativistic rotation, satisfying the principle of general covariance, inherently requires the presence of the object of anholonomity

  11. Precision grip responses to unexpected rotational perturbations scale with axis of rotation.

    Science.gov (United States)

    De Gregorio, Michael; Santos, Veronica J

    2013-04-05

    It has been established that rapid, pulse-like increases in precision grip forces ("catch-up responses") are elicited by unexpected translational perturbations and that response latency and strength scale according to the direction of linear slip relative to the hand as well as gravity. To determine if catch-up responses are elicited by unexpected rotational perturbations and are strength-, axis-, and/or direction-dependent, we imposed step torque loads about each of two axes which were defined relative to the subject's hand: the distal-proximal axis away from and towards the subject's palm, and the grip axis which connects the two fingertips. Precision grip responses were dominated initially by passive mechanics and then by active, unimodal catch-up responses. First dorsal interosseous activity, marking the start of the catch-up response, began 71-89 ms after the onset of perturbation. The onset latency, shape, and duration (217-231 ms) of the catch-up response were not affected by the axis, direction, or magnitude of the rotational perturbation, while strength was scaled by axis of rotation and slip conditions. Rotations about the grip axis that tilted the object away from the palm and induced rotational slip elicited stronger catch-up responses than rotations about the distal-proximal axis that twisted the object between the digits. To our knowledge, this study is the first to investigate grip responses to unexpected torque loads and to show characteristic, yet axis-dependent, catch-up responses for conditions other than pure linear slip. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. [Effects of Chemical Fertilizers and Organic Fertilizer on Yield of Ligusticum chuanxiong Rhizome].

    Science.gov (United States)

    Liang, Qin; Chen, Xing-fu; Li, Yan; Zhang, Jun; Meng, Jie; Peng, Shi-ming

    2015-10-01

    To study the effects of different N, P, K and organic fertilizer (OF) on yield of Ligusticum chuanxiong rhizome, in order to provide the theoretical foundation for the establishment of standardization cultivation techniques. The field plot experiments used Ligusticum chuanxiong rhizome which planted in Pengshan as material, and were studied by the four factors and five levels with quadratic regression rotation-orthogonal combination design. According to the data obtained, a function model which could predict the fertilization and yield of Ligusticum chuanxiong rhizome accurately was established. The model analysis showed that the yields of Ligusticum chuanxiong rhizome were significantly influenced by the N, P, K and OF applications. Among these factors, the order of increase rates by the fertilizers was K > OF > N > P; The effect of interaction between N and K, N and OF, K and OF on the yield of Ligusticum chuanxiong rhizome were significantly different. High levels of N and P, N and organic fertilizer, K and organic fertilizer were conducive to improve the yield of Ligusticum chuanxiong rhizome. The results showed that the optimal fertilizer application rates of N was 148.20 - 172.28 kg/hm2, P was 511.92 - 599.40 kg/hm2, K was 249.70 - 282.37 kg/hm2, and OF was 940.00 - 1 104.00 kg/hm2. N, P, K and OF obviously affect the yield of Ligusticum chuanxiong rhizome. K and OF can significantly increase the yield of Ligusticum chuanxiong rhizome. Thus it is suggested that properly high mount of K and OF and appropriate increasing N are two favorable factors for cultivating Ligusticum chuanxiong.

  13. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [University of California-San Diego, La Jolla, California 92186-5608 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2012-10-15

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  14. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma.

    Science.gov (United States)

    Chrystal, C; Burrell, K H; Grierson, B A; Groebner, R J; Kaplan, D H

    2012-10-01

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  15. Toroidal rotation studies in KSTAR

    Science.gov (United States)

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  16. Forage yield and nutritive value of Tanzania grass under nitrogen supplies and plant densities

    Directory of Open Access Journals (Sweden)

    Fabrício Paiva de Freitas

    2012-04-01

    Full Text Available The objective of this experiment was to evaluate the nitrogen and plant density influence on the yield, forage dissection and nutritive value of Tanzania grass (Panicum maximum Jacq.. The design was of completely randomized blocks with three replications in a factorial arrangement with four nitrogen levels (0, 80, 160 or 320 kg/ha N and three plant densities (9, 25 or 49 plants/m². The plots were cut at 25 cm from soil level when the canopy reached 95% of light interception. The total dry matter forage yield and dry matter forage yield per harvest increased linearly with the nitrogen fertilization. The leaf and stem yield had the same response. The senesced forage yield was quadratically influenced by the nitrogen. The stems ratio in the morphologic composition was high in the high nitrogen levels and in the low plant densities. The leaf:stem ratio showed high values in this trial, but it was increased in plots without nitrogen and high plant density. The pre-grazing height was reduced with the increase in plant density. The nutritive value was favored by the nitrogen fertilization, which increased the crude protein level and reduced neutral detergent fiber and lignin. These factors increased the leaf and stem in vitro digestibility of organic matter. Nitrogen fertilization increases the forage yield of Tanzania grass under rotational grazing. After the establishment, plant density has little influence on the Tanzania grass yield and its forage dissection. The harvest with 95% light interception improves the structure and nutritive value of Tanzania grass pastures.

  17. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  18. The rotation of galaxy clusters

    International Nuclear Information System (INIS)

    Tovmassian, H.M.

    2015-01-01

    The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b> 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60 per cent, and clusters of BMI type with dominant cD galaxy, ≈ 35 per cent. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have mergings with other clusters and groups of galaxies, in the result of which the rotation has been prevented

  19. Rotational Spectrum and Internal Rotation Barrier of 1-Chloro-1,1-difluoroethane

    Science.gov (United States)

    Alonso, José L.; López, Juan C.; Blanco, Susana; Guarnieri, Antonio

    1997-03-01

    The rotational spectra of 1-chloro-1,1-difluoroethane (HCFC-142b) has been investigated in the frequency region 8-115 GHz with Stark, waveguide Fourier transform (FTMW), and millimeter-wave spectrometers. Assignments in large frequency regions with the corresponding frequency measurements have been made for the ground andv18= 1 (CH3torsion) vibrational states of the35Cl isotopomer and for the ground state of the37Cl species. Accurate rotational, quartic centrifugal distortion, and quadrupole coupling constants have been determined from global fits considering all these states. SmallA-Einternal rotation splittings have been observed for thev18= 1 vibrational state using FTMW spectroscopy. The barrier height for the internal rotation of the methyl group has been determined to be 3751 (4) cal mol-1, in disagreement with the previous microwave value of 4400 (100) cal mol-1reported by G. Graner and C. Thomas [J. Chem. Phys.49,4160-4167 (1968)].

  20. On the Lippmann--Schwinger equation for atom--diatom collisions: A rotating frame treatment

    International Nuclear Information System (INIS)

    Kouri, D.J.; Heil, T.G.; Shimoni, Y.

    1976-01-01

    The use of a rotating frame description of molecular collisions is reconsidered within the framework of the Lippmann--Schwinger equation for the transition or T operator. The present approach explicitly displays the proper boundary conditions which apply to descriptions of such collisions in the rotating frame whose Z axis follows the scattering vector. The resulting body frame equations are shown to lead naturally to the introduction of ''body frame Bessel and Hankel functions,'' J/subJ//subj//sup lambda//sup lambda//sup prime/ and H/subJ//subj//sup lambda//sup lambda//sup prime/ (BFBF), which are solutions of the unperturbed Hamiltonian for the collision transformed to the rotating frame. It is found that the BFBF can be defined in several ways differing by phase factors that affect their asymptotic form. Two particular choices are examined, one of which leads to a simple asymptotic form of the wavefunction, and the other leads to a somewhat more complicated form. Both are shown to yield the j/subz/-conserving coupled states equations of McGuire and Kouri but slightly different approximations are required in the two cases. The implication of these results as to the accuracy of the j/subz/CCS method are discussed

  1. Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate

    Science.gov (United States)

    Sengupta, Tapan K.; Gullapalli, Atchyut

    2016-11-01

    Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].

  2. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  3. Short rotation coppice for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising short rotation coppice (SRC) for energy production. The aim of the report is to help interested parties decide if a location is suitable for SRC planting by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of SRC compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of SRC and notes that, in some situations, there will be considerable uncertainty in predictions.

  4. E 2 decay strength of the M 1 scissors mode of 156Gd and its first excited rotational state

    Science.gov (United States)

    Beck, T.; Beller, J.; Pietralla, N.; Bhike, M.; Birkhan, J.; Derya, V.; Gayer, U.; Hennig, A.; Isaak, J.; Löher, B.; Ponomarev, V. Yu.; Richter, A.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.

    2017-05-01

    The E 2 /M 1 multipole mixing ratio δ1 →2 of the 1sc+→21+ γ -ray decay in 156Gd and hence the isovector E 2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ -ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched 156Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying Jπ=2+ member of the rotational band of states on top of the 1+ band head is obtained, too, indicating a significant signature splitting in the K =1 scissors mode rotational band.

  5. E2 decay strength of the M1 scissors mode of ^{156}Gd and its first excited rotational state.

    Science.gov (United States)

    Beck, T; Beller, J; Pietralla, N; Bhike, M; Birkhan, J; Derya, V; Gayer, U; Hennig, A; Isaak, J; Löher, B; Ponomarev, V Yu; Richter, A; Romig, C; Savran, D; Scheck, M; Tornow, W; Werner, V; Zilges, A; Zweidinger, M

    2017-05-26

    The E2/M1 multipole mixing ratio δ_{1→2} of the 1_{sc}^{+}→2_{1}^{+} γ-ray decay in ^{156}Gd and hence the isovector E2 transition rate of the scissors mode of a well-deformed rotational nucleus has been measured for the first time. It has been obtained from the angular distribution of an artificial quasimonochromatic linearly polarized γ-ray beam of energy 3.07(6) MeV scattered inelastically off an isotopically highly enriched ^{156}Gd target. The data yield first direct support for the deformation dependence of effective proton and neutron quadrupole boson charges in the framework of algebraic nuclear models. First evidence for a low-lying J^{π}=2^{+} member of the rotational band of states on top of the 1^{+} band head is obtained, too, indicating a significant signature splitting in the K=1 scissors mode rotational band.

  6. Complex-plane strategy for computing rotating polytropic models - efficiency and accuracy of the complex first-order perturbation theory

    International Nuclear Information System (INIS)

    Geroyannis, V.S.

    1988-01-01

    In this paper, a numerical method is developed for determining the structure distortion of a polytropic star which rotates either uniformly or differentially. This method carries out the required numerical integrations in the complex plane. The method is implemented to compute indicative quantities, such as the critical perturbation parameter which represents an upper limit in the rotational behavior of the star. From such indicative results, it is inferred that this method achieves impressive improvement against other relevant methods; most important, it is comparable to some of the most elaborate and accurate techniques on the subject. It is also shown that the use of this method with Chandrasekhar's first-order perturbation theory yields an immediate drastic improvement of the results. Thus, there is no neeed - for most applications concerning rotating polytropic models - to proceed to the further use of the method with higher order techniques, unless the maximum accuracy of the method is required. 31 references

  7. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  8. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  9. Optimizing rice yields while minimizing yield-scaled global warming potential.

    Science.gov (United States)

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  10. Integration of Visual and Vestibular Information Used to Discriminate Rotational Self-Motion

    Directory of Open Access Journals (Sweden)

    Florian Soyka

    2011-10-01

    Full Text Available Do humans integrate visual and vestibular information in a statistically optimal fashion when discriminating rotational self-motion stimuli? Recent studies are inconclusive as to whether such integration occurs when discriminating heading direction. In the present study eight participants were consecutively rotated twice (2s sinusoidal acceleration on a chair about an earth-vertical axis in vestibular-only, visual-only and visual-vestibular trials. The visual stimulus was a video of a moving stripe pattern, synchronized with the inertial motion. Peak acceleration of the reference stimulus was varied and participants reported which rotation was perceived as faster. Just-noticeable differences (JND were estimated by fitting psychometric functions. The visual-vestibular JND measurements are too high compared to the predictions based on the unimodal JND estimates and there is no JND reduction between visual-vestibular and visual-alone estimates. These findings may be explained by visual capture. Alternatively, the visual precision may not be equal between visual-vestibular and visual-alone conditions, since it has been shown that visual motion sensitivity is reduced during inertial self-motion. Therefore, measuring visual-alone JNDs with an underlying uncorrelated inertial motion might yield higher visual-alone JNDs compared to the stationary measurement. Theoretical calculations show that higher visual-alone JNDs would result in predictions consistent with the JND measurements for the visual-vestibular condition.

  11. Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation

    Science.gov (United States)

    Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E.

    2018-01-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes

  12. Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation.

    Science.gov (United States)

    Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E

    2018-01-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes

  13. Collective rotation from ab initio theory

    International Nuclear Information System (INIS)

    Caprio, M.A.; Maris, P.; Vary, J.P.; Smith, R.

    2015-01-01

    Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7–9 Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction. (author)

  14. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  15. Elasto-Plastic Stress Analysis in Rotating Disks and Pressure Vessels Made of Functionally Graded Materials

    Directory of Open Access Journals (Sweden)

    Amir T. Kalali

    Full Text Available Abstract A new elastio-plastic stress solution in axisymmetric problems (rotating disk, cylindrical and spherical vessel is presented. The rotating disk (cylindrical and spherical vessel was made of a ceramic/metal functionally graded material, i.e. a particle-reinforced composite. It was assumed that the material's plastic deformation follows an isotropic strain-hardening rule based on the von-Mises yield criterion. The mechanical properties of the graded material were modeled by the modified rule of mixtures. By assuming small strains, Hencky's stress-strain relation was used to obtain the governing differential equations for the plastic region. A numerical method for solving those differential equations was then proposed that enabled the prediction of stress state within the structure. Selected finite element results were also presented to establish supporting evidence for the validation of the proposed approach.

  16. The effect of rotations on Michelson interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Maraner, Paolo, E-mail: pmaraner@unibz.it

    2014-11-15

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.

  17. The effect of rotations on Michelson interferometers

    International Nuclear Information System (INIS)

    Maraner, Paolo

    2014-01-01

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations

  18. Femoral component rotation in patellofemoral joint replacement.

    Science.gov (United States)

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Current status of rotational atherectomy.

