WorldWideScience

Sample records for prolonged northward interplanetary

  1. Solar Wind Energy Input during Prolonged, Intense Northward Interplanetary Magnetic Fields: A New Coupling Function

    Science.gov (United States)

    Du, A. M.; Tsurutani, B. T.; Sun, W.

    2012-04-01

    Sudden energy release (ER) events in the midnight sector at auroral zone latitudes during intense (B > 10 nT), long-duration (T > 3 hr), northward (Bz > 0 nT = N) IMF magnetic clouds (MCs) during solar cycle 23 (SC23) have been examined in detail. The MCs with northward-then-southward (NS) IMFs were analyzed separately from MCs with southward-then-northward (SN) configurations. It is found that there is a lack of substorms during the N field intervals of NS clouds. In sharp contrast, ER events do occur during the N field portions of SN MCs. From the above two results it is reasonable to conclude that the latter ER events represent residual energy remaining from the preceding S portions of the SN MCs. We derive a new solar wind-magnetosphere coupling function during northward IMFs: ENIMF = α N-1/12V 7/3B1/2 + β V |Dstmin|. The first term on the right-hand side of the equation represents the energy input via "viscous interaction", and the second term indicates the residual energy stored in the magnetotail. It is empirically found that the magnetosphere/magnetotail can store energy for a maximum of ~ 4 hrs before it has dissipated away. This concept is defining one for ER/substorm energy storage. Our scenario indicates that the rate of solar wind energy injection into the magnetosphere/magnetotail determines the form of energy release into the magnetosphere/ionosphere. This may be more important than the dissipation mechanism itself (in understanding the form of the release). The concept of short-term energy storage is applied for the solar case. It is argued that it may be necessary to identify the rate of energy input into solar magnetic loop systems to be able to predict the occurrence of solar flares.

  2. Interaction of the geomagnetic field with northward interplanetary magnetic field

    Science.gov (United States)

    Bhattarai, Shree Krishna

    The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.

  3. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  4. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  5. Turbulence in a Global Magnetohydrodynamic Simulation of the Earth's Magnetosphere during Northward and Southward Interplanetary Magnetic Field

    Science.gov (United States)

    El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.

    2012-01-01

    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.

  6. Field-aligned currents during northward interplanetary magnetic field: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastatter, L.

    2005-01-01

    [1] We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF By component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents....... We find that the existence and geometry of the polar cap is closely connected to the IMF By component. During strictly northward IMF the simulated magnetosphere can remain essentially closed because the solar wind field lines reconnect in both hemispheres, thereby creating newly reconnected closed...... both on open and closed field lines and are created by the shear of the newly reconnected field lines against the mantle field as they are convected tailward by the solar wind. When the IMF rotates from northward toward east, the magnetospheric mapping regions of the NBZ currents likewise rotates...

  7. The configuration of the auroral distribution for interplanetary magnetic field Bz northward. 2. Ionospheric convection consistent with Viking observations

    International Nuclear Information System (INIS)

    Jankowska, K.; Elphinstone, R.D.; Murphree, J.S.; Cogger, L.L.; Hearn, D.; Marklund, G.

    1990-01-01

    Views of the northern hemisphere auroral distribution obtained by the Viking satellite present a qualitative means of inferring the convective patterns which occur during interplanetary magnetic field (IMF) B z northward. The approach is taken whereby upward field-aligned currents are assumed to be coincident with large-scale discrete auroral features and on this basis possible convective patterns are deduced. While the patterns are not unique solutions, they are found to be consistent with merging theory predictions. That is, for B z northward the auroral observations support the possibility of three and/or four cell patterns. When the IMF azimuthal angle is 90 degree (270 degree), a clockwise (anticlockwise) cell is found to be located in the polar region between the two standard viscous cells. When IMF B x dominates and is in a toward orientation, convection stagnates, whereas if B x is negative, a four-cell pattern may form with sunward flow at very high latitudes. The concept of using global auroral images as an additional tool when developing convection models could prove to be necessary in order to extend beyond the few isolated measurements taken in situ by satellites

  8. The Earth's passage of the April 11, 1997 coronal ejecta: geomagnetic field fluctuations at high and low latitude during northward interplanetary magnetic field conditions

    Directory of Open Access Journals (Sweden)

    S. Lepidi

    1999-10-01

    Full Text Available An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay and a low latitude (L'Aquila, Italy station during the Earth's passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth's magnetosphere. Key words. Magnetospheric physics (MHD waves and instabilities; solar wind-magnetosphere interactions

  9. Anomalous aspects of magnetosheath flow and of the shape and oscillations of the magnetopause during an interval of strongly northward interplanetary magnetic field

    Science.gov (United States)

    Chen, Sheng-Hsien; Kivelson, Margaret G.; Gosling, Jack T.; Walker, Raymond T.; Lazarus, Allan J.

    1992-01-01

    On 15 Feb. 1978, the orientation of the interplanetary magnetic field (IMF) remained steadily northward for more than 12 hours. The ISEE 1 and 2 spacecraft were located near apogee on the dawn side flank of the magnetotail. IMP 8 was almost symmetrically located in the magnetosheath on the dusk flank and IMP 7 was upstream in the solar wind. Using plasma and magnetic field data, we show the following: (1) the magnetosheath flow speed on the flanks of the magnetotail steadily exceeded the solar wind speed by 20 percent; (2) surface waves with approximately a 5-min period and very non-sinusoidal waveform were persistently present on the dawn magnetopause and waves of similar period were present in the dusk magnetosheath; and (3) the magnetotail ceased to flare at an antisunward distance of 15 R(sub E). We propose that the acceleration of the magnetosheath flow is achieved by magnetic tension in the draped field configuration for northward IMF and that the reduction of tail flaring is consistent with a decreased amount of open magnetic flux and a larger standoff distance of the subsolar magnetopause. Results of a three-dimensional magnetohydrodynamic simulation support this phenomenological model.

  10. The Earth's magnetosphere is 165 R(sub E) long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field

    Science.gov (United States)

    Fedder, J. A.; Lyon, J. G.

    1995-01-01

    The subject of this paper is a self-consistent, magnetohydrodynamic numerical realization for the Earth's magnetosphere which is in a quasi-steady dynamic equilibrium for a due northward interplanetary magnetic field (IMF). Although a few hours of steady northward IMF are required for this asymptotic state to be set up, it should still be of considerable theoretical interest because it constitutes a 'ground state' for the solar wind-magnetosphere interaction. Moreover, particular features of this ground state magnetosphere should be observable even under less extreme solar wind conditions. Certain characteristics of this magnetosphere, namely, NBZ Birkeland currents, four-cell ionospheric convection, a relatively weak cross-polar potential, and a prominent flow boundary layer, are widely expected. Other characteristics, such as no open tail lobes, no Earth-connected magnetic flux beyond 155 R(sub E) downstream, magnetic merging in a closed topology at the cusps, and a 'tadpole' shaped magnetospheric boundary, might not be expected. In this paper, we will present the evidence for this unusual but interesting magnetospheric equilibrium. We will also discuss our present understanding of this singular state.

  11. An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets

    Science.gov (United States)

    Hsu, Tung-Shin; McPherron, R. L.

    2002-11-01

    An outstanding problem in magnetospheric physics is deciding whether substorms are always triggered by external changes in the interplanetary magnetic field (IMF) or solar wind plasma, or whether they sometimes occur spontaneously. Over the past decade, arguments have been made on both sides of this issue. In fact, there is considerable evidence that some substorms are triggered. However, equally persuasive examples of substorms with no obvious trigger have been found. Because of conflicting views on this subject, further work is required to determine whether there is a physical relation between IMF triggers and substorm onset. In the work reported here a list of substorm onsets was created using two independent substorm signatures: sudden changes in the slope of the AL index and the start of a Pi 2 pulsation burst. Possible IMF triggers were determined from ISEE-2 observations. With the ISEE spacecraft near local noon immediately upstream of the bow shock, there can be little question about propagation delay to the magnetopause or whether a particular IMF feature hits the subsolar magnetopause. Thus it eliminates the objections that the calculated arrival time is subject to a large error or that the solar wind monitor missed a potential trigger incident at the subsolar point. Using a less familiar technique, statistics of point process, we find that the time delay between substorm onsets and the propagated arrival time of IMF triggers are clustered around zero. We estimate for independent processes that the probability of this clustering by chance alone is about 10-11. If we take into account the requirement that the IMF must have been southward prior to the onset, then the probability of clustering is higher, ˜10-5, but still extremely unlikely. Thus it is not possible to ascribe the apparent relation between IMF northward turnings and substorm onset to coincidence.

  12. The configuration of the auroral distribution for interplanetary magnetic field Bz northward. 1. IMF Bx and By dependencies as observed by the Viking satellite

    International Nuclear Information System (INIS)

    Eliphinstone, R.D.; Jankowska, K.; Murphree, J.S.; Cogger, L.L.

    1990-01-01

    Viking images obtained throughout 1986 have been utilized in combination with IMP 8 satellite measurements of the interplanetary magnetic fields (IMF) to determine typical northern hemisphere auroral distributions for a variety of IMF B z positive conditions. Varying B y has an effect which is consistent with expected results. That is, B y positive implies high-latitude auroral arcs in the dusk sector while negative B y gives dawn sector polar arcs. A new result gives significant importance to the B x component of the IMF. B x toward the Sun (B y = 0) gives polar arcs on both dawn and dusk with comparatively weak UV emissions. With B x away from the Sun (B y = 0) a single Sun-aligned morning sector polar arc dominates the auroral distribution. Azimuthal angle changes to the IMF of only 45 degree seem to affect the global auroral distribution with time scales of less than 2-3 hours. Poleward boundaries of the aurora were found to have a strong dependence on the IMF azimuthal angle which varied according to the magnetic local time investigated

  13. Solar, interplanetary and terrestrial features associated with periods of prolonged positive and negative Dst index

    International Nuclear Information System (INIS)

    Rajaram, G.

    1989-01-01

    From a survey of the published final values of the geomagnetic index D st for the period 1958-1972, we found long time intervals of over 25-30 days, during which this index remained consistently positive (D st +) or negative (D st -). A study is made of relevant parameters on the ground, in the magnetosphere, in the solar wind and on the Sun to seek out systematic features associated with the two conditions. In order to eliminate factors arising from seasonal and solar cycle variations, we selected pairs of D st + and D st - which involve successive months of the same year, or the same month of two successive years. Three parameters which show a systematic difference between D st + and D st - intervals are found to be 1) the state of solar photospheric magnetic fields 2) the flux density of solar MeV protons measured in the magnetosphere and 3) the southward component of the interplanetary magnetic field. While the effect of the last on geomagnetic activity has been well-discussed in the literature, it is suggested that the correlations of the first two to the conditions of D st + and D st - demand a careful scrutiny of the solar-terrestrial relationship. (author)

  14. Interplanetary spheromacs

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.

    1985-01-01

    The solution of Helmholtz's equation is used for the representation of force-free magnetic fields as series of spheroidal wave functions. It is assumed that these functions describe painly interplanetary hydromagnetic clouds in the shape of flattered and extended ellipsoids which are formed at the interaction of flare e ections with corona and interplanetary plasma

  15. Interplanetary matter

    International Nuclear Information System (INIS)

    Ceplecha, Z.; Pecina, P.

    1987-01-01

    Of the total number of 57 presented papers 56 have been submitted to INIS. One paper was out of INIS scope. List of sessions (in brackets is the number of papers presented in the respective session and incorporated in the INIS): Preface (2), Comets (17), Asteroids (7), Meteors (19), Interplanetary dust (9), Other bodies (2). (Z.S.). 155 figs., 68 tabs., 1140 refs

  16. High-latitude ionospheric response to a sudden impulse event during northward IMF conditions

    DEFF Research Database (Denmark)

    Moretto, T.; Ridley, A.J.; Engebretson, M.J.

    2000-01-01

    A high-density structure under northward interplanetary magnetic field B-z conditions is identified at the Wind and IMP 8 satellites, both in the solar wind on August 22, 1995. A compression of the magnetosphere is observed by the GOES 7 magnetometer within a few minutes of the pressure increase ...... the interpretation as events of traveling convection vortices, as has been suggested by past studies....

  17. On the relaxation of magnetospheric convection when Bz turns northward

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2012-06-01

    Full Text Available The solar wind inputs considerable energy into the upper atmosphere, particularly when the interplanetary magnetic field (IMF is southward. According to Poynting's theorem (Kelley, 2009, this energy becomes stored as magnetic fields and then is dissipated by Joule heat and by energizing the plasmasheet plasma. If the IMF turns suddenly northward, very little energy is transferred into the system while Joule dissipation continues. In this process, the polar cap potential (PCP decreases. Experimentally, it was shown many years ago that the energy stored in the magnetosphere begins to decay with a time constant of two hours. Here we use Poynting's theorem to calculate this time constant and find a result that is consistent with the data.

  18. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    Science.gov (United States)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  19. High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF

    Directory of Open Access Journals (Sweden)

    H. Korth

    2005-06-01

    Full Text Available We present a case study of a prolonged interval of strongly northward orientation of the interplanetary magnetic field on 16 July 2000, 16:00-19:00 UT to characterize the energy exchange between the magnetosphere and ionosphere for conditions associated with minimum solar wind-magnetosphere coupling. With reconnection occurring tailward of the cusp under northward IMF conditions, the reconnection dynamo should be separated from the viscous dynamo, presumably driven by the Kelvin-Helmholtz (KH instability. Thus, these conditions are also ideal for evaluating the contribution of a viscous interaction to the coupling process. We derive the two-dimensional distribution of the Poynting vector radial component in the northern sunlit polar ionosphere from magnetic field observations by the constellation of Iridium satellites together with drift meter and magnetometer observations from the Defense Meteorological Satellite Program (DMSP F13 and F15 satellites. The electromagnetic energy flux is then compared with the particle energy flux obtained from auroral images taken by the far-ultraviolet (FUV instrument on the Imager for Magnetopause to Aurora Global Exploration (IMAGE spacecraft. The electromagnetic energy input to the ionosphere of 51 GW calculated from the Iridium/DMSP observations is eight times larger than the 6 GW due to particle precipitation all poleward of 78° MLAT. This result indicates that the energy transport is significant, particularly as it is concentrated in a small region near the magnetic pole, even under conditions traditionally considered to be quiet and is dominated by the electromagnetic flux. We estimate the contributions of the high and mid-latitude dynamos to both the Birkeland currents and electric potentials finding that high-latitude reconnection accounts for 0.8 MA and 45kV while we attribute <0.2MA and ~5kV to an interaction at lower latitudes having the sense of a viscous interaction. Given that these

  20. Escape of high-energy oxygen ions through magnetopause reconnection under northward IMF

    Directory of Open Access Journals (Sweden)

    S. Kasahara

    2008-12-01

    Full Text Available During a storm recovery phase on 15 May 2005, the Geotail spacecraft repeatedly observed high-energy (>180 keV oxygen ions in the dayside magnetosheath near the equatorial plane. We focused on the time period from 11:20 UT to 13:00 UT, when Geotail observed the oxygen ions and the interplanetary magnetic field (IMF was constantly northward. The magnetic reconnection occurrence northward and duskward of Geotail is indicated by the Walén analysis and convective flows in the magnetopause boundary layer. Anisotropic pitch angle distributions of ions suggest that high-energy oxygen ions escaped from the northward of Geotail along the reconnected magnetic field lines. From the low-energy particle precipitation in the polar cap observed by DMSP, which is consistent with magnetic reconnection occurring between the magnetosheath field lines and the magnetospheric closed field lines, we conclude that these oxygen ions are of ring current origin. Our results thus suggest a new escape route of oxygen ions during northward IMF. In the present event, this escape mechanism is more dominant than the leakage via the finite Larmor radius effect across the dayside equatorial magnetopause.

  1. Criteria of interplanetary parameters causing intense magnetic storms (Dsub(st) < -100 nT)

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Tsurutani, B.T.

    1987-01-01

    Ten intense magnetic storms (Dsub(st) 5 mV m -1 , that last for intervals > 3 h. Because we find a one-to-one relationship between these interplanetary events and intense storms, we suggest that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. The close proximity of the Bsub(z) events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported and thus the two interplanetary features and corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity (northward) Bsub(z) events with the same criteria shows that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity. (author)

  2. Solar and interplanetary disturbances

    CERN Document Server

    Alurkar, S K

    1997-01-01

    Over the last three decades, a spate of solar wind observations have been made with sophisticated ground-based and space-borne instruments. Two highly successful space missions of the Skylab and the twin spacecraft Helios 1 and 2 have amassed an invaluable wealth of information on the large scale structure of the inner heliosphere, the solar and interplanetary magnetic field, coronal holes, interplanetary dust, solar windflows, etc.Solar and interplanetary propagating phenomena have been extensively studied during the last two decades. Very recently, a new simple model based on results from a

  3. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  4. Mercury's magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel M.; Schriver, D.; Hellinger, Petr; Herčík, David; Anderson, B.J.; Sarantos, M.; Slavin, J.A.

    2010-01-01

    Roč. 209, č. 1 (2010), s. 11-22 ISSN 0019-1035 R&D Projects: GA AV ČR IAA300030805; GA MŠk ME09009 Grant - others:ESA(XE) ESA-PECS project No. 98068; NASA (US) NNX09AD41G; NASA (US) NNX07AR62G Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : MESSENGERS 1ST FLYBY * substorms * instability Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.813, year: 2010

  5. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  6. Relationships between interplanetary quantities and the global auroral electrojet index

    International Nuclear Information System (INIS)

    Meloni, A.; Wolfe, A.; Lanzerotti, L.J.

    1982-01-01

    We have studied, using linear cross correlation and multilinear regression analyses, statistical relations between the magnetospheric auroral electrojet intensity index AE and various parameters characterizing the interplanetary plasma and magnetic field. We also consider the recently proposed epsilon parameter as an independent variable. The analyses were carried out separately for twenty-eight days in mid 1975 and for each of five individual magnetic storm intervals that have been previously discussed extensively in the literature. We find that when the interplanetary data set is not distinguished as to the direction of the north-south component B/sub z/, the interplanetary electric field -VB/sub z/ carried to the front of the magnetosphere correlates with AE substantially better than does epsilon. Considering only data during which B/sub z/ is negative gives a slightly better correlation of epsilon with AE than of the electric field with AE. The correlations are valid for the specific storm periods as well as for the unrestricted twenty-eight days of data. Our results suggest that the physical processes involved in energy transfer to the nightside magnetosphere depend upon the direction of the north-south component of the interplanetary magnetic field: the interplanetary electric field plays an important role during northward B/sub z/ and the epsilon parameter and the electric field both provide an indication of energy transfer and substorm activity during southward B/sub z/

  7. Overlapping ion structures in the mid-altitude cusp under northward IMF: signature of dual lobe reconnection?

    Directory of Open Access Journals (Sweden)

    F. Pitout

    2012-03-01

    Full Text Available On some rare occasions, data from the Cluster Ion Spectrometer (CIS in the mid-altitude cusp reveal overlapping ion populations under northward interplanetary magnetic field (IMF. While the poleward part of the cusp exhibits the expected reverse dispersion due to lobe reconnection, its equatorward part shows a second ion population at higher-energy that coexists with the low energy tail of the dispersion. This second population is either dispersionless or slightly dispersed with energies increasing with increasing latitudes, indicative of lobe reconnection as well. Our analysis of a case that occurred 3 September 2002 when the IMF stayed northward for more than two hours suggests that the second population comes from the opposite hemisphere and is very likely on newly-closed field lines. We interpret this overlap of cusp populations as a clear mid-altitude signature of re-closed magnetic field lines by double lobe reconnection (reconnection in both hemispheres under northward IMF. This interpretation is supported by modelling performed with the Cooling model and an MHD model.

  8. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  9. Structure and properties of the subsolar magnetopause for northward IMF: ISEE observations

    International Nuclear Information System (INIS)

    Song, P.; Russell, C.T.; Elphic, R.C.; Gosling, J.T.; Cattell, C.A.

    1990-01-01

    Detailed magnetopause structure and properties for the magnetic field, electric field and plasma are examined for an ISEE 1 magnetopause crossing which occurred near the subsolar point when the interplanetary magnetic field (IMF) was strongly northward. Because the crossing is slow, the spatial variations in the plasma are clearly resolved. This example illustrates the nature of the steady state interface of two magnetized thermal plasma populations with parallel fields and can serve as a guide to theoretical modeling and simulations. The authors have found that the magnetopause is composed of three layers, a sheath transition layer, an outer boundary layer and an inner boundary layer. In the sheath transition layer, there is a gradual density decrease without a change in temperature. The transition layer occurs totally within the magnetosheath plasma. The outer boundary layer and the inner boundary layer are dominated by magnetosheath and magnetospheric particles, respectively. In each of the boundary layers, the plasma can be interpreted as simple mixtures of the magnetosheath and magnetospheric populations. No significant heating or cooling is seen across the magnetopause during this crossing. The plasma within each of these layers is quite uniform and their boundaries are sharp, suggesting that there is very little diffusion present. The sharp boundaries between the transition layer, the boundary layers and the magnetosphere are all thinner than an ion gyroradius. Transverse waves with right hand or linear polarization near the ion gyrofrequency are observed in the transition layer. These appear to be generated in the transition layer and to be a common feature of this layer when the IMF is northward

  10. Field-aligned currents during northward IMF: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastätter, L.

    2005-01-01

    We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF B y component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents. We...... find that the existence and geometry of the polar cap is closely connected to the IMF B y component. During strictly northward IMF the simulated magnetosphere can remain essentially closed because the solar wind field lines reconnect in both hemispheres, thereby creating newly reconnected closed...... exist both on open and closed field lines and are created by the shear of the newly reconnected field lines against the mantle field as they are convected tailward by the solar wind. When the IMF rotates from northward toward east, the magnetospheric mapping regions of the NBZ currents likewise rotates...

  11. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  12. SWMF simulation of field-aligned currents for a varying northward and duskward IMF with nonzero dipole tilt

    Directory of Open Access Journals (Sweden)

    H. Wang

    2008-06-01

    Full Text Available This study concentrates on the FACs distribution for the varying northward and duskward interplanetary magnetic field (IMF conditions when the dipole tilt is nonzero. A global MHD simulation (the Space Weather Modeling Framework, SWMF has been used to perform this study. Hemispheric asymmetry of the time evolution of northward IMF Bz (NBZ FACs is found. As the IMF changes from strictly northward to duskward, NBZ FACs shift counterclockwise in both summer and winter hemispheres. However, in the winter hemisphere, the counterclockwise rotation prohibits the duskward NBZ FACs from evolving into the midday R1 FACs. The midday R1 FACs seem to be an intrusion of dawnside R1 FACs. In the summer hemisphere, the NBZ FACs can evolve into the DPY FACs, consisting of the midday R0 and R1 FACs, after the counterclockwise rotation. The hemispheric asymmetry is due to the fact that the dipole tilt favors more reconnection between the IMF and the summer magnetosphere. When mapping the NBZ and DPY FACs into the magnetosphere it is found that the NBZ currents are located on both open and closed field lines, irrespective of the IMF direction. For the DPY FACs the hemispheric asymmetry emerges: the midday R1 FACs and a small part of R0 FACs are on closed field lines in the winter hemisphere, while a small part of the midday R1 FACs and all the R0 FACs are on open field lines in the summer hemisphere. Both IMF By and dipole tilt cause the polar cap hemispheric and local time asymmetric. When the IMF is northward, the summer polar cap is closed on the nightside while the winter polar cap is open. The polar cap boundary tends to move equatorward as the IMF rotates from northward to duskward, except in the summer hemisphere, the polar cap on the dawnside shifts poleward when the clock angle is less than 10°. The further poleward displacement of the polar cap boundary on one oval side is caused by the twist of the tail plasma sheet, which is in accordance with the

  13. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007. Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric

  14. Wave properties near the subsolar magnetopause - Pc 3-4 energy coupling for northward interplanetary magnetic field

    Science.gov (United States)

    Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.

    1993-01-01

    Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.

  15. india's northward drift and collision with asia: evolving faunal response

    Indian Academy of Sciences (India)

    INDIA'S NORTHWARD DRIFT AND COLLISION WITH ASIA: EVOLVING FAUNAL RESPONSE · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24.

  16. Observations of the cusp region under northward IMF

    Directory of Open Access Journals (Sweden)

    F. Pitout

    2001-09-01

    Full Text Available We present a comparative study of the cusp region using the EISCAT Svalbard Radars (ESR and the Cluster spacecraft. We focus in this paper on 2 February 2001, over the time period from 07:30 UT to 12:00 UT when the oblique ESR antenna pointing northward at a low elevation recorded latitudinal motions of the cusp region in response to the IMF. Meanwhile, the Cluster satellites were flying over the EISCAT Svalbard Radar field-of-view around local magnetic noon. The spacecraft first flew near ESR, northeast of Svalbard and then passed over the field-of-view of the antenna at about 11:30 UT. From 08:00 UT to 09:00 UT, the IMF remains primarily southward yet several variations in the Z-component are seen to move the cusp. Around 09:00 UT, an abrupt northward turning of the IMF moves the cusp region to higher latitudes. As a result, the Cluster satellites ended up in the northernmost boundary of the high-altitude cusp region where the CIS instrument recorded highly structured plasma due to ion injections in the lobe of the magnetosphere. After 09:00 UT, the IMF remains northward for more than two hours. Over this period, the ESR records sunward plasma flow in the cusp region due to lobe reconnection, while Cluster spacecraft remain in the high-altitude cusp.Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; plasma convection Ionosphere (polar ionosphere

  17. Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle

    Science.gov (United States)

    Sckopke, N.; Paschmann, G.; Rosenbauer, H.; Fairfield, D. H.

    1976-01-01

    The response of the plasma mantle to the orientation of the interplanetary magnetic field (IMF) has been studied by correlating Heos 2 plasma and Imp 6 magnetic field data. The mantle is nearly always present when the IMF has a southward component and often also when the field has a weak northward component. In addition, the mantle appears increasingly thicker with greater southward components. On the other hand, the mantle is thin or missing (from the region where it is normally found) when the average IMF has a strong northward component. This result supports the idea that polar cap convection plays a dominant role in the formation of the plasma mantle: mantle plasma originates in the magnetosheath, enters the magnetosphere through the day side polar cusps, and is transported across the cusp to the night side by means of a convection electric field whose magnitude is controlled by the orientation of the IMF.

  18. Some low-altitude cusp dependencies on the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Newell, P.T.; Meng, C.; Sibeck, D.G.; Lepping, R.

    1989-01-01

    Although it has become well established that the low-altitude polar cusp moves equatorward during intervals of southward interplanetary magnetic field (IMF B z y negative (positive) in the northern (southern) hemisphere and postnoon for B y positive (negative) in the northern (southern) hemisphere. The B y induced shift is much more pronounced for southward than for northward B z , a result that appears to be consistent with elementary considerations from, for example, the antiparallel merging model. No interhemispherical latitudinal differences in cusp positions were found that could be attributed to the IMF B x component. As expected, the cusp latitudinal position correlated reasonably well (0.70) with B z when the IMF had a southward component; the previously much less investigated correlation for B z northward proved to be only 0.18, suggestive of a half-wave rectifier effect. The ratio of cusp ion number flux precipitation for B z southward to that for B z northward was 1.75±0.12. The statistical local time (full) width of the cusp proper was found to be 2.1 hours for B z northward and 2.8 hours for B z southward. copyright American Geophysical Union 1989

  19. Dynamics of interplanetary dust grains

    International Nuclear Information System (INIS)

    Lamy, P.L.

    1975-01-01

    The interaction of spherical grains of various materials-three silicates (quartz, obsidian and andesite), water-ice and iron - whose radii lie in the micronic and submicronic range with the interplanetary medium is solved. This includes: the interaction with the solar radiation field which is solved using Mie scattering theory and taking into account the precise dependence of the optical properties of the five materials upon wavelength; the interaction with the solar wind: corpuscular tangential drag is found to be always important and may even be larger than the Poynting-Robertson drag; the interaction with the interplanetary magnetic field is investigated in terms of a diffusion or random walk through a series of electromagnetic scatterings, leading to a Chapman-Komolgorov equation (i.e., a generalized Liouville equation). Numerical results are presented for these interactions spanning the entire solar system with circularity of elliptical orbits, direct or retrograde, with grains of various materials and sizes and giving -probably for the first time - a clear global picture of the interaction of dust grains with the interplanetary medium. The dynamics of the grains is then investigated using the theory of general perturbations and the numerical integration of trajectories of circum-solar grains

  20. Radio images of the interplanetary turbulent plasma

    International Nuclear Information System (INIS)

    Vlasov, V.I.

    1979-01-01

    The results of the interplanetary scintillation daily observations of approximately 140 radio sources are given. The observations were carried out at the radiotelescope VLPA FIAN during 24 days in October-November 1975 and 6 days in April 1976. The maps (radio images) of interplanetary turbulent plasma are presented. The analysis of the maps reveals the presence of large-scale irregularities in the interplanetary plasma. The variability in large-scale structure of the interplanetary plasma is due mainly to transport of matter from the Sun. A comparison of the scintillation with the geomagnetic activity index detected the presence of a straight connection between them

  1. Behaviour of the interplanetary and magnetospheric electric fields during very intense storms

    International Nuclear Information System (INIS)

    Wu, Lei; Gendrin, R.; Higel, B.

    1982-01-01

    A study is made of the role which a positive (northward) component of the interplanetary magnetic field (IMF) Bsub(z) may play in triggering large magnetic storms. The study is made over a 15 year period (1964-1978) by selecting storms with Ksub(p) >= 7 0 and which are preceded by a Sudden Commencement (Ssc). The correlation between the geomagnetic index Ksub(m) and the three-hourly averaged Bsub(z) is established both on a statistical basis and on a case-by-case study. Storms associated with Bsub(z) > 0 are found to be less intense than those associated with Bsub(z) < 0, but major storms can be also triggered by solar wind events associated with a northward IMF. The relation-ship between interplanetary electric field Esub(γ) and Ksub(m) is also given. By using this relation together with the one between Esub(M) and Ksub(m) which has been established in previous studies (where Esub(M) is the magnetospheric convection electric field), it is possible to study the transfer efficiency of the magnetosphere. It is found that the transfer coefficient ΔEsub(M)/ΔEsub(γ) is much smaller for intense storms than for moderate ones, the latter having been studied in a previous paper (Wu Lei et al., 1981)

  2. Equatorial storm sudden commencements and interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1980-01-01

    A comparison is made of the signatures of interplanetary (IP) shocks in the B and theta plots of interplanetary magnetic field (IMF) data of satellites Explorer 33, 34 and 35 and in the H magnetograms at ground observatories within the equatorial electrojet belt, Huancayo, Addis Ababa and Trivandrum associated with major storm sudden commencements during 1967-70. The IP shocks showing sudden increase of the scalar value of IMF, i.e. B without any change of the latitude theta or with the southward turning of theta, were followed by a purely positive sudden increase of H, at any of the magnetic observatories, either on the dayside or the nightside of the earth. The IP shocks identified by a sudden increase of B and with the northward turning of the latitude theta (positive ΔBsub(z)) were associated with purely positive sudden commencement (SC) at the observatories in the nightside, but at the equatorial observatories in the dayside of the earth the signature of the shock was a SC in H with a preliminary negative impulse followed by the main positive excursion (SC-+). It is suggested that the SCs in H at low latitudes are composed of two effects, viz. (i) one due to hydromagnetic pressure on the magnetosphere by the solar plasma and (ii) the other due to the induced electric field associated with the solar wind velocity, V and the Z-component of the IP magnetic field (E = - V x Bsub(z)). The effect of magnetosphere electric field is faster than the effect due to the compression of the magnetosphere by the impinging solar plasma. The negative impulse of SC-+ at low latitude is seen at stations close to the dip equator and only during daytime due to the existence of high ionospheric conductivities in the equatorial electrojet region. (author)

  3. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of ...

  4. Transceiver optics for interplanetary communications

    Science.gov (United States)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  5. Ionospheric flow during extended intervals of northward but By -dominated IMF

    Directory of Open Access Journals (Sweden)

    J. B. Sigwarth

    Full Text Available We present SuperDARN radar observations of the nightside high-latitude ionospheric flow during two 6-hour intervals of quasi-steady northward interplanetary magnetic field (IMF. During both intervals (01:30–07:30 UT on 2 December and 21:00–03:00 UT on 14/15 December 1999, the solar wind and IMF remained relatively steady with Bz positive and By negative, such that the IMF clock angle was ~ - 50° to - 60°. Throughout both intervals the radar data clearly indicate the presence of a highly distorted By-dominated twin cell flow pattern, indicative of an open magnetosphere, which is confirmed by DMSP and auroral data. Estimates of the changes in open flux present during each interval indicate approximately balanced dayside and nightside reconnection at rates of ~ 30–35 kV over the full 6 h. However, strong bursts of flow with speeds of over ~ 1000 ms-1 are observed near magnetic midnight on time scales of ~ 1 h, which are associated with increases in the transpolar voltage. These are indicative of the net closure of open flux by recon-nection in the tail. During one large flow burst, the night-side reconnection rate is estimated to have been ~ 1.5 times the dayside rate, i.e. ~ 45–60 kV compared with ~ 30–40 kV. Magnetic bays, which would indicate the formation of a sub-storm current wedge, are not observed in association with these bursts. In addition, no low-latitude Pi2s or geostationary particle injections were observed, although some local, small amplitude Pi2-band (5–50 mHz activity does accompany the bursts. Coincident measurements of the flow and of the low amplitude magnetic perturbations reveal nightside ionospheric conductances of no more than a few mho, indicative of little associated precipitation. Therefore, we suggest that the flow bursts are the ionospheric manifestation of bursty reconnection events occurring in the more distant geomagnetic tail. The main implication of these findings is that, under the circumstances

  6. Correlation Between Monthly Cumulative Auroral Electrojet Indices, DST Index and Interplanetary Electric Field During Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2005-12-01

    Full Text Available Magnetospheric substorms occur frequently during magnetic storms, suggesting that the two phenomena are closely associated. We can investigate the relation between magnetospheric substorms and magnetic storms by examining the correlation between AE and Dst indices. For this purpose, we calculated the monthly cumulative AU, |AL| and |Dst| indices. The correlation coefficient between the monthly cumulative |AL| and |Dst| index is found to be 0.60, while that between monthly cumulative AU and |Dst| index is 0.28. This result indicates that substorms seem to contribute to the development of magnetic storms. On the other hand, it has been reported that the interplanetary electric field associated with southward IMF intensifies the magnetospheric convection, which injects charged particles into the inner magnetosphere, thus developing the ring current. To evaluate the contribution of the interplanetary electric field to the development of the storm time ring current belt, we compared the monthly cumulative interplanetary electric field and the monthly cumulative Dst index. The correlation coefficient between the two cumulative indices is 0.83 for southward IMF and 0.39 for northward IMF. It indicates that magnetospheric convection induced by southward IMF is also important in developing magnetic storms. Therefore, both magnetospheric substorm and enhanced magnetospheric convection seem to contribute to the buildup of magnetic storm.

  7. Tracking a major interplanetary disturbance

    International Nuclear Information System (INIS)

    Tappin, S.J.; Hewish, A.; Gapper, G.R.

    1983-01-01

    The severe geomagnetic storm which occurred during 27-29 August 1978 was remarkable because it arrived unexpectedly and was not related to a solar flare or long-lived coronal hole. Observations on 900 celestial radio sources show that the storm was associated with a large-scale region causing enhanced interplanetary scintillation which enveloped the Earth at the same time. The disturbance was first detected on 26 August, when the outer boundary had reached a distance of about 0.8 a.u. from the Sun and it was tracked until 30 August. The enhancement was followed by a fast solar wind stream and its shape suggests that it was a compression zone caused by the birth of the stream. (author)

  8. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  9. "Driverless" Shocks in the Interplanetary Medium

    Science.gov (United States)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  10. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  11. International Launch Vehicle Selection for Interplanetary Travel

    Science.gov (United States)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  12. Multifrequency techniques for studying interplanetary scintillations

    International Nuclear Information System (INIS)

    Woo, R.

    1975-01-01

    Rytov's approximation or the method of smooth perturbations is utilized to derive the temporal frequency spectra of the amplitude and phase fluctuations of multifrequency plane and spherical waves propagating in the interplanetary medium and solar corona. It is shown that multifrequency observations of interplanetary scintillations using either compact radio stars or spacecraft radio signals are desirable because the correlation of the multifrequency waves yields additional independent measurements of the solar wind and turbulence. Measurements of phase fluctuations are also desirable because, unlike amplitude fluctuations, they provide information on the full range of scale sizes for the electron density fluctuations. It is shown that a coherent dual-frequency radio system is particularly useful in making such measurements. In addition to providing a means for interpreting observations of multifrequency interplanetary scintillations, the analysis is also essential for estimating the effects of solar corona turbulence on the communications and navigation of a spacecraft whose line-of-sight path passes close to the Sun

  13. Study of Travelling Interplanetary Phenomena Report

    Science.gov (United States)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  14. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  15. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.

    1980-01-01

    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  16. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    Science.gov (United States)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  17. Geomagnetic response to solar and interplanetary disturbances

    Czech Academy of Sciences Publication Activity Database

    Saiz, E.; Cerrato, Y.; Cid, C.; Dobrica, V.; Hejda, Pavel; Nenovski, P.; Stauning, P.; Bochníček, Josef; Danov, D.; Demetrescu, C.; Gonzalez, W. D.; Maris, G.; Teodosiev, D.; Valach, F.

    2013-01-01

    Roč. 3, July (2013), A26/1-A26/20 ISSN 2115-7251 R&D Projects: GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : solar activity * interplanetary medium * indices * ionosphere (general) * ring current Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.519, year: 2013

  18. Analysis Of Interplanetary Phenomenon, Geomagnetic And ...

    African Journals Online (AJOL)

    The storm was found to be a double step storm with the first Dstmin resulting mainly from ring current injection due to increase in solar wind density while magnetospheric convection electric field played the leading role in the development of the second Dstmin . The analysis of the interplanetary and foF2 data show that the ...

  19. Relationship between Interplanetary (IP) Parameters and ...

    Indian Academy of Sciences (India)

    3SITAA-SAC, Indian Space Research Organisation, Ahmedabad, Gujarat 380 015, India. 4Indian Space Research Organisation-Head Quarters, Bangalore, Karnataka, India. Abstract. In the present study, .... Lepping, R. P., Jones, J. A., Burlaga, L. F. 1990, Magnetic field structure of Interplanetary. Magnetic Clouds at 1 A.U; ...

  20. Sector boundary distortion in the interplanetary medium

    International Nuclear Information System (INIS)

    Suess, S.T.; Feynman, J.

