WorldWideScience

Sample records for prolonged mitotic arrest

  1. Cdc20 control of cell fate during prolonged mitotic arrest

    DEFF Research Database (Denmark)

    Nilsson, Jakob

    2011-01-01

    The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations...

  2. The SUMO protease SENP1 is required for cohesion maintenance and mitotic arrest following spindle poison treatment

    Energy Technology Data Exchange (ETDEWEB)

    Era, Saho [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Abe, Takuya; Arakawa, Hiroshi [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Kobayashi, Shunsuke [Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Szakal, Barnabas [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Yoshikawa, Yusuke; Motegi, Akira; Takeda, Shunichi [Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Branzei, Dana, E-mail: dana.branzei@ifom.eu [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer SENP1 knockout chicken DT40 cells are hypersensitive to spindle poisons. Black-Right-Pointing-Pointer Spindle poison treatment of SENP1{sup -/-} cells leads to increased mitotic slippage. Black-Right-Pointing-Pointer Mitotic slippage in SENP1{sup -/-} cells associates with apoptosis and endoreplication. Black-Right-Pointing-Pointer SENP1 counteracts sister chromatid separation during mitotic arrest. Black-Right-Pointing-Pointer Plk1-mediated cohesion down-regulation is involved in colcemid cytotoxicity. -- Abstract: SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1{sup -/-} cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2{alpha}{sup +/-} mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2{alpha} is SUMOylated during mitosis, the TOP2{alpha}{sup +/-} mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1{sup -/-} cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.

  3. Proteasome inhibition enhances the efficacy of volasertib-induced mitotic arrest in AML in vitro and prolongs survival in vivo.

    Science.gov (United States)

    Schnerch, Dominik; Schüler, Julia; Follo, Marie; Felthaus, Julia; Wider, Dagmar; Klingner, Kathrin; Greil, Christine; Duyster, Justus; Engelhardt, Monika; Wäsch, Ralph

    2017-03-28

    Elderly and frail patients, diagnosed with acute myeloid leukemia (AML) and ineligible to undergo intensive treatment, have a dismal prognosis. The small molecule inhibitor volasertib induces a mitotic block via inhibition of polo-like kinase 1 and has shown remarkable anti-leukemic activity when combined with low-dose cytarabine. We have demonstrated that AML cells are highly vulnerable to cell death in mitosis yet manage to escape a mitotic block through mitotic slippage by sustained proteasome-dependent slow degradation of cyclin B. Therefore, we tested whether interfering with mitotic slippage through proteasome inhibition arrests and kills AML cells more efficiently during mitosis. We show that therapeutic doses of bortezomib block the slow degradation of cyclin B during a volasertib-induced mitotic arrest in AML cell lines and patient-derived primary AML cells. In a xenotransplant mouse model of human AML, mice receiving volasertib in combination with bortezomib showed superior disease control compared to mice receiving volasertib alone, highlighting the potential therapeutic impact of this drug combination.

  4. Carbamazepine induces mitotic arrest in mammalian Vero cells

    International Nuclear Information System (INIS)

    Perez Martin, J.M.; Fernandez Freire, P.; Labrador, V.; Hazen, M.J.

    2008-01-01

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells

  5. Carbamazepine induces mitotic arrest in mammalian Vero cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Martin, J.M.; Fernandez Freire, P.; Labrador, V. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hazen, M.J. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)], E-mail: mariajose.hazen@uam.es

    2008-01-01

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells.

  6. ATP depletion during mitotic arrest induces mitotic slippage and APC/CCdh1-dependent cyclin B1 degradation.

    Science.gov (United States)

    Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho

    2018-04-27

    ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.

  7. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis.

    Science.gov (United States)

    Fong, Chii Shyang; Mazo, Gregory; Das, Tuhin; Goodman, Joshua; Kim, Minhee; O'Rourke, Brian P; Izquierdo, Denisse; Tsou, Meng-Fu Bryan

    2016-07-02

    Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency.

  8. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold

    Energy Technology Data Exchange (ETDEWEB)

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar; Calvo-Sanjuán, Rubén; Gracia-Fleta, Lucía; Naval, Javier; Marzo, Isabel, E-mail: imarzo@unizar.es

    2012-02-01

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.

  9. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    Directory of Open Access Journals (Sweden)

    Zhong Rong Zhang

    Full Text Available Andrographolide (Andro suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC, alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  10. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation

    Science.gov (United States)

    Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC. PMID:23382917

  11. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  12. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-01-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO 2 -hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  13. Effect of caffeine on radiation-induced mitotic delay: delayed expression of G2 arrest

    International Nuclear Information System (INIS)

    Rowley, R.; Zorch, M.; Leeper, D.B.

    1984-01-01

    In the presence of 5 mM caffeine, irradiated (1.5 Gy) S and G 2 cells progressed to mitosis in register and without arrest in G 2 . Caffeine (5 mM) markedly reduced mitotic delay even after radiation doses up to 20 Gy. When caffeine was removed from irradiated (1.5 Gy) and caffeine-treated cells, a period of G 2 arrest followed, similar in length to that produced by radiation alone. The arrest expressed was independent of the duration of the caffeine treatment for exposures up to 3 hr. The similarity of the response to the cited effects of caffeine on S-phase delay suggests a common basis for delay induction in S and G 2 phases

  14. Influence of novobiocin on mitotic events and radiation-induced G2-arrest

    International Nuclear Information System (INIS)

    Rowley, R.

    1987-01-01

    Novobiocin was used in CHO cells to test for an involvement of topoisomerase II activity in; 1) the induction of, and recovery from, radiation-induced G 2 -arrest and 2) progression through mitosis. Novobiocin blocked recovery from G 2 -arrest with a concentration dependency which suggested that this effect resulted from protein synthesis inhibition. Novobiocin alone, at concentrations above 500 μgml, blocked cell progression in early mitosis. The transition point was distinct from that of protein and RNA synthesis inhibitors and was the only arrest point in mitosis. A similar block was imposed by coumermycin. While this may indicate a requirement for topoisomerase II activity during chromosome condensation, it was also associated with inhibition of histone phosphorylation. Histone H3 phosphorylation is believed to be necessary for chromosome condensation and, when inhibited by novobiocin, correlates with a block in premature chromatin condensation in tsBN2 cells. The authors' data thus unite these two findings, provide an opportunity to analyse the temporal relationship between histone phosphorylation and mitotic events and suggest that topological reorganization of the chromatin is not involved in radiation-induced G 2 arrest

  15. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  16. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Dina Dikovskaya

    2015-09-01

    Full Text Available Oncogene-induced senescence (OIS is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  17. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    Science.gov (United States)

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  18. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, Maurizio [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Ovrevik, Johan [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Mollerup, Steen [Section for Toxicology, National Institute of Occupational Health, N-0033 Oslo (Norway); Asare, Nana [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Longhin, Eleonora [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Dahlman, Hans-Jorgen [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Camatini, Marina [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Centre Research POLARIS, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Holme, Jorn A., E-mail: jorn.holme@fhi.no [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway)

    2011-08-01

    Highlights: {yields} PM2.5 induces mitotic arrest in BEAS-2B cells. {yields} PM2.5 induces DNA damage and activates DNA damage response. {yields} AhR regulated genes (Cyp1A1, Cyp1B1 and AhRR) are upregulated after PM exposure. {yields} Mitotic spindle assembly is perturbed in PM exposed cells. - Abstract: Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in 'classical' apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  19. Complete maternal and fetal recovery after prolonged cardiac arrest.

    Science.gov (United States)

    Selden, B S; Burke, T J

    1988-04-01

    A case of complete maternal and fetal recovery after prolonged cardiac arrest from massive lidocaine overdose is presented. A 27-year-old woman at 15 weeks gestation had a complete neurologic recovery after 22 minutes of CPR, including 19 minutes of electromechanical dissociation and asystole, with normal fetal heart function and fetal motion confirmed by ultrasound immediately after resuscitation. The patient delivered a healthy and neurologically normal infant at 40 weeks gestation. This is the longest cardiac arrest in early pregnancy reported in the medical literature with normal maternal and fetal outcome.

  20. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    International Nuclear Information System (INIS)

    McNeely, Samuel C.; Belshoff, Alex C.; Taylor, B. Frazier; Fan, Teresa W-M.; McCabe, Michael J.; Pinhas, Allan R.

    2008-01-01

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-π was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G 2 -phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application

  1. Prolonged cardiopulmonary resuscitation and outcomes after out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Rajan, Shahzleen; Folke, Fredrik; Kragholm, Kristian

    2016-01-01

    AIM: It is unclear whether prolonged resuscitation can result in successful outcome following out-of-hospital cardiac arrests (OHCA). We assessed associations between duration of pre-hospital resuscitation on survival and functional outcome following OHCA in patients achieving pre-hospital return...

  2. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe.

    Directory of Open Access Journals (Sweden)

    Macario Martinez-Castillo

    Full Text Available Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562, were treated with 20 μM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562, which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP.

  3. Structurally simplified biphenyl combretastatin A4 derivatives retain in vitro anti-cancer activity dependent on mitotic arrest

    Science.gov (United States)

    Tarade, Daniel; Ma, Dennis; Pignanelli, Christopher; Mansour, Fadi; Simard, Daniel; van den Berg, Sean; Gauld, James; McNulty, James; Pandey, Siyaram

    2017-01-01

    The cis-stilbene, combretastatin A4 (CA4), is a potent microtubule targeting and vascular damaging agent. Despite promising results at the pre-clinical level and extensive clinical evaluation, CA4 has yet to be approved for therapeutic use. One impediment to the development of CA4 is an inherent conformational instability about the ethylene linker, which joins two aromatic rings. We have previously published preliminary data regarding structurally simplified biphenyl derivatives of CA4, lacking an ethylene linker, which retain anti-proliferative and pro-apoptotic activity, albeit at higher doses. Our current study provides a more comprehensive evaluation regarding the anti-proliferative and pro-apoptotic properties of biphenyl CA4 derivatives in both 2D and 3D cancerous and non-cancerous cell models. Computational analysis has revealed that cytotoxicity of CA4 and biphenyl analogues correlates with predicted tubulin affinity. Additional mechanistic evaluation of the biphenyl derivatives found that their anti-cancer activity is dependent on prolonged mitotic arrest, in a similar manner to CA4. Lastly, we have shown that cancer cells deficient in the extrinsic pathway of apoptosis experience delayed cell death following treatment with CA4 or analogues. Biphenyl derivatives of CA4 represent structurally simplified analogues of CA4, which retain a similar mechanism of action. The biphenyl analogues warrant in vivo examination to evaluate their potential as vascular damaging agents. PMID:28253265

  4. Structurally simplified biphenyl combretastatin A4 derivatives retain in vitro anti-cancer activity dependent on mitotic arrest.

    Directory of Open Access Journals (Sweden)

    Daniel Tarade

    Full Text Available The cis-stilbene, combretastatin A4 (CA4, is a potent microtubule targeting and vascular damaging agent. Despite promising results at the pre-clinical level and extensive clinical evaluation, CA4 has yet to be approved for therapeutic use. One impediment to the development of CA4 is an inherent conformational instability about the ethylene linker, which joins two aromatic rings. We have previously published preliminary data regarding structurally simplified biphenyl derivatives of CA4, lacking an ethylene linker, which retain anti-proliferative and pro-apoptotic activity, albeit at higher doses. Our current study provides a more comprehensive evaluation regarding the anti-proliferative and pro-apoptotic properties of biphenyl CA4 derivatives in both 2D and 3D cancerous and non-cancerous cell models. Computational analysis has revealed that cytotoxicity of CA4 and biphenyl analogues correlates with predicted tubulin affinity. Additional mechanistic evaluation of the biphenyl derivatives found that their anti-cancer activity is dependent on prolonged mitotic arrest, in a similar manner to CA4. Lastly, we have shown that cancer cells deficient in the extrinsic pathway of apoptosis experience delayed cell death following treatment with CA4 or analogues. Biphenyl derivatives of CA4 represent structurally simplified analogues of CA4, which retain a similar mechanism of action. The biphenyl analogues warrant in vivo examination to evaluate their potential as vascular damaging agents.

  5. Exposure of Human Lung Cancer Cells to 8-Chloro-Adenosine Induces G2/M Arrest and Mitotic Catastrophe

    Directory of Open Access Journals (Sweden)

    Hong-Yu Zhang

    2004-11-01

    Full Text Available 8-Chloro-adenosine (8-CI-Ado is a potent chemotherapeutic agent whose cytotoxicity in a variety of tumor cell lines has been widely investigated. However, the molecular mechanisms are uncertain. In this study, we found that exposure of human lung cancer cell lines A549 (p53-wt and H1299 (p53-depleted to 8-CI-Ado induced cell arrest in the G2/M phase, which was accompanied by accumulation of binucleated and polymorphonucleated cells resulting from aberrant mitosis and failed cytokinesis. Western blotting showed the loss of phosphorylated forms of Cdc2 and Cdc25C that allowed progression into mitosis. Furthermore, the increase in Ser10-phosphorylated histone H3-positive cells revealed by fluorescence-activated cell sorting suggested that the agent-targeted cells were able to exit the G2 phase and enter the M phase. Immunocytochemistry showed that microtubule and microfilament arrays were changed in exposed cells, indicating that the dynamic instability of microtubules and microfilaments was lost, which may correlate with mitotic dividing failure. Aberrant mitosis resulted in mitotic catastrophe followed by varying degrees of apoptosis, depending on the cell lines. Thus, 8-CI-Ado appears to exert its cytotoxicity toward cells in culture by inducing mitotic catastrophe.

  6. The Extent of Myocardial Injury During Prolonged Targeted Temperature Management After Out-of-Hospital Cardiac Arrest

    DEFF Research Database (Denmark)

    Grejs, Anders Morten; Gjedsted, Jakob; Thygesen, Kristian

    2017-01-01

    AIM: The aim of this study is to evaluate the extent of myocardial injury by cardiac biomarkers during prolonged targeted temperature management of 24 hours vs 48 hours after out-of-hospital cardiac arrest. METHODS: This randomized Scandinavian multicenter study compares the extent of myocardial...... injury estimated by hs-cTnTAUC of prolonged targeted temperature management of 48 hours vs 24 hours, although the CK-MBAUC was significantly higher during 48 hours vs 24 hours. Hence, it seems unlikely that the duration of targeted temperature management has a beneficial effect on the extent...... injury quantified by area under the curve (AUC) of cardiac biomarkers during prolonged targeted temperature management at 33°C ± 1°C of 24 hours and 48 hours, respectively. Through a period of 2.5 years, 161 comatose out-of-hospital cardiac arrest patients were randomized to targeted temperature...

  7. Resuscitation after prolonged cardiac arrest: role of cardiopulmonary bypass and systemic hyperkalemia.

    Science.gov (United States)

    Liakopoulos, Oliver J; Allen, Bradley S; Buckberg, Gerald D; Hristov, Nikola; Tan, Zhongtuo; Villablanca, J Pablo; Trummer, Georg

    2010-06-01

    The purpose of this study was to determine (1) the role of emergency cardiopulmonary bypass (CPB) after prolonged cardiac arrest and failed cardiopulmonary resuscitation, and (2) the use of systemic hyperkalemia during CPB to convert intractable ventricular fibrillation (VF). Thirty-one pigs (34 +/- 2 kg) underwent 15 minutes of cardiac arrest after induced VF, followed by 10 minutes of cardiopulmonary resuscitation-advanced life support. Peripheral CPB was used if cardiopulmonary resuscitation failed to restore stable circulation. Damage was assessed by evaluating hemodynamics, biochemical variables (creatine kinase-MB, neuron-specific enolase), neurologic deficit score, and brain magnetic resonance imaging. Cardiopulmonary resuscitation alone was successful in only 19% (6 of 31 pigs). Cardiopulmonary bypass was initiated in 81% of animals (25 of 31 pigs) either for hypotension (5 of 25 pigs) or intractable VF (20 of 25 pigs). Defibrillation was successful in 7 of 20 animals during the first 10 minutes after initiating CPB. Ventricular fibrillation persisted more than 10 minutes in 13 of 20 pigs, and animals were treated either with repeated defibrillation (6 of 13 pigs) or with a potassium bolus (7 of 13 pigs) to induce transient cardiac arrest. Overall survival at 24 hours was 84% with cardiopulmonary resuscitation (100% of pigs with hypotension; 71% in CPB-VF < 10 minutes). Despite CPB, fatal myocardial failure occurred after VF duration of more than 10 minutes in all pigs treated with electrical defibrillation, whereas hyperkalemia allowed 100% cardioversion and 86% survival. Biochemical variables remained elevated in all groups. Similarly, severe brain injury was present in all animals as confirmed by neurologic deficit score (197 +/- 10) and magnetic resonance imaging. Emergency CPB after prolonged cardiac arrest improves survival and allows systemic hyperkalemia to convert intractable VF, but fails to reduce neurologic damage. 2010 The Society of Thoracic

  8. In-hospital cardiac arrest is associated with use of non-antiarrhythmic QTc-prolonging drugs

    DEFF Research Database (Denmark)

    De Bruin, Marie L; Langendijk, Pim N J; Koopmans, Richard P

    2007-01-01

    a case-control study in which patients, for whom intervention of the advanced life support resuscitation team was requested for cardiac arrest between 1995 and 2003 in the Academic Medical Centre, Amsterdam, were compared with controls regarding current use of non-antiarrhythmic QTc-prolonging drugs...

  9. Impact of Early Vasopressor Administration on Neurological Outcomes after Prolonged Out-of-Hospital Cardiac Arrest.

    Science.gov (United States)

    Hubble, Michael W; Tyson, Clark

    2017-06-01

    Introduction Vasopressors are associated with return of spontaneous circulation (ROSC), but no long-term benefit has been demonstrated in randomized trials. However, these trials did not control for the timing of vasopressor administration which may influence outcomes. Consequently, the objective of this study was to develop a model describing the likelihood of favorable neurological outcome (cerebral performance category [CPC] 1 or 2) as a function of the public safety answering point call receipt (PSAP)-to-pressor-interval (PPI) in prolonged out-of-hospital cardiac arrest. Hypothesis The likelihood of favorable neurological outcome declines with increasing PPI. This investigation was a retrospective study of cardiac arrest using linked data from the Cardiac Arrest Registry to Enhance Survival (CARES) database (Centers for Disease Control and Prevention [Atlanta, Georgia USA]; American Heart Association [Dallas, Texas USA]; and Emory University Department of Emergency Medicine [Atlanta, Georgia USA]) and the North Carolina (USA) Prehospital Medical Information System. Adult patients suffering a bystander-witnessed, non-traumatic cardiac arrest between January 2012 and June 2014 were included. Logistic regression was used to calculate the adjusted odds ratio (OR) of neurological outcome as a function of PPI, while controlling for patient age, gender, and race; endotracheal intubation (ETI); shockable rhythm; layperson cardiopulmonary resuscitation (CPR); and field hypothermia. Of the 2,100 patients meeting inclusion criteria, 913 (43.5%) experienced ROSC, 618 (29.4%) survived to hospital admission, 187 (8.9%) survived to hospital discharge, and 155 (7.4%) were discharged with favorable neurological outcomes (CPC 1 or 2). Favorable neurological outcome was less likely with increasing PPI (OR=0.90; PCPR, and ETI were not independent predictors of favorable neurological outcome. In this evaluation, time to vasopressor administration was significantly associated with

  10. Mitotic Stress in Cancer: Tipping the Fine Balance

    Indian Academy of Sciences (India)

    Acer

    of these molecules do not fit into the classical definition of oncogenes or tumor suppressor genes. In some cases, both over-expression and decreased expression of these genes result in mitotic arrest. Moreover, some .... The Clinical Collaborators: Dr. Arunabha Sengupta. Dr. Arun Roy. Dr. Jayanta Chakrabarty, CNCI. Prof.

  11. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats.

    Science.gov (United States)

    Kim, Junhwan; Villarroel, José Paul Perales; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W; Becker, Lance B

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  12. Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest

    International Nuclear Information System (INIS)

    Winnefeld, Marc; Grewenig, Annabel; Schnoelzer, Martina; Spring, Herbert; Knoch, Tobias A.; Gan, Eugene C.; Rommelaere, Jean; Cziepluch, Celina

    2006-01-01

    The human small glutamine-rich TPR-containing protein (hSGT) is essential for cell division since RNA-interference-mediated strong reduction of hSGT protein levels causes mitotic arrest (M. Winnefeld, J. Rommelaere, and C. Cziepluch, The human small glutamine-rich TPR-containing protein is required for progress through cell division, Exp. Cell Res. 293 (2004), 43-57). Analysis of HeLa cells expressing a histone 2A-YFP fusion protein revealed the continuous presence of few mislocalized chromosomes close to the spindle poles as possible cause for hSGT depletion-dependent prometaphase arrest. Cells unable to rescue these mislocalized chromosomes into the metaphase plate died at this stage through apoptosis. In order to address hSGT function at the molecular level, mass spectrometry analysis of proteins which co-immunoprecipitated with Flag-tagged hSGT was performed. Thereby, Hsp70 and Bag-6/Bat-3/Scythe were identified as novel hSGT interaction partners while interaction with Hsc70 was confirmed. Results obtained with truncated versions of the hSGT protein revealed that Bag-6/Bat-3/Scythe and Hsp70 or Hsc70 were independently able to form complexes with hSGT. Interaction of hSGT with Hsc70, Hsp70 or Bag-6/Bat-3/Scythe was demonstrated in prometaphase, thereby suggesting a possible role for complexes containing hSGT and distinct (co)-chaperones during mitosis. Finally, cells from populations with reduced levels of Bag-6/Bat-3/Scythe also displayed persistence of mislocalized chromosomes and mitotic arrest, which strongly indicated that hSGT-Bag-6/Bat-3/Scythe complexes could be directly or indirectly required for complete chromosome congression

  13. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung.

    Directory of Open Access Journals (Sweden)

    Andreas A Kroon

    Full Text Available RATIONALE: The molecular mechanism(s by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. OBJECTIVE: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. METHODS: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg⁻¹. MEASUREMENT AND MAIN RESULTS: Ventilation for 24 h (h decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27(Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57(Kip2, decreased that of p16(INK4a, while the levels of p21(Waf/Cip1 and p15(INK4b were unchanged. Increased p27(Kip1 expression coincided with reduced phosphorylation of p27(Kip1 at Thr¹⁵⁷, Thr¹⁸⁷ and Thr¹⁹⁸ (p<0.05, thereby promoting its nuclear localization. Similar -but more rapid- changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg⁻¹ and when fetal lung epithelial cells were subjected to a continuous (17% elongation cyclic stretch. CONCLUSION: This is the first demonstration that prolonged (24 h of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G₁ and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27(Kip1, p57(Kip2 from the Kip family.

  14. Plk1 inhibition causes post-mitotic DNA damage and senescence in a range of human tumor cell lines.

    Directory of Open Access Journals (Sweden)

    Denise L Driscoll

    Full Text Available Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX, which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens.

  15. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats

    Directory of Open Access Journals (Sweden)

    Junhwan Kim

    2016-01-01

    Full Text Available Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  16. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    International Nuclear Information System (INIS)

    AbuBakar, S.; Au, W.W.; Legator, M.S.; Albrecht, T.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infected with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed

  17. APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage

    Directory of Open Access Journals (Sweden)

    Toda Kazuhiro

    2012-02-01

    Full Text Available Abstract Background The spindle assembly checkpoint (SAC inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons. Results Here we describe mitotic slippage in yeast bub2Δ mutant cells that are defective in the repression of precocious telophase onset (mitotic exit. Precocious activation of anaphase promoting complex/cyclosome (APC/C-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation, in addition to telophase onset (mitotic exit, during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments. Conclusions The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.

  18. Upregulation of meiosis-specific genes in lymphoma cell lines following genotoxic insult and induction of mitotic catastrophe

    International Nuclear Information System (INIS)

    Kalejs, Martins; Ivanov, Andrey; Plakhins, Gregory; Cragg, Mark S; Emzinsh, Dzintars; Illidge, Timothy M; Erenpreisa, Jekaterina

    2006-01-01

    We have previously reported that p53 mutated radioresistant lymphoma cell lines undergo mitotic catastrophe after irradiation, resulting in metaphase arrest and the generation of endopolyploid cells. A proportion of these endopolyploid cells then undergo a process of de-polyploidisation, stages of which are partially reminiscent of meiotic prophase. Furthermore, expression of meiosis-specific proteins of the cancer/testis antigens group of genes has previously been reported in tumours. We therefore investigated whether expression of meiosis-specific genes was associated with the polyploidy response in our tumour model. Three lymphoma cell lines, Namalwa, WI-L2-NS and TK6, of varying p53 status were exposed to a single 10 Gy dose of gamma radiation and their responses assessed over an extended time course. DNA flow cytometry and mitotic counts were used to assess the kinetics and extent of polyploidisation and mitotic progression. Expression of meiotic genes was analysed using RT-PCR and western blotting. In addition, localisation of the meiotic cohesin REC8 and its relation to centromeres was analysed by immunofluorescence. The principal meiotic regulator MOS was found to be significantly post-transcriptionally up-regulated after irradiation in p53 mutated but not p53 wild-type lymphoma cells. The maximum expression of MOS coincided with the maximal fraction of metaphase arrested cells and was directly proportional to both the extent of the arrest and the number of endopolyploid cells that subsequently emerged. The meiotic cohesin REC8 was also found to be up-regulated after irradiation, linking sister chromatid centromeres in the metaphase-arrested and subsequent giant cells. Finally, RT-PCR revealed expression of the meiosis-prophase genes, DMC1, STAG3, SYCP3 and SYCP1. We conclude that multiple meiotic genes are aberrantly activated during mitotic catastrophe in p53 mutated lymphoma cells after irradiation. Furthermore, we suggest that the coordinated expression

  19. Comparative effects of ionizing radiation on cycle time and mitotic duration. A time-lapse cinematography study

    International Nuclear Information System (INIS)

    D'Hooghe, M.C.; Hemon, D.; Valleron, A.J.; Malaise, E.P.

    1980-01-01

    The effects of 60 Co γ rays on the length of the intermitotic period, the duration of mitosis, and the division probability of EMT6 cells have been studied in vitro using time-lapse cinematography. Irradiation increases the duration of the mitosis and of the cycle in comparable proportions: both parameters are practically doubled by a dose of 10 Gy. When daughters of irradiated cells die, the mitotic delay and lengthening of mitosis of their mother cells are longer than average. Mitotic delay and lengthening of mitosis depend on the age of cells at the moment of irradiation. The mitotic delay increases progressively when cells are irradiated during the first 8 h of their cycle (i.e., before the transition point), whereas mitosis is slightly prolonged. On the other hand, when the cells are irradiated after this transition point the mitotic delay decreases markedly, whereas the lengthening of mitosis increases sharply. These results tend to indicate that two different mechanisms are responsible for mitotic delay and prolongation of mitosis observed after irradiation

  20. Comparative effects of ionizing radiation on cycle time and mitotic duration. A time-lapse cinematography study

    Energy Technology Data Exchange (ETDEWEB)

    D' Hooghe, M.C. (Institut de Recherches sur le Cancer, Lille, France); Hemon, D.; Valleron, A.J.; Malaise, E.P.

    1980-03-01

    The effects of /sup 60/Co ..gamma.. rays on the length of the intermitotic period, the duration of mitosis, and the division probability of EMT6 cells have been studied in vitro using time-lapse cinematography. Irradiation increases the duration of the mitosis and of the cycle in comparable proportions: both parameters are practically doubled by a dose of 10 Gy. When daughters of irradiated cells die, the mitotic delay and lengthening of mitosis of their mother cells are longer than average. Mitotic delay and lengthening of mitosis depend on the age of cells at the moment of irradiation. The mitotic delay increases progressively when cells are irradiated during the first 8 h of their cycle (i.e., before the transition point), whereas mitosis is slightly prolonged. On the other hand, when the cells are irradiated after this transition point the mitotic delay decreases markedly, whereas the lengthening of mitosis increases sharply. These results tend to indicate that two different mechanisms are responsible for mitotic delay and prolongation of mitosis observed after irradiation.

  1. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akinori [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Kikuguchi, Chisato [Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan); Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  2. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    International Nuclear Information System (INIS)

    Takahashi, Akinori; Kikuguchi, Chisato; Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru; Yamamoto, Tadashi

    2012-01-01

    Highlights: ► CNOT3 depletion increases the mitotic index. ► CNOT3 inhibits the expression of MAD1. ► CNOT3 destabilizes the MAD1 mRNA. ► MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4–NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4–NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4–NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4–NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  3. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    Science.gov (United States)

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541

  4. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Fangyun Tian

    2018-02-01

    Full Text Available Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG and electroencephalogram (EEG signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.

  5. Xanthium strumarium extract inhibits mammalian cell proliferation through mitotic spindle disruption mediated by xanthatin.

    Science.gov (United States)

    Sánchez-Lamar, Angel; Piloto-Ferrer, Janet; Fiore, Mario; Stano, Pasquale; Cozzi, Renata; Tofani, Daniela; Cundari, Enrico; Francisco, Marbelis; Romero, Aylema; González, Maria L; Degrassi, Francesca

    2016-12-24

    Xanthium strumarium L. is a member of the Asteraceae family popularly used with multiple therapeutic purposes. Whole extracts of this plant have shown anti-mitotic activity in vitro suggesting that some components could induce mitotic arrest in proliferating cells. Aim of the present work was to characterize the anti-mitotic properties of the X. strumarium whole extract and to isolate and purify active molecule(s). The capacity of the whole extract to inhibit mitotic progression in mammalian cultured cells was investigated to identify its anti-mitotic activity. Isolation of active component(s) was performed using a bioassay-guided multistep separation procedure in which whole extract was submitted to a progressive process of fractionation and fractions were challenged for their anti-mitotic activity. Our results show for the first time that X. strumarium whole extract inhibits assembly of the mitotic spindle and spindle-pole separation, thereby heavily affecting mitosis, impairing the metaphase to anaphase transition and inducing apoptosis. The purification procedure led to a fraction with an anti-mitotic activity comparable to that of the whole extract. Chemical analysis of this fraction showed that its major component was xanthatin. The present work shows a new activity of X. strumarium extract, i.e. the alteration of the mitotic apparatus in cultured cells that may be responsible for the anti-proliferative activity of the extract. Anti-mitotic activity is shown to be mainly exerted by xanthatin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Rohitukine inhibits in vitro adipogenesis arresting mitotic clonal expansion and improves dyslipidemia in vivo.

    Science.gov (United States)

    Varshney, Salil; Shankar, Kripa; Beg, Muheeb; Balaramnavar, Vishal M; Mishra, Sunil Kumar; Jagdale, Pankaj; Srivastava, Shishir; Chhonker, Yashpal S; Lakshmi, Vijai; Chaudhari, Bhushan P; Bhatta, Rabi Shankar; Saxena, Anil Kumar; Gaikwad, Anil Nilkanth

    2014-06-01

    We developed a common feature pharmacophore model using known antiadipogenic compounds (CFPMA). We identified rohitukine, a reported chromone anticancer alkaloid as a potential hit through in silico mapping of the in-house natural product library on CFPMA. Studies were designed to assess the antiadipogenic potential of rohitukine. Rohitukine was isolated from Dysoxylum binacteriferum Hook. to ⬧95% purity. As predicted by CFPMA, rohitukine was indeed found to be an antiadipogenic molecule. Rohitukine inhibited lipid accumulation and adipogenic differentiation in a concentration- and exposure-time-dependent manner in 3T3-L1 and C3H10T1/2 cells. Rohitukine downregulated expression of PPARγ, CCAAT/enhancer binding protein α, adipocyte protein 2 (aP2), FAS, and glucose transporter 4. It also suppressed mRNA expression of LPL, sterol-regulatory element binding protein (SREBP) 1c, FAS, and aP2, the downstream targets of PPARγ. Rohitukine arrests cells in S phase during mitotic clonal expansion. Rohitukine was bioavailable, and 25.7% of orally administered compound reached systemic circulation. We evaluated the effect of rohitukine on dyslipidemia induced by high-fat diet in the hamster model. Rohitukine increased hepatic expression of liver X receptor α and decreased expression of SREBP-2 and associated targets. Rohitukine decreased hepatic and gonadal lipid accumulation and ameliorated dyslipidemia significantly. In summary, our strategy to identify a novel antiadipogenic molecule using CFPMA successfully resulted in identification of rohitukine, which confirmed antiadipogenic activity and also exhibited in vivo antidyslipidemic activity. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Anti-mitotic potential of 7-diethylamino-3(2′-benzoxazolyl)-coumarin in 5-fluorouracil-resistant human gastric cancer cell line SNU620/5-FU

    International Nuclear Information System (INIS)

    Kim, Nam Hyun; Kim, Su-Nam; Oh, Joa Sub; Lee, Seokjoon; Kim, Yong Kee

    2012-01-01

    Highlights: ► DBC exerts antiproliferative potential against 5FU-resistant human gastric cancer cells. ► This effect is mediated by destabilization of microtubules and subsequent mitotic arrest. ► DBC enhances apoptosis via caspase activation and downregulation of antiapoptotic genes. -- Abstract: In this study, we investigate an anti-mitotic potential of the novel synthetic coumarin-based compound, 7-diethylamino-3(2′-benzoxazolyl)-coumarin, in 5-fluorouracil-resistant human gastric cancer cell line SNU-620-5FU and its parental cell SNU-620. It exerts the anti-proliferative effects with similar potencies against both cancer cells, which is mediated by destabilization of microtubules and subsequent mitotic arrest. Furthermore, this compound enhances caspase-dependent apoptotic cell death via decreased expression of anti-apoptotic genes. Taken together, our data strongly support anti-mitotic potential of 7-diethylamino-3(2′-benzoxazolyl)-coumarin against drug-resistant cancer cells which will prompt us to further develop as a novel microtubule inhibitor for drug-resistant cancer chemotherapy.

  8. The centrosome protein NEDD1 as a potential pharmacological target to induce cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Etievant Chantal

    2009-02-01

    Full Text Available Abstract Background NEDD1 is a protein that binds to the gamma-tubulin ring complex, a multiprotein complex at the centrosome and at the mitotic spindle that mediates the nucleation of microtubules. Results We show that NEDD1 is expressed at comparable levels in a variety of tumor-derived cell lines and untransformed cells. We demonstrate that silencing of NEDD1 expression by treatment with siRNA has differential effects on cells, depending on their status of p53 expression: p53-positive cells arrest in G1, whereas p53-negative cells arrest in mitosis with predominantly aberrant monopolar spindles. However, both p53-positive and -negative cells arrest in mitosis if treated with low doses of siRNA against NEDD1 combined with low doses of the inhibitor BI2536 against the mitotic kinase Plk1. Simultaneous reduction of NEDD1 levels and inhibition of Plk1 act in a synergistic manner, by potentiating the anti-mitotic activity of each treatment. Conclusion We propose that NEDD1 may be a promising target for controlling cell proliferation, in particular if targeted in combination with Plk1 inhibitors.

  9. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    Directory of Open Access Journals (Sweden)

    Alexander Lorz

    2017-08-01

    Full Text Available Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large

  10. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    Science.gov (United States)

    Lorz, Alexander; Botesteanu, Dana-Adriana; Levy, Doron

    2017-01-01

    Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/switch-off” increase in the average

  11. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    KAUST Repository

    Lorz, Alexander; Botesteanu, Dana-Adriana; Levy, Doron

    2017-01-01

    Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug's effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/ switch-off” increase in the average

  12. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    KAUST Repository

    Lorz, Alexander

    2017-08-30

    Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug\\'s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/ switch-off” increase in the average

  13. Factors Promoting Survival After Prolonged Resuscitation Attempts: A Case of Survival With Good Neurological Outcome Following 60 Minutes of Downtime After Out-of-Hospital Cardiac Arrest.

    Science.gov (United States)

    Bell, Douglas; Gluer, Robert; Murdoch, Dale

    2018-03-01

    Sudden cardiac arrest is a significant cause of death affecting approximately 25,000 people in Australia annually. We present an out-of-hospital cardiac arrest (OHCA) with prolonged down time and recurrent ventricular arrhythmias treated with extra-corporeal membrane oxygenation. The patient survived to hospital discharge with good neurological outcome. The patient's excellent outcome was a result of immediate good quality CPR, high level premorbid function, reversible cause of arrest and rapid access to an ECMO centre. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  14. The role of p53 in the response to mitotic spindle damage

    International Nuclear Information System (INIS)

    Meek, D.W.

    2000-01-01

    The p53 tumour suppressor protein has defined roles in G1/S and G2/M cell cycle checkpoint in response to a range of cellular stresses including DNA damage, dominant oncogene expression, hypoxia, metabolic changes and viral infection. In addition to these responses, p53 can also be activated when damage occurs to the mitotic spindle. Initially, spindle damage activates a p53-independent checkpoint which functions at the metaphase-anaphase transition and prevents cells from progressing through mitosis until the completion of spindle formation. Cells eventually escape from this block (a process termed 'mitotic slippage'), and an aberrant mitosis ensues in which sister chromatids fail to segregate properly. After a delay period, p53 responds to this mitotic failure by instituting a G1-like growth arrest, with an intact nucleus containing 4N DNA, but without the cells undergoing division. Cells lacking wild-type p53 are still able to arrest transiently at mitosis, and also fail to undergo division, underscoring that the delay in mitosis is p53-independent. However, these cells are not prevented from re-entering the cell cycle and can reduplicate their DNA unchecked, leading to polyploidy. Additionally, p53-null cells which experience spindle failure often show the appearance of micronuclei arising from poorly segregated chromosomes which have de-condensed and been enclosed in a nuclear envelope. The ability of p53 to prevent their formation suggests an additional G2 involvement which prevents nuclear breakdown prior to mitosis. The molecular mechanism by which p53 is able to sense mitotic failure is still unknown, but may be linked to the ability of p53 to regulate duplication of the centrosome, the organelle which nucleates spindle formation. (authors)

  15. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The NIMA Kinase Is Required To Execute Stage-Specific Mitotic Functions after Initiation of Mitosis

    Science.gov (United States)

    Govindaraghavan, Meera; Lad, Alisha A.

    2014-01-01

    The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events. PMID:24186954

  17. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Nakajima, Fumie [Department of Environmental Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa (Japan); Fukumori, Nobutaka [Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Hyakuninchou, Shinjyuku (Japan)

    1998-09-01

    Changes in cytoskeletal organization of cultured V79 cells exposed to arsenite and dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and related changes, such as mitotic arrest and induction of multinucleated cells, were investigated in comparison with their effects on DNA synthesis. DMAA caused mitotic arrest and induction of multinucleated cells with a delay of 12 h relative to the mitotic arrest. By contrast, arsenite at equitoxic concentrations to DMAA was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Post-mitotic incubation of cells arrested in metaphase by 6 h incubation with 10 mM DMAA showed that the incidence of multinucleated cells increased conversely with a rapid decrease in metaphase cells. This suggests that metaphase-arrested cells can escape from metaphase, resulting in the appearance of multinucleated cells. The mitotic arrest caused by DMAA was accompanied by disruption of the microtubule network. By contrast, both arsenite and DMAA did not cause disorganization of actin stress fibers even when incubated at concentrations that caused a marked retardation of cell growth. Cells exposed to arsenite for 6 h showed marked inhibition of DNA synthesis, whereas inhibition by DMAA was not observed. When incubation was prolonged by 18 h, the arsenite-induced inhibition of DNA synthesis was mitigated. By contrast, inhibition of DNA synthesis by DMAA occurred in parallel with an increase in the population of mitotic cells. These results suggest that DMAA caused growth retardation and morphological changes via disruption of the microtubule network, and that arsenite-induced retardation of cell growth and inhibition of DNA synthesis were not attributable to the cytoskeletal changes. (orig.) (orig.) With 7 figs., 31 refs.

  18. Caffeine-mediated release of alpha-radiation-induced G2 arrest increases the yield of chromosome aberrations

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Hieber, L.; Wegner, R.D.

    1983-01-01

    Severe and partly irreversible G2 arrest caused by americium-241 alpha-particles in Chinese hamster V79 cells acted as a competing process to the yield of detectable aberrant mitoses at metaphase. With increasing dose of alpha-radiation an increasing fraction of cells was irreversibly arrested in G2 with the consequence of interphase death before the first post-irradiation mitosis. This irreversible G2 arrest (demonstrated by flow cytofluorometry and mitotic indices) could be overcome by adding caffeine 8 hours after irradiation, the time point of maximum G2 arrest (80-90 per cent of all cells). Within 3.5 hours the number of aberrant mitoses increased by this treatment from 54 to 96 per cent and from 65 to 99.9 per cent for doses of 1.75 and 4.38 Gy of alpha-particles, respectively. The aberration frequency per mitotic cell, scored as chromatid and isochromatid breaks, rings, interchanges and dicentrics increased by a factor of about 3 after releasing G2 arrested cells. The frequency distribution of aberrations per cell revealed that, after 4.38 Gy, 58 per cent of the formerly G2-arrested cells had more than five aberrations per cell compared to only 8 per cent without the interaction of caffeine. (author)

  19. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells.