    Science.gov (United States)

    Tomey, Matthew I; Kini, Annapoorna S; Sharma, Samin K

    2014-04-01

    Rotational atherectomy facilitates percutaneous coronary intervention for complex de novo lesions with severe calcification. A strategy of routine rotational atherectomy has not, however, conferred reduction in restenosis or major adverse cardiac events. As it is technically demanding, rotational atherectomy is also uncommon. At this 25-year anniversary since the introduction of rotational atherectomy, we sought to review the current state-of-the-art in rotational atherectomy technique, safety, and efficacy data in the modern era of drug-eluting stents, strategies to prevent and manage complications, including slow-flow/no-reflow and burr entrapment, and appropriate use in the context of the broader evolution in the management of stable ischemic heart disease. Fundamental elements of optimal technique include use of a single burr with burr-to-artery ratio of 0.5 to 0.6-rotational speed of 140,000 to 150,000 rpm, gradual burr advancement using a pecking motion, short ablation runs of 15 to 20 s, and avoidance of decelerations >5,000 rpm. Combined with meticulous technique, optimal antiplatelet therapy, vasodilators, flush solution, and provisional use of atropine, temporary pacing, vasopressors, and mechanical support may prevent slow-flow/no-reflow, which in contemporary series is reported in 0.0% to 2.6% of cases. On the basis of the results of recent large clinical trials, a subset of patients with complex coronary artery disease previously assigned to rotational atherectomy may be directed instead to medical therapy alone or bypass surgery. For patients with de novo severely calcified lesions for which rotational atherectomy remains appropriate, referral centers of excellence are required. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Mudflow rheology in a vertically rotating flume

    Science.gov (United States)

    Holmes, Robert R.; Westphal, Jerome A.; Jobson, Harvey E.; ,

    1990-01-01

    Joint research by the U.S. Geological Survey and the University of Missouri-Rolla currently (1990) is being conducted on a 3.05 meters in diameter vertically rotating flume used to simulate mudflows under steady-state conditions. Observed mudflow simulations indicate flow patterns in the flume are similar to those occurring in natural mudflows. Variables such as mean and surface velocity, depth, and average boundary shear stress can be measured in this flume more easily than in the field or in a traditional tilting flume. Sensitive variables such as sediment concentration, grain-size distribution, and Atterberg limits also can be precisely and easily controlled. A known Newtonian fluid, SAE 30 motor oil, was tested in the flume and the computed value for viscosity was within 12.5 percent of the stated viscosity. This provided support that the data from the flume can be used to determine the rheological properties of fluids such as mud. Measurements on mud slurries indicate that flows with sediment concentrations ranging from 81 to 87 percent sediment by weight can be approximated as Bingham plastic for strain rates greater than 1 per second. In this approximation, the yield stress and Bingham viscosity were extremely sensitive to sediment concentration. Generally, the magnitude of the yield stress was large relative to the change in shear stress with increasing mudflow velocity.

  1. Flow past a rotating cylinder

    Science.gov (United States)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  2. Friendship chemistry: An examination of underlying factors☆.

    Science.gov (United States)

    Campbell, Kelly; Holderness, Nicole; Riggs, Matt

    2015-06-01

    Interpersonal chemistry refers to a connection between two individuals that exists upon first meeting. The goal of the current study is to identify beliefs about the underlying components of friendship chemistry. Individuals respond to an online Friendship Chemistry Questionnaire containing items that are derived from interdependence theory and the friendship formation literature. Participants are randomly divided into two subsamples. A principal axis factor analysis with promax rotation is performed on subsample 1 and produces 5 factors: Reciprocal candor, mutual interest, personableness, similarity, and physical attraction. A confirmatory factor analysis is conducted using subsample 2 and provides support for the 5-factor model. Participants with agreeable, open, and conscientious personalities more commonly report experiencing friendship chemistry, as do those who are female, young, and European/white. Responses from participants who have never experienced chemistry are qualitatively analyzed. Limitations and directions for future research are discussed.

  3. Glenohumeral interposition of rotator cuff stumps: a rare complication of traumatic rotator cuff tear

    Directory of Open Access Journals (Sweden)

    Paulo Moraes Agnollitto

    2016-02-01

    Full Text Available Abstract The present report describes a case where typical findings of traumatic glenohumeral interposition of rotator cuff stumps were surgically confirmed. This condition is a rare complication of shoulder trauma. Generally, it occurs in high-energy trauma, frequently in association with glenohumeral joint dislocation. Radiography demonstrated increased joint space, internal rotation of the humerus and coracoid process fracture. In addition to the mentioned findings, magnetic resonance imaging showed massive rotator cuff tear with interposition of the supraspinatus, infraspinatus and subscapularis stumps within the glenohumeral joint. Surgical treatment was performed confirming the injury and the rotator cuff stumps interposition. It is important that radiologists and orthopedic surgeons become familiar with this entity which, because of its rarity, might be neglected in cases of shoulder trauma.

  4. Rotational movements of mandibular two-implant overdentures.

    Science.gov (United States)

    Kimoto, Suguru; Pan, Shaoxia; Drolet, Nicolas; Feine, Jocelyne S

    2009-08-01

    Clinicians have reported that their patients complain that their mandibular two-implant overdentures (IOD) rotate. Therefore, we studied the frequency and severity of rotation of IODs with two-ball attachments, how rotation may influence perceived satisfaction ratings of chewing ability, and the factors that are involved in the rotation of IODs. Seventy-nine participants were recruited and asked to rate their general satisfaction of their IODs, as well as their ability to chew foods, the existence of any mandibular denture rotation, and to what degree denture rotation bothered them. Data on participant sociodemographic, anatomical, and prosthesis characteristics were also collected. Student's t-test and logistic regression analyses were performed to analyze the differences between participants who did (R group) and did not report (NR group) denture rotation. Thirty-seven of 79 participants were aware of rotational movement in their IODs. These patients were significantly less satisfied with their chewing ability than those who felt no rotation (69.1 mm R group vs. 82.9 mm), and discomfort caused by the rotation bothered them moderately (39/100 mm). The multivariate logistic regression analysis revealed that the arrangement of the anterior teeth and the length of the denture are significantly associated with awareness of denture rotation. Thirty-eight percent in the R group and 31% in the NR group had non-scheduled visits. Rotational movement with a mandibular two-IOD has a negative effect on perceived chewing ability and is associated with anterior tooth arrangement and denture length.

  5. Microbial Species and Functional Diversity in Rice Rhizosphere of High-yield Special Ecological Areas

    Directory of Open Access Journals (Sweden)

    PAN Li-yuan

    2016-11-01

    Full Text Available Taoyuan, Yunnan Province is a special eco-site which keeps the highest yield records of rice cultivation in small planting areas. Soil microbial species and functional diversity were evaluated using cultivation method and BIOLOG ecoplates. The results showed that the microbial community of the high yield region was more abundant, and the total microbial population was 2 times of the control, furthermore, the areas belonged to the healthy "bacteria" soil, which was showed as bacteria > actinomycetes > fungi. Bacteria were the dominant populations in the rhizosphere of high yielding rice field, and the yield formation of rice was not correlated with the depth of soil layers. In order to obtain more species diversity information, Shannon diversity index H, Shannon evenness index E and Simpson index D were analyzed, and the results showed that microbial community diversity and evenness were not the main differences between the high and general yield areas. Then, the functional diversity of soil microbial community was investigated through the average well color development(AWCD and diversity index analyses. The results of AWCD analysis indicated that the metabolic activity of soil microbial community in high yield paddy soils were stronger than the control. Moreover, the difference range from large to small showed as tillering stage > harvest period > seedling period > rotation period, the stronger the rice growth, the greater the difference between the high yield region and the control. At tillering stage and harvest stage, due to the vigorous plant growth, the root exudates were rich, and the microbial communities of high yield paddy soils showed a strong metabolic activity and strong ability to use carbon sources. The results of Shannon, Simpson and McIntosh indices analysis indicated that common microbial species was not a key factor affecting the yield of rice. Tillering stage was a key period for the growth of high yield rice, and many

  6. Responses of yield and N use of spring sown crops to N fertilization, with special reference to the use of plant growth regulators

    OpenAIRE

    L. PIETOLA; R. TANNI; P. ELONEN

    2008-01-01

    The role of plant growth regulators (PGR) in nitrogen (N) fertilization of spring wheat and oats (CCC), fodder barley (etephon/mepiquat) and oilseed rape (etephone) in crop rotation was studied in 19931996 on loamy clay soil. Carry over effect of the N fertilization rates (0180 kg ha-1 ) was evaluated in 1997. N fertilization rate for the best grain/seed yield (120150 kg ha-1 ) was not affected by PGRs. The seed and N yields of oilseed rape were improved most frequently by recommended use of ...

  7. Rotational velocities of low-mass stars

    International Nuclear Information System (INIS)

    Stauffer, J.B.; Hartmann, L.W.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    The rotational velocities of stars provide important clues to how stars form and evolve. Yet until recently, studies of stellar rotation were limited to stars more massive than the sun. This is beginning to change, and an observational outline of the rotational velocity evolution of stars less massive than the sun can now be provided. Low-mass stars rotate slowly during the early stages of premain-sequence evolution, and spin up as they contract to the main sequence. This spin-up culminates in a brief period of very rapid rotation at an age of order 50 million years. Physical interpretation of this increase in rotation and the subsequent main-sequence spin-down are complicated by the possibility of differential internal rotation. The observed rapidity of spin-down among G dwarfs suggests that initially only the outer convective envelopes of these stars are slowed. The data suggest an intrinsic spread in angular momentum among young stars of the same mass and age, a spread which is apparently minimized by the angular-momentum loss mechanism in old low-mass stars. 83 references

  8. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  9. Development of a fast response rotating polarimeter for a faraday rotation measurement

    International Nuclear Information System (INIS)

    Maeno, Masaki; Ogiwara, Norio; Ogawa, Hiroaki; Matsuda, Toshiaki

    1994-03-01

    This paper describes a method for using a spindle sustained with active magnetic bearing to make a rotating half waveplate frequency more fast. The time interval of the zero-cross phase measurement is 189 μsec in this experiment. The magnetic bearing is applicable to increase the rotating waveplate frequency by a factor of 2-3 compared with the conventional one. The waveplate speed as well as the deviation with respect to the stationary laser beam has no influence on the amplitude and phase shift of the rotating polarized beam signal. There is also no influence of the mirror reflections on the phase shift. The overall phase resolution is estimated to be about 0.1 degrees. (author)

  10. Effect of Integrated Nutrient Management on Yield and Yield ...

    African Journals Online (AJOL)

    Declining soil fertility is one of the major problems causing yield reduction of barley ... (VC) with inorganic NP on growth, yield and yield components of food barley. ... The experiments were laid out in a randomized complete block design with ...

  11. Rotational dynamics with Tracker

    International Nuclear Information System (INIS)

    Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

  12. Grain yield of corn at different population densities and intercropped with forages

    Directory of Open Access Journals (Sweden)

    José M. do Nascimento

    2015-12-01

    Full Text Available ABSTRACT The no-tillage system optimizes agricultural areas, maintaining the supply of straw and promoting crop rotation and soil conservation. The aim of the present study was to evaluate sowing quality and grain yield of corn intercropped with three forage species of the Urochloa genus associated with two corn population densities. The experiment was conducted at the São Paulo State University (UNESP, in Jaboticabal-SP, Brazil. The experimental design was randomized blocks in a 2 x 3 factorial scheme with four replicates. The treatments consisted of two corn densities (55,000 and 75,000 plants ha-1 intercropped with three forages (Urochloa brizantha, Urochloa decumbens and Urochloa ruziziensis sown between rows of corn in the V4 stage. The following corn variables were analysed: mean number of days for emergence, longitudinal distribution, grain yield, initial population and final population. There were differences between corn populations (p < 0.1 and the intercropping of corn with the species U. brizantha and U. ruziziensis promoted the best results, which permitted concluding that the cultivation of corn at the population density of 75,000 plants ha-1 intercropped U. brizantha and U. ruziziensis promoted better sowing quality and, consequently, higher grain yields.

  13. Impacts of Agro-Ecological Practices on Soil Losses and Cash Crop Yield

    Directory of Open Access Journals (Sweden)

    Daniela De Benedetto

    2017-12-01

    Full Text Available The aim of this study was to determine the impact of agro-ecological practices on soil losses, by assessing experimental field topography changes and cauliflower crop yield after an artificial extreme rainfall event. Data were collected in an innovative experimental device in which different combined agronomic strategies were tested such as hydraulic arrangement, crop rotations and agro-ecological service crops (ASC introduction. The collection of elevation data was carried out in kinematic way before rainfall, and in punctual surveys to evaluate the effects of artificial event on this parameter. Non-parametric tests were performed to evaluate differences between samples. High-resolution digital elevation models were generated from independent data using kriging, and elevation difference maps were produced. The results indicated that the data before and after the artificial rainfall were statistically different. The raised strips suffered soil loss showing that the strip with permanent intercropping was higher than that in the absence of ASC. A significant rise of elevation was registered in the furrowed strips after rainfall, and deposition of soil occurred at the lowest areas of the experimental field. Moreover, the study showed a relationship between cash crop yield and elevation: the areas with lower elevation (higher flooding were characterized by the lowest yield.

  14. The Brunt–Väisälä frequency of rotating tokamak plasmas

    International Nuclear Information System (INIS)

    Haverkort, J.W.; Blank, H.J. de; Koren, B.

    2012-01-01

    The continuous spectrum of analytical toroidally rotating magnetically confined plasma equilibria is investigated analytically and numerically. In the presence of purely toroidal flow, the ideal magnetohydrodynamic equations leave the freedom to specify which thermodynamic quantity is constant on the magnetic surfaces. Introducing a general parametrization of this quantity, analytical equilibrium solutions are derived that still posses this freedom. These equilibria and their spectral properties are shown to be ideally suited for testing numerical equilibrium and stability codes including toroidal rotation. Analytical expressions are derived for the low-frequency continuous Alfvén spectrum. These expressions still allow one to choose which quantity is constant on the magnetic surfaces of the equilibrium, thereby generalizing previous results. The centrifugal convective effect is shown to modify the lowest Alfvén continuum branch to a buoyancy frequency, or Brunt–Väisälä frequency. A comparison with numerical results for the case that the specific entropy, the temperature, or the density is constant on the magnetic surfaces yields excellent agreement, showing the usefulness of the derived expressions for the validation of numerical codes.