    1977-01-01

    We address the theoretical problem of the effect of a solar wind meridional velocity gradient on the orientation, or tipping, of a line embedded within the interplanetary plasma. We find that rotations of from 30degree to 75degree, between 1.5 solar radii and I AU, are produced when observed values for the solar wind velocity and its meridional gradient are used. This is not a small effect, nor is it difficult to calculate: it is a natural consequence of any meridional velocity gradient in the interplanetary medium. In relating this result to observed sector boundaries we note that the latitude dependence of the width of interplanetary magnetic sectors (dominant polarity or Rosenberg-Coleman effect) implies that sector boundaries at I AU are generally inclined at an angle of from 10degree to 20degree to the solar equatorial plane. Conversely, studies of photospheric magnetic fields have led to the conclusion that sector boundaries near the sun are, on the average, at large angles (approx.90degree) to the solar equatorial plane. If the dominant polarity effect were to be produced by rotation in the interplanetary medium, the sign of the solar wind meridional velocity gradient must not change at the equator, but the gradient does have to change sign for +/- boundary crossings in comparison to -/+ boundary crossings

  1. Latitudinal Distributions of Auroral Zone Electric Fields and Ground Magnetic Perturbations and Their Response to Variations in the Interplanetary Magnetic Field

    International Nuclear Information System (INIS)

    Horwitz, J.L.; Doupnik, J.R.; Banks, P.M.; Kamide, Y.; Akasofu, S.

    1978-01-01

    Chatanika observations of latitudinal distributions of convection electric fields (E 1 ) are compared with isointensity ΔH contours in latitude and time from the Alaskan magnetometer chain and with the north-south component of the interplanetary magnetic field (IMF B/sub z/m) from Imp-J. As expected, northward electric fields were generally observed within latitude and time regions where ΔH was positive, while southward electric fields were observed within negative ΔH regions. However, correlation between the magnitudes of the electric fields and of the ΔH perturbations was not strong, owing to variability in ionospheric conductivities produced by precipitation and solar illumination. In the midnight sector the northward-to-southward transition in the electric field and positive-to-negative ΔH transition were roughly collocated (to within 1 hour in local time) as signatures of the Harang discontinuity. The most important findings are that (1) southward (northward) IMF B/sub z/m transitions caused rapid equatorward (poleward) shifts of the electric field and ΔH patterns and (2) southward IMF B/sub z/ transitions, magnetospheric substorms, and local time transitions of the Harang discontinuity can all lead to northward-to-southward transitions of the electric field in the midnight sector. Due to the interlaced phasing of each of these three causal mechanisms a highly complex temporal pattern of electric fields results

  2. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  3. A new propulsion concept for interplanetary missions

    Science.gov (United States)

    Dujarric, C.

    2001-11-01

    When tons of payload must be brought back from the planets to Earth, the current launch-system technology hits size limitations. The huge Saturn-V launcher that enabled the Apollo missions to go to the Moon would be dwarfed by a single launcher capable of sending men to a destination like Mars and bringing them back. Keeping interplanetary missions within a reasonable size and cost therefore requires technological progress in terms of both vehicle weight reduction and propulsion efficiency.

  4. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  5. The role of shallow convection in promoting the northward propagation of boreal summer intraseasonal oscillation

    Science.gov (United States)

    Liu, Fei; Zhao, Jiuwei; Fu, Xiouhua; Huang, Gang

    2018-02-01

    By conducting idealized experiments in a general circulation model (GCM) and in a toy theoretical model, we test the hypothesis that shallow convection (SC) is responsible for explaining why the boreal summer intraseasonal oscillation (BSISO) prefers propagating northward. Two simulations are performed using ECHAM4, with the control run using a standard detrainment rate of SC and the sensitivity run turning off the detrainment rate of SC. These two simulations display dramatically different BSISO characteristics. The control run simulates the realistic northward propagation (NP) of the BSISO, while the sensitivity run with little SC only simulates stationary signals. In the sensitivity run, the meridional asymmetries of vorticity and humidity fields are simulated under the monsoon vertical wind shear (VWS); thus, the frictional convergence can be excited to the north of the BSISO. However, the lack of SC makes the lower and middle troposphere very dry, which prohibits further development of deeper convection. A theoretical BSISO model is also constructed, and the result shows that SC is a key to convey the asymmetric vorticity effect to induce the BSISO to move northward. Thus, both the GCM and theoretical model results demonstrate the importance of SC in promoting the NP of the BSISO.

  6. Northward shift of the agricultural climate zone under 21st-century global climate change.

    Science.gov (United States)

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  7. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  8. The near-Earth and interplanetary plasma

    International Nuclear Information System (INIS)

    Al'pert, Y.L.

    1983-01-01

    This monograph is an extensive revision and expansion of the original paper which first appeared in 1976 in the encyclopedia, Handbuch der Physik. It presents a detailed and comprehensive treatment of wave processes and of the motion of bodies through plasma around moving bodies such as artificial satellites, and with natural plasma waves and oscillations. Contents, abridged: General properties of the near-Earth and interplanetary plasma. Refractive indexes of cold magnetoplasma. Growth rates for the different oscillation branches. Nonlinear effects in a plasma. Group velocity, trajectories, and trapping of electromagnetic waves in a magnetoplasma. Indexes

  9. Nonthermal Radiation Processes in Interplanetary Plasmas

    Science.gov (United States)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  10. Tracking heliospheric disturbances by interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    M. Tokumaru

    2006-01-01

    Full Text Available Coronal mass ejections are known as a solar cause of significant geospace disturbances, and a fuller elucidation of their physical properties and propagation dynamics is needed for space weather predictions. The scintillation of cosmic radio sources caused by turbulence in the solar wind (interplanetary scintillation; IPS serves as an effective ground-based method for monitoring disturbances in the heliosphere. We studied global properties of transient solar wind streams driven by CMEs using 327-MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL of Nagoya University. In this study, we reconstructed three-dimensional features of the interplanetary (IP counterpart of the CME from the IPS data by applying the model fitting technique. As a result, loop-shaped density enhancements were deduced for some CME events, whereas shell-shaped high-density regions were observed for the other events. In addition, CME speeds were found to evolve significantly during the propagation between the corona and 1 AU.

  11. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  12. Evolution and interaction of large interplanetary streams

    International Nuclear Information System (INIS)

    Whang, Y.C.; Burlaga, L.F.

    1985-02-01

    A computer simulation for the evolution and interaction of large interplanetary streams based on multi-spacecraft observations and an unsteady, one-dimensional MHD model is presented. Two events, each observed by two or more spacecraft separated by a distance of the order of 10 AU, were studied. The first simulation is based on the plasma and magnetic field observations made by two radially-aligned spacecraft. The second simulation is based on an event observed first by Helios-1 in May 1980 near 0.6 AU and later by Voyager-1 in June 1980 at 8.1 AU. These examples show that the dynamical evolution of large-scale solar wind structures is dominated by the shock process, including the formation, collision, and merging of shocks. The interaction of shocks with stream structures also causes a drastic decrease in the amplitude of the solar wind speed variation with increasing heliocentric distance, and as a result of interactions there is a large variation of shock-strengths and shock-speeds. The simulation results shed light on the interpretation for the interaction and evolution of large interplanetary streams. Observations were made along a few limited trajectories, but simulation results can supplement these by providing the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. The use of a quantitative nonlinear simulation model including shock merging process is crucial in the interpretation of data obtained in the outer heliosphere

  13. Remarks on transport theories of interplanetary fluctuations

    International Nuclear Information System (INIS)

    Ye Zhou; Matthaeus, W.H.

    1990-01-01

    The structure of approximate transport theories for the radial behavior of interplanetary fluctuations is reconsidered. The emphasis is on theories derived under the assumption of scale separation; i.e., the correlation length of the fluctuations is much less than the scale of large inhomogeneities. In these cases the zero-wavelength limit provides a first approximation to the spectral evolution equations for the radial dependence of interplanetary fluctuation spectra. The goal here is to investigate the structure of a recently presented (Zhou and Matthaeus, 1989) transport theory, in which coupling of inward- and outward-type fluctuations appears in the leading order, an effect the authors call mixing. In linear theory, mixing-type couplings of inward-type and outward-type waves are formally a nonresonant effect. However, leading order mixing terms do not vanish at zero wavelength for fluctuations that vary nearly perpendicular to the local magnetic field, or when the mean magnetic field is weak. Leading order mixing terms also survive when the dispersion relation fails and there is a nonunique relationship between frequency and wave number. The former case corresponds to nearly two-dimensional structures; these are included, for example, in isotropic models of turbulence. The latter instance occurs when wave-wave couplings are sufficiently strong. Thus there are a variety of situations in which leading order mixing effects are expected to be present

  14. Dynamics of magnetic clouds in interplanetary space

    International Nuclear Information System (INIS)

    Yeh, T.

    1987-01-01

    Magnetic clouds observed in interplanetary space may be regarded as extraneous bodies immersed in the magnetized medium of the solar wind. The interface between a magnetic cloud and its surrounding medium separates the internal and external magnetic fields. Polarization currents are induced in the peripheral layer to make the ambient magnetic field tangential. The motion of a magnetic cloud through the interplanetary medium may be partitioned into a translational motion of the magnetic cloud as a whole and an expansive motion of the volume relative to the axis of the magnetic cloud. The translational motion is determined by two kinds of forces, i.e., the gravitational force exerted by the Sun, and the hydromagnetic buoyancy force exerted by the surrounding medium. On the other hand, the expansive motion is determined by the pressure gradient sustaining the gross difference between the internal and external pressures and by the self-induced magnetic force that results from the interaction among the internal currents. The force resulting from the internal and external currents is a part of the hydromagnetic buoyancy force, manifested by a thermal stress caused by the inhomogeneity of the ambient magnetic pressure

  15. Dynamics of magnetic clouds in interplanetary space

    Science.gov (United States)

    Yeh, Tyan

    1987-09-01

    Magnetic clouds observed in interplanetary space may be regarded as extraneous bodies immersed in the magnetized medium of the solar wind. The interface between a magnetic cloud and its surrounding medium separates the internal and external magnetic fields. Polarization currents are induced in the peripheral layer to make the ambient magnetic field tangential. The motion of a magnetic cloud through the interplanetary medium may be partitioned into a translational motion of the magnetic cloud as a whole and an expansive motion of the volume relative to the axis of the magnetic cloud. The translational motion is determined by two kinds of forces, i.e., the gravitational force exerted by the Sun, and the hydromagnetic buoyancy force exerted by the surrounding medium. On the other hand, the expansive motion is determined by the pressure gradient sustaining the gross difference between the internal and external pressures and by the self-induced magnetic force that results from the interaction among the internal currents. The force resulting from the internal and external currents is a part of the hydromagnetic buoyancy force, manifested by a thermal stress caused by the inhomogeneity of the ambient magnetic pressure.

  16. Exhaustion from prolonged gambling

    Directory of Open Access Journals (Sweden)

    Fatimah Lateef

    2013-01-01

    Full Text Available Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities. Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion. Recently, three patients were seen at the Department of Emergency Medicine, presenting with exhaustion from prolonged involvement in gambling activities. The cases serve to highlight some of the physical consequences of prolonged gambling.

  17. [Pathophysiology of prolonged hypokinesia].

    Science.gov (United States)

    Kovalenko, E A

    1976-01-01

    Hypokinesia is an important problem in modern medicine. In the pathogenetic effect of prolonged hypokinesia the main etiological factor is diminished motor activity; of major importance are disorders in the energy and plastic metabolism which affect the muscle system; the contributing factors are cardiovascular deconditioning and orthostatic intolerance. This is attributed to a decreased oxygen supply and eliminated hydrostatic influences during a prolonged recumbency. Blood redistribution in the vascular bed is related to the Gauer-Henry reflex and subsequent changes in the fluid-electrolyte balance. Decreased load on the bone system induces changes in the protein-phosphate-calcium metabolism, diminished bone density and increased calcium content in the blood and urine. Changes in the calcium metabolism are systemic. The activity of the higher nervous system and reflex functions is lowered. Changes in the function of the autonomic nervous system which include a noticeable decline of its adaptive-trophic role as a result of the decrease of afferent and efferent impulsation are of great importance. Changes in the hormonal function involve a peculiar stress-reaction which develops at an early stage of hypokinesia as a response to an unusual situation. Prolonged hypokinesia may result in a disturbed function of the pituitary-adrenal system. It is assumed that prolonged hypokinesia may induce a specific disease of hypokinesia during which man cannot lead a normal mode of life and work.

  18. Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Woch, J.; Lundin, R.

    1992-01-01

    Magnetosheath particle precipitation in the polar cusp region is studied based on Viking hot plasma data obtained on meridional cusp crossings. Two distinctively different regions are commonly encountered on a typical pass. One region is characterized by high-density particle precipitation, with an ion population characterized by a convecting Maxwellian distribution. Typical magnetosheath parameters are inferred for the spectrum of the source population. The spectral shape of the ion population encountered in the second region suggests that here the magnetosheath ions have been energized by about 1 keV, corresponding to an ion velocity gain of about twice the magnetosheath Alfven velocity. The location of the region containing the accelerated plasma is dependent on the IMF B z component. For southward IMF the acceleration region is bounded by the ring current population on the equatorward side and by the unaccelerated magnetosheath plasma precipitation on the poleward side. For northward IMF the region is located at the poleward edge of the region with unaccelerated precipitation. The accelerated ion population is obviously transported duskward (dawnward) for a dawnward (duskward) directed IMF. These observations are interpreted as evidence for plasma acceleration due to magnetopause current sheet disruptions/merging of magnetospheric and interplanetary magnetic flux tubes

  19. Laser-fusion rocket for interplanetary propulsion

    International Nuclear Information System (INIS)

    Hyde, R.A.

    1983-01-01

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm -1 , which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs

  20. Interplanetary space transport using inertial fusion propulsion

    International Nuclear Information System (INIS)

    Orth, C.D.

    1998-01-01

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts

  1. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  2. Suprathermal protons in the interplanetary solar wind

    Science.gov (United States)

    Goodrich, C. C.; Lazarus, A. J.

    1976-01-01

    Using the Mariner 5 solar wind plasma and magnetic field data, we present observations of field-aligned suprathermal proton velocity distributions having pronounced high-energy shoulders. These observations, similar to the interpenetrating stream observations of Feldman et al. (1974), are clear evidence that such proton distributions are interplanetary rather than bow shock associated phenomena. Large Alfven speed is found to be a requirement for the occurrence of suprathermal proton distribution; further, we find the proportion of particles in the shoulder to be limited by the magnitude of the Alfven speed. It is suggested that this last result could indicate that the proton thermal anisotropy is limited at times by wave-particle interactions

  3. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  4. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  5. Particle acceleration in the interplanetary space

    International Nuclear Information System (INIS)

    Tverskoj, B.A.

    1983-01-01

    A review on the problem of particle acceleration in the interplanetary space is given. The main lationship attention is paid to the problem of the re/ between the impact- and turbulent acceleration when an undisturbed magnetic field forms not too small angle THETA > 10 deg with the shock wave front. The following conclusions are drawn. Particle acceleration at the shock wave front is manifested in the explicit form, if the shock wave propagates along a homogeneous (in the 11 cm range) solar wind. The criterion of such an acceleration is the exponential distribution function F approximately vsup(-ν) (v is the particle velocity and ν is the accelerated particle spectrum index) in the low energy range and the conservation of this function at considerable distances behind the front. The presence of an additional turbulent acceleration behind the front is manifested in decreasing ν down to approximately 3.5 in the low energy range and in the spectrum evolution behind the front

  6. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales

    Science.gov (United States)

    Goldsmith, Yonaton; Broecker, Wallace S.; Xu, Hai; Polissar, Pratigya J.; deMenocal, Peter B.; Porat, Naomi; Lan, Jianghu; Cheng, Peng; Zhou, Weijian; An, Zhisheng

    2017-02-01

    The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ˜400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall “intensity based” interpretations of these deposits as opposed to an alternative “water vapor sourcing” interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (˜35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

  7. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales.

    Science.gov (United States)

    Goldsmith, Yonaton; Broecker, Wallace S; Xu, Hai; Polissar, Pratigya J; deMenocal, Peter B; Porat, Naomi; Lan, Jianghu; Cheng, Peng; Zhou, Weijian; An, Zhisheng

    2017-02-21

    The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ∼400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall "intensity based" interpretations of these deposits as opposed to an alternative "water vapor sourcing" interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (∼35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

  8. Northward expansion of paddy rice in northeastern Asia during 2000-2014

    Science.gov (United States)

    Dong, J.; Xiao, X.; Zhang, G.; Menarguez, M. A.; Choi, C. Y.; Qin, Y.; Luo, P.; Zhang, Y.; Moore, B.

    2016-04-01

    Paddy rice in monsoon Asia plays an important role in global food security and climate change. Here we documented annual dynamics of paddy rice areas in the northern frontier of Asia, including northeastern (NE) China, North Korea, South Korea, and Japan, from 2000 to 2014 through analysis of satellite images. The paddy rice area has increased by 120% (2.5 to 5.5 million ha) in NE China, in comparison to a decrease in South Korea and Japan, and the paddy rice centroid shifted northward from 41.16°N to 43.70°N (~310 km) in this period. Market, technology, policy, and climate together drove the rice expansion in NE China. The increased use of greenhouse nurseries, improved rice cultivars, agricultural subsidy policy, and a rising rice price generally promoted northward paddy rice expansion. The potential effects of large rice expansion on climate change and ecosystem services should be paid more attention to in the future.

  9. Optimizing Materials for Energy Harvesting on Interplanetary Return Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned interplanetary missions will only be desirable once the ability to return is established. Even using improved fuel technologies we have not resourced the fuel...

  10. Fast, Autonomous Chemical Interplanetary Mission Design via Hybrid Optimal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Interplanetary mission design is historically a complex and expensive process requiring many human-hours of work. This proposal outlines a novel technique for...

  11. Radar Characterization of the Interplanetary Meteoroid Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new modeling effort that will make substantial refinements and improvements to our existing models of the interplanetary meteoroid environment near...

  12. Machine learning and evolutionary techniques in interplanetary trajectory design

    OpenAIRE

    Izzo, Dario; Sprague, Christopher; Tailor, Dharmesh

    2018-01-01

    After providing a brief historical overview on the synergies between artificial intelligence research, in the areas of evolutionary computations and machine learning, and the optimal design of interplanetary trajectories, we propose and study the use of deep artificial neural networks to represent, on-board, the optimal guidance profile of an interplanetary mission. The results, limited to the chosen test case of an Earth-Mars orbital transfer, extend the findings made previously for landing ...

  13. Management of prolonged pregnancy

    International Nuclear Information System (INIS)

    Iqbal, S.

    2004-01-01

    Objective: To compare two strategies for management of prolonged pregnancy (= or >294 days) i.e. induction (intervention) versus expectant management (non-intervention) and evaluate the associated feto-maternal risks. Subjects and Methods: One hundred cases of uncomplicated prolonged gestation were selected. The gestational age was confirmed by ultrasound in first trimester. One group (50 patients) was managed by intervention i.e. induction of labour (group A) and other group (50 patients) by non-intervention i.e. expectant management (group B). In group A intervention was done at 42 weeks. In expectant group, the methods of monitoring were fetal kick charting recorded daily by the patient, and ultrasound for amniotic fluid index. The biophysical profile score and NST (non stress test) were performed once a week till 42 weeks and then twice weekly. Results: The frequency of prolonged pregnancy was found to be 10.9%. There was no significant difference in the number of spontaneous vaginal deliveries between the two groups. The rate of LSCS (lower segment caesarean section) was higher in intervention group ( 30% versus 18% ). The neonatal depression at birth was more in group B ( 10% versus 4%) and at 5 minutes almost same between two groups (4% versus 2%). There were 11 cases of meconium aspiration syndrome, leading to one neonatal death. Among nine perinatal deaths two were neonatal deaths. Seven cases of intrauterine deaths in which antepartum deaths occurred because of non compliance of patients. No cause could be detected for the other three fetuses. Conclusion: There was increased LSCS rate in group A. However in expectant group B perinatal mortality was about twice more as compared to intervention group. Active early intervention at 42 weeks is warranted to reduce perinatal morbidity and mortality. (author)

  14. Northward shifts of the distributions of Spanish reptiles in association with climate change.

    Science.gov (United States)

    Moreno-Rueda, Gregorio; Pleguezuelos, Juan M; Pizarro, Manuel; Montori, Albert

    2012-04-01

    It is predicted that climate change will drive extinctions of some reptiles and that the number of these extinctions will depend on whether reptiles are able to change their distribution. Whether the latitudinal distribution of reptiles may change in response to increases in temperature is unknown. We used data on reptile distributions collected during the 20th century to analyze whether changes in the distributions of reptiles in Spain are associated with increases in temperature. We controlled for biases in sampling effort and found a mean, statistically significant, northward shift of the northern extent of reptile distributions of about 15.2 km from 1940-1975 to 1991-2005. The southern extent of the distributions did not change significantly. Thus, our results suggest that the latitudinal distributions of reptiles may be changing in response to climate change. ©2011 Society for Conservation Biology.

  15. Plasma jets and FTE Dayside Generation for Northward IMF on 8 June 2007: THEMIS Observations

    Science.gov (United States)

    Eriksson, S.; Cully, C. M.; Ergun, R. E.; Gosling, J. T.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Roux, A.; Auster, H.; Le Contel, O.

    2007-12-01

    Five-spacecraft THEMIS (TH) observations are presented for a 15.5 MLT equatorial magnetopause crossing on 8 June 2007 when the upstream IMF was predominantly northward with a negative IMF By component at Wind. During the 0650-0855 UT period on this day TH-B was the most tailward probe while TH-A was the most sunward probe. TH-E was closest to TH-A with a maximum separation of only 0.71 RE. The maximum TH-A to TH-B GSM separation was 1.85 RE. TH-B showed a clean magnetopause crossing into the magnetosphere as the magnetopause expanded over the probes while TH-A spent this 2-hour period within a boundary layer inside the magnetopause with frequent transitions between a magnetosheath-like and a magnetosphere-like plasma as previously seen by Cluster at high-latitudes for southward IMF [Wild et al., 2003]. TH-E observed similar activity for a shorter period of time. Many of the sheath-like transitions showed evidence of plasma jets at TH-A with enhanced speed in the tailward and/or duskward direction suggesting a subsolar component merging region. Some jets were related to frequent bipolar FTE signatures in the normal BN component with enhanced total pressure observed at their centers. The more common ±BN sequence suggests that TH-A observed tailward propagating FTEs on the sheath side of the magnetopause. We compare TH-E ExB velocities with the enhanced jet velocities observed by TH-A and discuss whether the jets observed within this boundary layer were caused by subsolar magnetopause reconnection. We also compare these low-latitude northward IMF observations with prior Cluster FTE observations at high-latitude for southward IMF.

  16. BACODINE/3rd Interplanetary Network burst localization

    International Nuclear Information System (INIS)

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.

    1996-01-01

    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs

  17. Radioisotopic heater units warm an interplanetary spacecraft

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA's last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini's 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn's atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft

  18. Optimizing interplanetary trajectories with deep space maneuvers

    Science.gov (United States)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  19. Cosmic ray anisotropy along with interplanetary transients

    Science.gov (United States)

    Mishra, Rajesh Kumar

    The present work deals with the study of first three harmonics of low amplitude anisotropic wave trains of cosmic ray intensity over the period 1991-1994 for Deep River neutron monitoring station. It is observed that the diurnal time of maximum remains in the corotational direction; whereas, the time of maximum for both diurnal and semi-diurnal anisotropy has significantly shifted towards later hours as compared to the quiet day annual average for majority of the LAE events. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams; such as, polar coronal holes. The direction of the tri-diurnal anisotropy shows a good negative correlation with Bz component of interplanetary magnetic field. The occurrence of low amplitude events is dominant for positive polarity of Bz. The Disturbance Storm Time index i.e. Dst remains consistently negative only throughout the entire low amplitude wave train event.

  20. Water and organics in interplanetary dust particles

    Science.gov (United States)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  1. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  2. Interdecadal variations of East Asian summer monsoon northward propagation and influences on summer precipitation over East China

    Science.gov (United States)

    Jiang, Z.; Yang, S.; He, J.; Li, J.; Liang, J.

    2008-08-01

    The interdecadal variation of northward propagation of the East Asian Summer Monsoon (EASM) and summer precipitation in East China have been investigated using daily surface rainfall from a dense rain gauge network in China for 1957 2001, National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, European Center for Medium-Range Weather Forecast (ECMWF) reanalysis, and Global Mean Sea Level Pressure Dataset (GMSLP2) from Climatic Research Unit (CRU). Results in general show a consistent agreement on the interdecadal variability of EASM northward propagations. However, it appears that the interdecadal variation is stronger in NCEP than in ECMWF and CRU datasets. A newly defined normalized precipitation index (NPI), a 5-day running mean rainfall normalized with its standard deviation, clearly depicts the characteristics of summer rainbelt activities in East China in terms of jumps and durations during its northward propagations. The EASM northward propagation shows a prominent interdecadal variation. EASM before late 1970s had a rapid northward advance and a northern edge beyond its normal position. As a result, more summer rainfall occurred for the North China rainy season, Huaihe-River Mei-Yu, and South China Mei-Yu. In contrast, EASM after late 1970s had a slow northward movement and a northern edge located south of its normal position. Less summer precipitation occurred in East China except in Yangtze River basin. The EASM northernmost position (ENP), northernmost intensity (ENI), and EASM have a complex and good relationship at interdecadal timescales. They have significant influences on interdecadal variation of the large-scale precipitation anomalies in East China.

  3. Interplanetary sector boundaries 1971--1973

    International Nuclear Information System (INIS)

    Klein, L.; Burlaga, L.F.

    1980-01-01

    Eighteen interplanetary sector boundary crossings observed at 1 AU during the period January 1971 to January 1974 by the magnetometer on the Imp 6 spacecraft was discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high-resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin (averaging approx. =10 4 km) and the other being thick (averaging approx. =10 6 km). In many cases the field vector rotated in a plane from polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotationa and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to ( 0 ) the ecliptic plane. The high inclination of the sector boundary surfaces during 1971--1973 verifies a published prediction and may be related to the presence of large equatorial coronal holes at this time. An analysis of tangential discontinuities contained in 4-day periods about our events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries. Magnetic holes were found in thick sector boundaries, at a rate about 3 times that elsewhere. The holes were especially prevalent near stream interfaces, suggesting that they might be related to the convergence and/or slip of adjacent solar wind streams

  4. Interplanetary Overlay Network Bundle Protocol Implementation

    Science.gov (United States)

    Burleigh, Scott C.

    2011-01-01

    The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.

  5. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the Sivash, Ukraine

    NARCIS (Netherlands)

    Verkuil, Yvonne I.; Koolhaas, Anita; Van Der Winden, Jan

    1993-01-01

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding

  6. A global MHD simulation of an event with a quasi-steady northward IMF component

    Directory of Open Access Journals (Sweden)

    V. G. Merkin

    2007-06-01

    Full Text Available We show results of the Lyon-Fedder-Mobarry (LFM global MHD simulations of an event previously examined using Iridium spacecraft observations as well as DMSP and IMAGE FUV data. The event is chosen for the steady northward IMF sustained over a three-hour period during 16 July 2000. The Iridium observations showed very weak or absent Region 2 currents in the ionosphere, which makes the event favorable for global MHD modeling. Here we are interested in examining the model's performace during weak magnetospheric forcing, in particular, its ability to reproduce gross signatures of the ionospheric currents and convection pattern and energy deposition in the ionosphere both due to the Poynting flux and particle precipitation. We compare the ionospheric field-aligned current and electric potential patterns with those recovered from Iridium and DMSP observations, respectively. In addition, DMSP magnetometer data are used for comparisons of ionospheric magnetic perturbations. The electromagnetic energy flux is compared with Iridium-inferred values, while IMAGE FUV observations are utilized to verify the simulated particle energy flux.

  7. Arctic Amplification and the Northward shift of a new Greenland melting record

    Science.gov (United States)

    Tedesco, Marco; Mote, Thomas; Fettweis, Xavier; Hanna, Edward; Booth, James; Jeyaratnam, Jeyavinoth; Datta, Rajashree; Briggs, Kate

    2016-04-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Using reanalysis data and the outputs of a regional climate model, here we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean was responsible for a northward shift of surface melting records over Greenland, and for increased accumulation in the south during the summer of 2015. Concurrently, new records of mean monthly zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5700±50 m isohypse over the Arctic were also set. An unprecedented (1948 - 2015) and sustained jet stream easterly flow promoted enhanced runoff, increased surface temperatures and decreased albedo in northern Greenland, while inhibiting melting in the south. The exceptional 2015 summer Arctic atmospheric conditions are consistent with the anticipated effects of Arctic Amplification, including slower zonal winds and increased jet stream wave amplitude. Properly addressing the impact of Arctic Amplification on surface runoff of the Greenland ice sheet is crucial for rigorously quantifying its contribution to current and future sea level rise, and the relative impact of freshwater discharge on the surrounding ocean.

  8. Interplanetary laser ranging - an emerging technology for planetary science missions

    Science.gov (United States)

    Dirkx, D.; Vermeersen, L. L. A.

    2012-09-01

    Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.

  9. Heliomagnetic cycle of magneto-ionospheric and interplanetary activities

    International Nuclear Information System (INIS)

    Zaretskij, N.S.; Krymskij, P.F.; Maksimov, Ya.Ya.

    1983-01-01

    The difference in frequency distributions of geomagnetic- and ionospheric disturbance levels are revealed within generalized intervals: odd-even- and even-odd 11-year solar activity cycles. The interplanetary medium of the first half of the 20th cycle (before reversal of the general heliomagnetic field polarity) is characterized by the background vertical component of the interplanetary magnetic field (IMF) in the north direction, rather small variability of the interplanetary field and low solar wind velocity. The south field component, higher field dispersion and high-velocity corpuscular fluxes are characteristic of the second half of the cycle. The 22-year variation in the number of small and moderate values of the geomagnetic activity within the limits of the 20th cycle is satisfactorily described by the behaviour of the quantities of the corresponding values of the IMF north-south component, field variability and solar wind velocity

  10. Variations of interplanetary parameters and cosmic-ray intensities

    International Nuclear Information System (INIS)

    Geranios, A.

    1980-01-01

    Observations of cosmic ray intensity depressions by earth bound neutron monitors and measurements of interplanetary parameter's variations aboard geocentric satellites in the period January 1972-July 1974 are analysed and grouped according to their correlation among them. From this analysis of about 30 cases it came out that the majority of the depressions correlates with the average propagation speed of interplanetary shocks as well as with the amplitude of the interplanetary magnetic field after the eruption of a solar flare. About one fourth of the events correlates with corotating fast solar wind streams. As the recovery time of the shock-related depressions depends strongly on the heliographic longitude of the causitive solar flare, it seems that the cosmic ray modulation region has a corotative-like feature. (Auth.)

  11. Conceptual Design For Interplanetary Spaceship Discovery

    Science.gov (United States)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  12. Extreme interplanetary rotational discontinuities at 1 AU

    Science.gov (United States)

    Lepping, R. P.; Wu, C.-C.

    2005-11-01

    This study is concerned with the identification and description of a special subset of four Wind interplanetary rotational discontinuities (from an earlier study of 134 directional discontinuities by Lepping et al. (2003)) with some "extreme" characteristics, in the sense that every case has (1) an almost planar current sheet surface, (2) a very large discontinuity angle (ω), (3) at least moderately strong normal field components (>0.8 nT), and (4) the overall set has a very broad range of transition layer thicknesses, with one being as thick as 50 RE and another at the other extreme being 1.6 RE, most being much thicker than are usually studied. Each example has a well-determined surface normal (n) according to minimum variance analysis and corroborated via time delay checking of the discontinuity with observations at IMP 8 by employing the local surface planarity. From the variance analyses, most of these cases had unusually large ratios of intermediate-to-minimum eigenvalues (λI/λmin), being on average 32 for three cases (with a fourth being much larger), indicating compact current sheet transition zones, another (the fifth) extreme property. For many years there has been a controversy as to the relative distribution of rotational (RDs) to tangential discontinuities (TDs) in the solar wind at 1 AU (and elsewhere, such as between the Sun and Earth), even to the point where some authors have suggested that RDs with large ∣Bn∣s are probably not generated or, if generated, are unstable and therefore very rare. Some of this disagreement apparently has been due to the different selection criteria used, e.g., some allowed eigenvalue ratios (λI/λmin) to be almost an order of magnitude lower than 32 in estimating n, usually introducing unacceptable error in n and therefore also in ∣Bn∣. However, we suggest that RDs may not be so rare at 1 AU, but good quality cases (where ∣Bn∣ confidently exceeds the error in ∣Bn∣) appear to be uncommon, and further

  13. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    Science.gov (United States)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  14. Particle acceleration by coronal and interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1982-01-01

    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  15. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  16. Migration of Interplanetary Dust and Comets

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation

  17. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    International Nuclear Information System (INIS)

    Barnes, A.

    1983-01-01

    The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)

  18. Observations of interplanetary dust by the Juno magnetometer investigation

    DEFF Research Database (Denmark)

    Benn, Mathias; Jørgensen, John Leif; Denver, Troelz

    2017-01-01

    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving with an appa...... on the distribution and motion of interplanetary (>μm sized) dust....

  19. 3-D model of ICME in the interplanetary medium

    Science.gov (United States)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  20. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    Science.gov (United States)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  1. Automated interplanetary shock detection and its application to Wind observations

    Czech Academy of Sciences Publication Activity Database

    Krupařová, Oksana; Maksimovic, M.; Šafránková, J.; Němeček, Z.; Santolík, Ondřej; Krupař, Vratislav

    2013-01-01

    Roč. 118, č. 8 (2013), 4793–4803 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : Interplanetary shocks * instruments and techniques Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50468/abstract

  2. Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction

    Science.gov (United States)

    Pinto, Victor A.; Kim, Hee-Jeong; Lyons, Larry R.; Bortnik, Jacob

    2018-02-01

    We have identified 61 relativistic electron enhancement events and 21 relativistic electron persistent depletion events during 1996 to 2006 from the Geostationary Operational Environmental Satellite (GOES) 8 and 10 using data from the Energetic Particle Sensor (EPS) >2 MeV fluxes. We then performed a superposed epoch time analysis of the events to find the characteristic solar wind parameters that determine the occurrence of such events, using the OMNI database. We found that there are clear differences between the enhancement events and the persistent depletion events, and we used these to establish a set of threshold values in solar wind speed, proton density and interplanetary magnetic field (IMF) Bz that can potentially be useful to predict sudden increases in flux. Persistent depletion events are characterized by a low solar wind speed, a sudden increase in proton density that remains elevated for a few days, and a northward turning of IMF Bz shortly after the depletion starts. We have also found that all relativistic electron enhancement or persistent depletion events occur when some geomagnetic disturbance is present, either a coronal mass ejection or a corotational interaction region; however, the storm index, SYM-H, does not show a strong connection with relativistic electron enhancement events or persistent depletion events. We have tested a simple threshold method for predictability of relativistic electron enhancement events using data from GOES 11 for the years 2007-2010 and found that around 90% of large increases in electron fluxes can be identified with this method.

  3. Modelling the Northward Expansion of Culicoides sonorensis (Diptera: Ceratopogonidae under Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Anna Zuliani

    Full Text Available Climate change is affecting the distribution of pathogens and their arthropod vectors worldwide, particularly at northern latitudes. The distribution of Culicoides sonorensis (Diptera: Ceratopogonidae plays a key role in affecting the emergence and spread of significant vector borne diseases such as Bluetongue (BT and Epizootic Hemorrhagic Disease (EHD at the border between USA and Canada. We used 50 presence points for C. sonorensis collected in Montana (USA and south-central Alberta (Canada between 2002 and 2012, together with monthly climatic and environmental predictors to develop a series of alternative maximum entropy distribution models. The best distribution model under current climatic conditions was selected through the Akaike Information Criterion, and included four predictors: Vapour Pressure Deficit of July, standard deviation of Elevation, Land Cover and mean Precipitation of May. This model was then projected into three climate change scenarios adopted by the IPCC in its 5th assessment report and defined as Representative Concentration Pathways (RCP 2.6, 4.5 and 8.5. Climate change data for each predictor and each RCP were calculated for two time points pooling decadal data around each one of them: 2030 (2021-2040 and 2050 (2041-2060. Our projections showed that the areas predicted to be at moderate-high probability of C. sonorensis occurrence would increase from the baseline scenario to 2030 and from 2030 to 2050 for each RCP. The projection also indicated that the current northern limit of C. sonorensis distribution is expected to move northwards to above 53°N. This may indicate an increased risk of Culicoides-borne diseases occurrence over the next decades, particularly at the USA-Canada border, as a result of changes which favor C. sonorensis presence when associated to other factors (i.e. host and pathogen factors. Recent observations of EHD outbreaks in northern Montana and southern Alberta supported our projections and

  4. Prolongation of islet allograft survival

    International Nuclear Information System (INIS)

    Lacy, P.E.; Davie, J.M.; Finke, E.H.; Scharp, D.W.

    1979-01-01

    Pretreatment of donor rats with irradiation and silica followed by in vitro culture of the islets for 1 to 2 days prolonged survival of allografts across a minor histocompatibility barrier if hand-picked, clean islets were used for transplantation. Pretreatment of donor rats with irradiation and silica in conjunction with a single injection of antilymphocyte serum (ALS) into the recipient produced a prolongation of survival of hand-picked islets transplanted across a major histocompatibility barrier

  5. Genetic influence on prolonged gestation

    DEFF Research Database (Denmark)

    Laursen, Maja; Bille, Camilla; Olesen, Annette Wind

    2004-01-01

    OBJECTIVE: The purpose of this study was to test a possible genetic component to prolonged gestation. STUDY DESIGN: The gestational duration of single, first pregnancies by both female and male twins was obtained by linking the Danish Twin Registry, The Danish Civil Registration System, and the D...... factors. CONCLUSION: Maternal genes influence prolonged gestation. However, a substantial paternal genetic influence through the fetus was not found....

  6. A study of the inferred interplanetary magnetic field polarity periodicities

    International Nuclear Information System (INIS)

    Xanthakis, J.; Tritakis, V.P.; Zerefos, Ch.

    1981-01-01

    A detailed Power Spectrum Analysis applied on the daily polarities of the inferred interplanetary magnetic field, published by Svalgaard, has pointed out that the main periodicity apparent in these data is 27-28 days, which suggests a recurrency of a 2-sector structure. There is also a secondary periodicity of 13-14 days which mainly appears in the yers of the descending branch of the solar cycle and superimposes on the 2-sector structure, transforming it into a 4-sector structure. A strict statistical study of the correlation between the predominant polarity of the interplanetary magnetic field and the heliographic latitude of the Earth, also known as the Rosenberg-Coleman effect, pointed out that perhaps there is a faint correspondence between these two elements, but one cannot speak of a systematic effect. (Auth.)

  7. Interplanetary and lunar surface SP-100 nuclear power applications

    International Nuclear Information System (INIS)

    Josloff, A.T.; Shepard, N.F.; Smith, M.; Stephen, J.D.

    1992-01-01

    This paper describes how the SP-100 Space Reactor Power System (SRPS) can be tailored to meet the specific requirements for a lunar surface power system to meet the needs of the consolidation and utilization phases outlined in the 90-day NASA SEI study report. This same basic power system can also be configured to obtain the low specific masses needed to enable robotic interplanetary science missions employing Nuclear Electric Propulsion (NEP). In both cases it is shown that the SP-100 SRPS can meet the specific requirements. For interplanetary NEP missions, performance upgrades currently being developed in the area of light weight radiators and improved thermoelectric material are assumed to be technology ready in the year 2000 time frame. For lunar applications, some system rearrangement and enclosure of critical components are necessary modifications to the present baseline design

  8. Study of Travelling Interplanetary Phenomena (STIP) workshop travel

    Science.gov (United States)

    Wu, S. T.