    Science.gov (United States)

    Han, Cho Rong; Jun, Do Youn; Kim, Yoon Hee; Lee, Ji Young; Kim, Young Ho

    2013-10-01

    In Jurkat T cell clone (JT/Neo), G2/M arrest, apoptotic sub-G1 peak, mitochondrial membrane potential (Δψm) loss, and TUNEL-positive DNA fragmentation were induced following exposure to 17α-estradiol (17α-E2), whereas none of these events (except for G2/M arrest) were induced in Jurkat cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, phosphorylation at Thr161 and dephosphorylation at Tyr15 of Cdk1, upregulation of cyclin B1 level, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation, and Bim phosphorylation were detected in the presence of Bcl-2 overexpression. However, the 17α-E2-induced upregulation of Bak levels, activation of Bak, activation of caspase-3, and PARP degradation were abrogated by Bcl-2 overexpression. In the presence of the G1/S blocking agent hydroxyurea, 17α-E2 failed to induce G2/M arrest and all apoptotic events including Cdk1 activation and phosphorylation of Bcl-2, Mcl-1 and Bim. The 17α-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor but not by aurora A and aurora B kinase inhibitors. Immunofluorescence microscopic analysis showed that an aberrant bipolar microtubule array, incomplete chromosome congression at the metaphase plate, and prometaphase arrest, which was reversible, were the underlying factors for 17α-E2-induced mitotic arrest. The in vitro microtubule polymerization assay showed that 17α-E2 could directly inhibit microtubule formation. These results show that the apoptogenic activity of 17α-E2 was due to the impaired mitotic spindle assembly causing prometaphase arrest and prolonged Cdk1 activation, the phosphorylation of Bcl-2, Mcl-1 and Bim, and the activation of Bak and mitochondria-dependent caspase cascade. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    Science.gov (United States)

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight

  1. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development.

    Directory of Open Access Journals (Sweden)

    Rajiv C McCoy

    2015-10-01

    Full Text Available Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4-8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos

  2. Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis

    Directory of Open Access Journals (Sweden)

    Moore Finola E

    2009-07-01

    Full Text Available Abstract The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2, is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2, known as a negative regulator of transforming growth factor-beta (TGF-β signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by

  3. Chromosome condensation and radiation-induced G2 arrest studied by the induction of premature chromosome condensation following cell fusion

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.

    1978-01-01

    When mitotic and interphase cells are fused together, the chromosomes of the interphase cell sometimes condense prematurely. The phenomenon of premature chromosome condensation (PCC) was utilized in investigating the problem of whether the chromosomes of cells suffering a radiation-induced G 2 delay are capable of condensation. Colcemide-arrested mitotic cells were fused with synchronized G 2 cells, and with irradiated cells suffering a G 2 delay. The frequency of PCC in mitotic X G 2 binucleate cells was determined. This was compared to the PCC frequency in an unirradiated synchronized population rich in G 2 cells after fusion with mitotic cells. Flash-labelling with 3 HTdR and autoradiography allowed S-phase cells to be eliminated. The frequency of G 2 PCCs was not significantly different for the irradiated G 2 -delayed or unirradiated cells. From these results it was concluded that the chromosomes of cells suffering a G 2 arrest are capable of condensation, although the involvement of the condensation process in radiation-induced G 2 delay could not be ruled out. (author)

  4. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest.

    Science.gov (United States)

    Sapieha, Przemyslaw; Mallette, Frédérick A

    2018-04-25

    In mitotic cells, cellular senescence is a permanent state of G1 arrest, that may have evolved in parallel to apoptosis, to limit proliferation of damaged cells and oncogenesis. Recent studies have suggested that postmitotic cells are also capable of entering a state of senescence, although the repercussions of postmitotic cellular senescence (PoMiCS) on tissue health and function are currently ill-defined. In tissues made largely of post-mitotic cells, it is evolutionary advantageous to preserve cellular integrity and cellular senescence of post-mitotic cells may prevent stressor-induced tissue degeneration and promote tissue repair. Paradoxically, PoMiCS may also contribute to disease progression through the generation of inflammatory mediators, termed the senescence-associated secretory phenotype. Here, we discuss the potential roles of PoMiCS and propose to enlarge the current definition of cellular senescence to postmitotic terminally differentiated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Salmela, Anna-Leena [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Graduate School of Biomedical Sciences, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Pouwels, Jeroen; Kukkonen-Macchi, Anu [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Waris, Sinikka; Toivonen, Pauliina [Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Jaakkola, Kimmo [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Maeki-Jouppila, Jenni [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Drug Discovery Graduate School, University of Turku (Finland); Kallio, Lila, E-mail: lila.kallio@vtt.fi [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Kallio, Marko J. [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Centre of Excellence for Translational Genome-Scale Biology, P.O. Box 106, Academy of Finland (Finland)

    2012-03-10

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.

  6. Prolonged cardiac arrest complicating a massive ST-segment elevation myocardial infarction associated with marijuana consumption

    Directory of Open Access Journals (Sweden)

    Jose Orsini

    2016-09-01

    Full Text Available Recreational substance use and misuse constitute a major public health issue. The annual rate of recreational drug overdose-related deaths is increasing exponentially, making unintentional overdose as the leading cause of injury-related deaths in the United States. Marijuana is the most widely used recreational illicit drug, with approximately 200 million users worldwide. Although it is generally regarded as having low acute toxicity, heavy marijuana usage has been associated with life-threatening consequences. Marijuana is increasingly becoming legal in the United States for both medical and recreational use. Although the most commonly seen adverse effects resulting from its consumption are typically associated with neurobehavioral and gastrointestinal symptoms, cases of severe toxicity involving the cardiovascular system have been reported. In this report, the authors describe a case of cannabis-associated ST-segment elevation myocardial infarction leading to a prolonged cardiac arrest.

  7. Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells.

    Science.gov (United States)

    Atkin, Jane; Halova, Lenka; Ferguson, Jennifer; Hitchin, James R; Lichawska-Cieslar, Agata; Jordan, Allan M; Pines, Jonathon; Wellbrock, Claudia; Petersen, Janni

    2014-03-15

    The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lies adjacent to the key Torin-interacting tryptophan provides Torin1 resistance, confirming the specificity of Torin1 for TOR. Using this mutation, we show that Torin1 advanced mitotic onset before inducing growth arrest. In contrast to TOR inhibition with rapamycin, regulation by either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in Wee1 levels. Experiments in human cell lines recapitulated these yeast observations: mammalian TOR (mTOR) was inhibited by Torin1, Wee1 levels declined and mitotic commitment was advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by TOR signalling is a conserved mechanism that helps to couple cell cycle and growth controls.

  8. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    Science.gov (United States)

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  9. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins.

    Science.gov (United States)

    Colin, Didier J; Hain, Karolina O; Allan, Lindsey A; Clarke, Paul R

    2015-03-01

    Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.

  10. Akt Inhibitor A-443654 Interferes with Mitotic Progression by Regulating Aurora A Kinase Expression

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2008-08-01

    Full Text Available Both Akt and Aurora A kinase have been shown to be important targets for intervention for cancer therapy. We report here that Compound A (A-443654, a specific Akt inhibitor, interferes with mitotic progression and bipolar spindle formation. Compound A induces G2/M accumulation, defects in centrosome separation, and formation of either monopolar arrays or disorganized spindles. On the basis of gene expression array studies, we identified Aurora A as one of the genes regulated transcriptionally by Akt inhibitors including Compound A. Inhibition of the phosphatidylinositol 3-kinase (PI3K/Akt pathway, either by PI3K inhibitor LY294002 or by Compound A, dramatically inhibits the promoter activity of Aurora A, whereas the mammalian target of rapamycin inhibitor has little effect, suggesting that Akt might be responsible for up-regulating Aurora A for mitotic progression. Further analysis of the Aurora A promoter region indicates that the Ets element but not the Sp1 element is required for Compound A-sensitive transcriptional control of Aurora A. Overexpression of Aurora A in cells treated with Compound A attenuates the mitotic arrest and the defects in bipolar spindle formation induced by Akt inhibition. Our studies suggest that that Akt may promote mitotic progression through the transcriptional regulation of Aurora A.

  11. LOX is a novel mitotic spindle-associated protein essential for mitosis.

    Science.gov (United States)

    Boufraqech, Myriem; Wei, Darmood; Weyemi, Urbain; Zhang, Lisa; Quezado, Martha; Kalab, Petr; Kebebew, Electron

    2016-05-17

    LOX regulates cancer progression in a variety of human malignancies. It is overexpressed in aggressive cancers and higher expression of LOX is associated with higher cancer mortality. Here, we report a new function of LOX in mitosis. We show that LOX co-localizes to mitotic spindles from metaphase to telophase, and p-H3(Ser10)-positive cells harbor strong LOX staining. Further, purification of mitotic spindles from synchronized cells show that LOX fails to bind to microtubules in the presence of nocodazole, whereas paclitaxel treated samples showed enrichment in LOX expression, suggesting that LOX binds to stabilized microtubules. LOX knockdown leads to G2/M phase arrest; reduced p-H3(Ser10), cyclin B1, CDK1, and Aurora B. Moreover, LOX knockdown significantly increased sensitivity of cancer cells to chemotherapeutic agents that target microtubules. Our findings suggest that LOX has a role in cancer cell mitosis and may be targeted to enhance the activity of microtubule inhibitors for cancer therapy.

  12. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    Lee, Seung Joon; Langhans, Sigrid A

    2012-01-01

    Curcumin (diferuloylmethane), the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC), is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C) which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to curcumin

  13. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Lee Seung Joon

    2012-01-01

    Full Text Available Abstract Background Curcumin (diferuloylmethane, the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC, is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Methods Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. Results We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. Conclusions We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to

  14. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis

    Science.gov (United States)

    2012-01-01

    Background Curcumin (diferuloylmethane), the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC), is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C) which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Methods Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. Results We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. Conclusions We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to curcumin. PMID:22280307

  15. Incorporation of thymidine into onion root meristematic cell nuclei in presence of hydroxyurea and its role in recovery of mitotic activity

    International Nuclear Information System (INIS)

    Habdas, H.

    1977-01-01

    Hydroxyurea treatment of onion roots induced mitotic block which was released by transfer of bulbs to water, and also to some extent by addition of cold or 3 H-thymidine to hydroxyurea solutions. In presence of hydroxyurea there was noted very intense incorporation of 3 H-thymidine into cell nuclei, giving labelling index of 40-70%. However, all the mitotic figures appearing in presence of hydroxyurea and 3 H-thymidine were unlabelled. On the other hand, labelled mitotic figures were obtained when roots incubated with 3 H-thymidine in presence of hydroxyurea had been transferred to water. Incorporation of 3 H-uridine was unaffected by hydroxyurea. The results show that hydroxyurea arrests onion root meristematic cells, either in the S phase and the G 2 phase. Enhanced incorporation of 3 H-thymidine in the presence of hydroxyurea, and release by added thymidine of the mitotic block indicate that hydroxyurea induces in onion root meristematic cells a particular shortage of thymidylate. (author)

  16. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    Science.gov (United States)

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  17. Inhibition of the mitotic exit network in response to damaged telomeres.

    Directory of Open Access Journals (Sweden)

    Mauricio Valerio-Santiago

    Full Text Available When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN, in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.

  18. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity.

    Directory of Open Access Journals (Sweden)

    Akihiro Ohashi

    Full Text Available Centromere-associated protein E (CENP-E regulates both chromosome congression and the spindle assembly checkpoint (SAC during mitosis. The loss of CENP-E function causes chromosome misalignment, leading to SAC activation and apoptosis during prolonged mitotic arrest. Here, we describe the biological and antiproliferative activities of a novel small-molecule inhibitor of CENP-E, Compound-A (Cmpd-A. Cmpd-A inhibits the ATPase activity of the CENP-E motor domain, acting as a time-dependent inhibitor with an ATP-competitive-like behavior. Cmpd-A causes chromosome misalignment on the metaphase plate, leading to prolonged mitotic arrest. Treatment with Cmpd-A induces antiproliferation in multiple cancer cell lines. Furthermore, Cmpd-A exhibits antitumor activity in a nude mouse xenograft model, and this antitumor activity is accompanied by the elevation of phosphohistone H3 levels in tumors. These findings demonstrate the potency of the CENP-E inhibitor Cmpd-A and its potential as an anticancer therapeutic agent.

  19. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  20. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Jun-ichiro, E-mail: junkom@med.tohoku.ac.jp [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Ikehata, Hironobu [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Mori, Toshio [Radioisotope Research Center, Nara Medical University, Kashihara, Nara 634-8521 (Japan); Ono, Tetsuya [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan)

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  1. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    International Nuclear Information System (INIS)

    Komura, Jun-ichiro; Ikehata, Hironobu; Mori, Toshio; Ono, Tetsuya

    2012-01-01

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: ► Global genome repair of (6-4) photoproducts is fully active in mitotic cells. ► DNA in condensed mitotic chromatin does not seem inaccessible or inert. ► Mitotic transcriptional repression may impair transcription-coupled repair.

  2. Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability.

    Science.gov (United States)

    Cesare, Anthony J

    2014-11-01

    Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression. © 2014 The Author. Bioessays published by WILEY Periodicals, Inc.

  3. Mitotic catastrophe occurs in the absence of apoptosis in p53-null cells with a defective G1 checkpoint.

    Directory of Open Access Journals (Sweden)

    Michalis Fragkos

    Full Text Available Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD that are deficient in p53 and lack the G1 cell cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was independent of caspases, apoptosis-inducing factor (AIF, autophagy and necroptosis. These findings were confirmed by time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint, mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by centrosome overduplication, and not as a consequence of a suicide signal.

  4. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    Science.gov (United States)

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  5. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    Science.gov (United States)

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  6. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Directory of Open Access Journals (Sweden)

    Sindhu Subramaniam

    Full Text Available Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2. Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation. Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for

  7. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Science.gov (United States)

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  8. Intravenous Poison Hemlock Injection Resulting in Prolonged Respiratory Failure and Encephalopathy.

    Science.gov (United States)

    Brtalik, Douglas; Stopyra, Jason; Hannum, Jennifer

    2017-06-01

    Poison hemlock (Conium maculatum) is a common plant with a significant toxicity. Data on this toxicity is sparse as there have been few case reports and never a documented poisoning after intravenous injection. We present a case of intravenous poison hemlock injection encountered in the emergency department. We describe a 30-year-old male who presented to the emergency department after a brief cardiac arrest after injecting poison hemlock. The patient had return of spontaneous circulation in the emergency department but had prolonged muscular weakness and encephalopathy later requiring tracheostomy. Intravenous injection of poison hemlock alkaloids can result in significant toxicity, including cardiopulmonary arrest, prolonged weakness, and encephalopathy.

  9. G2 phase arrest of cell cycle induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Gong Shouliang

    2002-01-01

    The exposure of mammalian cells to X rays results in the prolongation of the cell cycle, including the delay or the arrest in G 1 , S and G 2 phase. The major function of G 1 arrest may be to eliminate the cells containing DNA damage and only occurs in the cells with wild type p53 function whereas G 2 arrest following ionizing radiation has been shown to be important in protecting the cells from death and occurs in all cells regardless of p53 status. So the study on G 2 phase arrest of the cell cycle induced by ionizing radiation has currently become a focus at radiobiological fields

  10. Milrinone and esmolol decrease cardiac damage after resuscitation from prolonged cardiac arrest.

    Science.gov (United States)

    Zoerner, F; Lennmyr, F; Wiklund, L; Martijn, C; Semenas, E

    2015-04-01

    Long-term survival after cardiac arrest (CA) due to shock-refractory ventricular fibrillation (VF) is low. Clearly, there is a need for new pharmacological interventions in the setting of cardiopulmonary resuscitation (CPR) to improve outcome. Here, hemodynamic parameters and cardiac damage are compared between the treatment group (milrinone, esmolol and vasopressin) and controls (vasopressin only) during resuscitation from prolonged CA in piglets. A total of 26 immature male piglets were subjected to 12-min VF followed by 8-min CPR. The treatment group (n=13) received i.v. (intravenous) boluses vasopressin 0.4 U/kg, esmolol 250 μg/kg and milrinone 25 μg/kg after 13 min, followed by i.v. boluses esmolol 375 μg/kg and milrinone 25 μg/kg after 18 min and continuous esmolol 15 μg/kg/h infusion during 180 min reperfusion, whereas controls (n=13) received equal amounts of vasopressin and saline. A 200 J monophasic counter-shock was delivered to achieve resumption of spontaneous circulation (ROSC) after 8 min CPR. If ROSC was not achieved, another 200 J defibrillation and bolus vasopressin 0.4 U/kg would be administered in both groups. Direct current shocks at 360 J were applied as one shot per minute over maximally 5 min. Hemodynamic variables and troponin I as a marker of cardiac injury were recorded. Troponin I levels after 180 min reperfusion were lower in the treatment group than in controls (Pmilrinone, esmolol and vasopressin decreased cardiac injury compared with vasopressin alone. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  12. Radiation-induced G/sub 2/-arrest is reduced by inhibitors of poly(adenosine diphosphoribose) synthetase

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Experiments are in progress to test whether poly(adenosine diphosphoribose) synthesis is required for the induction of G/sub 2/-arrest in growing mammalian cells following X-irradiation. A variety of poly(ADPR) synthetase inhibitors have been tested to determine: 1) whether addition of an inhibitor to X-irradiated CHO cells reduces G/sub 2/-arrest; 2) whether compounds structurally similar to poly-(ADPR) synthetase inhibitors but inactive against this enzyme affect radiation-induced G/sub 2/-arrest and 3) whether the concentration dependence for poly(ADPR) synthetase inhibition matches that for G/sub 2/-arrest reduction. G/sub 2/-arrest was measured in X-irradiated (1.5 Gy) CHO cells using the mitotic cell selection technique. Poly(ADPR) synthetase activity was measured in permeabilized cells by /sup 3/H-NAD incorporation. The synthetase inhibitors used were 3-aminobenzamide, benzamide, nicotinamide, 4-acetyl pyridine, caffeine and theophylline. The inactive compounds used were 3-aminobenzoic acid, benzoic acid, nicotinic acid, adenine, adenosine and 3'-deoxyadenosine. Inhibitors of poly(ADPR) synthetase reduced G/sub 2/-arrest while related compounds which produced no enzyme inhibition did not. The concentration dependencies for G/sub 2/-arrest reduction and enzyme inhibition were similar only for methyl xanthines. Further analysis awaits the determination of intracellular drug concentrations

  13. A link between mitotic entry and membrane growth suggests a novel model for cell size control.

    Science.gov (United States)

    Anastasia, Steph D; Nguyen, Duy Linh; Thai, Vu; Meloy, Melissa; MacDonough, Tracy; Kellogg, Douglas R

    2012-04-02

    Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.

  14. Protective head-cooling during cardiac arrest and cardiopulmonary resuscitation: the original animal studies

    Directory of Open Access Journals (Sweden)

    Eric W. Brader

    2010-02-01

    Full Text Available Prolonged standard cardiopulmonary resuscitation (CPR does not reliably sustain brain viability during cardiac arrest. Pre-hospital adjuncts to standard CPR are needed in order to improve outcomes. A preliminary dog study demonstrated that surface cooling of the head during arrest and CPR can achieve protective levels of brain hypothermia (30°C within 10 minutes. We hypothesized that protective head-cooling during cardiac arrest and CPR improves neurological outcomes. Twelve dogs under light ketamine-halothane-nitrous oxide anesthesia were arrested by transthoracic fibrillation. The treated group consisted of six dogs whose shaven heads were moistened with saline and packed in ice immediately after confirmation of ventricular fibrillation. Six control dogs remained at room temperature. All 12 dogs were subjected to four minutes of ventricular fibrillation and 20 minutes of standard CPR. Spontaneous circulation was restored with drugs and countershocks. Intensive care was provided for five hours post-arrest and the animals were observed for 24 hours. In both groups, five of the six dogs had spontaneous circulation restored. After three hours, mean neurological deficit was significantly lower in the treated group (P=0.016, with head-cooled dogs averaging 37% and the normothermic dogs 62%. Two of the six head-cooled dogs survived 24 hours with neurological deficits of 9% and 0%, respectively. None of the control group dogs survived 24 hours. We concluded that head-cooling attenuates brain injury during cardiac arrest with prolonged CPR. We review the literature related to the use of hypothermia following cardiac arrest and discuss some promising approaches for the pre-hospital setting.

  15. Prolonged closed cardiac massage using LUCAS device in out-of-hospital cardiac arrest with prolonged transport time

    Directory of Open Access Journals (Sweden)

    Edouard Matevossian

    2009-04-01

    Full Text Available Edouard Matevossian1, Dietrich Doll4, Jakob Säckl1, Inga Sinicina5, Jürgen Schneider2, Gerhard Simon3, Norbert Hüser11Department of Surgery, 2Department of Anesthesiology and Intensive-Care Medicine; 3Department of Radiology, Technische Universität of Munich, Germany; 4Department of Visceral, Vascular and Thoracic Surgery, Philips University of Marburg, Marburg, Germany; 5Institute of Clinical Forensic Medicine, Ludwig-Maximilian University of Munich, Munich, GermanyAbstract: Saving more human lives through more effective reanimation measures is the goal of the new international guidelines on cardiopulmonary resuscitation as the decisive aspect for survival after cardiovascular arrest is that basic resuscitation should start immediately. According to the updated guidelines, the greatest efficacy in cardiac massage is only achieved when the right compression point, an adequate compression depth, vertical pressure, the correct frequency, and equally long phases of compression and decompression are achieved. The very highest priority is placed on restoring continuous circulation. Against this background, standardized continuous chest compression with active decompression has contributed to a favorable outcome in this case. The hydraulically operated and variably adjustable automatic Lund University Cardiac Arrest System (LUCAS device (Jolife, Lund, Sweden undoubtedly meets these requirements. This case report describes a 44-year-old patient who – approximately 15 min after the onset of clinical death due to apparent ventricular fibrillation – received cardiopulmonary resuscitation, initially by laypersons and then by the emergency medical team (manual chest compressions followed by situation-adjusted LUCAS compressions. Sinus rhythm was restored after more than 90 min of continuous resuscitation, with seven defibrillations. Interventional diagnostic workup did not reveal a causal morphological correlate for the condition on coronary

  16. Protein synthetic requirements for caffeine amelioration of radiation-induced G/sub 2/-arrest

    International Nuclear Information System (INIS)

    Rowley, R.; Colkitt, D.

    1984-01-01

    Irradiated cells are arrested in G/sub 2/ (transition point [TP] = 32 min before cell selection in mitosis). Irradiated cells do not recover from G/sub 2/ arrest in the presence of cycloheximide (CHM) indicating dependence of recovery on protein synthesis. Irradiated cells in the presence of caffeine progress to mitosis without arrest. The authors investigate whether irradiated cells in the presence of caffeine require protein synthesis to progress to mitosis. Mitotic cell selection was used to monitor the progression of irradiated CHO cells (150 rad) during exposure to 5 mM caffeine and/or 50 μg/ml CHM. Protein synthesis inhibition was confirmed using /sup 3/H-leucine incorporation. Cells exposed to CHM alone are arrested in G/sub 2/ (TP=49 min), thus cells beyond this point have synthesized all proteins necessary for entry into mitosis. In the presence of caffeine, unirradiated cells exposed to CHM are not arrested at all in G/sub 2/, instead arrest occurs near the S/G/sub 2/ boundary (TP=95 min) indicating that caffeine alleviates the dependence of G/sub 2/ cell progression on protein synthesis. However, irradiated cells exposed to both caffeine and CHM are only able to progress to mitosis if beyond the CHM-TP. Irradiated cells in the presence of caffeine thus behave as untreated cells and require protein synthesis for progression to mitosis when prior to the CHM-TP

  17. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  18. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    Science.gov (United States)

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  19. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2013-10-04

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.

  20. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    International Nuclear Information System (INIS)

    Hitomi, Toshiaki; Habu, Toshiyuki; Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H.; Osafune, Kenji; Taura, Daisuke; Sone, Masakatsu; Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko; Hashikata, Hirokuni; Takagi, Yasushi; Morito, Daisuke; Miyamoto, Susumu; Nakao, Kazuwa; Koizumi, Akio

    2013-01-01

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability

  1. The effects of pulse cycloheximide treatments on the light-induced recovery of mitotic divisions in antheridial filaments of Chara vulgaris

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-01-01

    Full Text Available Within the proliferative period of spermatogenesis in Chara vulgaris, the progression throughout successive cell divisions in antheridial filaments is greatly influenced by changes in photoperiodic conditions. The extended (4-day period of total darkness brings about cell cycle arrest in the early G2 phase. The recovery of mitosis requires about 20 hours of exposition to light. In the present study, a series of 8 pulse incubations of plants in cycloheximide (Cx; 2.5 mg/I, 2.5 h each pulse were performed within the period elapsing till the resumption of mitotic divisions. Depending on the time of treatment, the effects induced by Cx vary considerably. Within the first 10 hs of exposition to light, incubations with Cx result in the delays of mitoses; within the period between the 10th and the 17th h, mitotic divisions become blocked, and, following the 17.5 h of light-induced recovery, no influence of Cx is noticed on mitotic activity, as compared with the untreaed control plants. The obtained results provide a starting point for the characteristic of proteins synthesized during the G2 phase and a preliminary study on those mechanisms, which become engaged in the regulation of the G1-deficient cell cycle evidenced in antheridial filaments of Chara.

  2. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix.

    Science.gov (United States)

    Purba, Talveen S; Brunken, Lars; Peake, Michael; Shahmalak, Asim; Chaves, Asuncion; Poblet, Enrique; Ceballos, Laura; Gandarillas, Alberto; Paus, Ralf

    2017-09-01

    Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21 CIP1 , p27 KIP1 and p57 KIP2 ) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21 CIP1 , p27 KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57 KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically

  3. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  4. Neurologic outcome in comatose patients resuscitated from out-of-hospital cardiac arrest with prolonged downtime and treated with therapeutic hypothermia

    Science.gov (United States)

    Kim, Won Young; Giberson, Tyler A.; Uber, Amy; Berg, Katherine; Cocchi, Michael N.; Donnino, Michael W.

    2014-01-01

    Background Previous reports have shown that prolonged duration of resuscitation efforts in out-of-hospital cardiac arrest (OHCA) is associated with poor neurologic outcome. This concept has recently been questioned with advancements in post-cardiac arrest care including the use of therapeutic hypothermia (TH). The aim of this study was to determine the rate of good neurologic outcome based on the duration of resuscitation efforts in OHCA patients treated with TH. Methods This prospective, observational, study was conducted between January 2008 and September 2012. Inclusion criteria consisted of adult non-traumatic OHCA patients who were comatose after return of spontaneous circulation (ROSC) and received TH. The primary endpoint was good neurologic outcome defined as a cerebral performance category score of 1 or 2. Downtime was calculated as the length of time between the patient being recognized as pulseless and ROSC. Results 105 patients were treated with TH and 19 were excluded due to unknown downtime, leaving 86 patients for analysis. The median downtime was 18.5 (10.0–32.3) minutes and 33 patients (38.0%) had a good neurologic outcome. When downtime was divided into four groups (≤10 min, 11-20 min, 21-30 min, > 30 min), good neurologic outcomes were 62.5%, 37%, 25%, and 21.7%, respectively (p=0.02). However, even with downtime >20 minutes, 22.9% had a good neurologic outcome, and this percentage increased to 37.5% in patients with an initial shockable rhythm. Conclusions Although longer downtime is associated with worse outcome in OHCA patients, we found that comatose patients who have been successfully resuscitated and treated with TH have neurologically intact survival rates of 23% even with downtime > 20 minutes. PMID:24746783

  5. Neurologic outcome in comatose patients resuscitated from out-of-hospital cardiac arrest with prolonged downtime and treated with therapeutic hypothermia.

    Science.gov (United States)

    Kim, Won Young; Giberson, Tyler A; Uber, Amy; Berg, Katherine; Cocchi, Michael N; Donnino, Michael W

    2014-08-01

    Previous reports have shown that prolonged duration of resuscitation efforts in out-of-hospital cardiac arrest (OHCA) is associated with poor neurologic outcome. This concept has recently been questioned with advancements in post-cardiac arrest care including the use of therapeutic hypothermia (TH). The aim of this study was to determine the rate of good neurologic outcome based on the duration of resuscitation efforts in OHCA patients treated with TH. This prospective, observational, study was conducted between January 2008 and September 2012. Inclusion criteria consisted of adult non-traumatic OHCA patients who were comatose after return of spontaneous circulation (ROSC) and received TH. The primary endpoint was good neurologic outcome defined as a cerebral performance category score of 1 or 2. Downtime was calculated as the length of time between the patient being recognized as pulseless and ROSC. 105 patients were treated with TH and 19 were excluded due to unknown downtime, leaving 86 patients for analysis. The median downtime was 18.5 (10.0-32.3)min and 33 patients (38.0%) had a good neurologic outcome. When downtime was divided into four groups (≤10min, 11-20min, 21-30min, >30min), good neurologic outcomes were 62.5%, 37%, 25%, and 21.7%, respectively (p=0.02). However, even with downtime >20min, 22.9% had a good neurologic outcome, and this percentage increased to 37.5% in patients with an initial shockable rhythm. Although longer downtime is associated with worse outcome in OHCA patients, we found that comatose patients who have been successfully resuscitated and treated with TH have neurologically intact survival rates of 23% even with downtime >20min. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Involvement of Mos-MEK-MAPK pathway in cytostatic factor (CSF) arrest in eggs of the parthenogenetic insect, Athalia rosae.

    Science.gov (United States)

    Yamamoto, Daisuke S; Tachibana, Kazunori; Sumitani, Megumi; Lee, Jae Min; Hatakeyama, Masatsugu

    2008-01-01

    Extensive survey of meiotic metaphase II arrest during oocyte maturation in vertebrates revealed that the mitogen-activated protein kinase (MAPK) pathway regulated by the c-mos proto-oncogene product, Mos, has an essential role in cytostatic activity, termed cytostatic factor (CSF). In contrast, little is known in invertebrates in which meiotic arrest occurs in most cases at metaphase I (MI arrest). A parthenogenetic insect, the sawfly Athalia rosae, in which artificial egg activation is practicable, has advantages to investigate the mechanisms of MI arrest. Both the MAPK/extracellular signal-regulated protein kinase kinase (MEK) and MAPK were phosphorylated and maintained active in MI-arrested sawfly eggs, whereas they were dephosphorylated soon after egg activation. Treatment of MI-arrested eggs with U0126, an inhibitor of MEK, resulted in dephosphorylation of MAPK and MI arrest was resumed. The sawfly c-mos gene orthologue encoding a serine/threonine kinase was cloned and analyzed. It was expressed in nurse cells in the ovaries. To examine CSF activity of the sawfly Mos, synthesized glutathione S-transferase (GST)-fusion sawfly Mos protein was injected into MI-resumed eggs in which MEK and MAPK were dephosphorylated. Both MEK and MAPK were phosphorylated again upon injection. In these GST-fusion sawfly Mos-injected eggs subsequent mitotic (syncytial) divisions were blocked and embryonic development was ceased. These results demonstrated that the MEK-MAPK pathway was involved in maintaining CSF arrest in sawfly eggs and Mos functioned as its upstream regulatory molecule.

  7. Mitotic defects lead to pervasive aneuploidy and accompany loss of RB1 activity in mouse LmnaDhe dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    C Herbert Pratt

    2011-03-01

    Full Text Available Lamin A (LMNA is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350 and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670. Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1 activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood.We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (Lmna(Dhe. We found that dermal fibroblasts from heterozygous Lmna(Dhe (Lmna(Dhe/+ mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, Lmna(Dhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3, a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1 also was perturbed in Lmna(Dhe/+ cells. Lmna(Dhe/+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects.These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control.

  8. Mitotic Defects Lead to Pervasive Aneuploidy and Accompany Loss of RB1 Activity in Mouse LmnaDhe Dermal Fibroblasts

    Science.gov (United States)

    Pratt, C. Herbert; Curtain, Michelle; Donahue, Leah Rae; Shopland, Lindsay S.

    2011-01-01

    Background Lamin A (LMNA) is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350) and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670). Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1) activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood. Results We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (LmnaDhe). We found that dermal fibroblasts from heterozygous LmnaDhe (LmnaDhe/+) mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, LmnaDhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3), a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1) also was perturbed in LmnaDhe /+ cells. LmnaDhe /+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects. Conclusions These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control. PMID:21464947

  9. QT interval prolongation associated with sibutramine treatment

    Science.gov (United States)

    Harrison-Woolrych, Mira; Clark, David W J; Hill, Geraldine R; Rees, Mark I; Skinner, Jonathan R

    2006-01-01

    Aims To investigate a possible association of sibutramine with QT interval prolongation. Methods Post-marketing surveillance using prescription event monitoring in the New Zealand Intensive Medicines Monitoring Programme (IMMP) identified a case of QT prolongation and associated cardiac arrest in a patient taking sibutramine for 25 days. This patient was further investigated, including genotyping for long QT syndrome. Other IMMP case reports suggesting arrhythmias associated with sibutramine were assessed and further reports were obtained from the World Health Organisation (WHO) adverse drug reactions database. Results The index case displayed a novel mutation in a cardiac potassium channel subunit gene, KCNQ1, which is likely to prolong cardiac membrane depolarization and increase susceptibility to long QT intervals. Assessment of further IMMP reports identified five additional patients who experienced palpitations associated with syncope or presyncopal symptoms, one of whom had a QTc at the upper limit of normal. Assessment of reports from the WHO database identified three reports of QT prolongation and one fatal case of torsade de pointes in a patient also taking cisapride. Conclusions This case series suggests that sibutramine may be associated with QT prolongation and related dysrhythmias. Further studies are required, but in the meantime we would recommend that sibutramine should be avoided in patients with long QT syndrome and in patients taking other medicines that may prolong the QT interval. PMID:16542208

  10. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.......Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par...

  11. The effects of sodium bicarbonate during prolonged cardiopulmonary resuscitation.

    Science.gov (United States)

    Weng, Yi-Ming; Wu, Shih-Hao; Li, Wen-Cheng; Kuo, Chan-Wei; Chen, Shou-Yen; Chen, Jih-Chang

    2013-03-01

    This study was performed to determine the effects of sodium bicarbonate injection during prolonged cardiopulmonary resuscitation (for >15 minutes). The retrospective cohort study consisted of adult patients who presented to the emergency department (ED) with the diagnosis of cardiac arrest in 2009. Data were retrieved from the institutional database. A total of 92 patients were enrolled in the study. Patients were divided into 2 groups based on whether they were treated (group1, n = 30) or not treated (group 2, n = 62) with sodium bicarbonate. There were no significant differences in demographic characteristics between groups. The median time interval between the administration of CPR and sodium bicarbonate injection was 36.0 minutes (IQR: 30.5-41.8 minutes). The median amount of bicarbonate injection was 100.2 mEq (IQR: 66.8-104.4). Patients who received a sodium bicarbonate injection during prolonged CPR had a higher percentage of return of spontaneous circulation, but not statistical significant (ROSC, 40.0% vs. 32.3%; P = .465). Sustained ROSC was achieved by 2 (6.7%) patients in the sodium bicarbonate treatment group, with no survival to discharge. No significant differences in vital signs after ROSC were detected between the 2 groups (heart rate, P = .124; systolic blood pressure, P = .094). Sodium bicarbonate injection during prolonged CPR was not associated with ROSC after adjust for variables by regression analysis (Table 3; P = .615; odds ratio, 1.270; 95% confidence interval: 0.501-3.219) The administration of sodium bicarbonate during prolonged CPR did not significantly improve the rate of ROSC in out-of-hospital cardiac arrest. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A randomised, double-blind, multi-centre trial comparing vasopressin and adrenaline in patients with cardiac arrest presenting to or in the Emergency Department.

    Science.gov (United States)

    Ong, Marcus Eng Hock; Tiah, Ling; Leong, Benjamin Sieu-Hon; Tan, Elaine Ching Ching; Ong, Victor Yeok Kein; Tan, Elizabeth Ai Theng; Poh, Bee Yen; Pek, Pin Pin; Chen, Yuming

    2012-08-01

    To compare vasopressin and adrenaline in the treatment of patients with cardiac arrest presenting to or in the Emergency Department (ED). A randomised, double-blind, multi-centre, parallel-design clinical trial in four adult hospitals. Eligible cardiac arrest patients (confirmed by the absence of pulse, unresponsiveness and apnea) aged >16 (aged>21 for one hospital) were randomly assigned to intravenous adrenaline (1mg) or vasopressin (40 IU) at ED. Patients with traumatic cardiac arrest or contraindication for cardiopulmonary resuscitation (CPR) were excluded. Patients received additional open label doses of adrenaline as per current guidelines. Primary outcome was survival to hospital discharge (defined as participant discharged alive or survival to 30 days post-arrest). The study recruited 727 participants (adrenaline = 353; vasopressin = 374). Baseline characteristics of the two groups were comparable. Eight participants (2.3%) from adrenaline and 11 (2.9%) from vasopressin group survived to hospital discharge with no significant difference between groups (p = 0.27, RR = 1.72, 95% CI = 0.65-4.51). After adjustment for race, medical history, bystander CPR and prior adrenaline given, more participants survived to hospital admission with vasopressin (22.2%) than with adrenaline (16.7%) (p = 0.05, RR = 1.43, 95% CI = 1.02-2.04). Sub-group analysis suggested improved outcomes for vasopressin in participants with prolonged arrest times. Combination of vasopressin and adrenaline did not improve long term survival but seemed to improve survival to admission in patients with prolonged cardiac arrest. Further studies on the effect of vasopressin combined with therapeutic hypothermia on patients with prolonged cardiac arrest are needed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Mitotic spindle proteomics in Chinese hamster ovary cells.

    Directory of Open Access Journals (Sweden)

    Mary Kate Bonner

    Full Text Available Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.

  14. Detection of mitotic figures in thin melanomas--immunohistochemistry does not replace the careful search for mitotic figures in hematoxylin-eosin stain.

    Science.gov (United States)

    Ottmann, Karl; Tronnier, Michael; Mitteldorf, Christina

    2015-10-01

    The mitotic rate is an important prognostic criterion in patients with thin melanoma ≤ 1 mm. The aim of this study was to investigate the reproducibility of the mitotic rate in thin melanoma in hematoxylin-eosin (H&E) stain and compare it with the detection of mitotic figures by immunohistochemistry. The number of mitoses stated in the routine diagnostic report in 190 pT1 melanomas was compared with the number gained from re-evaluation of H&E sections and the number detected after staining with the mitotic marker, phosphohistone H3 (PHH3). Two different approaches were used for choosing the "hot spot" for evaluation (dermal vs epidermal/dermal). Comparing routine H&E-stained slides with re-evaluation slides, the number of mitotic figures was slightly variable. However, findings did not result in a change of the tumor stage. In 34% of the tumors with dermal mitotic figures on H&E, mitoses could not be found in the corresponding PHH3 slide anymore. In 4% of the cases, stage relevant mitoses could only be found by PHH3 immunohistochemistry. This is a single center study. Immunohistochemical staining for mitotic figures does not replace a careful evaluation of H&E-stained slides. Immunohistochemical detection of mitosis is only an additional tool; the time-saving effect is therefore negligible. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer

    DEFF Research Database (Denmark)

    Perez-Moreno, Mirna; Song, Weimin; Pasolli, H Amalia

    2008-01-01

    Tumor formation involves epigenetic modifications and microenvironmental changes as well as cumulative genetic alterations encompassing somatic mutations, loss of heterozygosity, and aneuploidy. Here, we show that conditional targeting of p120 catenin in mice leads to progressive development...... of skin neoplasias associated with intrinsic NF-kappaB activation. We find that, similarly, squamous cell carcinomas in humans display altered p120 and activated NF-kappaB. We show that epidermal hyperproliferation arising from p120 loss can be abrogated by IkappaB kinase 2 inhibitors. Although...... this underscores the importance of this pathway, the role of NF-kappaB in hyperproliferation appears rooted in its impact on epidermal microenvironment because as p120-null keratinocytes display a growth-arrested phenotype in culture. We trace this to a mitotic defect, resulting in unstable, binucleated cells...

  16. Timeless links replication termination to mitotic kinase activation.

    Directory of Open Access Journals (Sweden)

    Jayaraju Dheekollu

    2011-05-01

    Full Text Available The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1. Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  17. Hyperkalemia masked by pseudo-stemi infarct pattern and cardiac arrest.