  15. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading

    Energy Technology Data Exchange (ETDEWEB)

    Murtagh, P J; Basu, B; Broderick, B M [Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin (Ireland)

    2005-07-15

    This paper proposes an approach to investigate the along-wind forced vibration response of a wind turbine tower and rotating blades assembly subjected to rotationally sampled stationary wind loading. The wind turbine assembly consists of three rotating rotor blades connected to the top of a flexible annular tower, constituting a multi-body dynamic entity. The tower and rotating blades are each modelled as discretized multi-degree-of-freedom (MDOF) entities, allowing the free vibration characteristics of each to be obtained using a discrete parameter approach. The free vibration properties of the tower include the effect of a rigid mass at the top, representing the nacelle, and those of the blade include the effects of centrifugal stiffening due to rotation and blade gravity loadings. The blades are excited by drag force time-histories derived from discrete Fourier transform (DFT) representations of rotationally sampled wind turbulence spectra. Blade response time-histories are obtained using the mode acceleration method, which allows for the quantification of base shear forces due to flapping for the three blades to be obtained. This resultant base shear is imparted into the top of the tower. Wind drag loading on the tower is also considered, with a series of spatially correlated nodal force time-histories being derived using DFTs of wind force spectra. The tower/nacelle is then coupled with the rotating blades by combining their equations of motion and solving for the displacement at the top of the tower under compatibility conditions in the frequency domain. An inverse Fourier transform of the frequency domain response yields the response time-history of the coupled system. The response of an equivalent system that does not consider the blade/tower interaction is also investigated, and the results are compared. (Author)

  16. Differential rotation in magnetic stars

    International Nuclear Information System (INIS)

    Moss, D.

    1981-01-01

    The possibility that large-scale magnetic fields in stars are the product of a contemporary dynamo situated in the convective stellar core, rather than being a fossil from an earlier stage in the history of the star, is investigated. It is demonstrated that then the envelope will almost inevitably be in a state of differential rotation. Some simple models are constructed to illustrate the magnitude of the effects on the structure of the envelope and magnetic field. It is found that, for models which are relatively rapidly rotating, a modest differential rotation at the surface of the core may increase considerably the ratio of internal to surface field, but only give rise to a small surface differential rotation. (author)

  17. Multimodel Inference for the Prediction of Disease Symptoms and Yield Loss of Potato in a Two-Year Crop Rotation Experiment

    Directory of Open Access Journals (Sweden)

    Wim Van den Berg

    2012-01-01

    Full Text Available The second order Akaike information criterion was used for the assessment of 139 regression models for three responses of potato test crops: (a incidence of Spongospora subterranea on the harvested tubers, (b percentage of haulms infected with Verticillium dahliae, and (c tuber yield. Six variables that are likely related to the response variables were taken into consideration: soil infestations of the fungus Verticillium dahliae and of three nematode species (Globodera pallida, Trichodoridae, and Meloidogyne spp. and, furthermore, soil pH and water soluble phosphor (P. Interactions between V. dahliae and the three nematode species were included as well. Based on multimodelling, predictors are given a weight from which one may decide about the need to include them in a prediction of crop yield. The most important predictors were soil infestation levels of V. dahliae and G. pallida and soil pH. The outcome also showed that tubers suffered more from S. subterranea for higher soil pH values. Finally, yield reduction from the presence of V. dahliae was enhanced by the presence of higher densities of G. pallida.

  18. Optical illusions induced by rotating medium

    Science.gov (United States)

    Zang, XiaoFei; Huang, PengCheng; Zhu, YiMing

    2018-03-01

    Different from the traditional single-function electromagnetic wave rotators (rotate the electromagnetic wavefronts), we propose that rotating medium can be extended to optical illusions such as breaking the diffraction limit and overlapping illusion. Furthermore, the homogeneous but anisotropic rotating medium is simplified by homogeneous and isotropic positive-index materials according to the effective medium theory, which is helpful for future device fabrication. Finite element simulations for the two-dimensional case are performed to demonstrate these properties.

  19. Yield trends and yield gap analysis of major crops in the world

    OpenAIRE

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are quantified, yield gaps evaluated by crop experts, current yield progress by breeding estimated, and different yield projections compared. Results show decreasing yield growth for wheat and rice, but ...

  20. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    Science.gov (United States)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean

  1. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

    2014-01-01

    We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

  2. Equity yields

    NARCIS (Netherlands)

    Vrugt, E.; van Binsbergen, J.H.; Koijen, R.S.J.; Hueskes, W.

    2013-01-01

    We study a new data set of dividend futures with maturities up to ten years across three world regions: the US, Europe, and Japan. We use these asset prices to construct equity yields, analogous to bond yields. We decompose the equity yields to obtain a term structure of expected dividend growth

  3. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  4. Analysis of soil microbial community structure and enzyme activities associated with negative effects of pseudostellaria heterophylla consecutive monoculture on yield

    International Nuclear Information System (INIS)

    Lin, S.; Lin, W.X.

    2015-01-01

    Pseudostellaria heterophylla is an important medicinal plant in China. However, cultivation of P. heterophylla using consecutive monoculture results in significant reductions in yield and quality. In this study, terminal-restriction fragment length polymorphism (T-RFLP) analysis and measurement of soil enzyme activities were used to investigate the regulation of soil micro-ecology to identify ways to overcome the negative effects of P. heterophylla consecutive monoculture. T-RFLP analysis showed that rice/P. heterophylla (RP) and bean/P. heterophylla (BP) crop rotation systems increased the number and diversity of microbial groups in P. heterophylla rhizosphere soil. In particular, the RP and BP crop rotations increased the number and abundance of beneficial bacterial species compared with two-year consecutive monoculture of P. heterophylla. The presence of these beneficial bacteria was positively correlated with soil enzyme activities which increased in rhizosphere soils of the RP and BP crop rotation systems. The results indicated that crop rotation systems could increase activities of key soil enzymes and beneficial microbial groups and improve soil health. This study could provide a theoretical basis to resolve the problems associated with P. heterophylla consecutive monoculture. (author)

  5. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    2018-03-01

    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  6. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel

    1997-01-01

    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  7. Willow clones with high biomass yield in short rotation coppice in the southern region of Tohoku district (Japan)

    International Nuclear Information System (INIS)

    Mitsui, Yu; Seto, Shoko; Nishio, Mari; Minato, Kazuya; Ishizawa, Kimiharu; Satoh, Shigeru

    2010-01-01

    The present study was conducted to select willow (Salix spp.) clones with a high potential for use as biomass energy crops in the southern region of Tohoku district in Japan. Cuttings of 8 willow clones were planted on an abandoned farmland near Sendai (av. annual temp., 10.9 o C) in March 2006, grown throughout the year and cut back in late December 2006 to resprout from the remaining stools in March 2007. The biomass yield in December 2007, after the first growing season, was highest in Salix pet-susu clone KKD, followed by Salix pseudolinearis clone FXM and Salix sachalinensis clone SEN. The biomass yield on December 2008, after the second growing season, was again highest in clone KKD followed by clone FXM, S. pet-susu clone HB471 and S. sachalinensis clone SEN; the average annual yield of dry mass after the second growing season being 3.09, 2.58, 2.17 and 1.85 kgDM plant -1 for the clones in this order. Plant growth form differed among the clones. Clones FXM and SEN had several shoots of almost uniform base diameter, whereas clones KKD and HB471 showed plagiotropic growth with one thick and several thin shoots. The calorific values of dried stem segments were similar among clones, ranging from 18.7 to 19.1 kJ g -1 . The dried stem segments contained 78.9-81.2 wt.% hollocellulose, 27.2-32.3 wt.% lignin and 2.1-4.0 wt.% extractives with ethanol-benzene, depending on clones. Based on these results, we could select four clones (KKD, FXM, HB471 and SEN) suitable for biomass production by SRWC in this area.

  8. Polygons on a rotating fluid surface.

    Science.gov (United States)

    Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas

    2006-05-05

    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

  9. The torsional barriers of two equivalent methyl internal rotations in 2,5-dimethylfuran investigated by microwave spectroscopy

    Science.gov (United States)

    Van, Vinh; Bruckhuisen, Jonas; Stahl, Wolfgang; Ilyushin, Vadim; Nguyen, Ha Vinh Lam

    2018-01-01

    The microwave spectrum of 2,5-dimethylfuran was recorded using two pulsed molecular jet Fourier transform microwave spectrometers which cover the frequency range from 2 to 40 GHz. The internal rotations of two equivalent methyl tops with a barrier height of approximately 439.15 cm-1 introduce torsional splittings of all rotational transitions in the spectrum. For the spectral analysis, two different computer programs were applied and compared, the PAM-C2v-2tops code based on the principal axis method which treats several torsional states simultaneously, and the XIAM code based on the combined axis method, yielding accurate molecular parameters. The experimental work was supplemented by quantum chemical calculations. Two-dimensional potential energy surfaces depending on the torsional angles of both methyl groups were calculated and parametrized.

  10. Morphology of large rotator cuff tears and of the rotator cable and long-term shoulder disability in conservatively treated elderly patients.

    Science.gov (United States)

    Morag, Yoav; Jamadar, David A; Miller, Bruce; Brandon, Catherine; Gandikota, Girish; Jacobson, Jon A

    2013-01-01

    The objective of this study was to describe the morphology of the rotator cuff tendon tears and long-term shoulder disability in conservatively treated elderly patients and determine if an association exists between these factors. Assessment of the rotator cuff tendon tear dimensions and depth, rotator interval involvement, rotator cable morphology and location, and rotator cuff muscle status was carried out on magnetic resonance studies of 24 elderly patients treated nonoperatively for rotator cuff tendon tears. Long-term shoulder function was measured using the Western Ontario Rotator Cuff (WORC) index; Disabilities of the Shoulder, Arm, and Hand questionnaire; and the American Shoulder Elbow Self-assessment form, and a correlation between the outcome scores and morphologic magnetic resonance findings was carried out. The majority of large rotator cuff tendon tears are limited to the rotator cuff crescent. Medial rotator interval involvement (isolated or in association with lateral rotator interval involvement) was significantly associated with WORC physical symptoms total (P = 0.01), WORC lifestyle total (P = 0.04), percentage of all WORC domains (P = 0.03), and American Shoulder Elbow Self-assessment total (P = 0.01), with medial rotator interval involvement associated with an inferior outcome. Medial rotator interval tears are associated with long-term inferior outcome scores in conservatively treated elderly patients with large rotator cuff tendon tears.

  11. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-05-01

    Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

  12. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain

    2011-03-01

    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  13. The low internal rotation barriers of halogenated toluenes: Rotational spectrum of 2,4-difluorotoluene

    Science.gov (United States)

    Nair, K. P. Rajappan; Herbers, Sven; Obenchain, Daniel A.; Grabow, Jens-Uwe; Lesarri, Alberto

    2018-02-01

    The rotational spectrum of 2,4-difluorotoluene in the region 5-25 GHz has been studied by pulsed supersonic jet using Fourier transform microwave spectroscopy. The tunneling splitting due to the methyl internal rotation in the ground torsional state could be unambiguously identified and the threefold (V3) potential barrier hindering the internal rotation of the methyl top was determined as 2.80144 (82) kJ/mol. The ground-state rotational parameters for the parent and seven 13C isotopic species in natural abundance were determined with high accuracy, including all quartic centrifugal distortion constants. The electric dipole moment μ = 1.805(42) D was obtained from Stark effect measurements. The molecular structure was derived using the substitution (rs) method. Supporting ab initio (MP2) calculations provided comparative values for the potential barrier and molecular parameters.

  14. Internal rotation of the Sun

    International Nuclear Information System (INIS)

    Duvall, T.L. Jr.; Goode, P.R.; Gouch, D.O.

    1984-01-01

    The frequency difference between prograde and retrograde sectoral solar oscillations is analysed to determine the rotation rate of the solar interior, assuming no latitudinal dependence. Much of the solar interior rotates slightly less rapidly than the surface, while the innermost part apparently rotates more rapidly. The resulting solar gravitational quadrupole moment is J 2 = (1.7 +- 0.4) x 10 -7 and provides a negligible contribution to current planetary tests of Einstein's theory of general relativity. (author)

  15. Rotational Seismology: AGU Session, Working Group, and Website

    Science.gov (United States)

    Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.

    2007-01-01

    Introduction Although effects of rotational motions due to earthquakes have long been observed (e. g., Mallet, 1862), nevertheless Richter (1958, p. 213) stated that: 'Perfectly general motion would also involve rotations about three perpendicular axes, and three more instruments for these. Theory indicates, and observation confirms, that such rotations are negligible.' However, Richter provided no references for this claim. Seismology is based primarily on the observation and modeling of three-component translational ground motions. Nevertheless, theoretical seismologists (e.g., Aki and Richards, 1980, 2002) have argued for decades that the rotational part of ground motions should also be recorded. It is well known that standard seismometers are quite sensitive to rotations and therefore subject to rotation-induced errors. The paucity of observations of rotational motions is mainly the result of a lack, until recently, of affordable rotational sensors of sufficient resolution. Nevertheless, in the past decade, a number of authors have reported direct observations of rotational motions and rotations inferred from rigid-body rotations in short baseline accelerometer arrays, creating a burgeoning library of rotational data. For example, ring laser gyros in Germany and New Zealand have led to the first significant and consistent observations of rotational motions from distant earthquakes (Igel et al., 2005, 2007). A monograph on Earthquake Source Asymmetry, Structural Media and Rotation Effects was published recently as well by Teisseyre et al. (2006). Measurement of rotational motions has implications for: (1) recovering the complete ground-displacement history from seismometer recordings; (2) further constraining earthquake rupture properties; (3) extracting information about subsurface properties; and (4) providing additional ground motion information to earthquake engineers for seismic design. A special session on Rotational Motions in Seismology was convened by H

  16. Sex Differences in Mental Rotation Tasks: Not Just in the Mental Rotation Process!

    Science.gov (United States)

    Boone, Alexander P.; Hegarty, Mary

    2017-01-01

    The paper-and-pencil Mental Rotation Test (Vandenberg & Kuse, 1978) consistently produces large sex differences favoring men (Voyer, Voyer, & Bryden, 1995). In this task, participants select 2 of 4 answer choices that are rotations of a probe stimulus. Incorrect choices (i.e., foils) are either mirror reflections of the probe or…

  17. Physics of rotation: problems and challenges

    Science.gov (United States)

    Maeder, Andre; Meynet, Georges

    2015-01-01

    We examine some debated points in current discussions about rotating stars: the shape, the gravity darkening, the critical velocities, the mass loss rates, the hydrodynamical instabilities, the internal mixing and N-enrichments. The study of rotational mixing requires high quality data and careful analysis. From recent studies where such conditions are fulfilled, rotational mixing is well confirmed. Magnetic coupling with stellar winds may produce an apparent contradiction, i.e. stars with a low rotation and a high N-enrichment. We point out that it rather confirms the large role of shears in differentially rotating stars for the transport processes. New models of interacting binaries also show how shears and mixing may be enhanced in close binaries which are either spun up or down by tidal interactions.