    1986-01-01

    Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.

  9. Cultural ethology as a new approach of interplanetary crew's behavior

    Science.gov (United States)

    Tafforin, Carole; Giner Abati, Francisco

    2017-10-01

    From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.

  10. Interplanetary sources of magnetic storms: A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed T......-p/T-exp, together with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more...

  11. Interplanetary sources to magnetic storms - A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed Tp/Texp, together...... with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more so. Only...

  12. The role of automatic control in future interplanetary spaceflight

    Science.gov (United States)

    Scull, J. R.; Moore, J. W.

    1976-01-01

    The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.

  13. Orbital and angular motion construction for low thrust interplanetary flight

    Science.gov (United States)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  14. The thickness of the interplanetary collisionless shock waves

    International Nuclear Information System (INIS)

    Pinter, S.

    1980-05-01

    The thicknesses of magnetic structures of the interplanetary shock waves related to the upstream solar wind plasma parameters are studied. From this study the following results have been obtained: the measured shock thickness increases for decreasing upstream proton number density and decreases for increasing proton flux energy. The shock thickness strongly depends on the ion plasma β, i.e. for higher values of the β the thickness decreases. (author)

  15. 3rd Interplanetary Network Gamma-Ray Burst Website

    Science.gov (United States)

    Hurley, Kevin

    1998-05-01

    We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.

  16. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    International Nuclear Information System (INIS)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.; Veronig, A. M.; Nikolic, L.

    2017-01-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s −1 . Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  17. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.; Veronig, A. M. [Institute of Physics, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Nikolic, L., E-mail: manuela.temmer@uni-graz.at [Canadian Hazards Information Service, Natural Resources Canada, 2617 Anderson Road, Ottawa, Ontario K1A 0Y3 (Canada)

    2017-02-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  18. Turbulence in the solar atmosphere and in the interplanetary plasma

    International Nuclear Information System (INIS)

    Chashei, I.V.; Shishov, V.I.

    1984-01-01

    Analysis of the basic properties of the turbulence in the solar chromosphere, corona, and supercorona (the plasma acceleration zone) indicates that the energy of acoustic disturbances generated at the photospheric level will be conveyed outward into the interplanetary plasma jointly by nonlinear wave interactions and wave propagation effects. Above the chromosphere, damping will be strongest at heights Rroughly-equal0.4 R/sub sun/ for acoustic-type waves and at Rroughly-equalR/sub sun/ for Alfven waves

  19. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    Science.gov (United States)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  20. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    Science.gov (United States)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  1. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)

    2017-03-10

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  2. Relativistic electron dropout echoes induced by interplanetary shocks

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  3. Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study

    Science.gov (United States)

    Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.

    2017-12-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.

  4. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-01-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  5. Spring northward juvenile migration of the Patagonian grenadier (Macruronus magellanicus from the Northwest Patagonian waters of Chile

    Directory of Open Access Journals (Sweden)

    Luis A Cubillos

    2015-11-01

    Full Text Available Important nursery grounds for Patagonian grenadier (Macruronus magellanicus are located mainly in the Northwest Patagonian Inner Sea (42ºS-44ºS, from which juvenile must to disperse or migrate offshore, then along the Chilean coast either northward or southward. The objective of this paper was to estimate northward spring juvenile migration of the Patagonian grenadier from nursery to feeding areas, which are located near Talcahuano (35º00’S-37º10’S. Length-frequency data (LFD were obtained from an acoustic survey carried out in November 1999, which covered from 35ºS to 47ºS. Generalized linear model was used to describe the presence of juvenile per latitude and depth, and to infer the origin and displacement of juveniles. Subsequently, LFD data were grouped according to latitudinal strata. Grouped LFD were decomposed into normal component groups, from which mean, standard deviation and proportion were estimated from the mixed LFD. The average length of the identified groups were sorted from south to north, and linked to compute significant increment in fish length and age per kilometers. The length increment per time was not due to growth, rather they was due to spatial displacement of juvenile from southern nursery grounds to northern feeding areas. Although homing to feeding areas and/or high residency (partial migration have been postulated, it seems that recruitment of juveniles to northern feeding areas are origintaed from NPIS nurseries. The West Wind Drift Current seems to be the main drive for dispersion of Patagonian grenadier to recruit northward in open waters along the continental shelf.

  6. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    Science.gov (United States)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  7. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    International Nuclear Information System (INIS)

    Ng, C.K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation

  8. Prolonged unexplained fatigue in paediatrics

    NARCIS (Netherlands)

    Bakker, R.J.

    2010-01-01

    Prolonged Unexplained Fatigue in Paediatrics. Fatigue, as the result of mental or physical exertion, will disappear after rest, drinks and food. Fatigue as a symptom of illness will recover with the recovering of the illness. But when fatigue is ongoing for a long time, and not the result of

  9. Physiology Of Prolonged Bed Rest

    Science.gov (United States)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  10. Observations of energetic particles in the near and far interplanetary medium

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1979-01-01

    Recent experimental results suggest that acceleration of particles to energies as high as 30 MeV/nucleon is commonplace in the interplanetary medium beyond several AU, and that most of the > or approx. =10 MeV/nucleon particles observed near earth, especially at solar minimum, are predominantly interplanetary in origin. We review experimental observations of the anomalous ''cosmic-ray'' component and of corotating particle streams with an emphasis on the composition of these interplanetary particles. These direct observations, although still rudimentary, are already providing constraints necessary for developing realistic theoretical descriptions of interplanetary acceleration mechanisms and should thus help us to understand similar processes in other astrophysical objects

  11. Effects of the interplanetary conditions on the magnetic activity observed in the southern auroral zone

    International Nuclear Information System (INIS)

    Cazeneuve, H.A.; Tabocchini, H.

    1981-01-01

    The relationship between the interplanetary conditions and the magnetic activity recorded at Belgrano is examined. H-component magnetograms, rheometer records and the concurrent interplanetary data are used. It is found that the geomagnetic activity is generated by the combined effect of a variety of interplanetary conditions. The data distinctly show that each physical entity of the interplanetary medium has a specific and precise role in the development of active periods. The reversal of the IMF polarity appears to be the critical step in the generation of geomagnetic activity. (author)

  12. Moisture dynamics of the northward and eastward propagating boreal summer intraseasonal oscillations: possible role of tropical Indo-west Pacific SST and circulation

    Science.gov (United States)

    Pillai, Prasanth A.; Sahai, A. K.

    2016-08-01

    Boreal summer intraseasonal oscillation (BSISO) has complex spatial structure due to the co-existence of equatorial eastward and off-equatorial northward propagation in the equatorial Indian Ocean. As a result, equatorial Indian Ocean convection has simultaneous northward and eastward (NE), northward only (N-only) and eastward only (E-only) propagations. It is well established that the convection propagates in the direction of increasing moist static energy (MSE). The moisture and MSE budget analysis reveals that the horizontal advection of anomalous MSE contributes to positive MSE tendency, which is in agreement with the horizontal advection of column integrated moisture anomaly. Northward movement of warm SST and the anomalous moisture advected by zonal wind are the major initiative for the northward propagation of convection from the equatorial Indian Ocean in both NE and N-only category. At the same time warm SST anomaly in the equatorial west Pacific along with moisture advection caused by anomalous meridional wind is important for the equatorial eastward branch of NE propagation. As these anomalies in the west Pacific moves northward, equatorial Indian Ocean convection establishes over the equatorial west Pacific. The absence of these processes confines the BSISO in northward direction for N-only category. In the case of E-only movement, warm SST anomaly and moisture advection by zonal component of wind causes the eastward propagation of convection. Boundary layer moisture convergence always remains east of convection center in E-only propagation, while it coincides with convection centre in other two categories. Thus the present study concludes that the difference in underlying SST and atmospheric circulation in tropical Indo-west Pacific oceanic regions encourage the differential propagation of BSISO convection through moisture dynamics.

  13. RD50 Prolongation Request 2018

    CERN Document Server

    Casse, Gianluigi

    2018-01-01

    With this document, we request the prolongation of the CERN RD50 research program for 5 years. A very brief historical review of the RD50 research program since the RD50 project approval by the Research Board in the year 2002 is presented and the biggest RD50 achievements are highlighted. The present composition of the collaboration, its organizational structure, and the research methodology are described. The role of RD50 in the present various upgrade and research programs of the LHC Experiments community is given and the overall work plan explained. Finally, a detailed 5-years work program with precise milestones and deliverables for the various research activities is presented. We conclude with our prolongation request towards the LHCC.

  14. August 1972 solar-terrestrial events: interplanetary magnetic field observations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E J [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-10-01

    A review is presented of the interplanetary magnetic field observations acquired in early August 1972 when four solar flares erupted in McMath Plage region 1976. Measurements of the interplanetary field were obtained by Earth satellites, HEOS-2 and Explorer 41, and by Pioneers 9 and 10 which, by good fortune, were radially aligned and only 45/sup 0/ east of the Earth-Sun direction. In response to the four flares, four interplanetary shocks were seen at Earth and at Pioneer 9, which was then at a heliocentric distance of 0.78 AU. However, at Pioneer 10, which was 2.2 AU from the Sun, only two forward shocks and one reverse shock were seen. The available magnetic field data acquired in the vicinity of the shocks are presented. Efforts to identify corresponding shocks at the several locations and to deduce their velocities of propagation between 0.8 and 2.2 AU are reviewed. The early studies were based on average velocities between the Sun and Pioneer 9, the Sun and Earth and the Sun and Pioneer 10. A large deceleration of the shocks between the Sun and 0.8 AU as well as between 0.8 and 2.2 AU was inferred. More recently the local velocities of the shocks at Pioneers 9 and 10 have become available. A comparision of these velocities shows little, if any, deceleration between 0.8 and 2.2 AU and implies that most or all of the deceleration actually occurred nearer the Sun. Evidence is also presented that shows a significant departure of the flare-generated shock fronts from spherical symmetry.

  15. Solar events and their influence on the interplanetary medium

    Science.gov (United States)

    Joselyn, Jo Ann

    The Workshop on Solar Events and Their Influence on the Interplanetary Medium very successfully met its goal “to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances.” Organized by the National Oceanic and Atmospheric Administration Space Environment Laboratory and funded by the national Aeronautics and Space Administration (NASA) Solar Maximum Mission Principal Investigators and the Space Environment Laboratory, this meeting was held held September 8—11, 1986, in Estes Park, Colo. A total of 94 scientists, including representatives from Argentina, Germany, Japan, France, Scotland, England, Australia, Poland, Israel, Greece, China and the United States attended. A novel meeting schedule was adopted, with no formal presentations other than a keynote address by Rainer Schwenn of the Max Planck Institut fur Aeronomie (Federal republic of Germany), entitled “Transients on the Sun and Their Effects on the Interplanetary Medium: An Interdisciplinary Challenge” a Gordon A. Newkirk Memorial talk on “Early History of the Coronagraph” by John Eddy of the University Corporation for Atmospheric Research Office of Interdisciplinary Earth Studies (Boulder, Colo.); and introductory and summary statements by working group leaders. Instead, there were three working groups, which met either independently or with one of the other groups according to a prearranged plan. Suggested roundtable discussion topics were distributed in advance to the members of each group, but primarily, each group was expected to think of questions for the other groups and respond to requests for information from them. As may be expected, for some topics there was group consensus. Other topics were contentious.

  16. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  17. Interplanetary electrons: what is the strength of the Jupiter source

    International Nuclear Information System (INIS)

    Fillius, W.; Ip, Wing-Huen; Knickerbocker, P.

    1977-01-01

    Because there is not enough information to support a rigorous answer, we use a phenomenological approach and conservative assumptions to address the source strength of Jupiter for interplanetary electrons. We estimate that Jupiter emits approximately 10 24 - 10 26 electrons s -1 of energy > 6 MeV, which source may be compared with the population of approximately 3 x 10 28 electrons of the same energy in Jupiter's outer magnetosphere. We conclude that Jupiter accelerates particles at a rate exceeding that of ordinary trapped particle dynamical processes. (author)

  18. Pioneer Venus and near-earth observations of interplanetary shocks

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Russell, C.T.; Knudsen, W.C.; Scarf, F.L.

    1987-01-01

    Twenty-three transient interplanetary shocks observed near earth during 1978-1982, and mostly reported in the literature, have also been identified at the Pioneer Venus Orbiter spacecraft. There seems to be a fairly consistent trend for lower shock speeds, farther from the sun. Shock normals obtained using the Pioneer Venus data correspond well with published values from near earth. By referring to the portion of the Pioneer Venus plasma data used here from locations at longitudes within 37 degree of earth, it is found that shocks are weaker at earth, compared with closer to the sun

  19. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  20. Dayside auroras in relation to the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.; Lybekk, B.; Deehr, C.S.

    1986-01-01

    Dynamics of dayside auroras, including cusp emissions, and their relation to the interplanetary magnetic field (IMF) have been investigated by optical ground-based observations from Svalbard, Norway, and IMF data from various satellites. Combined with the Svalbard program, simultaneous night-side observations from Alaska provide information on the large-scale behaviour of the auroral oval. Drift characteristics, spatial scale, time of duration and repetition frequency of auroral structures on the day-side, occuring at the time of large-scale oval expansions (IMF B z z positive and negative values

  1. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    M. Förster

    2008-09-01

    Full Text Available In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007, and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00–15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≈−10° to −15° clock angle for the North (South Hemisphere. With increasing clock angle distances from ≈IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the

  2. Manifestation of interplanetary medium parameters in development of a geomagnetic storm initial phase

    International Nuclear Information System (INIS)

    Chkhetiya, A.M.

    1988-01-01

    The role of solar wind plasma parameters in formation of a geomagnetic storm initial phase is refined. On the basis of statistical analysis an empirical formula relating the interplanetary medium parameters (components of interplanetary magnetic field, proton velocity and concentration) and D st -index during the geomagnetic storm initial phase is proposed

  3. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  4. The Ring Current Response to Solar and Interplanetary Storm Drivers

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  5. Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts

    Science.gov (United States)

    McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro

    2016-01-01

    NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.

  6. The topology of intrasector reversals of the interplanetary magnetic field

    Science.gov (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  7. Solar sail time-optimal interplanetary transfer trajectory design

    International Nuclear Information System (INIS)

    Gong Shengpin; Gao Yunfeng; Li Junfeng

    2011-01-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  8. First Taste of Hot Channel in Interplanetary Space

    Science.gov (United States)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  9. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  10. North-South asymmetry of interplanetary plasma and solar parameters

    International Nuclear Information System (INIS)

    El-Borie, M. A.

    2001-01-01

    Data of interplanetary plasma (field magnitude, solar wind speed, ion plasma density and temperature) and solar parameters (sunspot number, solar radio flux, and geomagnetic index) over the period 1965-1991, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). The dependence of N-S asymmetry of field magnitude (B) upon the interplanetary solar polarities is statistically insignificant. There is no clear indication for the presence of N-S asymmetry in the grand-average field magnitude over the solar cycles. During the period 1981-89 (qA<0; negative solar polarity state), the solar plasma was more dense and cooler south of the HCS than north of it. The solar flux component of toward field vector is larger in magnitude than those of away field vector during the qA<0 epoch, and no asymmetry observed in the qA<0 epoch. Furthermore, the sign of the N-S asymmetry in the solar activity depends positively upon the solar polarity state. In addition, it was studied the N-S asymmetry of solar parameters near the HCS, throughout the periods of northern and southern hemispheres were more active than the other. Some asymmetries (with respect to the HCS) in plasma parameters existed during the periods of southern hemisphere predominance

  11. Assessment of radiation background level of Shandong basin in east line of northward rerouting of southern river

    International Nuclear Information System (INIS)

    Deng Daping; Xu Jiaang; Zhu Jianguo; Chen Yingmin; Lu Feng; Song Gang; Cao Jingli

    2007-01-01

    Objective: To assess the radiation background levels of Shandong basin in east line of northward rerouting of southern river. Methods: The activity concentrations of gross-alpha, gross-beta, 137 Cs, 238 U, 232 Th, 40 K, 226 Ra and 90 Sr in the samples were measured by national standard methods respectively. The values of the dose conversion factor given by UNSCEAR 2000 were adopted for dose estimation. Results: The average activity concentrations of gross-alpha, gross-beta, 137 Cs, 238 U, 232 Th, 40 K, 226 Ra and 90 Sr in the samples were pooled in order to analyze dose estimation. The committed effective doses of the 226 Ra, 238 U, 90 Sr, 232 Th and 137 Cs from lake water for residents are 1.46, 4.95 x 10 -1 , 1.24 x 10 -1 , 2.58 x 10 -2 and 7.93 x 10 -3 μSv per year respectively. The committed effective doses of the 226 Ra, 238 U and 90 Sr from cyprinoid fish are 5.49 x 10 -2 , 3.69 x 10 -2 and 1.77 x 10 -2 μSv per year respectively. Conclusions: The results show that the average activity concentrations of gross-alpha, gross-beta, 137 Cs, 238 U, 232 Th, 40 K, 226 Ra and 90 Sr in the samples from Shandong basin of northward rerouting of southern river are within the background levels. And in the main lake basin, the estimated exposures of public caused by the radionuclide in water and cyprinoid fish are so low that they can be ignored unless there ate some radioactive contamination in the future. (authors)

  12. Genetic evidence of an East Asian origin and paleolithic northward migration of Y-chromosome haplogroup N.

    Directory of Open Access Journals (Sweden)

    Hong Shi

    Full Text Available The Y-chromosome haplogroup N-M231 (Hg N is distributed widely in eastern and central Asia, Siberia, as well as in eastern and northern Europe. Previous studies suggested a counterclockwise prehistoric migration of Hg N from eastern Asia to eastern and northern Europe. However, the root of this Y chromosome lineage and its detailed dispersal pattern across eastern Asia are still unclear. We analyzed haplogroup profiles and phylogeographic patterns of 1,570 Hg N individuals from 20,826 males in 359 populations across Eurasia. We first genotyped 6,371 males from 169 populations in China and Cambodia, and generated data of 360 Hg N individuals, and then combined published data on 1,210 Hg N individuals from Japanese, Southeast Asian, Siberian, European and Central Asian populations. The results showed that the sub-haplogroups of Hg N have a distinct geographical distribution. The highest Y-STR diversity of the ancestral Hg N sub-haplogroups was observed in the southern part of mainland East Asia, and further phylogeographic analyses supports an origin of Hg N in southern China. Combined with previous data, we propose that the early northward dispersal of Hg N started from southern China about 21 thousand years ago (kya, expanding into northern China 12-18 kya, and reaching further north to Siberia about 12-14 kya before a population expansion and westward migration into Central Asia and eastern/northern Europe around 8.0-10.0 kya. This northward migration of Hg N likewise coincides with retreating ice sheets after the Last Glacial Maximum (22-18 kya in mainland East Asia.

  13. Genetic evidence of an East Asian origin and paleolithic northward migration of Y-chromosome haplogroup N.

    Science.gov (United States)

    Shi, Hong; Qi, Xuebin; Zhong, Hua; Peng, Yi; Zhang, Xiaoming; Ma, Runlin Z; Su, Bing

    2013-01-01

    The Y-chromosome haplogroup N-M231 (Hg N) is distributed widely in eastern and central Asia, Siberia, as well as in eastern and northern Europe. Previous studies suggested a counterclockwise prehistoric migration of Hg N from eastern Asia to eastern and northern Europe. However, the root of this Y chromosome lineage and its detailed dispersal pattern across eastern Asia are still unclear. We analyzed haplogroup profiles and phylogeographic patterns of 1,570 Hg N individuals from 20,826 males in 359 populations across Eurasia. We first genotyped 6,371 males from 169 populations in China and Cambodia, and generated data of 360 Hg N individuals, and then combined published data on 1,210 Hg N individuals from Japanese, Southeast Asian, Siberian, European and Central Asian populations. The results showed that the sub-haplogroups of Hg N have a distinct geographical distribution. The highest Y-STR diversity of the ancestral Hg N sub-haplogroups was observed in the southern part of mainland East Asia, and further phylogeographic analyses supports an origin of Hg N in southern China. Combined with previous data, we propose that the early northward dispersal of Hg N started from southern China about 21 thousand years ago (kya), expanding into northern China 12-18 kya, and reaching further north to Siberia about 12-14 kya before a population expansion and westward migration into Central Asia and eastern/northern Europe around 8.0-10.0 kya. This northward migration of Hg N likewise coincides with retreating ice sheets after the Last Glacial Maximum (22-18 kya) in mainland East Asia.

  14. Positive and negative sudden impulses caused by fast forward and reverse interplanetary shocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrioli, Vania Fatima; Savian, Jairo Francisco, E-mail: vaniafatima@gmail.com, E-mail: savian@lacesm.ufsm.br [Space Science Laboratory of Santa Maria - LACESM/CT - UFSM, Universidade Federal de Santa Maria - UFSM, Centro Tecnologico, Santa Maria, RS (Brazil); Echer, Ezequiel, E-mail: eecher@dge.inpe.br [National Institute for Space Research - INPE - MCT, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: njschuch@lacesm.ufsm.br [Southern Regional Space Research Center - CRSPE/INPE - MCT, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS (Brazil)

    2007-07-01

    Fast forward interplanetary shocks (FFS) are characterized by positive jump in all interplanetary plasma parameters (solar wind speed, temperature and density) and interplanetary magnetic field. However the fast reverse interplanetary shocks (FRS) are characterized by negative jump in all mentioned parameters except solar wind speed. Observations show that FFS cause positive sudden impulses (SI) while FRS cause negative SI in the H-component of the geomagnetic field. In this work we investigate the SI caused by interplanetary shocks. We use the observed plasma parameters, upstream and downstream, to calculate the variation of dynamic pressure. We observe that the SI amplitude is larger for positive SI than for negative ones, as a consequence of the fact that FFS have larger dynamic pressure variations as compared to FRS. (author)

  15. Interplanetary Magnetic Field and Plasma Values Related to Hildcaas Events

    Science.gov (United States)

    Prestes, A.; Serra, S. L.; Vieira, L. A.

    2013-05-01

    In this work we investigate the interplanetary conditions during the occurrence of 150 HILDCAAs/QUASI-HILDCAAs events occurred between 1998 and 2007. These events were chosen by following strictly the selection criteria for this kind of phenomena and with some criteria flexible. Among the criteria used to characterize events HILDCAAs, the criterion that considers "the AE values never dropped below 200 nT for more than 2 h at a time" was more restrictive, thus only this was modified by changing from 2 to 4 hours the period in which the AE value can't be below 200 nT. In the interplanetary medium, HILDCAAs are associated with high speed solar wind streams, which are frequently embedded with alfvénic fluctuations. At the Sun, these high speed streams are originated in coronal holes. The distribution of events HILDCAAs/quasi-HILDCAAs along the solar cycle shows a pattern of double peak, a less intense around the maximum of the sunspot cycle and other intense in the descending phase, similar to the distribution of low-latitude coronal holes. For each one of the selected events we have found the most probable value of interplanetary magnetic field and plasma. The average values of AE, AU, AL and Dst indices, the density and temperature of the solar wind protons, the solar wind speed, the Bz component of the IMF, the IMF intensity, dynamic pressure and factor beta, among all the 150 events HILDCAAs/quasi-HILDCAAs, were: AE (344.5 ± 65.0 nT), AU (131.0 ± 33.0 nT), AL (-213.7 ± 51.2 nT), Dst (-25.8 ± 12.2 nT), Density (5,0 ± 1,8 cm-3), Temperature (151269.5 ± 48907.7 K), |V| (538.2 ± 83.3 km/s) Bz (-0.71 ± 1.02 nT), |B| (6.7 ± 1.4 nT) pressure (2.6 ± 0.7 nPa) and Beta (0.66 ± 0.27).

  16. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  17. Individual styles of professional operator's performance for the needs of interplanetary mission.

    Science.gov (United States)

    Boritko, Yaroslav; Gushin, Vadim; Zavalko, Irina; Smoleevskiy, Alexandr; Dudukin, Alexandr

    Maintenance of the cosmonaut’s professional performance reliability is one of the priorities of long-term space flights safety. Cosmonaut’s performance during long-term space flight decreases due to combination of the microgravity effects and inevitable degradation of skills during prolonged breaks in training. Therefore, the objective of the elaboration of countermeasures against skill decrement is very relevant. During the experiment with prolonged isolation "Mars-500" in IMBP two virtual models of professional operator’s activities were used to investigate the influence of extended isolation, monotony and confinement on professional skills degradation. One is well-known “PILOT-1” (docking to the space station), another - "VIRTU" (manned operations of planet exploration). Individual resistance to the artificial sensory conflict was estimated using computerized version of “Mirror koordinograf” with GSR registration. Two different individual performance styles, referring to the different types of response to stress, have been identified. Individual performance style, called "conservative control", manifested in permanent control of parameters, conditions and results of the operator’s activity. Operators with this performance style demonstrate high reliability in performing tasks. The drawback of the style is intensive resource expenditure - both the operator (physiological "cost") and the technical system operated (fuel, time). This style is more efficient while executing tasks that require long work with high reliability required according to a detailed protocol, such as orbital flight. Individual style, called "exploratory ", manifested in the search of new ways of task fulfillment. This style is accompanied by partial, periodic lack of control of the conditions and result of operator’s activity due to flexible approach to the tasks perfect implementation. Operators spent less resource (fuel, time, lower physiological "cost") due to high self

  18. The interplanetary magnetic field observed by Juno enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-06-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  19. Enhanced interplanetary panspermia in the TRAPPIST-1 system.

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-06-27

    We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.

  20. Observations of interplanetary energetic ion enhancements near magnetic sector boundaries

    International Nuclear Information System (INIS)

    Briggs, P.R.; Armstrong, T.P.

    1984-01-01

    We have examined all energetic medium nuclei (carbon, nitrogen, and oxygen) flux increases observed all the satellites IMP 7 and IMP 8 at 1 AU during Bartels rotations 1906-1974. After removing flare-related increases, the remaining 14 ''events'' were compared to interplanetary magnetic field and solar wind parameters. We have discovered a class of flux enhancements in which the ion increases occur close to the onset of magnetic sector boundary crossings. We interpret this observation as a facilitated access to 1 AU of energetic ions from the corona or chromopshere via the magnetic sector structure. It appears that this access is more significant for medium than for lighter nuclei, ''suggesting a possible charge- or rigidity-dependent transport mechanism

  1. Stochastic diffusion of dust grains by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Wallis, M.K.

    1983-10-01

    The effects of the sectored Interplanetary Magnetic Field on charged dust grains orbiting around the sun under radiation pressure and Poynting-Robertson drag forces are examined for initially circular and non-inclined orbits. The distribution function of the charged grains satisfies a Fokker-Planck equation in which the sectored field is taken as a source of stochastic impulses. By adopting the integrals of the impulse-free motion as variable parameters, the Fokker-Planck equation can be properly treated as a diffusion equation. Analytic solutions of the resulting diffusion equation show that dust grains injected near the ecliptic plane are scattered strongly to high helio-latitudes. The scattering is more pronounced for small grains injected at large distances from the Sun. (author)

  2. THE INTERPLANETARY NETWORK RESPONSE TO LIGO GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D. [Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Boynton, W. [University of Arizona, Department of Planetary Sciences, Tucson, AZ 85721 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 Germany (Germany); Connaughton, V.; Meegan, C. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Cline, T.; Gehrels, N., E-mail: khurley@ssl.berkeley.edu [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States)

    2016-09-20

    We have performed a blind search for a gamma-ray transient of arbitrary duration and energy spectrum around the time of the LIGO gravitational-wave event GW150914 with the six-spacecraft interplanetary network (IPN). Four gamma-ray bursts were detected between 30 hr prior to the event and 6.1 hr after it, but none could convincingly be associated with GW150914. No other transients were detected down to limiting 15–150 keV fluences of roughly 5 ×10{sup −8}–5 × 10{sup −7} erg cm{sup −2}. We discuss the search strategies and temporal coverage of the IPN on the day of the event and compare the spatial coverage to the region where GW150914 originated. We also report the negative result of a targeted search for the Fermi -GBM event reported in conjunction with GW150914.

  3. Transport of solar electrons in the turbulent interplanetary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Dresing, N., E-mail: dresing@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11, D-24118 Kiel (Germany)

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  4. The Interplanetary Magnetic Field Observed by Juno Enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-01-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  5. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    Science.gov (United States)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  6. Two-step photoionization of hydrogen atoms in interplanetary space

    International Nuclear Information System (INIS)

    Gruntman, M.A.

    1990-01-01

    Photoionization is one of the key processes which determine the properties of fluxes of neutral atoms in interplanetary space. A new two-step channel (called indirect) of photoionization of hydrogen atoms is proposed. Hydrogen atoms are at first excited to states with principal quantum number n > 2, then decay to metastable H(2S) states, where they can be photoionized. Competing processes due to the interaction with solar wind plasma and solar radiation are considered and the photoionization rate through the proposed indirect channel is calculated. This rate depends on distance from the Sun as ∝ 1/R 4 at large distances (R > 1-2 a.u.) and as ∝ 1/R 2 at close approaches, where it is higher than the rate of direct photoionization. (author)

  7. Forecasting intense geomagnetic activity using interplanetary magnetic field data

    Science.gov (United States)

    Saiz, E.; Cid, C.; Cerrato, Y.

    2008-12-01

    Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.

  8. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    Science.gov (United States)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  9. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    Science.gov (United States)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  10. On interplanetary coronal mass ejection identification at 1 AU

    International Nuclear Information System (INIS)

    Mulligan, T.; Russell, C.T.; Gosling, J.T.

    1999-01-01

    Coronal mass ejections are believed to be produced in the corona from closed magnetic regions not previously participating in the solar wind expansion. At 1 AU their interplanetary counterparts (ICMEs) generally have a number of distinct plasma and field signatures that distinguish them from the ambient solar wind. These include heat flux dropouts, bi-directional streaming, enhanced alpha particle events, times of depressed proton temperatures, intervals of distorted or enhanced magnetic field, and times of large magnetic field rotations characteristic of magnetic clouds. The first three of these signatures are phenomena that occur at some point within the ICME, but do not necessarily persist throughout the entire ICME. The large scale magnetic field rotations, distortions and enhancements, and the proton temperature depressions tend to mark more accurately the beginning and end of the ICME proper. We examine herein the reliability with which each of these markers identifies ICMEs utilizing ISEE-3 data from 1978 - 1980. copyright 1999 American Institute of Physics

  11. Multielement analysis of interplanetary dust particles using TOF-SIMS

    Science.gov (United States)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  12. Geoeffectiveness of interplanetary shocks controlled by impact angles: A review

    Science.gov (United States)

    Oliveira, D. M.; Samsonov, A. A.

    2018-01-01

    The high variability of the Sun's magnetic field is responsible for the generation of perturbations that propagate throughout the heliosphere. Such disturbances often drive interplanetary shocks in front of their leading regions. Strong shocks transfer momentum and energy into the solar wind ahead of them which in turn enhance the solar wind interaction with magnetic fields in its way. Shocks then eventually strike the Earth's magnetosphere and trigger a myriad of geomagnetic effects observed not only by spacecraft in space, but also by magnetometers on the ground. Recently, it has been revealed that shocks can show different geoeffectiveness depending closely on the angle of impact. Generally, frontal shocks are more geoeffective than inclined shocks, even if the former are comparatively weaker than the latter. This review is focused on results obtained from modeling and experimental efforts in the last 15 years. Some theoretical and observational background are also provided.

  13. Interplanetary fast shock diagnosis with the radio receiver on Ulysses

    Science.gov (United States)

    Hoang, S.; Pantellini, F.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Meuer-Vernet, N.; Perche, C.; Steinberg, J.-L.; Lengyel-Frey, D.; Macdowall, R. J.

    1992-01-01

    The radio receiver on Ulysses records the quasi-thermal noise which allows a determination of the density and temperature of the cold (core) electrons of the solar wind. Seven interplanetary fast forward or reverse shocks are identified from the density and temperature profiles, together with the magnetic field profile from the Magnetometer experiment. Upstream of the three strongest shocks, bursts of nonthermal waves are observed at the electron plasma frequency f(peu). The more perpendicular the shock, the longer the time interval during which these upstream bursts are observed. For one of the strongest shocks we also observe two kinds of upstream electromagnetic radiation: radiation at 2 f(peu), and radiation at the downstream electron plasma frequency, which propagates into the less dense upstream regions.

  14. The characteristic response of whistler mode waves to interplanetary shocks

    Science.gov (United States)

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.

    2017-12-01

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  15. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  16. Doppler frequency in interplanetary radar and general relativity

    Science.gov (United States)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  17. Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration

    Science.gov (United States)

    Yeomans, D. K.

    2003-12-01

    Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.

  18. Heliocentric distance dependence of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Behannon, K.W.

    1978-01-01

    Recent and ongoing planetary missions have provided and are continuing to provide extensive observations of the variations of the interplanetary magnetic field (IMF) both in time and with heliocentric distance from the sun. Large time variations in both the IMF and its fluctuations are observed. These are produced predominantly by dynamical processes in the interplanetary medium associated with stream interactions. Magnetic field variations near the sun are propagated to greater heliocentric distances, a process also contributing to the observed variability of the IMF. Temporal variations on a time scale comparable to or less than the corotation period complicate attempts to deduce radial gradients of the field and its fluctuations from the various observations. However, recent measurements inward to 0.46 AU and outward to 5 AU suggest that the radial component of the field on average decreases approximately as r -2 , as was predicted by Parker, while the azimuthal component decreases more rapidly than the r -1 dependence predicted by simple theory. Three sets of observations are consistent with r/sup -1.3/ dependence for vertical-barB/sub phi/vertical-bar. The temporal variability of solar wind speed is most likely the predominant contributor to this latter observational result. The long-term average azimuthal component radial gradient is probably consistent with the Parker r -1 dependence when solar wind speed variations are taken into account. The observations of the normal component magnitude vertical-barB/sub theta/vertical-bar are roughly consistent with a heliocentric distance dependence of r/sup -1.4/. The observed radial distance dependence of the total magnitude of the IMF is well described by the Parker formulation. There is observational evidence that amplitudes of fluctuations of the vector field with periods less than 1 day vary with heliocentric distance as approximately r/sup -3/2/, in agreement with theoretical models by Whang and Hollweg

  19. An Alternative Method for Identifying Interplanetary Magnetic Cloud Regions

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Gonzalez, A.; Prestes, A.; Klausner, V. [Laboratory of Physics and Astronomy, IP and D/Universidade do Vale do Paraíba—UNIVAP, São José dos Campos, SP (Brazil); Mendes, O. [Division of Space Geophysics, National Institute for Space Research, São José dos Campos, SP (Brazil); Calzadilla, A. [Department of Space Geophysics, Institute of Geophysics and Astronomy, Havana (Cuba); Domingues, M. O., E-mail: ojeda.gonzalez.a@gmail.com [Associate Laboratory of Applied Computing and Mathematics, National Institute for Space Research, São José dos Campos, SP (Brazil)

    2017-03-10

    Spatio-temporal entropy (STE) analysis is used as an alternative mathematical tool to identify possible magnetic cloud (MC) candidates. We analyze Interplanetary Magnetic Field (IMF) data using a time interval of only 10 days. We select a convenient data interval of 2500 records moving forward by 200 record steps until the end of the time series. For every data segment, the STE is calculated at each step. During an MC event, the STE reaches values close to zero. This extremely low value of STE is due to MC structure features. However, not all of the magnetic components in MCs have STE values close to zero at the same time. For this reason, we create a standardization index (the so-called Interplanetary Entropy, IE, index). This index is a worthwhile effort to develop new tools to help diagnose ICME structures. The IE was calculated using a time window of one year (1999), and it has a success rate of 70% over other identifiers of MCs. The unsuccessful cases (30%) are caused by small and weak MCs. The results show that the IE methodology identified 9 of 13 MCs, and emitted nine false alarm cases. In 1999, a total of 788 windows of 2500 values existed, meaning that the percentage of false alarms was 1.14%, which can be considered a good result. In addition, four time windows, each of 10 days, are studied, where the IE method was effective in finding MC candidates. As a novel result, two new MCs are identified in these time windows.

  20. Autonomous aerobraking for low-cost interplanetary missions

    Science.gov (United States)

    Carrelli, David; O'Shaughnessy, Daniel; Strikwerda, Thomas; Kaidy, James; Prince, Jill; Powell, Richard

    2014-01-01

    Aerobraking has previously been used to reduce the propellant required to deliver an orbiter to its desired final orbit. In principle, aerobraking should be possible around any target planet or moon having sufficient atmosphere to permit atmospheric drag to provide a portion of the mission ΔV, in lieu of supplying all of the required ΔV propulsively. The spacecraft is flown through the upper atmosphere of the target using multiple passes, ensuring that the dynamic pressure and thermal loads remain within the spacecraft's design parameters. NASA has successfully conducted aerobraking operations four times, once at Venus and three times at Mars. While aerobraking reduces the fuel required, it does so at the expense of time (typically 3-6 months), continuous Deep Space Network (DSN) coverage, and a large ground staff. These factors can result in aerobraking being a very expensive operational phase of the mission. However, aerobraking has matured to the point that much of the daily operation could potentially be performed autonomously onboard the spacecraft, thereby reducing the required ground support and attendant aerobraking related costs. To facilitate a lower-risk transition from ground processing to an autonomous capability, the NASA Engineering and Safety Center (NESC) has assembled a team of experts in aerobraking and interplanetary guidance and control to develop a high-fidelity, flight-like simulation. This simulation will be used to demonstrate the overall feasibility while exploring the potential for staff and DSN coverage reductions that autonomous aerobraking might provide. This paper reviews the various elements of autonomous aerobraking and presents an overview of the various models and algorithms that must be transformed from the current ground processing methodology to a flight-like environment. Additionally the high-fidelity flight software test bed, being developed from models used in a recent interplanetary mission, will be summarized.

  1. Microcharacterization of interplanetary dust collected in the earth's stratosphere

    International Nuclear Information System (INIS)

    Fraundorf, P.B.