    Science.gov (United States)

    Peerbhai, Shareez; Masha, Luke; DaSilva-DeAbreu, Adrian; Dhoble, Abhijeet

    2017-12-01

    Hyperkalemia is a common electrolyte abnormality and has well-recognized early electrocardiographic manifestations including PR prolongation and symmetric T wave peaking. With severe increase in serum potassium, dysrhythmias and atrioventricular and bundle branch blocks can be seen on electrocardiogram. Although cardiac arrest is a worrisome consequence of untreated hyperkalemia, rarely does hyperkalemia electrocardiographically manifest as acute ischemia. We present a case of acute renal failure complicated by malignant hyperkalemia and eventual ventricular fibrillation cardiac arrest. Recognition of this disorder was delayed secondary to an initial ECG pattern suggesting an acute ST segment elevation myocardial infarction (STEMI). Emergent coronary angiography performed showed no evidence of coronary artery disease. Pseudo-STEMI patterns are rarely seen in association with acute hyperkalemia and are most commonly described with patient without acute cardiac symptomatology. This is the first such case presenting concurrently with cardiac arrest. A brief review of this rare pseudo-infarct pattern is also given.

  18. Accumulation of senescent cells in mitotic tissue of aging primates.

    Science.gov (United States)

    Jeyapalan, Jessie C; Ferreira, Mark; Sedivy, John M; Herbig, Utz

    2007-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over 40 years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event.

  19. Interlinked bistable mechanisms generate robust mitotic transitions.

    Science.gov (United States)

    Hutter, Lukas H; Rata, Scott; Hochegger, Helfrid; Novák, Béla

    2017-10-18

    The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit, 1 and the mitotic checkpoint. 2 Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.

  20. Postoperative Cardiac Arrest after Heart Surgery: Does Extracorporeal Perfusion Support a Paradigm Change in Management?

    Directory of Open Access Journals (Sweden)

    Edward Gologorsky

    2010-01-01

    Full Text Available Early institution of extracorporeal perfusion support (ECPS may improve survival after cardiac arrest. Two patients sustained unexpected cardiac arrest in the Intensive Care Unit (ICU following cardiac interventions. ECPS was initiated due to failure to restore hemodynamics after prolonged (over 60 minutes advanced cardiac life support (ACLS protocol-guided cardiopulmonary resuscitation. Despite relatively late institution of ECPS, both patients survived with preserved neurological function. This communication focuses on the utility of ECPS in the ICU as a part of resuscitative efforts.

  1. ATYPICAL MITOTIC FIGURES AND THE MITOTIC INDEX IN CERVICAL INTRAEPITHELIAL NEOPLASIA

    NARCIS (Netherlands)

    VANLEEUWEN, AM; PIETERS, WJLM; HOLLEMA, H; BURGER, MPM

    1995-01-01

    We surveyed cervical intraepithelial neoplasia (CIN) to quantify the proliferation rate and the presence of normal and atypical mitotic figures. In the cervical tissue specimens of 127 women with CIN, the area with the highest cell proliferation was identified and, at that site, the proliferation

  2. "House Arrest" or "Developmental Arrest"? A Study of Youth Under House Arrest.

    Science.gov (United States)

    Chamiel, Elad; Walsh, Sophie D

    2018-06-01

    Studies have examined the potential benefits and risks of alternative forms of detention, such as house arrest, for adults but, despite its growing use, little research has examined the implications of house arrest for juveniles. The current research examined the experience of 14 adolescents under house arrest. Six main themes were identified in the narratives of the participants: the experience of detention, daily schedule and utilization of time, emotions and self-reflection, relationships with peers, relation to parents and supervisor(s), and contact with professionals. Findings emphasized the potential developmental dangers of house arrest at the critical stage of adolescence. Yet, analysis also showed that the period of house arrest has the potential to be a period of positive changes, and can be used for successful rehabilitation.

  3. Platelet aggregation during targeted temperature management after out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Jeppesen, Anni Nørgaard; Hvas, Anne-Mette; Grejs, Anders Morten

    2017-01-01

    Some studies conclude that mild hypothermia causes platelet dysfunction leading to an increased bleeding risk, whereas others state that platelet aggregation is enhanced during mild hypothermia. Therefore, the aim of this study was to clarify whether standard or prolonged duration of targeted...... temperature management affected platelet aggregation. We randomised 82 comatose patients resuscitated after out-of-hospital cardiac arrest to either 24 hours (standard group) or 48 hours (prolonged group) of targeted temperature management at 33±1°C. Blood samples were collected 22 hours, 46 hours and 70......® decreased by 14% (95% CI -8%;-20%), p management....

  4. Circulatory Arrest, Brain Arrest and Death Determination

    Directory of Open Access Journals (Sweden)

    Sam David Shemie

    2018-03-01

    Full Text Available Technological advances, particularly in the capacity to support, replace or transplant failing organs, continue to challenge and refine our understanding of human death. Given the ability to reanimate organs before and after death, both inside and outside of the body, through reinstitution of oxygenated circulation, concepts related to death of organs (e.g. cardiac death are no longer valid. This paper advances the rationale for a single conceptual determination of death related to permanent brain arrest, resulting from primary brain injury or secondary to circulatory arrest. The clinical characteristics of brain arrest are the permanent loss of capacity for consciousness and loss of all brainstem functions. In the setting of circulatory arrest, death occurs after the arrest of circulation to the brain rather than death of the heart. Correspondingly, any intervention that resumes oxygenated circulation to the brain after circulatory arrest would invalidate the determination of death.

  5. A Brief History of Research on Mitotic Mechanisms

    Directory of Open Access Journals (Sweden)

    J. Richard McIntosh

    2016-12-01

    Full Text Available This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests.

  6. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells

    Science.gov (United States)

    Bechard, Matthew E.; Bankaitis, Eric D.; Hipkens, Susan B.; Ustione, Alessandro; Piston, David W.; Yang, Yu-Ping; Magnuson, Mark A.; Wright, Christopher V.E.

    2016-01-01

    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9+ bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3TA.LO cell population, defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9+ Neurog3TA.LO progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3HI cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9+ Neurog3TA.LO progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9+ Neurog3TA.LO endocrine-biased progenitors feed production of Neurog3HI endocrine-committed cells during pancreas organogenesis. PMID:27585590

  7. The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response

    International Nuclear Information System (INIS)

    Xu, Z.; Norris, D.

    1998-01-01

    In eukaryotic cells, checkpoint pathways arrest cell-cycle progression if a particular event has failed to complete appropriately or if an important intracellular structure is defective or damaged. Saccharomyces cerevisiae strains that lack the SFP1 gene fail to arrest at the G2 DNA-damage checkpoint in response to genomic injury, but maintain their ability to arrest at the replication and spindle-assembly checkpoints. sfp1D mutants are characterized by a premature entrance into mitosis during a normal (undamaged) cell cycle, while strains that overexpress Sfp1p exhibit delays in G2. Sfp1p therefore acts as a repressor of the G2/M transition, both in the normal cell cycle and in the G2 checkpoint pathway. Sfp1 is a nuclear protein with two Cys2His2 zinc-finger domains commonly found in transcription factors. We propose that Sfp1p regulates the expression of gene products involved in the G2/M transition during the mitotic cell cycle and the DNA-damage response. In support of this model, overexpression of Sfp1p induces the expression of the PDS1 gene, which is known to encode a protein that regulates the G2 checkpoint. (author)

  8. Axin localizes to mitotic spindles and centrosomes in mitotic cells

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Choi, Eun-Jin; Song, Ki-Joon; Kim, Sewoon; Seo, Eunjeong; Jho, Eek-Hoon; Kee, Sun-Ho

    2009-01-01

    Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3β) without producing any notable changes in cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3β in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor

  9. THE INFLUENCE OF CAFFEINE ON MITOTIC DIVISION AT CAPSICUM ANNUUM L.

    Directory of Open Access Journals (Sweden)

    Elena Rosu

    2006-08-01

    Full Text Available The paper presents, the caffeine effects in mitotic division at Capsicum annuum L.. The treatment has determined the lessening of the mitotic index (comparative with the control variant, until mitotic division total inhibition, as well as an growth frequency of division aberation in anaphase and telophase.

  10. Mitotic and apoptotic activity in colorectal neoplasia.

    Science.gov (United States)

    Kohoutova, Darina; Pejchal, Jaroslav; Bures, Jan

    2018-05-18

    Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia. A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3. In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity. Significant dysregulation of mitosis and apoptosis during the progression of colorectal neoplasia, corresponding with histology, was confirmed. In patients with sporadic colorectal neoplasia, healthy mucosa does not display different mitotic and apoptotic activity compared to mucosa in healthy controls and therefore adequate endoscopic/surgical removal of colorectal neoplasia is sufficient.

  11. Robust mitotic entry is ensured by a latching switch

    Directory of Open Access Journals (Sweden)

    Chloe Tuck

    2013-07-01

    Cell cycle events are driven by Cyclin dependent kinases (CDKs and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011. Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

  12. Robust mitotic entry is ensured by a latching switch.

    Science.gov (United States)

    Tuck, Chloe; Zhang, Tongli; Potapova, Tamara; Malumbres, Marcos; Novák, Béla

    2013-01-01

    Cell cycle events are driven by Cyclin dependent kinases (CDKs) and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011). Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

  13. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    Science.gov (United States)

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  14. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.

    Science.gov (United States)

    Howard, Jonathon; Garzon-Coral, Carlos

    2017-11-01

    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.

  15. Naphthalimides Induce G2 Arrest Through the ATM-Activated Chk2-Executed Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2009-11-01

    Full Text Available Naphthalimides, particularly amonafide and 2-(2-dimethylamino-6-thia-2-aza-benzo[def]chrysene-1,3-diones (R16, have been identified to possess anticancer activities and to induce G2-M arrest through inhibiting topoisomerase II accompanied by Chk1 degradation. The current study was designed to precisely dissect the signaling pathway(s responsible for the naphthalimide-induced cell cycle arrest in human colon carcinoma HCT116 cells. Using phosphorylated histone H3 and mitotic protein monoclonal 2 as mitosis markers, we first specified the G2 arrest elicited by the R16 and amonafide. Then, R16 and amonafide were revealed to induce phosphorylation of the DNA damage sensor ataxia telangiectasia-mutated (ATM responding to DNA double-strand breaks (DSBs. Inhibition of ATM by both the pharmacological inhibitor caffeine and the specific small interference RNA (siRNA rescued the G2 arrest elicited by R16, indicating its ATM-dependent characteristic. Furthermore, depletion of Chk2, but not Chk1 with their corresponding siRNA, statistically significantly reversed the R16- and amonafide-triggered G2 arrest. Moreover, the naphthalimides phosphorylated Chk2 in an ATM-dependent manner but induced Chk1 degradation. These data indicate that R16 and amonafide preferentially used Chk2 as evidenced by the differential ATM-executed phosphorylation of Chk1 and Chk2. Thus, a clear signaling pathway can be established, in which ATM relays the DNA DSBs signaling triggered by the naphthalimides to the checkpoint kinases, predominantly to Chk2,which finally elicits G2 arrest. The mechanistic elucidation not only favors the development of the naphthalimides as anticancer agents but also provides an alternative strategy of Chk2 inhibition to potentiate the anticancer activities of these agents.

  16. Cordyceps militaris Fraction induces apoptosis and G2/M Arrest via c-Jun N-Terminal kinase signaling pathway in oral squamous carcinoma KB Cells.

    Science.gov (United States)

    Xie, Wangshi; Zhang, Zhang; Song, Liyan; Huang, Chunhua; Guo, Zhongyi; Hu, Xianjing; Bi, Sixue; Yu, Rongmin

    2018-01-01

    Cordyceps militaris fraction (CMF) has been shown to possess in vitro antitumor activity against human chronic myeloid leukemia K562 cells in our previous research. The in vitro inhibitory activities of CMF on the growth of KB cells were evaluated by viability assay. The apoptotic and cell cycle influences of CMF were detected by 4',6-diamidino-2-phenylindole staining and flow cytometry assay. The expression of different apoptosis-associated proteins and cell cycle regulatory proteins was examined by Western blot assay. The nuclear localization of c-Jun was observed by fluorescence staining. The objective of this study was to investigate the antiproliferative effect of CMF as well as the mechanism underlying the apoptosis and cell cycle arrest it induces in KB cells. CMF suppressed KB cells' proliferation in a dose- and time-dependent manner. Flow cytometric analysis indicated that CMF induced G2/M cell cycle arrest and apoptosis. Western blot analysis revealed that CMF induced caspase-3, caspase-9, and PARP cleavages, and increased the Bax/Bcl-2 ratio. CMF also led to increased expression of p21, decreased expression of cyclin B1, mitotic phosphatase cdc25c, and mitotic kinase cdc2, as well as unchanged expression of p53. In addition, CMF stimulated c-Jun N-terminal kinases (JNK) protein phosphorylations, resulting in upregulated expression of c-Jun and nuclear localization of c-Jun. Pretreatment with JNK inhibitor SP600125 suppressed CMF-induced apoptosis and G2/M arrest. CMF is capable of modulating c-Jun caspase and Bcl-2 family proteins through JNK-dependent apoptosis, which results in G2/M phase arrest in KB cells. CMF could be developed as a promising candidate for the new antitumor agents. CMF exhibited strong anticancer activity against oral squamous carcinoma KB cellsCMF inhibited KB cells' proliferation via induction of apoptosis and G2/M cell cycle arrestCMF activated JNK signaling pathway and promoted the nuclear localization of c-JunCMF regulated the

  17. Case of a cardiac arrest patient who survived after extracorporeal cardiopulmonary resuscitation and 1.5 hours of resuscitation: A case report.

    Science.gov (United States)

    Moon, Seong Ho; Kim, Jong Woo; Byun, Joung Hun; Kim, Sung Hwan; Kim, Ki Nyun; Choi, Jun Young; Jang, In Seok; Lee, Chung Eun; Yang, Jun Ho; Kang, Dong Hun; Park, Hyun Oh

    2017-11-01

    Per the American Heart Association guidelines, extracorporeal cardiopulmonary resuscitation should be considered for in-hospital patients with easily reversible cardiac arrest. However, there are currently no consensus recommendations regarding resuscitation for prolonged cardiac arrest cases. We encountered a 48-year-old man who survived a cardiac arrest that lasted approximately 1.5 hours. He visited a local hospital's emergency department complaining of chest pain and dyspnea that had started 3 days earlier. Immediately after arriving in the emergency department, a cardiac arrest occurred; he was transferred to our hospital for extracorporeal membrane oxygenation (ECMO). Resuscitation was performed with strict adherence to the American Heart Association/American College of Cardiology advanced cardiac life support guidelines until ECMO could be placed. On hospital day 7, he had a full neurologic recovery. On hospital day 58, additional treatments, including orthotopic heart transplantation, were considered necessary; he was transferred to another hospital. To our knowledge, this is the first case in South Korea of patient survival with good neurologic outcomes after resuscitation that lasted as long as 1.5 hours. Documenting cases of prolonged resuscitation may lead to updated guidelines and improvement of outcomes of similar cases in future. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  18. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit.

    Directory of Open Access Journals (Sweden)

    Cheen Fei Chin

    2016-07-01

    Full Text Available Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS formation at the division site to drive acto-myosin ring (AMR constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit.

  19. Evidence of activity-specific, radial organization of mitotic chromosomes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yuri G Strukov

    2011-01-01

    Full Text Available The organization and the mechanisms of condensation of mitotic chromosomes remain unsolved despite many decades of efforts. The lack of resolution, tight compaction, and the absence of function-specific chromatin labels have been the key technical obstacles. The correlation between DNA sequence composition and its contribution to the chromosome-scale structure has been suggested before; it is unclear though if all DNA sequences equally participate in intra- or inter-chromatin or DNA-protein interactions that lead to formation of mitotic chromosomes and if their mitotic positions are reproduced radially. Using high-resolution fluorescence microscopy of live or minimally perturbed, fixed chromosomes in Drosophila embryonic cultures or tissues expressing MSL3-GFP fusion protein, we studied positioning of specific MSL3-binding sites. Actively transcribed, dosage compensated Drosophila genes are distributed along the euchromatic arm of the male X chromosome. Several novel features of mitotic chromosomes have been observed. MSL3-GFP is always found at the periphery of mitotic chromosomes, suggesting that active, dosage compensated genes are also found at the periphery of mitotic chromosomes. Furthermore, radial distribution of chromatin loci on mitotic chromosomes was found to be correlated with their functional activity as judged by core histone modifications. Histone modifications specific to active chromatin were found peripheral with respect to silent chromatin. MSL3-GFP-labeled chromatin loci become peripheral starting in late prophase. In early prophase, dosage compensated chromatin regions traverse the entire width of chromosomes. These findings suggest large-scale internal rearrangements within chromosomes during the prophase condensation step, arguing against consecutive coiling models. Our results suggest that the organization of mitotic chromosomes is reproducible not only longitudinally, as demonstrated by chromosome-specific banding

  20. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-01-01

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPARγ expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest

  1. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel.

    Science.gov (United States)

    Tambe, Mahesh; Pruikkonen, Sofia; Mäki-Jouppila, Jenni; Chen, Ping; Elgaaen, Bente Vilming; Straume, Anne Hege; Huhtinen, Kaisa; Cárpen, Olli; Lønning, Per Eystein; Davidson, Ben; Hautaniemi, Sampsa; Kallio, Marko J

    2016-03-15

    The molecular pathways that contribute to the proliferation and drug response of cancer cells are highly complex and currently insufficiently characterized. We have identified a previously unknown microRNA-based mechanism that provides cancer cells means to stimulate tumorigenesis via increased genomic instability and, at the same time, evade the action of clinically utilized microtubule drugs. We demonstrate miR-493-3p to be a novel negative regulator of mitotic arrest deficient-2 (MAD2), an essential component of the spindle assembly checkpoint that monitors the fidelity of chromosome segregation. The microRNA targets the 3' UTR of Mad2 mRNA thereby preventing translation of the Mad2 protein. In cancer cells, overexpression of miR-493-3p induced a premature mitotic exit that led to increased frequency of aneuploidy and cellular senescence in the progeny cells. Importantly, excess of the miR-493-3p conferred resistance of cancer cells to microtubule drugs. In human neoplasms, miR-493-3p and Mad2 expression alterations correlated with advanced ovarian cancer forms and high miR-493-3p levels were associated with reduced survival of ovarian and breast cancer patients with aggressive tumors, especially in the paclitaxel therapy arm. Our results suggest that intratumoral profiling of miR-493-3p and Mad2 levels can have diagnostic value in predicting the efficacy of taxane chemotherapy.

  2. Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.

    1977-01-01

    Methyl methanesulfonate (MMS)-sensitive mutants of Saccharomyces cerevisiae belonging to four different complementation groups, when homozygous, increase the rate of spontaneous mitotic segregation to canavanine resistance from heterozygous sensitive (can/sup r//+) diploids by 13- to 170-fold. The mms8-1 mutant is MMS and x-ray sensitive and increases the rate of spontaneous mitotic segregation 170-fold. The mms9-1 and mms13-1 mutants are sensitive to x rays and uv, respectively, in addition to MMS, and increase the rate of spontaneous mitotic segregation by 13-fold and 85-fold, respectively. The mutant mms21-1 is sensitive to MMS, x rays and uv and increases the rate of spontaneous mitotic segregation 23-fold

  3. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis.

    Science.gov (United States)

    Terzaghi, L; Tessaro, I; Raucci, F; Merico, V; Mazzini, G; Garagna, S; Zuccotti, M; Franciosi, F; Lodde, V

    2016-08-02

    Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.

  4. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion

    NARCIS (Netherlands)

    Jonkman, MF; Scheffer, H; Stulp, R; Pas, HH; Nijenhuis, Albertine; Heeres, K; Owaribe, K; Pulkkinen, L; Uitto, J

    1997-01-01

    Mitotic gene conversion acting as reverse mutation has not been previously demonstrated in human. We report here that the revertant mosaicism of a compound heterozygous proband with an autosomal recessive genodermatosis, generalized atrophic benign epidermolysis bullosa, is caused by mitotic gene

  5. Radiation-induced mitotic catastrophe in PARG-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Ame, J.Ch.; Fouquerel, E.; Dantzer, F.; De Murcia, G.; Schreiber, V. [IREBS-FRE3211 du CNRS, Universite de Strasbourg, ESBS, Bd Sebastien Brant, BP 10413, 67412 Illkirch Cedex (France); Gauthier, L.R.; Boussin, F.D. [Laboratoire de Radiopathologie/INSERM U967, CEA-DSV-IRCM, 92265 Fontenay aux Roses, Cedex 6 (France); Biard, D. [CEA-DSV-IRCM/INSERM U935, Institut A. Lwoff-CNRS, BP 8, 94801 Villejuif cedex (France)

    2009-07-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glyco-hydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations. To gain insight into the function of PARG in response to irradiation, we constitutively and stably knocked down expression of PARG isoforms in HeLa cells. PARG depletion leading to PAR accumulation was not deleterious to undamaged cells and was in fact rather beneficial, because it protected cells from spontaneous single-strand breaks and telomeric abnormalities. By contrast, PARG-deficient cells showed increased radiosensitivity, caused by defects in the repair of single- and double-strand breaks and in mitotic spindle checkpoint, leading to alteration of progression of mitosis. Irradiated PARG-deficient cells displayed centrosome amplification leading to mitotic supernumerary spindle poles, and accumulated aberrant mitotic figures, which induced either polyploidy or cell death by mitotic catastrophe. Our results suggest that PARG could be a novel potential therapeutic target for radiotherapy. (authors)

  6. File list: Pol.Emb.05.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_12 dm3 RNA polymerase Embryo Mitotic cycle 12 SRX750...068 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_12.bed ...

  7. File list: Oth.Emb.20.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.Mitotic_cycle_14 dm3 TFs and others Embryo Mitotic cycle 14 SRX084...385 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.20.AllAg.Mitotic_cycle_14.bed ...

  8. File list: ALL.Emb.50.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Mitotic_cycle_14 dm3 All antigens Embryo Mitotic cycle 14 SRX08438...45114 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.50.AllAg.Mitotic_cycle_14.bed ...

  9. File list: Pol.Emb.50.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_12 dm3 RNA polymerase Embryo Mitotic cycle 12 SRX750...068 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_12.bed ...

  10. File list: ALL.Emb.10.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Mitotic_cycle_14 dm3 All antigens Embryo Mitotic cycle 14 SRX64512...50075 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.10.AllAg.Mitotic_cycle_14.bed ...

  11. In-hospital pediatric cardiac arrest in Honduras.

    Science.gov (United States)

    Matamoros, Martha; Rodriguez, Roger; Callejas, Allison; Carranza, Douglas; Zeron, Hilda; Sánchez, Carlos; Del Castillo, Jimena; López-Herce, Jesús

    2015-01-01

    The objective of this study was to analyze the characteristic and the prognostic factors of in-hospital pediatric cardiac arrest (CA) in a public hospital Honduras. A prospective observational study was performed on pediatric in-hospital CA as a part of a multicenter international study. One hundred forty-six children were studied. The primary end point was survival at hospital discharge. Univariate and multivariate logistic regression analyses were performed to assess the influence of each factor on mortality. Cardiac arrest occurred in the emergency department in 66.9%. Respiratory diseases and sepsis were predominant causes of CA. Return of spontaneous circulation was achieved in 60% of patients, and 22.6% survived to hospital discharge. The factors related with mortality were nonrespiratory cause of CA (odds ratio [OR], 2.55; P = 0.045), adrenaline administration (OR, 4.96; P = 0.008), and a duration of cardiopulmonary resuscitation more than 10 minutes (OR, 3.40; P = 0.012). In-hospital CA in children in a developing country has low survival. Patients with nonrespiratory causes and those who need adrenaline administration and prolonged resuscitation had worse prognosis.

  12. File list: Oth.Emb.20.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.Mitotic_cycle_13 dm3 TFs and others Embryo Mitotic cycle 13 SRX750...072,SRX750083 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.20.AllAg.Mitotic_cycle_13.bed ...

  13. File list: Oth.Emb.10.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.Mitotic_cycle_13 dm3 TFs and others Embryo Mitotic cycle 13 SRX750...072,SRX750083 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.10.AllAg.Mitotic_cycle_13.bed ...

  14. File list: ALL.Emb.50.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Mitotic_cycle_12 dm3 All antigens Embryo Mitotic cycle 12 SRX75006...8,SRX750069 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.50.AllAg.Mitotic_cycle_12.bed ...

  15. An engineering interpretation of pop-in arrest and tearing arrest in terms of static crack arrest, Ksub(Ia)

    International Nuclear Information System (INIS)

    Witt, F.J.

    1983-01-01

    When fracture toughness specimens are tested under displacement controlled conditions, they are often observed to exhibit unstable cleavage fracture followed by arrest of the cleavage mode wherein a significant load remains on the specimen (pop-in arrest). This behavior carries over into the ductile tearing regime wherein tearing may occur rapidly identified by load reduction and then proceeds at a discernible less rate (tearing arrest). Both these behaviors represent an initiation condition followed by an arrest condition. In this paper it is demonstrated that from either of the arrest conditions an arrest value may be determined which, for available experimental data, is shown to be an engineering estimate for the static crack arrest toughness, Ksub(Ia). A data analysis procedure is outlined and Ksub(Ic) and Ksub(Ia) estimates from sixty-eight 1/2, 1 and 2 in. thick compact specimens from two steels (A533 Grade B Class 1 and AISI 1018) tested between -40 deg F and 200 deg F are summarized. The crack arrest estimates are seen to compare favorably with Ksub(Ia) results obtained by other investigators using 2 in. thick specimens. Also it is demonstrated that when failure is by fully ductile tearing, the crack arrest toughness is at least equal to the estimate for Ksub(Ic) for the specimen. (author)

  16. File list: Pol.Emb.10.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_14 dm3 RNA polymerase Embryo Mitotic cycle 14 SRX750...078,SRX750076,SRX750074 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_14.bed ...

  17. File list: Pol.Emb.05.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_13 dm3 RNA polymerase Embryo Mitotic cycle 13 SRX750...080,SRX750082,SRX750071 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_13.bed ...

  18. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  19. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Retno; Ohsaki, Eriko [Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Omori, Hiroko [Central Instrumentation Laboratory Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871 (Japan); Ueda, Keiji, E-mail: kueda@virus.med.osaka-u.ac.jp [Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2016-09-15

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.

  20. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    International Nuclear Information System (INIS)

    Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko; Ueda, Keiji

    2016-01-01

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.

  1. File list: His.Emb.05.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.05.AllAg.Mitotic_cycle_14 dm3 Histone Embryo Mitotic cycle 14 SRX645129,SRX...RX645131,SRX645102,SRX645109,SRX645101 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.05.AllAg.Mitotic_cycle_14.bed ...

  2. Simple method for culture of peripheral blood lymphocytes of Testudinidae.

    Science.gov (United States)

    Silva, T L; Silva, M I A; Venancio, L P R; Zago, C E S; Moscheta, V A G; Lima, A V B; Vizotto, L D; Santos, J R; Bonini-Domingos, C R; Azeredo-Oliveira, M T V

    2011-12-06

    We developed and optimized a simple, efficient and inexpensive method for in vitro culture of peripheral blood lymphocytes from the Brazilian tortoise Chelonoidis carbonaria (Testudinidae), testing various parameters, including culture medium, mitogen concentration, mitotic index, culture volume, incubation time, and mitotic arrest. Peripheral blood samples were obtained from the costal vein of four couples. The conditions that gave a good mitotic index were lymphocytes cultured at 37°C in minimum essential medium (7.5 mL), with phytohemagglutinin as a mitogen (0.375 mL), plus streptomycin/penicillin (0.1 mL), and an incubation period of 72 h. Mitotic arrest was induced by 2-h exposure to colchicine (0.1 mL), 70 h after establishing the culture. After mitotic arrest, the cells were hypotonized with 0.075 M KCl for 2 h and fixed with methanol/acetic acid (3:1). The non-banded mitotic chromosomes were visualized by Giemsa staining. The diploid chromosome number of C. carbonaria was found to be 52 in females and males, and sex chromosomes were not observed. We were able to culture peripheral blood lymphocytes of a Brazilian tortoise in vitro, for the preparation of mitotic chromosomes.

  3. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    Science.gov (United States)

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  4. Prenylated Chalcone 2 Acts as an Antimitotic Agent and Enhances the Chemosensitivity of Tumor Cells to Paclitaxel

    Directory of Open Access Journals (Sweden)

    Joana Fonseca

    2016-07-01

    Full Text Available We previously reported that prenylated chalcone 2 (PC2, the O-prenyl derivative (2 of 2′-hydroxy-3,4,4′,5,6′-pentamethoxychalcone (1, induced cytotoxicity of tumor cells via disruption of p53-MDM2 interaction. However, the cellular changes through which PC2 exerts its cytotoxic activity and its antitumor potential, remain to be addressed. In the present work, we aimed to (i characterize the effect of PC2 on mitotic progression and the underlying mechanism; and to (ii explore this information to evaluate its ability to sensitize tumor cells to paclitaxel in a combination regimen. PC2 was able to arrest breast adenocarcinoma MCF-7 and non-small cell lung cancer NCI-H460 cells in mitosis. All mitosis-arrested cells showed collapsed mitotic spindles with randomly distributed chromosomes, and activated spindle assembly checkpoint. Live-cell imaging revealed that the compound induced a prolonged delay (up to 14 h in mitosis, culminating in massive cell death by blebbing. Importantly, PC2 in combination with paclitaxel enhanced the effect on cell growth inhibition as determined by cell viability and proliferation assays. Our findings demonstrate that the cytotoxicity induced by PC2 is mediated through antimitotic activity as a result of mitotic spindle damage. The enhancement effects of PC2 on chemosensitivity of cancer cells to paclitaxel encourage further validation of the clinical potential of this combination.

  5. File list: ALL.Emb.10.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Mitotic_cycle_13 dm3 All antigens Embryo Mitotic cycle 13 SRX75007...1,SRX750082,SRX750080,SRX750072,SRX750083,SRX750081,SRX750070 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.10.AllAg.Mitotic_cycle_13.bed ...

  6. File list: ALL.Emb.05.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Mitotic_cycle_13 dm3 All antigens Embryo Mitotic cycle 13 SRX75008...0,SRX750082,SRX750072,SRX750083,SRX750071,SRX750081,SRX750070 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.05.AllAg.Mitotic_cycle_13.bed ...

  7. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    Science.gov (United States)

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  8. Centrosome Amplification Increases Single-Cell Branching in Post-mitotic Cells.

    Science.gov (United States)

    Ricolo, Delia; Deligiannaki, Myrto; Casanova, Jordi; Araújo, Sofia J

    2016-10-24

    Centrosome amplification is a hallmark of cancer, although we are still far from understanding how this process affects tumorigenesis [1, 2]. Besides the contribution of supernumerary centrosomes to mitotic defects, their biological effects in the post-mitotic cell are not well known. Here, we exploit the effects of centrosome amplification in post-mitotic cells during single-cell branching. We show that Drosophila tracheal cells with extra centrosomes branch more than wild-type cells. We found that mutations in Rca1 and CycA affect subcellular branching, causing tracheal tip cells to form more than one subcellular lumen. We show that Rca1 and CycA post-mitotic cells have supernumerary centrosomes and that other mutant conditions that increase centrosome number also show excess of subcellular lumen branching. Furthermore, we show that de novo lumen formation is impaired in mutant embryos with fewer centrioles. The data presented here define a requirement for the centrosome as a microtubule-organizing center (MTOC) for the initiation of subcellular lumen formation. We propose that centrosomes are necessary to drive subcellular lumen formation. In addition, centrosome amplification increases single-cell branching, a process parallel to capillary sprouting in blood vessels [3]. These results shed new light on how centrosomes can contribute to pathology independently of mitotic defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. File list: His.Emb.50.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.AllAg.Mitotic_cycle_13-14 dm3 Histone Embryo Mitotic cycle 13-14 http://...dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.50.AllAg.Mitotic_cycle_13-14.bed ...

  10. File list: His.Emb.20.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.20.AllAg.Mitotic_cycle_13-14 dm3 Histone Embryo Mitotic cycle 13-14 http://...dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.20.AllAg.Mitotic_cycle_13-14.bed ...

  11. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  12. File list: Pol.Emb.10.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_8-9 dm3 RNA polymerase Embryo Mitotic cycle 8-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_8-9.bed ...

  13. File list: Pol.Emb.05.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_13-14 dm3 RNA polymerase Embryo Mitotic cycle 13-14 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_13-14.bed ...

  14. File list: Pol.Emb.10.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_11-13 dm3 RNA polymerase Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_11-13.bed ...

  15. File list: Pol.Emb.20.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Mitotic_cycle_12-14 dm3 RNA polymerase Embryo Mitotic cycle 12-14 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.20.AllAg.Mitotic_cycle_12-14.bed ...

  16. File list: Oth.Emb.20.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.Mitotic_cycle_7-9 dm3 TFs and others Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.20.AllAg.Mitotic_cycle_7-9.bed ...

  17. File list: DNS.Emb.20.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Mitotic_cycle_12-14 dm3 DNase-seq Embryo Mitotic cycle 12-14 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.20.AllAg.Mitotic_cycle_12-14.bed ...

  18. File list: DNS.Emb.10.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.10.AllAg.Mitotic_cycle_12-14 dm3 DNase-seq Embryo Mitotic cycle 12-14 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.10.AllAg.Mitotic_cycle_12-14.bed ...

  19. File list: Pol.Emb.20.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Mitotic_cycle_11-13 dm3 RNA polymerase Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.20.AllAg.Mitotic_cycle_11-13.bed ...

  20. File list: Unc.Emb.50.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Mitotic_cycle_11-13 dm3 Unclassified Embryo Mitotic cycle 11-13 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Emb.50.AllAg.Mitotic_cycle_11-13.bed ...

  1. File list: Unc.Emb.05.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.Mitotic_cycle_11-13 dm3 Unclassified Embryo Mitotic cycle 11-13 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Emb.05.AllAg.Mitotic_cycle_11-13.bed ...

  2. File list: Pol.Emb.50.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_7-9 dm3 RNA polymerase Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_7-9.bed ...

  3. File list: Pol.Emb.20.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Mitotic_cycle_8-9 dm3 RNA polymerase Embryo Mitotic cycle 8-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.20.AllAg.Mitotic_cycle_8-9.bed ...

  4. File list: DNS.Emb.50.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.50.AllAg.Mitotic_cycle_11-13 dm3 DNase-seq Embryo Mitotic cycle 11-13 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.50.AllAg.Mitotic_cycle_11-13.bed ...

  5. File list: Pol.Emb.50.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_12-14 dm3 RNA polymerase Embryo Mitotic cycle 12-14 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_12-14.bed ...

  6. File list: Pol.Emb.50.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_11-13 dm3 RNA polymerase Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_11-13.bed ...

  7. File list: Oth.Emb.10.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.Mitotic_cycle_11-13 dm3 TFs and others Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.10.AllAg.Mitotic_cycle_11-13.bed ...

  8. File list: Oth.Emb.50.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.AllAg.Mitotic_cycle_11-13 dm3 TFs and others Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.50.AllAg.Mitotic_cycle_11-13.bed ...

  9. File list: DNS.Emb.05.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.05.AllAg.Mitotic_cycle_11-13 dm3 DNase-seq Embryo Mitotic cycle 11-13 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.05.AllAg.Mitotic_cycle_11-13.bed ...

  10. File list: Unc.Emb.10.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.10.AllAg.Mitotic_cycle_11-13 dm3 Unclassified Embryo Mitotic cycle 11-13 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Emb.10.AllAg.Mitotic_cycle_11-13.bed ...

  11. File list: Pol.Emb.50.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_8-9 dm3 RNA polymerase Embryo Mitotic cycle 8-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_8-9.bed ...

  12. File list: Unc.Emb.50.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Mitotic_cycle_12-14 dm3 Unclassified Embryo Mitotic cycle 12-14 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Emb.50.AllAg.Mitotic_cycle_12-14.bed ...

  13. File list: Pol.Emb.10.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_7-9 dm3 RNA polymerase Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_7-9.bed ...

  14. File list: Unc.Emb.05.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.Mitotic_cycle_13-14 dm3 Unclassified Embryo Mitotic cycle 13-14 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Emb.05.AllAg.Mitotic_cycle_13-14.bed ...

  15. File list: DNS.Emb.05.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.05.AllAg.Mitotic_cycle_12-14 dm3 DNase-seq Embryo Mitotic cycle 12-14 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.05.AllAg.Mitotic_cycle_12-14.bed ...

  16. Polyploidy and Mitotic Cell Death Are Two Distinct HIV-1 Vpr-Driven Outcomes in Renal Tubule Epithelial Cells.

    Science.gov (United States)

    Payne, Emily H; Ramalingam, Dhivya; Fox, Donald T; Klotman, Mary E

    2018-01-15

    Prior studies have found that HIV, through the Vpr protein, promotes genome reduplication (polyploidy) in infection-surviving epithelial cells within renal tissue. However, the temporal progression and molecular regulation through which Vpr promotes polyploidy have remained unclear. Here we define a sequential progression to Vpr-mediated polyploidy in human renal tubule epithelial cells (RTECs). We found that as in many cell types, Vpr first initiates G 2 cell cycle arrest in RTECs. We then identified a previously unreported cascade of Vpr-dependent events that lead to renal cell survival and polyploidy. Specifically, we found that a fraction of G 2 -arrested RTECs reenter the cell cycle. Following this cell cycle reentry, two distinct outcomes occur. Cells that enter complete mitosis undergo mitotic cell death due to extra centrosomes and aberrant division. Conversely, cells that abort mitosis undergo endoreplication to become polyploid. We further show that multiple small-molecule inhibitors of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, including those that target ATR, ATM, and mTOR, indirectly prevent Vpr-mediated polyploidy by preventing G 2 arrest. In contrast, an inhibitor that targets DNA-dependent protein kinase (DNA-PK) specifically blocks the Vpr-mediated transition from G 2 arrest to polyploidy. These findings outline a temporal, molecularly regulated path to polyploidy in HIV-positive renal cells. IMPORTANCE Current cure-focused efforts in HIV research aim to elucidate the mechanisms of long-term persistence of HIV in compartments. The kidney is recognized as one such compartment, since viral DNA and mRNA persist in the renal tissues of HIV-positive patients. Further, renal disease is a long-term comorbidity in the setting of HIV. Thus, understanding the regulation and impact of HIV infection on renal cell biology will provide important insights into this unique HIV compartment. Our work identifies mechanisms that distinguish

  17. Mechanical control of mitotic progression in single animal cells

    OpenAIRE

    Cattin, Cedric J.; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J.; Stewart, Martin P.

    2015-01-01

    Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, i...

  18. File list: ALL.Emb.05.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Mitotic_cycle_8-9 dm3 All antigens Embryo Mitotic cycle 8-9 SRX084...383 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.05.AllAg.Mitotic_cycle_8-9.bed ...

  19. File list: Oth.Emb.50.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.AllAg.Mitotic_cycle_13-14 dm3 TFs and others Embryo Mitotic cycle 13-14 ...SRX084384 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.50.AllAg.Mitotic_cycle_13-14.bed ...

  20. File list: ALL.Emb.20.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Mitotic_cycle_8-9 dm3 All antigens Embryo Mitotic cycle 8-9 SRX084...383 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.20.AllAg.Mitotic_cycle_8-9.bed ...

  1. File list: ALL.Emb.50.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Mitotic_cycle_13-14 dm3 All antigens Embryo Mitotic cycle 13-14 SR...X084384 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.50.AllAg.Mitotic_cycle_13-14.bed ...

  2. File list: ALL.Emb.20.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Mitotic_cycle_13-14 dm3 All antigens Embryo Mitotic cycle 13-14 SR...X084384 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.20.AllAg.Mitotic_cycle_13-14.bed ...

  3. File list: InP.Emb.05.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Mitotic_cycle_12 dm3 Input control Embryo Mitotic cycle 12 SRX7500...69 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.05.AllAg.Mitotic_cycle_12.bed ...

  4. File list: InP.Emb.10.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_12 dm3 Input control Embryo Mitotic cycle 12 SRX7500...69 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_12.bed ...

  5. File list: Oth.Emb.10.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.Mitotic_cycle_13-14 dm3 TFs and others Embryo Mitotic cycle 13-14 ...SRX084384 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.10.AllAg.Mitotic_cycle_13-14.bed ...

  6. File list: Oth.Emb.10.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.Mitotic_cycle_8-9 dm3 TFs and others Embryo Mitotic cycle 8-9 SRX0...84383 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.10.AllAg.Mitotic_cycle_8-9.bed ...

  7. File list: InP.Emb.05.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Mitotic_cycle_13 dm3 Input control Embryo Mitotic cycle 13 SRX7500...81,SRX750070 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.05.AllAg.Mitotic_cycle_13.bed ...

  8. Differential Regulation of Smad3 and of the Type II Transforming Growth Factor-β Receptor in Mitosis: Implications for Signaling

    Science.gov (United States)

    Hirschhorn, Tal; Barizilay, Lior; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2012-01-01

    The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF

  9. File list: InP.Emb.50.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_14 dm3 Input control Embryo Mitotic cycle 14 SRX6451...40,SRX750075,SRX645139 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_14.bed ...

  10. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage.