  18. Proteomics perspectives in rotator cuff research

    DEFF Research Database (Denmark)

    Sejersen, Maria Hee Jung; Frost, Poul; Hansen, Torben Bæk

    2015-01-01

    Background Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other...... studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue. Results We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy......, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although...

  19. Evaluation of off-service rotations at National Guard Health Affairs: Results from a perception survey of off-service residents

    Directory of Open Access Journals (Sweden)

    Mustafa M Alquraini

    2013-01-01

    Full Text Available Context: "Off-service" clinical rotations are part of the necessary requirements for many residency training programs. Because these rotations are off-service, little attention is given to their structure and quality of training. This often leads to suboptimal educational experience for the residents on these rotations. Aims: The aim of this study was to assess medical residents′ perceptions, opinions, and levels of satisfaction with their "off-service" rotations at a major residency training site in Saudi Arabia. It was also to evaluate the reliability and validity of a questionnaire used for quality assurance in these rotations. Improved reliability and validity of this questionnaire may help to improve the educational experience of residents in their "off-service" rotations. Materials and Methods: A close-ended questionnaire was developed, Pilot tested and distributed to 110 off-service residents in training programs of different specializations at King Fahad Naitonal Guard Hospital and King Abdulziz Medical City, Riyadh, Saudi Arabia, between September 2011 and December 2011. Results: A total of 80 out of 110 residents completed and returned the questionnaire. Only 33% of these residents had a clear set of goals and educational learning objectives before the beginning of their off-service rotations to direct their training. Surgical specializations had low satisfaction mean scores of 57.2 (11.9 compared to emergency medicine, which had 70.7 (16.2, P value (0.03. The reliability of the questionnaire was Cronbach′s alpha 0.57. The factor analysis yielded a 4-factor solution (educational environment, educational balance, educational goals and objectives, and learning ability; thus, accounting for 51% variance in the data. Conclusion: Our data suggest that there were significant weaknesses in the curriculum for off-service clinical rotations in KAMC and that residents were not completely satisfied with their training.

  20. Evaluación de la inestabilidad laboral como estresor psicosocial en el trabajo Assessment Of Job Instability As A Psychosocial Stressor In Work Contexts

    Directory of Open Access Journals (Sweden)

    Nora Leibovich de Figueroa

    2008-12-01

    Full Text Available La inestabilidad laboral se presenta como un estresor psicosocial en los contextos laborales y se hace imprescindible evaluar su impacto en los trabajadores. Se presentan los resultados obtenidos del análisis factorial exploratorio del Inventario de Malestar Percibido en la Inestabilidad Laboral (IMPIL. Se realizó un análisis factorial exploratorio (método de componentes principales, rotación promax para examinar cómo se agrupaban los ítems. Se comenzó con una solución forzada de ocho factores para ver si se mantenía la agrupación conceptual original del inventario. Se descartaron los ítems con cargas inferiores a .40 y con doble pesaje. Esto dejó un total de 44 ítems, con los que se llegó a una solución forzada de ocho factores que describen el 64.11% de la varianza de las puntuaciones. Los ítems agrupados en los 8 factores reproducen pensamientos positivos y negativos del trabajador y su relación con el contexto laboral.Job Instability appears as a psychosocial stressor in work contexts and it is imperative to assess its impact among workers. Results of an exploratory factor analysis of the Inventory of Perceived Uneasiness in an Unstable Work Setting (IMPIL are presented. An exploratory factor analysis was conducted (method of principal components, promax rotation, to discuss how the items were grouped. To see if original grouping maintained, an eight factors solution was forced. Items with loads less than .40 and dual weighing were discarded. This left a total of 44 items, and we arrived at a forced eight factors solution that describes the 64.11% of the variance. The items grouped in the eight factors reproduced positive and negative thoughts of the workers and their relationship to the employment context.

  1. The evaluation of speed skating helmet performance through peak linear and rotational accelerations.

    Science.gov (United States)

    Karton, Clara; Rousseau, Philippe; Vassilyadi, Michael; Hoshizaki, Thomas Blaine

    2014-01-01

    Like many sports involving high speeds and body contact, head injuries are a concern for short track speed skating athletes and coaches. While the mandatory use of helmets has managed to nearly eliminate catastrophic head injuries such as skull fractures and cerebral haemorrhages, they may not be as effective at reducing the risk of a concussion. The purpose of this study was to evaluate the performance characteristics of speed skating helmets with respect to managing peak linear and peak rotational acceleration, and to compare their performance against other types of helmets commonly worn within the speed skating sport. Commercially available speed skating, bicycle and ice hockey helmets were evaluated using a three-impact condition test protocol at an impact velocity of 4 m/s. Two speed skating helmet models yielded mean peak linear accelerations at a low-estimated probability range for sustaining a concussion for all three impact conditions. Conversely, the resulting mean peak rotational acceleration values were all found close to the high end of a probability range for sustaining a concussion. A similar tendency was observed for the bicycle and ice hockey helmets under the same impact conditions. Speed skating helmets may not be as effective at managing rotational acceleration and therefore may not successfully protect the user against risks associated with concussion injuries.

  2. Effect of crop rotations and fertilization on energy balance in typical production systems on the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, R.P.; Stumborg, M.A.; Campbell, C.A.

    1989-03-01

    Non-renewable energy inputs (both direct and indirect), metabolizable energy output and energy efficiency of 10 spring wheat (Triticum aestivum L.) rotations were examined over 18 years on a loam soil in the Brown soil zone of the Canadian Prairies. The rotations, which were managed using conventional tillage, included a range of crops, cropping intensities, crop sequences and fertilizer practices. Results showed that the total energy input per unit of land was lowest for the traditional fallow-wheat (F-W) rotation (3482 MJ ha/sup -1/), intermediate (4470 MJ ha/sup -1/) for N- and P-fertilized fallow-wheat-wheat (F-W-W) and highest for N- and P-fertilized continuous wheat (7100 MJ ha/sup -1/). Substituting flax (Linum usitatissimum L.) or rye (Secale cereale L.) for wheat in the rotations reduced total energy input by 3 to 8%, while withholding the application of either N or P fertilizer reduced total energy input by 16-37%. Liquid fuel for field operations and local product transport, and fertilizer (primarily N) were the major energy inputs; both increased with cropping intensity. Fuel accounted for 30-50% of the total energy input of the rotations. Fertilizer represented 15-49% of the total energy input and was more important than fuel for the continuous crop rotations. Despite the high energy content in pesticides, they accounted for only 4-11% of the total energy input of the rotations. Metabolizable energy output displayed similar response patterns as total energy input reflecting the higher total annual grain yields as cropping intensity increased. The average energy output to input ratio for F-W was 3.6, or 262 kg of wheat GJ/sup -1/ of energy input, while those for F-W-W and continuous wheat were 3.3 and 2.6, or 240 and 191 kg of wheat GJ/sup -1/ of energy input, respectively. Rotations that included flax or cereal forage crops had the lowest energy efficiencies. 2 figs., 31 refs., 4 tabs.

  3. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  4. Reversibility effects in disordered and ordered solids leading to scattered-ion yield enhancements near 1800

    International Nuclear Information System (INIS)

    Appleton, B.R.; Holland, O.W.; Barrett, J.H.

    1981-01-01

    A general review is given of the recently discovered phenomenon of enhanced ion backscattering near 180 0 . Examples of experimental results are presented that illustrate the nature of the enhancement and its basic dependences on angle and depth. It is shown that the various aspects of the effect can be reproduced by computer simulations that include the effects of trajectory reversibility, nuclear recoils and detector depth resolution. Measured and calculated results are given that illustrate the dependences of the enhancement on ion and target parameters. Results are presented of the enhancement observed in amorphous Ge and in single crystal of Ge rotated to create a reference spectrum. The enhancement is greater for the rotating crystal case demonstrating crystalline effects on the enhancement. Also presented are some results for the enhancement of the surface yield in a channeling direction of a crystal in the 180 0 geometry; possible application for surface studies is discussed. (orig.)

  5. Physical assessment of the GE/CGR Neurocam and comparison with a single rotating gamma-camera

    International Nuclear Information System (INIS)

    Kouris, K.; Jarritt, P.H.; Costa, D.C.; Ell, P.J.

    1992-01-01

    The GE/CGR Neurocam is a triple-headed single photon emission tomography (SPET) system dedicated to multi-slice brain tomography. We have assessed its physical performance in terms of sensitivity and resolution, and its clinical efficacy in comparison with a modern, single, rotating gamma-camera (GE 400XCT). Using a water-filled cylinder containing TC-99m, the tomographic volume sensitivity of the Neurocam was 30.0 and 50.7 kcps/MBq.ml.cm for the high-resolution and general-purpose collimators, respectively; the corresponding values for the single rotating camera were 7.6 and 12.8 kcps/MBq.ml.cm. Tomographic resolution was measured in air and in water. In air, the Neurocam resolution at the centre of the field-of-view is 9.0 and 10.7 mm full width at half-maximum (FWHM) with the collimators, respectively, and is isotropic in the three orthogonal planes; the resolution of the GE 400XCT with its 13-cm radius of rotation is 10.3 and 11.7 mm, respectively. For the Neurocam with the HR collimator, the transaxial FWHM values in water were 9.7 mm at the centre and 9.5 mm radial (6.6 mm tangential) at 8 cm from the centre. The physical characteristics of the Neurocam enable the routine acquisition of brain perfusion data with Tc-99m hexamethyl-propylene amine oxime in about 14 min, yielding better image quality than with a single rotating camera in 40 min. (orig./HP)

  6. Spin dependence of rotational damping by the rotational plane mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Leoni, S; Bracco, A; Million, B [Milan Univ. (Italy). Ist. di Fisica; Herskind, B; Dossing, T; Rasmussen, P [Niels Bohr Inst., Copenhagen (Denmark); Bergstrom, M; Brockstedt, A; Carlsson, H; Ekstrom, P; Nordlund, A; Ryde, H [Lund Univ. (Sweden). Dept. of Physics; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Lonnroth, T [Aabo Akademi, Turku (Finland). Dept. of Physics

    1992-08-01

    In the study of deformed nuclei by gamma spectroscopy, the large quadrupole transition strength known from rotational bands at high excitation energy may be distributed over all final states of a given parity within an interval defined as the rotational damping width {Gamma}{sub rot} The method of rotational plane mapping extracts a value of {Gamma}{sub rot} from the width of valleys in certain planes in the grid plots of triple gamma coincidence data sets. The method was applied to a high spin triple data set on {sup 162,163}Tm taken with NORDBALL at the tandem accelerator of the Niels Bohr Institute, and formed in the reaction {sup 37}Cl + {sup 130}Te. The value {Gamma}{sub rot} = 85 keV was obtained. Generally, experimental values seem to be lower than theoretical predictions, although the only calculation made was for {sup 168}Yb. 6 refs., 3 figs.

  7. Rotating universe models

    International Nuclear Information System (INIS)

    Tozini, A.V.

    1984-01-01

    A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt

  8. Eilenberger equation for rotating superfluid 3He and calculation of the upper critical angular velocity Ω/sub c/2

    International Nuclear Information System (INIS)

    Schopohl, N.

    1980-01-01

    On the basis of Gorkov's formulation of superconductivity theory, generalized Eilenberger equations are derived which apply to rotating superfluid 3 He in the presence of a magnetic field h and finite superflow v. In analyogy to conventional type II superconductors, the possibility of vortex solutions in discussed. An implicit equation determining the upper critical angular velocity Ω/sub c/2 as a function of temperature T, magnetic field h, and superflow v parallel to the rotation axis is-inferred from the linearized Eilenberger equations. In contrast to the case of slowly rotating 3 He-A, the solution of the eigenvalue problem determining the order parameter Δ near the the upper critical angular velocity admits no coreless vortex no coreless solutions. The space-dependent amplitude of the order parameter is analogous to Abrikosov's vortex array solution, while the spin-orbit part is given either by a polar-state type or an Anderson-Brinkman-Morel (ABM)-state-type eigensolution. Among the possible eigensolutions the polar-state type yields for vanishing superflow v the highest critical rotation frequency. For finite superflow v parallel to the rotation axis, however, the ABM-state-type solution is stabilized in comparison to the polar state for Vertical BarvVertical Bar> or approx. =0.2π(Tc/sub c/0/T/sub F/)v/sub f/ at zero temperature

  9. Initial results of shoulder MRI in external rotation after primary shoulder dislocation and after immobilization in external rotation

    International Nuclear Information System (INIS)

    Pennekamp, W.; Nicolas, V.; Gekle, C.; Seybold, D.