    1980-01-01

    This thesis involved an examination of the internal structure of thirteen 10 μm aggregates using selected techniques from the field now known as analytical electron microscopy. The aggregates were collected in the earth's stratosphere at 20 km altitude by impactors mounted on NASA U-2 aircraft. Eleven of them exhibited relative major element abundances similar to those found in chondritic meteorities. For this and other reasons, these eleven particles are believed to represent relatively-unaltered interplanetary dust. Interplanetary dust is thought to be of cometary origin, and comets in turn provide the most promising reservoir for unaltered samples of materials present during the collapse of the solar nebula. This thesis shows that the chondritic aggregates probably contain important information on a wide range of processes in the early solar system. In the course of this study, significant developments were necessary in the techniques of analysis for: (i) selected area electron diffraction (SAED) data; (ii) energy dispersive x-ray spectra; and (iii) spatial heterogeneity in geological materials. These developments include a method for analysing single crystal SAED patterns using spherical geometry. The method makes possible much more efficient use of diffraction data taken with a goniometer specimen stage. It allows major portions of the analysis to be done by a microprocessor, and it has potential for a wide range of on-line applications. Also, a comprehensive approach to the study of point-to-point heterogeneity in geological materials was developed. Some statistical, comparative, petrographic, and physical applications are described in the thesis

  2. Prolonged Intermittent Renal Replacement Therapy.

    Science.gov (United States)

    Edrees, Fahad; Li, Tingting; Vijayan, Anitha

    2016-05-01

    Prolonged intermittent renal replacement therapy (PIRRT) is becoming an increasingly popular alternative to continuous renal replacement therapy in critically ill patients with acute kidney injury. There are significant practice variations in the provision of PIRRT across institutions, with respect to prescription, technology, and delivery of therapy. Clinical trials have generally demonstrated that PIRRT is non-inferior to continuous renal replacement therapy regarding patient outcomes. PIRRT offers cost-effective renal replacement therapy along with other advantages such as early patient mobilization and decreased nursing time. However, due to lack of standardization of the procedure, PIRRT still poses significant challenges, especially pertaining to appropriate drug dosing. Future guidelines and clinical trials should work toward developing consensus definitions for PIRRT and ensure optimal delivery of therapy. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Observations of interplanetary scintillation and their application to the space weather forecast

    International Nuclear Information System (INIS)

    Kojima, Masayoshi; Kakinuma, Takakiyo

    1989-01-01

    The interplanetary scintillation (IPS) method using natural radio sources can observe the solar wind near the sun and at high latitudes that have never been accessible to any spacecraft. Therefore, the IPS has been the most powerful method to observe the solar wind in three-dimensional space. Although the IPS method cannot predict when a flare will occur or when a filament will disappear, it can be used to forecast the propagation of interplanetary disturbances and to warn when they will attack the earth. Thus, the IPS method can be used to forecast recurrent interplanetary phenomena as well as transient phenomena. (author)

  4. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada.

    Science.gov (United States)

    Leithead, Mark D; Anand, Madhur; Silva, Lucas C R

    2010-12-01

    Climate change is expected to promote migration of species. In ecotones, areas of ecological tension, disturbances may provide opportunities for some migrating species to establish in otherwise competitive environments. The size of and time since disturbance may determine the establishment ability of these species. We investigated gap dynamics of an old-growth red pine (Pinus resinosa Sol. ex Aiton) forest in the Great Lakes-St. Lawrence forest in northern Ontario, Canada, a transition zone between temperate and boreal forest. We investigated the effects of gaps of different sizes and ages on tree species abundance and basal area. Our results show that tree species from the temperate forest further south, such as red maple (Acer rubrum L.), red oak (Quercus rubra L.), and white pine (Pinus strobus L.), establish more often in large, old gaps; however, tree species that have more northern distributions, such as black spruce (Picea mariana Mill.), paper birch (Betula papyrifera Marsh.), and red pine show no difference in establishment ability with gap size or age. These differences in composition could not be attributed to autogenic succession. We conclude that treefall gaps in this forest facilitate the establishment of northward migrating species, potentially providing a pathway for future forest migration in response to recent changes in climate.

  5. Possible Northward Introgression of a Tropical Lineage of Rhipicephalus sanguineus Ticks at a Site of Emerging Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Villarreal, Zachary; Stephenson, Nicole; Foley, Janet

    2018-06-01

    Increasing rates of Rocky Mountain spotted fever (RMSF) in the southwestern United States and northern Mexico underscore the importance of studying the ecology of the brown dog tick, Rhipicephalus sanguineus, the vector in that region. This species is reported to comprise distinct tropical and temperate lineages that may differ in vectorial capacity for RMSF and are hypothesized to be limited in their geographical range by climatic conditions. In this study, lineage was determined for ticks from 9 locations in California, Arizona, and Mexico by DNA sequencing of 12S, 16S, and D-loop ribosomal RNA. As expected, sites in northern California and eastern Arizona had temperate-lineage ticks, and phylogenetic analysis revealed considerable genetic variability among these temperate-lineage ticks. However, tropical-lineage ticks extended north from Oaxaca, Mexico were well established along the entire border from San Diego, California to western Arizona, and were found as far north as Lytle Creek near Los Angeles, California (a site where both lineages were detected). Far less genetic variability in the tropical lineage despite the large geographical distances is supportive of a hypothesis of rapid northward expansion. Discovery of the tropical lineage north of the identified climatic limitations suggests that more work is needed to characterize this tick's ecology, vectorial capacity, expansion, possible evolution, and response to climate change.

  6. Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions

    Directory of Open Access Journals (Sweden)

    T. D. Phan

    2004-07-01

    Full Text Available On 26 January 2001, the Cluster spacecraft detected high-speed plasma jets at multiple crossings of the high-latitude duskside magnetopause (MP and boundary layer (BL over a period of more than 2h. The 4 spacecraft combined spent more than half of this time in the MP/BL and jets were observed whenever a spacecraft was in the MP. These observations were made under steady southward and dawnward interplanetary magnetic field (IMF conditions. The magnetic shear across the local MP was ~100° and β~1 in the adjacent magnetosheath. The jet velocity is in remarkable agreement with reconnection prediction throughout the entire interval, except for one crossing that had no ion measurements inside the current layer. The flow speed measured in the deHoffmann Teller frame is 90% of the Alfvén speed on average for the 10 complete MP current layer crossings that are resolved by the ion measurements. These findings strongly suggest that reconnection was continuously active for more than two hours. The jets were directed persistently in the same northward and anti-sunward direction, implying that the X-line was always below the spacecraft. This feature is inconsistent with patchy and random reconnection or convecting multiple X-lines. The majority of MP/BL crossings in this two-hour interval were partial crossings, implying that they are caused by bulges sliding along the MP, not by inward-outward motion of a uniformly thin MP/BL. The presence of the bulges suggests that, although reconnection is continuously active under steady IMF conditions, its rate may be modulated. The present investigation also reveals that (1 the predicted ion D-shaped distributions are absent in all reconnection jets on this day, (2 the electric field fluctuations are larger in the reconnecting MP than in the magnetosheath proper, but their amplitudes never exceed 20mV/m, (3 the ion-electron differential motion is ~20km/s for the observed MP current density of ~50nA/m2 (∇× B, thus

  7. Prolonged pregnancy: Methods, Causal Determinants and Outcome

    DEFF Research Database (Denmark)

    Olesen, Annette Wind

    Summary Prolonged pregnancy, defined as a pregnancy with a gestational length of 294 days or more, is a frequent condition. It is associated with an increased risk of fetal and maternal complications. Little is known about the aetiology of prolonged pregnancy. The aims of the thesis were 1......) to study the incidence of prolonged pregnancy as a function of methods for determining gestational age; 2) to determine the risk of obstetrical and fetal complications in prolonged pregnancy; 3) to validate the self-reported gestational age in the National Birth Cohort; 4) to determine whether...... the risk of recurrence of prolonged pregnancy as a function of change in male partner and social conditions (IV). The National Birth Cohort provided data for the study on prenatal risk indicators of prolonged pregnancy in a follow-up design (V). The self-reported gestational ages from this database...

  8. Field-aligned currents and convection patterns in the Southern Polar Cap during stable northward, southward, and azimuthal IMF

    International Nuclear Information System (INIS)

    Papitashvili, V.O.; Belov, B.A.; Gromova, L.I.

    1989-01-01

    Equivalent ionospheric current patterns are derived from ground-based geomagnetic observations for events on 11-12 November 1979 (B/sub z/ >> 0), 24 November 1981 (B/sub z/ > 0) (B/sub y/ >> 0), and 25-26 November 1979 (B/sub y/ 0 . Due to stable external conditions, it is possible to calculate the field-aligned current (FAC) density within cells formed by two adjacent stations by taking into account the uniform conductivity of the summer polar ionosphere. These results completely correspond to regressional analysis of interplanetary magnetic fields (IMF) and ground-based geomagnetic data, and also to satellite observations of the NBZ current system. During stable southward IMF a new result was obtained, a reversal of antisunward convection flow is identified, and an NBZ-like FAC system is restored in the central part of the southern polar cap. The authors conclude that there may be an additional NBZ-like FAC system poleward of -85 0 , which is independent of the IMF and is generated by the quasi-viscous interaction between solar-wind plasma and high-latitude lobes of the magnetospheric tail

  9. Possible mechanism of the interplanetary medium effect on the diurnal rotation rate of the Earth

    International Nuclear Information System (INIS)

    Krymskij, P.F.

    1993-01-01

    Mechanism is proposed for effect of the solar wind and interplanetary magnetic field on the Earth rotation. In the mechanism base is Hall current generation in the plasma layer of the magnetosphere tail

  10. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    Science.gov (United States)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  11. Implementing a Near-Optimal Optical Receiver for Inter-Planetary Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Objective: Interplanetary communications signals are inherently weak at the receiver. In fact, for a desired data rate the received optical pulses may...

  12. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Abraham C.-L.; Loew, Murray H. [Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Feng, Heng Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Hu, Qiang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Miranda, Rodrigo A. [UnB-Gama Campus, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Muñoz, Pablo R. [Department of Physics and Astronomy, University of La Serena, Av. Juan Cisternas 1200, La Serena (Chile); Sibeck, David G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wu, De J., E-mail: abraham.chian@gmail.com [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-12-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  13. On the solar origin of interplanetary disturbances observed in the vicinity of the Earth

    Directory of Open Access Journals (Sweden)

    N. Vilmer

    Full Text Available The solar origin of 40 interplanetary disturbances observed in the vicinity of the Earth between January 1997 and June 1998 is investigated in this paper. Analysis starts with the establishment of a list of Interplanetary Mass Ejections or ICMEs (magnetic clouds, flux ropes and ejecta and of Interplanetary Shocks measured at WIND for the period for which we had previously investigated the coupling of the interplanetary medium with the terrestrial ionospheric response. A search for associated coronal mass ejections (CMEs observed by LASCO/SOHO is then performed, starting from an estimation of the transit time of the inter-planetary perturbation from the Sun to the Earth, assumed to be achieved at a constant speed (i.e. the speed measured at 1 AU. EIT/SOHO and Nançay Radioheliograph (NRH observations are also used as proxies in this identification for the cases when LASCO observations do not allow one to firmly establish the association. The last part of the analysis concerns the identification of the solar source of the CMEs, performed using a large set of solar observations from X-ray to radio wavelengths. In the present study, this association is based on a careful examination of many data sets (EIT, NRH and H images and not on the use of catalogs and of Solar Geophysical Data reports. An association between inter-planetary disturbances and LASCO/CMEs or proxies on the disk is found for 36 interplanetary events. For 32 events, the solar source of activity can also be identified. A large proportion of cases is found to be associated with a flare signature in an active region, not excluding of course the involvement of a filament. Conclusions are finally drawn on the propagation of the disturbances in the interplanetary medium, the preferential association of disturbances detected close to the Earth’s orbit with halos or wide CMEs and the location on the solar disk of solar sources of the interplanetary disturbances during that period

  14. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-01

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  15. An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.

    Science.gov (United States)

    Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.

    2017-12-01

    It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.

  16. Interplanetary medium and geomagnetic activity after compact flare triplets 1966-1981

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Mikerina, N.V.; Pavlov, P.P.

    1986-01-01

    The interplanetary medium state and geomagnetic activity when the Earth is getting into this or that interplanetary disturbance zone after flare triplets, i.e. trains of three solar flares out of an active zone, are considered. There are the following conditionally differentiated zones in the interplanetary disturbance configuration: a forbidden (F), a perturbed (P) and a normal (N) zones of interplanetary disturbance. The interplanetary medium disturbances and geomagnetic activity after trains of three flares of class 2 and higher out of one of active zones depend on the following factors: the magnetic axis orientation of a bipolar group of active zone spots appeared after flares, time interval between the first and second flares in the train, flare intensity. The conditions of maximum disturbance occurrence pointed out. The interplanetary and geomagnetic disturbance intensity in the N zone is higher than that of the F and P zones (i.e. in the proximity of the great circle planes passing through the flares parallel with tha active zone magnetic axes), and it is higher after quasicompact rather than after compact triplets (i.e. it considerably grows when passing over the critical value of the time interval betwenn the first and second triplet flares, τ 12 =16 h)

  17. Recurrent slow slip events as a barrier to the northward rupture propagation of the 2016 Pedernales earthquake (Central Ecuador)

    Science.gov (United States)

    Vaca, Sandro; Vallée, Martin; Nocquet, Jean-Mathieu; Battaglia, Jean; Régnier, Marc

    2018-01-01

    The northern Ecuador segment of the Nazca/South America subduction zone shows spatially heterogeneous interseismic coupling. Two highly coupled zones (0.4° S-0.35° N and 0.8° N-4.0° N) are separated by a low coupled area, hereafter referred to as the Punta Galera-Mompiche Zone (PGMZ). Large interplate earthquakes repeatedly occurred within the coupled zones in 1958 (Mw 7.7) and 1979 (Mw 8.1) for the northern patch and in 1942 (Mw 7.8) and 2016 (Mw 7.8) for the southern patch, while the whole segment is thought to have rupture during the 1906 Mw 8.4-8.8 great earthquake. We find that during the last decade, the PGMZ has experienced regular and frequent seismic swarms. For the best documented sequence (December 2013-January 2014), a joint seismological and geodetic analysis reveals a six-week-long Slow Slip Event (SSE) associated with a seismic swarm. During this period, the microseismicity is organized into families of similar earthquakes spatially and temporally correlated with the evolution of the aseismic slip. The moment release (3.4 × 1018 Nm, Mw 6.3), over a 60 × 40 km area, is considerably larger than the moment released by earthquakes (5.8 × 1015 Nm, Mw 4.4) during the same time period. In 2007-2008, a similar seismic-aseismic episode occurred, with higher magnitudes both for the seismic and aseismic processes. Cross-correlation analyses of the seismic waveforms over a 15 years-long period further suggest a 2-year repeat time for seismic swarms, which also implies that SSEs recurrently affect this area. Such SSEs contribute to release the accumulated stress, likely explaining why the 2016 Pedernales earthquake did not propagate northward into the PGMZ.

  18. Convection and field-aligned currents, related to polar cap arcs, during strongly northward IMF (11 January 1983)

    International Nuclear Information System (INIS)

    Israelevich, P.L.; Podgorny, I.M.; Kuzmin, A.K.; Nikolaeva, N.S.; Dubinin, E.M.

    1988-01-01

    Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10-11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF B y y > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale-correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it. (author)

  19. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the sivash, Ukraine

    Science.gov (United States)

    Verkuil, Yvonne; Koolhaas, Anita; Van Der Winden, Jan

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding depend on wind conditions. In hypersaline lagoons the benthic and pelagic fauna was very poor, consisting mainly of chironomid larvae (0.19 g AFDM·m -2) and brine shrimps Artemia salina, respectively. Brine shrimp abundance was correlated with salinity, wind force, wind direction and water depth. Dunlin Calidris alpina and curlew sandpiper Calidris ferruginea were the only species feeding on brine shrimp. As brine shrimp densities are higher in deeper water, smaller waders such as broad-billed sandpipers Limicola falcinellus are too short-legged to reach exploitable densities of brine shrimp. In brackish lagoons the benthic and pelagic fauna was rich, consisting of polychaetes, bivalves, gastropods, chironomid larvae, isopods and amphipods (8.9 to 30.5 g AFDM·m -2), but there were no brine shrimps. Prey biomass increased with the distance from the coast, being highest on the site that was most frequently inundated. Dunlin, broad-billed sandpiper and grey plover Pluvialis squatarola were the most abundant birds in the brackish lagoon. Due to the effects of wind-tides only a small area was usually available as a feeding site. Gammarus insensibilis was the alternative prey resource in the water layer, and their density varied with wind direction in the same way as brine shrimp. Curlew sandpipers and dunlins in the hypersaline lagoons and broad-billed sandpipers in the brackish lagoons often changed feeding sites, probably following the variation in prey availability. Only because of the large size and variety of lagoons are waders in the Sivash always able to find good feeding sites.

  20. Safety information on QT-interval prolongation

    DEFF Research Database (Denmark)

    Warnier, Miriam J; Holtkamp, Frank A; Rutten, Frans H

    2014-01-01

    Prolongation of the QT interval can predispose to fatal ventricular arrhythmias. Differences in QT-labeling language can result in miscommunication and suboptimal risk mitigation. We systematically compared the phraseology used to communicate on QT-prolonging properties of 144 drugs newly approve...

  1. Risk factors for QTc interval prolongation

    NARCIS (Netherlands)

    Heemskerk, Charlotte P.M.; Pereboom, Marieke; van Stralen, Karlijn; Berger, Florine A.; van den Bemt, Patricia M.L.A.; Kuijper, Aaf F.M.; van der Hoeven, Ruud T M; Mantel-Teeuwisse, Aukje K.; Becker, Matthijs L

    2018-01-01

    Purpose: Prolongation of the QTc interval may result in Torsade de Pointes, a ventricular arrhythmia. Numerous risk factors for QTc interval prolongation have been described, including the use of certain drugs. In clinical practice, there is much debate about the management of the risks involved. In

  2. Prenatal risk indicators of a prolonged pregnancy

    DEFF Research Database (Denmark)

    Olesen, Annette Wind; Westergaard, Jes Grabow; Olsen, Jørn

    2006-01-01

    BACKGROUND: Few prenatal risk factors of prolonged pregnancy, a pregnancy of 42 weeks or more, are known. The objective was to examine whether sociodemographic, reproductive, toxicologic, or medical health conditions were associated with the risk of prolonged pregnancy. METHODS: Data from...

  3. [Brain function recovery after prolonged posttraumatic coma].

    Science.gov (United States)

    Klimash, A V; Zhanaidarov, Z S

    2016-01-01

    To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.

  4. 9. Nuclear power plant service life prolongation

    International Nuclear Information System (INIS)

    Evropin, S.V.

    1998-01-01

    The problem of prolongation of nuclear power plant service life duration is discussed. A schematic diagram of the program developed in the course of activities dealing with NPP service time prolongation is shown and analyzed in details. It is shown that the basic moment when determining the strategy for NPP service time prolongation is the positive confirmation of the agreement between the NPP safety provisions and modern safety requirements. The other very important aspect of the problem is engineering substantiation of the measures assuring the reactor operation prolongation. The conclusion is made that available methods of recovering reactor materials properties, main components repair and replacement, the modern techniques for nondestructive testing of metals and NPP pipelines, as well as the developed approaches to reactor facility safety improvements make the prolongation of the Russian NPP service lifetimes possible from engineering viewpoint and economically desirable

  5. Toroidal Plasma Thruster for Interplanetary and Interstellar Space Flights

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Zakharov, L.E.; Gorelenkova, M.V.

    2001-01-01

    This work involves a conceptual assessment for using the toroidal fusion reactor for deep space interplanetary and interstellar missions. Toroidal thermonuclear fusion reactors, such as tokamaks and stellarators, are unique for space propulsion, allowing for a design with the magnetic configuration localized inside toroidal magnetic field coils. Plasma energetic ions, including charged fusion products, can escape such a closed configuration at certain conditions, a result of the vertical drift in toroidal rippled magnetic field. Escaping particles can be used for direct propulsion (since toroidal drift is directed one way vertically) or to create and heat externally confined plasma, so that the latter can be used for propulsion. Deuterium-tritium fusion neutrons with an energy of 14.1 MeV also can be used for direct propulsion. A special design allows neutrons to escape the shield and the blanket of the tokamak. This provides a direct (partial) conversion of the fusion energy into the directed motion of the propellant. In contrast to other fusion concepts proposed for space propulsion, this concept utilizes the natural drift motion of charged particles out of the closed magnetic field configuration

  6. Physical and chemical characteristics of interplanetary dust particles

    International Nuclear Information System (INIS)

    Gruen, E.

    1981-01-01

    For the first time, the micrometeoroid experiment on board of Helios allowed the measurement of physical and chemical characteristics of interplanetary dust particles between 0.3AU and 1AU solar distance. During the first 10 orbits of Helios 1,235 impacts of micrometeoroids have been detected. 83 particles have been registered by the ecliptic sensor and 152 by the south sensor. Most of the particles detected by the ecliptic sensor had masses 10 -13 g -10 g and impacted the sensor from the apex direction. The particles observed by the south sensor had masses 10 -15 g -9 g and impacted the sensor from all directions with a slightly enhanced flux from solar direction. The average impact speed of particles with masses 10 -13 g -10 g was 15km/s. From 1AU to.3AU, the observed paritcle flux increased by a factor 5-10. The orbits of the registered particles are highly eccentric, e approx. >= 0.6, and some are hyperbolic. The mass spectra measured upon impact allow the classification of chondritic and iron-rich particles. Approx. 20% of the particles had low densities rho 3 . On 4 particles, a positive electric charge has been observed. (orig.) [de

  7. Reference Design for a Simple, Durable and Refuelable Interplanetary Spacecraft

    Science.gov (United States)

    McConnell, B. S.; Tolley, A. M.

    This article describes a reference design for interplanetary vessels, composed mostly of water, that utilize simplified RF engines for low thrust, long duration propulsion, and hydrogen peroxide for short duration, high thrust burns. The electrothermal engines are designed to heat a wide range of liquid materials, possibly also milled solids or surface dusts. The system emphasizes simple components and processes based on older technologies, many well known since the 1960s, that are understandable, can process a variety of materials, and are easily serviced in flight. The goal is to radically simplify systems and their inter-dependencies, to a point where a reasonably skilled person can learn to operate these vessels, not unlike a sailboat, and to eliminate many design and testing bottlenecks in their construction. The use of water, or hydrogen peroxide generated in situ from that water, is multiply advantageous because it can be used for structure, consumption, irrigation, radiation and debris shielding, and thermal regulation, and thus greatly reduce dead weight by creating an almost fully consumable ship. This also enables the ship to utilize a wide range of in situ materials, and eventually obtain reaction mass from lower gravity sites. The ability to switch between low thrust, constant power and high thrust, short duration maneuvers will enable these ships to travel freely and reach many interesting destinations throughout the solar system. One can think of them as “spacecoaches”, not unlike the prairie schooners of the Old West, which were rugged, serviceable by tradesmen, and easily maintained.

  8. Coronal mass ejections and their sheath regions in interplanetary space

    Science.gov (United States)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  9. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    Science.gov (United States)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  10. Shock parameter calculations at weak interplanetary shock waves

    Directory of Open Access Journals (Sweden)

    J. M. Gloag

    2005-02-01

    Full Text Available A large set of interplanetary shock waves observed using the Ulysses spacecraft is analysed in order to determine their local parameters. For the first time a detailed analysis is extended to the thermodynamic properties of a large number of events. The intention is to relate the shock parameters to the requirements set by MHD shock theory. A uniform approach is adopted in the selection of up and downstream regions for this analysis and applied to all the shock waves. Initially, the general case of a 3 component adiabatic plasma is considered. However, the calculation of magnetosonic and Alfvénic Mach numbers and the ratio of downstream to upstream entropy produce some unexpected results. In some cases there is no clear increase in entropy across the shock and also the magnetosonic Mach number can be less than 1. It is found that a more discerning use of data along with an empirical value for the polytropic index can raise the distribution of downstream to upstream entropy ratios to a more acceptable level. However, it is also realised that many of these shocks are at the very weakest end of the spectrum and associated phenomena may also contribute to the explanation of these results.

  11. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  12. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    Science.gov (United States)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  13. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  14. INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA

    International Nuclear Information System (INIS)

    Connick, David E.; Smith, Charles W.; Schwadron, Nathan A.

    2011-01-01

    We examine near-Earth solar wind observations as assembled within the Omni data set over the past 15 years that constitute the latest solar cycle. We show that the interplanetary magnetic field continues to be depleted at low latitudes throughout the protracted solar minimum reaching levels below previously predicted minima. We obtain a rate of flux removal resulting in magnetic field reduction by 0.5 nT yr -1 at 1 AU when averaged over the years 2005-2009 that reduces to 0.3 nT yr -1 for 2007-2009. We show that the flux removal operates on field lines that follow the nominal Parker spiral orientation predicted for open field lines and are largely unassociated with recent ejecta. We argue that the field line reduction can only be accomplished by ongoing reconnection of nominally open field lines or very old closed field lines and we contend that these two interpretations are observationally equivalent and indistinguishable.

  15. Coronal mass ejections and their sheath regions in interplanetary space

    Directory of Open Access Journals (Sweden)

    Emilia Kilpua

    2017-11-01

    Full Text Available Abstract Interplanetary coronal mass ejections (ICMEs are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  16. Laser Technology in Interplanetary Exploration: The Past and the Future

    Science.gov (United States)

    Smith, David E.

    2000-01-01

    Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.

  17. Mass ejections from the solar corona into interplanetary space

    International Nuclear Information System (INIS)

    Hildner, E.

    1977-01-01

    Mass ejections from the corona are common occurrances, as observations with the High Altitude Observatory's white light coronagraph aboard Skylab showed. During 227 days of operation in 1973 and 1974 at least 77 mass ejections were observed and as many more probably occurred unobserved. It is suggested that the frequency of ejections varies with the solar cycle and that ejections may contribute 10 percent or more of the total solar mass efflux to the interplanetary medium at solar maximum. Since ejections are confined to relatively low latitudes, their fractional mass flux contribution is greater near the ecliptic than far from it. From the behavior of ejecta, we can estimate the magnitude of the force driving them through the corona. It is also suggested that loop-shaped ejection - the largest fraction of ejections - are driven, primarily, by magnetic forces. By comparison, gas pressure forces are negligible, and forces due to wave pressure are completely inadequate. That magnetic forces are important is consistent with observation that ejections seem to come, primarily, from regions where the magnetic field is more intense and more complex than elsewhere. Indeed, ejections are associated with phenomena (flares and eruptive prominences) which occur over lines separating regions of opposite polarities. (Auth.)

  18. Prolonged CT urography in duplex kidney.

    Science.gov (United States)

    Gong, Honghan; Gao, Lei; Dai, Xi-Jian; Zhou, Fuqing; Zhang, Ning; Zeng, Xianjun; Jiang, Jian; He, Laichang

    2016-05-13

    Duplex kidney is a common anomaly that is frequently associated with multiple complications. Typical computed tomography urography (CTU) includes four phases (unenhanced, arterial, parenchymal and excretory) and has been suggested to considerably aid in the duplex kidney diagnosi. Unfortunately, regarding duplex kidney with prolonged dilatation, the affected parenchyma and tortuous ureters demonstrate a lack of or delayed excretory opacification. We used prolonged-delay CTU, which consists of another prolonged-delay phase (1- to 72-h delay; mean delay: 24 h) to opacify the duplicated ureters and affected parenchyma. Seventeen patients (9 males and 8 females; age range: 2.5-56 y; mean age: 40.4 y) with duplex kidney were included in this study. Unenhanced scans did not find typical characteristics of duplex kidney, except for irregular perirenal morphology. Duplex kidney could not be confirmed on typical four-phase CTU, whereas it could be easily diagnosed in axial and CT-3D reconstruction using prolonged CTU (prolonged-delay phase). Between January 2005 and October 2010, in this review board-approved study (with waived informed consent), 17 patients (9 males and 8 females; age range: 2.5 ~ 56 y; mean age: 40.4 y) with suspicious duplex kidney underwent prolonged CTU to opacify the duplicated ureters and confirm the diagnosis. Our results suggest the validity of prolonged CTU to aid in the evaluation of the function of the affected parenchyma and in the demonstration of urinary tract malformations.

  19. Licence prolongations of US nuclear power plants

    International Nuclear Information System (INIS)

    2004-04-01

    Licences of US nuclear reactors were initially attributed for a 40 years duration. However, the vast majority of the reactors can benefit of a licence prolongation for a period of 20 years maximum. This article recalls first the procedure to follow for the licence prolongation demands (safety analysis, components aging, environmental impact statement), and then it makes a status of the accepted prolongations, of the demands under examination, and of the demands that should be presented in the next 5 years. (J.S.)

  20. CME Interaction with Coronal Holes and Their Interplanetary Consequences

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.

    2008-01-01

    A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.

  1. The use of various interplanetary scintillation indices within geomagnetic forecasts

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    Full Text Available Interplanetary scintillation (IPS, the twinkling of small angular diameter radio sources, is caused by the interaction of the signal with small-scale plasma irregularities in the solar wind. The technique may be used to sense remotely the near-Earth heliosphere and observations of a sufficiently large number of sources may be used to track large-scale disturbances as they propagate from close to the Sun to the Earth. Therefore, such observations have potential for use within geomagnetic forecasts. We use daily data from the Mullard Radio Astronomy Observatory, made available through the World Data Centre, to test the success of geomagnetic forecasts based on IPS observations. The approach discussed here was based on the reduction of the information in a map to a single number or series of numbers. The advantages of an index of this nature are that it may be produced routinely and that it could ideally forecast both the occurrence and intensity of geomagnetic activity. We start from an index that has already been described in the literature, INDEX35. On the basis of visual examination of the data in a full skymap format modifications were made to the way in which the index was calculated. It was hoped that these would lead to an improvement in its forecasting ability. Here we assess the forecasting potential of the index using the value of the correlation coefficient between daily Ap and the IPS index, with IPS leading by 1 day. We also compare the forecast based on the IPS index with forecasts of Ap currently released by the Space Environment Services Center (SESC. Although we find that the maximum improvement achieved is small, and does not represent a significant advance in forecasting ability, the IPS forecasts at this phase of the solar cycle are of a similar quality to those made by SESC.

  2. Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2010-02-01

    Full Text Available Severe storms (Dst and Forbush decreases (FD during cycle 23 showed that maximum negative Dst magnitudes usually occurred almost simultaneously with the maximum negative values of the Bz component of interplanetary magnetic field B, but the maximum magnitudes of negative Dst and Bz were poorly correlated (+0.28. A parameter Bz(CP was calculated (cumulative partial Bz as sum of the hourly negative values of Bz from the time of start to the maximum negative value. The correlation of negative Dst maximum with Bz(CP was higher (+0.59 as compared to that of Dst with Bz alone (+0.28. When the product of Bz with the solar wind speed V (at the hour of negative Bz maximum was considered, the correlation of negative Dst maximum with VBz was +0.59 and with VBz(CP, 0.71. Thus, including V improved the correlations. However, ground-based Dst values have a considerable contribution from magnetopause currents (several tens of nT, even exceeding 100 nT in very severe storms. When their contribution is subtracted from Dst(nT, the residue Dst* representing true ring current effect is much better correlated with Bz and Bz(CP, but not with VBz or VBz(CP, indicating that these are unimportant parameters and the effect of V is seen only through the solar wind ram pressure causing magnetopause currents. Maximum negative Dst (or Dst* did not occur at the same hour as maximum FD. The time evolutions of Dst and FD were very different. The correlations were almost zero. Basically, negative Dst (or Dst* and FDs are uncorrelated, indicating altogether different mechanism.

  3. Automated trajectory planning for multiple-flyby interplanetary missions

    Science.gov (United States)

    Englander, Jacob

    Many space mission planning problems may be formulated as hybrid optimal control problems (HOCP), i.e. problems that include both real-valued variables and categorical variables. In interplanetary trajectory design problems the categorical variables will typically specify the sequence of planets at which to perform flybys, and the real-valued variables will represent the launch date, ight times between planets, magnitudes and directions of thrust, flyby altitudes, etc. The contribution of this work is a framework for the autonomous optimization of multiple-flyby interplanetary trajectories. The trajectory design problem is converted into a HOCP with two nested loops: an "outer-loop" that finds the sequence of flybys and an "inner-loop" that optimizes the trajectory for each candidate yby sequence. The problem of choosing a sequence of flybys is posed as an integer programming problem and solved using a genetic algorithm (GA). This is an especially difficult problem to solve because GAs normally operate on a fixed-length set of decision variables. Since in interplanetary trajectory design the number of flyby maneuvers is not known a priori, it was necessary to devise a method of parameterizing the problem such that the GA can evolve a variable-length sequence of flybys. A novel "null gene" transcription was developed to meet this need. Then, for each candidate sequence of flybys, a trajectory must be found that visits each of the flyby targets and arrives at the final destination while optimizing some cost metric, such as minimizing ▵v or maximizing the final mass of the spacecraft. Three different classes of trajectory are described in this work, each of which requireda different physical model and optimization method. The choice of a trajectory model and optimization method is especially challenging because of the nature of the hybrid optimal control problem. Because the trajectory optimization problem is generated in real time by the outer-loop, the inner

  4. Prolonged delirium misdiagnosed as a mood disorder.

    Science.gov (United States)

    Cao, Fei; Salem, Haitham; Nagpal, Caesa; Teixeira, Antonio L

    2017-01-01

    Delirium can be conceptualized as an acute decline in cognitive function that typically lasts from hours to a few days. Prolonged delirium can also affect patients with multiple predisposing and/or precipitating factors. In clinical practice, prolonged delirium is often unrecognized, and can be misdiagnosed as other psychiatric disorders. We describe a case of a 59-year-old male presenting with behavioral and cognitive symptoms that was first misdiagnosed as a mood disorder in a general hospital setting. After prolonged delirium due to multiple factors was confirmed, the patient was treated accordingly with symptomatic management. He evolved with progressive improvement of his clinical status. Early diagnosis and management of prolonged delirium are important to improve patient prognosis and avoid iatrogenic measures.

  5. QT Prolongation due to Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Zain Kulairi

    2017-01-01

    Full Text Available Hyperthyroidism is a highly prevalent disease affecting over 4 million people in the US. The disease is associated with many cardiac complications including atrial fibrillation and also less commonly with ventricular tachycardia and fibrillation. Many cardiac pathologies have been extensively studied; however, the relationship between hyperthyroidism and rate of ventricular repolarization manifesting as a prolonged QTc interval is not well known. Prolonged QTc interval regardless of thyroid status is a risk factor for cardiovascular mortality and life-threatening ventricular arrhythmia. The mechanism regarding the prolongation of the QT interval in a hyperthyroid patient has not been extensively investigated although its clinical implications are relevant. Herein, we describe a case of prolonged QTc in a patient who presented with signs of hyperthyroidism that was corrected with return to euthyroid status.

  6. Prolonged parenteral nutrition after neonatal gastrointestinal surgery

    DEFF Research Database (Denmark)

    Estmann, Anne; Qvist, Niels; Husby, Steffen

    2002-01-01

    to diagnosis and clinical course. METHODOLOGY: This study reviews the clinical course of infants with gastrointestinal disease (gastroschisis, intestinal atresia, omphalocele, volvulus, Hirschsprung's disease and necrotizing enterocolitis) with a prolonged need for parenteral nutrition in the Western part...

  7. Prolonged Pregnancy: Methods, Causal Determinants and Outcome

    DEFF Research Database (Denmark)

    Olesen, Annette Wind

    ) to study the incidence of prolonged pregnancy as a function of methods for determining gestational age; 2) to determine the risk of obstetrical and fetal complications in prolonged pregnancy; 3) to validate the self-reported gestational age in the National Birth Cohort; 4) to determine whether...... an ultrasound scan in the first or second trimester, or menstrual history was best at predicting the day of delivery; 5) to study the risk of recurrence of prolonged pregnancy as a function of change in male partner, social status and municipality; and 6) to detect prenatal risk indicators of prolonged...... of perinatal and obstetrical complications was high in post-term delivery compared to term delivery (OR between 1.2 and 3.1). The risk of perinatal death (OR=1.36 (1.08-1.72)) was also higher in the post-term group (I). The self-reported gestational ages in the National Birth Cohort correlated well with data...

  8. QT interval prolongation associated with sibutramine treatment

    Science.gov (United States)

    Harrison-Woolrych, Mira; Clark, David W J; Hill, Geraldine R; Rees, Mark I; Skinner, Jonathan R

    2006-01-01

    Aims To investigate a possible association of sibutramine with QT interval prolongation. Methods Post-marketing surveillance using prescription event monitoring in the New Zealand Intensive Medicines Monitoring Programme (IMMP) identified a case of QT prolongation and associated cardiac arrest in a patient taking sibutramine for 25 days. This patient was further investigated, including genotyping for long QT syndrome. Other IMMP case reports suggesting arrhythmias associated with sibutramine were assessed and further reports were obtained from the World Health Organisation (WHO) adverse drug reactions database. Results The index case displayed a novel mutation in a cardiac potassium channel subunit gene, KCNQ1, which is likely to prolong cardiac membrane depolarization and increase susceptibility to long QT intervals. Assessment of further IMMP reports identified five additional patients who experienced palpitations associated with syncope or presyncopal symptoms, one of whom had a QTc at the upper limit of normal. Assessment of reports from the WHO database identified three reports of QT prolongation and one fatal case of torsade de pointes in a patient also taking cisapride. Conclusions This case series suggests that sibutramine may be associated with QT prolongation and related dysrhythmias. Further studies are required, but in the meantime we would recommend that sibutramine should be avoided in patients with long QT syndrome and in patients taking other medicines that may prolong the QT interval. PMID:16542208

  9. Quality of drug label information on QT interval prolongation

    DEFF Research Database (Denmark)

    Warnier, Miriam J; Holtkamp, Frank A; Rutten, Frans H

    2014-01-01

    BACKGROUND: Information regarding QT-prolongation in the drug label may vary between products. This could lead to suboptimal risk minimization strategies. OBJECTIVE: To systematically assess the variation in the extent and content of information on QT prolongation in the summary of product......-prolongation'/'QT-prolongation') and the advice on cautionary measures pertaining to QT-prolongation in the label were examined, as well as their association. RESULTS: Of the 175 screened products, 44 contained information on QT in the SPC ('no QT-prolongation': 23%, 'unclear drug-QT association': 43%, 'possibly QT-prolongation': 16%, 'QT......-prolongation': 18%). 62% contained advices to act with caution in patients with additional risk factors for QT-prolongation. Products that more likely to have QT-prolonging properties according to the SPC provided more information on QT-prolongation in the SPC ('no prolongation': 10% and for the category 'QT...

  10. IPS observations of transient interplanetary phenomena associated with solar filament activity in late august

    International Nuclear Information System (INIS)

    Watanabe, Takashi; Marubashi, Katsuhide.

    1985-01-01

    Large-scale structures of the solar wind plasma during the severe geomagnetic storm of August 27-29, 1978 are studied on the basis of IPS and spacecraft observations. Three-dimensional configuration of an interplanetary disturbance which caused the SSC of August 27, 1978 was an oblate sphere having an axial ratio of 1.7. Approximate excess mass and kinetic energy contained within the high-speed portion of the disturbance (--500 km s -1 ) were 10 16 g and 3 x 10 31 erg, respectively. An interplanetary disturbance was also observed on August 28, 1978 during the main phase of the geomagnetic storm. It is suggested that the solar-filament activity which took place near the solar disk center in August 23-25, 1978 caused these interplanetary disturbances. (author)

  11. Study of interplanetary hydrogen from Lyman alpha emission and absorption determination

    International Nuclear Information System (INIS)

    Cazes, Serge.