    Directory of Open Access Journals (Sweden)

    Shane Zaidi

    Full Text Available Heat shock protein 90 (HSP90 is a molecular chaperone responsible for the conformational maintenance of a number of client proteins that play key roles in cell cycle arrest, DNA damage repair and apoptosis following radiation. HSP90 inhibitors exhibit antitumor activity by modulating the stabilisation and activation of HSP90 client proteins. We sought to evaluate NVP-AUY922, the most potent HSP90 inhibitor yet reported, in preclinical radiosensitization studies.NVP-AUY922 potently radiosensitized cells in vitro at low nanomolar concentrations with a concurrent depletion of radioresistance-linked client proteins. Radiosensitization by NVP-AUY922 was verified for the first time in vivo in a human head and neck squamous cell carcinoma xenograft model in athymic mice, as measured by delayed tumor growth and increased surrogate end-point survival (p = <0.0001. NVP-AUY922 was shown to ubiquitously inhibit resolution of dsDNA damage repair correlating to delayed Rad51 foci formation in all cell lines tested. Additionally, NVP-AUY922 induced a stalled mitotic phenotype, in a cell line-dependent manner, in HeLa and HN5 cell lines irrespective of radiation exposure. Cell cycle analysis indicated that NVP-AUY922 induced aberrant mitotic entry in all cell lines tested in the presence of radiation-induced DNA damage due to ubiquitous CHK1 depletion, but resultant downstream cell cycle effects were cell line dependent.These results identify NVP-AUY922 as the most potent HSP90-mediated radiosensitizer yet reported in vitro, and for the first time validate it in a clinically relevant in vivo model. Mechanistic analysis at clinically achievable concentrations demonstrated that radiosensitization is mediated by the combinatorial inhibition of cell growth and survival pathways, ubiquitous delay in Rad51-mediated homologous recombination and CHK1-mediated G(2/M arrest, but that the contribution of cell cycle perturbation to radiosensitization may be cell line

  11. Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells

    Directory of Open Access Journals (Sweden)

    Barra Viviana

    2012-02-01

    Full Text Available Abstract Background Aneuploidy has been acknowledged as a major source of genomic instability in cancer, and it is often considered the result of chromosome segregation errors including those caused by defects in genes controlling the mitotic spindle assembly, centrosome duplication and cell-cycle checkpoints. Aneuploidy and chromosomal instability has been also correlated with epigenetic alteration, however the molecular basis of this correlation is poorly understood. Results To address the functional connection existing between epigenetic changes and aneuploidy, we used RNA-interference to silence the DNMT1 gene, encoding for a highly conserved member of the DNA methyl-transferases. DNMT1 depletion slowed down proliferation of near-diploid human tumor cells (HCT116 and triggered G1 arrest in primary human fibroblasts (IMR90, by inducing p53 stabilization and, in turn, p21waf1 transactivation. Remarkably, p53 increase was not caused by DNA damage and was not observed after p14-ARF post-transcriptional silencing. Interestingly, DNMT1 silenced cells with p53 or p14-ARF depleted did not arrest in G1 but, instead, underwent DNA hypomethylation and became aneuploid. Conclusion Our results suggest that DNMT1 depletion triggers a p14ARF/p53 dependent cell cycle arrest to counteract the aneuploidy induced by changes in DNA methylation.

  12. Colchicine promotes a change in chromosome structure without loss of sister chromatid cohesion in prometaphase I-arrested bivalents.

    Science.gov (United States)

    Rodríguez, E M; Parra, M T; Rufas, J S; Suja, J A

    2001-12-01

    In somatic cells colchicine promotes the arrest of cell division at prometaphase, and chromosomes show a sequential loss of sister chromatid arm and centromere cohesion. In this study we used colchicine to analyse possible changes in chromosome structure and sister chromatid cohesion in prometaphase I-arrested bivalents of the katydid Pycnogaster cucullata. After silver staining we observed that in colchicine-arrested prometaphase I bivalents, and in contrast to what was found in control bivalents, sister kinetochores appeared individualised and sister chromatid axes were completely separated all along their length. However, this change in chromosome structure occurred without loss of sister chromatid arm cohesion. We also employed the MPM-2 monoclonal antibody against mitotic phosphoproteins on control and colchicine-treated spermatocytes. In control metaphase I bivalents this antibody labelled the tightly associated sister kinetochores and the interchromatid domain. By contrast, in colchicine-treated prometaphase I bivalents individualised sister kinetochores appeared labelled, but the interchromatid domain did not show labelling. These results support the notion that MPM-2 phosphoproteins, probably DNA topoisomerase IIalpha, located in the interchromatid domain act as "chromosomal staples" associating sister chromatid axes in metaphase I bivalents. The disappearance of these chromosomal staples would induce a change in chromosome structure, as reflected by the separation of sister kinetochores and sister axes, but without a concomitant loss of sister chromatid cohesion.

  13. File list: His.Emb.05.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.05.AllAg.Mitotic_cycle_12-14 dm3 Histone Embryo Mitotic cycle 12-14 SRX6474...41,SRX647443,SRX647442,SRX647440 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.05.AllAg.Mitotic_cycle_12-14.bed ...

  14. Unconventional functions of mitotic kinases in kidney tumourigenesis

    Directory of Open Access Journals (Sweden)

    Pauline eHascoet

    2015-10-01

    Full Text Available Human tumours exhibit a variety of genetic alterations, including point mutations, translocations, gene amplifications and deletions, as well as aneuploid chromosome numbers. For carcinomas, aneuploidy is associated with poor patient outcome for a large variety of tumour types, including breast, colon and renal cell carcinoma. The Renal cell cancer (RCC is a heterogeneous carcinoma consisting of different histologic types. The clear renal cell carcinoma (ccRCC is the most common subtype and represents 85 % of the RCC. Central to the biology of the ccRCC is the loss of function of the Von Hippel Lindau gene but is also associated with genetic instability that could be caused by abrogation of the cell cycle mitotic spindle checkpoint and may involve the Aurora kinases, which regulate centrosome maturation. Aneuploidy can also result from the loss of cell-cell adhesion and apical-basal cell polarity that also may be regulated by the mitotic kinases (Plk1, CK2, DLCK1 and Aurora kinases. In this review, we describe the non mitotic unconventional functions of these kinases in renal tumourigenesis.

  15. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    Science.gov (United States)

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.

  16. File list: His.Emb.50.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.AllAg.Mitotic_cycle_7-9 dm3 Histone Embryo Mitotic cycle 7-9 SRX645111,S...RX645115,SRX645103,SRX645123,SRX645107,SRX645099,SRX645119 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.50.AllAg.Mitotic_cycle_7-9.bed ...

  17. File list: His.Emb.20.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.20.AllAg.Mitotic_cycle_11-13 dm3 Histone Embryo Mitotic cycle 11-13 SRX6451...30,SRX645124,SRX645116,SRX645108,SRX645127,SRX645112,SRX645120 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.20.AllAg.Mitotic_cycle_11-13.bed ...

  18. File list: His.Emb.50.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.AllAg.Mitotic_cycle_11-13 dm3 Histone Embryo Mitotic cycle 11-13 SRX6451...30,SRX645124,SRX645116,SRX645108,SRX645127,SRX645112,SRX645120 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.50.AllAg.Mitotic_cycle_11-13.bed ...

  19. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest.

    Science.gov (United States)

    Pelegrini, Alessandra Luíza; Moura, Dinara Jaqueline; Brenner, Bethânia Luise; Ledur, Pitia Flores; Maques, Gabriela Porto; Henriques, João Antônio Pegas; Saffi, Jenifer; Lenz, Guido

    2010-09-01

    Never in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation. In this report, we show that cells with Nek1 knockdown (KD) through stable RNA interference present a delay in DNA repair when treated with methyl-methanesulfonate (MMS), hydrogen peroxide (H(2)O(2)) and cisplatin (CPT). In particular, interstrand cross links induced by CPT take much longer to be resolved in Nek1 KD cells when compared to wild-type (WT) cells. In KD cells, phosphorylation of Chk1 in response to CPT was strongly reduced. While WT cells accumulate in G(2)/M after DNA damage with MMS and H(2)O(2), Nek1 KD cells do not arrest, suggesting that G(2)/M arrest induced by the DNA damage requires Nek1. Surprisingly, CPT-treated Nek1 KD cells arrest with a 4N DNA content similar to WT cells. This deregulation in cell cycle control in Nek1 KD cells leads to an increased sensitivity to genotoxic agents when compared to WT cells. These results suggest that Nek1 is involved in the beginning of the cellular response to genotoxic stress and plays an important role in preventing cell death induced by DNA damage.

  20. File list: NoD.Emb.05.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.05.AllAg.Mitotic_cycle_12-14 dm3 No description Embryo Mitotic cycle 12-14 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.05.AllAg.Mitotic_cycle_12-14.bed ...

  1. File list: InP.Emb.20.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Mitotic_cycle_8-9 dm3 Input control Embryo Mitotic cycle 8-9 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.20.AllAg.Mitotic_cycle_8-9.bed ...

  2. File list: NoD.Emb.10.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.10.AllAg.Mitotic_cycle_7-9 dm3 No description Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.10.AllAg.Mitotic_cycle_7-9.bed ...

  3. File list: InP.Emb.50.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_8-9 dm3 Input control Embryo Mitotic cycle 8-9 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_8-9.bed ...

  4. File list: NoD.Emb.20.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.20.AllAg.Mitotic_cycle_7-9 dm3 No description Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.20.AllAg.Mitotic_cycle_7-9.bed ...

  5. File list: NoD.Emb.05.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.05.AllAg.Mitotic_cycle_11-13 dm3 No description Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.05.AllAg.Mitotic_cycle_11-13.bed ...

  6. File list: InP.Emb.05.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Mitotic_cycle_13-14 dm3 Input control Embryo Mitotic cycle 13-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.05.AllAg.Mitotic_cycle_13-14.bed ...

  7. File list: InP.Emb.20.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Mitotic_cycle_12-14 dm3 Input control Embryo Mitotic cycle 12-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.20.AllAg.Mitotic_cycle_12-14.bed ...

  8. File list: NoD.Emb.05.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.05.AllAg.Mitotic_cycle_7-9 dm3 No description Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.05.AllAg.Mitotic_cycle_7-9.bed ...

  9. File list: NoD.Emb.10.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.10.AllAg.Mitotic_cycle_11-13 dm3 No description Embryo Mitotic cycle 11-13 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.10.AllAg.Mitotic_cycle_11-13.bed ...

  10. File list: InP.Emb.10.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_12-14 dm3 Input control Embryo Mitotic cycle 12-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_12-14.bed ...

  11. File list: InP.Emb.50.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_12-14 dm3 Input control Embryo Mitotic cycle 12-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_12-14.bed ...

  12. File list: NoD.Emb.50.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.50.AllAg.Mitotic_cycle_13-14 dm3 No description Embryo Mitotic cycle 13-14 ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.50.AllAg.Mitotic_cycle_13-14.bed ...

  13. File list: InP.Emb.10.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_13-14 dm3 Input control Embryo Mitotic cycle 13-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_13-14.bed ...

  14. File list: NoD.Emb.50.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.50.AllAg.Mitotic_cycle_7-9 dm3 No description Embryo Mitotic cycle 7-9 http...://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/NoD.Emb.50.AllAg.Mitotic_cycle_7-9.bed ...

  15. File list: ALL.Emb.20.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Mitotic_cycle_7-9 dm3 All antigens Embryo Mitotic cycle 7-9 SRX645...111,SRX645115,SRX645103,SRX645123,SRX645107,SRX645137,SRX645099,SRX645119 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.20.AllAg.Mitotic_cycle_7-9.bed ...

  16. File list: ALL.Emb.20.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Mitotic_cycle_11-13 dm3 All antigens Embryo Mitotic cycle 11-13 SR...X645130,SRX645124,SRX645116,SRX645108,SRX645127,SRX645112,SRX645138,SRX645120 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.20.AllAg.Mitotic_cycle_11-13.bed ...

  17. File list: ALL.Emb.05.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Mitotic_cycle_11-13 dm3 All antigens Embryo Mitotic cycle 11-13 SR...X645108,SRX645116,SRX645127,SRX645124,SRX645130,SRX645112,SRX645120,SRX645138 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.05.AllAg.Mitotic_cycle_11-13.bed ...

  18. Mitotic Figure Recognition: Agreement among Pathologists and Computerized Detector

    Directory of Open Access Journals (Sweden)

    Christopher Malon

    2012-01-01

    Full Text Available Despite the prognostic importance of mitotic count as one of the components of the Bloom – Richardson grade [3], several studies ([2, 9, 10] have found that pathologists’ agreement on the mitotic grade is fairly modest. Collecting a set of more than 4,200 candidate mitotic figures, we evaluate pathologists' agreement on individual figures, and train a computerized system for mitosis detection, comparing its performance to the classifications of three pathologists. The system’s and the pathologists’ classifications are based on evaluation of digital micrographs of hematoxylin and eosin stained breast tissue. On figures where the majority of pathologists agree on a classification, we compare the performance of the trained system to that of the individual pathologists. We find that the level of agreement of the pathologists ranges from slight to moderate, with strong biases, and that the system performs competitively in rating the ground truth set. This study is a step towards automatic mitosis count to accelerate a pathologist's work and improve reproducibility.

  19. Disappearance of nucleosome positioning in mitotic chromatin in vivo.

    Science.gov (United States)

    Komura, Jun-ichiro; Ono, Tetsuya

    2005-04-15

    During mitosis, transcription is silenced and most transcription factors are displaced from their recognition sequences. By in vivo footprinting analysis, we have confirmed and extended previous studies showing loss of transcription factors from an RNA polymerase II promoter (c-FOS) and, for the first time, an RNA polymerase III promoter (U6) in HeLa cells. Because little was known about nucleosomal organization in mitotic chromosomes, we performed footprinting analysis for nucleosomes on these promoters in interphase and mitotic cells. During interphase, each of the promoters had a positioned nucleosome in the region intervening between proximal promoter elements and distal enhancer elements, but the strong nucleosome positioning disappeared during mitosis. Thus, the nucleosomal organization that appears to facilitate transcription in interphase cells may be lost in mitotic cells, and nucleosome positioning during mitosis does not seem to be a major component of the epigenetic mechanisms to mark genes for rapid reactivation after this phase.

  20. File list: InP.Emb.50.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_7-9 dm3 Input control Embryo Mitotic cycle 7-9 SRX64...5137 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_7-9.bed ...

  1. File list: InP.Emb.20.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Mitotic_cycle_11-13 dm3 Input control Embryo Mitotic cycle 11-13 S...RX645138 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.20.AllAg.Mitotic_cycle_11-13.bed ...

  2. Mitotic delay of irradiated cells and its connection with quantity of radiation injuries

    International Nuclear Information System (INIS)

    Lobachevskij, P.N.; Fominykh, E.V.

    1989-01-01

    The study is dedicated to development of mathematical approach to interpret radiation-induced mitosic delay. An assumption is made that mitotic delay is conditioned by discrete injuries distributed in cells according to stochasticity of interaction of radiation and target substance. It is supposed to consider the problem on injuries nature causing mitotic delay and to use the developed method for accounting the effect of radiation-induced mitotic delay on registered chromosomal aberration yield. 10 refs.; 2 figs.; 3 tabs

  3. Sulforaphane, a Dietary Isothiocyanate, Induces G2/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association

    Directory of Open Access Journals (Sweden)

    Ya-Min Cheng

    2016-09-01

    Full Text Available Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa. We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins.

  4. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition.

    Science.gov (United States)

    Lin, Yu-Wei; Raj, Emmanuel Naveen; Liao, Wei-Siang; Lin, Johnson; Liu, Kuang-Kai; Chen, Ting-Hua; Cheng, Hsiao-Chun; Wang, Chi-Ching; Li, Lily Yi; Chen, Chinpiao; Chao, Jui-I

    2017-08-29

    The poor intracellular uptake and non-specific binding of anticancer drugs into cancer cells are the bottlenecks in cancer therapy. Nanocarrier platforms provide the opportunities to improve the drug efficacy. Here we show a carbon-based nanomaterial nanodiamond (ND) that carried paclitaxel (PTX), a microtubule inhibitor, and cetuximab (Cet), a specific monoclonal antibody against epidermal growth factor receptor (EGFR), inducing mitotic catastrophe and tumor inhibition in human colorectal cancer (CRC). ND-PTX blocked the mitotic progression, chromosomal separation, and induced apoptosis in the CRC cells; however, NDs did not induce these effects. Conjugation of ND-PTX with Cet (ND-PTX-Cet) was specifically binding to the EGFR-positive CRC cells and enhanced the mitotic catastrophe and apoptosis induction. Besides, ND-PTX-Cet markedly decreased tumor size in the xenograft EGFR-expressed human CRC tumors of nude mice. Moreover, ND-PTX-Cet induced the mitotic marker protein phospho-histone 3 (Ser10) and apoptotic protein active-caspase 3 for mitotic catastrophe and apoptosis. Taken together, this study demonstrated that the co-delivery of PTX and Cet by ND enhanced the effects of mitotic catastrophe and apoptosis in vitro and in vivo, which may be applied in the human CRC therapy.

  5. Release from Xenopus oocyte prophase I meiotic arrest is independent of a decrease in cAMP levels or PKA activity.

    Science.gov (United States)

    Nader, Nancy; Courjaret, Raphael; Dib, Maya; Kulkarni, Rashmi P; Machaca, Khaled

    2016-06-01

    Vertebrate oocytes arrest at prophase of meiosis I as a result of high levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) activity. In Xenopus, progesterone is believed to release meiotic arrest by inhibiting adenylate cyclase, lowering cAMP levels and repressing PKA. However, the exact timing and extent of the cAMP decrease is unclear, with conflicting reports in the literature. Using various in vivo reporters for cAMP and PKA at the single-cell level in real time, we fail to detect any significant changes in cAMP or PKA in response to progesterone. More interestingly, there was no correlation between the levels of PKA inhibition and the release of meiotic arrest. Furthermore, we devised conditions whereby meiotic arrest could be released in the presence of sustained high levels of cAMP. Consistently, lowering endogenous cAMP levels by >65% for prolonged time periods failed to induce spontaneous maturation. These results argue that the release of oocyte meiotic arrest in Xenopus is independent of a reduction in either cAMP levels or PKA activity, but rather proceeds through a parallel cAMP/PKA-independent pathway. © 2016. Published by The Company of Biologists Ltd.

  6. Suspension of Mitotic Activity in Dentate Gyrus of the Hibernating Ground Squirrel

    Directory of Open Access Journals (Sweden)

    Victor I. Popov

    2011-01-01

    Full Text Available Neurogenesis occurs in the adult mammalian hippocampus, a region of the brain important for learning and memory. Hibernation in Siberian ground squirrels provides a natural model to study mitosis as the rapid fall in body temperature in 24 h (from 35-36°C to +4–6°C permits accumulation of mitotic cells at different stages of the cell cycle. Histological methods used to study adult neurogenesis are limited largely to fixed tissue, and the mitotic state elucidated depends on the specific phase of mitosis at the time of day. However, using an immunohistochemical study of doublecortin (DCX and BrdU-labelled neurons, we demonstrate that the dentate gyrus of the ground squirrel hippocampus contains a population of immature cells which appear to possess mitotic activity. Our data suggest that doublecortin-labelled immature cells exist in a mitotic state and may represent a renewable pool for generation of new neurons within the dentate gyrus.

  7. Mapping genes by meiotic and UV-induced mitotic recombination in Coprinus cinereus

    International Nuclear Information System (INIS)

    Amirkhanian, J.D.; Cowan, J.W.

    1985-01-01

    Three morphological mutants in Coprinus cinereus—one spontaneous (den-2) and two chemically induced (zigand sta)—were assigned to linkage groups and utilized in meiotic and mitotic mapping. Mutants den-2 and zig belong to linkage group III, den-2 being close to the centromere and about 20 map units (mu) from zig. The mutant sta in linkage group ‘G’ is at a distance of about 37 mu from ade-3. Mitotic mapping confirmed the gene order in linkage group III and provided evidence that trp-2 in linkage group ‘G’ was between the centromere and ade-3. These morphological mutants are compact in colony growth and therefore suited to high-density plating. The rarity of spontaneously occurring mitotic segregants suggests that diploids of Coprinus cinereus, heterozygous for morphoiogical markers in repuision, could serve as useful test systems for rapid screening of chemical mutagen/carcinogens via mitotic recombination studies

  8. The relationship between mitotic rate and depth of invasion in biopsies of malignant melanoma

    Directory of Open Access Journals (Sweden)

    Ghasemi Basir HR

    2018-03-01

    Full Text Available Hamid Reza Ghasemi Basir,1,2 Pedram Alirezaei,2 Sara Ahovan,3 Abbas Moradi3 1Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; 2Psoriasis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; 3School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran Background: Malignant melanoma of the skin is a potentially lethal neoplasm that generally originates from atypical melanocytes in the dermal–epidermal junction. When the neoplasm penetrates into the dermis, several variables can affect the extent of its spread, among which depth of invasion has the most important prognostic value. Mitotic rate is another prognostic factor that reflects the biological behavior of the neoplasm.Objective: This study was designed to evaluate the probable relationship between the depth of invasion of malignant melanoma and its mitotic rate.Materials and methods: This study was performed on 50 excisional biopsy specimens that had received the diagnosis of malignant melanoma histopathologically. Tumor characteristics including Breslow thickness, Clark level, T-stage, and tumor mitotic rate were recorded.Results: We observed that at higher Clark levels and higher T-stages, and the mean mitotic rate was significantly increased. Moreover, there was a positive and significant correlation between Breslow thickness and mitotic rate. We demonstrated that one unit increase in mitotic rate was correlated with 0.8 mm increase in Breslow thickness of the tumor.Conclusion: In malignant melanoma, mitotic activity may probably indicate the depth of tumor invasion. Therefore, in incisional biopsies where depth of invasion cannot be accurately determined, the mitotic activity may be used to estimate Breslow thickness, which is necessary for planning surgical management. Keywords: melanoma, mitosis, Breslow, invasion, thickness, proliferation

  9. Calmodulin Mutations Associated with Recurrent Cardiac Arrest in Infants

    Science.gov (United States)

    Crotti, Lia; Johnson, Christopher N.; Graf, Elisabeth; De Ferrari, Gaetano M.; Cuneo, Bettina F.; Ovadia, Marc; Papagiannis, John; Feldkamp, Michael D.; Rathi, Subodh G.; Kunic, Jennifer D.; Pedrazzini, Matteo; Wieland, Thomas; Lichtner, Peter; Beckmann, Britt-Maria; Clark, Travis; Shaffer, Christian; Benson, D. Woodrow; Kääb, Stefan; Meitinger, Thomas; Strom, Tim M.; Chazin, Walter J.; Schwartz, Peter J.; George, Alfred L.

    2013-01-01

    Background Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on two unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. Methods and Results We ascertained two unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The two parent-child trios were investigated using exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in two genes encoding calmodulin. We discovered three heterozygous de novo mutations in either CALM1 or CALM2, two of the three human genes encoding calmodulin, in the two probands and in two additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several fold reductions in calcium binding affinity. Conclusions Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy. PMID:23388215

  10. Utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Baker, B.S.; Carpenter, A.T.C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by uv and x rays. Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells

  11. Cardiorespiratory interactions and blood flow generation during cardiac arrest and other states of low blood flow.

    Science.gov (United States)

    Sigurdsson, Gardar; Yannopoulos, Demetris; McKnite, Scott H; Lurie, Keith G

    2003-06-01

    Recent advances in cardiopulmonary resuscitation have shed light on the importance of cardiorespiratory interactions during shock and cardiac arrest. This review focuses on recently published studies that evaluate factors that determine preload during chest compression, methods that can augment preload, and the detrimental effects of hyperventilation and interrupting chest compressions. Refilling of the ventricles, so-called ventricular preload, is diminished during cardiovascular collapse and resuscitation from cardiac arrest. In light of the potential detrimental effects and challenges of large-volume fluid resuscitations, other methods have increasing importance. During cardiac arrest, active decompression of the chest and impedance of inspiratory airflow during the recoil of the chest work by increasing negative intrathoracic pressure and, hence, increase refilling of the ventricles and increase cardiac preload, with improvement in survival. Conversely, increased frequency of ventilation has detrimental effects on coronary perfusion pressure and survival rates in cardiac arrest and severe shock. Prolonged interruption of chest compressions for delivering single-rescuer ventilation or analyzing rhythm before shock delivery is associated with decreased survival rate. Cardiorespiratory interactions are of profound importance in states of cardiovascular collapse in which increased negative intrathoracic pressure during decompression of the chest has a favorable effect and increased intrathoracic pressure with ventilation has a detrimental effect on survival rate.

  12. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Vagnarelli, Paola

    2012-01-01

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  13. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  14. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Parry, J.M.; Sharp, D.; Tippins, R.S.; Parry, E.M.

    1979-01-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems the authors have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. (Auth.)

  15. Identification of Pathways Required for the Coordination of Late Mitotic Events in Animal Cells

    National Research Council Canada - National Science Library

    Baumgartner, Bridget L; Harper, J. W

    2005-01-01

    ... in genomic instability, a hallmark of cancer. In yeast, a signaling pathway has been identified, called the Mitotic Exit Network, which coordinates mitotic exit and cytokinesis with the end of anaphase...

  16. Identification of Pathways Required for the Coordination of Late Mitotic Events in Animal Cells

    National Research Council Canada - National Science Library

    Baumgartner, Bridget

    2004-01-01

    ... in genomic instability, a hallmark of cancer. In yeast, a signaling pathway has been identified, called the Mitotic Exit Network, which coordinates mitotic exit and cytokinesis with the end of anaphase...

  17. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  18. Location of cardiac arrest and impact of pre-arrest chronic disease and medication use on survival

    DEFF Research Database (Denmark)

    Granfeldt, Asger; Wissenberg, Mads; Hansen, Steen Møller

    2017-01-01

    location and a higher mortality can be explained by differences in chronic diseases and medication. METHODS: We identified 27,771 out-of-hospital cardiac arrest patients ≥18 years old from the Danish Cardiac Arrest Registry (2001-2012). Using National Registries, we identified pre-arrest chronic disease......INTRODUCTION: Cardiac arrest in a private location is associated with a higher mortality when compared to public location. Past studies have not accounted for pre-arrest factors such as chronic disease and medication. AIM: To investigate whether the association between cardiac arrest in a private...

  19. Hyperglycemia and subsequent torsades de pointes with marked QT prolongation during refeeding.

    Science.gov (United States)

    Nakashima, Takashi; Kubota, Tomoki; Takasugi, Nobuhiro; Kitagawa, Yuichiro; Yoshida, Takahiro; Ushikoshi, Hiroaki; Kawasaki, Masanori; Nishigaki, Kazuhiko; Ogura, Shinji; Minatoguchi, Shinya

    2017-01-01

    A fatal cardiac complication can occasionally present in malnourished patients during refeeding; this is known as refeeding syndrome. However, to our knowledge, hyperglycemia preceding torsades de pointes with QT prolongation during refeeding has not been reported. In the present study, we present a case in which hyperglycemia preceded torsades de pointes with QT prolongation during refeeding. The aim of this study was to determine the possible mechanism underlying QT prolongation during refeeding and indicate how to prevent it. A 32-y-old severely malnourished woman (body mass index 14.57 kg/m 2 ) was admitted to the intensive care unit of our institution after resuscitation from cardiopulmonary arrest due to ventricular fibrillation. She was diagnosed with anorexia nervosa. Although no obvious electrolyte abnormalities were observed, her blood glucose level was 11 mg/dL. A 12-lead electrocardiogram at admission showed sinus rhythm with normal QT interval (QTc 0.448). Forty mL of 50% glucose (containing 20 g of glucose) was intravenously injected, followed by a drip infusion of glucose to maintain blood glucose level within normal range. After 9 h, the patient's blood glucose level increased to 569 mg/dL. However, after 38 h, an episode of marked QT prolongation (QTc 0.931) followed by torsades de pointes developed. Hyperglycemia during refeeding can present with QT prolongation; consequently, monitoring blood glucose levels may be useful in avoiding hyperglycemia, which can result in QT prolongation. Furthermore, additional monitoring of QT intervals using a 12-lead electrocardiogram should allow the early detection of QT prolongation when glucose solution is administered to a malnourished patient with (severe) hypoglycemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    Science.gov (United States)

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  1. Histone phosphorylation during radiation-induced mitotic delay in synchronous plasmodia of Physarum polycephalum

    International Nuclear Information System (INIS)

    Brewer, E.N.; Oleinick, N.L.

    1980-01-01

    Using the nearly perfect synchrony of the mitotic stages in Physarum plasmodia, and making use of 32 P as a tracer, studies were made to define the time course of histone phosphorylation during the late G2 and prophase and the alterations in that time course accompanying radiation-induced mitotic delay. Histone H1 was phosphorylated throughout the last 2-3 hours of the mitotic cycle coincident with the early stages of chromosome condensation. H1 phosphorylation appeared to be reduced in irradiated plasmodia. It is postulated that a longer time period, i.e. the mitotic delay, may be required to obtain the same eventual level of H1-phosphate. In normal cultures, nucleosome core histones were phosphorylated late in G2 and prophase, the peak corresponding closely with the γ-transition point. In irradiated plasmodia, phosphorylation of the core histones had an extended time course similar to H1. (U.K.)

  2. Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression

    OpenAIRE

    Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-01-01

    Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first...

  3. The reduction of radiation-induced mitotic delay by caffeine: a test of the cyclic AMP hypothesis

    International Nuclear Information System (INIS)

    Oleinick, N.L.; Brewer, E.N.; Rustad, R.C.

    1978-01-01

    A study has been made of the reduction in γ-radiation-induced mitotic delay by caffeine in the naturally-synchronous plasmodial slime mould. Physarum polycephalum during late G 2 and early prophase, and the results compared with those obtained with other compounds of similar structure and/or physiological function. The reduction of radiation-induced mitotic delay was related to increasing concentrations of caffeine over at least two orders of magnitude. Pre-irradiation treatment with caffeine had no detectable effect. Caffeine had to be present for most, if not all, of the post-irradiation pre-mitotic period. Other chemicals which are reported to inhibit cyclic AMP phosphodiesterase either reduce or increase radiation-induced mitotic delay. The results therefore indicate that the reduction of mitotic delay by caffeine is not a result of altered cyclic AMP levels. (UK)

  4. The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types.

    Science.gov (United States)

    Youn, Ahrim; Wang, Shuang

    2018-01-01

    Cell division is important in human aging and cancer. The estimation of the number of cell divisions (mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk. Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework, the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is available at http://www.columbia.edu/∼sw2206/softwares.htm .

  5. Profiling DNA damage response following mitotic perturbations

    DEFF Research Database (Denmark)

    Pedersen, Ronni Sølvhøi; Karemore, Gopal; Gudjonsson, Thorkell

    2016-01-01

    that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed...

  6. Effect of head-irradiation upon epidermal mitotic activity during wound healing in the adrenalectomized mice

    International Nuclear Information System (INIS)

    Kobayashi, Koshi

    1977-01-01

    Epidermal mitotic activity during wound healing was estimated both in the adrenalectomized, head-irradiated mice and in the adrenalectomized, non-irradiated mice, and was compared with those obtained previously from the unoperated, head-irradiated mice. It was found that head-irradiation caused a mitotic depression to a much smaller extent in the adrenalectomized mice than it did in the unoperated mice, though adrenalectomy itself had exerted a great inhibitory effect upon the mitosis induced by an injury. Whether this abscopal effect of head-irradiation upon the mitotic activity was mediated via the adrenals, and whether in the adrenalectomized mice the head-irradiation acted to increase epidermal response to injury, making the mitotic pattern of adrenalectomized mice to come near that of control mice were discussed. (auth.)

  7. High frequency induction of mitotic recombination by ionizing radiation in Mlh1 null mouse cells

    International Nuclear Information System (INIS)

    Wang Qi; Ponomareva, Olga N.; Lasarev, Michael; Turker, Mitchell S.

    2006-01-01

    Mitotic recombination in somatic cells involves crossover events between homologous autosomal chromosomes. This process can convert a cell with a heterozygous deficiency to one with a homozygous deficiency if a mutant allele is present on one of the two homologous autosomes. Thus mitotic recombination often represents the second mutational step in tumor suppressor gene inactivation. In this study we examined the frequency and spectrum of ionizing radiation (IR)-induced autosomal mutations affecting Aprt expression in a mouse kidney cell line null for the Mlh1 mismatch repair (MMR) gene. The mutant frequency results demonstrated high frequency induction of mutations by IR exposure and the spectral analysis revealed that most of this response was due to the induction of mitotic recombinational events. High frequency induction of mitotic recombination was not observed in a DNA repair-proficient cell line or in a cell line with an MMR-independent mutator phenotype. These results demonstrate that IR exposure can initiate a process leading to mitotic recombinational events and that MMR function suppresses these events from occurring

  8. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair

    DEFF Research Database (Denmark)

    Xia, Jingjing; Swiercz, Jakub M.; Bañón-Rodríguez, Inmaculada

    2015-01-01

    Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we...... show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading...... to severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central...

  9. Effects of 5-fluorouracil on the mitotic activity of onion root tips apical meristem

    Directory of Open Access Journals (Sweden)

    Waldemar Lechowicz

    2015-01-01

    Full Text Available The effects of various concentrations of 5-FU on the mitotic activity of onion root tips apical meristem were investigated during 24-hour incubation in 5-FU and postincubation in water. The incubation in 5-FU caused a reversible inhibition of mitotic activity, and waves of the partially synchronised mitoses were observed during the period of postincubation. The most pronounced synchronisation of mitoses was obtained after incubation in 100 mg/l. 5-FU but the mitotic index of the resumed mitotic activity amounted to only one half of the control value. 5-FU was found to cause some cytological changes in meristematic cells such as enlargement of the nucleoli, change in the interphasic nuclei structure, appearance of subchromatid and chromatid aberrations and micronuclei. The effects of 5-FU on nucleic acids and the cell division cycle ace discussed and compared with the effects of 5-FUdR.

  10. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  11. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  12. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  13. Marked QTc prolongation and Torsades de Pointes in patients with chronic inflammatory arthritis

    Directory of Open Access Journals (Sweden)

    Pietro Enea Lazzerini

    2016-09-01

    Full Text Available Mounting evidence indicates that in chronic inflammatory arthritis (CIA, QTc prolongation is frequent and correlates with systemic inflammatory activation. Notably, basic studies demonstrated that inflammatory cytokines induce profound changes in potassium and calcium channels resulting in a prolonging effect on cardiomyocyte action potential duration (APD, thus on the QT interval on the electrocardiogram. Moreover, it has been demonstrated that in RA patients the risk of SCD is significantly increased when compared to non-RA subjects. Conversely, to date no data are available about Torsades de Pointes (TdP prevalence in CIA, and the few case reported considered CIA only an incidental concomitant disease, not contributing factor to TdP development.We report three patients with active CIA developing marked QTc prolongation, in two cases complicated with TdP degenerating to cardiac arrest. In these patients, a blood sample was obtained within 24h from TdP/marked QTc prolongation occurrence and levels of IL-6, TNF-alpha and IL-1 were evaluated. In all three cases, IL-6 was markedly elevated, ~10 to 100 times more than reference values. Moreover, one patient also showed high circulating levels of TNF-alpha and IL-1. In conclusion, active CIA may represent a currently overlooked QT-prolonging risk factor, potentially contributing in the presence of other classical risk factors to TdP occurrence. In particular, a relevant role may be played by elevated circulating IL-6 levels via direct electrophysiological effects on the heart. This observation should be carefully kept in mind, particularly when recognizable risk factors are already present and/or the addition of QT-prolonging drugs is required.

  14. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest

    International Nuclear Information System (INIS)

    Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung; Ro, Jungsil; Yoon, Sungpil

    2012-01-01

    Highlights: ► Sal sensitizes antimitotic drugs-treated cancer cells. ► Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. ► Sal also sensitizes them by increasing DNA damage and reducing p21 level. ► A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitotic drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.

  15. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung; Ro, Jungsil [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of); Yoon, Sungpil, E-mail: yoons@ncc.re.kr [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Sal sensitizes antimitotic drugs-treated cancer cells. Black-Right-Pointing-Pointer Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. Black-Right-Pointing-Pointer Sal also sensitizes them by increasing DNA damage and reducing p21 level. Black-Right-Pointing-Pointer A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitotic drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.

  16. Effect of colchicine on mitotic polyploidization and morphological ...

    African Journals Online (AJOL)

    Ajai

    2012-05-15

    May 15, 2012 ... to diseases and insects and reduction in fertility of flowering plants ..... soaking duration was noticed to cause the treated seeds to give low height .... Addison-. Wesley, London. Stadler J, Phillips RL, Leonard M (1989).Mitotic ...

  17. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    Science.gov (United States)

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Mitotically Active Leiomyoma of the Uterus in a Postmenopausal Breast Cancer Patient Receiving Tamoxifen

    Directory of Open Access Journals (Sweden)

    I-Feng Liu

    2006-06-01

    Conclusion: Endometrial cancer is rarely noted in breast cancer patients taking tamoxifen. Further, none have reported mitotically active leiomyoma of the uterus. From this case, endometrial proliferation and mitotically active leiomyoma of the uterus may be related to tamoxifen therapy, and should not be neglected in breast cancer patients.

  19. Effect of tumor promoters on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunz, B.A.; Hannan, M.A.; Haynes, R.H.

    1980-01-01

    Recently, it has been suggested that mitotic recombination is involved in tumor promotion. On this basis, one might expect tumor promoters to be recombinagenic. D7 is a diploid strain of yeast in which both mutation and mitotic recombination can be measured. We have used this strain to assay the known tumor promoters, iodacetate, anthralin, and 12-0-tetradecanoylphorbol-13-acetate, and the cocarcinogen, catechol, for mutagenicity, recombinagenicity, and the ability to enhance ultraviolet light (UV)-induced genetic events. In the absence of preirradiation with UV, iodoacetate was found to be recombinagenic whereas catechol was mutagenic; however, in both cases, the effects were small. Iodoacetate, anthralin, and catechol potentiated UV-induced mitotic crossing-over, aberrant colony formation, and mutation, while catechol also increased UV-induced gene conversion. We were unable to detect any mutagenic or recombinagenic effect of 12-0-tetradecanoyl-phorbol-13-acetate in either whole cells or spheroplasts. Our results do not indicate any consistent correlation between tumor-promoting activity and the ability of an agent to induce mitotic recombination in yeast. However, the ability to potentiate UV-induced mutation and mitotic recombination may reflect the cocarcinogenic activity of certain promoters

  20. Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest.

    Science.gov (United States)

    Debaty, Guillaume; Lurie, Keith; Metzger, Anja; Lick, Michael; Bartos, Jason A; Rees, Jennifer N; McKnite, Scott; Puertas, Laura; Pepe, Paul; Fowler, Raymond; Yannopoulos, Demetris

    2016-08-01

    Ischemic postconditioning (PC) using three intentional pauses at the start of cardiopulmonary resuscitation (CPR) improves outcomes after cardiac arrest in pigs when epinephrine (epi) is used before defibrillation. We hypothesized PC, performed during basic life support (BLS) in the absence of epinephrine, would reduce reperfusion injury and enhance 24h functional recovery. Prospective animal investigation. Animal laboratory Female farm pigs (n=46, 39±1kg). Protocol A: After 12min of ventricular fibrillation (VF), 28 pigs were randomized to four groups: (A) Standard CPR (SCPR), (B) active compression-decompression CPR with an impedance threshold device (ACD-ITD), (C) SCPR+PC (SCPR+PC) and (D) ACD-ITD CPR+PC. Protocol B: After 15min of VF, 18 pigs were randomized to ACD-ITD CPR or ACD-ITD+PC. The BLS duration was 2.75min in Protocol A and 5min in Protocol B. Following BLS, up to three shocks were delivered. Without return of spontaneous circulation (ROSC), CPR was resumed and epi (0.5mg) and defibrillation delivered. The primary end point was survival without major adverse events. Hemodynamic parameters and left ventricular ejection fraction (LVEF) were also measured. Data are presented as mean±SEM. Protocol A: ACD-ITD+PC (group D) improved coronary perfusion pressure after 3min of BLS versus the three other groups (28±6, 35±7, 23±5 and 47±7 for groups A, B, C, D respectively, p=0.05). There were no significant differences in 24h survival between groups. LVEF 4h post ROSC was significantly higher with ACD-ITD+PC vs ACD-ITD alone (52.5±3% vs. 37.5±6.6%, p=0.045). Survival rates were significantly higher with ACD-ITD+PC vs. ACD-ITD alone (p=0.027). BLS using ACD-ITD+PC reduced post resuscitation cardiac dysfunction and improved functional recovery after prolonged untreated VF in pigs. 12-11. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Witnessed arrest, but not delayed bystander cardiopulmonary resuscitation improves prehospital cardiac arrest survival.