    2006-01-01

    Purpose: A change in the strategy for treating primary anterior traumatic dislocation of the shoulder has occurred. To date, brief fixation of internal rotation via a Gilchrist bandage has been used. Depending on the patient's age, a redislocation is seen in up to 90% of cases. This is due to healing of the internally rotated labrum-ligament tear in an incorrect position. In the case of external rotation of the humerus, better repositioning of the labrum ligament complex is achieved. Using MRI of the shoulder in external rotation, the extent of the improved labrum-ligament adjustment can be documented, and the indication of immobilization of the shoulder in external rotation can be derived. The aim of this investigation is to describe the degree of position changing of the labrum-ligament tear in internal and external rotation. Materials and Methods: 10 patients (9 male, 1 female, mean age 30.4 years, range 15-43 years) with a primary anterior dislocation of the shoulder without hyper laxity of the contra lateral side and labrum-ligament lesion substantiated by MRI were investigated using a standard shoulder MRI protocol (PD-TSE axial fs, PD-TSE coronar fs, T2-TSE sagittal, T1-TSE coronar) by an axial PD-TSE sequence in internal and external rotation. The dislocation and separation of the anterior labrum-ligament complex were measured. The shoulders were immobilized in 10 external rotation for 3 weeks. After 6 weeks a shoulder MRI in internal rotation was performed. Results: In all patients there was a significantly better position of the labrum-ligament complex of the inferior rim in external rotation, because of the tension of the ventral capsule and the subscapular muscle. In the initial investigation, the separation of the labrum-ligament complex in internal rotation was 0.44±0.27 mm and the dislocation was 0.45±0.33 mm. In external rotation the separation was 0.01±0.19 mm and the dislocation was -0.08±0.28 mm. After 6 weeks of immobilization in 10 external

  10. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  11. Ultrasound determination of rotator cuff tear repairability

    Science.gov (United States)

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p tear size (p tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  12. Impacts of previous crops on Fusarium foot and root rot, and on yields of durum wheat in North West Tunisia

    Directory of Open Access Journals (Sweden)

    Samia CHEKALI

    2016-07-01

    Full Text Available The impacts of ten previous crop rotations (cereals, legumes and fallow on Fusarium foot and root rot of durum wheat were investigated for three cropping seasons in a trial established in 2004 in Northwest Tunisia. Fungi isolated from the roots and stem bases were identified using morphological and molecular methods, and were primarily Fusarium culmorum and F. pseudograminearum. Under low rainfall conditions, the previous crop affected F. pseudograminearum incidence on durum wheat roots but not F. culmorum. Compared to continuous cropping of durum wheat, barley as a previous crop increased disease incidence more than fivefold, while legumes and fallow tended to reduce incidence.  Barley as a previous crop increased wheat disease severity by 47%, compared to other rotations. Grain yield was negatively correlated with the incidence of F. culmorum infection, both in roots and stem bases, and fitted an exponential model (R2 = -0.61 for roots and -0.77 for stem bases, P<0.0001. Fusarium pseudograminearum was also negatively correlated with yield and fitted an exponential model (R2 = -0.53 on roots and -0.71 on stem bases, P < 0.0001 but was not correlated with severity.

  13. The magnetic early B-type stars I: magnetometry and rotation

    Science.gov (United States)

    Shultz, M. E.; Wade, G. A.; Rivinius, Th; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; MiMeS Collaboration; BinaMIcS Collaboration

    2018-04-01

    The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropolarimetric data sets of these targets. We present longitudinal magnetic field measurements for 52 early B-type stars (B5-B0), with which we attempt to determine their rotational periods Prot. Supplemented with high-resolution spectroscopy, low-resolution Dominion Astrophysical Observatory circular spectropolarimetry, and archival Hipparcos photometry, we determined Prot for 10 stars, leaving only five stars for which Prot could not be determined. Rotational ephemerides for 14 stars were refined via comparison of new to historical magnetic measurements. The distribution of Prot is very similar to that observed for the cooler Ap/Bp stars. We also measured v sin i and vmac for all stars. Comparison to non-magnetic stars shows that v sin i is much lower for magnetic stars, an expected consequence of magnetic braking. We also find evidence that vmac is lower for magnetic stars. Least-squares deconvolution profiles extracted using single-element masks revealed widespread, systematic discrepancies in between different elements: this effect is apparent only for chemically peculiar stars, suggesting it is a consequence of chemical spots. Sinusoidal fits to H line measurements (which should be minimally affected by chemical spots), yielded evidence of surface magnetic fields more complex than simple dipoles in six stars for which this has not previously been reported; however, in all six cases, the second- and third-order amplitudes are small relative to the first-order (dipolar) amplitudes.

  14. Picosecond rotationally resolved stimulated emission pumping spectroscopy of nitric oxide

    Science.gov (United States)

    Tanjaroon, Chakree; Reeve, Scott W.; Ford, Alan; Murry, W. Dean; Lyon, Kevin; Yount, Bret; Britton, Dan; Burns, William A.; Allen, Susan D.; Bruce Johnson, J.

    2012-01-01

    Stimulated emission pumping (SEP) experiments were performed on the nitric oxide molecule in a flow cell environment using lasers with pulse widths of 17-25 ps. A lambda excitation scheme, or ''pump-dump" arrangement, was employed with the pump laser tuned to the T 00 vibronic band origin ( λ=226.35(1)nm) of the A2Σ+( v' = 0, J') ← X2Π1/2( v″ = 0, J″) and the dump laser scanned from 246-248 nm within the A2Σ+( v' = 0, J') → X2Π1/2( v″ = 2, J″) transition. The rotationally resolved SEP spectra were measured by observing the total fluorescence within the A2Σ+( v' = 0, J') → X2Π1/2( v″ = 1, J″) transition between 235 nm and 237.2 nm while scanning the dump laser wavelengths. Multiple rotational states were excited due to the broad laser bandwidth. Measurements showed that the resolved rotational structure depended on the energy and bandwidth of the applied pump and dump laser pulses. Analysis of the observed fluorescence depletion signals yielded an average percent fluorescence depletion of about 19% when λ=226.35(1)nm and λ=247.91(1)nm. This value reflects the percent transfer of the NO population from the A2Σ+( V' = 0, J') excited electronic state to the X2Π1/2( v″ = 2, J″) ground electronic state. The maximum expected depletion is 50% in the limit of dump saturation. Selective excitation of NO at the bandhead provides good spectral discrimination from the background emission and noise and unambiguously confirms the identity of the emitter.

  15. Contained modes in mirrors with sheared rotation

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with ExB rotation, a fixed azimuthal perturbation in the laboratory frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and nonpeaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  16. A wideband optical monitor for a planetary-rotation coating-system

    International Nuclear Information System (INIS)

    Campanelli, M.B.; Smith, D.J.

    1998-01-01

    A substrate-specific, through-planet, wideband optical coating monitor is being developed to increase production yield and the understanding of physical vapor deposition (PVD) coatings fabricated in the Optical Manufacturing Laboratory at the University of Rochester's Laboratory for Laser Energetics. In-situ wideband optical monitoring of planetary rotation systems allows direct monitoring of large, expensive substrates with complex layering schemes. The optical monitor discussed here is under development for coating several large (e.g., 80.7 x 41.7 x 9.0 cm) polarizers for the National Ignition Facility. Wideband optical monitoring of the production substrates is used in concert with an array of crystal monitors for process control, film parameter evaluation, and error detection with associated design reoptimization. The geometry of a planetary rotation system, which produces good uniformity across large substrates, makes optical monitoring more difficult. Triggering and timing techniques for data acquisition become key to the process because the optical coating is available only intermittently for monitoring. Failure to properly consider the effects of the system dynamics during data retrieval and processing may result in significant decreases in the spectral data's reliability. Improved data accuracy allows better determination of film thicknesses, indices, and inhomogeneities and enables in-situ error detection for design reoptimization

  17. Modeling impacts of water and fertilizer management on the ecosystem service of rice rotated cropping system in China

    Science.gov (United States)

    Chen, H.; Yu, C.; Li, C.

    2015-12-01

    Sustainable agricultural intensification demand optimum resource managements of agro-ecosystems. Detailed information on the impacts of water use and nutrient application on agro-ecosystem services including crop yields, greenhouse gas (GHG) emissions and nitrogen (N) loss is the key to guide field managements. In this study, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for rice rotated cropping systems in China. We set varied scenarios of water use in more than 1600 counties, and derived optimal rates of N application for each county in accordance to water use scenarios. Our results suggest that 0.88 ± 0.33 Tg per year (mean ± standard deviation) of synthetic N could be reduced without reducing rice yields, which accounts for 15.7 ± 5.9% of current N application in China. Field managements with shallow flooding and optimal N applications could enhance ecosystem services on a national scale, leading to 34.3% reduction of GHG emissions (CH4, N2O, and CO2), 2.8% reduction of overall N loss (NH3 volatilization, denitrification and N leaching) and 1.7% increase of rice yields, as compared to current management conditions. Among provinces with major rice production, Jiangsu, Yunnan, Guizhou, and Hubei could achieve more than 40% reduction of GHG emissions under appropriate water managements, while Zhejiang, Guangdong, and Fujian could reduce more than 30% N loss with optimal N applications. Our modeling efforts suggest that China is likely to benefit from reforming water and fertilization managements for rice rotated cropping system in terms of sustainable crop yields, GHG emission mitigation and N loss reduction, and the reformation should be prioritized in the above-mentioned provinces. Keywords: water regime, nitrogen fertilization, sustainable management, ecological modeling, DNDC

  18. Rotating D0-branes and consistent truncations of supergravity

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Ortiz, Thomas; Samtleben, Henning

    2013-01-01

    The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1) 4 truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza–Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S 8 . As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS 2 ×M 8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields

  19. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    International Nuclear Information System (INIS)

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-01-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  20. Isotope separation by rotating plasmas

    International Nuclear Information System (INIS)

    Nicoli, C.

    1982-02-01

    A steady-state model of a fully ionized plasma column in a concentric cylindrical electrodes structures is proposed to study the plasma separation properties of its singly ionized ionic species, composed of two isotopes of the element. In this model (a one-fluid model) rotation is imparted to the plasma column through the J (vector) x B (vector) interaction. Radial pressure balance is mainly between the radial component of the J (vector) x B (vector) force and the pressure gradient plus centrifugal force and the azimutal component of the J (vector) x B (vector) force is balanced purely by viscous force. A pressure tensor 31 describes the viscoys effect and the heat balance provides an equation for temperature. A uranium gas with is two main isotopes (U 235 and U 238 ) was used for the ionic component of the plasma. The computing code to solve the resulting, system of equations in tems of density, temperature, and velocity as functions of the radial independent variable was set up to yield solutions satisfying null velocity conditions on both boundaries (inner and outer electrodes). (M.A.F.) [pt

  1. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    Science.gov (United States)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  2. On rapid rotation in stellarators

    International Nuclear Information System (INIS)

    Helander, Per

    2008-01-01

    The conditions under which rapid plasma rotation may occur in a three-dimensional magnetic field, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields which are approximately isometric. In an isometric magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry, B=B(ψ,l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be in the direction of the vector ∇ψx∇B. (author)

  3. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  4. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than

  5. Visualizing Compound Rotations with Virtual Reality

    Science.gov (United States)

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  6. Motor Processes in Children's Mental Rotation

    Science.gov (United States)

    Frick, Andrea; Daum, Moritz M.; Walser, Simone; Mast, Fred W.

    2009-01-01

    Previous studies with adult human participants revealed that motor activities can influence mental rotation of body parts and abstract shapes. In this study, we investigated the influence of a rotational hand movement on mental rotation performance from a developmental perspective. Children at the age of 5, 8, and 11 years and adults performed a…

  7. Rotator cuff tear: A detailed update

    Directory of Open Access Journals (Sweden)

    Vivek Pandey

    2015-01-01

    Full Text Available Rotator cuff tear has been a known entity for orthopaedic surgeons for more than two hundred years. Although the exact pathogenesis is controversial, a combination of intrinsic factors proposed by Codman and extrinsic factors theorized by Neer is likely responsible for most rotator cuff tears. Magnetic resonance imaging remains the gold standard for the diagnosis of rotator cuff tears, but the emergence of ultrasound has revolutionized the diagnostic capability. Even though mini-open rotator cuff repair is still commonly performed, and results are comparable to arthroscopic repair, all-arthroscopic repair of rotator cuff tear is now fast becoming a standard care for rotator cuff repair. Appropriate knowledge of pathology and healing pattern of cuff, strong and biological repair techniques, better suture anchors, and gradual rehabilitation of postcuff repair have led to good to excellent outcome after repair. As the healing of degenerative cuff tear remains unpredictable, the role of biological agents such as platelet-rich plasma and stem cells for postcuff repair augmentation is still under evaluation. The role of scaffolds in massive cuff tear is also being probed.

  8. Paleomagnetism of Jurassic and Cretaceous rocks in central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana?

    Science.gov (United States)

    Geuna, Silvana E.; Somoza, Rubén; Vizán, Haroldo; Figari, Eduardo G.; Rinaldi, Carlos A.

    2000-08-01

    A paleomagnetic study in Jurassic and Cretaceous rocks from the Cañadón Asfalto basin, central Patagonia, indicates the occurrence of about 25-30° clockwise rotation in Upper Jurassic-lowermost Cretaceous rocks, whereas the overlying mid-Cretaceous rocks do not show evidence of rotation. This constrains the tectonic rotation to be related to a major regional unconformity in Patagonia, which in turn seems to be close in time with the early opening of the South Atlantic Ocean. The sense and probably the timing of this rotation are similar to those of other paleomagnetically detected rotations in different areas of southwestern Gondwana, suggesting a possible relationship between these and major tectonic processes related with fragmentation of the supercontinent. On the other hand, the mid-Cretaceous rocks in the region yield a paleopole located at Lat. 87° South, Long. 159° East, A95=3.8°. This pole position is consistent with coeval high-quality paleopoles of other plates when transferred to South American coordinates, implying it is an accurate determination of the Aptian (circa 116 Ma) geomagnetic field in South America.

  9. Intestinal rotational abnormalities in polysplenia and asplenia syndromes

    International Nuclear Information System (INIS)

    Ditchfield, M.R.; Hutson, J.M.

    1998-01-01

    Objective. To review the anomalies of intestinal rotation occurring in association with asplenia (right isomerism) and polysplenia (left isomerism) syndromes. Materials and methods. A retrospective study was performed of 27 children with asplenia (21) or polysplenia (6) identified from the cardiology and radiology databases from 1988 to 1996 and in whom an upper gastrointestinal barium study had been performed. The intestinal rotation was determined by reviewing the barium meal and could be divided into four groups: (1) normal rotation, (2) incomplete rotation or nonrotation, (3) reversed rotation and (4) reversed incomplete rotation or nonrotation. Surgical correlation was obtained at laparotomy in 17 patients. Results. Of the 27 children studied, 3 (11 %) had normal rotation; incomplete rotation or nonrotation occurred in 5 (19 %), and 2 in this group developed midgut volvulus; 5 (19 %) had reversed rotation; 14 (52 %) had reversed incomplete rotation or nonrotation. Conclusion. Asplenia and polysplenia are frequently associated with intestinal malrotation, and a barium study is recommended in all of these children, as many will be at risk of midgut volvulus. (orig.)