    1979-09-01

    The purpose of the work submitted in this paper is to contribute to the study of interplanetary hydrogen from Lyman alpha emission and absorption measurements, carried out on board the D2A, OSO-8 and Copernicus satellites. This study, which was undertaken from the D2A satellite, moved us to study the interplanetary environment as from observations made from the following experiments placed on board the OSO-8 and Copernicus satellites. The experiment set up on board the OSO-8 satellite made it possible to obtain the profile of the solar alpha Lyman emission. An absorption profile was observed for the first time on these profiles and this made it possible to attribute them to interplanetary hydrogen and enabled us to make a direct and local determination of the solar ionization rate. - The spectrometer set up on board Copernicus made it possible to obtain the emission spectrum of the interplanetary environment at the same time as the geocorona. The overall velocity of the interplanetary environment was deduced from the Doppler shift between the two spectra. In the first part, the principle of the REA and POLAR experiments is recalled but only the REA experiment is described in detail, particularly the problems arising from the construction and calibration of the cell. In the second part, a study of the interplanetary environment made from the D2A determinations is presented in synthesized form. On the other hand, the study to which theses initial results led us is presented in detail. Finally, in the third part, the results obtained by means of the OSO-8 and Copernicus satellites are given [fr

  12. Dependence of the amount of open magnetic flux on the direction of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Akasofu, S.I.; Ahn, B.H.

    1980-01-01

    The power generated by the solar wind-magnetosphere dynamo is proportional to the amount of the open magnetic flux phi. It is difficult to use this fact in determining observationally the dependence of phi on the orientation of the interplanetary magnetic field vector. It is shown that, for a simple vacuum superposition of the earth's dipole field and a uniform magnetic field, PHI is very closely proportional to sin(theta/2) for a wide range of the intensity of the uniform field, where theta denotes the polar angle of the interplanetary magnetic field vector in the Y-Z plane of solar-magnetospheric coordinates. (author)

  13. Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3

    International Nuclear Information System (INIS)

    Stansberry, J.A.; Gosling, J.T.; Thomsen, M.F.; Bame, S.J.; Smith, E.J.

    1988-01-01

    A statistical survey of interplanetary magnetic field orientations associated with bidirectional electron heat fluxes observed at ISEE 3 in orbit about the Sunward Lagrange point indicates that magnetic connection of the spacecraft to the Earth's bow shock was frequently the source of the bidirectionality. When the interplanetary magnetic field was oriented within 5 0 of the Earth-spacecraft line, backstreaming electrons from the bow shock were clearly observed approximately 18% of the time, and connections apparently occurred for angles as large as ∼30 0 --35 0 . copyright American Geophysical Union 1988

  14. Machine Learning for Slow but Steady Interplanetary Construction

    Science.gov (United States)

    Agogino, Adrian

    2017-01-01

    For prolonged manned missions to destinations such as the moon and Mars, there is a need for significant infrastructure construction ahead of time, such as habitats and landing pads. Unfortunately we have little experience in remote construction and using conventional methods is likely to be expensive, cumbersome and unreliable. Fortunately these challenges may be overcome by taking advantage of the long lead time for such missions and using teams of small and slow construction robots. We propose using teams of simple autonomous robots for this purpose that would perform continuous construction over a period of many years or even decades. While individual robot reliability will be low over such long time frames, system reliability will be maintained by using machine learning over simulations to achieve coordination and reconfigurations in the event of lost robots.

  15. The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka Event

    Science.gov (United States)

    Tegzes, A. D.; Jansen, E.; Telford, R. J.

    2014-02-01

    The so-called "8.2 ka Event" has been widely regarded as a major climate perturbation over the Holocene. It is most readily identifiable in the oxygen-isotope records from Greenland ice cores as an approximately 160 yr-long cold interval between 8250-8090 yr BP. The prevailing view has been that the cooling over Greenland, and potentially over the northern North Atlantic at least, was triggered by the catastrophic final drainage of the Agassiz-Ojibway proglacial lake as part of the remnant Laurentide Ice Sheet collapsed over Hudson Bay at around 8420 ± 80 yr BP. The consequent freshening of surface waters in the northern North Atlantic Ocean and the Nordic Seas resulted in weaker overturning, hence reduced northward heat transport. Here we present proxy records from site JM97-MD95-2011 on the mid-Norwegian Margin indicating a (sharp) decline in the strength of the eastern branch of the Atlantic Inflow into the Nordic Seas immediately following a uniquely large drop in (sub)surface ocean temperatures coeval with the lake outbursts. We propose that the final drainage of Lake Agassiz-Ojibway was accompanied by a major iceberg discharge from Hudson Bay, which resulted in the cooling of the northward-directed northern Gulf Stream-North Atlantic Drift-Norwegian Atlantic Current system. Since our current-strength proxy records from the mid-Norwegian Margin do not evidence an exceptionally strong reduction in the main branch of the Atlantic Inflow into the Nordic Seas at the time, we argue that a chilled northward-directed (sub)surface-current system and an already colder background climate state could be the main factors responsible for the 8.2 ka climate perturbation.

  16. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a south European estuary: improved feeding conditions for northward migrants.

    Directory of Open Access Journals (Sweden)

    Ricardo C Martins

    Full Text Available During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing, mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East

  17. DECLINE AND RECOVERY OF THE INTERPLANETARY MAGNETIC FIELD DURING THE PROTRACTED SOLAR MINIMUM

    International Nuclear Information System (INIS)

    Smith, Charles W.; Schwadron, Nathan A.; DeForest, Craig E.

    2013-01-01

    The interplanetary magnetic field (IMF) is determined by the amount of solar magnetic flux that passes through the top of the solar corona into the heliosphere, and by the dynamical evolution of that flux. Recently, it has been argued that the total flux of the IMF evolves over the solar cycle due to a combination of flux that extends well outside of 1 AU and is associated with the solar wind, and additionally, transient flux associated with coronal mass ejections (CMEs). In addition to the CME eruption rate, there are three fundamental processes involving conversion of magnetic flux (from transient to wind-associated), disconnection, and interchange reconnection that control the levels of each form of magnetic flux in the interplanetary medium. This is distinct from some earlier models in which the wind-associated component remains steady across the solar cycle. We apply the model of Schwadron et al. that quantifies the sources, interchange, and losses of magnetic flux to 50 yr of interplanetary data as represented by the Omni2 data set using the sunspot number as a proxy for the CME eruption rate. We do justify the use of that proxy substitution. We find very good agreement between the predicted and observed interplanetary magnetic flux. In the absence of sufficient CME eruptions, the IMF falls on the timescale of ∼6 yr. A key result is that rising toroidal flux resulting from CME eruption predates the increase in wind-associated IMF

  18. Nonlinear generation of the fundamental radiation of interplanetary type III radio bursts

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Alves, M.V.

    1988-01-01

    A new generation mechanism of interplanetary type III radio bursts at the fundamental electron plasma frequency is discussed. It is shown that the electromagnetic oscillating two-stream instability, driven by two oppositely propagating Langmuir waves, can account for the experimental observations. In particular, the major difficulties encountered by the previously considered electromagnetic decay instability are removed. 19 references

  19. Relation of geomagnetic activity index variations with parameters of interplanetary scintillations

    International Nuclear Information System (INIS)

    Vlasov, V.I.; Shishov, V.I.; Shishova, T.D.

    1985-01-01

    A correlation between the Asub(p)-index of geomagnetic activity, index of interplanetary scintillations and solar wind velocity, has been considered depending on the spatial position of the interplanetary plasma (IPP) regions under study. It is shown, that the scintillation index can be used to forecast the geomagnetic activity, whereas the solar wind velocity can not be used for the purpose. Heliolongitudinal dependence of geoeffectiveness of IPP sreading perturbations agrees well with their structure in the heliolongitudinal cross section (and, on the whole, with the angular structure and direction of IPP perturbation spread). To use interplanetary scintillations in forecasting the geomagnetic activity (on the level of correlation not below 0.5), the angular distance of the investigated IPP regions relative to the Sun-Earth line on the average should not exceed 30-40 deg. The time of delay between the moments of observation of variations in the scintillation index the time of passage of the corresponding heliocentric distances at an average rate of the interplanetary perturbation spread approximately 500 km/s

  20. Photometric data from some photographs of Mars obtained with the Automatic Interplanetary Station 'Mars 3'

    International Nuclear Information System (INIS)

    Botvinova, V.V.; Bugaenko, O.I.; Koval, I.K.; Narajeva, M.K.; Selivanov, A.S.

    1974-01-01

    The results of detailed photometric treatment of Mars photographs obtained with the Automatic Interplanetary Station 'Mars 3' in three wavelengths are given. Photometric maps of the Martian surface have been constructed; a thin layer observed near the limb has been investigated. (Auth.)

  1. Long-term Regularities in Distribution of Global Solar and Interplanetary Magnetic Fields

    Czech Academy of Sciences Publication Activity Database

    Ambrož, Pavel

    2013-01-01

    Roč. 37, č. 2 (2013), s. 637-642 ISSN 1845-8319. [Hvar Astrophysical Colloquium /12./. Hvar, 03.09.2012-07.09.2012] R&D Projects: GA AV ČR IAA300030808 Institutional support: RVO:67985815 Keywords : interplanetary magnetic field * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  2. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H Component. Rajni Devi Smita Dubey Shailendra Saini Babita Devi Ajay Dhar S. K. Vijay A. K. Gwal. Volume 29 Issue 1-2 March-June 2008 pp 281-286 ...

  3. Convection in the polar ionosphere and the state of the interplanetary medium

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    A model of the continuous distribution of electric fields (E) controlled by parameters of the interplanetary medium has been developed which reproduces all the empirically known types of E distributions. This model is used to calculate the corresponding types of plasma convection in the polar ionosphere, represented by two-, three-, and four-vortex structures.

  4. The measurement of interplanetary scintillations in conditions of strong radio interference

    International Nuclear Information System (INIS)

    Duffett-Smith, P.J.

    1980-01-01

    Observations of interplanetary scintillations (IPS) are often severely limited by interference from man-made transmissions within the receiver pass-band. A new method of measuring IPS is described which can give useful data even in conditions of bad interference. (author)

  5. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    E). We also study the effect of vertical component of interplanetary magnetic field (IMF) on the variation of the magnitude of H component during storm time of April, July and. November 2004. Results show that before sudden storm commencement. (SSC) time magnitude of H component and IMF show smooth variation but.

  6. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  7. Northward subduction-related orogenesis of the southern Altaids: Constraints from structural and metamorphic analysis of the HP/UHP accretionary complex in Chinese southwestern Tianshan, NW China

    Directory of Open Access Journals (Sweden)

    Mark Scheltens

    2015-03-01

    Full Text Available The Chinese Tianshan belt of the southern Altaids has undergone a complicated geological evolution. Different theories have been proposed to explain its evolution and these are still hotly debated. The major subduction polarity and the way of accretion are the main problems. Southward, northward subduction and multiple subduction models have been proposed. This study focuses on the structural geology of two of the main faults in the region, the South Tianshan Fault and the Nikolaev Line. The dip direction in the Muzhaerte valley is southward and lineations all point towards the NW. Two shear sense motions have been observed within both of these fault zones, a sinistral one, and a dextral one, the latter with an age of 236–251 Ma. Structural analyses on the fault zones show that subduction has been northward rather than southward. The two shear sense directions indicate that the Yili block was first dragged along towards the east due to the clockwise rotation of the Tarim block. After the Tarim block stopped rotating, the Yili block still kept going eastward, inducing the dextral shear senses within the fault zones.

  8. SALIVARY ANTIMICROBIAL PROTEIN RESPONSE TO PROLONGED RUNNING

    Directory of Open Access Journals (Sweden)

    Suzanne Schneider

    2013-01-01

    Full Text Available Prolonged exercise may compromise immunity through a reduction of salivary antimicrobial proteins (AMPs. Salivary IgA (IgA has been extensively studied, but little is known about the effect of acute, prolonged exercise on AMPs including lysozyme (Lys and lactoferrin (Lac. Objective: To determine the effect of a 50-km trail race on salivary cortisol (Cort, IgA, Lys, and Lac. Methods: 14 subjects: (6 females, 8 males completed a 50km ultramarathon. Saliva was collected pre, immediately after (post and 1.5 hrs post race ( 1.5. Results: Lac concentration was higher at 1.5 hrs post race compared to post exercise (p0.05. IgA concentration, secretion rate, and IgA/Osm were lower 1.5 hrs post compared to pre race (p<0.05. Cort concentration was higher at post compared to 1.5 (p<0.05, but was unaltered from pre race levels. Subjects finished in 7.81 ± 1.2 hrs. Saliva flow rate did not differ between time points. Saliva Osm increased at post (p<0.05 compared to pre race. Conclusions: The intensity could have been too low to alter Lys and Lac secretion rates and thus, may not be as sensitive as IgA to changes in response to prolonged running. Results expand our understanding of the mucosal immune system and may have implications for predicting illness after prolonged running.

  9. Prolonged displacement may compromise resilience in Eritrean ...

    African Journals Online (AJOL)

    Objective: to assess the impact of prolonged displacement on the resilience of Eritrean mothers. Methods: an adapted SOC scale (short form) was administered. Complementary qualitative data were gathered from study participants' spontaneous reactions to and commentaries on the SOC scale. Results: Displaced ...

  10. Prolonged Cholestatic Jaundice Associated With Flurbiprofen.

    Science.gov (United States)

    Dogan, Serkan; Celikbilek, Mehmet; Demirkan, Kutay; Yilmaz, Semih; Deniz, Kemal; Gursoy, Sebnem; Yucesoy, Mehmet

    2014-08-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely consumed drugs throughout the world for pain relief. Although the adverse effects of NSAIDs to the liver are well known, flurbiprofen-induced liver cholestasis is extremely rare. Herein, we present a patient with prolonged icterus that is associated with the use of flurbiprofen without causing ductopenia. © The Author(s) 2013.

  11. Hippocampal Abnormalities after Prolonged Febrile Convulsions

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available Hippocampal volume and T2 relaxation times were determined in an MRI study of 14 children with prolonged febrile convulsions (PFC who were investigated, 1 within 5 days of a PFC, and 2 at follow-up 4-8 months after the acute study, at the Institute of Child Health, University College, and Great Ormond Street Hospital, London, UK.

  12. Acute Right Ventricular Dysfunction Complicating Prolonged ...

    African Journals Online (AJOL)

    We report a case of transient right ventricular dysfunction associated with prolonged cardiac tamponade, an unusual complication of uncertain etiology. We believe that in this case dynamic coronary flow restriction resulted in ischemic injury and stunning of the right ventricle. Other possible causes are briefly reviewed. Right ...

  13. Observations of the interplanetary sector structure up to heliographic latitudes of 160: Pioneer 11

    International Nuclear Information System (INIS)

    Smith, E.J.; Tsurutani, B.T.; Rosenberg, R.L.

    1978-01-01

    A study of the interplanetary sector structure at heliographic latitudes up to 16 0 N is reported. The study is based on magnetic field measurements made on board Pioneer 11 as the spacecraft traveled along the post-Jupiter-encounter trajectory. Preliminary measurements are used to determine the dominant polarity of the interplanetary magnetic field during 43 successive solar rotations including Pioneer's ascent to its maximum latitude and motion inward from 5 to 3.7 AU. As the latitude of Pioneer increased, the dominant polarity became continually more positive, corresponding to an outward-directed solar interplanetary field. When the spacecraft reached the highest latitude, the usual sector structure had essentially disappeared. A histogram of the field longitude angle, based on data acquired during 1 month at 16 0 latitude, shows an almost total absence of inward-directed fields. A comparison with interplanetary field polarities in the ecliptic, as inferred from geomagnetic field variations, rules out the possibility that a time variation rather than a latitude dependence is responsible. The Pioneer 11 observations imply that the boundary between adjacent sectors corresponds physically to a current sheet surrounding the sun and lying near parallel to the solar equatorial plane. Above this current sheet, in the northern hemisphere, the field polarity at this phase of the solar cycle is outward, and below the current sheet, in the southern hemisphere, it is inward. The Pioneer observations confirm earlier theoretical suggestions regarding the existence and equatorial orientation of this current sheet. The properties of the current sheet and some major implications and questions associated with it are discussed. It is shown that the radial component of the sheet current is compensated by the distributed currents in the northern and southern hemispheres associated with the spiraled interplanetary field

  14. The interaction of a very large interplanetary magnetic cloud with the magnetosphere and with cosmic rays

    International Nuclear Information System (INIS)

    Lepping, R.P.; Burlaga, L.F.; Ogilvie, K.W.; Tsurutani, B.T.; Lazarus, A.J.; Evans, D.S.; Klein, L.W.

    1991-01-01

    A large interplanetary magnetic cloud has been observed in the mid-December 1982 data from ISEE 3. It is estimated to have a heliocentric radial extent of approx-gt 0.4 AU, making it one of the largest magnetic clouds yet observed at 1 AU. The magnetic field measured throughout the main portion of the cloud was fairly tightly confined to a plane as it changed direction by 174 degree while varying only moderately in magnitude. Throughout nearly the entire duration of the cloud's passage, IMP 8 was located in the Earth's dawn magnetosheath providing observations of this cloud's interaction with the bow shock and magnetopause; the cloud is shown to maintain its solar wind characteristics during the interaction. Near the end of the cloud passage, at 0806 UT on December 17, ISEE 3 (and IMP 8 at nearly the same time) observed an oblique fast forward interplanetary shock closely coincident in time with a geomagnetic storm sudden commencement. The shock, moving much faster than the cloud (radial speeds of 700 and 390 km/s, respectively, on the average), was in the process of overtaking the cloud. The index Dst decreased monotonically by ∼ 130 nT during the 2-day cloud passage by the Earth and was well correlated with the B z component of the interplanetary magnetic field. There was no significant decrease in the cosmic ray intensity recorded by ground-based neutron monitors at this time of rather strong, smoothly changing fields. However, a Forbush decrease did occur immediately after the interplanetary shock, during a period of significant field turbulence. Thus a large, smooth, interplanetary helical magnetic field configuration engulfing the Earth does not necessarily deflect cosmic rays sufficiently to cause a Forbush decrease, but there is a suggestion that such a decrease may be caused by particle scattering by turbulent magnetic fields

  15. Prolonged QRS Widening After Aripiprazole Overdose.

    Science.gov (United States)

    Mazer-Amirshahi, Maryann; Porter, Robert; Dewey, Kayla

    2018-05-05

    Aripiprazole is an atypical antipsychotic with a long half-life. Overdose can result in protracted somnolence and cardiac disturbances, particularly QT interval prolongation. This is a single case report of a 14-year-old boy who took an overdose of aripiprazole and developed QRS widening. A 14-year-old boy intentionally ingested 20 tablets of aripiprazole (5 mg). He was brought to the emergency department when his ingestion was discovered. The patient's vital signs were as follows: temperature, 37.7°C; heart rate, 108 beats/min; blood pressure, 138/98 mm Hg; and respirations, 16 breaths/min. Activated charcoal was administered within 90 minutes of ingestion. Initial electrocardiogram (EKG) showed sinus tachycardia, with a QRS of 138 ms and QT interval of 444 ms. QRS duration was 90 ms on an EKG performed 3 months earlier. A bolus of sodium bicarbonate was administered, and the patient was transferred to the pediatric intensive care unit. Repeat EKG demonstrated a QRS of 156 ms, and a sodium bicarbonate infusion was initiated. The patient continued to have QRS prolongation for the next 8 days, reaching a peak of 172 ms 3 days postingestion. Despite aggressive treatment with sodium bicarbonate, there was persistent QRS prolongation; however, the patient did not have any dysrhythmias and remained hemodynamically stable. The patient was discharged 9 days postingestion when the QRS duration normalized to 82 ms. Genetic testing revealed that the patient was a CYP2D6 poor metabolizer. This case suggests that aripiprazole toxicity may possibly be associated with QRS prolongation without associated dysrhythmias or cardiovascular compromise. In addition, toxicity may be prolonged in patients who are CYP2D6 poor metabolizers.

  16. Licence prolongations of US nuclear power plants; Les prolongations de licence des centrales nucleaires americaines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-04-01

    Licences of US nuclear reactors were initially attributed for a 40 years duration. However, the vast majority of the reactors can benefit of a licence prolongation for a period of 20 years maximum. This article recalls first the procedure to follow for the licence prolongation demands (safety analysis, components aging, environmental impact statement), and then it makes a status of the accepted prolongations, of the demands under examination, and of the demands that should be presented in the next 5 years. (J.S.)

  17. Interplanetary Transit Simulations Using the International Space Station

    Science.gov (United States)

    Charles, J. B.; Arya, Maneesh

    2010-01-01

    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  18. Correlation of variations of charged particle fluxes in the flare on 3 November, 1973 with change of parameters of interplanetary medium according to the data of the ''Mars-7'' automatic interplanetary station and ''Prognoz-3'' artificial Earth's satellite

    International Nuclear Information System (INIS)

    Kuzhevskij, B.M.; Mineev, Yu.V.; Savenko, I.A.; Spir'kova, E.S.; Surova, G.M.; ShestopaloV, I.P.

    1979-01-01

    The experimental data on the charged particle fluxes in the flare on the 3d of November, 1973 are analyzed. The experiments were carried out at the ''Prognoz-3'' artificial Earth satellite and ''Mars-7'' automatic interplanetary station with the help of devices recorded Esub(e) >= 30 keV energy electrons, 1 <= Esub(p) <= 5 MeV energy protons and 1-150 MeV energy protons. Presented are the data on variations of the intensity of cosmic ray particles which are compared with the data on interplanetary magnetic fields. The character of proton and electron intensity variations is explained by the change of interplanetary medium parameters. It is supposed that the electron splashes and proton intensity variations recorded at the satellites are conditioned by the sign change of the interplanetary magnetic field

  19. Severe bradycardia and prolonged hypotension in ciguatera.

    Science.gov (United States)

    Chan, Thomas Yan Keung

    2013-06-01

    Ciguatera results when ciguatoxin-contaminated coral reef fish from tropical or subtropical waters are consumed. The clinical features that present in affected persons are mainly gastrointestinal, neurological, general, and much less commonly, cardiovascular. We report the case of a 50-year-old man who developed the characteristic combination of acute gastrointestinal and neurological symptoms after the consumption of an unidentified coral reef fish head. In addition to those symptoms, he developed dizziness, severe bradycardia (46 bpm) and prolonged hypotension, which required the administration of intravenous atropine and over three days of intravenous fluid replacement with dopamine infusion. Patients with ciguatera can develop severe bradycardia and prolonged hypotension. Physicians should recognise the possible cardiovascular complications of ciguatera and promptly initiate treatment with intravenous atropine, intravenous fluid replacement and inotropic therapy if such complications are observed.

  20. Experiment on the diagnostics of the interplanetary and magnetospheric plasma on the ''Venera-11, 12'' automatic interplanetary stations and the ''Prognoz 7'' artificial Earth satellite

    International Nuclear Information System (INIS)

    Vajsberg, O.L.; Gorn, L.S.; Ermolaev, Yu.I.

    1979-01-01

    Solar wind with the Earth magnetosphere are studied. The experiments have been carried out at the ''Venera 11'', ''Venera 12'' automatic interplanetary stations and at the ''Prognoz 7'' artificial satellite of the Earth in 1978-79 with the help of the three identical combined plasma spectrometers. The SCS spectrometer measures the electron, proton and α particle spectra in the energy ranges of 10-200 eV, 250-5000 eV, and 500-10000 eV, respectively. Examples of energy spectra of charged particles are presented. Some characteristics of solar wind and the Earth magnetosphere plasma are discussed

  1. Variation in Definition of Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  2. Prolonged Exposure: a Rapid Treatment for Phobias

    Science.gov (United States)

    Watson, J. P.; Gaind, R.; Marks, I. M.

    1971-01-01

    Ten adult patients with long-standing specific phobias were treated by prolonged continuous exposure to their phobic objects in fantasy and reality without avoidance. All patients were greatly helped by four to five hours' treatment in two or three sessions, and all improved more after practice than after imaginal sessions. The treatment method is more economical and efficient than other methods described so far. PMID:5539135

  3. Global Optimization of Interplanetary Missions with, Hybrid Propulsion, Multi-Stage Spacecraft, Aerocapture, and Planetary Atmospheric Probes

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this IRAD is to expand the capability of Goddard’s interplanetary trajectory preliminary design tool, the Evolutionary Mission Trajectory Generator...

  4. The cause of high-intensity long-duration continuous AE activity (HILDCAAS): interplanetary Alfven wave trains

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Gonzalez, W.D.

    1987-01-01

    It is shown that high intensity (AE > 1,000 nT), long duration (T > 2 d) continuous auroral activity (HILDCAA) events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere. If the stringent requirements for HILDCAA events are relaxed, there are many more AE events of this type. A brief inspection indicates that these are also related to interplanetary Alfvenic fluctuations. We therefore suggest that most auroral activity may be caused by reconnection associated with Alfven waves in the interplanetary medium. (author)

  5. Northward laramide thrusting in the quitovac region, northwestern sonora, mexico: Implications for the juxtaposition of paleoproterozoic basement blocks and the mojave-sonora megashear hypothesis

    Science.gov (United States)

    Iriondo, Alexander; Martínez-Torres, Luis M.; Kunk, Michael J.; Atkinson, William W.; Premo, Wayne R.; McIntosh, William C.

    2005-01-01

    Restoration of 12%–30% Basin and Range extension allows direct interpretation of ductile fabrics associated with a stack of Laramide thrust faults in the Quitovac region in northwestern Sonora. The inferred direction of displacement of these thrusts varies gradually from N63°W to N23°E and is interpreted to represent a clockwise rotation of the direction of Laramide thrusting through time. The thrust faults represent a piggy-back sequence of thrusting propagating north, toward the foreland. The average direction and sense of displacement of the thrusts is N18°W, and the cumulative 45 km of estimated northward-directed displacement corresponds to ∼86% of shortening.Based on geochronological constraints, onset of thrusting in Quitovac occurred sometime between 75 and 61 Ma, whereas cessation occurred at ca. 39 Ma. The presence of Paleocene-Eocene orogenic gold mineralization, spatially associated with thrusting, strengthens our idea that compressional tectonism associated with the Laramide orogeny is a very important and widespread dynamometamorphic event in the region.Similarities in age, kinematics, and structural stratigraphy indicate that the thrusting in the Quitovac region may be equivalent to the Laramide Quitobaquito Thrust in southwestern Arizona. In both areas, thrust faults juxtapose the Paleoproterozoic Caborca and “North America” basement blocks. This juxtaposition was previously proposed as exclusively related to movements along the hypothetical Upper Jurassic Mojave-Sonora megashear. The Laramide northward displacements and clockwise rotations recorded in the Caborca block rocks in Quitovac contradict the southward displacements (∼800 km) and counterclockwise rotations inherent in the left-lateral Upper Jurassic Mojave-Sonora megashear hypothesis. We conclude that if this megashear exists in northwestern Sonora, its trace should be to the southwest of the Quitovac region.

  6. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  7. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust

    Science.gov (United States)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

    2003-01-01

    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  8. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    Science.gov (United States)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  9. Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans

    Science.gov (United States)

    Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos

    2010-08-01

    The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.

  10. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    Science.gov (United States)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  11. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  12. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.

    2016-01-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  13. EVIDENCE OF CONFINEMENT OF SOLAR-ENERGETIC PARTICLES TO INTERPLANETARY MAGNETIC FIELD LINES

    International Nuclear Information System (INIS)

    Chollet, E. E.; Giacalone, J.

    2011-01-01

    We present new observations of solar-energetic particles (SEPs) associated with impulsive solar flares that show evidence for their confinement to interplanetary magnetic field lines. Some SEP events exhibit intermittent intensity dropouts because magnetic field lines filled with and empty of particle flux mix together. The edges of these dropouts are observed to be very sharp, suggesting that particles cannot easily move from a filled to an empty field line in the time available during their transport from the Sun. In this paper, we perform high time-resolution observations of intensity fall-off at the edges of observed SEP dropouts in order to look for signatures of particle motion off field lines. However, the statistical study is dominated by one particularly intense event. The inferred length scale of the intensity decay is comparable to the gyroradii of the particles, suggesting that particles only rarely scatter off magnetic field lines during interplanetary transport.

  14. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    Science.gov (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  15. Evidence of scattering effects on the sizes of interplanetary Type III radio bursts

    Science.gov (United States)

    Steinberg, J. L.; Hoang, S.; Dulk, G. A.

    1985-01-01

    An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.

  16. The VISTA spacecraft: Advantages of ICF [Inertial Confinement Fusion] for interplanetary fusion propulsion applications

    International Nuclear Information System (INIS)

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted

  17. EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2002-09-01

    Full Text Available A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma

  18. On the use of a pulsed nuclear thermal rocket for interplanetary travel

    OpenAIRE

    Arias Montenegro, Francisco Javier

    2016-01-01

    The object of this work is a first assessment of the use of a pulsed nuclear thermal rocket for thrust and specific impulse (Isp) augmentation with particular reference to interplanetary travel. The basis of the novel space propulsion idea is the possibility of working in a bimodal fashion where the classical stationary nuclear thermal rocket (NTR) could be switch on or switch off as a pulsed reactor as desired by the mission planners. It was found that the key factor for Isp augmentation ...

  19. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

    Science.gov (United States)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2011-02-01

    We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/ are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

  20. Coupling coefficient between the Pc3 frequency and the value of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Gul'el'mi, A.V.

    1988-01-01

    Mean value and spread of coupling coefficient g between geomagnetic pulsation Ps3 frequency and interplanetary magnetic field (IMF) value are evaluated according to a set of all measurements described in literature and to additional measurements at Borok observatory (50 hour intervals in January, 1973). Attention is paid to a relatively small spread of g and to a weak g dependence on IMF orientation. The both facts are out of scope of the elementary Ps3 theory

  1. Jovian electron bursts: Correlation with the interplanetary field direction and hydromagnetic waves

    International Nuclear Information System (INIS)

    Smith, E.J.; Tsurutani, B.T.; Chenette, D.L.; Conlon, T.F.; Simpson, J.A.

    1976-01-01

    The bursts of relativistic electrons detected on Pioneer 10 upstream from Jupiter and within 400r/subj/ of the planet have been found to be correlated with the interplanetary magnetic field. In the three examples upon which this study is based, during the month prior to the Pioneer 10 encounter, electrons with energies between 3 and 6 MeV escaping from Jupiter's magnetosphere were observed only when the interplanetary magnetic field was along the Jupiter-spacecraft line. In addition, large-amplitude interplanetary waves with characteristic periods of 10 min were observed and found to be well correlated with intervals during which the field was along the Jupiter-spacecraft line. Abrupt changes in the field away from the preferred direction caused equally abrupt terminations of the waves with an accompanying reduction in the electron flux. These results are consistent with propagation of the electrons from Jupiter to Pioneer along, rather than across, the magnetic field lines. The direction of the interplanetary magnetic field is apparently not affected by the electron bursts or by other particles from Jupiter. The average Parker spiral direction is clear with no enhancement in the Jupiter-spacecraft direction. Two alternative possibilities are considered for the origin of the waves. If they were generated near Jupiter, they would have to propagate to the spacecraft in the whistler mode. The expected attenuation of these waves over distances of several hundred r/subj/ an their long travel times make this explanation unattractive. Alternatively, hydromagnetic wave generation by Jovian charged particles, presumably the relativistic electrons themselves, as they travel upstream, appears to be an attractive explanation

  2. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  3. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  4. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  5. An analysis of interplanetary scintillation as a method of measuring the angular sizes of radio sources

    International Nuclear Information System (INIS)

    Hajivassiliou, C.A.; Duffett-Smith, P.J.

    1990-01-01

    Interplanetary scintillation has been widely used at metre wavelengths for estimating the angular sizes of radio sources in the range 0.1-2.0 arcsec. The estimates are based on observations of either the width of the temporal power spectrum or the shape of the scintillation index-elongation curve. We present a mathematical model of the latter procedure which reveals the biases introduced into an IPS survey as a result of the estimation process. (author)

  6. Prolonged labour as indication for emergency caesarean section

    DEFF Research Database (Denmark)

    Maaløe, Nanna; Sorensen, B L; Onesmo, R

    2012-01-01

    To audit the quality of obstetric management preceding emergency caesarean sections for prolonged labour.......To audit the quality of obstetric management preceding emergency caesarean sections for prolonged labour....

  7. Commercially-driven human interplanetary propulsion systems: Rationale, concept, technology, and performance requirements

    International Nuclear Information System (INIS)

    Williams, C.H.; Borowski, S.K.

    1996-01-01

    Previous studies of human interplanetary missions are largely characterized by long trip times, limited performance capabilities, and enormous costs. Until these missions become dramatically more open-quote open-quote commercial-friendly close-quote close-quote, their funding source and rationale will be restricted to national governments and their political/scientific interests respectively. A rationale is discussed for human interplanetary space exploration predicated on the private sector. Space propulsion system requirements are identified for interplanetary transfer times of no more than a few weeks/months to and between the major outer planets. Nuclear fusion is identified as the minimum requisite space propulsion technology. A conceptual design is described and evolutionary catalyzed-DD to DHe 3 fuel cycles are proposed. Magnetic nozzles for direct thrust generation and quantifying the operational aspects of the energy exchange mechanisms between high energy reaction products and neutral propellants are identified as two of the many key supporting technologies essential to satisfying system performance requirements. Government support of focused, breakthrough technologies is recommended at funding levels appropriate to other ongoing federal research. copyright 1996 American Institute of Physics

  8. Laryngotracheal Injury following Prolonged Endotracheal Intubation

    Directory of Open Access Journals (Sweden)

    J. Mehdizadeh

    2006-07-01

    Full Text Available Background: Prolonged endotracheal intubation is a growing method for supporting ventilation in patients who require intensive care. Despite considerable advancement in endotracheal intubation, this method still has some complications; the most important is laryngo-tracheal injuries. Methods: Over a 2-year period, this retrospective study was conducted on 57 patients with history of prolonged intubation who were referred to the ENT Department of Amir Alam Hospital. For each patient, a complete evaluation including history, physical examination, and direct laryngoscopy and bronchoscopy was done under general anesthesia. Results: Fifty-seven patients (44 male; mean age, 23.014.7 years were studied. Mean intubation period was 15.88 days. The most common presenting symptom was dyspnea (62%. Head trauma was responsible for most cases of intubation (72.4%. The most common types of tracheal and laryngeal lesions were tracheal (56.9% and subglottic (55.2% stenosis, respectively. Mean length of tracheal stenosis was 0.810.83 cm. There was a statistically significant relationship between length of tracheal stenosis and intubation period (P=0.0001 but no relation was observed between tracheal stenosis and age, sex, and etiology of intubation (All P=NS. Among the glottic lesions, inter- arytenoids adhesion was the most common lesion (25.9%. No statistically significant relation was found between glottic and subglottic lesions and age, sex and intubation period (all P=NS. Length of stenosis and intubation period was significantly greater in tracheal/ subglottic lesions than those in glottic/ supraglottic lesions (all P=NS. Conclusion: After prolonged endotracheal intubation, laryngo-tracheal lesions had no relation with patient’s age, sex, and cause of intubation.There was direct relation between length of tracheal stenosis and intubation period. Glottic lesions were more commonly observed in head trauma patients. Lesion length and intubation

  9. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Fauth, A. C.; Kemp, E.; Manganote, E. J. T. [Instituto de Fisica Gleb Wathagin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Leigui de Oliveira, M. A. [Centro de Ciencias Naturais e Humanas da Universidade Federal do ABC, Santo Andre, SP (Brazil); Miranda, P.; Ticona, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA, La Paz Bolivia (United States)

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  10. Topical Drug Formulations for Prolonged Corneal Anesthesia

    Science.gov (United States)

    Wang, Liqiang; Shankarappa, Sahadev A.; Tong, Rong; Ciolino, Joseph B.; Tsui, Jonathan H.; Chiang, Homer H.; Kohane, Daniel S.

    2013-01-01

    Purpose Ocular local anesthetics (OLA’s) currently used in routine clinical practice for corneal anesthesia are short acting and their ability to delay corneal healing makes them unsuitable for long-term use. In this study, we examined the effect on the duration of corneal anesthesia of the site-1 sodium channel blocker tetrodotoxin (TTX), applied with either proparacaine or the chemical permeation enhancer OTAB. The effect of test solutions on corneal healing was also studied. Methods Solutions of TTX, proparacaine, and OTAB, singly or in combination were applied topically to the rat cornea. The blink response, an indirect measure of corneal sensitivity, was recorded using a Cochet-Bonnet esthesiometer, and the duration of corneal anesthesia calculated. The effect of test compounds on the rate of corneal epithelialization was studied in vivo following corneal debridement. Results Combination of TTX and proparacaine resulted in corneal anesthesia that was 8–10 times longer in duration than that from either drug administered alone, while OTAB did not prolong anesthesia. The rate of corneal healing was moderately delayed following co-administration of TTX and proparacaine. Conclusion Co-administration of TTX and proparacaine significantly prolonged corneal anesthesia but in view of delayed corneal re-epithelialization, caution is suggested in use of the combination. PMID:23615270

  11. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 2: A new reconstruction of the interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2013-11-01

    Full Text Available We present a new reconstruction of the interplanetary magnetic field (IMF, B for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a. Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear fit of the form B = χ · (IDV(1d − βα with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010.

  12. Multifactorial QT Interval Prolongation and Takotsubo Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Michael Gysel

    2014-01-01

    Full Text Available A 71-year-old woman collapsed while working as a grocery store cashier. CPR was performed and an AED revealed torsades de pointes (TdP. She was subsequently defibrillated resulting in restoration of sinus rhythm with a QTc interval of 544 msec. Further evaluation revealed a diagnosis of Takotsubo Cardiomyopathy (TCM contributing to the development of a multifactorial acquired long QT syndrome (LQTS. The case highlights the role of TCM as a cause of LQTS in the setting of multiple risk factors including old age, female gender, hypokalemia, and treatment with QT prolonging medications. It also highlights the multifactorial nature of acquired LQTS and lends support to growing evidence of an association with TCM.

  13. Prolonged toxicity from Kambo cleansing ritual.

    Science.gov (United States)

    Li, Kai; Horng, Howard; Lynch, Kara; Smollin, Craig G

    2018-04-02

    Kambo cleanse is a purification, cleansing ritual traditionally performed by South American shaman to confer luck and health to hunters. We report a patient who presented to the emergency department with prolonged symptoms of vomiting, flushing, facial swelling, altered mental status, and agitation requiring chemical restraints, 22 h after a Kambo cleanse. The patient was found with four small, circular, superficial burns to the ankle at the site where the resin was introduced. The cleanse consists of rubbing resin obtained from the secretions of the giant leaf frog (Phyllomedusa bicolor) into superficial wounds to produce intense gastrointestinal symptoms followed by a sensation of increased stamina and strength. The cleanse is now being increasingly performed in Europe and USA.

  14. Bywalled plasma formation in vacuum prolonged channels

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.

    1982-01-01

    To produce homogeneous along the channel length plasma the application of incomplete rate-in surface dielectric discharge for generating the bywalled plasma in prolonged cylindrical channels at a pressure of the residual gas of P approximately 10 -5 Torr is proposed. Experimental set-up consisted of a pulse voltage generator and a plasma channel. The plasma channel was a coaxial system of three tubes inserted into each other. The first outer tube is made of a stainless steel, the second - of a dielectric material, the third - of smallsized stainless steel greed. It is demonstrated that the plasma being formed in the process is sufficiently homogeneous by concentration of the components, by the channel length and azimuth. The length of the experimental channel under investigation was 1.6 m, its diameter amounted 0.05 m. The maximum concentration of electron component was 10 17 m -3

  15. Neurohumoral responses during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Nielsen, Bodil; Blomstrand, Eva

    2003-01-01

    This study examined neurohumoral alterations during prolonged exercise with and without hyperthermia. The cerebral oxygen-to-carbohydrate uptake ratio (O2/CHO = arteriovenous oxygen difference divided by arteriovenous glucose difference plus one-half lactate), the cerebral balances of dopamine......, and the metabolic precursor of serotonin, tryptophan, were evaluated in eight endurance-trained subjects during exercise randomized to be with or without hyperthermia. The core temperature stabilized at 37.9 +/- 0.1 degrees C (mean +/- SE) in the control trial, whereas it increased to 39.7 +/- 0.2 degrees C...... in the hyperthermic trial, with a concomitant increase in perceived exertion (P exercise trials. Both the arterial and jugular venous dopamine levels...