    Science.gov (United States)

    Vukmir, R B

    2004-05-01

    This study correlated the effect of witnessing a cardiac arrest and instituting bystander CPR (ByCPR), as a secondary end point in a study evaluating the effect of bicarbonate on survival. This prospective, randomised, double blinded clinical intervention trial enrolled 874 prehospital cardiopulmonary arrest patients encountered in a prehospital urban, suburban, and rural regional emergency medical service (EMS) area. This group underwent conventional advanced cardiac life support intervention followed by empiric early administration of sodium bicarbonate (1 mEq/l), monitoring conventional resuscitation parameters. Survival was measured as presence of vital signs on emergency department (ED) arrival. Data were analysed using chi(2) with Pearson correlation and odds ratio where appropriate. The overall survival rate was 13.9% (110 of 792) of prehospital cardiac arrest patients. The mean (SD) time until provision of bystander cardiopulmonary resuscitation (ByCPR) by laymen was 2.08 (2.77) minutes, and basic life support (BLS) by emergency medical technicians was 6.62 (5.73) minutes. There was improved survival noted with witnessed cardiac arrest-a 2.2-fold increase in survival, 18.9% (76 of 402) versus 8.6% (27 of 315) compared with unwitnessed arrests (ptwo minutes (p = 0.3752). Survival after prehospital cardiac arrest is more likely when witnessed, but not necessarily when ByCPR was performed by laymen.

  2. JMJD5 (Jumonji Domain-containing 5) Associates with Spindle Microtubules and Is Required for Proper Mitosis.

    Science.gov (United States)

    He, Zhimin; Wu, Junyu; Su, Xiaonan; Zhang, Ye; Pan, Lixia; Wei, Huimin; Fang, Qiang; Li, Haitao; Wang, Da-Liang; Sun, Fang-Lin

    2016-02-26

    Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Cardiac Arrest: MedlinePlus Health Topic

    Science.gov (United States)

    ... Handouts Cardiac arrest (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Cardiac Arrest updates ... this? GO MEDICAL ENCYCLOPEDIA Cardiac arrest Related Health Topics Arrhythmia CPR Pacemakers and Implantable Defibrillators National Institutes ...

  4. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    Science.gov (United States)

    Purrington, Kristen S.; Slettedahl, Seth; Bolla, Manjeet K.; Michailidou, Kyriaki; Czene, Kamila; Nevanlinna, Heli; Bojesen, Stig E.; Andrulis, Irene L.; Cox, Angela; Hall, Per; Carpenter, Jane; Yannoukakos, Drakoulis; Haiman, Christopher A.; Fasching, Peter A.; Mannermaa, Arto; Winqvist, Robert; Brenner, Hermann; Lindblom, Annika; Chenevix-Trench, Georgia; Benitez, Javier; Swerdlow, Anthony; Kristensen, Vessela; Guénel, Pascal; Meindl, Alfons; Darabi, Hatef; Eriksson, Mikael; Fagerholm, Rainer; Aittomäki, Kristiina; Blomqvist, Carl; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Wang, Xianshu; Olswold, Curtis; Olson, Janet E.; Mulligan, Anna Marie; Knight, Julia A.; Tchatchou, Sandrine; Reed, Malcolm W.R.; Cross, Simon S.; Liu, Jianjun; Li, Jingmei; Humphreys, Keith; Clarke, Christine; Scott, Rodney; Fostira, Florentia; Fountzilas, George; Konstantopoulou, Irene; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Ekici, Arif B.; Hartmann, Arndt; Beckmann, Matthias W.; Hartikainen, Jaana M.; Kosma, Veli-Matti; Kataja, Vesa; Jukkola-Vuorinen, Arja; Pylkäs, Katri; Kauppila, Saila; Dieffenbach, Aida Karina; Stegmaier, Christa; Arndt, Volker; Margolin, Sara; Balleine, Rosemary; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Menéndez, Primitiva; Ashworth, Alan; Jones, Michael; Orr, Nick; Arveux, Patrick; Kerbrat, Pierre; Truong, Thérèse; Bugert, Peter; Toland, Amanda E.; Ambrosone, Christine B.; Labrèche, France; Goldberg, Mark S.; Dumont, Martine; Ziogas, Argyrios; Lee, Eunjung; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Long, Jirong; Shrubsole, Martha; Deming-Halverson, Sandra; Ficarazzi, Filomena; Barile, Monica; Peterlongo, Paolo; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Brüning, Thomas; Ko, Yon-Dschun; Van Deurzen, Carolien H.M.; Martens, John W.M.; Kriege, Mieke; Figueroa, Jonine D.; Chanock, Stephen J.; Lissowska, Jolanta; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Schneeweiss, Andreas; Tapper, William J.; Gerty, Susan M.; Durcan, Lorraine; Mclean, Catriona; Milne, Roger L.; Baglietto, Laura; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Van'T Veer, Laura J.; Cornelissen, Sten; Försti, Asta; Torres, Diana; Rüdiger, Thomas; Rudolph, Anja; Flesch-Janys, Dieter; Nickels, Stefan; Weltens, Caroline; Floris, Giuseppe; Moisse, Matthieu; Dennis, Joe; Wang, Qin; Dunning, Alison M.; Shah, Mitul; Brown, Judith; Simard, Jacques; Anton-Culver, Hoda; Neuhausen, Susan L.; Hopper, John L.; Bogdanova, Natalia; Dörk, Thilo; Zheng, Wei; Radice, Paolo; Jakubowska, Anna; Lubinski, Jan; Devillee, Peter; Brauch, Hiltrud; Hooning, Maartje; García-Closas, Montserrat; Sawyer, Elinor; Burwinkel, Barbara; Marmee, Frederick; Eccles, Diana M.; Giles, Graham G.; Peto, Julian; Schmidt, Marjanka; Broeks, Annegien; Hamann, Ute; Chang-Claude, Jenny; Lambrechts, Diether; Pharoah, Paul D.P.; Easton, Douglas; Pankratz, V. Shane; Slager, Susan; Vachon, Celine M.; Couch, Fergus J.

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16–1.33, P = 4.2 × 10−10) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04–1.11, P = 8.7 × 10−6) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07–1.23, P = 7.9 × 10−5) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10−3). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer. PMID:24927736

  5. The CRO-1 gene of Saccharomyces cerevisiae controls mitotic crossing over, chromosomal stability and sporulation

    International Nuclear Information System (INIS)

    Esposito, M.S.; Maleas, D.T.; Bjornstad, K.A.; Holbrook, L.L.

    1987-01-01

    The properties of a novel temperature-sensitive recombination-defective mutant of Saccharomyces cerevisiae, cro1-1 is described. The cro1-1 mutant is the first instance of a rec mutation that reduces drastically the rates of spontaneous mitotic crossing-over events but not those of gene conversional events. The cro1-1 mutation thus provides evidence that mitotic crossing-over is dependent upon gene products that are not essential for gene conversional events. The cro1-1 mutation also results in enhanced mitotic-chromosomal instability and MATa/MATα cro1-1/cro1-1 mutants are sporulation deficient. These phenotypes indicate that the CRO1 gene modulates mitotic chromosomal integrity and is essential for normal meiosis. The cro1-1 mutant possesses Holliday junction resolvase activity, hence its recombinational defect does not involve failure to execute this putative final recombinational step. 7 refs., 1 fig., 5 tabs

  6. Electrocardiographic changes during induced therapeutic hypothermia in comatose survivors after cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    Pablo; Salinas; Esteban; Lopez-de-Sa; Laura; Pena-Conde; Ana; Viana-Tejedor; Juan; Ramon; Rey-Blas; Eduardo; Armada; Jose; Luis; Lopez-Sendon

    2015-01-01

    AIM: To assess the safety of therapeutic hypothermia(TH) concerning arrhythmias we analyzed serial electrocardiograms(ECG) during TH.METHODS: All patients recovered from a cardiac arrest with Glasgow < 9 at admission were treated with induced mild TH to 32-34℃. TH was obtained with cool fluid infusion or a specific intravascular device. Twelvelead ECG before,during,and after TH,as well as ECG telemetry data was recorded in all patients. From a total of 54 patients admitted with cardiac arrest during the study period,47 patients had the 3 ECG and telemetry data available. ECG analysis was blinded and performed with manual caliper by two independent cardiologists from blinded copies of original ECG,recorded at 25 mm/s and 10 mm/m V. Coronary care unit staff analyzed ECG telemetry for rhythm disturbances. Variables measured in ECG were rhythm,RR,PR,QT and corrected QT(QTc by Bazett formula,measured in lead v2) intervals,QRS duration,presence of Osborn’s J wave and U wave,as well as ST segment displacement and T wave amplitude in leads Ⅱ,v2 and v5.RESULTS: Heart rate went down an average of 19 bpm during hypothermia and increased again 16 bpm with rewarming(P < 0.0005,both). There was a nonsignificant prolongation of the PR interval during TH and a significant decrease with rewarming(P = 0.041). QRS duration significantly prolonged(P = 0.041) with TH and shortened back(P < 0.005) with rewarming. QTc interval presented a mean prolongation of 58 ms(P < 0.005) during TH and a significant shortening with rewarming of 22.2 ms(P = 0.017). Osborn or J wave was found in 21.3% of the patients. New arrhythmias occurred in 38.3% of the patients. Most frequent arrhythmia was non-sustained ventricular tachycardia(19.1%),followed by severe bradycardia or paced rhythm(10.6%),accelerated nodal rhythm(8.5%) and atrial fibrillation(6.4%). No life threatening arrhythmias(sustained ventricular tachycardia,polymorphic ventricular tachycardia or ventricular fibrillation) occurred

  7. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  8. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.

    Science.gov (United States)

    Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J

    2017-04-01

    Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

  9. The real performance of radioactive lightning arrester

    International Nuclear Information System (INIS)

    Leite, D.M.

    1985-01-01

    The study of the performance of radioactive lightning arrester comparing to the performance of conventional one are presented. Measurements of currents between lightning arrester and an energyzed plate with wind simulation were done for radioactive and conventional lightning arresters, separately. The attraction range of radioactive and conventional lightning arresters using atmospheric pulses produced by a generator of 3MV were verified, separately and simultaneously. The influence of ionization produced by radioactive lightning arrester on critical disruptive tension of a spark plate, testing two lightning arresters for differents nominal attraction distances with applications of atmospheric pulses (positive and negative polarity) and tensions of 60 Hz was verified. The radiation emitted by a radioactive lightning had used in a building was retired and handled without special carefullness by a personnel without worthy of credence to evaluate the hazard in handling radioactive lightning arrester was measured. Critical disruptive tensions of radioactive and conventional lightning arrester using a suspensed electrode and external pulse generator of 6MV was measured. The effect of attraction of a radioactive and conventional lightning arresters disposed symmetrically regarding the same suspensed electrode was verified simultaneously. Seven cases on faults of radioactive lightning arrester in external areas are present. (M.C.K.) [pt

  10. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury.

    Science.gov (United States)

    Canaud, Guillaume; Bonventre, Joseph V

    2015-04-01

    For several decades, acute kidney injury (AKI) was generally considered a reversible process leading to complete kidney recovery if the individual survived the acute illness. Recent evidence from epidemiologic studies and animal models, however, have highlighted that AKI can lead to the development of fibrosis and facilitate the progression of chronic renal failure. When kidney injury is mild and baseline function is normal, the repair process can be adaptive with few long-term consequences. When the injury is more severe, repeated, or to a kidney with underlying disease, the repair can be maladaptive and epithelial cell cycle arrest may play an important role in the development of fibrosis. Indeed, during the maladaptive repair after a renal insult, many tubular cells that are undergoing cell division spend a prolonged period in the G2/M phase of the cell cycle. These tubular cells recruit intracellular pathways leading to the synthesis and the secretion of profibrotic factors, which then act in a paracrine fashion on interstitial pericytes/fibroblasts to accelerate proliferation of these cells and production of interstitial matrix. Thus, the tubule cells assume a senescent secretory phenotype. Characteristic features of these cells may represent new biomarkers of fibrosis progression and the G2/M-arrested cells may represent a new therapeutic target to prevent, delay or arrest progression of chronic kidney disease. Here, we summarize recent advances in our understanding of the biology of the cell cycle and how cell cycle arrest links AKI to chronic kidney disease. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  11. A nontranscriptional role for Oct4 in the regulation of mitotic entry

    Science.gov (United States)

    Zhao, Rui; Deibler, Richard W.; Lerou, Paul H.; Ballabeni, Andrea; Heffner, Garrett C.; Cahan, Patrick; Unternaehrer, Juli J.; Kirschner, Marc W.; Daley, George Q.

    2014-01-01

    Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin–Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry. PMID:25324523

  12. Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Davies, P.J.; Evans, W.E.; Parry, J.M.

    1975-01-01

    The treatment of diploid cultures of yeast with ultraviolet light (uv), γ-rays, nitrous acid (na) and ethyl methane sulphonate (ems) results in increases in cell death, mitotic gene conversion and crossing-over. Acridine orange (ao) treatment, in contrast, was effective only in increasing the frequency of gene conversion. The individual mutagens were effective in the order uv>na>γ-rays>ao>ems. Prior treatment of yeast cultures in starvation medium produced a significant reduction in the yield of induced gene conversion. The results have been interpreted on the basis of a general model of mitotic gene conversion which involves the post-replication repair of induced lesions involving de novo DNA synthesis without genetic exchange. In contrast mitotic crossing-over appears to involve the action of a repair system independent from excision or post-replication repair which involves genetic exchange between homologous chromosomes

  13. The Effect Of PHA And SEA On Mitotic Index Of Lymphocyte Cell Of Macaca Fasciulare

    International Nuclear Information System (INIS)

    Lubis, Masnelli; Iwiq-Indrawati

    2003-01-01

    The observation of influences of PHA (phytohemagglutinin) and SEA (staphilucoccal enterotoxin A) on mitotic index of lymphocyte of Macaca Fascicularis had been done. Half milliliters of lymphocyte cells stimulated with PHA or SEA were cultured in 10 ml RPMI + 1.0 ml Fetal Bouvine Serum (FBS ) + 0.1 ml L-glutamine + 0.15 ml PHA or 0.1 ml SEA ( 0.5 μg/ml ) + 0.1 ml Colchisin on 37 degree C for 96 hours. The result demonstrated that the frequency of mitotic index stimulated with PHA was higher than that of SEA. The average of mitotic index with PHA was 18.56 %, and with SEA was 8.3 %. (author)

  14. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Effects of mutagen-sensitive mus mutations on spontaneous mitotic recombination in Aspergillus.

    Science.gov (United States)

    Zhao, P; Kafer, E

    1992-04-01

    Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus+ controls in both tests. Two mutations, musK and musL, reduced recombination, while musN and musQ caused increases. In contrast, musO diploids produced significantly higher levels only for intragenic recombination. Effects were relatively small, but averages between hypo- and hyperrec mus differed 15-20-fold. In musL diploids, most of the rare color segregants resulted from mitotic malsegregation rather than intergenic crossing over. This indicates that the musL gene product is required for recombination and that DNA lesions lead to chromosome loss when it is deficient. In addition, analysis of the genotypes of intragenic (ad+) recombinants showed that the musL mutation specifically reduced single allele conversion but increased complex conversion types (especially recombinants homozygous for ad+). Similar analysis revealed differences between the effects of two hyperrec mutations; musN apparently caused high levels solely of mitotic crossing over, while musQ increased various conversion types but not reciprocal crossovers. These results suggest that mitotic gene conversion and crossing over, while generally associated, are affected differentially in some of the mus strains of Aspergillus nidulans.

  16. Chest compressions before defibrillation for out-of-hospital cardiac arrest: A meta-analysis of randomized controlled clinical trials

    Directory of Open Access Journals (Sweden)

    Meier Pascal

    2010-09-01

    Full Text Available Abstract Background Current 2005 guidelines for advanced cardiac life support strongly recommend immediate defibrillation for out-of-hospital cardiac arrest. However, findings from experimental and clinical studies have indicated a potential advantage of pretreatment with chest compression-only cardiopulmonary resuscitation (CPR prior to defibrillation in improving outcomes. The aim of this meta-analysis is to evaluate the beneficial effect of chest compression-first versus defibrillation-first on survival in patients with out-of-hospital cardiac arrest. Methods Main outcome measures were survival to hospital discharge (primary endpoint, return of spontaneous circulation (ROSC, neurologic outcome and long-term survival. Randomized, controlled clinical trials that were published between January 1, 1950, and June 19, 2010, were identified by a computerized search using SCOPUS, MEDLINE, BIOS, EMBASE, the Cochrane Central Register of Controlled Trials, International Pharmaceutical Abstracts database, and Web of Science and supplemented by conference proceedings. Random effects models were used to calculate pooled odds ratios (ORs. A subgroup analysis was conducted to explore the effects of response interval greater than 5 min on outcomes. Results A total of four trials enrolling 1503 subjects were integrated into this analysis. No difference was found between chest compression-first versus defibrillation-first in the rate of return of spontaneous circulation (OR 1.01 [0.82-1.26]; P = 0.979, survival to hospital discharge (OR 1.10 [0.70-1.70]; P = 0.686 or favorable neurologic outcomes (OR 1.02 [0.31-3.38]; P = 0.979. For 1-year survival, however, the OR point estimates favored chest compression first (OR 1.38 [0.95-2.02]; P = 0.092 but the 95% CI crossed 1.0, suggesting insufficient estimate precision. Similarly, for cases with prolonged response times (> 5 min point estimates pointed toward superiority of chest compression first (OR 1.45 [0

  17. CYTOGENETICS EFFECTS INDUCED BY NITRATE OF LEAD ON MITOTIC DIVISION AT ALLIUM CEPA L.

    OpenAIRE

    Silvica Padureanu

    2005-01-01

    The paper presents the influence of nitrate of lead upon the mitotic division of Allium cepa L. The treatment with nitrate of lead has determined the lessening of the mitotic index and the chromosomial mutations. Also nitrate of lead determined in little proportion cells autopoliploid. The experiment prowed that nitrate of lead, known as a polluting agent has a mutagenic potential on the plants.

  18. Runway Arrested Landing Site (RALS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Runway Arrested Landing Site includes an underground complex located on a Mod 2, Mod 3, and Mod 3+ arresting gear and are located under the runway and accurately...

  19. Dataset from the global phosphoproteomic mapping of early mitotic exit in human cells

    Directory of Open Access Journals (Sweden)

    Samuel Rogers

    2015-12-01

    Full Text Available The presence or absence of a phosphorylation on a substrate at any particular point in time is a functional readout of the balance in activity between the regulatory kinase and the counteracting phosphatase. Understanding how stable or short-lived a phosphorylation site is required for fully appreciating the biological consequences of the phosphorylation. Our current understanding of kinases and their substrates is well established; however, the role phosphatases play is less understood. Therefore, we utilized a phosphatase dependent model of mitotic exit to identify potential substrates that are preferentially dephosphorylated. Using this method, we identified >16,000 phosphosites on >3300 unique proteins, and quantified the temporal phosphorylation changes that occur during early mitotic exit (McCloy et al., 2015 [1]. Furthermore, we annotated the majority of these phosphorylation sites with a high confidence upstream kinase using published, motif and prediction based methods. The results from this study have been deposited into the ProteomeXchange repository with identifier PXD001559. Here we provide additional analysis of this dataset; for each of the major mitotic kinases we identified motifs that correlated strongly with phosphorylation status. These motifs could be used to predict the stability of phosphorylated residues in proteins of interest, and help infer potential functional roles for uncharacterized phosphorylations. In addition, we provide validation at the single cell level that serine residues phosphorylated by Cdk are stable during phosphatase dependent mitotic exit. In summary, this unique dataset contains information on the temporal mitotic stability of thousands of phosphorylation sites regulated by dozens of kinases, and information on the potential preference that phosphatases have at both the protein and individual phosphosite level. The compellation of this data provides an invaluable resource for the wider research

  20. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea

    Science.gov (United States)

    Li, Wenyan; Chen, Yan; Zhang, Shasha; Tang, Mingliang; Sun, Shan; Chai, Renjie; Li, Huawei

    2016-01-01

    Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells. PMID:27564256

  1. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Kathryn M. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States); Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)]. E-mail: ghoffmann@holycross.edu

    2007-03-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, {beta}-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv{sup +} revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.

  2. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  3. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Freeman, Kathryn M.; Hoffmann, George R.

    2007-01-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, β-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv + revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state

  4. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis.

    Science.gov (United States)

    Kollareddy, Madhu; Sherrard, Alice; Park, Ji Hyun; Szemes, Marianna; Gallacher, Kelli; Melegh, Zsombor; Oltean, Sebastian; Michaelis, Martin; Cinatl, Jindrich; Kaidi, Abderrahmane; Malik, Karim

    2017-09-10

    Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. The influence of serotonin on the mitotic rate in the colonic crypt epithelium and in colonic adenocarcinoma in rats.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-01-01

    1. The mitotic rate in the crypts of Lieberkühn of the descending colon and in dimethylhydrazine-induced adenocarcinomata of the descending colon of rat was measured using a stathmokinetic technique. 2. Intraperitoneal injection of a small dose (10 microgram/kg) of serotonin resulted in an increase in the tumour cell mitotic rate. 3. Blockade of serotonin receptors by 2-bromolysergic acid diethylamide and depletion of tissue serotonin levels following injection of DL-6-fluorotryptophan both result in a decrease in the tumour cell mitotic rate. 4. Treatment with serotonin, 2-bromolysergic acid diethylamide and DL-6-fluorotryptophan were all without effect on the colonic crypt cell mitotic rate.

  6. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    DEFF Research Database (Denmark)

    Purrington, Kristen S; Slettedahl, Seth; Bolla, Manjeet K

    2014-01-01

    polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10......Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide......(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene...

  7. Effect of insulin on the mitotic activity of bone marrow cells after irradiation. [Gamma radiation, rats

    Energy Technology Data Exchange (ETDEWEB)

    Barkalaya, A I

    1976-02-01

    A total of 236 white rats were given a whole-body gamma dose of 750 R. Part of the rats were given a subcutaneous insulin injection of 0.2 units/kg. After 10, 20, 30 min, 1, 2, 3, 5, 8, 10 and 12 hours the mitotic index was determined in both groups of rats in the bone marrow of the femur. The content of glucose and insulin in the blood was determined. The mitotic index was found to be higher on administering insulin. The use of insulin in radiation sickness intensifies the mitotic activity of bone marrow cells and stimulates the recovery of bone marrow hematopoiesis. 5 references.

  8. Cardiac arrest

    Science.gov (United States)

    ... magnesium. These minerals help your heart's electrical system work. Abnormally high or low levels can cause cardiac arrest. Severe physical stress. Anything that causes a severe stress on your ...

  9. Daily Arrests

    Data.gov (United States)

    Montgomery County of Maryland — This dataset provides the public with arrest information from the Montgomery County Central Processing Unit (CPU) systems. The data presented is derived from every...

  10. A molecular mechanism of mitotic centrosome assembly in Drosophila

    Science.gov (United States)

    Conduit, Paul T; Richens, Jennifer H; Wainman, Alan; Holder, James; Vicente, Catarina C; Pratt, Metta B; Dix, Carly I; Novak, Zsofia A; Dobbie, Ian M; Schermelleh, Lothar; Raff, Jordan W

    2014-01-01

    Centrosomes comprise a pair of centrioles surrounded by pericentriolar material (PCM). The PCM expands dramatically as cells enter mitosis, but it is unclear how this occurs. In this study, we show that the centriole protein Asl initiates the recruitment of DSpd-2 and Cnn to mother centrioles; both proteins then assemble into co-dependent scaffold-like structures that spread outwards from the mother centriole and recruit most, if not all, other PCM components. In the absence of either DSpd-2 or Cnn, mitotic PCM assembly is diminished; in the absence of both proteins, it appears to be abolished. We show that DSpd-2 helps incorporate Cnn into the PCM and that Cnn then helps maintain DSpd-2 within the PCM, creating a positive feedback loop that promotes robust PCM expansion around the mother centriole during mitosis. These observations suggest a surprisingly simple mechanism of mitotic PCM assembly in flies. DOI: http://dx.doi.org/10.7554/eLife.03399.001 PMID:25149451

  11. Cardiac arrest – cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Basri Lenjani

    2014-01-01

    Conclusions: All survivors from cardiac arrest have received appropriate medical assistance within 10 min from attack, which implies that if cardiac arrest occurs near an institution health care (with an opportunity to provide the emergent health care the rate of survival is higher.

  12. Single-walled carbon nanotube-induced mitotic disruption⋆

    OpenAIRE

    Sargent, L.M.; Hubbs, A.F.; Young, S.-H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.

    2011-01-01

    Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm2 single-walled c...

  13. Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Totsukawa, Go; Matsuo, Ayaka; Kubota, Ayano; Taguchi, Yuya; Kondo, Hisao, E-mail: hk228@med.kyushu-u.ac.jp

    2013-04-05

    Highlights: •VCIP135 is mitotically phosphorylated on Threonine-760 and Serine-767 by Cdc2. •Phosphorylated VCIP135 does not bind to p97ATPase. •The phosphorylation of VCIP135 inhibits p97ATPase-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 and p37 phosphorylation on Serine-56 and Threonine-59 result in mitotic inhibition of the p97/p47 and the p97/p37 pathways, respectively [11,14]. In this study, we show another mechanism of mitotic inhibition of p97-mediated Golgi membrane fusion. We clarified that VCIP135, an essential factor in both p97 membrane fusion pathways, is phosphorylated on Threonine-760 and Serine-767 by Cdc2 at mitosis and that this phosphorylated VCIP135 does not bind to p97. An in vitro Golgi reassembly assay revealed that VCIP135(T760E, S767E), which mimics mitotic phosphorylation, caused no cisternal regrowth. Our results indicate that the phosphorylation of VCIP135 on Threonine-760 and Serine-767 inhibits p97-mediated Golgi membrane fusion at mitosis.

  14. Prolonged early G1 arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle–coupled loss of IRF4

    Science.gov (United States)

    Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L.; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C.; Staudt, Louis M.; Niesvizky, Ruben; Moore, Malcolm A. S.

    2012-01-01

    Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G1 arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G1 and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G1 block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy. PMID:22718837

  15. Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4.

    Science.gov (United States)

    Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C; Staudt, Louis M; Niesvizky, Ruben; Moore, Malcolm A S; Chen-Kiang, Selina

    2012-08-02

    Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.

  16. Sex Disparities in Arrest Outcomes for Domestic Violence

    Science.gov (United States)

    Hamilton, Melissa; Worthen, Meredith G. F.

    2011-01-01

    Domestic violence arrests have been historically focused on protecting women and children from abusive men. Arrest patterns continue to reflect this bias with more men arrested for domestic violence compared to women. Such potential gender variations in arrest patterns pave the way to the investigation of disparities by sex of the offender in…

  17. Crisis management during anaesthesia: cardiac arrest.

    Science.gov (United States)

    Runciman, W B; Morris, R W; Watterson, L M; Williamson, J A; Paix, A D

    2005-06-01

    Cardiac arrest attributable to anaesthesia occurs at the rate of between 0.5 and 1 case per 10 000 cases, tends to have a different profile to that of cardiac arrest occurring elsewhere, and has an in-hospital mortality of 20%. However, as individual practitioners encounter cardiac arrest rarely, the rapidity with which the diagnosis is made and the consistency of appropriate management varies considerably. To examine the role of a previously described core algorithm "COVER ABCD-A SWIFT CHECK", supplemented by a sub-algorithm for cardiac arrest, in the management of cardiac arrest occurring in association with anaesthesia. The potential performance of this structured approach for each the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS) was compared with the actual management as reported by the anaesthetists involved. There were 129 reports of cardiac arrest associated with anaesthesia among the first 4000 AIMS incident reports. Identified aetiological factors were grouped into five categories: (1) anaesthetic technique (11 cases with this category alone; 32 with this and one or more of the other categories, representing 25% of all 129 cardiac arrests); (2) drug related (16; 32, 25%); (3) associated with surgical procedure (9; 29, 22%); (4) associated with pre-existing medical or surgical disease (30; 82, 64%); (5) unknown (8; 14, 11%). The "real life" presentation and management of cardiac arrest in association with anaesthesia differs substantially from that detailed in general published guidelines. Cardiac rhythms at the time were sinus bradycardia (23%); asystole (22%); tachycardia/ventricular tachycardia/ventricular fibrillation (14%); and normal (7%), with a further third unknown. Details of treatment were recorded in 110 reports; modalities employed included cardiac compression (72%); adrenaline (61%); 100% oxygen (58%); atropine (38%); intravenous fluids (25%), and electrical defibrillation (17%). There

  18. Extracorporeal membrane oxygenation for refractory cardiac arrest

    Directory of Open Access Journals (Sweden)

    Steven A Conrad

    2017-01-01

    Full Text Available Extracorporeal cardiopulmonary resuscitation (ECPR is the use of rapid deployment venoarterial (VA extracorporeal membrane oxygenation to support systemic circulation and vital organ perfusion in patients in refractory cardiac arrest not responding to conventional cardiopulmonary resuscitation (CPR. Although prospective controlled studies are lacking, observational studies suggest improved outcomes compared with conventional CPR when ECPR is instituted within 30-60 min following cardiac arrest. Adult and pediatric patients with witnessed in-hospital and out-of-hospital cardiac arrest and good quality CPR, failure of at least 15 min of conventional resuscitation, and a potentially reversible cause for arrest are candidates. Percutaneous cannulation where feasible is rapid and can be performed by nonsurgeons (emergency physicians, intensivists, cardiologists, and interventional radiologists. Modern extracorporeal systems are easy to prime and manage and are technically easy to manage with proper training and experience. ECPR can be deployed in the emergency department for out-of-hospital arrest or in various inpatient units for in-hospital arrest. ECPR should be considered for patients with refractory cardiac arrest in hospitals with an existing extracorporeal life support program, able to provide rapid deployment of support, and with resources to provide postresuscitation evaluation and management.

  19. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been...

  20. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  1. Sudden Cardiac Arrest during Participation in Competitive Sports.

    Science.gov (United States)

    Landry, Cameron H; Allan, Katherine S; Connelly, Kim A; Cunningham, Kris; Morrison, Laurie J; Dorian, Paul

    2017-11-16

    The incidence of sudden cardiac arrest during participation in sports activities remains unknown. Preparticipation screening programs aimed at preventing sudden cardiac arrest during sports activities are thought to be able to identify at-risk athletes; however, the efficacy of these programs remains controversial. We sought to identify all sudden cardiac arrests that occurred during participation in sports activities within a specific region of Canada and to determine their causes. In this retrospective study, we used the Rescu Epistry cardiac arrest database (which contains records of every cardiac arrest attended by paramedics in the network region) to identify all out-of-hospital cardiac arrests that occurred from 2009 through 2014 in persons 12 to 45 years of age during participation in a sport. Cases were adjudicated as sudden cardiac arrest (i.e., having a cardiac cause) or as an event resulting from a noncardiac cause, on the basis of records from multiple sources, including ambulance call reports, autopsy reports, in-hospital data, and records of direct interviews with patients or family members. Over the course of 18.5 million person-years of observation, 74 sudden cardiac arrests occurred during participation in a sport; of these, 16 occurred during competitive sports and 58 occurred during noncompetitive sports. The incidence of sudden cardiac arrest during competitive sports was 0.76 cases per 100,000 athlete-years, with 43.8% of the athletes surviving until they were discharged from the hospital. Among the competitive athletes, two deaths were attributed to hypertrophic cardiomyopathy and none to arrhythmogenic right ventricular cardiomyopathy. Three cases of sudden cardiac arrest that occurred during participation in competitive sports were determined to have been potentially identifiable if the athletes had undergone preparticipation screening. In our study involving persons who had out-of-hospital cardiac arrest, the incidence of sudden cardiac

  2. Magic with moulds: Meiotic and mitotic crossing over in Neurospora ...

    Indian Academy of Sciences (India)

    2006-02-16

    Feb 16, 2006 ... Home; Journals; Journal of Biosciences; Volume 31; Issue 1. Commentary: Magic with moulds: Meiotic and mitotic crossing over in Neurospora inversions and duplications. Durgadas P Kasbekar. Volume 31 Issue 1 March 2006 pp 3-4 ...

  3. Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yueyang [Division of Infectious Diseases, Brigham and Women' s Hospital and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 (United States); Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu [Division of Infectious Diseases, Brigham and Women' s Hospital and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 (United States)

    2012-10-10

    The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.

  4. Nuclear interaction of Smac/DIABLO with Survivin at G2/M arrest prompts docetaxel-induced apoptosis in DU145 prostate cancer cells

    International Nuclear Information System (INIS)

    Kim, Ji Young; Chung, Jin-Yong; Lee, Seung Gee; Kim, Yoon-Jae; Park, Ji-Eun; Yoo, Ki Soo; Yoo, Young Hyun; Park, Young Chul; Kim, Byeong Gee; Kim, Jong-Min

    2006-01-01

    Smac/DIABLO is released by mitochondria in response to apoptotic stimuli and is thought to antagonize the function of inhibitors of apoptosis proteins. Recently, it has been shown that, like XIAP, Survivin can potentially interact with Smac/DIABLO. However, the precise mechanisms and cellular location of their action have not been determined. We report for the first time that Smac/DIABLO translocates to the nucleus and is colocalized with Survivin at mitotic spindles during apoptosis resulting from G2/M arrest due to docetaxel treatment of DU145 prostate cancer cells. Our data demonstrate that the nuclear interaction of Smac/DIABLO with Survivin is an important step for suppressing the anti-apoptotic function of Survivin in Doc-induced apoptosis. This suggests that the balance between cellular Smac/DIABLO and Survivin levels could be critical for cellular destiny in taxane-treated cancer cells

  5. Arrested larval development in cattle nematodes.

    Science.gov (United States)

    Armour, J; Duncan, M

    1987-06-01

    Most economically important cattle nematodes are able to arrest their larval development within the host - entering a period of dormancy or hypobiosis. Arrested larvae have a low death rate, and large numbers can accumulate in infected cattle during the grazing season. Because of this, outbreaks of disease caused by such nematodes can occur at times when recent infection with the parasites could not have occurred, for example during winter in temperature northern climates when cattle are normally housed. The capacity to arrest is a heritable trait. It is seen as an adaptation by the parasite to avoid further development to its free-living stages during times when the climate is unsuitable for free-living survival. But levels of arrestment can vary markedly in different regions, in different cattle, and under different management regimes. Climatic factors, previous conditioning, host immune status, and farm management all seem to affect arrestment levels. In this article, James Armour and Mary Duncan review the biological basis of the phenomenon, and discuss the apparently conflicting views on how it is controlled.

  6. DNA repair: keeping it together

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2004-01-01

    A protein scaffold has been identified that holds a chromosome together in the event of a DNA double-strand break. This scaffold is dependent on Rad52 and the Rad50-Mre11-Xrs2 complex and withstands the pulling forces of the mitotic spindle during DNA damage checkpoint arrest.......A protein scaffold has been identified that holds a chromosome together in the event of a DNA double-strand break. This scaffold is dependent on Rad52 and the Rad50-Mre11-Xrs2 complex and withstands the pulling forces of the mitotic spindle during DNA damage checkpoint arrest....

  7. Effects of whole-body and partial-body x irradiation upon epidermal mitotic activity during wound healing in mouse skin

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1977-01-01

    Mitotic activity of normal (unwounded) and wounded skin was measured in the control (nonirradiated) and whole-body or partial-body x-irradiated mouse. Higher mitotic activity in the anterior than in the posterior region of the body was found in both the normal and the wounded skin of the control mouse. Whole-body irradiation (500 R) depressed completely the mitotic activity of normal skin 2 to 4 days after irradiation. In spite of this depression in mitotic activity, a surgical incision made 1 to 3 days after irradiation could induce a burst of proliferation after an inhibition of an initial mitosis increase. When the animals were partially irradiated with 500 R 3 days before wounding, it was shown that mitosis at 24 hr after wounding was inhibited markedly by the local effect of irradiation and that mitosis also could be inhibited diversely by the abscopal effect of irradiation. Because of a close similarity of sequential mitotic patterns between whole-body-irradiated and flapped-skin-only-irradiated groups (direct irradiation), the effect of irradiation upon mitosis was considered to be primarily local. Some discussions were made concerning the possible reasons which made a difference in mitotic patterns between the head-only-irradiated group, the irradiated group including the head and other parts of the body except for the skin flap

  8. Relationships betwen mitotic delay and the dose rate of X radiation

    International Nuclear Information System (INIS)

    Yi, P.N.; Rha, C.K.; Evans, H.H.; Beer, J.Z.

    1994-01-01

    Upon exposure of cells to radiation delivered at a continuous low dose rate, cell proliferation may be sustained with the cells exhibiting a constant doubling time that is independent of the total dose. The doubling time or mitotic delay under these conditions has been shown to depend on the dose rate in HeLa, V79 and P388F cells. Reanalysis of the data for these particular cell lines shows that there is a threshold dose rate for mitotic delay, and that above the threshold there is a linear relationship between the length of mitotic delay and the logarithm of the dose rate which is referred to as the dose-rate response. We have observed the same relationships for L5178Y (LY)-R and LY-S cells exposed to low-dose-rate radiation. The threshold dose rates for LY-R, LY-S and P388F cells are similar (0.01-0.02 Gy/h) and are much lower than for V79 and HeLa cells. The slope of the dose-rate response curve is the greatest for HeLa cells, followed in order by LY-S, V79 and P388F cells, and finally by LY-R cells. The slopes for HeLa and LY-R cells differ by a factor of 35. 20 refs., 3 figs., 1 tab

  9. Determining local and contextual features describing appearance of difficult to identify mitotic figures

    Science.gov (United States)

    Gandomkar, Ziba; Brennan, Patrick C.; Mello-Thoms, Claudia

    2017-03-01

    Mitotic count is helpful in determining the aggressiveness of breast cancer. In previous studies, it was shown that the agreement among pathologists for grading mitotic index is fairly modest, as mitoses have a large variety of appearances and they could be mistaken for other similar objects. In this study, we determined local and contextual features that differ significantly between easily identifiable mitoses and challenging ones. The images were obtained from the Mitosis-Atypia 2014 challenge. In total, the dataset contained 453 mitotic figures. Two pathologists annotated each mitotic figure. In case of disagreement, an opinion from a third pathologist was requested. The mitoses were grouped into three categories, those recognized as "a true mitosis" by both pathologists ,those labelled as "a true mitosis" by only one of the first two readers and also the third pathologist, and those annotated as "probably a mitosis" by all readers or the majority of them. After color unmixing, the mitoses were segmented from H channel. Shape-based features along with intensity-based and textural features were extracted from H-channel, blue ratio channel and five different color spaces. Holistic features describing each image were also considered. The Kruskal-Wallis H test was used to identify significantly different features. Multiple comparisons were done using the rank-based version of Tukey-Kramer test. The results indicated that there are local and global features which differ significantly among different groups. In addition, variations between mitoses in different groups were captured in the features from HSL and LCH color space more than other ones.

  10. Genetic control of mitotic crossing over in yeast. 2. Influence of UV irradiation

    International Nuclear Information System (INIS)

    Zakharov, I.A.; Marfin, S.V.; Koval'tsova, S.V.; Kasinova, G.V.

    1982-01-01

    UV-induced crossing-over and general mitotic segregation of the following strains of Saccharomyces cerevisiae yeasts were studied: a wild-type diploid, diploids homozygous with respect to the radiosensitivity of rad 2, rad 15, rad 54, xrs 4, rad 2 rad 54, rad 15 rad 54. Wild-type diploids rad 2 and rad 15 have a high frequency of the induced mitotic crossing-over. Diploids rad 15, rad 54 can not cause UV-induced mitotic crossing-over. Reddish-pink and reddish-pink-white colonies ratio (the first appear if the crossing-over occurs during the first after the irradiation division, the second - during the second division) is 4.8:1 for the wild type, 1.6:1 for rad 2, and 1.1:1 for rad 15. Nonreciprocal mitotic segregation of high frequency was observed for the wild type rad 2, rad 15, xrs 4, and diploids rad 54, rad 2 rad 54, rad 15 rad 54 had a lower frequency. We suppose that after UV-irradiation there exist at least three types of repair in yeast diploid cells: excision repair, prereplication recombinating repair after the excision of dimers, and post-replication recombinating repair. Rad 2 and rad 15 mutations blow the first and second types, rad 54 mutation partially block the second and third parths. It seems that xrs 4 mutation does not block the recombinating capability but somehow changes the process of recombination in such a way that much nonreciprocal products recorded as seqregants are produced [ru

  11. Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression

    Science.gov (United States)

    Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-01-01

    Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. PMID:22898780

  12. Influence of the circadian rhythm in cell division on radiation-induced mitotic delay in vivo

    International Nuclear Information System (INIS)

    Rubin, N.A.