  10. Intestinal rotational abnormalities in polysplenia and asplenia syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Ditchfield, M.R. [Department of Radiology, Royal Children`s Hospital, Parkville (Australia); Hutson, J.M. [Department of General Surgery, Royal Children`s Hospital, Parkville (Australia)

    1998-05-01

    Objective. To review the anomalies of intestinal rotation occurring in association with asplenia (right isomerism) and polysplenia (left isomerism) syndromes. Materials and methods. A retrospective study was performed of 27 children with asplenia (21) or polysplenia (6) identified from the cardiology and radiology databases from 1988 to 1996 and in whom an upper gastrointestinal barium study had been performed. The intestinal rotation was determined by reviewing the barium meal and could be divided into four groups: (1) normal rotation, (2) incomplete rotation or nonrotation, (3) reversed rotation and (4) reversed incomplete rotation or nonrotation. Surgical correlation was obtained at laparotomy in 17 patients. Results. Of the 27 children studied, 3 (11 %) had normal rotation; incomplete rotation or nonrotation occurred in 5 (19 %), and 2 in this group developed midgut volvulus; 5 (19 %) had reversed rotation; 14 (52 %) had reversed incomplete rotation or nonrotation. Conclusion. Asplenia and polysplenia are frequently associated with intestinal malrotation, and a barium study is recommended in all of these children, as many will be at risk of midgut volvulus. (orig.) With 4 figs., 1 tab., 13 refs.

  11. Contained Modes In Mirrors With Sheared Rotation

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with E x B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  12. Contained Modes In Mirrors With Sheared Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  13. Farmers' agronomic and social evaluation of productivity yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop

    NARCIS (Netherlands)

    Adjei-Nsiah, S.; Kuyper, T.W.; Leeuwis, C.; Abekoe, M.K.; Cobbinah, J.; Sakyi-Dawson, O.; Giller, K.E.

    2008-01-01

    Cowpea-maize rotations form an important component of the farming systems of smallholder farmers in the forest/savannah transitional agro-ecological zone of Ghana. We evaluated five cowpea varieties for grain yield, N-2-fixation, biomass production, and contribution to productivity of subsequent

  14. Gamma spectroscopical studies of strongly deformed rotational bands in 73Br and 79Sr

    International Nuclear Information System (INIS)

    Heese, J.

    1989-01-01

    In the framework of this thesis the excitation structures of the nuclei 73 Br and 79 Sr were studied. For the population of high-spin states the reactions 40 Ca( 36 Ar,3p) 73 Br, -58 Ni( 24 Mg,2αp) 73 Br and 58 Ni( 24 Mg,2pn) 79 Sr were used. The level scheme of 73 Br could be extended by γγ coincidence measurements by 18 new states up to the spins 45/2 + respectively 45/2 - . DSA lifetime measurements yielded information about the deformations of the observed rotational bands. The conversion coefficients of the low-energetic transitions in the range of the excitation spectrum below 500 keV were determined and allowed the assignments of spins and parities. Furthermore the converted decay of the 27-keV state was observed for the first time, from the measured intensities of the electron line the lifetime of this state was estimated to 1.1 ≤ τ ≤ 9.1 μs. The measurement of the lifetime and the g factor of the isomeric 240-keV state confirmed the already known spin values and allowed statements on the particle structure. Lifetime measurements in 79 Sr were performed up to the states 21/2 + and 17/2 - . They yielded informations on E2 and M1 transition strengthened in the rotational bands. The transition strengths calculated from the lifetimes show that both nuclei are strongly prolate deformed. The sign of the deformation could be concluded in the case of 73 Br from the observed band structure, in 79 Sr it was calculated from E2/M1 mixing ratios. The E2-transition strengths show a reduction in both nuclei in the region of the g 9/2 proton alignment. Alignment effects in the rotational bands were discussed in the framework of the cranked shell model. Microscopical calculations in the Hartree-Fock-Bogolyubov cranking model with a deformed Woods-Saxon potential were performed. (orig./HSI) [de

  15. Rotation and rotation-vibration spectroscopy of the 0+-0- inversion doublet in deuterated cyanamide.

    Science.gov (United States)

    Kisiel, Zbigniew; Kraśnicki, Adam; Jabs, Wolfgang; Herbst, Eric; Winnewisser, Brenda P; Winnewisser, Manfred

    2013-10-03

    The pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm(-1). For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0(+) and 0(-) substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0(+) ↔ 0(-) coupling. A smaller data set, consisting only of pure rotation and rotation-vibration lines observed with microwave techniques was obtained for HDNCN, and additional transitions of this type were also measured for H2NCN. The spectroscopic data for all three isotopic species were fitted with a unified, robust Hamiltonian allowing confident prediction of spectra well into the terahertz frequency region, which is of interest to contemporary radioastronomy. The isotopic dependence of the determined inversion splitting, ΔE = 16.4964789(8), 32.089173(3), and 49.567770(6) cm(-1), for D2NCN, HDNCN, and H2NCN, respectively, is found to be in good agreement with estimates from a simple reduced quartic-quadratic double minimum potential.

  16. Effect of Localities and organic Fertilizers on Yield in Conditions of Organic Farming

    Directory of Open Access Journals (Sweden)

    Jiri Antosovsky

    2017-01-01

    Full Text Available Nitrogen fertilization cannot be used by actual needs of plants during vegetation in organic farming. The proper crop rotation and harmonic nutrition are necessary for good and quality products. The methods of treatment are mainly realized by cultivation of green manure crop and fertilizing by organic fertilizers. The aim of the long-term experiment was to evaluate the effect of different localities and different organic fertilizers on crop yield in organic farming. Variants of fertilization included in the experiment are: 1. Unfertilized control, 2. Green manure, 3. Green manure + renewable external sources, 4. Green manure + renewable external sources + auxiliary substances, 5. Green manure + farm fertilizers, 6. Green manure + farm fertilizers + auxiliary substances. The experiment started by sowing of winter wheat so green manure crop was not grown in the first experimental year. The highest yield of winter wheat grain coming from the first year of the experiment was observed on the variant with renewable external sources (digestate. Average grain yield on this variant was about 7.12 t/ha (up to 0.74 t/ha increased than the unfertilized control. Average yield of potatoes from the second year of the experiment was the highest after combination with green manure + renewable external sources (compost + digestate + auxiliary substances. This variant achieved yield about 34.08 t/ha, which is increased by 9.35 t/ha compared to the control variant. Results from this two-year experiment showed that the most suitable combination of fertilization with or without green manure crop is compost + digestate. These results were probably caused by higher content of nitrogen in organic fertilizers (compost + digestate used in this variant compared to other variants. Statistical difference of achieved yields was observed between each experimental station in both experimental years.

  17. Occult Interpositional Rotator Cuff - an Extremely Rare Case of Traumatic Rotator Cuff Tear

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei Ren; Jou, I Ming [National Cheng Kung University Hospital, Tainan (China); Lin, Cheng Li [Show-Chwan Memorial Hospital, Changhua (China); Chih, Wei Hsing [Chia-Yi Christian Hospital, Chiayi (China)

    2012-01-15

    Traumatic interposition of a rotator cuff tendon in the glenohumeral joint without recognizable glenohumeral dislocation is an unusual complication after shoulder trauma. Here we report the clinical and imaging presentations of a 17-year-old man with trapped rotator cuff tendons in the glenohumeral joint after a bicycle accident. The possible trauma mechanism is also discussed.

  18. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu

    2013-01-01

    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.

  19. Oscillation measuring device for body of rotation

    International Nuclear Information System (INIS)

    Komita, Hideo.

    1994-01-01

    The present invention concerns an internal pump of a BWR type reactor and provides a device for detecting oscillations of a rotational shaft. Namely, recesses are formed along an identical circumference on the outer circumferential surface of the rotating portion each at a predetermined distance. The recesses rotate along with the rotation. An eddy current type displacement gage measures the distance to the outer circumferential surface of the rotating portion. The recesses are detected by the displacement gage as pulse signals. When the rotating portion oscillates, it is detected by the displacement gage as waveform signals. Accordingly, the output signals of the eddy current type displacement gage are formed by pulse signals superposed on the waveform signals. A rising detection circuit detects the rising position of the pulse signals as the components of the number of rotation of the rotating portion, and fall detection circuit detects the falling position. A comparator circuit is disposed in parallel with both of rising/falling detection circuits. A predetermined threshold value is set in the comparator circuit to output a signal when the inputted signal exceeds the value. (I.S.)

  20. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-01-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements

  1. Harvester development for new high yielding SRC crops and markets

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, Mark

    2005-07-01

    This report describes the development of harvesting equipment for short rotation cultivation (SRC) crops produced in the UK that can produce fuel to a required specification in a single pass at a cost that is profitable for the grower while minimising the cost of the product. Details are given of the manufacture and installation of new components for large crop harvesting, and production of fuel suitable for co-firing in a coal combustion system using pulverised fuel and fuel suitable for gasification. The development of the drive chain to cope with the higher yielding crops, field tests on SRC crops, and determination of the most economic harvesting system are discussed along with the remanufacture of the chipping drum, and production of market chip samples. Harvesting guidance and an economic analysis of harvesting systems are presented.

  2. Harvester development for new high yielding SRC crops and markets

    International Nuclear Information System (INIS)

    Paulson, Mark

    2005-01-01

    This report describes the development of harvesting equipment for short rotation cultivation (SRC) crops produced in the UK that can produce fuel to a required specification in a single pass at a cost that is profitable for the grower while minimising the cost of the product. Details are given of the manufacture and installation of new components for large crop harvesting, and production of fuel suitable for co-firing in a coal combustion system using pulverised fuel and fuel suitable for gasification. The development of the drive chain to cope with the higher yielding crops, field tests on SRC crops, and determination of the most economic harvesting system are discussed along with the remanufacture of the chipping drum, and production of market chip samples. Harvesting guidance and an economic analysis of harvesting systems are presented

  3. Evidence of magnetic field in plasma focus by means of Faraday rotation measurements

    International Nuclear Information System (INIS)

    Fischfeld, G.

    1982-01-01

    Preliminary results of Faraday rotation measurements on a beam of laser light crossing the plasma column in the axial direction. are repacted. The presence of intense axial magnetic field Bsup(z) in the column both before and during the pinch phase is demonstrated. The experiments were performed on the Mather type Frascati 1 MJ plasma Focus, operated at 250 KJ 3 torr D 2 filling pressure. Is is used in the measurements a Quantel YG 49 YAG laser, frecuency doubled by means of KD*P crystal, which delivers about 60 mJ in 3 ns at = 530 nm. The beam polarization is analized by Wollaston prism. The electronic density is determined by Mach-Zender insterferometry. Two measurements are taken at time close to the end of the radial collapse phase, yielding Faraday rotation angles of 0.25 +- 0.05 rd and 0.56 +- o.05 rd which correspond to values, of axial magnetic fields of b(sup z) = 500 KG and B(sub z) = 400 KG. (Author) [pt

  4. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah

    2017-08-11

    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  5. Polygons on a rotating fluid surface

    DEFF Research Database (Denmark)

    Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.

    2006-01-01

    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

  6. Rotation of vertically oriented objects during earthquakes

    Science.gov (United States)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  7. Neoclassical poloidal and toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  8. Rotational structure in molecular infrared spectra

    CERN Document Server

    di Lauro, Carlo

    2013-01-01

    Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in many scientific disciplines, including applications in atmospheric and planetary research. Consequently, the basic principles of vibration-rotation absorption spectroscopy are addressed for contemporary applications. In addition to covering operational quantum mechanical methods, spherical tensor algebra, and group theoretical methods applied to molecular symmetry, attention is also given to phase conventions and their effe...

  9. Tokamak rotation and charge exchange

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.

    1991-01-01

    In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref

  10. Rotating quantum states

    International Nuclear Information System (INIS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2014-01-01

    We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space–time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress–energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space–time geometries

  11. Conjunct rotation: Codman's paradox revisited.

    Science.gov (United States)

    Wolf, Sebastian I; Fradet, Laetitia; Rettig, Oliver

    2009-05-01

    This contribution mathematically formalizes Codman's idea of conjunct rotation, a term he used in 1934 to describe a paradoxical phenomenon arising from a closed-loop arm movement. Real (axial) rotation is distinguished from conjunct rotation. For characterizing the latter, the idea of reference vector fields is developed to define the neutral axial position of the humerus for any given orientation of its long axis. This concept largely avoids typical coordinate singularities arising from decomposition of 3D joint motion and therefore can be used for postural (axial) assessment of the shoulder joint both clinically and in sports science in almost the complete accessible range of motion. The concept, even though algebraic rather complex, might help to get an easier and more intuitive understanding of axial rotation of the shoulder in complex movements present in daily life and in sports.

  12. Comparison of histologic healing and biomechanical characteristics between repair techniques for a delaminated rotator cuff tear in rabbits.

    Science.gov (United States)

    Cheon, Sang-Jin; Kim, Jung-Han; Gwak, Heui-Chul; Kim, Chang-Wan; Kim, Jeon-Kyo; Park, Ji-Hwan

    2017-05-01

    The purpose of this study was to compare histologic healing and biomechanical characteristics between 2 repair techniques (layer by layer, repair of each layer to bone separately; and whole layer, repair of each layer to the bone en masse) for delaminated rotator cuff tear. Rabbits were used as subjects and classified into 2 groups: group A, right side, the layer-by-layer repair group; and group B, left side, the whole-layer repair group. Histologic evaluations were done at 3 weeks (n = 7) and 6 weeks (n = 4) after operation. Biomechanical tests to evaluate the tensile property were done at time 0 (n = 5) and 3 weeks (n = 5) after operation. Histologic healing improved in all groups. A smaller cleft was found between layers in group B compared with the cleft in group A at 3 weeks after operation. At time 0, group A showed a higher yield load and ultimate failure load (67 ± 10.5 N and 80 ± 7.8 N, respectively). However, at 3 weeks after operation, group B showed a higher yield load (48 ± 7.6 N). In the delaminated rotator cuff tear model in the rabbit, the whole-layer repair showed a narrow gap between layers and a higher yield load at 3 weeks after operation. Surgical techniques that unite the cleft in a delaminated tear could improve biomechanical strength after operation. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Rotating Reverse-Osmosis for Water Purification

    Science.gov (United States)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  14. Rotator Cuff Injuries - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...