  16. Prolonged grieving after abortion: a descriptive study.

    Science.gov (United States)

    Brown, D; Elkins, T E; Larson, D B

    1993-01-01

    Although flawed by methodological problems, the research literature tends to provide support for the assumption that induced abortion in the 1st trimester is not accompanied by enduring negative psychological sequelae. In cases where such sequelae are reported, the morbidity is attributed to a pre-existing psychiatric condition or circumstances precipitating the choice of abortion. However, detailed descriptive letters from 45 women prepared in response to a request by a pastor of an upper-middle-class Protestant congregation in Florida indicate that prolonged grieving after abortion may be more widespread phenomenon than previously believed. Letter writers ranged in age from 25-60 years; 75% were unmarried at the time of the procedure and 29% aborted before the legalization of abortion in the US. The most frequently cited long-term sequela, especially among those who felt coerced to abort, was a continued feeling of guilt. Fantasies about the aborted fetus was the next most frequently mentioned experience. Half of the letter writers referred to their abortions, as "murder" and 44% voiced regret about their decision to abort. Other long-term effects included depression (44%), feelings of loss (31%), shame (27%), and phobic responses to infants (13%). For 42% of these women, the adverse psychological effects of abortion endured over 10 years. Since letter-writers came from a self-selected population group with a known bias against abortion and only negative experiences were solicited, these experiences must be regarded as subjectives and anecdotal. However, they draw attention to the need for methodologically sound studies of a possible prolonged grief syndrome among a small percentage of women who have abortions, especially when coercion is involved.

  17. Hyalomma ticks on northward migrating birds in southern Spain: Implications for the risk of entry of Crimean-Congo haemorrhagic fever virus to Great Britain.

    Science.gov (United States)

    England, Marion E; Phipps, Paul; Medlock, Jolyon M; Atkinson, Peter M; Atkinson, Barry; Hewson, Roger; Gale, Paul

    2016-06-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a zoonotic virus transmitted by Hyalomma ticks, the immature stages of which may be carried by migratory birds. In this study, a total of 12 Hyalomma ticks were recovered from five of 228 migratory birds trapped in Spring, 2012 in southern Spain along the East Atlantic flyway. All collected ticks tested negative for CCHFV. While most birds had zero Hyalomma ticks, two individuals had four and five ticks each and the statistical distribution of Hyalomma tick counts per bird is over-dispersed compared to the Poisson distribution, demonstrating the need for intensive sampling studies to avoid underestimating the total number of ticks. Rates of tick exchange on migratory birds during their northwards migration will affect the probability that a Hyalomma tick entering Great Britain is positive for CCHFV. Drawing on published data, evidence is presented that the latitude of a European country affects the probability of entry of Hyalomma ticks on wild birds. Further data on Hyalomma infestation rates and tick exchange rates are required along the East Atlantic flyway to further our understanding of the origin of Hyalomma ticks (i.e., Africa or southern Europe) and hence the probability of entry of CCHFV into GB. © 2016 The Society for Vector Ecology.

  18. Prolonged pain and disability are common after rib fractures.

    Science.gov (United States)

    Fabricant, Loic; Ham, Bruce; Mullins, Richard; Mayberry, John

    2013-05-01

    The contribution of rib fractures to prolonged pain and disability may be underappreciated and undertreated. Clinicians are traditionally taught that the pain and disability of rib fractures resolves in 6 to 8 weeks. This study was a prospective observation of 203 patients with rib fractures at a level 1 trauma center. Chest wall pain was evaluated by the McGill Pain Questionnaire (MPQ) pain rating index (PRI) and present pain intensity (PPI). Prolonged pain was defined as a PRI of 8 or more at 2 months after injury. Prolonged disability was defined as a decrease in 1 or more levels of work or functional status at 2 months after injury. Predictors of prolonged pain and disability were determined by multivariate analysis. One hundred forty-five male patients and 58 female patients with a mean injury severity score (ISS) of 20 (range, 1 to 59) had a mean of 5.4 rib fractures (range, 1 to 29). Forty-four (22%) patients had bilateral fractures, 15 (7%) had flail chest, and 92 (45%) had associated injury. One hundred eighty-seven patients were followed 2 months or more. One hundred ten (59%) patients had prolonged chest wall pain and 142 (76%) had prolonged disability. Among 111 patients with isolated rib fractures, 67 (64%) had prolonged chest wall pain and 69 (66%) had prolonged disability. MPQ PPI was predictive of prolonged pain (odds ratio [OR], 1.8; 95% confidence interval [CI], 1.4 to 2.5), and prolonged disability (OR, 2.2; 95% CI, 1.5 to 3.4). The presence of significant associated injuries was predictive of prolonged disability (OR, 5.9; 95% CI, 1.4 to 29). Prolonged chest wall pain is common, and the contribution of rib fractures to disability is greater than traditionally expected. Further investigation into more effective therapies that prevent prolonged pain and disability after rib fractures is needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The Ultimate Destination: Choice of Interplanetary Exploration Path can define Future of Interstellar Spaceflight

    Science.gov (United States)

    Silin, D. V.

    Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the

  20. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  1. An Integrated Tool for Low Thrust Optimal Control Orbit Transfers in Interplanetary Trajectories

    Science.gov (United States)

    Dargent, T.; Martinot, V.

    In the last recent years a significant progress has been made in optimal control orbit transfers using low thrust electrical propulsion for interplanetary missions. The system objective is always the same: decrease the transfer duration and increase the useful satellite mass. The optimum control strategy to perform the minimum time to orbit or the minimum fuel consumption requires the use of sophisticated mathematical tools, most of the time dedicated to a specific mission and therefore hardly reusable. To improve this situation and enable Alcatel Space to perform rather quick trajectory design as requested by mission analysis, we have developed a software tool T-3D dedicated to optimal control orbit transfers which integrates various initial and terminal rendezvous conditions - e.g. fixed arrival time for planet encounter - and engine thrust profiles -e.g. thrust law variation with respect to the distance to the Sun -. This single and quite versatile tool allows to perform analyses like minimum consumption for orbit insertions around a planet from an hyperbolic trajectory, interplanetary orbit transfers, low thrust minimum time multiple revolution orbit transfers, etc… From a mathematical point of view, the software relies on the minimum principle formulation to find the necessary conditions of optimality. The satellite dynamics is a two body model and relies of an equinoctial formulation of the Gauss equation. This choice has been made for numerical purpose and to solve more quickly the two point boundaries values problem. In order to handle the classical problem of co-state variables initialization, problems simpler than the actual one can be solved straight forward by the tool and the values of the co-state variables are kept as first guess for a more complex problem. Finally, a synthesis of the test cases is presented to illustrate the capacities of the tool, mixing examples of interplanetary mission, orbit insertion, multiple revolution orbit transfers

  2. Coronal mass ejections, interplanetary shocks in relation with forbush decreases associated with intense geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Patel, Nand Kumar; Prajapati, Mateswari

    2014-01-01

    Coronal mass ejections (CMEs} are the most energetic solar events in which large amount of solar plasma materials are ejected from the sun into heliosphere, causing major disturbances in solar wind plasma, Interplanetary shocks, Forbush decrease(Fds) in cosmic ray intensity and geomagnetic storms. We have studied Forbush decreases associated with intense geomagnetic storms observed at Oulu super neutron monitor, during the period of May 1998-Dec 2006 with coronal mass ejections (CMEs), X-ray solar flares and interplanetary shocks. We have found that all the (100%) Forbush decreases associated with intense geomagnetic storms are associated with halo and partial halo coronal mass ejections (CMEs). The association rate between halo and partial halo coronal mass ejections are found 96.00%and 04.00% respectively. Most of the Forbush decreases associated with intense geomagnetic storms (96.29%) are associated with X-ray solar flares of different categories . The association rates for X-Class, M-Class, and C- Class X -ray solar flares are found 34.62%, 50.00% and 15.38% respectively .Further we have concluded that majority of the Forbush decrease associated with intense geomagnetic storms are related to interplanetary shocks (92.30 %) and the related shocks are forward shocks. We have found positive co-relation with co-relation co-efficient .7025 between magnitudes of Forbush decreases associated with intense geomagnetic storms and speed of associated coronal mass ejections. Positive co-relation with co-relation co-efficient 0.48 has also been found between magnitudes of intense geomagnetic storms and speed of associated coronal mass ejections.

  3. VIKING EXPANSION NORTHWARDS - MEDIEVAL SOURCES

    NARCIS (Netherlands)

    HOFSTRA, T; SAMPLONIUS, K

    Evidence for Scandinavian activities in the northwestern part of the Barents Sea is scanty; according to the Annals, Svalbaro(i) was discovered in 1194, but the entry refers to Jan Mayen rather than present-day Svalbard/Spitsbergen. By contrast, the southern fringe of the Barents Sea was more than

  4. Interplanetary Trajectory Design for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    Science.gov (United States)

    Merrill, Raymond Gabriel; Qu, Min; Vavrina, Matthew A.; Englander, Jacob A.; Jones, Christopher A.

    2014-01-01

    This paper presents mission performance analysis methods and results for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger NEA. It details the optimization and design of heliocentric low-thrust trajectories to asteroid targets for the ARRM solar electric propulsion spacecraft. Extensive searches were conducted to determine asteroid targets with large pick-up mass potential and potential observation opportunities. Interplanetary trajectory approximations were developed in method based tools for Itokawa, Bennu, 1999 JU3, and 2008 EV5 and were validated by end-to-end integrated trajectories.

  5. The Future of Geomagnetic Storm Predictions: Implications from Recent Solar and Interplanetary Observations

    Science.gov (United States)

    Tsurutani, B. T.; Gonzalez, W. D.

    1995-01-01

    Within the last 7-8 years, there has been a substantial growth in out knowledge of the solar and interplanetary causes of geomagnetic storms at Earth. This review article will not attempt to cover all of the work done during this period. This can be found elsewhere. Our emphasis here will be on recent efforts that expose important, presently unanswered questions that must be addressed and solved before true predictability of storms can be possible. Hopefully, this article will encourage some readers to join this effort and perhaps make major contributions to the field.

  6. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  7. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    International Nuclear Information System (INIS)

    Tuleta, M.; Gabla, L.; Szkarlat, A.

    2005-01-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  8. Interplanetary scintillations of the 3C 279 radiosource from RATAN-600 observations

    International Nuclear Information System (INIS)

    Shishova, T.D.; Mingaliev, M.G.; AN SSSR, Nizhnij Arkhyz. Spetsial'naya Astrofizicheskaya Observatoriya)

    1980-01-01

    In 1976 and 1977 observations of interplanetary scintillations of the 3C 279 radiosource were carred out at the RATAN-600 at centimeter wavelengths. At Lambda=3.9 cm the index of scintillations gets suturated at the distance R approximately equal to 4 Rsub(Sun) from the Sun. The estimation of solar wind velocity is approximately 140 km/s at R=5Rsub(Sun); it grows up to approximately 400 km/s at R approximately equal to 10 Rsub(Sun)

  9. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Tuleta, M.; Gabla, L. [Jagiellonian Univ., Institute of Physics, Cracow (Poland); Szkarlat, A. [Clinical Children' s Hospital of the Jagiellonian Univ., Medical College, Lab. of Microbiology, Cracow (Poland)

    2005-04-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  10. Comparison of 74-MHz interplanetary scintillation and IMP 7 observations of the solar wind during 1973

    Science.gov (United States)

    Coles, W. A.; Harmon, J. K.; Lazarus, A. J.; Sullivan, J. D.

    1978-01-01

    Solar wind velocities measured by earth-orbiting spacecraft are compared with velocities determined from interplanetary scintillation (IPS) observations for 1973, a period when high-velocity streams were prevalent. The spacecraft and IPS velocities agree well in the mean and are highly correlated. No simple model for the distribution of enhanced turbulence within streams is sufficient to explain the velocity comparison results for the entire year. Although a simple proportionality between density fluctuation level and bulk density is consistent with IPS velocities for some periods, some streams appear to have enhanced turbulence in the high-velocity region, where the density is low.

  11. Interplanetary magnetic field associated changes in cosmic ray intensity and geomagnetic field during 1973-75

    International Nuclear Information System (INIS)

    Singh, R.L.; Shukla, J.P.; Shukla, A.K.; Sharma, S.M.; Agrawal, S.P.

    1979-01-01

    The effects of interplanetary magnetic field (IMF) B and its Bsub(z) component on cosmic ray intensity and geomagnetic field variations have been examined for the period 1973-75. It is observed that: (1) B >= 10γ (magnetic blobs) is pre-requisite in producing cosmic ray intensity and geomagnetic field variations of varying magnitudes, (2) the longer existence of magnetic blobs on successive days produces larger decreases in cosmic ray intensity and geomagnetic field and (3) the southward component (Bsub(z)) of IMF generally gives rise to large Asub(p) changes, though it is not effective in producing cosmic ray intensity decreases. (auth.)

  12. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microscope

    Science.gov (United States)

    Bradley, J. P.; Germani, M. S.; Brownlee, D. E.

    1989-01-01

    An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.

  13. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    Science.gov (United States)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  14. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    Science.gov (United States)

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-10-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.

  15. The Inner Magnetosphere Plasma Response to Interplanetary Shocks: Van Allen Probes HOPE Observations

    Science.gov (United States)

    Winter, L. M.; Denton, M.; Ferradas, C.; Henderson, M. G.; Larsen, B.; Reeves, G.; Skoug, R. M.; Thomsen, M. F.

    2017-12-01

    The Van Allen Probes' Helium, Oxygen, Proton, and Electron (HOPE) sensors measure ion and electron populations in the plasmasphere, plasma sheet, and lower-energy ring current, providing unique observations at low energies (0.001-50 keV) and low L-shell (down to 1.5 RE). We use the capabilities of these two spacecraft to probe changes in the low energy particles in response to interplanetary (IP) shocks. We focus on changes in the plasma energies, composition, and pitch angle distributions following IP shocks and storm sudden commencements from 2012-2017 through a comparison of HOPE observations preceding and post shock.

  16. Does UTI cause prolonged jaundice in otherwise well infants?

    Science.gov (United States)

    Chowdhury, Tanzila; Kisat, Hamudi; Tullus, Kjell

    2015-07-01

    The symptoms of urinary tract infections in infants are very non-specific and have historically included prolonged hyperbilirubinaemia. We studied the results of routine urine samples in 319 infants with prolonged jaundice. Convincing findings of UTI was not found in any of these children even if one of them was treated with antibiotics after four consecutive urine cultures with different bacteria. A urine culture might thus not be an appropriate investigation in a child with prolonged jaundice without any other symptoms of UTI. • The symptoms of UTI in infancy are very non-specific. • Old studies suggest that prolonged hyperbilirubinaemia is one such symptom; more modern studies give more conflicting results. What is New: • Our study could not confirm that children with prolonged jaundice have an increased risk of UTI. • Routine urine testing is thus not needed in otherwise healthy infants with prolonged jaundice.

  17. Prolonged response without prolonged chemotherapy: a lesson from PCV chemotherapy in low-grade gliomas

    Science.gov (United States)

    Peyre, Matthieu; Cartalat-Carel, Stéphanie; Meyronet, David; Ricard, Damien; Jouvet, Anne; Pallud, Johan; Mokhtari, Karima; Guyotat, Jacques; Jouanneau, Emmanuel; Sunyach, Marie-Pierre; Frappaz, Didier; Honnorat, Jérôme; Ducray, François

    2010-01-01

    Previous studies with temozolomide suggest that a prolonged duration of chemotherapy is important for treating low-grade gliomas (LGGs). PCV (procarbazine, CCNU, vincristine) chemotherapy has demonstrated efficacy in treating LGGs, but this therapy cannot be used for a prolonged period because of the cumulative toxicity. The aim of the present study was to evaluate the impact of first-line PCV chemotherapy on LGGs growth kinetics. The mean tumor diameter (MTD) of 21 LGGs was measured on serial magnetic resonance images before (n=13), during, and after PCV onset (n=21). During PCV treatment, a decrease in the MTD was observed in all patients. After PCV discontinuation, an ongoing decrease in MTD was observed in 20 of the 21 patients. Median duration of the MTD decrease was 3.4 years (range, 0.8–7.7) after PCV onset and 2.7 years (range, 0–7) after the end of PCV treatment with 60% of LGGs, demonstrating an ongoing and prolonged (>2 years) response despite chemotherapy no longer being administered. According to McDonald's criteria, the rates of partial and minor responses were 5% and 38% at the end of PCV but 38% and 42% at the time of maximal MTD decrease, which occurred after a median period of 3.4 years after PCV onset. These results challenge the idea that a prolonged duration of chemotherapy is necessary for treating LGGs and raise the issue of understanding the mechanisms involved in the persistent tumor volume decrease once chemotherapy is terminated. PMID:20488959

  18. Motion of the sources for type II and type IV radio bursts and flare-associated interplanetary disturbances

    Science.gov (United States)

    Sakurai, K.; Chao, J. K.

    1974-01-01

    Shock waves are indirectly observed as the source of type II radio bursts, whereas magnetic bottles are identified as the source of moving metric type IV radio bursts. The difference between the expansion speeds of these waves and bottles is examined during their generation and propagation near the flare regions. It is shown that, although generated in the explosive phase of flares, the bottles behave quite differently from the waves and that the bottles are generally much slower than the waves. It has been suggested that the waves are related to flare-associated interplanetary disturbances which produce SSC geomagnetic storms. These disturbances may, therefore, be identified as interplanetary shock waves. The relationship among magnetic bottles, shock waves near the sun, and flare-associated disturbances in interplanetary space is briefly discussed.

  19. Fermionic covariant prolongation structure theory for supernonlinear evolution equation

    International Nuclear Information System (INIS)

    Cheng Jipeng; Wang Shikun; Wu Ke; Zhao Weizhong

    2010-01-01

    We investigate the superprincipal bundle and its associated superbundle. The super(nonlinear)connection on the superfiber bundle is constructed. Then by means of the connection theory, we establish the fermionic covariant prolongation structure theory of the supernonlinear evolution equation. In this geometry theory, the fermionic covariant fundamental equations determining the prolongation structure are presented. As an example, the supernonlinear Schroedinger equation is analyzed in the framework of this fermionic covariant prolongation structure theory. We obtain its Lax pairs and Baecklund transformation.

  20. Carbohydrate Dependence During Prolonged, Intense Endurance Exercise.

    Science.gov (United States)

    Hawley, John A; Leckey, Jill J

    2015-11-01

    A major goal of training to improve the performance of prolonged, continuous, endurance events lasting up to 3 h is to promote a range of physiological and metabolic adaptations that permit an athlete to work at both higher absolute and relative power outputs/speeds and delay the onset of fatigue (i.e., a decline in exercise intensity). To meet these goals, competitive endurance athletes undertake a prodigious volume of training, with a large proportion performed at intensities that are close to or faster than race pace and highly dependent on carbohydrate (CHO)-based fuels to sustain rates of muscle energy production [i.e., match rates of adenosine triphosphate (ATP) hydrolysis with rates of resynthesis]. Consequently, to sustain muscle energy reserves and meet the daily demands of training sessions, competitive athletes freely select CHO-rich diets. Despite renewed interest in high-fat, low-CHO diets for endurance sport, fat-rich diets do not improve training capacity or performance, but directly impair rates of muscle glycogenolysis and energy flux, limiting high-intensity ATP production. When highly trained athletes compete in endurance events lasting up to 3 h, CHO-, not fat-based fuels are the predominant fuel for the working muscles and CHO, not fat, availability becomes rate limiting for performance.

  1. Prolonged disengagement from distractors near the hands

    Directory of Open Access Journals (Sweden)

    Daniel B Vatterott

    2013-08-01

    Full Text Available Because items near our hands are often more important than items far from our hands, the brain processes visual items near our hands differently than items far from our hands. Multiple experiments have attributed this processing difference to spatial attention, but the exact mechanism behind how spatial attention near our hands changes is still under investigation. The current experiments sought to differentiate between two of the proposed mechanisms: a prioritization of the space near the hands and a prolonged disengagement of spatial attention near the hands. To differentiate between these two accounts, we used the additional singleton paradigm in which observers searched for a shape singleton among homogenously shaped distractors. On half the trials, one of the distractors was a different color. Both the prioritization and disengagement accounts predict differently colored distractors near the hands will slow target responses more than differently colored distractors far from the hands, but the prioritization account also predicts faster responses to targets near the hands than far from the hands. The disengagement account does not make this prediction, because attention does not need to be disengaged when the target appears near the hand. We found support for the disengagement account: Salient distractors near the hands slowed responses more than those far from the hands, yet observers did not respond faster to targets near the hands.

  2. Relation of the Dsub(st) index to the azimuth component of the interplanetary magnetic field vector during separate storms

    International Nuclear Information System (INIS)

    Kovalevskij, I.V.; Levitin, A.E.; Fedoseeva, M.K.

    1984-01-01

    A relation between the index Dsub(st) and azimuthal component Bsub(y) of interplanetary magnetic field (IMF) vector during several magnetic storms with Dsub(st) > 100nT is discussed. It is established that the relation between Dsub(st) index and Bsub(y) and Esub(z) component of electric interplanetary field (EIF) is closed than the relation between Dsub(st) and Bsub(z) component of IMF and Esub(y) component of EIF. Correlation coefficients of Dsub(st) and Bsub(y) and Esub(z) differ but slightly from each other

  3. A Tree-Ring Based Reconstruction (1725-present) of the Position of the Summer North Atlantic Jet Shows a 20th Century Northward Shift

    Science.gov (United States)

    Trouet, V.; Babst, F.

    2014-12-01

    The position and strength of the Northern Hemisphere polar jet are important modulators of mid-latitude weather extremes and the societal, ecosystem, and economic damage related to them. The position of the North Atlantic jet (NAJ) controls the location of the Atlantic storm track and anomalies in the NAJ position have been related to temperature and precipitation extremes over Europe. In summer, a southern NAJ regime can result in floods in the British Isles (BRIT) and increasing odds of heat waves in the northeastern Mediterranean (NEMED). Variability in the amplitude and speed of the Northern Hemisphere jet stream is hotly debated as a potential mechanism linking recent mid-latitude weather extremes to anthropogenic warming. However, the hypothesis of jet stream variability as a possible mechanism linking Arctic amplification to mid-latitude weather extremes is largely based on data sets with limited temporal extent that do not warrant robust results from a statistical significance perspective. Here, we combined two summer temperature-sensitive tree-ring records from BRIT and NEMED to reconstruct interannual variability in the latitudinal position of the summer NAJ back to 1725. The two well-replicated temperature proxies counter-correlate significantly over the full period and thus illustrate the temperature dipole generated by anomalous NAJ positions. Positive extremes in the NAJ reconstruction correspond to heatwaves recorded in the historical Central England temperature record and negative extremes correspond to reconstructed fire years in Greece. The reconstruction shows a northward shift in the latitudinal NAJ position since the 1930s that is most pronounced in the northern NAJ extremes, suggesting a more frequent occurrence of BRIT hot summers in the 20th century compared to previous centuries.

  4. Interplanetary type II radio bursts and their association with CMEs and flares

    Science.gov (United States)

    Shanmugaraju, A.; Suresh, K.; Vasanth, V.; Selvarani, G.; Umapathy, S.

    2018-06-01

    We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts-flares-CMEs) observed during the period 1997-2012. The present analysis consider only the type II bursts having starting frequency < 14 MHz to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (m) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as m= 1 to 10 and m = 1 to 3. This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.

  5. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  6. Scaling exponents of the velocity structure functions in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    V. Carbone

    Full Text Available We analyze the scaling exponents of the velocity structure functions, obtained from the velocity fluctuations measured in the interplanetary space plasma. Using the expression for the energy transfer rate which seems the most relevant in describing the evolution of the pseudo-energy densities in the interplanetary medium, we introduce an energy cascade model derived from a simple fragmentation process, which takes into account the intermittency effect. In the absence and in the presence of the large-scale magnetic field decorrelation effect the model reduces to the fluid and the hydromagnetic p-model, respectively. We show that the scaling exponents of the q-th power of the velocity structure functions, as obtained by the model in the absence of the decorrelation effect, furnishes the best-fit to the data analyzed from the Voyager 2 velocity field measurements at 8.5 AU. Our results allow us to hypothesize a new kind of scale-similarity for magnetohydrodynamic turbulence when the decorrelation effect is at work, related to the fourth-order velocity structure function.

  7. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2006-03-01

    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  8. Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study

    Science.gov (United States)

    Szabo, Adam; Koval, A

    2008-01-01

    The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.

  9. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    2002-09-01

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  10. Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements

    Directory of Open Access Journals (Sweden)

    A. Canals

    Full Text Available Interplanetary scintillation measurements can yield estimates of a large number of solar wind parameters, including bulk flow speed, variation in bulk velocity along the observing path through the solar wind and random variation in transverse velocity. This last parameter is of particular interest, as it can indicate the flux of low-frequency Alfvén waves, and the dissipation of these waves has been proposed as an acceleration mechanism for the fast solar wind. Analysis of IPS data is, however, a significantly unresolved problem and a variety of a priori assumptions must be made in interpreting the data. Furthermore, the results may be affected by the physical structure of the radio source and by variations in the solar wind along the scintillation ray path. We have used observations of simple point-like radio sources made with EISCAT between 1994 and 1998 to obtain estimates of random transverse velocity in the fast solar wind. The results obtained with various a priori assumptions made in the analysis are compared, and we hope thereby to be able to provide some indication of the reliability of our estimates of random transverse velocity and the variation of this parameter with distance from the Sun.

    Key words. Interplanetary physics (MHD waves and turbulence; solar wind plasma; instruments and techniques

  11. On the equation of transport for cosmic-ray particles in the interplanetary region

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1979-01-01

    Two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region are provided. Both derivations are carried out by using particle position r and time t in a frame of reference fixed in the solar system, and the particle momentum p' is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wing, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r,p',t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. A new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes is also provided. (Auth.)

  12. Electrostatic noise measurement with a pair of spherical probes near interplanetary shocks

    International Nuclear Information System (INIS)

    Solomon, J.; Touzin, F.

    1991-01-01

    In order to obtain accurate measurements of electrostatic noise spectra on board the ISEE 1 satellite, near interplanetary shock waves, the authors perform a detailed theoretical and numerical study of an antenna consisting of a pair of spherical probes. They compute the quasi-thermal electrostatic noise observed theoretically on the antenna by assuming that the solar wind plasma can be properly represented by the sum of two Maxwellian distributions (core and halo). They study the dependence of the electrostatic spectra on the antenna length and on the different plasma parameters, particularly on the density and temperature ratio of the core and of the halo. They show that by also taking into account the instrumental noise and the shot noise on the antenna, a calibration factor can be precisely determined for the antenna that they consider. They display some results obtained from measurements of electrostatic noise spectra behind interplanetary shock waves. Finally, they discuss the real meaning of a specific halo temperature, and they show that, in a first approximation, the theoretical results are only slightly modified when they consider types of distributions other than Maxwellians

  13. Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions

    International Nuclear Information System (INIS)

    Leubner, M.P.

    2004-01-01

    Numerous in situ observations indicate clearly the presence of nonthermal electron and ion structures as ubiquitous and persistent feature in a variety of astrophysical plasma environments. In particular, the detected suprathermal particle populations are accurately represented by the family of κ-distributions, a power-law in particle speed. After clarifying the characteristics of high-energy tail distributions under various space plasma conditions, different generation mechanisms of energetic particles are introduced where numerical simulations of wave-particle interaction based on a Fokker-Planck approach demonstrate how Landau interaction ultimately leads to κ-like distributions. Because of lack of theoretical justification, the use of the analytical form of κ-functions was frequently criticized. It is shown that these distributions turn out as consequence of an entropy generalization favored by nonextensive thermo-statistics, thus providing the missing link for powerlaw models of suprathermal tails from fundamental physics, along with a physical interpretation of the structure parameter κ. Moreover, with regard to the full nonextensive formalism, compatible also with negative values of κ, it is demonstrated that core-halo distribution structures, as observed for instance under typical interplanetary plasma conditions, are a natural content of the pseudo-additive entropy concept. The significance of the complete κ-distribution family with regard to observed core-halo electron and double-humped ion velocity space characteristics is illuminated, where the observed peak separation scale of interplanetary proton distributions is compatible with a maximum entropy condition

  14. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    Science.gov (United States)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  15. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    Science.gov (United States)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  16. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  17. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  18. The structure of plasma-density irregularities in the interplanetary medium

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1975-01-01

    The conflict in the literature as to whether the plasma-density spatial spectrum of the irregularities in the interplanetary medium is of Gaussian or power law form is discussed. Particular attention is paid to the interplanetary scintillation effects ascribed to these irregularities. It is shown that the phase-screen theory of scintillations can be invoked to devise a set of critical tests which provide a means of discriminating between the conflicting hypotheses. Differences in the predicted behaviour of the single sensor temporal spectra of the scintillations for the two irregularity forms provide the main tests of the conflicting hypotheses. However, it is also shown that the two hypotheses lead to different forms of the variation of scintillation index with the observing frequency and the solar elongation of the scintillating source. Consideration is given to the optimum conditions for observing the Fourier and Bessel temporal spectra modulation which is due to the Fresnel filtering of the spatial spectrum. Determination of irregularity shape, orientation and motion in terms of this modulation is also discussed. (author)

  19. Multiple spacecraft observations of interplanetary shocks: characteristics of the upstream ulf turbulence

    International Nuclear Information System (INIS)

    Russell, C.T.; Smith, E.J.; Tsurutani, B.T.; Gosling, J.T.; Bame, S.J.

    1982-01-01

    All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. We invert an overdetermined set of equations to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals we then calculate the Mach number and angle between the interplanetary magnetic field and the shock normal for each shock. These parameters allow us to separate the upstream waves into two classes: whistler-mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right-hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum

  20. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  1. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    International Nuclear Information System (INIS)

    Cane, H.V.; Stone, R.G.

    1984-01-01

    Using the ISEE 3 radio astronomy experiment data we have identified 37 interplanetary type II bursts in the period 1978 September to 1981 December. We lists these events and the associated phenomena. The events are preceded by intense, soft X-ray events with long decay times and type II or type IV bursts, or both, at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range appears as a fast drift radio feature which we refer to as a shock associated radio event. The shock associated event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic soalr particles detected at 1 A.U. are generatd by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast: i.e., velocities greater than 500 km s -1

  2. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Science.gov (United States)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  3. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    Science.gov (United States)

    Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang

    2003-08-01

    The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450

  4. A study of solar and interplanetary parameters of CMEs causing major geomagnetic storms during SC 23

    Directory of Open Access Journals (Sweden)

    C. Oprea

    2013-08-01

    Full Text Available In this paper we analyse 25 Earth-directed and strongly geoeffective interplanetary coronal mass ejections (ICMEs which occurred during solar cycle 23, using data provided by instruments on SOHO (Solar and Heliospheric Observatory, ACE (Advanced Composition Explorer and geomagnetic stations. We also examine the in situ parameters, the energy transfer into magnetosphere, and the geomagnetic indexes. We compare observed travel times with those calculated by observed speeds projected into the plane of the sky and de-projected by a simple model. The best fit was found with the projected speeds. No correlation was found between the importance of a flare and the geomagnetic Dst (disturbance storm time index. By comparing the in situ parameters with the Dst index we find a strong connection between some of these parameters (such as Bz, Bs · V and the energy transfer into the magnetosphere with the strength of the geomagnetic storm. No correlation was found with proton density and plasma temperature. A superposed epoch analysis revealed a strong dependence of the Dst index on the southward component of interplanetary magnetic field, Bz, and to the Akasofu coupling function, which evaluates the energy transfer between the ICME and the magnetosphere. The analysis also showed that the geomagnetic field at higher latitudes is disturbed before the field around the Earth's equator.

  5. Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles into the Magnetosphere

    Science.gov (United States)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2002-01-01

    We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3 He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere.

  6. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.

    Science.gov (United States)

    Smirnova, Olga A; Cucinotta, Francis A

    2018-02-01

    A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can

  7. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki, Helsinki (Finland)

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  8. CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria)

    2016-09-01

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  9. Clockwise rotation and implications for northward drift of the western Transverse Ranges from paleomagnetism of the Piuma Member, Sespe Formation, near Malibu, California

    Science.gov (United States)

    Hillhouse, John W.

    2010-01-01

    New paleomagnetic results from mid-Tertiary sedimentary beds in the Santa Monica Mountains reinforce the evidence for large-scale rotation of the western Transverse Ranges, and anisotropy measurements indicate that compaction-induced inclination flattening may resolve a long-standing controversy regarding the original paleolatitude of the rotated block. Previously published paleomagnetic data indicate that post-Oligocene rotation amounts to 70°–110° clockwise, affecting the Channel Islands, Santa Monica Mountains, and Santa Ynez Mountains. The Sespe Formation near Malibu consists of a lower member dominated by nonmarine sandstone and conglomerate and an upper section, the Piuma Member, which consists of gray-red sandstone and mudstone interbedded with minor tuff and limestone beds. The Piuma Member has a paleomagnetic pole at 36.6°N, 326.7°E (A95min = 5.0°, A95max = 9.6°), obtained by thermal demagnetization of 34 oriented cores from Oligocene and early Miocene beds. After correcting for plunge of the geologic structure, the data are consistent with significant clockwise rotation (77° ± 7°) of the region relative to stable North America. Rotation of the western Transverse Ranges is generally viewed as a consequence of Pacific–North American plate interactions after 28 Ma, when east–west subduction gave way to northwest transform motion in southern California. Inclinations from the Piuma study indicate a paleolatitude anomaly of 11° ± 7° and are consistent with a mean northward drift that exceeds generally accepted San Andreas fault displacement by a factor of 3. However, sedimentary inclination error may accentuate the anomaly. Anisotropy of isothermal remanent magnetization indicates inclination flattening of approximately 8°, and correction for the effect reduces the paleolatitude anomaly to 5.3° ± 5.8°. Compaction may explain the inclination flattening in these sedimentary rocks, but the process does not adequately explain lower

  10. Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ming; Yang, Liping; Liu, Ying D.; Keiji, Hayashi; Li, Huichao [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Davies, Jackie A.; Harrison, Richard A. [RAL Space, STFC-Rutherford Appleton Laboratory, Harwell Campus, Didcot (United Kingdom); Li, Bo; Xia, Lidong, E-mail: mxiong@spacweather.ac.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China)

    2017-07-20

    Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.

  11. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    Science.gov (United States)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  12. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    Science.gov (United States)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  13. How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation

    Science.gov (United States)

    Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.

    2017-12-01

    Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.

  14. Propagation of interplanetary shock waves by observations of type II solar radio bursts on IMP-6

    International Nuclear Information System (INIS)

    Chertok, I.M.; Fomichev, V.V.

    1976-01-01

    A new interpretation of the low frequency type II solar radio bursts of 30 June 1971, and 7-8 August 1972 observed with IMP-6 satellite (Malitson, H.H., Fainberg, J. and Stone, R.G., 1973, Astrophys. Lett., vol. 14, 111; Astrophys. J., vol. 183, L35) is suggested. The analysis is carried out for two models of the electron density distribution in the interplanetary medium taking into account that N approximately 3.5 cm -3 at a distance of 1 a.u. It is assumed that the frequency of the radio emission corresponds to the average electron density behind the shock front which exceeds the undisturbed electron density by the factor of 3. The radio data indicate essential deceleration of the shock waves during propagation from the Sun up to 1 a.u. The characteristics of the shock waves obtained from the type II bursts agree with the results of the in situ observations. (author)

  15. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  16. Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1989-01-01

    The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.

  17. Control of particle precipitation into the middle atmosphere by regular changes of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Bremer, J.

    1987-01-01

    After DUNGEY (1961) negative B Z -components induced by the interplanetary magnetic field (IMF) in the solar-magnetospheric coordinate system should favour precipitation of high energetic particles into the middle atmosphere whereas positive B Z -values should inhibit such precipitation. In high subauroral and auroral latitudes this expected dependence of particle precipitation on IMF structure can be confirmed. In mid-latitudes, however, the most important precipitation events, the so-called aftereffects after strong geomagnetic disturbances, are only partly controlled by IMF sector structure. In particular, during the second part of the aftereffect after the main phase, internal magnetospheric loss processes which seem to be independent of solar sector structure play a dominant role. (author)

  18. Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field.

    Science.gov (United States)

    Martin, R. N.; Belcher, J. W.; Lazarus, A. J.

    1973-01-01

    This paper presents a limited study of the physical nature of abrupt changes in the interplanetary plasma velocity and magnetic field based on 19 day's data from the Pioneer 6 spacecraft. The period was chosen to include a high-velocity solar wind stream and low-velocity wind. Abrupt events were accepted for study if the sum of the energy density in the magnetic field and velocity changes was above a specified minimum. A statistical analysis of the events in the high-velocity solar wind stream shows that Alfvenic changes predominate. This conclusion is independent of whether steady state requirements are imposed on conditions before and after the event. Alfvenic changes do not dominate in the lower-speed wind. This study extends the plasma field evidence for outwardly propagating Alfvenic changes to time scales as small as 1 min (scale lengths on the order of 20,000 km).

  19. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope

    Science.gov (United States)

    Germani, M. S.; Bradley, J. P.; Brownlee, D. E.

    1990-01-01

    A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.

  20. Intensity of low-frequency radiations and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Larkina, V.I.; Likhter, Ya.I.

    1983-01-01

    The data of measurements of ELF/VLF radiations at ''Interkosmos-13'' artificial Earth satellite in auroral latitudes and in the polar cap in the vernal equinox of 1975 are compared with characteristics of interplanetary magnetic field (IMF). The absence of north-south asymmetry of variations of ELF/VLF-radiation Intensity in the outer ionosphere versus the IMF characteristics is noted. The intensity of natural ELF- and VLF-radiations depends in a complex way on parameters of the magnetospheric plasma: composition and concentration of ''cold'' particles, geomagnetic field intensity, properties of energetic particle fluxes. The considered variations in the radiation amplitude versus the IMF characteristics show the predominant role of the sector structure polarity and IMF Bsub(y) component sign

  1. REDEFINING THE BOUNDARIES OF INTERPLANETARY CORONAL MASS EJECTIONS FROM OBSERVATIONS AT THE ECLIPTIC PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A. [Space Research Group—Space Weather, Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares (Spain)

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  2. Effect of the interplanetary magnetic field azimuthal component on dynamics of magnetospheric substorms

    International Nuclear Information System (INIS)

    Troshichev, O.A.; Kotikov, A.L.; Bolotinskaya, B.D.