    1980-01-01

    All mitotically active normal tissues in mammals investigated to date demonstrate a circadian rhythm in cell division. The murine corneal epithelium is a practical and advantageous tissue model for studying this phenomenon. In animals synchronized to a light-dark (LD) schedule, one sees predictably reproducible occurrences of peaks and troughs in the mitotic index (MI) within each 24-hour (h) period. One of the harmful effects of ionizing radiation on dividing cells is mitotic delay, reported to be a G 2 block in cells approaching mitosis. Affected cells are not killed but are inhibited from entering mitosis and are delayed for a span of time reported to be dose and cell cycle dependent. In the classical description of mitotic delay, MI of irradiated cells begins to drop in relation to the control, which is plotted as a straight line, uniform throughout the experiment. After the damage is repaired, delayed cells can enter mitosis along with other cells in the pool unaffected by the radiation, resulting in a MI higher than control levels. The span of delay and the occurrence of recovery are assumed to be constant for a given dose and tissue under similar experimental conditions. First described in asynchronously-dividing tissue culture cells, this concept is also extrapolated to the in vivo situation

  13. SON is a spliceosome-associated factor required for mitotic progression.

    Science.gov (United States)

    Huen, Michael S Y; Sy, Shirley M H; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo; Chen, Junjie

    2010-07-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. © 2010 Landes Bioscience

  14. Dynamic photoelastic investigation of crack arrest

    International Nuclear Information System (INIS)

    Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Fourney, W.L.

    1977-01-01

    Crack arrest and crack arrest toughness are of great interest, particularly for studies pertaining to safety of nuclear reactor pressure vessels. Investigations are needed in which the instantaneous values of stress intensity factor (K) can be observed during crack propagation and arrest. Such observations are possible if the test specimens are made from plates of a transparent photoelastic sensitive material. Values of K as a function of crack speed are shown for Homalite 100 and various epoxy blends. 9 figures

  15. A model of survival following pre-hospital cardiac arrest based on the Victorian Ambulance Cardiac Arrest Register.

    Science.gov (United States)

    Fridman, Masha; Barnes, Vanessa; Whyman, Andrew; Currell, Alex; Bernard, Stephen; Walker, Tony; Smith, Karen L

    2007-11-01

    This study describes the epidemiology of sudden cardiac arrest patients in Victoria, Australia, as captured via the Victorian Ambulance Cardiac Arrest Register (VACAR). We used the VACAR data to construct a new model of out-of-hospital cardiac arrest (OHCA), which was specified in accordance with observed trends. All cases of cardiac arrest in Victoria that were attended by Victorian ambulance services during the period of 2002-2005. Overall survival to hospital discharge was 3.8% among 18,827 cases of OHCA. Survival was 15.7% among 1726 bystander witnessed, adult cardiac arrests of presumed cardiac aetiology, presenting in ventricular fibrillation or ventricular tachycardia (VF/VT), where resuscitation was attempted. In multivariate logistic regression analysis, bystander CPR, cardiac arrest (CA) location, response time, age and sex were predictors of VF/VT, which, in turn, was a strong predictor of survival. The same factors that affected VF/VT made an additional contribution to survival. However, for bystander CPR, CA location and response time this additional contribution was limited to VF/VT patients only. There was no detectable association between survival and age younger than 60 years or response time over 15min. The new model accounts for relationships among predictors of survival. These relationships indicate that interventions such as reduced response times and bystander CPR act in multiple ways to improve survival.

  16. The participation of elevated levels of cyclic GMP in the recovery from radiation-induced mitotic delay

    International Nuclear Information System (INIS)

    Daniel, J.W.; Oleinick, N.L.

    1984-01-01

    The levels of cyclic AMP and cyclic GMP have been measured in Physarum plasmodia before and after treatment with gamma-radiation, 2 mM caffeine, or combinations of the two agents compared to the length of the radiation-induced mitotic delay. Caffeine alone produces a rapid transient elevation of cyclic AMP and a slower delayed elevation of cyclic GMP. Irradiation elicits an immediate transient increase in cyclic AMP and a later cyclic GMP increase which accompanies or precedes the delayed mitosis. A composite pattern is produced by combinations of radiation and caffeine, a distinctive feature of which is an elevated level of cyclic GMP near the time of the radiation-delayed and caffeine-promoted mitosis. With pretreatment by caffeine, the least radiation-induced mitotic delay occurs when plasmodia are irradiated during the caffeine-elicited increase in cyclic GMP. The plasmodium becomes refractory to the reduction of mitotic delay by caffeine at approximately the time it becomes refractory to the further elevation of cyclic GMP by caffeine. The data support a role for cyclic AMP in the onset of and for cyclic GMP in the recovery from mitotic delay induced by ionizing radiation. (author)

  17. Cardiac arrest caused by sibutramine obtained over the Internet: a case of a young woman without pre-existing cardiovascular disease successfully resuscitated using extracorporeal membrane oxygenation.

    Science.gov (United States)

    Bunya, Naofumi; Sawamoto, Keigo; Uemura, Shuji; Kyan, Ryoko; Inoue, Hiroyuki; Nishida, Junichi; Kouzu, Hidemichi; Kokubu, Nobuaki; Miura, Tetsuji; Narimatsu, Eichi

    2017-07-01

    Sibutramine is a weight loss agent that was withdrawn from the market in the USA and European Union because it increases adverse events in patients with cardiovascular diseases. However, non-prescription weight loss pills containing sibutramine can be still easily purchased over the Internet. A 21-year-old woman without history of cardiovascular diseases developed cardiac arrest. She was a user of a weight loss pills, containing sibutramine and hypokalemia-inducing agents, imported from Thailand over the Internet. She was successfully resuscitated without any neurological deficits by using extracorporeal membrane oxygenation for refractory ventricular fibrillation. This case indicates that sibutramine can cause cardiac arrest even in subjects without pre-existing cardiovascular disease when combined with agents that promote QT prolongation.

  18. Sudden Cardiac Arrest (SCA) Risk Assessment

    Science.gov (United States)

    ... HRS Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... people of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  19. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice.

    Directory of Open Access Journals (Sweden)

    Yulong Liang

    2010-01-01

    Full Text Available BRIT1 protein (also known as MCPH1 contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1(-/- mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1(-/- mice and mouse embryonic fibroblasts (MEFs were hypersensitive to gamma-irradiation. BRIT1(-/- MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1(-/- mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice.

  20. Effects of polyamines and polyamine biosynthetic inhibitors on mitotic activity of Allium cepa root tips.

    Science.gov (United States)

    Unal, Meral; Palavan-Unsal, Narcin; Tufekci, M A

    2008-03-01

    The genotoxic and cytotoxic effects of exogenous polyamines (PAs), putrescine (Put), spermidine (Spd), spermine (Spm) and PA biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO), cyclohexilamine (CHA), methylglioxal bis-(guanylhydrazone) (MGBG) were investigated in the root meristems of Allium cepa L. The reduction of mitotic index and the induction of chromosomal aberrations such as bridges, stickiness, c-mitotic anaphases, micronuclei, endoredupliction by PAs and PA biosynthetic inhibitors were observed and these were used as evidence of genotoxicity and cytotoxicity.

  1. Association of National Initiatives to Improve Cardiac Arrest Management With Rates of Bystander Intervention and Patient Survival After Out-of-Hospital Cardiac Arrest

    DEFF Research Database (Denmark)

    Wissenberg, Mads; Lippert, Freddy K; Folke, Fredrik

    2013-01-01

    resuscitation was attempted were identified between 2001 and 2010 in the nationwide Danish Cardiac Arrest Registry. Of 29 111 patients with cardiac arrest, we excluded those with presumed noncardiac cause of arrest (n = 7390) and those with cardiac arrests witnessed by emergency medical services personnel (n...

  2. Cenp-meta is required for sustained spindle checkpoint

    Directory of Open Access Journals (Sweden)

    Thomas Rubin

    2014-05-01

    Full Text Available Cenp-E is a kinesin-like motor protein required for efficient end-on attachment of kinetochores to the spindle microtubules. Cenp-E immunodepletion in Xenopus mitotic extracts results in the loss of mitotic arrest and massive chromosome missegregation, whereas its depletion in mammalian cells leads to chromosome segregation defects despite the presence of a functional spindle assembly checkpoint (SAC. Cenp-meta has previously been reported to be the Drosophila homolog of vertebrate Cenp-E. In this study, we show that cenp-metaΔ mutant neuroblasts arrest in mitosis when treated with colchicine. cenp-metaΔ mutant cells display a mitotic delay. Yet, despite the persistence of the two checkpoint proteins Mad2 and BubR1 on unattached kinetochores, these cells eventually enter anaphase and give rise to highly aneuploid daughter cells. Indeed, we find that cenp-metaΔ mutant cells display a slow but continuous degradation of cyclin B, which eventually triggers the mitotic exit observed. Thus, our data provide evidence for a role of Cenp-meta in sustaining the SAC response.

  3. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus.

    Science.gov (United States)

    Hsieh, Yi-Jen; Yang, Ming-Yeh; Leu, Yann-Lii; Chen, Chinpiao; Wan, Chin-Fung; Chang, Meng-Ya; Chang, Chih-Jui

    2012-09-10

    Kalanchoe tubiflora (KT) is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. An n-Butanol-soluble fraction of KT (KT-NB) was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

  4. C.A.U.S.E.: Cardiac arrest ultra-sound exam--a better approach to managing patients in primary non-arrhythmogenic cardiac arrest.

    Science.gov (United States)

    Hernandez, Caleb; Shuler, Klaus; Hannan, Hashibul; Sonyika, Chionesu; Likourezos, Antonios; Marshall, John

    2008-02-01

    Cardiac arrest is a condition frequently encountered by physicians in the hospital setting including the Emergency Department, Intensive Care Unit and medical/surgical wards. This paper reviews the current literature involving the use of ultrasound in resuscitation and proposes an algorithmic approach for the use of ultrasound during cardiac arrest. At present there is the need for a means of differentiating between various causes of cardiac arrest, which are not a direct result of a primary ventricular arrhythmia. Identifying the cause of pulseless electrical activity or asystole is important as the underlying cause is what guides management in such cases. This approach, incorporating ultrasound to manage cardiac arrest aids in the diagnosis of the most common and easily reversible causes of cardiac arrest not caused by primary ventricular arrhythmia, namely; severe hypovolemia, tension pneumothorax, cardiac tamponade, and massive pulmonary embolus. These four conditions are addressed in this paper using four accepted emergency ultrasound applications to be performed during resuscitation of a cardiac arrest patient with the aim of determining the underlying cause of a cardiac arrest. Identifying the underlying cause of cardiac arrest represents the one of the greatest challenges of managing patients with asystole or PEA and accurate determination has the potential to improve management by guiding therapeutic decisions. We include several clinical images demonstrating examples of cardiac tamponade, massive pulmonary embolus, and severe hypovolemia secondary to abdominal aortic aneurysm. In conclusion, this protocol has the potential to reduce the time required to determine the etiology of a cardiac arrest and thus decrease the time between arrest and appropriate therapy.

  5. A case of thyroid storm with cardiac arrest

    Directory of Open Access Journals (Sweden)

    Nakashima Y

    2014-05-01

    Full Text Available Yutaka Nakashima,1 Tsuneaki Kenzaka,2 Masanobu Okayama,3 Eiji Kajii31Department for Support of Rural Medicine, Yamaguchi Grand Medical Center, 2Division of General Medicine, Center for Community Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan; 3Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University School of Medicine, Shimotsuke, JapanAbstract: A 23-year-old man became unconscious while jogging. He immediately received basic life support from a bystander and was transported to our hospital. On arrival, his spontaneous circulation had returned from a state of ventricular fibrillation and pulseless electrical activity. Following admission, hyperthyroidism led to a suspicion of thyroid storm, which was then diagnosed as a possible cause of the cardiac arrest. Although hyperthyroidism-induced cardiac arrest including ventricular fibrillation is rare, it should be considered when diagnosing the cause of treatable cardiac arrest.Keywords: hyperthyroidism, ventricular fibrillation, treatable cardiac arrest, cardiac arrest, cardiopulmonary arrest

  6. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Andrew Leonard [Univ. of California, Berkeley, CA (United States)

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G2M by about 50%. When added to G1 cells, DE delayed recruitment of apparently quiescent (G0) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  7. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.

    Science.gov (United States)

    Rusin, Scott F; Schlosser, Kate A; Adamo, Mark E; Kettenbach, Arminja N

    2015-10-13

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. Copyright © 2015, American Association for the Advancement of Science.

  8. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    Science.gov (United States)

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  9. Late A-bomb effects on proliferation and mitotic inhibition of T- and B-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo; Yoshimoto, Yasuhiko; Sasagawa, Sumiko; Sakatani, Tatsuichiro; Macchi, M; Fujikura, Toshio; Pirofsky, B; Hamada, Tadao

    1984-11-01

    In order to investigate late effects of ionization radiation and aging on T- and B-lymphocytes, mitotic ability of T- and B-lymphocytes in the peripheral blood of 266 A-bomb survivors was examined by determining the incorporation of (/sup 3/H)-thymidine. Phytohemagglutinin (PHA) and pokeweed mitogen (PWM) were used as inducers. Furthermore, mitotic inhibition of lymphocytes induced by a lymphatic inhibitor which was in part prepared from ulex seed extracts (USE) was examined. A decreased reaction of peripheral lymphocytes to PHA was seen in men exposed to 100-199 rad; a decreased reaction to PWM was seen in women exposed to more than 200 rad. According to the age group at examination, these decreased reactions were remarkable in men aged 60 years or younger and women aged 60 years or older. Among men less than 60-year-old exposed to 100-199 rad, PWM-induced mitosis of lymphocytes tended to be inhibited remarkably by USE. These results suggest the involvement of late A-bomb effects in mitotic regulation of T- and B-lymphocytes of aged A-bomb survivors.

  10. Kaposi's sarcoma herpesvirus C-terminal LANA concentrates at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes

    International Nuclear Information System (INIS)

    Kelley-Clarke, Brenna; Ballestas, Mary E.; Komatsu, Takashi; Kaye, Kenneth M.

    2007-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes

  11. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae

    Science.gov (United States)

    Jackson, Erin D.; Parker, Meighan C.; Gupta, Nilin; Rodrigues, Jenny

    2016-01-01

    Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells’ ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell’s ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast. PMID:27833823

  12. End-Tidal CO2-Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model.

    Science.gov (United States)

    Hamrick, Justin T; Hamrick, Jennifer L; Bhalala, Utpal; Armstrong, Jillian S; Lee, Jeong-Hoo; Kulikowicz, Ewa; Lee, Jennifer K; Kudchadkar, Sapna R; Koehler, Raymond C; Hunt, Elizabeth A; Shaffner, Donald H

    2017-11-01

    To determine whether end-tidal CO2-guided chest compression delivery improves survival over standard cardiopulmonary resuscitation after prolonged asphyxial arrest. Preclinical randomized controlled study. University animal research laboratory. 1-2-week-old swine. After undergoing a 20-minute asphyxial arrest, animals received either standard or end-tidal CO2-guided cardiopulmonary resuscitation. In the standard group, chest compression delivery was optimized by video and verbal feedback to maintain the rate, depth, and release within published guidelines. In the end-tidal CO2-guided group, chest compression rate and depth were adjusted to obtain a maximal end-tidal CO2 level without other feedback. Cardiopulmonary resuscitation included 10 minutes of basic life support followed by advanced life support for 10 minutes or until return of spontaneous circulation. Mean end-tidal CO2 at 10 minutes of cardiopulmonary resuscitation was 34 ± 8 torr in the end-tidal CO2 group (n = 14) and 19 ± 9 torr in the standard group (n = 14; p = 0.0001). The return of spontaneous circulation rate was 7 of 14 (50%) in the end-tidal CO2 group and 2 of 14 (14%) in the standard group (p = 0.04). The chest compression rate averaged 143 ± 10/min in the end-tidal CO2 group and 102 ± 2/min in the standard group (p tidal CO2-guided chest compression delivery. The response of the relaxation arterial pressure and cerebral perfusion pressure to the initial epinephrine administration was greater in the end-tidal CO2 group than in the standard group (p = 0.01 and p = 0.03, respectively). The prevalence of resuscitation-related injuries was similar between groups. End-tidal CO2-guided chest compression delivery is an effective resuscitation method that improves early survival after prolonged asphyxial arrest in this neonatal piglet model. Optimizing end-tidal CO2 levels during cardiopulmonary resuscitation required that chest compression delivery rate exceed current guidelines

  13. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Performance of Surge Arrester Installation to Enhance Protection

    Directory of Open Access Journals (Sweden)

    Mbunwe Muncho Josephine

    2017-01-01

    Full Text Available The effects of abnormal voltages on power system equipment and appliances in the home have raise concern as most of the equipments are very expensive. Each piece of electrical equipment in an electrical system needs to be protected from surges. To prevent damage to electrical equipment, surge protection considerations are paramount to a well designed electrical system. Lightning discharges are able to damage electric and electronic devices that usually have a low protection level and these are influenced by current or voltage pulses with a relatively low energy, which are induced by lightning currents. This calls for proper designed and configuration of surge arresters for protection on the particular appliances. A more efficient non-linear surge arrester, metal oxide varistor (MOV, should be introduced to handle these surges. This paper shows the selection of arresters laying more emphasis on the arresters for residential areas. In addition, application and installation of the arrester will be determined by the selected arrester. This paper selects the lowest rated surge arrester as it provides insulation when the system is under stress. It also selected station class and distribution class of arresters as they act as an open circuit under normal system operation and to bring the system back to its normal operation mode as the transient voltage is suppressed. Thus, reduces the risk of damage, which the protection measures can be characterized, by the reduction value of the economic loss to an acceptable level.

  15. Cell-cycle variation in the induction of lethality and mitotic recombination after treatment with UV and nitrous acid in the yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Davies, P.J.; Tippins, R.S.; Parry, J.M.

    1978-01-01

    Exponentially growing yeast cultures separated into discrete periods of the cell cycle by zonal rotor centrifugation show cyclic variation in both UV and nitrous acid induced cell lethality, mitotic gene conversion and mitotic crossing-over. Maximum cell survival after UV treatment was observed in the S and G2 phases of the cell cycle at a time when UV induction of both types of mitotic recombination was at a minumum. In contrast, cell inactivation by the chemical mutagen nitrous acid showed a single discrete period of sensitivity which occurred in S phase cells which are undergoing DNA synthesis. Mitotic gene conversion ahd mitotic crossing-over were induced by nitrous acid in cells at all stages of the cell cycle with a peak of induction of both events occurring at the time of maximum cell lethality. The lack of correlation observed between maximum cell survival and the maximum induction of mitotic intragenic recombination suggest that other DNA-repair mechanisms besides DNA-recombination repair are involved in the recovery of inactivated yeast cells during the cell cycle. (Auth.)

  16. In vitro autoradiographic studies for determination of mitotic index and labelling index in biopsies of the human oral mucosa

    International Nuclear Information System (INIS)

    Etzbach, T.

    1980-01-01

    In order to find the most favourable method of incubation for in-vitro autoradiographies of biopsies of human oral mucosa, tissue biopsies were taken from oral mucosa transplants of 10 patients (7 females, 3 males) and either fixed or incubated at once. The author then investigated the mitotic index of the non-incubated tissue specimens, the mitotic index of the tissue specimens incubated in atmospheric conditions (A), and the mitotic index of the tissue specimens incubated under pressure (B). Simultaneously, autoradiographs of the incubated tissue specimens were prepared in order to determine their labelling indices. The mitotic indices of the non-incubated tissue specimen were found to differ significantly from those of the A-incubated tissue specimens. A similar difference was found between the mitotic indices of the A- and B-incubated tissue biopsies. Further, the labelling indices of A autoradiographs differed significantly from the labelling indices of B autoradiographs. The findings suggest that incubation with an excess oxygen pressure of 2 bar is the method of choice for in-vitro studies of human oral mucosa as the cells retain their specific activity and cell processes will continue unhindered. Further, the findings can be transferred to in-vivo conditions with a reasonable error rate. (orig./MG) [de

  17. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    DiCicco-Bloom, E.; Black, I.B.

    1988-01-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [ 3 H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [ 3 H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  18. Characterization of Mitochondrial Injury after Cardiac Arrest (COMICA)

    Science.gov (United States)

    Donnino, Michael W.; Liu, Xiaowen; Andersen, Lars W.; Rittenberger, Jon C.; Abella, Benjamin S.; Gaieski, David F.; Ornato, Joseph P.; Gazmuri, Raúl J.; Grossestreur, Anne V.; Cocchi, Michaen N.; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton

    2017-01-01

    Introduction Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. Methods We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48 hours after return of spontaneous circulation as well as in healthy controls. Results Out of 111 subjects enrolled, 102 had evaluable samples at 0 hours. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18 ng/mL [0.74, 7.74] vs. 0.16 ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0 hours cytochrome c levels compared to survivors (3.66 ng/mL [1.40, 14.9] vs. 1.27 ng/mL [0.16, 2.37], p<0.001). There were significantly higher RNAase P (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and B2M (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Conclusions Cytochrome C was increased in post-cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in post-arrest period. Future research needs to investigate these differences. PMID:28126408

  19. Characterization of mitochondrial injury after cardiac arrest (COMICA).

    Science.gov (United States)

    Donnino, Michael W; Liu, Xiaowen; Andersen, Lars W; Rittenberger, Jon C; Abella, Benjamin S; Gaieski, David F; Ornato, Joseph P; Gazmuri, Raúl J; Grossestreuer, Anne V; Cocchi, Michael N; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton W

    2017-04-01

    Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48h after return of spontaneous circulation as well as in healthy controls. Out of 111 subjects enrolled, 102 had evaluable samples at 0h. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18ng/mL [0.74, 7.74] vs. 0.16ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0h cytochrome c levels compared to survivors (3.66ng/mL [1.40, 14.9] vs. 1.27ng/mL [0.16, 2.37], p<0.001). There were significantly higher Ribonuclease P (RNaseP) (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and Beta-2microglobulin (B2M) (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Cytochrome c was increased in post- cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in the post-cardiac arrest period. Future research needs to investigate these differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. AUTOMATED DETECTION OF MITOTIC FIGURES IN BREAST CANCER HISTOPATHOLOGY IMAGES USING GABOR FEATURES AND DEEP NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Maqlin Paramanandam

    2016-11-01

    Full Text Available The count of mitotic figures in Breast cancer histopathology slides is the most significant independent prognostic factor enabling determination of the proliferative activity of the tumor. In spite of the strict protocols followed, the mitotic counting activity suffers from subjectivity and considerable amount of observer variability despite being a laborious task. Interest in automated detection of mitotic figures has been rekindled with the advent of Whole Slide Scanners. Subsequently mitotic detection grand challenge contests have been held in recent years and several research methodologies developed by their participants. This paper proposes an efficient mitotic detection methodology for Hematoxylin and Eosin stained Breast cancer Histopathology Images using Gabor features and a Deep Belief Network- Deep Neural Network architecture (DBN-DNN. The proposed method has been evaluated on breast histopathology images from the publicly available dataset from MITOS contest held at the ICPR 2012 conference. It contains 226 mitoses annotated on 35 HPFs by several pathologists and 15 testing HPFs, yielding an F-measure of 0.74. In addition the said methodology was also tested on 3 slides from the MITOSIS- ATYPIA grand challenge held at the ICPR 2014 conference, an extension of MITOS containing 749 mitoses annotated on 1200 HPFs, by pathologists worldwide. This study has employed 3 slides (294 HPFs from the MITOS-ATYPIA training dataset in its evaluation and the results showed F-measures 0.65, 0.72and 0.74 for each slide. The proposed method is fast and computationally simple yet its accuracy and specificity is comparable to the best winning methods of the aforementioned grand challenges

  1. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity.

    Science.gov (United States)

    Dewey, Evan B; Johnston, Christopher A

    2017-09-15

    Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial-mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. © 2017 Dewey and Johnston. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    Science.gov (United States)

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.

  3. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus

    Directory of Open Access Journals (Sweden)

    Hsieh Yi-Jen

    2012-09-01

    Full Text Available Abstract Background Kalanchoe tubiflora (KT is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

  4. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Coffey Matthew C

    2009-07-01

    Full Text Available Abstract Background Reovirus type 3 Dearing strain (ReoT3D has an inherent propensity to preferentially infect and destroy cancer cells. The oncolytic activity of ReoT3D as a single agent has been demonstrated in vitro and in vivo against various cancers, including colon, pancreatic, ovarian and breast cancers. Its human safety and potential efficacy are currently being investigated in early clinical trials. In this study, we investigated the in vitro combination effects of ReoT3D and chemotherapeutic agents against human non-small cell lung cancer (NSCLC. Results ReoT3D alone exerted significant cytolytic activity in 7 of 9 NSCLC cell lines examined, with the 50% effective dose, defined as the initial virus dose to achieve 50% cell killing after 48 hours of infection, ranging from 1.46 ± 0.12 ~2.68 ± 0.25 (mean ± SD log10 pfu/cell. Chou-Talalay analysis of the combination of ReoT3D with cisplatin, gemcitabine, or vinblastine demonstrated strong synergistic effects on cell killing, but only in cell lines that were sensitive to these compounds. In contrast, the combination of ReoT3D and paclitaxel was invariably synergistic in all cell lines tested, regardless of their levels of sensitivity to either agent. Treatment of NSCLC cell lines with the ReoT3D-paclitaxel combination resulted in increased poly (ADP-ribose polymerase cleavage and caspase activity compared to single therapy, indicating enhanced apoptosis induction in dually treated NSCLC cells. NSCLC cells treated with the ReoT3D-paclitaxel combination showed increased proportions of mitotic and apoptotic cells, and a more pronounced level of caspase-3 activation was demonstrated in mitotically arrested cells. Conclusion These data suggest that the oncolytic activity of ReoT3D can be potentiated by taxanes and other chemotherapeutic agents, and that the ReoT3D-taxane combination most effectively achieves synergy through accelerated apoptosis triggered by prolonged mitotic arrest.

  5. Incorporation of thymidine into onion root meristematic cell nuclei in presence of hydroxyurea and its role in recovery of mitotic activity

    OpenAIRE

    H. Habdas

    2015-01-01

    Hydroxyurea treatment of onion roots induced mitotic block which was released by transfer of bulbs to water, and also to some extent by addition of cold or 3H-thymidine to hydroxyurea solutions. In presence of hydroxyurea there was noted very intense incorporation of 3H-thymidine into cell nuclei, giving labelling index of 40-70%. However, all the mitotic figures appearing in presence of hydroxyurea and 3H-thymidine were unlabelled. On the other hand, labelled mitotic figures were obtained wh...

  6. Pattern of perioperative cardiac arrests at University of Maiduguri Teaching Hospital.

    Science.gov (United States)

    Kwari, Y D; Bello, M R; Eni, U E

    2010-01-01

    Perioperative cardiac arrests and death on the table represent the most serious complications of surgery and anaesthesia. This paper was designed to study their pattern, causes and outcomes following cardiopulmonary resuscitation (CPR) and intensive care unit (ICU) management in our institution. Three year retrospective review of perioperative cardiac arrests and death on operating table following surgical procedure under anaesthesia. For each cardiac arrest or death on the table the sequence of events leading to the arrest was evaluated using case notes, anaesthetic chart and ICU records. Study variables which include demographic data, ASA score, anaesthetic technique, causes and outcome were analysed and discussed. Fourteen perioperative cardiac arrests were encountered following 4051 anaesthetics administered over the three year study period. Twelve out of the fourteen cardiac arrests occurred following general anaesthesia, while the remaining two occurred following spinal anaesthesia. There was no cardiac arrest following local anaesthesia. Children suffered more cardiac arrest than adults. ASA class III and IV risk status suffered more arrests than ASA I and II. Hypoxia from airway problems was the commonest cause of cardiac arrest followed by septic shock. Monitoring with pulse oximeter was done in only 4 out of the 14 cardiac arrests. Only 2 (14%) out of 14 cardiac arrests recovered to home discharge, one of them with significant neurological deficit. Majority of arrests were due to hypoxia from airway problems that were not detected early There is need to improve on patient monitoring, knowledge of CPR and intensive care so as to improve the outcome of perioperative cardiac arrest.

  7. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    International Nuclear Information System (INIS)

    Firat, Elke; Gaedicke, Simone; Tsurumi, Chizuko; Esser, Norbert; Weyerbrock, Astrid; Niedermann, Gabriele

    2011-01-01

    Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Our results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular proliferation for γIR-induced death of

  8. Cell cycle arrest induced by radiation

    International Nuclear Information System (INIS)

    Okaichi, Yasuo; Matsumoto, Hideki; Ohnishi, Takeo

    1994-01-01

    It is known that various chemical reactions, such as cell cycle arrest, DNA repair and cell killing, can occur within the cells when exposed to ionizing radiation and ultraviolet radiation. Thus protein dynamics involved in such chemical reactions has received considerable attention. In this article, cell cycle regulation is first discussed in terms of the G2/M-phase and the G1/S-phase. Then, radiation-induced cell cycle arrest is reviewed. Cell cycle regulation mechanism involved in the G2 arrest, which is well known to occur when exposed to radiation, has recently been investigated using yeasts. In addition, recent study has yielded a noticeable finding that the G1 arrest can occur with intracellular accumulation of p53 product following ionization radiation. p53 is also shown to play an extremely important role in both DNA repair and cell killing due to DNA damage. Studies on the role of genes in protein groups induced by radiation will hold promise for the elucidation of cell cycle mechanism. (N.K.) 57 refs

  9. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    Willhoeft, U.; Franz, G.

    1998-01-01

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  10. Same-Sex and Race-Based Disparities in Statutory Rape Arrests.

    Science.gov (United States)

    Chaffin, Mark; Chenoweth, Stephanie; Letourneau, Elizabeth J

    2016-01-01

    This study tests a liberation hypothesis for statutory rape incidents, specifically that there may be same-sex and race/ethnicity arrest disparities among statutory rape incidents and that these will be greater among statutory rape than among forcible sex crime incidents. 26,726 reported incidents of statutory rape as defined under state statutes and 96,474 forcible sex crime incidents were extracted from National Incident-Based Reporting System data sets. Arrest outcomes were tested using multilevel modeling. Same-sex statutory rape pairings were rare but had much higher arrest odds. A victim-offender romantic relationship amplified arrest odds for same-sex pairings, but damped arrest odds for male-on-female pairings. Same-sex disparities were larger among statutory than among forcible incidents. Female-on-male incidents had uniformly lower arrest odds. Race/ethnicity effects were smaller than gender effects and more complexly patterned. The findings support the liberation hypothesis for same-sex statutory rape arrest disparities, particularly among same-sex romantic pairings. Support for race/ethnicity-based arrest disparities was limited and mixed. © The Author(s) 2014.

  11. Action of plasma and liver extract from adult mice on the mitotic activity of young mouse liver.

    Science.gov (United States)

    García, A L; Inda, A M; Echave Llanos, J M

    1991-06-01

    Inbred C3HS male mice, standardized for periodicity analysis were used. A hundred and seventy 25 +/- 2 days old mice were injected at 16:00 hs with saline, plasma or liver extract from 27 mice 90 days old. Controls were made at 08/16, 12/20, 16/24, 08/40, 12/44, 16/48, 08/64, 12/68 and 16/72 (time of day/time post-injection). The mitotic activity of the hepatocytes and litoral cells were determined. The injection of small doses of extract and plasma inhibits the mitotic activity of hepatocytes during the first and second following days. A compensatory wave appears in the third day. The extract inhibits the mitotic activity of litoral cells in the first day of control only, whereas the plasma inhibits this variable in the second and third day.

  12. An Audit Of Perioperative Cardiac Arrest At Lagos University ...

    African Journals Online (AJOL)

    Objective: Intraoperative cardiac arrests are not uncommon and are related to both surgical and anaesthetic factors. This study aimed to examine the factors which predispose to a periopeartive cardiac arrest, to assess the appropriateness of therapy and the outcome. Materials and Methods: All perioperative cardiac arrests ...

  13. Distinct mechanisms act in concert to mediate cell cycle arrest.

    Science.gov (United States)

    Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit

    2009-01-20

    In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.

  14. Serum tau and neurological outcome in cardiac arrest

    DEFF Research Database (Denmark)

    Mattsson, Niklas; Zetterberg, Henrik; Nielsen, Niklas

    2017-01-01

    OBJECTIVE: To test serum tau as a predictor of neurological outcome after cardiac arrest. METHODS: We measured the neuronal protein tau in serum at 24, 48, and 72 hours after cardiac arrest in 689 patients in the prospective international Target Temperature Management trial. The main outcome...... was poor neurological outcome, defined as Cerebral Performance Categories 3-5 at 6 months. RESULTS: Increased tau was associated with poor outcome at 6 months after cardiac arrest (median = 38.5, interquartile range [IQR] = 5.7-245ng/l in poor vs median = 1.5, IQR = 0.7-2.4ng/l in good outcome, for tau....... The accuracy in predicting outcome by serum tau was equally high for patients randomized to 33 °C and 36 °C targeted temperature after cardiac arrest. INTERPRETATION: Serum tau is a promising novel biomarker for prediction of neurological outcome in patients with cardiac arrest. It may be significantly better...

  15. Variation in sensitivity to #betta#-ray-induced chromosomal aberrations during the mitotic cycle of the sea urchin egg

    International Nuclear Information System (INIS)

    Ejima, Y.; Nakamura, I.; Shiroya, T.

    1982-01-01

    Sea urchin eggs were irradiated with 137 Cs #betta# rays at various stages of the mitotic cycle, and chromosomal aberrations at the first postirradiation mitosis and embryonic abnormalities at later developmental stages were examined. The radiosensitivity of the eggs to both endpoints varied in parallel with the mitotic stage at the time of irradiation, suggesting a possible relationship between chromosomal damage and embryonic abnormalities

  16. Radiation induced mitotic delay and stimulation of growth

    International Nuclear Information System (INIS)

    Feldmann, A.

    1974-01-01

    The mechanisms responsible for the radiation induced mitotic delay and stimulation of growth are discussed in connection with the results of studies in Lemna minor and Lepidium sativum. The action of temperature seems to be of major importance. As many authors suggest that various chemical agents and slight intoxications also affect mitosis in a way similar to that induced by ionizing radiation, the radiation induced stimulation has lost its specific character and approaches might be found for further investigations of this phenomenon. (MG) [de

  17. Comparison of staining of mitotic figures by haematoxylin and eosin-and crystal violet stains, in oral epithelial dysplasia and squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ankle Madhuri

    2007-01-01

    Full Text Available Mitosis of cells gives rise to tissue integrity. Defects during mitosis bring about abnormalities. Excessive proliferation of cells due to increased mitosis is one such outcome, which is the hallmark in precancer and cancer. The localization of proliferating cells or their precursors may not be obvious and easy. Establishing an easy way to distinguish these mitotic cells will help in grading and understanding their biological potential. Although immunohistochemistry is an advanced method in use, the cost and time factor makes it less feasible for many laboratories. Selective histochemical stains like toluidine blue, giemsa and crystal violet have been used in tissues including the developing brain, neural tissue and skin. Aim of the study: 1To compare the staining of mitotic cells in haematoxylin and eosin with that in crystal violet. 2To compare the number of mitotic figures present in normal oral mucosa, epithelial dysplasia and oral squamous cell carcinoma in crystal violet-stained sections with that in H and E-stained sections. Materials and Methods: Ten tissues of normal oral mucosa and 15 tissues each of oral epithelial dysplasia seen in tobacco-associated leukoplakia and squamous cell carcinoma were studied to evaluate the selectivity of 1% crystal violet for mitotic figures. The staining was compared with standard H and E staining. Statistical analysis was done using Man-Whitney U test. Results: A statistically significant increase in the mean mitotic count was observed in crystal violet-stained sections of epithelial dysplasia as compared to the H and E-stained sections ( p = 0.0327. A similar increase in the mitotic counts was noted in crystal violet-stained sections of oral squamous cell carcinoma as compared to the H and E-stained sections.( p = 0.0443. No significant difference was found in the mitotic counts determined in dysplasia or carcinoma by either the crystal violet ( p = 0.4429 or the H and E-staining techniques ( p = 0

  18. The Use of Extracorporeal Membrane Oxygenation-Cardiopulmonary Resuscitation in Prolonged Cardiac Arrest in Pediatric Patients: Is it Time to Expand It?

    Science.gov (United States)

    Absi, Mohammed; Kumar, Susheel Tk; Sandhu, Hitesh

    2017-09-01

    Extracorporeal membrane oxygenation was instituted as an aid to in-hospital cardiopulmonary resuscitation (E-CPR) nearly 23 years ago, this led to remarkable improvement in survival considering the mortality rate associated with conventional cardiopulmonary resuscitation (CPR). Given this success, one begins to wonder whether the time has come for expanding the use of E-CPR to outside hospital cardiac arrests especially in the light of development of newer extracorporeal life support devices that are small, mobile, and easy to assemble. This editorial will review recent studies on this subject and address some key guidelines and limitations of this evolving and promising technology.

  19. Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery

    Science.gov (United States)

    Gupta, Punkaj; Jacobs, Jeffrey P.; Pasquali, Sara K.; Hill, Kevin D.; Gaynor, J. William; O’Brien, Sean M.; He, Max; Sheng, Shubin; Schexnayder, Stephen M.; Berg, Robert A.; Nadkarni, Vinay M.; Imamura, Michiaki; Jacobs, Marshall L.

    2014-01-01

    Background Multicenter data regarding cardiac arrest in children undergoing heart operations are limited. We describe epidemiology and outcomes associated with postoperative cardiac arrest in a large multiinstitutional cohort. Methods Patients younger than 18 years in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2007 through 2012) were included. Patient factors, operative characteristics, and outcomes were described for patients with and without postoperative cardiac arrest. Multivariable models were used to evaluate the association of center volume with cardiac arrest rate and mortality after cardiac arrest, adjusting for patient and procedural factors. Results Of 70,270 patients (97 centers), 1,843 (2.6%) had postoperative cardiac arrest. Younger age, lower weight, and presence of preoperative morbidities (all p < 0.0001) were associated with cardiac arrest. Arrest rate increased with procedural complexity across common benchmark operations, ranging from 0.7% (ventricular septal defect repair) to 12.7% (Norwood operation). Cardiac arrest was associated with significant mortality risk across procedures, ranging from 15.4% to 62.3% (all p < 0.0001). In multivariable analysis, arrest rate was not associated with center volume (odds ratio, 1.06; 95% confidence interval, 0.71 to 1.57 in low- versus high-volume centers). However, mortality after cardiac arrest was higher in low-volume centers (odds ratio, 2.00; 95% confidence interval, 1.52 to 2.63). This association was present for both high- and low-complexity operations. Conclusions Cardiac arrest carries a significant mortality risk across the stratum of procedural complexity. Although arrest rates are not associated with center volume, lower-volume centers have increased mortality after cardiac arrest. Further study of mechanisms to prevent cardiac arrest and to reduce mortality in those with an arrest is warranted. PMID:25443018

  20. Parameters of mitotic recombination in minute mutants of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ferrus, A.

    1975-01-01

    A sample of 16 Minutes, representing 12 loci distributed over all the chromosome arms and including 3 pairs of alleles and 4 deficiencies, has been studied with respect to several developmental and recombinational parameters. Cell marker mutants located in most of the chromosome arms were used to assess (1) spontaneous and x-ray-induced mitotic recombination frequencies of each Minute, and (2) clone sizes of the different cell marker clones. These parameters were analyzed both in the wing disc and in the abdominal histoblasts. Whereas spontaneous frequencies are not affected by the presence of the Minutes studied, the different Minutes characteristically increase the frequency of recombination clones arising after x irradiation. The recombinant clones which are M + /M + are significantly larger than clones in the same fly which retain the M + /M condition. This is particularly striking in clones in the wing disc, slightly so in clones in the tergites. The occurrence of mitotic recombination in the fourth chromosome is reported for the first time. Chaeta length and developmental delay correlates with the recombinational parameters in different ways. Possible causal interrelationships of the different traits of the Minute syndrome are discussed. (U.S.)

  1. UV-induced mitotic recombination and its dependence on photoreactivation and liquid holding in the rad6-1 mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Haladus, E.; Zuk, J.

    1980-01-01

    Spontaneous and UV-induced mitotic recombination was compared in diploids homozygous for rad6-1 mutation and in the wild-type strain carrying heterozygous markers for detecting gene conversion (hom 2-1, hom 2-2) and crossing over (ade 1, ade 2). Diploids homozygous for rad6-1 mutation were characterised by an elevated level of spontaneous and UV-induced mitotic recombination, particularly the intergenic events. Exposure of UV-irradiated strains to visible light resulted in an increased survival and decreased level of mitotic recombination. Liquid holding (LH) differentially affected frequency of mitotic intergenic and intragenic recombination in mutant and wild-type strains, being without any significant effect on cell survival. In a mutant strain intragenic recombination is significantly increased, intergenic only slightly. In the wild-type strain intragenic recombination is slightly decreased but intergenic is not changed by LH. Visible light applied after LH had no effect on survival and mitotic recombination in the wild type, while in the mutant strain photoreactivability of survival was fully preserved and accompanied by a decrease in the frequency of intragenic and intergenic recombination. The results suggest that metabolic pathways responsible for restoring cell survival are independent of or only partly overlapping with those concerning recombination events. (orig.) [de

  2. 32 CFR 935.125 - Citation in place of arrest.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Citation in place of arrest. 935.125 Section 935... INSULAR REGULATIONS WAKE ISLAND CODE Peace Officers § 935.125 Citation in place of arrest. In any case in which a peace officer may make an arrest without a warrant, he may issue and serve a citation if he...