  15. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    Science.gov (United States)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  16. Yield, yield components and dry matter digestibility of alfalfa experimental populations

    Directory of Open Access Journals (Sweden)

    Katić Slobodan

    2010-01-01

    Full Text Available Alfalfa is the most important forage crop grown in the temperate regions. It is cultivated for production of vegetative aerial mass used fresh or as hay, and recently as haylage and silage. In many centres worldwide, efforts are made to breed and create new alfalfa cultivars with both higher yields and of higher nutritional value. The aim of this paper was to determine yield and digestibility of 12 experimental populations of alfalfa, and to compare their results to the yields of well-known domestic alfalfa commercial cultivars. The results show significant differences in yield of green forage and dry matter among alfalfa populations, as well as in yield components, height, proportion of leaves in yield and growth rate (tab. 1, 2 and 3. Differences between in vitro digestible dry matter (% and yields of in vitro digestible dry matter (t ha-1 were also significant (tab. 5 and 6. Yield and quality of experimental populations were at the same level or higher than of control cultivars. Synthetic SINUSA exceeded the control cutivars (NS Mediana ZMS V and Banat VS in yield and quality of dry matter. .

  17. The Relationship Between Shoulder Stiffness and Rotator Cuff Healing: A Study of 1,533 Consecutive Arthroscopic Rotator Cuff Repairs.

    Science.gov (United States)

    McNamara, William J; Lam, Patrick H; Murrell, George A C

    2016-11-16

    Retear and stiffness are not uncommon outcomes of rotator cuff repair. The purpose of this study was to evaluate the relationship between rotator cuff repair healing and shoulder stiffness. A total of 1,533 consecutive shoulders had an arthroscopic rotator cuff repair by a single surgeon. Patients assessed their shoulder stiffness using a Likert scale preoperatively and at 1, 6, 12, and 24 weeks (6 months) postoperatively, and examiners evaluated passive range of motion preoperatively and at 6, 12, and 24 weeks postoperatively. Repair integrity was determined by ultrasound evaluation at 6 months. After rotator cuff repair, there was an overall significant loss of patient-ranked and examiner-assessed shoulder motion at 6 weeks compared with preoperative measurements (p rotator cuff integrity at 6 months postoperatively (r = 0.11 to 0.18; p rotation at 6 weeks postoperatively was 7%, while the retear rate of patients with >20° of external rotation at 6 weeks was 15% (p rotator cuff repair was more likely to heal. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  18. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    Science.gov (United States)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  19. Comparing the Effectiveness of Sagittal Balance, Foraminal Stenosis, and Preoperative Cord Rotation in Predicting Postoperative C5 Palsy.

    Science.gov (United States)

    Chugh, Arunit J S; Weinberg, Douglas S; Alonso, Fernando; Eubanks, Jason D

    2017-11-01

    Retrospective cohort review. To determine whether preoperative cord rotation is independently correlated with C5 palsy when analyzed alongside measures of sagittal balance and foraminal stenosis. Postoperative C5 palsy is a well-documented complication of cervical procedures with a prevalence of 4%-8%. Recent studies have shown a correlation with preoperative spinal cord rotation. There have been few studies, however, that have examined the role of sagittal balance and foraminal stenosis in the development of C5 palsy. A total of 77 patients who underwent cervical decompression-10 of whom developed C5 palsy-were reviewed. Sagittal balance was assessed using curvature angle and curvature index on radiographs and magnetic resonance image (MRI). Cord rotation was assessed on axial MRI. C4-C5 foraminal stenosis was assessed on sagittal MRI using area measurements and a grading scale. Demographics and information on surgical approach were gathered from chart review. Correlation with C5 palsy was performed by point-biserial, χ, and regression analyses. Point-biserial analysis indicated that only cord rotation showed significance (Pbalance did not correlate with presence of C5 palsy. Logistic regression model yielded cord rotation as the only significant independent predictor of C5 palsy. For every degree of axial cord rotation, the likelihood ratio for suffering a C5 palsy was 3.93 (95% confidence interval, 2.01-8.66; Ppoints to mechanisms other than direct compression as the etiology. In addition, the lack of correlation with postoperative changes in sagittal balance hints that measures of curvature angle and curvature index may not be appropriate to accurately predict this complication. Level 3.

  20. Stabilities of MHD rotational discontinuities

    International Nuclear Information System (INIS)

    Wang, S.

    1984-11-01

    In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)

  1. Investigating stellar surface rotation using observations of starspots

    DEFF Research Database (Denmark)

    Korhonen, Heidi Helena

    2011-01-01

    Rapid rotation enhances the dynamo operating in stars, and thus also introduces significantly stronger magnetic activity than is seen in slower rotators. Many young cool stars still have the rapid, primordial rotation rates induced by the interstellar molecular cloud from which they were formed....... Also older stars in close binary systems are often rapid rotators. These types of stars can show strong magnetic activity and large starspots. In the case of large starspots which cause observable changes in the brightness of the star, and even in the shapes of the spectral line profiles, one can get...... information on the rotation of the star. At times even information on the spot rotation at different stellar latitudes can be obtained, similarly to the solar surface differential rotation measurements using magnetic features as tracers. Here, I will review investigations of stellar rotation based...

  2. Path integral of the angular momentum eigenstates evolving with the parameter linked with rotation angle under the space rotation transformation

    International Nuclear Information System (INIS)

    Zhang Zhongcan; Hu Chenguo; Fang Zhenyun

    1998-01-01

    The authors study the method which directly adopts the azimuthal angles and the rotation angle of the axis to describe the evolving process of the angular momentum eigenstates under the space rotation transformation. The authors obtain the angular momentum rotation and multi-rotation matrix elements' path integral which evolves with the parameter λ(0→θ,θ the rotation angle), and establish the general method of treating the functional (path) integral as a normal multi-integrals

  3. Rotational Symmetry Breaking in Baby Skyrme Models

    Science.gov (United States)

    Karliner, Marek; Hen, Itay

    We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  4. A method for determining poloidal rotation from poloidal asymmetry in toroidal rotation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C., E-mail: chrystal@fusion.gat.com [Department of Physics, University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States); Burrell, K. H.; Lao, L. L.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A new diagnostic has been developed on DIII-D that determines the impurity poloidal rotation from the poloidal asymmetry in the toroidal angular rotation velocity. This asymmetry is measured with recently added tangential charge exchange viewchords on the high-field side of the tokamak midplane. Measurements are made on co- and counter-current neutral beams, allowing the charge exchange cross section effect to be measured and eliminating the need for atomic physics calculations. The diagnostic implementation on DIII-D restricts the measurement range to the core (r/a < 0.6) where, relative to measurements made with the vertical charge exchange system, the spatial resolution is improved. Significant physics results have been obtained with this new diagnostic; for example, poloidal rotation measurements that significantly exceed neoclassical predictions.

  5. Yield trends and yield gap analysis of major crops in the world

    NARCIS (Netherlands)

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are

  6. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    Science.gov (United States)

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  7. M Dwarf Rotation from the K2 Young Clusters to the Field. I. A Mass-Rotation Correlation at 10 Myr

    Science.gov (United States)

    Somers, Garrett; Stauffer, John; Rebull, Luisa; Cody, Ann Marie; Pinsonneault, Marc

    2017-12-01

    Recent observations of the low-mass (0.1-0.6 {M}⊙ ) rotation distributions of the Pleiades and Praesepe clusters have revealed a ubiquitous correlation between mass and rotation, such that late M dwarfs rotate an order-of-magnitude faster than early M dwarfs. In this paper, we demonstrate that this mass-rotation correlation is present in the 10 Myr Upper Scorpius association, as revealed by new K2 rotation measurements. Using rotational evolution models, we show that the low-mass rotation distribution of the 125 Myr Pleiades cluster can only be produced if it hosted an equally strong mass-rotation correlation at 10 Myr. This suggests that physical processes important in the early pre-main sequence (PMS; star formation, accretion, disk-locking) are primarily responsible for the M dwarf rotation morphology, and not quirks of later angular momentum (AM) evolution. Such early mass trends must be taken into account when constructing initial conditions for future studies of stellar rotation. Finally, we show that the average M star loses ˜25%-40% of its AM between 10 and 125 Myr, a figure accurately and generically predicted by modern solar-calibrated wind models. Their success rules out a lossless PMS and validates the extrapolation of magnetic wind laws designed for solar-type stars to the low-mass regime at early times.

  8. Produção de trigo e triticale em rotações de sequeiro Wheat and triticale in crop rotations

    Directory of Open Access Journals (Sweden)

    Carlos Castro

    2008-01-01

    Full Text Available Apresentam-se os resultados de um ensaio de rotações que decorreu durante dez anos em Vila Real (Trás-os-Montes. O ensaio incluiu a rotação tradicional das condições de sequeiro de Trás-os-Montes, cereal-alqueive (TA, e rotações alternativas susceptíveis de serem adoptadas nestas condições, cereal-leguminosa (TL, cereal-consociação forrageira (TC e cereal-prado de sequeiro (TP. Os cereais das rotações foram o trigo e, posteriormente, o triticale. Determinaram-se e analisaram-se as produções de grão e palha, os teores de nutrientes do grão e da palha e acompanharam-se os parâmetros do solo, pH, matéria orgânica e os teores de P2 O 5, K2 O e bases de troca. Destacam-se alguns resultados importantes, tais como: as produções de grão de cereal das rotações não mostrarem diferenças significativas entre si; a produção de palha da rotação TL ser superior às das restantes; o trigo cultivado após prado de sequeiro não dispensar a adubação azotada; as rotações conduzirem a modificações dos teores de matéria orgânica, cálcio de troca ou do valor do pH do solo, factores a que se deve atender, caso a rotação se prolongue por muitos anos.The results of a field trial of crop rotations conducted over a period of ten years in Vila Real (Northeast Portugal are presented. The rotations tested were cereal-cultivated fallow (TA, traditional in rain-fed conditions of the region, and alternative rotations that could be adopted in these conditions: cereal-grain legume crop (TL, cereal-forage mixture (TC and cereal-rain-fed pasture (TP. The cereals were wheat and, later, triticale. Grain, straw and aerial biomass yields were evaluated together with concentrations of nutrients. The soil parameters studied were pH, organic matter and P 2 O 5, K2O and exchange cations. Wheat straw yield of TL rotation was higher than that of the others. Wheat from TP rotation still requires nitrogen fertilization. The soils of the different

  9. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres

    Science.gov (United States)

    Tan, Xianyu; Showman, Adam P.

    2017-10-01

    Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

  10. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  11. Central Rotations of Milky Way Globular Clusters

    Science.gov (United States)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  12. Rotational spectroscopy with an optical centrifuge.

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Alexander A; Hepburn, John W; Milner, Valery

    2014-03-07

    We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of (16)O2. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between X(3)Σg(-) and C(3)Πg electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as N ≳ 120, enables us to interpret the complex structure of rotational spectra of C(3)Πg beyond thermally accessible levels.

  13. Injection Therapies for Rotator Cuff Disease.

    Science.gov (United States)

    Lin, Kenneth M; Wang, Dean; Dines, Joshua S

    2018-04-01

    Rotator cuff disease affects a large proportion of the overall population and encompasses a wide spectrum of pathologies, including subacromial impingement, rotator cuff tendinopathy or tear, and calcific tendinitis. Various injection therapies have been used for the treatment of rotator cuff disease, including corticosteroid, prolotherapy, platelet-rich plasma, stem cells, and ultrasound-guided barbotage for calcific tendinitis. However, the existing evidence for these therapies remains controversial or sparse. Ultimately, improved understanding of the underlying structural and compositional deficiencies of the injured rotator cuff tissue is needed to identify the biological needs that can potentially be targeted with injection therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. RADII OF RAPIDLY ROTATING STARS, WITH APPLICATION TO TRANSITING-PLANET HOSTS

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2010-01-01

    The currently favored method for estimating radii and other parameters of transiting-planet host stars is to match theoretical models to observations of the stellar mean density ρ * , the effective temperature T eff , and the composition parameter [Z]. This explicitly model-dependent approach is based on readily available observations, and results in small formal errors. Its performance will be central to the reliability of results from ground-based transit surveys such as TrES, HAT, and SuperWASP, as well as to the space-borne missions MOST, CoRoT, and Kepler. Here, I use two calibration samples of stars (eclipsing binaries (EBs) and stars for which asteroseismic analyses are available) having well-determined masses and radii to estimate the accuracy and systematic errors inherent in the ρ * method. When matching to the Yonsei-Yale stellar evolution models, I find the most important systematic error results from selection bias favoring rapidly rotating (hence probably magnetically active) stars among the EB sample. If unaccounted for, this bias leads to a mass-dependent underestimate of stellar radii by as much as 4% for stars of 0.4 M sun , decreasing to zero for masses above about 1.4 M sun . Relative errors in estimated stellar masses are three times larger than those in radii. The asteroseismic sample suggests (albeit with significant uncertainty) that systematic errors are small for slowly rotating, inactive stars. Systematic errors arising from failings of the Yonsei-Yale models of inactive stars probably exist, but are difficult to assess because of the small number of well-characterized comparison stars having low mass and slow rotation. Poor information about [Z] is an important source of random error, and may be a minor source of systematic error as well. With suitable corrections for rotation, it is likely that systematic errors in the ρ * method can be comparable to or smaller than the random errors, yielding radii that are accurate to about 2% for

  15. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  16. Rendimento de grãos de soja em função de diferentes sistemas de manejo de solo e de rotação de culturas Soybean yield associated to different soil tillage methods and crop rotations systems

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2006-02-01

    Full Text Available O objetivo do presente trabalho foi avaliar sistemas de manejo de solo e de rotação de culturas sobre o rendimento de grãos e componentes do rendimento de soja durante seis anos. Foram comparados quatro sistemas de manejo de solo - 1 plantio direto, 2 cultivo mínimo, no inverno e semeadura direta, no verão, 3 preparo convencional de solo com arado de discos, no inverno e semeadura direta, no verão e 4 preparo convencional de solo com arado de aivecas, no inverno e semeadura direta, no verão - e três sistemas de rotação de culturas: sistema I (trigo/soja, sistema II (trigo/soja e ervilhaca/milho ou sorgo e sistema III (trigo/soja, ervilhaca/milho ou sorgo e aveia branca/soja. O delineamento experimental foi de blocos ao acaso, com parcelas subdivididas e três repetições. O rendimento de grãos e o peso de 1.000 grãos de soja cultivada sob plantio direto e sob cultivo mínimo foi superior ao de soja cultivada sob preparo convencional de solo com arado de discos e com arado de aivecas. A maior estatura de plantas de soja ocorreu no plantio direto. O rendimento de grãos de soja cultivada após trigo, no sistema II, foi superior ao de soja cultivada após aveia branca e após trigo, no sistema III, e após trigo, no sistema I. O menor rendimento de grãos, peso de grãos por planta de soja e peso de 1.000 grãos ocorreu quando em monocultura (trigo/soja.The objective of this six-year study was to assess the soil tillage systems and crop rotation systems on soybean grain and yield components were evaluated at Embrapa Trigo in Passo Fundo, RS, Brazil. Four soil tillage systems - 1 no-tillage, 2 minimum tillage in winter and no-tillage in summer, 3 conventional tillage with disk plow in winter and no-tillage in summer, and 4 tillage using a moldboard plow in winter and no-tillage in summer - and three crop rotation systems [system I (wheat/soybean, system II (wheat/soybean and common vetch/corn or sorghum, and system III (wheat