    1987-01-01

    The effect of azimuthal component of interplanetary magnetic field (IMF) on the dynamics of magnetospheric substorms is considered. The turning of the azimuthal component of IMF from the positive direction to the negative one and, vice versa, negative and positive impulses in B y -component at B z z -component to the North, positive impulses in B z -component, are investigated. The importance of corresponding variations in magnetic activity level is evaluated. It is shown that turning of B y -component from the positive direction to the negative one increases magnetic activity, whereas the reverse transition affects but slightly the level of magnetic activity in the Northern auroral zone. The turning of B z -component to the North also results in the increase of magnetic activity but with a less intensity than in the case of the negative turning in B y -component

  3. Interplanetary outpost the human and technological challenges of exploring the outer planets

    CERN Document Server

    Seedhouse, Erik

    2012-01-01

    Water has been discovered on the Saturnian moon, Enceladus, and on Jupiter's moons, Europa, Ganymede, and Callisto. Where there is water, could there be life? Could this tantalizing possibility result in a manned mission to the outer planets? But how will such a mission be designed, what propulsion system will be used, and what hazards will the crewmembers face? Interplanetary Outpost describes step by step how the mission architecture will evolve, how crews will be selected and trained, and what the mission will entail from launch to landing. It addresses the effects that exteneded duration, radiation, communication, and isolation will have on the human body, and how not only performance but behavior might be affected.

  4. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  5. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  6. Intensity fluctuations of mid-latitude background VLF-noises and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Gorshkov, Yu.N.; Klejmenova, N.G.

    1986-01-01

    Influence of interplanetary magnetic field (IMF) sector structure polarity and also variations of solar wind velocity and density on the intensity of mid-latitude VLF background noises are studied. For analysis continuous observations of VLF radiations in Magadan Observatory (phi=53.7 deg, L=2.7) from November, 1972 to June, 1973 were used. It is shown that IMF sector sign has no sufficient effect on the level of mid-latitude VLF background noises at the frequences f < 4-5 kHz. In magnetoperturbed periods when IMF Bsub(z)-component was directed to the South and the Earth was in the region of high-speed plasma flux, in mid-latitudes abatement of intensity of VLF background noises was seen

  7. On an effect of the interplanetary magnetic field sector structure on the upper Earth's ionosphere

    International Nuclear Information System (INIS)

    Kolomijtsev, O.P.; Livshits, M.A.; Soboleva, T.N.

    1985-01-01

    According to the data from vertical probing stations, changes are studied in the critical frequency and height of the ionosphere F2 layer after the Earth crosses the boundaries of the interplanetary magnetic field (IMF) sectors in the periods of equinox during decreases in the solar activity. A reversal of the IMF sign causes ionospheric effects, which in some cases are comparable, as to the value, with the effects observed in the presence of flares and strong geomagnetic perturbations. The IMF sector sign reversal is a key momentum, stimulating such changes in the Earth's magnetosphere state which result in the rearrangement of the ionosphere structure near the maximum of electron concentration on the planetary scale

  8. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  9. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  10. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  11. The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network

    Science.gov (United States)

    Webb, W. A.

    1978-01-01

    The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.

  12. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    Energy Technology Data Exchange (ETDEWEB)

    Verkhoglyadova, Olga P. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109 (United States); Zank, Gary P.; Li, Gang [Department of Space Science, UAH, Huntsville, AL35899 (United States); Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States)

    2015-02-12

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the “pump mechanism”), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the

  13. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    International Nuclear Information System (INIS)

    Aleon, J; McKeegan, K D; Leshin, L

    2006-01-01

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An 16 O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an 16 O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a 16 O-rich nebula/presolr cloud resulting in a 16 O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to ∼ 3 (micro)m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs

  14. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    International Nuclear Information System (INIS)

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains

  15. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, Bojan [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia); Odstrcil, Dusan [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO (United States)

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  16. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2006-03-01

    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  17. Structures of interplanetary magnetic flux ropes and comparison with their solar sources

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Department of Space Science/CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Dasgupta, B.; Khare, A.; Webb, G. M., E-mail: qh0001@uah.edu, E-mail: qiu@physics.montana.edu [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2014-09-20

    Whether a magnetic flux rope is pre-existing or formed in situ in the Sun's atmosphere, there is little doubt that magnetic reconnection is essential to release the flux rope during its ejection. During this process, the question remains: how does magnetic reconnection change the flux-rope structure? In this work, we continue with the original study of Qiu et al. by using a larger sample of flare-coronal mass ejection (CME)-interplanetary CME (ICME) events to compare properties of ICME/magnetic cloud (MC) flux ropes measured at 1 AU and properties of associated solar progenitors including flares, filaments, and CMEs. In particular, the magnetic field-line twist distribution within interplanetary magnetic flux ropes is systematically derived and examined. Our analysis shows that, similar to what was found before, for most of these events, the amount of twisted flux per AU in MCs is comparable with the total reconnection flux on the Sun, and the sign of the MC helicity is consistent with the sign of the helicity of the solar source region judged from the geometry of post-flare loops. Remarkably, we find that about half of the 18 magnetic flux ropes, most of them associated with erupting filaments, have a nearly uniform and relatively low twist distribution from the axis to the edge, and the majority of the other flux ropes exhibit very high twist near the axis, up to ≳ 5 turns per AU, which decreases toward the edge. The flux ropes are therefore not linearly force-free. We also conduct detailed case studies showing the contrast of two events with distinct twist distribution in MCs as well as different flare and dimming characteristics in solar source regions, and discuss how reconnection geometry reflected in flare morphology may be related to the structure of the flux rope formed on the Sun.

  18. Interplanetary Magnetic Flux Ropes as Agents Connecting Solar Eruptions and Geomagnetic Activities

    Science.gov (United States)

    Marubashi, K.; Cho, K.-S.; Ishibashi, H.

    2017-12-01

    We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.

  19. The Effects of Interplanetary Transport in the Event-intergrated Solar Energetic Particle Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu [Physics and Space Sciences Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2017-02-10

    Previous investigations on the energy spectra of solar energetic particle (SEP) events revealed that the energy spectra observed at 1 au often show double power laws with break energies from one to tens of MeV/nuc. In order to determine whether the double power-law features result from the SEP source or the interplanetary transport process from the Sun to 1 au, we separately analyze the SEP spectra in the decay phase, during which the transport effect is minimum. In this paper, we reported three events observed by the Interplanetary Monitory Platform 8 spacecraft, which occurred on 1977 September 19, November 22, and 1979 March 1. For the first two events, the event-integrated spectra of protons possess double power-law profiles with break energies in a range of several MeV to tens of MeV, while the spectra integrated in the decay (reservoir) phase yield single power laws. Moreover, a general trend from a double power law at the rising phase to a single power law at the decay phase is observed. For the third event, both the event-integrated and the reservoir spectra show double power-law features. However, the difference between the low- and high-energy power-law indices is smaller for the reservoir spectrum than the event-integrated spectrum. These features were reproduced by solving the 1D diffusion equation analytically and we suggest that the transport process, especially the diffusion process, plays an important role in breaking the energy spectra.

  20. Electron heat flux dropouts in the solar wind: Evidence for interplanetary magnetic field reconnection?

    International Nuclear Information System (INIS)

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.; Bame, S.J.; Luhmann, J.G.; Smith, E.J.

    1989-01-01

    Electron heat flux dropout events have been observed in the solar wind using the ISEE 3 plasma electron data set. These events manifest themselves as dropouts of the solar wind halo electrons which are normally found streaming outward along the local magnetic field. These dropouts leave nearly isotropic distributions of solar wind halo electrons, and consequently, the heat flux in these events is reduced to near the observational noise level. We have examined ISEE 3 data from shortly after launch (August 16, 1978) through the end of 1978 and identified 25 such events ranging in duration from 20 min to over 11 hours. Comparison with the ISEE 3 magnetometer data indicates that these intervals nearly always occur in conjunction with large rotations of the interplanetary magnetic field. Statistical analyses of the plasma and magnetic field data for the 25 dropout intervals indicate that heat flux dropouts generally occur in association with high plasma densities low plasma velocities, low ion and electron temperatures, and low magnetic field magnitudes. A second set of 25 intervals chosen specifically to lie at large field rotations, but at times at which not heat flux dropouts were observed, do not show these characteristic plalsma variations. This suggests that the dropout intervals comprise a unique set of events. Since the hot halo electrons normally found streaming outward from the Sun along the interplanetary magnetic field (the solar wind electron heat flux) are a result of direct magnetic connection to the hot solar corona, heat flux dropout intervals may indicate that the spacecraft is sampling plasma regimes which are magnetically disconnected from the Sun and instead are connected to the outer heliosphere at both ends

  1. Stapledon's Interplanetary Man: A Commonwealth of Worlds and the Ultimate Purpose of Space Colonisation

    Science.gov (United States)

    Crawford, Ian A.

    In his 1948 lecture to the British Interplanetary Society Stapledon considered the ultimate purpose of colonising other worlds. Having examined the possible motivations arising from improved scientific knowledge and access to extraterrestrial raw materials, he concludes that the ultimate benefits of space colonisation will be the increased opportunities for developing human (and post-human) diversity, intellectual and aesthetic potential and, especially, `spirituality'. By the latter concept he meant a striving for ``sensitive and intelligent awareness of things in the universe (including persons), and of the universe as a whole.'' A key insight articulated by Stapledon in this lecture was that this should be the aspiration of all human development anyway, with or without space colonisation, but that the latter would greatly increase the scope for such developments. Another key aspect of his vision was the development of a diverse, but connected, `Commonwealth of Worlds' extending throughout the Solar System, and eventually beyond, within which human potential would be maximised. In this paper I analyse Stapledon's vision of space colonisation, and will conclude that his overall conclusions remain sound. However, I will also argue that he was overly utopian in believing that human social and political unity are prerequisites for space exploration (while agreeing that they are desirable objectives in their own right), and that he unnecessarily downplayed the more prosaic scientific and economic motivations which are likely to be key drivers for space exploration (if not colonisation) in the shorter term. Finally, I draw attention to some recent developments in international space policy which, although probably not influenced by Stapledon's work, are nevertheless congruent with his overarching philosophy as outlined in `Interplanetary Man?'.

  2. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Temmer, Manuela; Rollett, Tanja; Möstl, Christian; Veronig, Astrid M.; Vršnak, Bojan; Odstrčil, Dusan

    2011-01-01

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R ☉ , to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  3. Development and Transition of the Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Spann, James F.; Zank, G.

    2014-01-01

    We outline a plan to develop and transition a physics based predictive toolset called The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 Astronomical Units; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements. The described transition plan is based on a well established approach developed in the Earth Science discipline that ensures that the customer has a tool that meets their needs

  4. Prolonged hypothyroidism severely reduces ovarian follicular reserve in adult rats

    NARCIS (Netherlands)

    Meng, Li; Rijntjes, Eddy; Swarts, Hans J.M.; Keijer, Jaap; Teerds, Katja J.

    2017-01-01

    Background: There is substantial evidence both in humans and in animals that a prolonged reduction in plasma thyroid hormone concentration leads to reproductive problems, including disturbed folliculogenesis, impaired ovulation and fertilization rates, miscarriage and pregnancy complications. The

  5. Predictive factors associated with prolonged chest drain production after esophagectomy

    NARCIS (Netherlands)

    Lagarde, S. M.; Omloo, J. M. T.; Ubbink, D. T.; Busch, O. R. C.; Obertop, H.; van Lanschot, J. J. B.

    2007-01-01

    After esophagectomy, pleural drainage is performed to ensure complete drainage of the pleural cavities. The aim of this study was to detect predisposing factors for prolonged drainage. Patients who underwent transhiatal or extended transthoracic esophagectomy for adenocarcinoma of the distal

  6. Prolongation of rapacuronium neuromuscular blockade by clindamycin and magnesium.

    Science.gov (United States)

    Sloan, Paul A; Rasul, Mazhar

    2002-01-01

    We report a prolonged neuromuscular block with the nondepolarizing muscle relaxant rapacuronium in the presence of clindamycin. Even when using "short-acting" muscle relaxants, the anesthesiologist must routinely monitor the neuromuscular function.

  7. Ways to Optimize Therapy of Prolonged Conjugation Jaundice in Infants

    Directory of Open Access Journals (Sweden)

    O.G. Shadrin

    2015-09-01

    Full Text Available The article is devoted to the optimization of the treatment of prolonged conjugation jaundice. Inclusion of ursodeoxycholic acid in the treatment of neonatal prolonged conjugation jaundice in a dose of 15–20 mg/kg of body mass per day increases the terms of regression of clinical and paraclinical signs of jaundice as much as 2 times and leads to cytolysis normalization. The preparation has a sufficient level of safety, there were not revealed side effects whilst its application.

  8. Pharmacometabolomic approach to predict QT prolongation in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Jeonghyeon Park

    Full Text Available Drug-induced torsades de pointes (TdP, a life-threatening arrhythmia associated with prolongation of the QT interval, has been a significant reason for withdrawal of several medicines from the market. Prolongation of the QT interval is considered as the best biomarker for predicting the torsadogenic risk of a new chemical entity. Because of the difficulty assessing the risk for TdP during drug development, we evaluated the metabolic phenotype for predicting QT prolongation induced by sparfloxacin, and elucidated the metabolic pathway related to the QT prolongation. We performed electrocardiography analysis and liquid chromatography-mass spectroscopy-based metabolic profiling of plasma samples obtained from 15 guinea pigs after administration of sparfloxacin at doses of 33.3, 100, and 300 mg/kg. Principal component analysis and partial least squares modelling were conducted to select the metabolites that substantially contributed to the prediction of QT prolongation. QTc increased significantly with increasing dose (r = 0.93. From the PLS analysis, the key metabolites that showed the highest variable importance in the projection values (>1.5 were selected, identified, and used to determine the metabolic network. In particular, cytidine-5'-diphosphate (CDP, deoxycorticosterone, L-aspartic acid and stearic acid were found to be final metabolomic phenotypes for the prediction of QT prolongation. Metabolomic phenotypes for predicting drug-induced QT prolongation of sparfloxacin were developed and can be applied to cardiac toxicity screening of other drugs. In addition, this integrative pharmacometabolomic approach would serve as a good tool for predicting pharmacodynamic or toxicological effects caused by changes in dose.

  9. Solar sources of interplanetary southward B/sub z/ events responsible for major magnetic storms (1978--1979)

    International Nuclear Information System (INIS)

    Tang, F.; Tsurutani, B.T.; Gonzalez, W.D.; Akasofu, S.I.; Smith, E.J.

    1989-01-01

    Tsurutani et al. [1988] analyzed the 10 intense interplanetary southward B/sub z/ events that led to major magnetic storms (Dst 3.0) are associated with prominence eruptions. For three of the five southward B/sub z/ events in which the driver gases are the causes of the intense southward field leading to magnetic storms, the photospheric fields of the solar sources have no dominant southward component, indicating the driver gas fields do not always result from a simple outward convection of solar magnetic fields. Finally we compare the solar events and their resulting interplanetary shocks and find that the standard solar parameters do not correlate with the strengths of the resulting shocks at 1 AU. The implications are discussed. copyright American Geophysical Union 1989

  10. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  11. The Swedish Interplanetary Society (1950-1969) and the formation of IAF and IAA

    Science.gov (United States)

    Ingemar Skoog, A.

    2011-06-01

    With a growing interest for rocket technology and space travel after WW II a number of new "space societies" were formed in the period 1948-1951 in addition to the ones already existing in Germany, the UK and the US since before WW II. Soon came the need for a common international platform for exchange of information and experience, and the concept of an international federation of astronautical societies emerged. Sweden was one of the 8 countries to sign the original declaration to create an International Astronautical Federation on October 2, 1950 in Paris at the 1st International Astronautical Congress. The Swedish Society for Space Research (Svenska Sällskapet för Rymdforskning) was formed a few days after the historical event in Paris. The name was soon to be changed to the Swedish Interplanetary Society (Svenska Interplanetariska Sällskapet, SIS). Sweden was one of the 10 countries to sign the IAF foundation in 1951 in London and in the following year the first Constitution of IAF in Stuttgart. The SIS quickly grow to a membership of several hundred persons and its membership in IAF promoted an intensive exchange of journals, and the annual participation at the IAC gave growth to start study projects on spacecraft and sounding rockets, and the publication of astronautical journals in Swedish. In 1957 the first Swede was elected vice-president of IAF. Not too long after the IAF foundation the idea of an international body of distinguished individuals emerged, in addition to the body of "member societies" (IAF). Upon the initiative of Theodor von Karman, Eugen Sänger and Andrew Haley the IAF council approval of an International Academy of Astronautical was given on August 15, 1960 during the 11th IAC in Stockholm. This IAC in Stockholm gave a large publicity to space research and astronautics in Sweden, and put the activities of the SIS in the focus of the general public. This paper presents the Swedish involvement in the foundation of IAF and IAA. It also

  12. BIRDY - Interplanetary CubeSat for planetary geodesy of Small Solar System Bodies (SSSB).

    Science.gov (United States)

    Hestroffer, D.; Agnan, M.; Segret, B.; Quinsac, G.; Vannitsen, J.; Rosenblatt, P.; Miau, J. J.

    2017-12-01

    We are developing the Birdy concept of a scientific interplanetary CubeSat, for cruise, or proximity operations around a Small body of the Solar System (asteroid, comet, irregular satellite). The scientific aim is to characterise the body's shape, gravity field, and internal structure through imaging and radio-science techniques. Radio-science is now of common use in planetary science (flybys or orbiters) to derive the mass of the scientific target and possibly higher order terms of its gravity field. Its application to a nano-satellite brings the advantage of enabling low orbits that can get closer to the body's surface, hence increasing the SNR for precise orbit determination (POD), with a fully dedicated instrument. Additionally, it can be applied to two or more satellites, on a leading-trailing trajectory, to improve the gravity field determination. However, the application of this technique to CubeSats in deep space, and inter-satellite link has to be proven. Interplanetary CubeSats need to overcome a few challenges before reaching successfully their deep-space objectives: link to ground-segment, energy supply, protection against radiation, etc. Besides, the Birdy CubeSat — as our basis concept — is designed to be accompanying a mothercraft, and relies partly on the main mission for reaching the target, as well as on data-link with the Earth. However, constraints to the mothercraft needs to be reduced, by having the CubeSat as autonomous as possible. In this respect, propulsion and auto-navigation are key aspects, that we are studying in a Birdy-T engineering model. We envisage a 3U size CubeSat with radio link, object-tracker and imaging function, and autonomous ionic propulsion system. We are considering two case studies for autonomous guidance, navigation and control, with autonomous propulsion: in cruise and in proximity, necessitating ΔV up to 2m/s for a total budget of about 50m/s. In addition to the propulsion, in-flight orbit determination (IFOD

  13. Solar discrepancies: Mars exploration and the curious problem of inter-planetary time

    Science.gov (United States)

    Mirmalek, Zara Lenora

    The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support

  14. Post sunset equatorial spread-F at Kwajalein and interplanetary magnetic field

    Science.gov (United States)

    Rastogi, R. G.; Chandra, H.; Janardhan, P.; Reinisch, B. W.; Bisoi, Susanta Kumar

    2017-10-01

    We connect the time sequence of changes in the IMF-Bz to the development of spread-F at an equatorial station Kwajalein on three different nights in November 2004, one during a geomagnetic quiet period and other two during geomagnetic disturbed periods. The chosen days show clear and smooth variations of IMF-Bz without any large fluctuations thereby enabling one to correlate changes in equatorial spread-F with corresponding changes in IMF-Bz. It is shown that a slow and continuous increase in the IMF-Bz over a duration of few hours has a similar effect on the equatorial ionosphere as of a sudden northward turning of the IMF-Bz in causing an electric field through the polar region and then to the equator. We conclude that the Spread-F at equatorial and low latitudes are due to echoes from ionization irregularities that arise due to the plasma instabilities generated by an eastward electric field on the large plasma density gradient in or below the base of the F-layer during any period of the night time along with the gravity driven Rayleigh-Taylor instability.

  15. The Interplanetary Network Supplement to the Fermi GBM Catalog - An AO-2 and AO-3 Guest Investigator Project

    Science.gov (United States)

    Hurley, K.; Briggs, M.; Connaughton, V.; Meegan, C.; von Kienlin, A.; Rau, A.; Zhang, X.; Golenetskii, S.; Aptekar, R.; Mazets, E.; hide

    2012-01-01

    In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations leads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations.

  16. A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation

    OpenAIRE

    Starkey, N. A.; Franchi, I. A.; Alexander, C. M. O'D.

    2013-01-01

    Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at diff...

  17. Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium

    Science.gov (United States)

    Belcher, J. W.; Burchsted, R.

    1974-01-01

    Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.

  18. Acceleration of H, He, and heavy ions observed in the magnetosheath, magnetotail, and near-by interplanetary space

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.; Hovestadt, D.

    1975-01-01

    Pulses of electrons and ions composed of H, He, and heavier elements were observed in the magnetosheath, magnetotail, and near-by interplanetary space. From the spatial positions where these particles were detected and the ion flow directions we conclude that they were accelerated at the bow shock near the sub-solar point and in the near-earth region of the neutral sheet of the magnetotail. (orig.) [de

  19. Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013

    Science.gov (United States)

    Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.

    2013-12-01

    Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.

  20. Relations between turbulent regions of interplanetary magnetic field and Jovian decametric radio wave emissions from the main source

    International Nuclear Information System (INIS)

    Oya, H.; Morioka, A.

    1981-01-01

    Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt. Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKAPPA sub(rho). The dynamic cross-correlation between JDW and ΣKAPPAsubrho indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period. (author)

  1. Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huidong; Liu, Ying D.; Wang, Rui; Zhao, Xiaowei; Zhu, Bei; Yang, Zhongwei, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-10

    We investigate the coronal and interplanetary evolution of a coronal mass ejection (CME) launched on 2010 September 4 from a source region linking two active regions (ARs), 11101 and 11103, using extreme ultraviolet imaging, magnetogram, white-light, and in situ observations from SDO , STEREO , SOHO , VEX , and Wind . A potential-field source-surface model is employed to examine the configuration of the coronal magnetic field surrounding the source region. The graduated cylindrical shell model and a triangulation method are applied to determine the kinematics of the CME in the corona and interplanetary space. From the remote sensing and in situ observations, we obtain some key results: (1) the CME was deflected in both the eastward and southward directions in the low corona by the magnetic pressure from the two ARs, and possibly interacted with another ejection, which caused that the CME arrived at VEX that was longitudinally distant from the source region; (2) although VEX was closer to the Sun, the observed and derived CME arrival times at VEX are not earlier than those at Wind , which suggests the importance of determining both the frontal shape and propagation direction of the CME in interplanetary space; and (3) the ICME was compressed in the radial direction while the longitudinal transverse size was extended.

  2. Women's experiences of becoming a mother after prolonged labour.

    Science.gov (United States)

    Nystedt, Astrid; Högberg, Ulf; Lundman, Berit

    2008-08-01

    This paper is a report of a study to explore women's experiences of becoming a mother after prolonged labour. The negativity associated with a complicated labour such as prolonged labour can lead to a struggle to become a healthy mother and could restrict the process of becoming a mother. Interviews were conducted in 2004 with 10 mothers who had been through a prolonged labour with assisted vaginal or caesarean delivery 1-3 months previously. Thematic content analysis was used. Three themes were formulated, describing women's experiences as fumbling in the dark, struggling for motherhood and achieving confidence in being a mother. The difficulties and suffering involved in becoming a mother after a prolonged labour were interpreted to be like 'fumbling in the dark'. Women experienced bodily fatigue, accompanied by feelings of illness and detachment from the child. Having the child when in this condition entailed a struggle to become a mother. In spite of these experiences and the desire to achieve confidence in being a mother, the reassurance of these women regarding their capacity for motherhood was crucial: it was central to their happiness as mothers, encouraged interaction and relationship with the child, and contributed to their adaptation to motherhood. Women experiencing prolonged labour may be comparable with the experience of and recovery from illness, which could contribute to difficulties transitioning to motherhood and limit a woman's ability to be emotionally available for the child.

  3. Low-latitude active longitudes on the Sun and in interplanetary space

    International Nuclear Information System (INIS)

    Bumba, V.; Hejna, L.

    1991-01-01

    Following a short review of the history of the development of the active longitude concept, several graphs are given of the longitudinal distribution of various low-latitude phenomena of solar activity published by various authors. The inclinations of the active longitudes found were calculated. A summary picture of all these inclinations demonstrates the concentration of such active longitudes into two main directions. Two values of synodic rotation: 26.77 days and 27.16 days, correspond to these two types of low-latitude active longitudes, rotating faster than Carrington's rotation. The summary graph of all active longitudes belonging to these two types shows that active longitudes of different activity phenomena and from different authors overlap to a relatively high degree and that they run at least through three eleven-year cycles. The first of these active longitudes moves around the whole Sun in about 45-55 rotations and the second one in about 200 Carrington's rotations. It is believed that both these low-latitude active longitudes have their reflections in the two main inclinations of the interplanetary magnetic field sector boundaries demonstrated by Svalgaard and Wilcox (1975), their synodic rotations being 26.84 days and 27.14 days. (author). 9 figs., 25 refs

  4. Effects of interplanetary magnetic field and magnetospheric substorm variations on the dayside aurora

    Science.gov (United States)

    Sandholt, P. E.; Egeland, A.; Lybekk, B.; Deehr, C. S.; Sivjee, G. G.; Romick, G. J.

    1983-11-01

    Photometric auroral observations and geomagnetic measurements obtained simultaneously on the dayside in Norway and the nightside in the USSR, Alaska, and Canada are combined with ISEE-1 and 3 data on the interplanetary magnetic field (IMF) to study the relative importance of substorm perturbations and IMF in determining dayside auroral (DA) motion. Ten events from December, 1978, and January and December, 1979, are characterized, the data are presented in tables, illustrated with charts and graphs, and summarized. The equatorward and poleward motion of the DA is correlated with the growth and decay of DP2-mode geomagnetic disturbances and changes in the north-south component of the IMF. Discrete DA forms appear in a region of sunward-convecting field lines. A detailed model of DA motion is developed which explains these phenomena as the result of a direct global response of the magnetospheric electromagnetic state to the solar-wind magnetic field. Using the model, the potential drop, Pedersen current, and Joule heat-dissipation rate of the polar-cap ionosphere are estimated as 125 kV, 800,000 A, and 100 GW, respectively.

  5. Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space

    Science.gov (United States)

    Janches, Diego

    2015-01-01

    The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade.

  6. Prospects of detecting gravitational background radiation by Doppler tracking interplanetary spacecraft

    International Nuclear Information System (INIS)

    Bertotti, B.; Carr, B.J.

    1980-01-01

    We examine the theoretical and experimental prospects of detecting a low-frequency, continuous, stochastic background of gravitational waves by Doppler tracking interplanetary spacecraft. From a theoretical standpoint, such a background may have been generated by various postgalactic processes or by pregalactic black hole formation; there could also exist a primordial background which goes back to the beginning of the universe. We review the characteristic frequency and density ranges which one might anticipate for these backgrounds. From an experimental standpoint, one's ability to detect a background is limited by the finite length of the record available and by an imperfect knowledge of the spectrum of various sources of noise. The fundamental contribution to the noise comes from the clock which regulates the frequency of the tracking waves. If one uses a hydrogen maser clock, this noise becomes progressively less important with decreasing frequency: one might hope to detect a critical density of background radiation at frequencies below 10 -2 Hz and a background with 10 -4 times the critical density at frequencies below 10 -5 Hz. It is encouraging that some of the sorts of background which we anticipate from theoretical considerations fall within the observable regime. We discuss the extent to which other sources of noise may exceed the clock noise and the degree to which they can be eliminated

  7. Energetic protons associated with a forward-reverse interplanetary shock pair at 1 A. U

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, A [Imperial Coll. of Science and Technology, London (UK)

    1977-10-01

    A forward-reverse interplanetary shock was observed on 25 March 1969 by the magnetometer and plasma detector on the HEOS-1 satellite. This relatively rare event was described by Chao et al (1972) who concluded that the shock pair was formed at a distance 0.10 to 0.13 AU upstream of the Earth as a result of the interaction between a fast and a slow solar wind streams. Simultaneous observations of 1 MeV solar proton fluxes were also performed on HEOS-1. A characteristic intensity peak was observed as the forward shock passed by the spacecraft. The evolution of the proton intensity, together with a detailed analysis of anisotropies and pitch angle distributions show a complex dynamic picture of the effect of the forward shock on the ambient proton population. Significant changes in particle fluxes are seen to be correlated with fluctuations in the magnetic field. It is suggested that simple geometrical models of shock-assisted acceleration should be expanded to include the effect of magnetic fluctuations on particle fluxes. The interaction region limited by the forward and reverse shocks contained a large variety of magnetic fluctuations. Following the tangential discontinuity separating the fast solar wind stream from the preceding slow stream, a sunward flow was observed in the proton data, followed by a small but significant drop in intensity prior to the reverse shock.

  8. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  9. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  10. Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1984-01-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients. (orig.)

  11. Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle

    Science.gov (United States)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2014-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance.

  12. Observations of micro-turbulence in the solar wind near the sun with interplanetary scintillation

    Science.gov (United States)

    Yamauchi, Y.; Misawa, H.; Kojima, M.; Mori, H.; Tanaka, T.; Takaba, H.; Kondo, T.; Tokumaru, M.; Manoharan, P. K.

    1995-01-01

    Velocity and density turbulence of solar wind were inferred from interplanetary scintillation (IPS) observations at 2.3 GHz and 8.5 GHz using a single-antenna. The observations were made during September and October in 1992 - 1994. They covered the distance range between 5 and 76 solar radii (Rs). We applied the spectrum fitting method to obtain a velocity, an axial ratio, an inner scale and a power-law spectrum index. We examined the difference of the turbulence properties near the Sun between low-speed solar wind and high-speed solar wind. Both of solar winds showed acceleration at the distance range of 10 - 30 Rs. The radial dependence of anisotropy and spectrum index did not have significant difference between low-speed and high-speed solar winds. Near the sun, the radial dependence of the inner scale showed the separation from the linear relation as reported by previous works. We found that the inner scale of high-speed solar wind is larger than that of low-speed wind.

  13. Interplanetary Magnetic Field Power Spectrum Variations in the Inner Heliosphere: A Wind and MESSENGER Study

    Science.gov (United States)

    Szabo, Adam; Koval, A.

    2011-01-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the similar observations made by the MESSENGER spacecraft in the inner heliosphere affords an opportunity to compare magnetic field power spectral density variations as a function of radial distance from the Sun under different solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The powe'r spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. Wind and MESSENGER magnetic fluctuations are compared for times when the two spacecraft are close to radial and Parker field alignment. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.

  14. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    Science.gov (United States)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  15. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  16. INVESTIGATION OF PRIMORDIAL BLACK HOLE BURSTS USING INTERPLANETARY NETWORK GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, T. N. [Director' s Postdoctoral Fellow, Space and Remote Sensing (ISR-2), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); MacGibbon, J. H. [Department of Physics, University of North Florida, Jacksonville, FL 32224 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal' shin, V. D. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Goldsten, J. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Boynton, W. [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); Kozyrev, A. S. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 (Germany); Connaughton, V. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Yamaoka, K. [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558 (Japan); Ohno, M. [Department of Physics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohmori, N. [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki-shi, Miyazaki 889-2192 (Japan); Feroci, M. [INAF/IAPS-Roma, via Fosso del Cavaliere 100, I-00133, Roma (Italy); Frontera, F., E-mail: tilan@lanl.gov [Department of Physics and Earth Science, University of Ferrara, via Saragat 1, I-44122 Ferrara (Italy); and others

    2016-07-20

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10{sup 13}–10{sup 18} cm (7–10{sup 5} au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  17. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft

    Science.gov (United States)

    Malaspina, David M.; Wilson, Lynn B., III

    2016-01-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  18. The thermal history of interplanetary dust particles collected in the Earth's stratosphere

    Science.gov (United States)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.

  19. Interplanetary shock transmitted into the Earth's magnetosheath: Cluster and Double Star observations

    Directory of Open Access Journals (Sweden)

    G. Pallocchia

    2010-05-01

    Full Text Available On day 7 May 2005, the plasma instruments on board Double Star TC1 and Cluster SC3 spacecraft register inside the magnetosheath, at 19:15:12 and 19:16:20 UT, respectively, a strong pressure pulse due to the impact of an interplanetary shock wave (IS on the terrestrial bow shock. The analysis of this event provides clear and quantitative evidences confirming and strengthening some results given by past simulations and observational studies. In fact, here we show that the transmitted shock is slowed down with respect to the incident IS (in the Earth's reference frame and that, besides the transmitted shock, the IS – bow shock interaction generates a second discontinuity. Moreover, supported also by a special set three-dimensional magnetohydrodynamic simulation, we discuss, as further effects of the interaction of the IS with the magnetosphere, other two interesting aspects of the present event, that is: the TC1 double crossing of the bow shock (observed few minutes after the impact of the IS and the presence, only in the SC3 data, of a third discontinuity produced inside the magnetosheath.

  20. PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Wang, Chi; Zhang, Lingqian [State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190 (China); He, Jiansen [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Richardson, John D.; Belcher, John W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA (United States); Tu, Cui, E-mail: hli@spaceweather.ac.cn [Laboratory of Near Space Environment, National Space Science Center, CAS, Beijing, 100190 (China)

    2016-11-10

    Nonlinear cascade of low-frequency Alfvénic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvénicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar “W”-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  1. Sharp Trapping Boundaries in the Random Walk of Interplanetary Magnetic Field Lines

    Science.gov (United States)

    Ruffolo, D.; Chuychai, P.; Meechai, J.; Pongkitiwanichkul, P.; Kimpraphan, N.; Matthaeus, W. H.; Rowlands, G.

    2004-05-01

    Although magnetic field lines in space are believed to undergo a diffusive random walk in the long-distance limit, observed dropouts of solar energetic particles, as well as computer simulations, indicate sharply defined filaments in which interplanetary magnetic field lines have been temporarily trapped. We identify mechanisms that can explain such sharp boundaries in the framework of 2D+slab turbulence, a model that provides a good explanation of solar wind turbulence spectra and the parallel transport of solar energetic particles. Local trapping boundaries (LTBs) are empirically defined as trajectories of 2D turbulence where the mean 2D field is a local maximum. In computer simulations, the filaments (or ``islands'' in the two dimensions perpendicular to the mean field) that are most resistant to slab diffusion correspond closely to the mathematically defined LTBs, that is, there is a mathematical prescription for defining the trapping regions. Furthermore, we provide computational evidence and a theoretical explanation that strong 2D turbulence can inhibit diffusion due to the slab component. Therefore, while these filaments are basically defined by the small-scale topology of 2D turbulence, there can be sharp trapping boundaries where the 2D field is strongest. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and NASA Grant NAG5-11603. G.R. thanks Mahidol University for its hospitality and the Thailand Commission for Higher Education for travel support.

  2. An Iterative Interplanetary Scintillation (IPS) Analysis Using Time-dependent 3-D MHD Models as Kernels

    Science.gov (United States)

    Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Odstrcil, D.; Kim, T. K.; Pogorelov, N. V.; Tokumaru, M.; Bisi, M. M.; Kim, J.; Yun, J.

    2017-12-01

    The University of California, San Diego has developed an iterative remote-sensing time-dependent three-dimensional (3-D) reconstruction technique which provides volumetric maps of density, velocity, and magnetic field. We have applied this technique in near real time for over 15 years with a kinematic model approximation to fit data from ground-based interplanetary scintillation (IPS) observations. Our modeling concept extends volumetric data from an inner boundary placed above the Alfvén surface out to the inner heliosphere. We now use this technique to drive 3-D MHD models at their inner boundary and generate output 3-D data files that are fit to remotely-sensed observations (in this case IPS observations), and iterated. These analyses are also iteratively fit to in-situ spacecraft measurements near Earth. To facilitate this process, we have developed a traceback from input 3-D MHD volumes to yield an updated boundary in density, temperature, and velocity, which also includes magnetic-field components. Here we will show examples of this analysis using the ENLIL 3D-MHD and the University of Alabama Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) heliospheric codes. These examples help refine poorly-known 3-D MHD variables (i.e., density, temperature), and parameters (gamma) by fitting heliospheric remotely-sensed data between the region near the solar surface and in-situ measurements near Earth.

  3. Sector structure of the interplanetary magnetic field and anisotropy of 50-1000 GV cosmic radiation

    International Nuclear Information System (INIS)

    Erdoes, G.; Kota, J.

    1978-12-01

    It is demonstrated that the main features of high-rigidity solar originated anisotropy can be explained in terms of regular particle motion - without diffusion being involved - in the large scale interplanetary magnetic field (IMF). A simple model of the IMF is adopted with a corotating warped current sheet separating the two polarities. The warped shape of the current sheet is essential in producing anisotropy. By calculating energy loss along various computed trajectories, the resulting sidereal, solar and antisidereal variations are determined for both the pre- and post-1969 epochs. The predicted variations turn out fairly stable against changing the parameters of the IMF model. The sense and amplitude of the polarity dependent sidereal vectors are compatible with those established experimentally. Also reproduced is the prediction of corotation as well as the 3 hr phase of the semidiurnal wave. The corotation is found to be near perfect at 50 GV while it decreases at 100 GV. The model presented accounts for the change of solar daily variation taking place in 1969. (author)

  4. The acceleration of energetic particles in the interplanetary medium by transit time damping

    International Nuclear Information System (INIS)

    Fisk, L.A.

    1976-01-01

    It has been reported recently by McDonald et al. (1976) that 1-MeV protons may undergo considerable acceleration in corotating streams. It has been suggested recently by Fisk et al. (1974b) that interstellar neutral particles which are ionized in the solar cavity may be accelerated in the solar wind and may account for the anomalous component that is observed in low-energy cosmic rays (at approx.10 MeV/nucleon). It is shown here that the particles in both of these cases could be accelerated by transit time damping propagating fluctuations in the magnitude of the interplanetary magnetic field (e.g., magnetosonic waves). The protons in corotating streams may be accelerated by transit time damping the small-scale variations in the field magnitude that are observed at a low level in the inner solar system. The interstellar ions may be accelerated by transit time damping large-scale field variations in the outer solar system

  5. Prolonged social withdrawal disorder: a hikikomori case in Spain.

    Science.gov (United States)

    Ovejero, Santiago; Caro-Cañizares, Irene; de León-Martínez, Victoria; Baca-Garcia, Enrique

    2014-09-01

    The Japanese term hikikomori means literally 'to be confined'. Social withdrawal can be present in severe psychiatric disorders; however, in Japan, hikikomori is a defined nosologic entity. There have been only a few reported cases in occidental culture. We present a case report of a Spanish man with prolonged social withdrawal lasting for 4 years. This is a case of prolonged social withdrawal not bound to culture, as well as the second case of hikikomori reported in Spain. We propose prolonged social withdrawal disorder as a disorder not linked to culture, in contrast to hikikomori. Further documentation of this disorder is still needed to encompass all cases reported in Japan and around the world. © The Author(s) 2013.

  6. Left Ventricular Function After Prolonged Exercise in Equine Endurance Athletes

    DEFF Research Database (Denmark)

    Flethøj, M.; Schwarzwald, C. C.; Haugaard, M. M.