  3. Associates of Cardiopulmonary Arrest in the Perihemodialytic Period

    Science.gov (United States)

    Flythe, Jennifer E.; Li, Nien-Chen; Brunelli, Steven M.; Lacson, Eduardo

    2014-01-01

    Cardiopulmonary arrest during and proximate to hemodialysis is rare but highly fatal. Studies have examined peridialytic sudden cardiac event risk factors, but no study has considered associates of cardiopulmonary arrests (fatal and nonfatal events including cardiac and respiratory causes). This study was designed to elucidate patient and procedural factors associated with peridialytic cardiopulmonary arrest. Data for this case-control study were taken from the hemodialysis population at Fresenius Medical Care, North America. 924 in-center cardiopulmonary events (cases) and 75,538 controls were identified. Cases and controls were 1 : 5 matched on age, sex, race, and diabetes. Predictors of cardiopulmonary arrest were considered for logistic model inclusion. Missed treatments due to hospitalization, lower body mass, coronary artery disease, heart failure, lower albumin and hemoglobin, lower dialysate potassium, higher serum calcium, greater erythropoietin stimulating agent dose, and normalized protein catabolic rate (J-shaped) were associated with peridialytic cardiopulmonary arrest. Of these, lower albumin, hemoglobin, and body mass index; higher erythropoietin stimulating agent dose; and greater missed sessions had the strongest associations with outcome. Patient health markers and procedural factors are associated with peridialytic cardiopulmonary arrest. In addition to optimizing nutritional status, it may be prudent to limit exposure to low dialysate potassium (<2 K bath) and to use the lowest effective erythropoietin stimulating agent dose. PMID:25530881

  4. Associates of Cardiopulmonary Arrest in the Perihemodialytic Period

    Directory of Open Access Journals (Sweden)

    Jennifer E. Flythe

    2014-01-01

    Full Text Available Cardiopulmonary arrest during and proximate to hemodialysis is rare but highly fatal. Studies have examined peridialytic sudden cardiac event risk factors, but no study has considered associates of cardiopulmonary arrests (fatal and nonfatal events including cardiac and respiratory causes. This study was designed to elucidate patient and procedural factors associated with peridialytic cardiopulmonary arrest. Data for this case-control study were taken from the hemodialysis population at Fresenius Medical Care, North America. 924 in-center cardiopulmonary events (cases and 75,538 controls were identified. Cases and controls were 1 : 5 matched on age, sex, race, and diabetes. Predictors of cardiopulmonary arrest were considered for logistic model inclusion. Missed treatments due to hospitalization, lower body mass, coronary artery disease, heart failure, lower albumin and hemoglobin, lower dialysate potassium, higher serum calcium, greater erythropoietin stimulating agent dose, and normalized protein catabolic rate (J-shaped were associated with peridialytic cardiopulmonary arrest. Of these, lower albumin, hemoglobin, and body mass index; higher erythropoietin stimulating agent dose; and greater missed sessions had the strongest associations with outcome. Patient health markers and procedural factors are associated with peridialytic cardiopulmonary arrest. In addition to optimizing nutritional status, it may be prudent to limit exposure to low dialysate potassium (<2 K bath and to use the lowest effective erythropoietin stimulating agent dose.

  5. Evaluation of Activity and Combination Strategies with the Microtubule-Targeting Drug Sagopilone in Breast Cancer Cell Lines

    International Nuclear Information System (INIS)

    Eschenbrenner, Julia; Winsel, Sebastian; Hammer, Stefanie; Sommer, Anette; Mittelstaedt, Kevin; Drosch, Michael; Klar, Ulrich; Sachse, Christoph; Hannus, Michael; Seidel, Monika; Weiss, Bertram; Merz, Claudia; Siemeister, Gerhard; Hoffmann, Jens

    2011-01-01

    Sagopilone, a fully synthetic epothilone, is a microtubule-stabilizing agent optimized for high in vitro and in vivo activity against a broad range of tumor models, including those resistant to paclitaxel and other systemic treatments. Sagopilone development is accompanied by translational research studies to evaluate the molecular mode of action, to recognize mechanisms leading to resistance, to identify predictive response biomarkers, and to establish a rationale for combination with different therapies. Here, we profiled sagopilone activity in breast cancer cell lines. To analyze the mechanisms of mitotic arrest and apoptosis and to identify additional targets and biomarkers, an siRNA-based RNAi drug modifier screen interrogating 300 genes was performed in four cancer cell lines. Defects of the spindle assembly checkpoint (SAC) were identified to cause resistance against sagopilone-induced mitotic arrest and apoptosis. Potential biomarkers for resistance could therefore be functional defects like polymorphisms or mutations in the SAC, particularly in the central SAC kinase BUB1B. Moreover, chromosomal heterogeneity and polyploidy are also potential biomarkers of sagopilone resistance since they imply an increased tolerance for aberrant mitosis. RNAi screening further demonstrated that the sagopilone-induced mitotic arrest can be enhanced by concomitant inhibition of mitotic kinesins, thus suggesting a potential combination therapy of sagopilone with a KIF2C (MCAK) kinesin inhibitor. However, the combination of sagopilone and inhibition of the prophase kinesin KIF11 (EG5) is antagonistic, indicating that the kinesin inhibitor has to be highly specific to bring about the required therapeutic benefit.

  6. Evaluation of Activity and Combination Strategies with the Microtubule-Targeting Drug Sagopilone in Breast Cancer Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Eschenbrenner, Julia [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Biotechnology, Technical University Berlin, Berlin (Germany); Winsel, Sebastian [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Chemistry and Biochemistry, Free University Berlin, Berlin (Germany); Medical Biotechnology, VTT Technical Research Centre of Finland, Turku (Finland); Hammer, Stefanie [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Sommer, Anette [Global Drug Discovery, Target Discovery, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Mittelstaedt, Kevin [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Chemistry and Biochemistry, Free University Berlin, Berlin (Germany); Department of Medicine, The University of Melbourne, Melbourne, VIC (Australia); Drosch, Michael [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Center of Human Genetics, University of Bremen, Bremen (Germany); Klar, Ulrich [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Sachse, Christoph; Hannus, Michael; Seidel, Monika [Cenix BioScience GmbH, Dresden (Germany); Weiss, Bertram; Merz, Claudia [Global Drug Discovery, Target Discovery, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Siemeister, Gerhard [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Hoffmann, Jens, E-mail: jens.hoffmann@epo-berlin.com [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Berlin (Germany)

    2011-11-16

    Sagopilone, a fully synthetic epothilone, is a microtubule-stabilizing agent optimized for high in vitro and in vivo activity against a broad range of tumor models, including those resistant to paclitaxel and other systemic treatments. Sagopilone development is accompanied by translational research studies to evaluate the molecular mode of action, to recognize mechanisms leading to resistance, to identify predictive response biomarkers, and to establish a rationale for combination with different therapies. Here, we profiled sagopilone activity in breast cancer cell lines. To analyze the mechanisms of mitotic arrest and apoptosis and to identify additional targets and biomarkers, an siRNA-based RNAi drug modifier screen interrogating 300 genes was performed in four cancer cell lines. Defects of the spindle assembly checkpoint (SAC) were identified to cause resistance against sagopilone-induced mitotic arrest and apoptosis. Potential biomarkers for resistance could therefore be functional defects like polymorphisms or mutations in the SAC, particularly in the central SAC kinase BUB1B. Moreover, chromosomal heterogeneity and polyploidy are also potential biomarkers of sagopilone resistance since they imply an increased tolerance for aberrant mitosis. RNAi screening further demonstrated that the sagopilone-induced mitotic arrest can be enhanced by concomitant inhibition of mitotic kinesins, thus suggesting a potential combination therapy of sagopilone with a KIF2C (MCAK) kinesin inhibitor. However, the combination of sagopilone and inhibition of the prophase kinesin KIF11 (EG5) is antagonistic, indicating that the kinesin inhibitor has to be highly specific to bring about the required therapeutic benefit.

  7. A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry.

    Directory of Open Access Journals (Sweden)

    Inci Aydin

    2017-05-01

    Full Text Available Incoming papillomaviruses (PVs depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE or L2(IVAL286AAAA were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with mitotic chromosomes is conserved among the alpha, beta, gamma, and iota genera of Papillomaviridae. However, different binding patterns point to a certain variance amongst the different genera. Overall, our data suggest a common strategy among various PVs, in which a central region of L2 mediates tethering of vDNA to mitotic chromosomes during cell division thereby coordinating membrane

  8. The effect of ultraviolet light on arrested human diploid cell populations

    International Nuclear Information System (INIS)

    Kantor, G.J.; Warner, C.; Hull, D.R.

    1977-01-01

    The results of the experiments to determine an effect of UV (254 nm) on human diploid fibroblasts (HDF) arrested with respect to division by using 0.5% fetal calf serum in the culture medium are reported. A fraction of cells from irradiated arrested populations, maintained in the arrested state post-irradiation, was lost from the populations. The extent of cell loss was fluence-dependent and cell strain specific. A Xeroderma pigmentosum cell strain was more sensitive to UV than were normal HDF. No difference in sensitivity were observed when arrested populations established from normal HDF populations of various in vitro ages were used. The length of the pre-irradiation arrested period affected the sensitivity of normal HDF, which appeared more resistant at longer arrested periods, but not the sensitivity of arrested Xeroderma populations. These results suggest that DNA repair processes play a role in maintaining irradiated cells in the arrested state. The suggestion is made that the lethal event caused by UV is an effect on transcription leading to an inhibition of required protein synthesis. (author)

  9. Dynamic propagation and cleavage crack arrest in bainitic steel

    International Nuclear Information System (INIS)

    Hajjaj, M.

    2006-06-01

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  10. [Genetic control of mitotic crossing-over in yeasts. III. Induction by 8-methoxypsoralen and long-wave UV irradiation (lambda=365 nm)].

    Science.gov (United States)

    Fedorova, I V; Marfin, S V

    1982-02-01

    The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.

  11. Cardiac arrest due to lymphocytic colitis: a case report

    Directory of Open Access Journals (Sweden)

    Groth Kristian A

    2012-03-01

    Full Text Available Abstract Introduction We present a case of cardiac arrest due to hypokalemia caused by lymphocytic colitis. Case presentation A 69-year-old Caucasian man presented four months prior to a cardiac arrest with watery diarrhea and was diagnosed with lymphocytic colitis. Our patient experienced a witnessed cardiac arrest at his general practitioner's surgery. Two physicians and the emergency medical services resuscitated our patient for one hour and four minutes before arriving at our university hospital. Our patient was defibrillated 16 times due to the recurrence of ventricular tachyarrhythmias. An arterial blood sample revealed a potassium level of 2.0 mmol/L (reference range: 3.5 to 4.6 mmol/L and pH 6.86 (reference range: pH 7.37 to 7.45. As the potassium level was corrected, the propensity for ventricular tachyarrhythmias ceased. Our patient recovered from his cardiac arrest without any neurological deficit. Further tests and examinations revealed no other reason for the cardiac arrest. Conclusion Diarrhea can cause life-threatening situations due to the excretion of potassium, ultimately causing cardiac arrest due to hypokalemia. Physicians treating patients with severe diarrhea should consider monitoring their electrolyte levels.

  12. Aurora-B Mediated ATM Serine 1403 Phosphorylation Is Required For Mitotic ATM Activation and the Spindle Checkpoint

    OpenAIRE

    Yang, Chunying; Tang, Xi; Guo, Xiaojing; Niikura, Yohei; Kitagawa, Katsumi; Cui, Kemi; Wong, Stephen T.C.; Fu, Li; Xu, Bo

    2011-01-01

    The ATM kinase plays a critical role in the maintenance of genetic stability. ATM is activated in response to DNA damage and is essential for cell cycle checkpoints. Here, we report that ATM is activated in mitosis in the absence of DNA damage. We demonstrate that mitotic ATM activation is dependent on the Aurora-B kinase and that Aurora-B phosphorylates ATM on serine 1403. This phosphorylation event is required for mitotic ATM activation. Further, we show that loss of ATM function results in...

  13. Mental health court outcomes: a comparison of re-arrest and re-arrest severity between mental health court and traditional court participants.

    Science.gov (United States)

    Moore, Marlee E; Hiday, Virginia Aldigé

    2006-12-01

    Mental health courts have been proliferating across the country since their establishment in the late 1990's. Although numerous advocates have proclaimed their merit, only few empirical studies have evaluated their outcomes. This paper evaluates the effect of one mental health court on criminal justice outcomes by examining arrests and offense severity from one year before to one year after entry into the court, and by comparing mental health court participants to comparable traditional criminal court defendants on these measures. Multivariate models support the prediction that mental health courts reduce the number of new arrests and the severity of such re-arrests among mentally ill offenders. Similar analysis of mental health court completers and non-completers supports the prediction that a "full dose" of mental health treatment and court monitoring produce even fewer re-arrests.

  14. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.

    Directory of Open Access Journals (Sweden)

    Yosuke Ichijima

    Full Text Available During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.

  15. Dental Calculus Arrest of Dental Caries

    OpenAIRE

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human t...

  16. Analysis of the G1 arrest position of senescent WI38 cells by quinacrine dihydrochloride nuclear fluorescence: evidence for a late G1 arrest

    International Nuclear Information System (INIS)

    Gorman, S.D.; Cristofalo, V.J.

    1986-01-01

    Senescence of the human diploid fibroblast-like cell line, W138, is characterized by a loss of proliferative activity and an arrest of cells with a 2C DNA content (G1 or G0). To examine the specific region within G1 in which senescent cells arrest, senescent cells were stained with quinacrine dihydrochloride (QDH) and their nuclear fluorescence was compared with that of young cultures arrested in early and late G1 by serum deprivation and hydroxyurea exposure, respectively. Release of these G1-arrested young cultures from their blocking conditions and timing the kinetics of their entry into the S phase by autoradiographic detection of [ 3 H]thymidine incorporation revealed that serum-deprived cells entered the S phase within 15-18h, whereas hydroxyurea-exposed cells entered the S phase within 1.5h, thus confirming their relative G1-arrest positions. QDH-stained, serum-deprived and hydroxyurea-exposed young cells exhibited relative nuclear fluorescence intensities of 51.7 and 23.9, respectively. Senescent cells exhibited a relative nuclear fluorescence intensity of 17.4, closely resembling the fluorescence of young cultures arrested in late G1 by hydroxyurea exposure. These data support the concept that senescent cells are arrested from further progression in the cell cycle in late G1

  17. Gender and Relational-Distance Effects in Arrests for Domestic Violence

    Science.gov (United States)

    Lally, William; DeMaris, Alfred

    2012-01-01

    This study tests two hypotheses regarding factors affecting arrest of the perpetrator in domestic violence incidents. Black's relational-distance thesis is that the probability of arrest increases with increasing relational distance between perpetrator and victim. Klinger's leniency principle suggests that the probability of arrest is lower for…

  18. Relationship between plant growth and cytological effect in root apical meristem after exposure of wheat dry seeds to carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingfang [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zhuanzi; Zhou, Libin; Qu, Ying; Lu, Dong [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China); Yu, Lixia; Du, Yan [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Jin, Wenjie [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China); Li, Wenjian, E-mail: wjli@impcas.ac.cn [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China)

    2013-06-15

    In order to analyze the relationship between plant growth and cytological effects, wheat dry seeds were exposed to various doses of {sup 12}C{sup 6+} beams and the biological endpoints reflecting plant growth and root apical meristem (RAM) activities were investigated. The results showed that most of the seeds were able to germinate normally within all dose range, while the plant survival rate descended at higher doses. The seedling growth including root length and seedling height also decreased significantly at higher doses. Mitotic index (MI) in RAM had no changes at 10 and 20 Gy and decreased obviously at higher doses and the proportion of prophase cells had the same trend with MI. These data suggested that RAM cells experienced cell cycle arrest, which should be responsible for the inhibition of root growth after exposure to higher doses irradiation. Moreover, various types of chromosome aberrations (CAs) were observed in the mitotic cells. The frequencies of mitotic cells with lagging chromosomes and these with anaphase bridges peaked around 60 Gy, while the frequencies of these with fragments increased as the irradiation doses increased up to 200 Gy. The total frequencies of mitotic cells with CAs induced by irradiation increased significantly with the increasing doses. The serious damage of mitotic chromosomes maybe caused cell cycle arrest or cell death. These findings suggested that the influences of {sup 12}C{sup 6+} beams irradiation on plant growth were related to the alternation of mitotic activities and the chromosomal damages in RAM.

  19. The effect of mitotic inhibitors on DNA strand size and radiation-associated break repair in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.; Steiner, M.E.; Kalvonjian, S.L.

    1985-01-01

    The effect of mitotic inhibitors on formation and repair of DNA breaks was studied in cultured fibroblasts from patients with Down syndrome in order to investigate the hypothesis that the karyotyping procedure itself may play a role in the increased chromosome breakage seen in these cells after gamma radiation exposure. Using the nondenaturing elution and alkaline elution techniques to examine fibroblasts from Down syndrome patients and from controls, no specific abnormalities in Down syndrome cells could be detected after exposure to mitotic inhibitors, including rate and extent of elution of DNA from filters as well as repair of radiation-induced DNA breaks. In both normal and Down syndrome cell strains, however, exposure to mitotic inhibitors was associated with a decrease in cellular DNA strand size, suggesting the presence of drug-induced DNA strand breaks. The mechanism of increased chromosome sensitivity of Down syndrome cells to gamma radiation remains unknown. (orig.)

  20. Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells

    Directory of Open Access Journals (Sweden)

    Xihan Guo

    2016-09-01

    Full Text Available The fruit of Phyllanthus emblica Linn. (PE has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC, mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN, nucleoplasmic bridge (NPB and nuclear bud (NB in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1. Compared with the control, PE-treated cells showed (1 decreased incidences of MN, NPB and NB (p < 0.01; (2 decreased frequencies of all mitotic aberration biomarkers (p < 0.01; and (3 decreased AMR (p < 0.01 and increased BubR1 expression (p < 0.001. The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.

  1. Differential cellular responses to prolonged LDR-IR in MLH1-proficient and MLH1-deficient colorectal cancer HCT116 cells.

    Science.gov (United States)

    Yan, Tao; Seo, Yuji; Kinsella, Timothy J

    2009-11-15

    MLH1 is a key DNA mismatch repair (MMR) protein involved in maintaining genomic stability by participating in the repair of endogenous and exogenous mispairs in the daughter strands during S phase. Exogenous mispairs can result following treatment with several classes of chemotherapeutic drugs, as well as with ionizing radiation. In this study, we investigated the role of the MLH1 protein in determining the cellular and molecular responses to prolonged low-dose rate ionizing radiation (LDR-IR), which is similar to the clinical use of cancer brachytherapy. An isogenic pair of MMR(+) (MLH1(+)) and MMR(-) (MLH1(-)) human colorectal cancer HCT116 cells was exposed to prolonged LDR-IR (1.3-17 cGy/h x 24-96 h). The clonogenic survival and gene mutation rates were examined. Cell cycle distribution was analyzed with flow cytometry. Changes in selected DNA damage repair proteins, DNA damage response proteins, and cell death marker proteins were examined with Western blotting. MLH1(+) HCT116 cells showed greater radiosensitivity with enhanced expression of apoptotic and autophagic markers, a reduced HPRT gene mutation rate, and more pronounced cell cycle alterations (increased late-S population and a G(2)/M arrest) following LDR-IR compared with MLH1(-) HCT116 cells. Importantly, a progressive increase in MLH1 protein levels was found in MLH1(+) cells during prolonged LDR-IR, which was temporally correlated with a progressive decrease in Rad51 protein (involved in homologous recombination) levels. MLH1 status significantly affects cellular responses to prolonged LDR-IR. MLH1 may enhance cell radiosensitivity to prolonged LDR-IR through inhibition of homologous recombination (through inhibition of Rad51).

  2. Maturation arrest of human oocytes at germinal vesicle stage

    Directory of Open Access Journals (Sweden)

    Zhi Qin Chen

    2010-01-01

    Full Text Available Maturation arrest of human oocytes may occur at various stages of the cell cycle. A total failure of human oocytes to complete meiosis is rarely observed during assisted conception cycles. We describe here a case of infertile couples for whom all oocytes repeatedly failed to mature at germinal vesicle (GV stage during in vitro fertilization/Intra cytoplasmic sperm injection (IVF/ICSI. The patient underwent controlled ovarian stimulation followed by oocyte retrieval and IVF/ICSI. The oocytes were stripped off cumulus cells prior to the ICSI procedure and their maturity status was defined. The oocyte maturation was repeatedly arrested at the GV. Oocyte maturation arrest may be the cause of infertility in this couple. The recognition of oocyte maturation arrest as a specific medical condition may contribute to the characterization of the currently known as "oocyte factor." The cellular and genetic mechanisms causing oocyte maturation arrest should be the subject for further investigation.

  3. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    Science.gov (United States)

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-06-01

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10 3 or 2×10 4 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag + release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10 4 AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag + release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    Science.gov (United States)

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Action of caffeine on x-irradiated HeLa cells. III. enhancement of x-ray-induced killing during G2 arrest

    International Nuclear Information System (INIS)

    Busse, P.M.; Bose, S.K.; Jones, R.W.; Tolmach, L.J.

    1978-01-01

    The ability of caffeine to enhance the expression of potentially lethal x-ray damage in HeLa S3 cells was examined as a function of the age of the cells in the generation cycle. Synchronous populations were irradiated at different times after mitotic collection and treated for various intervals with 1 mM caffeiene, which causes negligible killing of unirradiated cells. The response was thereby determined as a function of cell age at both the time of irradiation and the time of exposure to caffeine. The amount of cell killing depends strongly on when in the cycle caffeine is present and only weakly on when the cells are irradiated. If cells are irradiated in early G 1 , caffeine treatment enhances killing for 2 to 3 hr. No additional enhancement is observed until 16 to 17 hr postcollection, corresponding to G 2 ; here they enter a second period of much greater sensitivity. Similarly, fluorodeoxyuridine resynchronized cells irradiated during S and treated with caffeine suffer no enhanced killing until they pass into this sensitive phase in G 2 , approximately 7 hr after release from the fluorodeoxyuridine block. The sensitive period appears to coincide with G 2 arrest. The rate and extent of killing during this period are dependent upon the x-ray dose and the caffeine concentration. In the absence of caffeine, cells irradiated in G 1 lose sensitivity to caffeine in about 9 hr; they do so faster in G 2 . It is concluded that the potentially lethal x-ray damage expressed on treatment with caffeine is retained for many hours in the presence of caffeine and is maximally manifested by G 2 -arrested cells

  6. Different test systems in Aspergillus nidulans for the evaluation of mitotic gene conversion, crossing-over and non-disjunction

    International Nuclear Information System (INIS)

    De Bertoldi, M.; Griselli, M.; Consiglio Nazionale delle Ricerche, Pisa; Barale, R.

    1980-01-01

    The wide variety of the genetic alterations produced by environmental mutagens has increased the necessity of using experimental microorganisms to reveal the induction of such genetic events with short-term tests. Aspergillus nidulans, because of its well-developed genetic system and the availability of morphological markers seay to score, can be profitably used in mutagen testing. The constitution of particular diploid strains of A. nidulans able to detect the induction of mitotic gene conversion, mitotic crossing-over and mitotic non-disjunction with selective procedures are described and validated with standard mutagens: methyl methanesulphonate and UV radiation (lacking a specific genetic activity), benomyl and p-fluorophenylalanine (with a specific genetic activity). The possibility of using mammalian metabolic activation of promutagens in A. nidulans in vitro was tested with cyclophosphamide, with positive results in all the tested genetic systems. A method that increases the sensitivity of conidia to mutagenic treatments is described; its application appeared to be particularly useful in experiments on crossing-over and non-disjunction. (orig.)

  7. A method for determining the biological effectiveness of ionizing radiation by evaluating the mitotic inhibition of Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Merkle, K.

    1977-03-01

    The mitotic response of mouse ascites tumor cells to in vivo 60 Co γ-irradiation (50, 100, 200, and 300 rad) was investigated on the fourth day after inoculation at 1 hour postirradiation. In the dose range applied the relationship between the mitotic index (MI) and the gamma dose (D, in rad) could be represented by MI = -35,07 lg D + 105,57. (author)

  8. INFLUENCE OF SUMIDAN ON MITOTIC DIVISION IN TRIGONELLA FOENUM GRAECUM L. SPECIES

    Directory of Open Access Journals (Sweden)

    Florina Mihaela Axente

    2006-08-01

    Full Text Available : This paper includes the cytogenetic effects induced by sumidan insectofungicide in meristematic cells of Trigonella foenum graecum L. root tips. The increase of pesticide concentration determined the decrease of mitotic index, while the frequency and the type of chromosome aberrations are much greater in treated variants, comparatively with control.

  9. Isolation of a dinoflagellate mitotic cyclin by functional complementation in yeast

    International Nuclear Information System (INIS)

    Bertomeu, Thierry; Morse, David

    2004-01-01

    Dinoflagellates are parasite with permanently condensed chromosomes that lack histones and whose nuclear membrane remains intact during mitosis. These unusual nuclear characters have suggested that the typical cell cycle regulators might be slightly different than those in more typical eukaryotes. To test this, a cyclin has been isolated from the dinoflagellate Gonyaulax polyedra by functional complementation in cln123 mutant yeast. This GpCyc1 sequence contains two cyclin domains in its C-terminal region and a degradation box typical of mitotic cyclins. Similar to other dinoflagellate genes, GpCyc1 has a high copy number, with ∼5000 copies found in the Gonyaulax genome. An antibody raised against the N-terminal region of the GpCYC1 reacts with a 68 kDa protein on Western blots that is more abundant in cell cultures enriched for G2-phase cells than in those containing primarily G1-phase cells, indicating its cellular level follows a pattern expected for a mitotic cyclin. This is the first report of a cell cycle regulator cloned and sequenced from a dinoflagellate, and our results suggest control of the dinoflagellate cell cycle will be very similar to that of other organisms

  10. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation.

    Science.gov (United States)

    Minemoto, Yuzuru; Uchida, Sanae; Ohtsubo, Motoaki; Shimura, Mari; Sasagawa, Toshiyuki; Hirata, Masato; Nakagama, Hitoshi; Ishizaka, Yukihito; Yamashita, Katsumi

    2003-04-01

    Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.

  11. Cloning, enzyme characterization of recombinant human Eg5 and the development of a new inhibitor.

    Science.gov (United States)

    Yang, Lei; Jiang, Cheng; Liu, Fei; You, Qi-Dong; Wu, Wu-Tong

    2008-07-01

    The microtubule-dependent motor protein Eg5 is essential for the development and function of the mitotic spindle. Now it has become an anti-mitotic drug target in high throughput screening for anticancer dugs in vitro. Here is a protocol for cloning, expression and purification of a human Eg5 that codes for motor and linker domain in Escherichia coli BL21 (DE3) cells. The effects of temperature, pH, metal ions and DMSO on ATPase activity were investigated. A new compound CPUYL064 showed good inhibitory effect against Eg5 (IC(50) value, 100 nM). It inhibited the proliferation of human hepatocellular liver carcinoma cell line HepG2 in a dose- and time-dependent manner. CPUYL064 induced a clear G(2)/M phase arrest and caused the monastral spindle in HepG2 cells. Induction of apoptosis was further confirmed by changes in membrane phospholipids, changes in mitochondrial membrane potential and by detection of DNA fragmentation. These results indicate that CPUYL064 could be developed as a new, potent mitotic arrest compound.

  12. Pittsburgh Police Arrest Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Arrest data contains information on people taken into custody by City of Pittsburgh police officers. More serious crimes such as felony offenses are more likely to...

  13. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-01-01

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  14. Comparison of analysis and experimental data for a unique crack arrest specimen

    International Nuclear Information System (INIS)

    Ayres, D.J.; Fabi, R.J.; Schonenberg, R.Y.; Norris, D.M.

    1988-01-01

    A new fracture test specimen has been developed to study crack extension and arrest in nuclear reactor vessel steels subject to stress-intensity factor and toughness gradients similar to those in postulated pressurized thermal shock situations. A summary of the results of all the tests performed is presented to illustrate the range of crack arrest and crack reinitiation conditions observed. One test of this specimen with the corresponding stress analysis is described in detail. During this test the crack initiated, extended, arrested, reinitiated, extended again, and reached a final arrest. Comparison of detailed dynamic elastic-plastic finite-element analyses and dynamic strain and displacement measurements of the crack extension, arrest, and reinitiation events, combined with topographic analysis of the future surfaces, has led to a new understanding of the crack extension and arrest process. The results of the tests demonstrate crack arrest in rising stress-intensity field at near-upper-shelf temperature conditions and show that the toughness required for arrest is lower than would be predicted by the analysis procedures usually employed for pressurized thermal shock evaluations

  15. The geometry of empty space is the key to arresting dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, Aonghus; De Gregorio, Paolo; Dawson, K A [Department of Chemistry, University College Dublin, Irish Centre for Colloid Science and Biomaterials, Belfield, Dublin 4 (Ireland)

    2004-10-27

    We present the concept of dynamically available volume as a suitable order parameter for dynamical arrest. We show that dynamical arrest can be understood as a de-percolation transition of a vacancy network or available space. Beyond the arrest transition we find that droplets of available space are disconnected and the dynamics is frozen. This connection of the dynamics to the underlying geometrical structure of empty space provides us with a rich framework for studying the arrest transition.

  16. Transient Central Diabetes Insipidus and Marked Hypernatremia following Cardiorespiratory Arrest

    Directory of Open Access Journals (Sweden)

    Sahar H. Koubar

    2017-01-01

    Full Text Available Central Diabetes Insipidus is often an overlooked complication of cardiopulmonary arrest and anoxic brain injury. We report a case of transient Central Diabetes Insipidus (CDI following cardiopulmonary arrest. It developed 4 days after the arrest resulting in polyuria and marked hypernatremia of 199 mM. The latter was exacerbated by replacing the hypotonic urine by isotonic saline.

  17. Post-resuscitation care for survivors of cardiac arrest

    Directory of Open Access Journals (Sweden)

    Ashvarya Mangla

    2014-01-01

    Full Text Available Cardiac arrest can occur following a myriad of clinical conditions. With advancement of medical science and improvements in Emergency Medical Services systems, the rate of return of spontaneous circulation for patients who suffer an out-of-hospital cardiac arrest (OHCA continues to increase. Managing these patients is challenging and requires a structured approach including stabilization of cardiopulmonary status, early consideration of neuroprotective strategies, identifying and managing the etiology of arrest and initiating treatment to prevent recurrence. This requires a closely coordinated multidisciplinary team effort. In this article, we will review the initial management of survivors of OHCA, highlighting advances and ongoing controversies.

  18. Communication between members of the cardiac arrest team--a postal survey.

    Science.gov (United States)

    Pittman, J; Turner, B; Gabbott, D A

    2001-05-01

    Effective communication enhances team building and is perceived to improve the quality of team performance. A recent publication from the Resuscitation Council (UK) has highlighted this fact and recommended that cardiac arrest team members make contact daily. We wished to identify how often members of this team communicate prior to a cardiopulmonary arrest. A questionnaire on cardiac arrest team composition, leadership, communication and debriefing was distributed nationally to Resuscitation Training Officers (RTOs) and their responses analysed. One hundred and thirty (55%) RTOs replied. Physicians and anaesthetists were the most prominent members of the team. The Medical Senior House Officer is usually nominated as the team leader. Eighty-seven centres (67%) have no communication between team members prior to attending a cardiopulmonary arrest. In 33%, communication occurs but is either informal or fortuitous. The RTOs felt that communication is important to enhance team dynamics and optimise task allocation. Only 7% achieve a formal debrief following a cardiac arrest. Communication between members of the cardiac arrest team before and after a cardiac arrest is poor. Training and development of these skills may improve performance and should be prioritised. Team leadership does not necessarily reflect experience or training.

  19. Effect of AC magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ager, D.D.; Radul, J.A.

    1994-01-01

    The ability of 60-Hz magnetic fields to induce genetic damage in Saccharomyces cerevisiae was studied. The frequencies of induced mutation, gene conversion, and reciprocal mitotic crossing over were measured for exposures to 1-millitesla magnetic fields alone or in combination with various preliminary exposures to 254-nm ultraviolet light at intensities of 2-50 J/m 2 . These experiments were performed using a repair-proficient strain as well as a strain incapable of excising ultraviolet-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion, or reciprocal mitotic crossing over in either of these strains, nor did the fields influence the frequencies of ultraviolet-induced genetic events. 32 refs., 4 tabs

  20. Effect of normal and tumor factors on different phases of cell populations cycle.

    Science.gov (United States)

    Inda, A M; García, A L; Errecalde, A L; Badrán, A F

    1999-12-01

    In the present experiments we studied the effect of extracts from intact liver (LE), ES2 tumor extract (TE), plasmas from intact mice (PI), and from tumor bearing animals (PT) on different phases of hepatocytes and renocytes cell cycles. C3HS 28-day-old male mice, standardized for periodicity analysis, were injected at 16:00 hours and killed every 4 hours during a circadian cycle at 20:00/04; 00:00/08; 04:00/12; 08:00/16; 12:00/20 and 16:00/24 (time of day/hours post treatment). Colchicine (2 microg/g) was injected 4 hours before killing them. Samples of livers and kidneys were processed for histology and mitotic index determinations. The results were expressed as colchicine arrested metaphases per 1000 nuclei. The TE, LE and PI had a promoting effect on the mitotic activity of hepatocytes during the first 12 hours post treatment. During the subsequent 12 hours, not only these treatments but also the PI had an inhibiting effect on the mitotic activity of the same cell population. Also the TE and the PT had a promoting effect on the mitotic activity of the renocytes during the first 12 hours while the effect of all treatments showed a clear inhibition of the mitotic activity studied during the last 12 hours. Taking into account the time elapsed between the injections and the measurements made in these light-dark synchronized animals, we conclude that the increase in mitotic index observed in those tissues stemmed from a reinitiation of cell-cycle traverse in a subpopulation of G2-arrested, noncycling cells.

  1. Interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device – Numerical modelling

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device is implemented in foam-cored composite sandwich beams and tested using the Sandwich Tear Test (STT) configuration. A finite element model of the setup is developed, and the predictions are correlated with observations and results from a recently conducted experiment...... concept, as well as a design tool that can be used for the implementation of crack arresting devises in engineering applications of sandwich components and structures....

  2. Current Pharmacological Advances in the Treatment of Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Andry Papastylianou

    2012-01-01

    Full Text Available Cardiac arrest is defined as the sudden cessation of spontaneous ventilation and circulation. Within 15 seconds of cardiac arrest, the patient loses consciousness, electroencephalogram becomes flat after 30 seconds, pupils dilate fully after 60 seconds, and cerebral damage takes place within 90–300 seconds. It is essential to act immediately as irreversible damage can occur in a short time. Cardiopulmonary resuscitation (CPR is an attempt to restore spontaneous circulation through a broad range of interventions which are early defibrillation, high-quality and uninterrupted chest compressions, advanced airway interventions, and pharmacological interventions. Drugs should be considered only after initial shocks have been delivered (when indicated and chest compressions and ventilation have been started. During cardiopulmonary resuscitation, no specific drug therapy has been shown to improve survival to hospital discharge after cardiac arrest, and only few drugs have a proven benefit for short-term survival. This paper reviews current pharmacological treatment of cardiac arrest. There are three groups of drugs relevant to the management of cardiac arrest: vasopressors, antiarrhythmics, and other drugs such as sodium bicarbonate, calcium, magnesium, atropine, fibrinolytic drugs, and corticosteroids.

  3. Major life events as potential triggers of sudden cardiac arrest.

    Science.gov (United States)

    Wicks, April F; Lumley, Thomas; Lemaitre, Rozenn N; Sotoodehnia, Nona; Rea, Thomas D; McKnight, Barbara; Strogatz, David S; Bovbjerg, Viktor E; Siscovick, David S

    2012-05-01

    We investigated the risk of sudden cardiac arrest in association with the recent loss of, or separation from, a family member or friend. Our case-crossover study included 490 apparently healthy married residents of King County, Washington, who suffered sudden cardiac arrest between 1988 and 2005. We compared exposure to spouse-reported family/friend events occurring ≤ 1 month before sudden cardiac arrest with events occurring in the previous 5 months. We evaluated potential effect modification by habitual vigorous physical activity. Recent family/friend events were associated with a higher risk of sudden cardiac arrest (odds ratio [OR] = 1.6; 95% confidence interval [CI] = 1.1-2.4). ORs for cases with and without habitual vigorous physical activity were 1.1 (0.6-2.2) and 2.0 (1.2-3.1), respectively (interaction P = 0.02). These results suggest family/friend events may trigger sudden cardiac arrest and raise the hypothesis that habitual vigorous physical activity may lower susceptibility to these potential triggers.

  4. Ventilation and gas exchange management after cardiac arrest.

    Science.gov (United States)

    Sutherasan, Yuda; Raimondo, Pasquale; Pelosi, Paolo

    2015-12-01

    For several decades, physicians had integrated several interventions aiming to improve the outcomes in post-cardiac arrest patients. However, the mortality rate after cardiac arrest is still as high as 50%. Post-cardiac arrest syndrome is associated with high morbidity and mortality due to not only poor neurological outcome and cardiovascular failure but also respiratory dysfunction. To minimize ventilator-associated lung injury, protective mechanical ventilation by using low tidal volume ventilation and driving pressure may decrease pulmonary complications and improve survival. Low level of positive end-expiratory pressure (PEEP) can be initiated and titrated with careful cardiac output and respiratory mechanics monitoring. Furthermore, optimizing gas exchange by avoiding hypoxia and hyperoxia as well as maintaining normocarbia may improve neurological and survival outcome. Early multidisciplinary cardiac rehabilitation intervention is recommended. Minimally invasive monitoring techniques, that is, echocardiography, transpulmonary thermodilution method measuring extravascular lung water, as well as transcranial Doppler ultrasound, might be useful to improve appropriate management of post-cardiac arrest patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ager, D D; Radul, J A

    1992-12-01

    The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events.

  6. Cooling the crisis: Therapeutic hypothermia after sickle cardiac arrest

    NARCIS (Netherlands)

    Metske, Hennie A.; Postema, Pieter G.; Biemond, Bart J.; Bouman, Catherine S. C.

    2012-01-01

    Objective: The management of patients with sickle-cell disease and cardiac arrest presents special challenges. Mild therapeutic hypothermia may improve survival and neurologic outcome after cardiac arrest, however, it may also precipitate sickling in patients with sickle-cell disease. Rigorous

  7. The cytotoxic effect of oxybuprocaine on human corneal epithelial cells by inducing cell cycle arrest and mitochondria-dependent apoptosis.

    Science.gov (United States)

    Fan, W-Y; Wang, D-P; Wen, Q; Fan, T-J

    2017-08-01

    Oxybuprocaine (OBPC) is a widely used topical anesthetic in eye clinic, and prolonged and repeated usage of OBPC might be cytotoxic to the cornea, especially to the outmost corneal epithelium. In this study, we characterized the cytotoxic effect of OBPC on human corneal epithelial (HCEP) cells and investigated its possible cellular and molecular mechanisms using an in vitro model of non-transfected HCEP cells. Our results showed that OBPC at concentrations ranging from 0.025% to 0.4% had a dose- and time-dependent cytotoxicity to HCEP cells. Moreover, OBPC arrested the cells at S phase and induced apoptosis of these cells by inducing plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation. Furthermore, OBPC could trigger the activation of caspase-2, -3, and -9, downregulate the expression of Bcl-xL, upregulate the expression of Bax along with the cytoplasmic amount of mitochondria-released apoptosis-inducing factor, and disrupt mitochondrial transmembrane potential. Our results suggest that OBPC has a dose- and time-dependent cytotoxicity to HCEP cells by inducing cell cycle arrest and cell apoptosis via a death receptor-mediated mitochondria-dependent proapoptotic pathway, and this novel finding provides new insights into the acute cytotoxicity and its toxic mechanisms of OBPC on HCEP cells.