  17. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    Science.gov (United States)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  18. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    Science.gov (United States)

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  19. MRI of the rotator cuff and internal derangement

    Energy Technology Data Exchange (ETDEWEB)

    Opsha, Oleg [Department of Radiology, Maimonides Medical Center, 4802 10th Avenue, Brooklyn, NY 11219 (United States)], E-mail: oopsha@hotmail.com; Malik, Archana [Department of Radiology, Maimonides Medical Center, 4802 10th Avenue, Brooklyn, NY 11219 (United States)], E-mail: dr.armal@gmail.com; Baltazar, Romulo [Department of Radiology, Maimonides Medical Center, 4802 10th Avenue, Brooklyn, NY 11219 (United States)], E-mail: rbaltazar@gmail.com; Primakov, Denis [Department of Radiology, North Shore University Hospital, 300 Community Drive, Manhasset, NY 11030 (United States)], E-mail: dgprim@yahoo.com; Beltran, Salvador [Dr. Ramon Marti, 2 Albons, Ginrona 17136 (Spain); Miller, Theodore T. [Department of Radiology and Imaging, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 (United States)], E-mail: MillerTT@hss.edu; Beltran, Javier [Department of Radiology, Maimonides Medical Center, 4802 10th Avenue, Brooklyn, NY 11219 (United States)], E-mail: jbeltran46@msn.com

    2008-10-15

    Disease to the rotator cuff is the most common cause of shoulder pain and dysfunction in adults. This group of muscles performs multiple functions and is often stressed during various activities. The anatomy and physiology of the rotator cuff is complex and interconnected to other muscle groups in the shoulder. One must take the anatomic status of the rotator cuff tendons into account when planning the treatment of the rotator cuff injury. Diagnostic imaging of the rotator cuff, performed by MRI, provides valuable information about the nature of the injury. In this article, we will review the various types and causes of rotator cuff injuries, normal MR anatomy, function, patho-anatomy, and the biomechanics of the rotator cuff. We will also review shoulder impingement syndromes.

  20. MRI of the rotator cuff and internal derangement

    International Nuclear Information System (INIS)

    Opsha, Oleg; Malik, Archana; Baltazar, Romulo; Primakov, Denis; Beltran, Salvador; Miller, Theodore T.; Beltran, Javier

    2008-01-01

    Disease to the rotator cuff is the most common cause of shoulder pain and dysfunction in adults. This group of muscles performs multiple functions and is often stressed during various activities. The anatomy and physiology of the rotator cuff is complex and interconnected to other muscle groups in the shoulder. One must take the anatomic status of the rotator cuff tendons into account when planning the treatment of the rotator cuff injury. Diagnostic imaging of the rotator cuff, performed by MRI, provides valuable information about the nature of the injury. In this article, we will review the various types and causes of rotator cuff injuries, normal MR anatomy, function, patho-anatomy, and the biomechanics of the rotator cuff. We will also review shoulder impingement syndromes

  1. Thermospheric neutral temperatures derived from charge-exchange produced N{sub 2}{sup +} Meinel (1,0) rotational distributions

    Energy Technology Data Exchange (ETDEWEB)

    Mutiso, C.K.; Zettergren, M.D.; Hughes, J.M.; Sivjee, G.G. [Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States). Space Physics Research Lab.

    2013-06-01

    Thermalized rotational distributions of neutral and ionized N{sub 2} and O{sub 2} have long been used to determine neutral temperatures (T{sub n}) during auroral conditions. In both bright E-region (or similar 130 km) species provide an exception to this situation. In particular, the charge-exchange reaction O{sup +}({sup 2}D)+N{sub 2}(X) {yields}N{sub 2}{sup +} (A{sup 2}{Pi}{sub u}, {nu}' = 1) + O({sup 3}P) yields thermalized N{sub 2}{sup +} Meinel (1,0) emissions, which, albeit weak, can be used to derive neutral temperatures at altitudes of {proportional_to} 130 km and higher. In this work, we present N{sub 2}{sup +} Meinel (1,0) rotational temperatures and brightnesses obtained at Svalbard, Norway, during various auroral conditions. We calculate T{sub n} at thermospheric altitudes of 130-180 km from thermalized rotational populations of N{sub 2}{sup +} Meinel (1,0); these emissions are excited by soft electron (

  2. On yield gaps and yield gains in intercropping

    NARCIS (Netherlands)

    Gou, Fang; Yin, Wen; Hong, Yu; Werf, van der Wopke; Chai, Qiang; Heerink, Nico; Ittersum, van Martin K.

    2017-01-01

    Wheat-maize relay intercropping has been widely used by farmers in northwest China, and based on field experiments agronomists report it has a higher productivity than sole crops. However, the yields from farmers’ fields have not been investigated yet. Yield gap analysis provides a framework to

  3. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears.

    Science.gov (United States)

    Rothrauff, Benjamin B; Pauyo, Thierry; Debski, Richard E; Rodosky, Mark W; Tuan, Rocky S; Musahl, Volker

    2017-08-01

    The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.

  4. Rotational inhomogeneities from pre-big bang?

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2005-01-01

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric

  5. Rotational inhomogeneities from pre-big bang?

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland)

    2005-01-21

    The evolution of the rotational inhomogeneities is investigated in the specific framework of four-dimensional pre-big bang models. While minimal (dilaton-driven) scenarios do not lead to rotational fluctuations, in the case of non-minimal (string-driven) models, fluid sources are present in the pre-big bang phase. The rotational modes of the geometry, coupled to the divergenceless part of the velocity field, can then be amplified depending upon the value of the barotropic index of the perfect fluids. In the light of a possible production of rotational inhomogeneities, solutions describing the coupled evolution of the dilaton field and of the fluid sources are scrutinized in both the string and Einstein frames. In semi-realistic scenarios, where the curvature divergences are regularized by means of a non-local dilaton potential, the rotational inhomogeneities are amplified during the pre-big bang phase but they decay later on. Similar analyses can also be performed when a contraction occurs directly in the string frame metric.

  6. Exponential time-dependent perturbation theory in rotationally inelastic scattering

    International Nuclear Information System (INIS)

    Cross, R.J.

    1983-01-01

    An exponential form of time-dependent perturbation theory (the Magnus approximation) is developed for rotationally inelastic scattering. A phase-shift matrix is calculated as an integral in time over the anisotropic part of the potential. The trajectory used for this integral is specified by the diagonal part of the potential matrix and the arithmetic average of the initial and final velocities and the average orbital angular momentum. The exponential of the phase-shift matrix gives the scattering matrix and the various cross sections. A special representation is used where the orbital angular momentum is either treated classically or may be frozen out to yield the orbital sudden approximation. Calculations on Ar+N 2 and Ar+TIF show that the theory generally gives very good agreement with accurate calculations, even where the orbital sudden approximation (coupled-states) results are seriously in error

  7. Rotating D0-branes and consistent truncations of supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS École Normale Supérieure de Lyon 46, allée d' Italie, F-69364 Lyon cedex 07 (France); Ortiz, Thomas; Samtleben, Henning [Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS École Normale Supérieure de Lyon 46, allée d' Italie, F-69364 Lyon cedex 07 (France)

    2013-12-18

    The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1){sup 4} truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza–Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S{sup 8}. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS{sub 2}×M{sub 8} geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields.

  8. Study of insomnia in rotating shift-workers

    Directory of Open Access Journals (Sweden)

    Kaushik Chatterjee

    2017-01-01

    Full Text Available Background: Shift-workers commonly suffer from insomnia. This study evaluates different domains of insomnia. Aim: This study was aimed to study sleep and insomnia in rotating shift-workers and compare with day-workers. Materials and Methods: This was case–control study. The sleep of rotating shift-workers is compared with day workers using Athens Insomnia Scale. Results: Rotating shift-workers had significantly higher scores on Athens insomnia scale on domains of initial, intermediate and terminal insomnia than day workers. Duration and quality of sleep and sense of well-being are lower in rotating shift-workers. Rotating shift-workers also experienced more day-time sleepiness than day workers. However, there was no difference in perceived physical and mental functioning between the two groups. Conclusion: Individuals working in rotating shifts for more than 15 days have significantly higher prevalence of insomnia than day-workers.

  9. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André

    2009-01-01

    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  10. Controlling Sample Rotation in Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.

    1985-01-01

    Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.

  11. Evaluation of the CropSyst Model during Wheat-Maize Rotations on the North China Plain for Identifying Soil Evaporation Losses

    Directory of Open Access Journals (Sweden)

    Muhammad Umair

    2017-09-01

    Full Text Available The North China Plain (NCP is a major grain production zone that plays a critical role in ensuring China's food supply. Irrigation is commonly used during grain production; however, the high annual water deficit [precipitation (P minus evapotranspiration (ET] in typical irrigated cropland does not support double cropping systems (such as maize and wheat and this has resulted in the steep decline in the water table (~0.8 m year−1 at the Luancheng station that has taken place since the 1970s. The current study aimed to adapt and check the ability of the CropSyst model (Suite-4 to simulate actual evapotranspiration (ETa, biomass, and grain yield, and to identify major evaporation (E losses from winter wheat (WW and summer maize (SM rotations. Field experiments were conducted at the Luancheng Agro-ecosystem station, NCP, in 2010–2011 to 2012–2013. The CropSyst model was calibrated on wheat/maize (from weekly leaf area/biomass data available for 2012–2013 and validated onto measured ETa, biomass, and grain yield at the experimental station from 2010–2011 to 2011–2012, by using model calibration parameters. The revalidation was performed with the ETa, biomass, grain yield, and simulated ETa partition for 2008–2009 WW [ETa partition was measured by the Micro-lysimeter (MLM and isotopes approach available for this year]. For the WW crop, E was 30% of total ETa; but from 2010–11 to 2013, the annual average E was ~40% of ETa for the WW and SM rotation. Furthermore, the WW and SM rotation from 2010–2011 to 2012–2013 was divided into three growth periods; (i pre-sowing irrigation (PSI; sowing at field capacity to emergence period (EP, (ii EP to canopy cover period (CC and (iii CC to harvesting period (HP, and E from each growth period was ~10, 60, and 30%, respectively. In general, error statistics such as RMSE, Willmott's d, and NRMSE in the model evaluation for wheat ETa (maize ETa were 38.3 mm, 0.81, and 9.24% (31.74 mm, 0.73, and 11

  12. INFORMATIONAL MODEL OF MENTAL ROTATION OF FIGURES

    Directory of Open Access Journals (Sweden)

    V. A. Lyakhovetskiy

    2016-01-01

    Full Text Available Subject of Study.The subject of research is the information structure of objects internal representations and operations over them, used by man to solve the problem of mental rotation of figures. To analyze this informational structure we considered not only classical dependencies of the correct answers on the angle of rotation, but also the other dependencies obtained recently in cognitive psychology. Method.The language of technical computing Matlab R2010b was used for developing information model of the mental rotation of figures. Such model parameters as the number of bits in the internal representation, an error probability in a single bit, discrete rotation angle, comparison threshold, and the degree of difference during rotation can be changed. Main Results.The model reproduces qualitatively such psychological dependencies as the linear increase of time of correct answers and the number of errors on the angle of rotation for identical figures, "flat" dependence of the time of correct answers and the number of errors on the angle of rotation for mirror-like figures. The simulation results suggest that mental rotation is an iterative process of finding a match between the two figures, each step of which can lead to a significant distortion of the internal representation of the stored objects. Matching is carried out within the internal representations that have no high invariance to rotation angle. Practical Significance.The results may be useful for understanding the role of learning (including the learning with a teacher in the development of effective information representation and operations on them in artificial intelligence systems.

  13. Rotating Quark Stars in General Relativity

    Directory of Open Access Journals (Sweden)

    Enping Zhou

    2018-03-01

    Full Text Available We have built quasi-equilibrium models for uniformly rotating quark stars in general relativity. The conformal flatness approximation is employed and the Compact Object CALculator (cocal code is extended to treat rotating stars with surface density discontinuity. In addition to the widely used MIT bag model, we have considered a strangeon star equation of state (EoS, suggested by Lai and Xu, that is based on quark clustering and results in a stiff EoS. We have investigated the maximum mass of uniformly rotating axisymmetric quark stars. We have also built triaxially deformed solutions for extremely fast rotating quark stars and studied the possible gravitational wave emission from such configurations.

  14. Rotational Fourier tracking of diffusing polygons.

    Science.gov (United States)

    Mayoral, Kenny; Kennair, Terry P; Zhu, Xiaoming; Milazzo, James; Ngo, Kathy; Fryd, Michael M; Mason, Thomas G

    2011-11-01

    We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we determine an isolated particle's rotational trajectory, independent of its position. The measured in-plane rotational diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close proximity of the particles to the wall arising from the depletion attraction.

  15. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  16. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Department of Mathematics, Ankara (Turkey)

    2014-05-15

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  17. From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field

    International Nuclear Information System (INIS)

    Azreg-Ainou, Mustapha

    2014-01-01

    We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)

  18. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  19. A novel rotational invariants target recognition method for rotating motion blurred images

    Science.gov (United States)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  20. Analysis of stress and strain in a rotating disk mounted on a rigid shaft

    Directory of Open Access Journals (Sweden)

    Alexandrova Nelli N.

    2006-01-01

    Full Text Available The plane state of stress in an elastic-perfectly plastic isotropic rotating annular disk mounted on a rigid shaft is studied. The analysis of stresses, strains and displacements within the disk of constant thickness and density is based on the Mises yield criterion and its associated flow rule. It is observed that the plastic deformation is localized in the vicinity of the inner radius of the disk, and the disk of a sufficiently large outer radius never becomes fully plastic. The semi-analytical method of stress-strain analysis developed is illustrated by some numerical examples. .