    2016-01-01

    Doppler imaging, and two-dimensional speckle tracking. Correlation between echocardiographic variables and cardiac troponin I was evaluated. Results: Early diastolic myocardial velocities decreased significantly in longitudinal (baseline: −17.4 ± 2.4cm/s; end of ride: −15.8 ± 3.2cm/s (P = .013); morning......Background: Prolonged exercise in human athletes is associated with transient impairment of left ventricular (LV) function, known as cardiac fatigue. Cardiac effects of prolonged exercise in horses remain unknown. Objectives :To investigate the effects of prolonged exercise on LV systolic...... and diastolic function in horses. Animals: Twenty-six horses competing in 120–160 km endurance rides. Methods: Cross-sectional field study. Echocardiography was performed before and after rides, and the following morning, and included two-dimensional echocardiography, anatomical M-mode, pulsed-wave tissue...

  7. A Study on the Ionosphere and Thermosphere Interaction Based on NCAR-TIEGCM: Dependence of the Interplanetary Magnetic Field (IMF on the Momentum Forcing in the High-Latitude Lower Thermosphere

    Directory of Open Access Journals (Sweden)

    Young-Sil Kwak

    2005-06-01

    Full Text Available To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM. Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude lower thermosphere( 0.8 |bar{B}_z| or negative(B_y 0.3125 |bar{B}_y| or negative(B_z 125 km the primary forces that determine the variations of the neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF bar{B}_y-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-125 km for negative IMF-bar{B}_y condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-bar{B}_y condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-bar{B}_z the ion drag force tends to generate a

  8. Cerebral ammonia uptake and accumulation during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Dalsgaard, Mads K.; Steensberg, Adam

    2005-01-01

    We evaluated whether peripheral ammonia production during prolonged exercise enhances the uptake and subsequent accumulation of ammonia within the brain. Two studies determined the cerebral uptake of ammonia (arterial and jugular venous blood sampling combined with Kety-Schmidt-determined cerebral...... blood flow; n = 5) and the ammonia concentration in the cerebrospinal fluid (CSF; n = 8) at rest and immediately following prolonged exercise either with or without glucose supplementation. There was a net balance of ammonia across the brain at rest and at 30 min of exercise, whereas 3 h of exercise...... exercise with glucose, and further to 16.1 ± 3.3 µM after the placebo trial (P

  9. Public stigma of prolonged grief disorder : An experimental study

    NARCIS (Netherlands)

    Eisma, Maarten C.

    Prolonged grief disorder (PGD), characterized by severe, persistent and disabling grief, is being considered for inclusion in the International Classification of Diseases’ 11 (ICD-11) and a related disorder, Persistent Complex Bereavement Disorder (PCBD), is included for further investigation in the

  10. Prolonged use of indwelling urinary catheter following acute urinary ...

    African Journals Online (AJOL)

    J.O. Bello

    prolonged use of urinary catheters following acute urinary retention secondary to benign prostate enlarge- ment (BPE) and urethral ... indwelling urinary catheter for >3 months following acute urinary retention due to BPE or USD. The study .... the major health-care financing strategy in Nigeria and accounts for more than ...

  11. Assessing QT interval prolongation and its associated risks with antipsychotics

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Graff, Claus; Kanters, Jørgen K.

    2011-01-01

    markers for TdP have been developed but none of them is clinically implemented yet and QT interval prolongation is still considered the most valid surrogate marker. Although automated QT interval determination may offer some assistance, QT interval determination is best performed by a cardiologist skilled...

  12. MRI findings of prolonged post-traumatic sternal pain

    International Nuclear Information System (INIS)

    Grosse, Alexandra; Grosse, Claudia; Anderson, Suzanne; Steinbach, Lynne

    2007-01-01

    The objective of this study was to characterize the different causes of prolonged sternal pain following thoracic trauma with involvement of the sternum and to define criteria for sternal nonunion diagnosis using MRI. Five patients with abnormalities of the sternum were evaluated for prolonged sternal pain following thoracic trauma using MRI. MR images were evaluated by two radiologists in consensus. The patients were selected from the radiology database, which included 8 patients with post-traumatic prolonged sternal pain. Two patients (n = 2) revealed a sternal nonunion after sternal fracture. One patient had a sternal fracture with delayed union and minor displacement of the sternal halves. Abnormal signal intensity alterations adjacent to and within the manubrio-sternal joint were evident in 2 patients and considered due to trauma-related changes in the manubrio-sternal joint. The 3 patients who were not included in the study had no abnormalities of the sternum: 1 of them proved to have a well-healed sternal fracture and nonunion of a rib fracture, 1 had subtle Tietze's syndrome, and 1 patient revealed no pathological findings on imaging. Various factors may be responsible for prolonged sternal pain following thoracic trauma, and these can be viewed with MRI. In cases of sternal nonunion there was common fluid-like signal in the fracture interspace between the bony edges, and the bone marrow adjacent to the nonunion showed altered signal intensity. MRI identified sternal nonunion and other trauma-related abnormalities of the sternum following chest trauma. (orig.)

  13. Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.

    Science.gov (United States)

    Mizota, Chitoshi; Yamanaka, Toshiro

    2011-12-01

    Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.

  14. Prolonged Intrauterine Retention of Foetal Bones after Midtrimester ...

    African Journals Online (AJOL)

    Prolonged retention of foetal bones in the uterus is a rare complication of induced abortion. We present the case of a 37 year old nullipara with retained foetal bones following a second trimester induced abortion. Accurate diagnosis and removal of the bony fragments led to restoration of fertility and subsequent delivery of a ...

  15. QTc-prolonging drugs and hospitalizations for cardiac arrhythmias

    NARCIS (Netherlands)

    De Bruin, ML; Hoes, AW; Leufkens, HGM

    2003-01-01

    Cardiac arrhythmia as an adverse effect of noncardiac drugs has been an issue of growing importance during the past few years. In this population-based study, we evaluated the risk for serious cardiac arrhythmias during the use of several noncardiac QTc-prolonging drugs in day-to-day practice, and

  16. The Prolonged Neonatal Admission: Implications for our National Children's Hospital

    LENUS (Irish Health Repository)

    McGlacken-Byrne, SM

    2016-06-01

    A significant number of neonates are admitted to tertiary paediatric units for prolonged stays annually, despite limited availability of neonatal beds. As the three Dublin paediatric hospitals merge, this pressure will be transferred to our new National Children’s Hospital.\\r\

  17. The Importance of Prolonged Provocation in Drug Allergy

    DEFF Research Database (Denmark)

    Fransson, Sara; Mosbech, Holger; Kappel, Mogens

    2017-01-01

    BACKGROUND: Drug provocation is the "Gold Standard" in drug allergy investigation. Recent studies suggest that a negative drug provocation on first dose should be followed by a prolonged provocation over several days. OBJECTIVE: To evaluate drug allergy investigations on the basis of drug...

  18. Influence of prolonged cold ischemia in renal transplantation.

    NARCIS (Netherlands)

    Vliet, J.A. van der; Warle, M.C.; Cheung, C.L.; Teerenstra, S.; Hoitsma, A.J.

    2011-01-01

    van der Vliet JA, Warle MC, Cheung CLS, Teerenstra S, Hoitsma AJ. Influence of prolonged cold ischemia in renal transplantation. Clin Transplant 2011: 25: E612-E616. (c) 2011 John Wiley & Sons A/S. Abstract: Aim: To determine to what extent current cold ischemia times (CITs) affect the results of

  19. The impact of obesity on physiological responses during prolonged exercise

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Veltmeijer, M.T.; Schreuder, T.H.A.; Poelkens, F.; Thijssen, D.H.J.; Hopman, M.T.E.

    2011-01-01

    Background:Prolonged, moderate-intensity exercise training is routinely prescribed to subjects with obesity. In the general population, this type of exercise can lead to fluid and sodium imbalance. However, little is known whether obesity alters the risk of fluid and sodium imbalances.Objective:This

  20. Physiological response of rabbit bucks to prolonged feeding of ...

    African Journals Online (AJOL)

    Sixty-four (64) weanling rabbit bucks, 5 to 6 weeks old, were involved in a 2 x 4 factorial experiment to evaluate the effects of prolonged feeding of cottonseed cake (CSC) – based diets with or without vitamin E supplementation on the physiological response of the bucks. There were eight treatment combinations comprising ...

  1. Single Prolonged Stress Disrupts Retention of Extinguished Fear in Rats

    Science.gov (United States)

    Knox, Dayan; George, Sophie A.; Fitzpatrick, Christopher J.; Rabinak, Christine A.; Maren, Stephen; Liberzon, Israel

    2012-01-01

    Clinical research has linked post-traumatic stress disorder (PTSD) with deficits in fear extinction. However, it is not clear whether these deficits result from stress-related changes in the acquisition or retention of extinction or in the regulation of extinction memories by context, for example. In this study, we used the single prolonged stress…

  2. Internalized stigma in adults with early phase versus prolonged psychosis.

    Science.gov (United States)

    Firmin, Ruth L; Lysaker, Paul H; Luther, Lauren; Yanos, Philip T; Leonhardt, Bethany; Breier, Alan; Vohs, Jenifer L

    2018-03-30

    Although internalized stigma is associated with negative outcomes among those with prolonged psychosis, surprisingly little work has focused on when in the course of one's illness stigma is internalized and the impact of internalization on symptoms or social functioning over the course of the illness. Therefore, this study investigated whether (1) internalized stigma is greater among those later in the course of psychosis and (2) whether internalized stigma has a stronger negative relationship with social functioning or symptoms among those with prolonged compared to early phase psychosis. Individuals with early phase (n = 40) and prolonged psychosis (n = 71) who were receiving outpatient services at an early-intervention clinic and a VA medical center, respectively, completed self-report measures of internalized stigma and interview-rated measures of symptoms and social functioning. Controlling for education, race and sex differences, internalized stigma was significantly greater among those with prolonged psychosis compared to early phase. Internalized stigma was negatively related to social functioning and positively related to symptoms in both groups. Furthermore, the magnitude of the relationship between cognitive symptoms and internalized stigma was significantly greater among those with early phase. Stereotype endorsement, discrimination experiences and social withdrawal also differentially related to symptoms and social functioning across the 2 samples. Findings suggest that internalized stigma is an important variable to incorporate into models of early psychosis. Furthermore, internalized stigma may be a possible treatment target among those with early phase psychosis. © 2018 John Wiley & Sons Australia, Ltd.

  3. Brain activity and fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Nielsen, Bodil; Hyldig, Tino; Bidstrup, F.

    2001-01-01

    We hypothesized that fatigue due to hyperthermia during prolonged exercise in the heat is in part related to alterations in frontal cortical brain activity. The electroencephalographic activity (EEG) of the frontal cortex of the brain was measured in seven cyclists [maximal O2 uptake (VO2max) 4...... min of exercise; P

  4. Streptococcus suis meningitis can require a prolonged treatment course

    Directory of Open Access Journals (Sweden)

    Jean Dejace

    2017-12-01

    Full Text Available We report a case of recrudescent Streptococcus suis meningitis requiring a prolonged treatment course. A few similar cases can be found in the burgeoning literature on what remains a relatively uncommon disease in humans, and these patients should be monitored carefully upon completion of therapy. Keywords: Meningitis, Relapse, Duration, Streptococcus suis

  5. Recognition Memory Is Impaired in Children after Prolonged Febrile Seizures

    Science.gov (United States)

    Martinos, Marina M.; Yoong, Michael; Patil, Shekhar; Chin, Richard F. M.; Neville, Brian G.; Scott, Rod C.; de Haan, Michelle

    2012-01-01

    Children with a history of a prolonged febrile seizure show signs of acute hippocampal injury on magnetic resonance imaging. In addition, animal studies have shown that adult rats who suffered febrile seizures during development reveal memory impairments. Together, these lines of evidence suggest that memory impairments related to hippocampal…

  6. Intrinsic motivation and amotivation in first episode and prolonged psychosis.

    Science.gov (United States)

    Luther, Lauren; Lysaker, Paul H; Firmin, Ruth L; Breier, Alan; Vohs, Jenifer L

    2015-12-01

    The deleterious functional implications of motivation deficits in psychosis have generated interest in examining dimensions of the construct. However, there remains a paucity of data regarding whether dimensions of motivation differ over the course of psychosis. Therefore, this study examined two motivation dimensions, trait-like intrinsic motivation, and the negative symptom of amotivation, and tested the impact of illness phase on the 1) levels of these dimensions and 2) relationship between these dimensions. Participants with first episode psychosis (FEP; n=40) and prolonged psychosis (n=66) completed clinician-rated measures of intrinsic motivation and amotivation. Analyses revealed that when controlling for group differences in gender and education, the FEP group had significantly more intrinsic motivation and lower amotivation than the prolonged psychosis group. Moreover, intrinsic motivation was negatively correlated with amotivation in both FEP and prolonged psychosis, but the magnitude of the relationship did not statistically differ between groups. These findings suggest that motivation deficits are more severe later in the course of psychosis and that low intrinsic motivation may be partially independent of amotivation in both first episode and prolonged psychosis. Clinically, these results highlight the importance of targeting motivation in early intervention services. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Prognostic Significance Of QT Interval Prolongation In Adult ...

    African Journals Online (AJOL)

    Prognostic survival studies for heart-rate corrected QT interval in patients with chronic heart failure are few; although these patients are known to have a high risk of sudden cardiac death. This study was aimed at determining the mortality risk associated with prolonged QTc in Nigerians with heart failure. Ninety-six ...

  8. Competing for Consciousness: Prolonged Mask Exposure Reduces Object Substitution Masking

    Science.gov (United States)

    Goodhew, Stephanie C.; Visser, Troy A. W.; Lipp, Ottmar V.; Dux, Paul E.

    2011-01-01

    In object substitution masking (OSM) a sparse, temporally trailing 4-dot mask impairs target identification, even though it has different contours from, and does not spatially overlap with the target. Here, we demonstrate a previously unknown characteristic of OSM: Observers show reduced masking at prolonged (e.g., 640 ms) relative to intermediate…

  9. Prolonged multifocal electroretinographic implicit times in the ocular ischemic syndrome

    DEFF Research Database (Denmark)

    Kofoed, Peter Kristian; Munch, Inger Christine; Sander, Birgit

    2010-01-01

    .4 +/- 1.7 mm Hg, respectively. Summed mfERG implicit times (N1, P1, N2) were prolonged in eyes with OIS, by 7.6%, 6.2%, and 7.5%, respectively, compared with fellow eyes (P macula, whereas the assessment of responses from...

  10. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Bai Yongqiang; Wu Ke; Zhao Weizhong; Guo Hanying

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schroedinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  11. Inclusion rate and physiological effects of prolonged feeding of ...

    African Journals Online (AJOL)

    The effect of incluusion of cocoa bean cake (CBC) on productive performance and physiological response of Isa Brown pullets to prolonged feeding of CBC were investigated. Dietary Inclusions or CBC (0, 50, 100 and 200g/ kg-1 diet) were monitored in typical poultry diets from day old to 51 weeks of age. Sexual maturity ...

  12. Preferences for Prolonging Life: A Prospect Theory Approach

    Science.gov (United States)

    Winter, Laraine; Lawton, M. Powell; Ruckdeschel, Katy

    2003-01-01

    Kahneman and Tversky's (1979) Prospect theory was tested as a model of preferences for prolonging life under various hypothetical health statuses. A sample of 384 elderly people living in congregate housing (263 healthy, 131 frail) indicated how long (if at all) they would want to live under each of nine hypothetical health conditions (e.g.,…

  13. Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress

    Science.gov (United States)

    2014-10-01

    Post - traumatic stress disorder ( PTSD ) is a chronic, debilitating psychiatric disorder that can...SPS animals. Post - traumatic stress disorder ( PTSD ) is associated with neurocognitive impairments that have been attributed to functional deficits...and resilience. 2. KEYWORDS Post - traumatic stress disorder , Single Prolonged Stress , Neurobiological Mechanisms 5 3. ACCOMPLISHMENTS

  14. Effect Of Prolonged Monocular Occlusion On Latent Nystagms

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G. Kommerell (Guntram)

    1992-01-01

    textabstractThe authors recorded nystagmus during seeing with one eye in eight patients with latent nystagmus (LN) before and after two or three days of prolonged occlusion of the better eye (POBE). Before POBE, the slow-phase speed of the nystagmus (SPS) was usually higher when the better eye was

  15. Effects of strict prolonged bed rest on cardiorespiratory fitness

    DEFF Research Database (Denmark)

    Ried-Larsen, Mathias; Aarts, Hugo M; Joyner, Michael J

    2017-01-01

    The aim of this systematic review and meta-analysis [International Prospective Register of Systematic Reviews (PROSPERO) CRD42017055619] was to assess the effects of strict prolonged bed rest (without countermeasures) on maximal oxygen uptake (V̇o2max) and to explore sources of variation therein....

  16. A scheme for finding the front boundary of an interplanetary magnetic cloud

    Directory of Open Access Journals (Sweden)

    R. P. Lepping

    2009-03-01

    Full Text Available We develop a scheme for finding a "refined" front boundary-time (tB* of an interplanetary magnetic cloud (MC based on criteria that depend on the possible existence of any one or more of four specific solar wind features. The features that the program looks for, within ±2 h (i.e., the initial uncertainty interval of a preliminarily estimated front boundary time, are: (1 a sufficiently large directional discontinuity in the interplanetary magnetic field (IMF, (2 a significant proton plasma beta (βP drop, (3 a significant proton temperature drop, and (4 a marked increase in the IMF's intensity. Also we examine to see if the "MC-side" of the boundary has a MC-like value of βP. The scheme was tested using 5, 10, 15, and 20 min averages of the relevant physical quantities from WIND data, in order to find the optimum average to use. The 5 min average, initially based on analysis of N=26 carefully chosen MCs, turned out to be marginally the best average to use for our purposes. Other criteria, besides the four described above, such as the existence of a magnetic hole, plasma speed change, and/or field fluctuation level change, were examined and dismissed as not reliable enough, or usually associated with physical quantities that change too slowly around the boundary to be useful. The preliminarily estimated front boundary time, tB, and its initial ±2-h uncertainty interval are determined by either an automatic MC identification scheme or by visual inspection. The boundary-scheme was developed specifically for aiding in forecasting the strength and timing of a geomagnetic storm due to the passage of a MC in real-time, but can be used in post ground-data collection for imposing consistency when choosing front boundaries of MCs. This scheme has been extensively tested, first using 81 bona fide MCs, collected over about 8.6 years of WIND data (at 1 AU, and also by using

  17. A scheme for finding the front boundary of an interplanetary magnetic cloud

    Directory of Open Access Journals (Sweden)

    R. P. Lepping

    2009-03-01

    Full Text Available We develop a scheme for finding a "refined" front boundary-time (tB* of an interplanetary magnetic cloud (MC based on criteria that depend on the possible existence of any one or more of four specific solar wind features. The features that the program looks for, within ±2 h (i.e., the initial uncertainty interval of a preliminarily estimated front boundary time, are: (1 a sufficiently large directional discontinuity in the interplanetary magnetic field (IMF, (2 a significant proton plasma beta (βP drop, (3 a significant proton temperature drop, and (4 a marked increase in the IMF's intensity. Also we examine to see if the "MC-side" of the boundary has a MC-like value of βP. The scheme was tested using 5, 10, 15, and 20 min averages of the relevant physical quantities from WIND data, in order to find the optimum average to use. The 5 min average, initially based on analysis of N=26 carefully chosen MCs, turned out to be marginally the best average to use for our purposes. Other criteria, besides the four described above, such as the existence of a magnetic hole, plasma speed change, and/or field fluctuation level change, were examined and dismissed as not reliable enough, or usually associated with physical quantities that change too slowly around the boundary to be useful. The preliminarily estimated front boundary time, tB, and its initial ±2-h uncertainty interval are determined by either an automatic MC identification scheme or by visual inspection. The boundary-scheme was developed specifically for aiding in forecasting the strength and timing of a geomagnetic storm due to the passage of a MC in real-time, but can be used in post ground-data collection for imposing consistency when choosing front boundaries of MCs. This scheme has been extensively tested, first using 81 bona fide MCs, collected over about 8.6 years of WIND data (at 1 AU, and also by using 122 MC-like structures as defined by Lepping et al. (2005 over about the same

  18. AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK—GLOBAL MUON DETECTOR NETWORK OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, M.; Munakata, K.; Kato, C. [Department of Physics, Shinshu University, Matsumoto, Nagano 390-8621 (Japan); Kuwabara, T. [Graduate School of Science, Chiba University, Chiba City, Chiba 263-8522 (Japan); Rockenbach, M.; Lago, A. Dal; Braga, C. R.; Mendonça, R. R. S. [National Institute for Space Research (INPE), 12227-010 São José dos Campos, SP (Brazil); Schuch, N. J. [Southern Regional Space Research Center (CRS/INPE), P.O. Box 5021, 97110-970, Santa Maria, RS (Brazil); Jassar, H. K. Al; Sharma, M. M. [Physics Department, Kuwait University, P.O. Box 5969 Safat, 13060 (Kuwait); Duldig, M. L.; Humble, J. E. [School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001 (Australia); Evenson, P. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Sabbah, I. [Department of Natural Sciences, College of Health Sciences, Public Authority of Applied Education and Training, Kuwait City 72853 (Kuwait); Tokumaru, M., E-mail: 13st303f@shinshu-u.ac.jp, E-mail: kmuna00@shinshu-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-07-10

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G {sub y}, shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G {sub z} shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G {sub z} changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  19. CORRECTING FOR INTERPLANETARY SCATTERING IN VELOCITY DISPERSION ANALYSIS OF SOLAR ENERGETIC PARTICLES

    International Nuclear Information System (INIS)

    Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.; Valtonen, E.

    2015-01-01

    To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energetic protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA

  20. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    2003-07-01

    Full Text Available Using ionospheric data from the SuperDARN radar network and a DMSP satellite we obtain a comprehensive description of the spatial and temporal pattern of day-side reconnection. During a period of southward interplanetary magnetic field (IMF, the data are used to determine the location of the ionospheric projection of the dayside magnetopause reconnection X-line. From the flow of plasma across the projected X-line, we derive the reconnection rate across 7 h of longitude and estimate it for the total length of the X-line footprint, which was found to be 10 h of longitude. Using the Tsyganenko 96 magnetic field model, the ionospheric data are mapped to the magnetopause, in order to provide an estimate of the extent of the reconnection X-line. This is found to be ~ 38 RE in extent, spanning the whole dayside magnetopause from dawn to dusk flank. Our results are compared with previously reported encounters by the Equator-S and Geotail spacecraft with a reconnecting magnetopause, near the dawn flank, for the same period. The SuperDARN observations allow the satellite data to be set in the context of the whole magnetopause reconnection X-line. The total potential associated with dayside reconnection was ~ 150 kV. The reconnection signatures detected by the Equator-S satellite mapped to a region in the ionosphere showing continuous flow across the polar cap boundary, but the reconnection rate was variable and showed a clear spatial variation, with a distinct minimum at 14:00 magnetic local time which was present throughout the 30-min study period.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionoshere interactions – Space plasma physics (magnetic reconnection

  1. Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.

    Science.gov (United States)

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A

    2014-07-04

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  2. A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities

    Science.gov (United States)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-05-01

    Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).

  3. AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK—GLOBAL MUON DETECTOR NETWORK OBSERVATIONS

    International Nuclear Information System (INIS)

    Kozai, M.; Munakata, K.; Kato, C.; Kuwabara, T.; Rockenbach, M.; Lago, A. Dal; Braga, C. R.; Mendonça, R. R. S.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.; Tokumaru, M.

    2016-01-01

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G y , shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G z shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G z changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  4. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles

    Science.gov (United States)

    Aléon, Jérôme; Robert, François; Chaussidon, Marc; Marty, Bernard

    2003-10-01

    Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ 15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ 15N = +208‰). The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10 -3 and δ 15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ 15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed

  5. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by the Interplanetary Network

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; hide

    2014-01-01

    We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  6. STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.

    2018-03-01

    We have conducted a survey of 341 interplanetary coronal mass ejections (ICMEs) using STEREO A/B data, analyzing their properties while extending a Level 3 product through 2016. Among the 192 ICMEs with distinguishable sheath region and magnetic obstacle, the magnetic field maxima in the two regions are comparable, and the dynamic pressure peaks mostly in the sheath. The north/south direction of the magnetic field does not present any clear relationship between the sheath region and the magnetic obstacle. About 71% of ICMEs are expanding at 1 au, and their expansion speed varies roughly linearly with their maximum speed except for ICMEs faster than 700 km s‑1. The total pressure generally peaks near the middle of the well-defined magnetic cloud (MC) passage, while it often declines along with the non-MC ICME passage, consistent with our previous interpretation concerning the effects of sampling geometry on what is observed. The hourly average iron charge state reaches above 12+ ∼31% of the time for MCs, ∼16% of the time for non-MC ICMEs, and ∼1% of the time for non-ICME solar wind. In four ICMEs abrupt deviations of the magnetic field from the nominal field rotations occur in the magnetic obstacles, coincident with a brief drop or increase in field strength—features could be related to the interaction with dust. In comparison with the similar phases of solar cycle 23, the STEREO ICMEs in this cycle occur less often and are generally weaker and slower, although their field and pressure compressions weaken less than the background solar wind.

  7. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections

    International Nuclear Information System (INIS)

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J.

    1991-01-01

    Previous work indicates that virtually all transient shock wave disturbances in the solar wind are driven by fast coronal mass ejection events (CMEs). Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMEs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 R e upstream from Earth. The authors find that all but one of the 37 largest geomagnetic storms in that era were associated with Earth passage of CMEs and/or shock disturbances, with the large majority of these storms being associated with interplanetary events where Earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events. Further, approximately half of all CMEs and half of all shock disturbances encountered by Earth did not produce any substantial geomagnetic activity as measured by the planetary geomagnetic index Kp. The geomagnetic effectiveness of Earth directed CMEs and shock wave disturbances was directly related to the flow speed, the magnetic field magnitude, and the strength of the southward (GSM) field component associated with the events. The initial speed of a CME close to the Sun appears to be the most crucial factor in determining if an earthward directed event will be effective in exciting a large geomagnetic disturbance

  8. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  9. A Study of the Interplanetary Signatures of Earth-Arriving CMEs

    Science.gov (United States)

    Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Xie, H.; Makela, P. A.; Kay, C.

    2017-12-01

    We studied interplanetary (IP) signatures associated with coronal mass ejections (CMEs) that are likely to reach Earth. In order to find Earth- arriving CMEs, we started with disk-center CMEs originating within 30 degrees from the central meridian and the equator. Using the side-view images from the STEREO mission, we excluded CMEs that faded out before reaching the Earth orbit, or were captured by other CMEs, or erupted away from the ecliptic plane. We found 61 Earth- arriving CMEs during 2009/10/01 - 2012/07/31 (inclusive). Though all events were observed to reach Earth in the STEREO/HI2 field of view, only 34 out of 61 events (56%) were associated with magnetic cloud (MC) or ejecta (EJ) observed by ACE or Wind. We compared the CME characteristics associated with 9 MCs, 25 EJs, and 27 no- clear- signature (NCS) events to find out what might cause the difference in the IP signatures. To avoid projection effects, we used coronagraph images obtained by the STEREO mission. The average speed (width) of CMEs associated with MCs, EJs, and NCSs are 484 km/s (104°), 663 km/s (135°), and 595 km/s (144°), respectively. CMEs associated with MCs tend to be less energetic than other types in our dataset. We also checked the coronal holes (CHs) near the CME source to examine the effect of the CME deflection. In the case of MCs and EJs, only 22% (2/9) and 28% (7/25) events have CHs near the source, while 48% (13/27) NCS events have nearby CHs. We discuss what factors near the Sun cause the observed differences at Earth.

  10. The Worldwide Interplanetary Scintillation (IPS) Stations (WIPSS) Network October 2016 Observing Campaign: Initial WIPSS Data Analyses

    Science.gov (United States)

    Bisi, M. M.; Fallows, R. A.; Jackson, B. V.; Tokumaru, M.; Gonzalez-Esparza, A.; Morgan, J.; Chashei, I. V.; Mejia-Ambriz, J.; Tyul'bashev, S. A.; Manoharan, P. K.; De la Luz, V.; Aguilar-Rodriguez, E.; Yu, H. S.; Barnes, D.; Chang, O.; Odstrcil, D.; Fujiki, K.; Shishov, V.

    2017-12-01

    Interplanetary Scintillation (IPS) allows for the determination of velocity and a proxy for plasma density to be made throughout the corona and inner heliosphere. Where sufficient observations are undertaken, the results can be used as input to the University of California, San Diego (UCSD) three-dimensional (3-D) time-dependent tomography suite to allow for the full 3-D reconstruction of both velocity and density throughout the inner heliosphere. By combining IPS results from multiple observing locations around the planet, we can increase both the temporal and spatial coverage across the whole of the inner heliosphere and hence improve forecast capability. During October 2016, a unique opportunity arose whereby the European-based LOw Frequency ARray (LOFAR) radio telescope was used to make nearly four weeks of continuous observations of IPS as a heliospheric space-weather trial campaign. This was expanded into a global effort to include observations of IPS from the Murchison Widefield Array (MWA) in Western Australia and many more observations from various IPS-dedicated WIPSS Network systems. LOFAR is a next-generation low-frequency radio interferometer capable of observing in the radio frequency range 10-250 MHz, nominally with up to 80 MHz bandwidth at a time. MWA in Western Australia is capable of observing in the 80-300 MHz frequency range nominally using up to 32 MHz of bandwidth. IPS data from LOFAR, ISEE, the MEXican Array Radio Telescope (MEXART), and, where possible, other WIPSS Network systems (such as LPI-BSA and Ooty), will be used in this study and we will present some initial findings for these data sets. We also make a first attempt at the 3-D reconstruction of multiple pertinent WIPSS results in the UCSD tomography. We will also try to highlight some of the potential future tools that make LOFAR a very unique system to be able to test and validate a whole plethora of IPS analysis methods with the same set of IPS data.

  11. Simulating multi-spacecraft Heliospheric Imager observations for tomographic reconstruction of interplanetary CMEs

    Science.gov (United States)

    Barnes, D.

    2017-12-01

    The multiple, spatially separated vantage points afforded by the STEREO and SOHO missions provide physicists with a means to infer the three-dimensional structure of the solar corona via tomographic imaging. The reconstruction process combines these multiple projections of the optically thin plasma to constrain its three-dimensional density structure and has been successfully applied to the low corona using the STEREO and SOHO coronagraphs. However, the technique is also possible at larger, inter-planetary distances using wide-angle imagers, such as the STEREO Heliospheric Imagers (HIs), to observe faint solar wind plasma and Coronal Mass Ejections (CMEs). Limited small-scale structure may be inferred from only three, or fewer, viewpoints and the work presented here is done so with the aim of establishing techniques for observing CMEs with upcoming and future HI-like technology. We use simulated solar wind densities to compute realistic white-light HI observations, with which we explore the requirements of such instruments for determining solar wind plasma density structure via tomography. We exploit this information to investigate the optimal orbital characteristics, such as spacecraft number, separation, inclination and eccentricity, necessary to perform the technique with HIs. Further to this we argue that tomography may be greatly enhanced by means of improved instrumentation; specifically, the use of wide-angle imagers capable of measuring polarised light. This work has obvious space weather applications, serving as a demonstration for potential future missions (such as at L1 and L5) and will prove timely in fully exploiting the science return from the upcoming Solar Orbiter and Parker Solar Probe missions.

  12. The efficacy of antipsychotics for prolonged delirium with renal dysfunction

    Directory of Open Access Journals (Sweden)

    Asano S

    2017-11-01

    Full Text Available Satoko Asano, Yasuto Kunii, Hiroshi Hoshino, Yusuke Osakabe, Tetsuya Shiga, Shuntaro Itagaki, Itaru Miura, Hirooki Yabe Department of Neuropsychiatry, School of Medicine Fukushima Medical University, Fukushima, Japan Aim: Delirium is commonly encountered in daily clinical practice. To identify predictors influencing outcomes, we retrospectively examined the characteristics of inpatients with delirium who required psychiatric medication during hospitalization.Methods: We extracted all new inpatients (n=523 consulted for psychiatric symptoms at Fukushima Medical University Hospital between October 2011 and September 2013. We selected 203 inpatients with delirium diagnosed by psychiatrists. We analyzed data from 177 inpatients with delirium who received psychiatric medication. We defined an “early improvement group” in which delirium resolved in ≤3 days after starting psychiatric medication, and a “prolonged group” with delirium lasting for >3 days. Among the 83 inpatients with renal dysfunction (estimated glomerular filtration rate <60 mL/min/1.73 m2, we defined an “early improvement group with renal dysfunction” in which delirium resolved in ≤3 days after starting psychiatric medication and a “prolonged group with renal dysfunction” with delirium lasting for >3 days. We then examined differences between groups for different categorical variables.Results: Dose of antipsychotic medication at end point was significantly lower in the prolonged group with renal dysfunction than in the early improvement group with renal dysfunction.Conclusion: The results suggest that maintaining a sufficient dose of antipsychotics from an early stage may prevent prolongation of delirium even in inpatients with renal dysfunction. Keywords: antipsychotic, prolonged delirium, chronic kidney disease, pharmacokinetics 

  13. Studies of Solar Flare and Interplanetary Particle Acceleration and Coordination of Ground-Based Solar Observations in Support of US and International Space Missions

    Science.gov (United States)

    Kiplinger, Alan L.

    1998-01-01

    A primary focus has been to conduct studies of particular types of hard X-ray evolution in solar flares and their associations with high energy interplanetary protons observed near Earth. Previously, two large investigations were conducted that revealed strong associations between episodes of progressive spectral hardening seen in solar events and interplanetary proton events (Kiplinger, 1995). An algorithm was developed for predicting interplanetary protons that is more accurate than those currently in use when hard X-ray spectra are available. The basic research on a third study of the remaining independent subset of Hard X-ray Burst Spectrometer (HXRBS) events randomly not selected by the original studies was completed. This third study involves independent analyses of the data by two analysts. The results echo the success of the earlier studies. Of 405 flares analyzed, 12 events were predicted to have associated interplanetary protons at the Space Environment Service Center (SESC) level. Of these, five events appear to be directly associated with SESC proton events, six other events had lower level associated proton events, and there was only one false alarm with no protons. Another study by Garcia and Kiplinger (1995) established that progressively hardening hard X-ray flares associated with interplanetary proton events are intrinsically cooler and not extremely intense in soft X-rays unless a "contaminating" large impulsive flare accompanies the hardening flare.

  14. Study of interstellar helium from photometric observations at 58.4 nm of the interplanetary environment from Prognoz 6 satellite

    International Nuclear Information System (INIS)

    Dalaudier, Francis.

    1981-06-01

    This thesis is devoted to an ''interplanetary helium'' experiment, the aim of the work being to acquire a greater understanding of the local interstellar environment and its interaction with the solar system. Measurements made from the Prognoz 6 satellite on ultraviolet fluxes from hydrogen (121.6 nm) and neutral and ionized helium (58.4 nm and 30.4 nm respectively) were used to construct a computer model. Most of the work performed deals with comparing and interpreting the results obtained [fr

  15. The origin of the 3.4 micron feature in Wild 2 cometary particles and in ultracarbonaceous interplanetary dust particles

    OpenAIRE

    Matrajt, Graciela; Flynn, George; Brownlee, Don; Joswiak, Dave; Bajt, Sasa

    2013-01-01

    We analyzed 2 ultra-carbonaceous interplanetary dust particles and 2 cometary Wild 2 particles with infrared spectroscopy. We characterized the carrier of the 3.4 micron band in these samples and compared its profile and the CH2/CH3 ratios to the 3.4 micron band in the diffuse interstellar medium (DISM), in the insoluble organic matter (IOM) from 3 primitive meteorites, in asteroid 24 Themis and in the coma of comet 103P/Hartley 2. We found that the 3.4 micron band in both Wild 2 and IDPs is ...

  16. The mean magnetic field of the sun - Method of observation and relation to the interplanetary magnetic field

    Science.gov (United States)

    Scherrer, P. H.; Wilcox, J. M.; Kotov, V.; Severnyi, A. B.; Howard, R.

    1977-01-01

    The mean solar magnetic field as measured in integrated light has been observed since 1968. Since 1970 it has been observed both at Hale Observatories and at the Crimean Astrophysical Observatory. The observing procedures at both observatories and their implications for mean field measurements are discussed. A comparison of the two sets of daily observations shows that similar results are obtained at both observatories. A comparison of the mean field with the interplanetary magnetic polarity shows that the IMF sector structure has the same pattern as the mean field polarity.

  17. Influence of the interplanetary driver type on the durations of main and recovery phases of magnetic storms

    OpenAIRE

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2013-01-01

    We study durations of main and recovery phases of magnetic storms induced by different types of large-scale solar-wind streams (Sheath, magnetic cloud (MC), Ejecta and CIR) on the basis of OMNI data base during 1976-2000. Durations of both main and recovery phases depend on types of interplanetary drivers. On the average, duration of main phase of storms induced by compressed regions (CIR and Sheath) is shorter than by MC and Ejecta while duration of recovery phase of CIR- and Sheath-induced ...

  18. Interplanetary scintillation observations of an unbiased sample of 90 Ooty occultation radio sources at 326.5 MHz

    International Nuclear Information System (INIS)

    Banhatti, D.G.; Ananthakrishnan, S.

    1989-01-01

    We present 327-MHz interplanetary scintillation (IPS) observations of an unbiased sample of 90 extragalactic radio sources selected from the ninth Ooty lunar occultation list. The sources are brighter than 0.75 Jy at 327 MHz and lie outside the galactic plane. We derive values, the fraction of scintillating flux density, and the equivalent Gaussian diameter for the scintillating structure. Various correlations are found between the observed parameters. In particular, the scintillating component weakens and broadens with increasing largest angular size, and stronger scintillators have more compact scintillating components. (author)

  19. Study of coronal and interplanetary propagation of solar particles following the E450 solar flare on July 29, 1973

    International Nuclear Information System (INIS)

    Gombosi, T.; Somogyi, A.J.; Kolesov, G.Ya.; Kurt, V.G.; Kuzhevskii, B.M.; Logachev, Yu.I.; Savenko, I.A.; Shestopalov, I.P.

    1977-01-01

    Intensity profiles of protons and electrons of various energies measured onboard the high-apogee Prognos-3 satellite are analysed as well as the energy balance between the various flare produced phenomena. The general behaviour of the solar particle event following the 3B flare at E45 0 can be well described in terms of a simple model which takes into account coronal diffusion with a leakage time and a Krimigis' type interplanetary diffusion. The results suggest an inverse dependence of coronal diffusion coefficient on rigidity. (author)

  20. The solar ionisation rate deduced from Ulysses measurements and its implications to interplanetary Lyman alpha-intensity

    Science.gov (United States)

    Summanen, T.; Kyroelae, E.

    1995-01-01

    We have developed a computer code which can be used to study 3-dimensional and time-dependent effects of the solar cycle on the interplanetary (IP) hydrogen distribution. The code is based on the inverted Monte Carlo simulation. In this work we have modelled the temporal behaviour of the solar ionisation rate. We have assumed that during the most of the time of the solar cycle there is an anisotopic latitudinal structure but right at the solar maximum the anisotropy disappears. The effects of this behaviour will be discussed both in regard to the IP hydrogen distribution and IP Lyman a a-intensity.