  8. The neighborhood context of racial and ethnic disparities in arrest.

    Science.gov (United States)

    Kirk, David S

    2008-02-01

    This study assesses the role of social context in explaining racial and ethnic disparities in arrest, with afocus on how distinct neighborhood contexts in which different racial and ethnic groups reside explain variations in criminal outcomes. To do so, I utilize a multilevel, longitudinal research design, combining individual-level data with contextual data from the Project on Human Development in Chicago Neighborhoods (PHDCN). Findings reveal that black youths face multiple layers of disadvantage relative to other racial and ethnic groups, and these layers work to create differences in arrest. At the family level, results show that disadvantages in the form of unstable family structures explain much of the disparities in arrest across race and ethnicity. At the neighborhood level, black youths tend to reside in areas with both significantly higher levels of concentrated poverty than other youths as well as lower levels of collective efficacy than white youths. Variations in neighborhood tolerance of deviance across groups explain little of the arrest disparities, yet tolerance of deviance does influence the frequency with which a crime ultimately ends in an arrest. Even after accounting for relevant demographic, family, and neighborhood-level predictors, substantial residual arrest differences remain between black youths and youths of other racial and ethnic groups.

  9. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogona...

  10. Extracorporeal cardiopulmonary resuscitation after out-of-hospital cardiac arrest in a Danish health region.

    Science.gov (United States)

    Fjølner, J; Greisen, J; Jørgensen, M R S; Terkelsen, C J; Ilkjaer, L B; Hansen, T M; Eiskjaer, H; Christensen, S; Gjedsted, J

    2017-02-01

    Extracorporeal Cardiopulmonary Resuscitation (ECPR) has emerged as a feasible rescue therapy for refractory, normothermic out-of-hospital cardiac arrest (OHCA). Reported survival rates vary and comparison between studies is hampered by heterogeneous study populations, differences in bystander intervention and in pre-hospital emergency service organisation. We aimed to describe the first experiences, treatment details, complications and outcome with ECPR for OHCA in a Danish health region. Retrospective study of adult patients admitted at Aarhus University Hospital, Denmark between 1 January 2011 and 1 July 2015 with witnessed, refractory, normothermic OHCA treated with ECPR. OHCA was managed with pre-hospital advanced airway management and mechanical chest compression during transport. Relevant pre-hospital and in-hospital data were collected with special focus on low-flow time and ECPR duration. Survival to hospital discharge with Cerebral Performance Category (CPC) of 1 and 2 at hospital discharge was the primary endpoint. Twenty-one patients were included. Median pre-hospital low-flow time was 54 min [range 5-100] and median total low-flow time was 121 min [range 55-192]. Seven patients survived (33%). Survivors had a CPC score of 1 or 2 at hospital discharge. Five survivors had a shockable initial rhythm. In all survivors coronary occlusion was the presumed cause of cardiac arrest. Extracorporeal cardiopulmonary resuscitation is feasible as a rescue therapy in normothermic refractory OHCA in highly selected patients. Low-flow time was longer than previously reported. Survival with favourable neurological outcome is possible despite prolonged low-flow duration. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Efficacy of silver diamine fluoride for Arresting Caries Treatment.

    NARCIS (Netherlands)

    Yee, R.T.F.; Holmgren, C.J.; Mulder, J.; Lama, D.; Walker, D.; Palenstein Helderman, W.H. van

    2009-01-01

    Arresting Caries Treatment (ACT) has been proposed to manage untreated dental caries in children. This prospective randomized clinical trial investigated the caries-arresting effectiveness of a single spot application of: (1) 38% silver diamine fluoride (SDF) with tannic acid as a reducing agent;

  12. HSST crack-arrest studies overview

    International Nuclear Information System (INIS)

    Pugh, C.E.; Whitman, G.D.

    1985-01-01

    An overview is given of the efforts underway in the Heavy-Section Steel Technology (HSST) Program to better understand and model crack-arrest behavior in reactor pressure vessel steels. The efforts are both experimental and analytical. The experimental work provides K/sub Ia/ data from laboratory-sized specimens, from thick-wall cylinders which exhibit essentially-full restraint and from nonisothermal wide-plate specimens. These data serve to define toughness-temperature trends and to provide validation data under prototypical reactor conditions. The analytical efforts interpret and correlate the data, plus provide LEFM, elastodynamic and viscoplastic methods for analyzing crack run-arrest behavior in reactor vessels. The analysis methods are incorporated into finite element computer programs which are under development at three separate laboratories. 22 refs., 10 figs

  13. Analysis of Giant-nucleated Cell Formation Following X-ray and Proton Irradiations

    Science.gov (United States)

    Almahwasi, Ashraf Abdu

    Radiation-induced genetic instability has been observed in survivors of irradiated cancerous and normal cells in vitro and in vivo and has been determined in different forms, such as delayed cell death, chromosomal aberration or mutation. A well defined and characterized normal human-diploid AG1522 fibroblast cell line was used to study giant-nucleated cell (GCs) formation as the ultimate endpoint of this research. The average nuclear cross-sectional areas of the AG1522 cells were measured in mum2. The doubling time required by the AG1522 cells to divide was measured. The potential toxicity of the Hoechst dye at a working concentration on the live AG1522 cells was assessed. The yield of giant cells was determined at 7, 14 and 21 days after exposure to equivalent clinical doses of 0.2, 1 or 2 Gy of X-ray or proton irradiation. Significant differences were found to exist between X-ray or proton irradiation when compared with sham-irradiated control populations. The frequency of GCs induced by X-rays was also compared to those formed in proton irradiated cultures. The results confirm that 1 Gy X-rays are shown to induce higher rates of mitotically arrested GCs, increasing continually over time up to 21 days post-irradiation. The yield of GCs was significantly greater (10%) compared to those formed in proton populations (2%) 21 days postirradiation. The GCs can undergo a prolonged mitotic arrest that significantly increases the length of cell cycle. The arrest of GCs at the mitotic phase for longer periods of time might be indicative of a strategy for cell survival, as it increases the time available for DNA repair and enables an alternative route to division for the cells. However, the reduction in their formation 21 days after both types of radiation might favour GCs formation, ultimately contributing to carcinogenesis or cancer therapy resistance. The X-ray experiments revealed a dose-dependent increase in the GCs up to 14 days after irradiation. Although the proton

  14. Cardiac arrest following ventilator fire: A rare cause

    Directory of Open Access Journals (Sweden)

    K Nazeer Ahmed

    2012-01-01

    Full Text Available Operating room fires are rare events, but when occur they result in serious and sometimes fatal consequences. Anaesthesia ventilator fire leading to cardiac arrest is a rare incident and has not been reported. We report a near catastrophic ventilator fire leading to cardiac arrest in a patient undergoing subtotal thyroidectomy. In the present case sparks due to friction or electrical short circuit within the ventilator might have acted as source of ignition leading to fire and explosion in the oxygen rich environment. The patient was successfully resuscitated and revived with uneventful recovery and no adverse sequelae. The cardiac arrest was possibly due to severe hypoxia resulting from inhalation of smoke containing high concentrations of carbon monoxide and other noxious gases.

  15. Critical Importance of Protein 4.1 in Centrosome and Mitotic Spindle Aberrations in Breast Cancer Pathogenesis

    National Research Council Canada - National Science Library

    Krauss, Sharon W

    2006-01-01

    We proposed to test the novel hypothesis that protein 4.1 is of critical importance to centrosome and mitotic spindle aberrations that directly impact aspects of breast cancer pathogenesis. We characterized...

  16. Perioperative cardiac arrest: an evolutionary analysis of the intra-operative cardiac arrest incidence in tertiary centers in Brazil

    Directory of Open Access Journals (Sweden)

    Matheus Fachini Vane

    2016-03-01

    Full Text Available Background: Great changes in medicine have taken place over the last 25 years worldwide. These changes in technologies, patient risks, patient profile, and laws regulating the medicine have impacted the incidence of cardiac arrest. It has been postulated that the incidence of intraoperative cardiac arrest has decreased over the years, especially in developed countries. The authors hypothesized that, as in the rest of the world, the incidence of intraoperative cardiac arrest is decreasing in Brazil, a developing country. Objectives: The aim of this study was to search the literature to evaluate the publications that relate the incidence of intraoperative cardiac arrest in Brazil and analyze the trend in the incidence of intraoperative cardiac arrest. Contents: There were 4 articles that met our inclusion criteria, resulting in 204,072 patients undergoing regional or general anesthesia in two tertiary and academic hospitals, totalizing 627 cases of intraoperative cardiac arrest. The mean intraoperative cardiac arrest incidence for the 25 years period was 30.72:10,000 anesthesias. There was a decrease from 39:10,000 anesthesias to 13:10,000 anesthesias in the analyzed period, with the related lethality from 48.3% to 30.8%. Also, the main causes of anesthesia-related cause of mortality changed from machine malfunction and drug overdose to hypovolemia and respiratory causes. Conclusions: There was a clear reduction in the incidence of intraoperative cardiac arrest in the last 25 years in Brazil. This reduction is seen worldwide and might be a result of multiple factors, including new laws regulating the medicine in Brazil, incorporation of technologies, better human development level of the country, and better patient care. Resumo: Justificativa: Nos últimos 25 anos ocorreram grandes mudanças na medicina em todo o mundo. Essas mudanças de tecnologias, riscos do paciente, perfil do paciente e leis que regulam medicamentos tiveram impacto na incid

  17. Crack arrest concepts for failure prevention and life extension. Proceedings

    International Nuclear Information System (INIS)

    Wiesner, C.S.

    1996-01-01

    These proceedings contain the thirteen papers presented at a seminar on crack arrest concepts for failure prevention and life extension. They provide a picture of the current position of crack arrest testing, models and applications, discussion of the relevance of recent research to industrial problems, and an assessment of whether the application of crack arrest models provides additional safety. Separate abstracts have been prepared for seven papers of relevance to the nuclear industry and, in particular, reactor pressure vessels. (UK)

  18. Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women

    Science.gov (United States)

    White, Yvonne A. R.; Woods, Dori C.; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L.

    2012-01-01

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a FACS-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically-active cells that exhibit a gene expression profile consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and spontaneously generate 35–50 µm oocytes, as determined by morphology, gene expression and attainment of haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1–2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, like adult mice, possess rare mitotically-active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo. PMID:22366948

  19. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women.

    Science.gov (United States)

    White, Yvonne A R; Woods, Dori C; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L

    2012-02-26

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a fluorescence-activated cell sorting-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically active cells that have a gene expression profile that is consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and can spontaneously generate 35- to 50-μm oocytes, as determined by morphology, gene expression and haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1-2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, similar to adult mice, possess rare mitotically active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.

  20. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit.

    Science.gov (United States)

    Kim, Jaeyoun; Lee, Kwanwoo; Rhee, Kunsoo

    2015-12-09

    Centrioles are duplicated and segregated in close link to the cell cycle. During mitosis, daughter centrioles are disengaged and eventually separated from mother centrioles. New daughter centrioles may be generated only after centriole separation. Therefore, centriole separation is considered a licensing step for centriole duplication. It was previously known that separase specifically cleaves pericentrin (PCNT) during mitotic exit. Here we report that PCNT has to be phosphorylated by PLK1 to be a suitable substrate of separase. Phospho-resistant mutants of PCNT are not cleaved by separase and eventually inhibit centriole separation. Furthermore, phospho-mimetic PCNT mutants rescue centriole separation even in the presence of a PLK1 inhibitor. On the basis on these results, we propose that PLK1 phosphorylation is a priming step for separase-mediated cleavage of PCNT and eventually for centriole separation. PLK1 phosphorylation of PCNT provides an additional layer of regulatory mechanism to ensure the fidelity of centriole separation during mitotic exit.

  1. Al-Qaeda arrest casts shadow over the LHC

    CERN Multimedia

    Dacey, James

    2010-01-01

    "Cern remains on course for the imminent switch-on of the Large Hadron Collider (LHC) despite the media frenzy following the recent arrest of a physicist who had been working at the facility. The researcher in question is a 32-year-old man of Algerian descent who is expected to face trail in France - the country in which he was arrested" (0.5 page)

  2. Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in PR-SET7-deficient livers

    Science.gov (United States)

    Nikolaou, Kostas C; Moulos, Panagiotis; Chalepakis, George; Hatzis, Pantelis; Oda, Hisanobu; Reinberg, Danny; Talianidis, Iannis

    2015-01-01

    PR-SET7-mediated histone 4 lysine 20 methylation has been implicated in mitotic condensation, DNA damage response and replication licensing. Here, we show that PR-SET7 function in the liver is pivotal for maintaining genome integrity. Hepatocyte-specific deletion of PR-SET7 in mouse embryos resulted in G2 phase arrest followed by massive cell death and defect in liver organogenesis. Inactivation at postnatal stages caused cell duplication-dependent hepatocyte necrosis, accompanied by inflammation, fibrosis and compensatory growth induction of neighboring hepatocytes and resident ductal progenitor cells. Prolonged necrotic regenerative cycles coupled with oncogenic STAT3 activation led to the spontaneous development of hepatic tumors composed of cells with cancer stem cell characteristics. These include a capacity to self-renew in culture or in xenografts and the ability to differentiate to phenotypically distinct hepatic cells. Hepatocellular carcinoma in PR-SET7-deficient mice displays a cancer stem cell gene signature specified by the co-expression of ductal progenitor markers and oncofetal genes. PMID:25515659

  3. Community involvement in out of hospital cardiac arrest

    Science.gov (United States)

    Shams, Ali; Raad, Mohamad; Chams, Nour; Chams, Sana; Bachir, Rana; El Sayed, Mazen J.

    2016-01-01

    Abstract Out of hospital cardiac arrest (OHCA) is a leading cause of death worldwide. Developing countries including Lebanon report low survival rates and poor neurologic outcomes in affected victims. Community involvement through early recognition and bystander cardiopulmonary resuscitation (CPR) can improve OHCA survival. This study assesses knowledge and attitude of university students in Lebanon and identifies potential barriers and facilitators to learning and performing CPR. A cross-sectional survey was administered to university students. The questionnaire included questions regarding the following data elements: demographics, knowledge, and awareness about sudden cardiac arrest, CPR, automated external defibrillator (AED) use, prior CPR and AED training, ability to perform CPR or use AED, barriers to performing/learning CPR/AED, and preferred location for attending CPR/AED courses. Descriptive analysis followed by multivariate analysis was carried out to identify predictors and barriers to learning and performing CPR. A total of 948 students completed the survey. Participants’ mean age was 20.1 (±2.1) years with 53.1% women. Less than half of participants (42.9%) were able to identify all the presenting signs of cardiac arrest. Only 33.7% of participants felt able to perform CPR when witnessing a cardiac arrest. Fewer participants (20.3%) reported receiving previous CPR training. Several perceived barriers to learning and performing CPR were also reported. Significant predictors of willingness to perform CPR when faced with a cardiac arrest were: earning higher income, previous CPR training and feeling confident in one's ability to apply an AED, or perform CPR. Lacking enough expertise in performing CPR was a significant barrier to willingness to perform CPR. University students in Lebanon are familiar with the symptoms of cardiac arrest, however, they are not well trained in CPR and lack confidence to perform it. The attitude towards the importance of

  4. Resistance to bleomycin in cancer cell lines is characterized by prolonged doubling time, reduced DNA damage and evasion of G2/M arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available To establish, characterize and elucidate potential mechanisms of acquired bleomycin (BLM resistance using human cancer cell lines. Seven BLM-resistant cell lines were established by exposure to escalating BLM concentrations over a period of 16-24 months. IC50 values and cell doubling times were quantified using a real time cytotoxicity assay. COMET and γ-H2AX assays, cell cycle analysis, and apoptosis assessment further investigated the mechanisms of BLM resistance in these cell lines.Compared with parental cell lines, real time cytotoxicity assays revealed 7 to 49 fold increases in IC50 and a mean doubling time increase of 147 % (range 64 %-352% in BLM-resistant sub-clones (p<0.05 for both. Higher maintenance BLM concentrations were associated with higher IC50 and increased doubling times (p<0.05. Significantly reduced DNA damage (COMET and γ-H2AX assays, G2/M arrest, and apoptosis (p<0.05 for each set of comparison following high-dose acute BLM exposure was observed in resistant sub-clones, compared with their BLM-sensitive parental counterparts. Three weeks of BLM-free culturing resulted in a partial return to BLM sensitivity in 3/7 BLM-resistant sub-clones (p<0.05.Bleomycin resistance may be associated with reduced DNA damage after bleomycin exposure, resulting in reduced G2/M arrest, and reduced apoptosis.

  5. Cell cycle age dependence for radiation-induced G2 arrest: evidence for time-dependent repair

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G 2 . The sensitivity of Chinese hamster ovary cells to G 2 arrest induction by X rays increases through the cell cycle, up to the X-ray transition point (TP) in G 2 . This age response can be explained by cell cycle age-dependent changes in susceptibility of the target(s) for G 2 arrest and/or by changes in capability for postirradiation recovery from G 2 arrest damage. Discrimination between sensitivity changes and repair phenomena is possible only if the level of G 2 arrest-causing damage sustained by a cell at the time of irradiation and the level ultimately expressed as arrest can be determined. The ability of caffeine to ameliorate radiation-induced G 2 arrest, while inhibiting repair of G 2 arrest-causing damage makes such an analysis possible. In the presence of caffeine, progression of irradiated cells was relatively unperturbed, but on caffeine removal, G 2 arrest was expressed. The duration of G 2 arrest was independent of the length of the prior caffeine exposure. This finding indicates that the target for G 2 arrest induction is present throughout the cell cycle and that the level of G 2 arrest damage incurred is initially constant for all cell cycle phases. The data are consistent with the existence of a time-dependent recovery mechanism to explain the age dependence for radiation induction of G 2 arrest

  6. In-silico modeling of the mitotic spindle assembly checkpoint.

    Directory of Open Access Journals (Sweden)

    Bashar Ibrahim

    2008-02-01

    Full Text Available The Mitotic Spindle Assembly Checkpoint ((MSAC is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer.We have constructed and validated for the human (MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the (MSAC are derived. Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the "Dissociation" and the "Convey" model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments.Only in the controlled case, our models show (MSAC behaviour at meta- to anaphase transition in agreement with experimental observations. Our simulations revealed that for (MSAC activation, Cdc20 is not fully sequestered; instead APC is inhibited by MCC binding.

  7. The effectiveness of silver diamine fluoride in arresting caries.

    Science.gov (United States)

    Richards, Derek

    2017-10-27

    Data sourcesPubMed, Embase, Scopus, China National Knowledge Infrastructure (CNKI), Ichushi-web, Biblioteca Virtual en Salud Espana (BVSE) and Biblioteca Virtual em Saude (BVS) databases. There were no limits on language or publication dates.Study selectionTwo reviewers selected prospective clinical studies investigating SDF treatment for caries prevention in children.Data extraction and synthesisData was abstracted independently by two reviewers and risk of bias assessed. Meta-analysis was performed on studies in which the caries-arresting rate using 38% SDF solution on primary teeth could be obtained or calculated.ResultsNineteen studies were included; 16 were conducted in the primary dentition and three in permanent dentition. Fourteen studies used 38% SDF, three 30% SDF, and two 10% SDF. Eight studies using 38% SDF contributed to a meta-analysis and the overall proportion of arrested caries was 81% (95% CI; 68-89%). Percentage reductions were also calculated for 6,12,18,24 and >30 months. Arrested carious lesions stained black but no other adverse effects were reported.ConclusionsSDF commonly used at a high concentration (38%, 44,800ppm fluoride) is effective in arresting caries among children. There is no consensus on its number and frequency of application to arrest caries. Further studies are necessary to develop evidence-based guidelines on its use in children.

  8. 29 CFR 1915.159 - Personal fall arrest systems (PFAS).

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Personal fall arrest systems (PFAS). 1915.159 Section 1915... Protective Equipment (PPE) § 1915.159 Personal fall arrest systems (PFAS). The criteria of this section apply to PFAS and their use. Effective January 1, 1998, body belts and non-locking snaphooks are not...

  9. Early Recognition of Foreign Body Aspiration as the Cause of Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2016-01-01

    Full Text Available Foreign body aspiration (FBA is uncommon in the adult population but can be a life-threatening condition. Clinical manifestations vary according to the degree of airway obstruction, and, in some cases, making the correct diagnosis requires a high level of clinical suspicion combined with a detailed history and exam. Sudden cardiac arrest after FBA may occur secondary to asphyxiation. We present a 48-year-old male with no history of cardiac disease brought to the emergency department after an out-of-hospital cardiac arrest (OHCA. The patient was resuscitated after 15 minutes of cardiac arrest. He was initially managed with therapeutic hypothermia (TH. Subsequent history suggested FBA as a possible etiology of the cardiac arrest, and fiberoptic bronchoscopy demonstrated a piece of meat and bone lodged in the left main stem bronchus. The foreign body was removed with the bronchoscope and the patient clinically improved with full neurological recovery. Therapeutic hypothermia following cardiac arrest due to asphyxia has been reported to have high mortality and poor neurological outcomes. This case highlights the importance of early identification of FBA causing cardiac arrest, and we report a positive neurological outcome for postresuscitation therapeutic hypothermia following cardiac arrest due to asphyxia.

  10. Out-of-Hospital Cardiac Arrest in Denmark

    DEFF Research Database (Denmark)

    Wissenberg Jørgensen, Mads

    challenges, due to the victim’s physical location, which brings an inherent risk of delay (or altogether absence) of recognition and treatment of cardiac arrest. A low frequency of bystander cardiopulmonary resuscitation and low 30-day survival after out-of-hospital cardiac arrest were identified nearly ten...... years ago in Denmark. These findings led to several national initiatives to strengthen bystander resuscitation attempts and advance care. Despite these nationwide efforts, it was unknown prior to this project whether these efforts resulted in changes in resuscitation attempts by bystanders and changes...

  11. Licence prolongations of US nuclear power plants; Les prolongations de licence des centrales nucleaires americaines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-04-01

    Licences of US nuclear reactors were initially attributed for a 40 years duration. However, the vast majority of the reactors can benefit of a licence prolongation for a period of 20 years maximum. This article recalls first the procedure to follow for the licence prolongation demands (safety analysis, components aging, environmental impact statement), and then it makes a status of the accepted prolongations, of the demands under examination, and of the demands that should be presented in the next 5 years. (J.S.)

  12. Dental Calculus Arrest of Dental Caries.

    Science.gov (United States)

    Keyes, Paul H; Rams, Thomas E

    An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.

  13. Dental Calculus Arrest of Dental Caries

    Science.gov (United States)

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993

  14. Out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Sondergaard, Kathrine B; Hansen, Steen Moller; Pallisgaard, Jannik L

    2018-01-01

    AIMS: Despite wide dissemination of automated external defibrillators (AEDs), bystander defibrillation rates remain low. We aimed to investigate how route distance to the nearest accessible AED was associated with probability of bystander defibrillation in public and residential locations. METHODS......: We used data from the nationwide Danish Cardiac Arrest Registry and the Danish AED Network to identify out-of-hospital cardiac arrests and route distances to nearest accessible registered AED during 2008-2013. The association between route distance and bystander defibrillation was described using...... in public locations, the probability of bystander defibrillation at 0, 100 and 200meters from the nearest AED was 35.7% (95% confidence interval 28.0%-43.5%), 21.3% (95% confidence interval 17.4%-25.2%), and 13.7% (95% confidence interval 10.1%-16.8%), respectively. The corresponding numbers for cardiac...

  15. Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.

    Science.gov (United States)

    Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G

    2018-04-01

    Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein

    Science.gov (United States)

    Marsh, Elizabeth K.; Delury, Craig P.; Davies, Nicholas J.; Weston, Christopher J.; Miah, Mohammed A.L.; Banks, Lawrence; Parish, Joanna L.

    2017-01-01

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification. PMID:28061478

  17. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein.

    Science.gov (United States)

    Marsh, Elizabeth K; Delury, Craig P; Davies, Nicholas J; Weston, Christopher J; Miah, Mohammed A L; Banks, Lawrence; Parish, Joanna L; Higgs, Martin R; Roberts, Sally

    2017-03-21

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.

  18. Influence of irradiation at different stages of mitotic cycle upon production of sister chromatid exchanges in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Antoshina, M.M.; Poryadkova, N.A.; Luchnik, N.V.

    1982-01-01

    Frequency of sister chromatid exchanges (SCE) and microexchanges in Chinese hamster cells has been studied by means of the method of differential staining of chromatids on irradiation at different stages of the mitotic cycle. It is shown that the irradiation enhances frequency of SCE and microexchanges if it is carried out before the end of DNA replication synthesis. Comparison of frequency depenedence of radiation-induced microexchanges and SCE at different stages of the mitotic cycle results in the conclusion that the microexchanges are none other than small SCE

  19. PRR11 regulates late-S to G2/M phase progression and induces premature chromatin condensation (PCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chundong; Zhang, Ying; Li, Yi; Zhu, Huifang; Wang, Yitao; Cai, Wei [Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016 (China); Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China); Zhu, Jiang [Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China); Ozaki, Toshinori [Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuohku, Chiba 260-8717 (Japan); Bu, Youquan, E-mail: buyqcn@aliyun.com [Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016 (China); Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China)

    2015-03-13

    Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent with those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis. - Highlights: • PRR11 started to increase in the late S phase and was retained until just before mitotic telophase. • PRR11-knockdown caused a significant cell cycle arrest in the late S phase and G2 phase. • The treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. • PRR11-knockdown led to multipolar spindles and multiple nuclei. • Forced expression of PRR11 promoted the PCC and inhibited

  20. PRR11 regulates late-S to G2/M phase progression and induces premature chromatin condensation (PCC)

    International Nuclear Information System (INIS)

    Zhang, Chundong; Zhang, Ying; Li, Yi; Zhu, Huifang; Wang, Yitao; Cai, Wei; Zhu, Jiang; Ozaki, Toshinori; Bu, Youquan

    2015-01-01

    Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent with those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis. - Highlights: • PRR11 started to increase in the late S phase and was retained until just before mitotic telophase. • PRR11-knockdown caused a significant cell cycle arrest in the late S phase and G2 phase. • The treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. • PRR11-knockdown led to multipolar spindles and multiple nuclei. • Forced expression of PRR11 promoted the PCC and inhibited

  1. Scoulerine affects microtubule structure, inhibits proliferation, arrests cell cycle and thus culminates in the apoptotic death of cancer cells.

    Science.gov (United States)

    Habartova, Klara; Havelek, Radim; Seifrtova, Martina; Kralovec, Karel; Cahlikova, Lucie; Chlebek, Jakub; Cermakova, Eva; Mazankova, Nadezda; Marikova, Jana; Kunes, Jiri; Novakova, Lucie; Rezacova, Martina

    2018-03-19

    Scoulerine is an isoquinoline alkaloid, which indicated promising suppression of cancer cells growth. However, the mode of action (MOA) remained unclear. Cytotoxic and antiproliferative properties were determined in this study. Scoulerine reduces the mitochondrial dehydrogenases activity of the evaluated leukemic cells with IC 50 values ranging from 2.7 to 6.5 µM. The xCELLigence system revealed that scoulerine exerted potent antiproliferative activity in lung, ovarian and breast carcinoma cell lines. Jurkat and MOLT-4 leukemic cells treated with scoulerine were decreased in proliferation and viability. Scoulerine acted to inhibit proliferation through inducing G2 or M-phase cell cycle arrest, which correlates well with the observed breakdown of the microtubule network, increased Chk1 Ser345, Chk2 Thr68 and mitotic H3 Ser10 phosphorylation. Scoulerine was able to activate apoptosis, as determined by p53 upregulation, increase caspase activity, Annexin V and TUNEL labeling. Results highlight the potent antiproliferative and proapoptotic function of scoulerine in cancer cells caused by its ability to interfere with the microtubule elements of the cytoskeleton, checkpoint kinase signaling and p53 proteins. This is the first study of the mechanism of scoulerine at cellular and molecular level. Scoulerine is a potent antimitotic compound and that it merits further investigation as an anticancer drug.

  2. Number of nuclei, mitotic activity and cell length in Cladophora sp thallus treated with cadmium and chromium

    Directory of Open Access Journals (Sweden)

    Monika Krajewska

    2014-01-01

    Full Text Available Cladophora sp., a fresh water, filamentous, multi-nucleate alga growing 16 days in the presence of cadmium and chromium at concentrations 10-4 10-8M was the subject of the experiment. Chromium ions reduced the number of nuclei and mitotic activity, and disturbed the correlation between cell length and number of nuclei, more than cadmium ions. Moreover, both tested metals caused the disappearance of cells with numerous nuclei with time of the culture. Only during the first (1-4 days of culture for both metals the concentration of 10-4M and especially of 10-8M increased the number of nuclei, mitotic index and the length of cells. Apical cells were more sensitive to metals than other thallus cells.

  3. Quality of drug label information on QT interval prolongation

    DEFF Research Database (Denmark)

    Warnier, Miriam J; Holtkamp, Frank A; Rutten, Frans H

    2014-01-01

    BACKGROUND: Information regarding QT-prolongation in the drug label may vary between products. This could lead to suboptimal risk minimization strategies. OBJECTIVE: To systematically assess the variation in the extent and content of information on QT prolongation in the summary of product......-prolongation'/'QT-prolongation') and the advice on cautionary measures pertaining to QT-prolongation in the label were examined, as well as their association. RESULTS: Of the 175 screened products, 44 contained information on QT in the SPC ('no QT-prolongation': 23%, 'unclear drug-QT association': 43%, 'possibly QT-prolongation': 16%, 'QT......-prolongation': 18%). 62% contained advices to act with caution in patients with additional risk factors for QT-prolongation. Products that more likely to have QT-prolonging properties according to the SPC provided more information on QT-prolongation in the SPC ('no prolongation': 10% and for the category 'QT...

  4. Prediction of X-ray induced mitotic delay and recovery of G2 cells

    International Nuclear Information System (INIS)

    Easton, D.M.; Schneiderman, M.H.

    1987-01-01

    A mathematical model is presented that predicts the delay of mitosis caused by X-irradiation of an asynchronous, exponentially growing cell culture. In the model, based on Gompertz kinetics, the driving function to generate the curves is a simple exponential decay expression. For the delayed mitotic progress curves, this function characterizes the distribution of the time required for cells to enter mitosis. (author)

  5. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    Science.gov (United States)

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and

  6. Observations of the first postirradiation division of HeLa cells following continuous or fractionated exposure to γ rays

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    The first postirradiation division of synchronized S3 HeLa cells was studied using both continuous and fractionated irradiation treatments. Synchronized HeLa cells continuously irradiated at a dose rate of 37 rad/hr eventually accumulate in mitosis. If the continuous irradiation is stopped before the cells enter G2 or even after they have progressed for a limited time into the G2 arrest that develops, very little subsequent accumulation of cells in mitosis occurs. If they progress for a longer time into the G2 arrest, then some mitotic accumulation does occur after the irradiation is stopped. When synchronized cells were allowed to progress through G1 and S before the irradiation was started, very little cell division occurred during subsequent continuous irradiation and extensive mitotic accumulation was observed. Thus, for continuous irradiation of HeLa cells, the dose received by a cell during G2 or a G2 delay apparently determines whether it will be able to divide if it reaches mitosis. Arguing against the notion that continuous irradiation during G2 is required to produce a mitotic accumulation was the result of an expriment which showed that a similar effect was obtained using two acute doses: the first to produce a G2 delay and the second to give the necessary dose during the delay. The first dose alone resulted in little mitotic accumulation. The time of delivery of the second dose during the G2 delay affected the extent of mitotic accumulation observed. There was less mitotic accumulation when second acute doses were given early or at intermediate times during the delay than when they were given late during the G2 delay. An accumulation of cells in mitosis was also observed by using a combination of low-dose-rate irradiation to induce a G2 delay, followed immediately by an acute dose of either 500 or 1000 rad. The low-dose-rate treatment alone resulted in no mitotic accumulation

  7. Extracorporeal Cardiopulmonary Resuscitation for Refractory Out-of-Hospital Cardiac Arrest: The State of the Evidence and Framework for Application.

    Science.gov (United States)

    Grunau, Brian; Hornby, Laura; Singal, Rohit K; Christenson, Jim; Ortega-Deballon, Ivan; Shemie, Sam D; Bashir, Jamil; Brooks, Steve C; Callaway, Clifton W; Guadagno, Elena; Nagpal, Dave

    2018-02-01

    Out-of-hospital cardiac arrest (OHCA) affects 134 per 100,000 citizens annually. Extracorporeal cardiopulmonary resuscitation (ECPR), providing mechanical circulatory support, may improve the likelihood of survival among those with refractory OHCA. Compared with in-hospital ECPR candidates, those in the out-of-hospital setting tend to be sudden unexpected arrests in younger and healthier patients. The aims of this review were to summarize, and identify the limitations of, the evidence evaluating ECPR for OHCA, and to provide an approach for ECPR program application. Although there are many descriptions of ECPR-treated cohorts, we identified a paucity of robust data showing ECPR effectiveness compared with conventional resuscitation. However, it is highly likely that ECPR, provided after a prolonged attempt with conventional resuscitation, does benefit select patient populations compared with conventional resuscitation alone. Although reliable data showing the optimal patient selection criteria for ECPR are lacking, most implementations sought young previously healthy patients with rapid high-quality cardiopulmonary resuscitation. Carefully planned development of ECPR programs, in high-performing emergency medical systems at experienced extracorporeal membrane oxygenation centres, may be reasonable as part of systematic efforts to determine ECPR effectiveness and globally improve care. Protocol evaluation requires regional-level assessment, examining the incremental benefit of survival compared with standard care, while accounting for resource utilization. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  8. Mitotic catastrophe is the mechanism of lethality for mutations that confer mutagen sensitivity in Aspergillus nidulans.

    Science.gov (United States)

    Denison, S H; May, G S

    1994-01-16

    We have examined the consequences of treatment with DNA-damaging agents of uvs mutants and the bimD6 mutant of Aspergillus nidulans. We first established that wild-type Aspergillus undergoes a cell cycle delay following treatment with the DNA-damaging agents methyl methanesulfonate (MMS) or ultraviolet light (UV). We have also determined that strains carrying the bimD6, uvsB110, uvsH77, uvsF201 and the uvsC114 mutations, all of which cause an increased sensitivity to DNA-damaging agents, undergo a cell-cycle delay following DNA damage. These mutations therefore do not represent nonfunctional checkpoints in Aspergillus. However, all of the mutant strains accumulated nuclear defects after a period of delay following mutagen treatment. The nuclear defects in the uvsB110 and bimD6 strains following MMS treatment were shown to be dependent on passage through mitosis after DNA damage, as the defects were prevented with benomyl. Checkpoint controls responding to DNA damage thus only temporarily halt cell-cycle progression in response to DNA damage. The conditional bimD6 mutation also results in a defective mitosis at restrictive temperatures. This mitotic defect is similar to that seen with MMS treatment at temperatures permissive for the mitotic defect. Thus the bimD gene product may perform dual roles, one in DNA repair and the other during the mitotic cell cycle in the absence of damage.

  9. Condition Assessment of Metal Oxide Surge Arrester Based on Multi-Layer SVM Classifier

    Directory of Open Access Journals (Sweden)

    M Khodsuz

    2015-12-01

    Full Text Available This paper introduces the indicators for surge arrester condition assessment based on the leakage current analysis. Maximum amplitude of fundamental harmonic of the resistive leakage current, maximum amplitude of third harmonic of the resistive leakage current and maximum amplitude of fundamental harmonic of the capacitive leakage current were used as indicators for surge arrester condition monitoring. Also, the effects of operating voltage fluctuation, third harmonic of voltage, overvoltage and surge arrester aging on these indicators were studied. Then, obtained data are applied to the multi-layer support vector machine for recognizing of surge arrester conditions. Obtained results show that introduced indicators have the high ability for evaluation of surge arrester conditions.

  10. Cardiac arrest during anesthesia at a University Hospital in Nigeria ...

    African Journals Online (AJOL)

    Background: We assessed the incidence and outcomes of cardiac arrest during anesthesia in the operating room at our university hospital. A previous study on intraoperative cardiac arrests covered a period from 1994-1998 and since then; anesthetic personnel, equipment, and workload have increased remarkably.

  11. Dynamical principles of cell-cycle arrest: Reversible, irreversible, and mixed strategies

    Science.gov (United States)

    Pfeuty, Benjamin

    2012-08-01

    Living cells often alternate between proliferating and nonproliferating states as part of individual or collective strategies to adapt to complex and changing environments. To this aim, they have evolved a biochemical regulatory network enabling them to switch between cell-division cycles (i.e., oscillatory state) and cell-cycle arrests (i.e., steady state) in response to extracellular cues. This can be achieved by means of a variety of bifurcation mechanisms that potentially give rise to qualitatively distinct cell-cycle arrest properties. In this paper, we study the dynamics of a minimal biochemical network model in which a cell-division oscillator and a differentiation switch mutually antagonize. We identify the existence of three biologically plausible bifurcation scenarios organized around a codimension-four swallowtail-homoclinic singularity. As a result, the model exhibits a broad repertoire of cell-cycle arrest properties in terms of reversibility of these arrests, tunability of interdivision time, and ability to track time-varying signals. This dynamic versatility would explain the diversity of cell-cycle arrest strategies developed in different living species and functional contexts.

  12. C. elegans AMPKs promote survival and arrest germline development during nutrient stress

    Directory of Open Access Journals (Sweden)

    Masamitsu Fukuyama

    2012-08-01

    Mechanisms controlling development, growth, and metabolism are coordinated in response to changes in environmental conditions, enhancing the likelihood of survival to reproductive maturity. Much remains to be learned about the molecular basis underlying environmental influences on these processes. C. elegans larvae enter a developmentally dormant state called L1 diapause when hatched into nutrient-poor conditions. The nematode pten homologue daf-18 is essential for maintenance of survival and germline stem cell quiescence during this period (Fukuyama et al., 2006; Sigmond et al., 2008, but the details of the signaling network(s in which it functions remain to be elucidated. Here, we report that animals lacking both aak-1 and aak-2, which encode the two catalytic α subunits of AMP-activated protein kinase (AMPK, show reduced viability and failure to maintain mitotic quiescence in germline stem cells during L1 diapause. Furthermore, failure to arrest germline proliferation has a long term consequence; aak double mutants that have experienced L1 diapause develop into sterile adults when returned to food, whereas their continuously fed siblings are fertile. Both aak and daf-18 appear to maintain germline quiescence by inhibiting activity of the common downstream target, TORC1 (TOR Complex 1. In contrast, rescue of the lethality phenotype indicates that aak-2 acts not only in the intestine, as does daf-18, but also in neurons, likely promoting survival by preventing energy deprivation during L1 diapause. These results not only provide evidence that AMPK contributes to survival during L1 diapause in a manner distinct from that by which it controls dauer diapause, but they also suggest that AMPK suppresses TORC1 activity to maintain stem cell quiescence.

  13. Automatic Detection of Mitosis and Nuclei from Cytogenetic Images by CellProfiler Software for Mitotic Index Estimation

    International Nuclear Information System (INIS)

    Gonzalez, Jorge Ernesto; Romero, Ivonne; Garcia, Omar; Radl, Analia; Di Giorgio, Marina; Barquinero, Joan Francesc

    2016-01-01

    Mitotic Index (MI) estimation expressed as percentage of mitosis plays an important role as quality control endpoint. To this end, MI is applied to check the lot of media and reagents to be used throughout the assay and also to check cellular viability after blood sample shipping, indicating satisfactory/unsatisfactory conditions for the progression of cell culture. The objective of this paper was to apply the CellProfiler open-source software for automatic detection of mitotic and nuclei figures from digitized images of cultured human lymphocytes for MI assessment, and to compare its performance to that performed through semi-automatic and visual detection. Lymphocytes were irradiated and cultured for mitosis detection. Sets of images from cultures were analyzed visually and findings were compared with those using CellProfiler software. The CellProfiler pipeline includes the detection of nuclei and mitosis with 80% sensitivity and more than 99% specificity. We conclude that CellProfiler is a reliable tool for counting mitosis and nuclei from cytogenetic images, saves considerable time compared to manual operation and reduces the variability derived from the scoring criteria of different scorers. The CellProfiler automated pipeline achieves good agreement with visual counting workflow, i.e. it allows fully automated mitotic and nuclei scoring in cytogenetic images yielding reliable information with minimal user intervention. (authors)

  14. Juvenile Arrest and Collateral Educational Damage in the Transition to Adulthood

    Science.gov (United States)

    Kirk, David S.; Sampson, Robert J.

    2014-01-01

    Official sanctioning of students by the criminal justice system is a long-hypothesized source of educational disadvantage, but its explanatory status remains unresolved. Few studies of the educational consequences of a criminal record account for alternative explanations such as low self-control, lack of parental supervision, deviant peers, and neighborhood disadvantage. Moreover, virtually no research on the effect of a criminal record has examined the “black box” of mediating mechanisms or the consequence of arrest for postsecondary educational attainment. Analyzing longitudinal data with multiple and independent assessments of theoretically relevant domains, this paper estimates the direct effect of arrest on later high school dropout and college enrollment for adolescents with otherwise equivalent neighborhood, school, family, peer, and individual characteristics as well as similar frequency of criminal offending. We present evidence that arrest has a substantively large and robust impact on dropping out of high school among Chicago public school students. We also find a significant gap in four-year college enrollment between arrested and otherwise similar youth without a criminal record. We assess intervening mechanisms hypothesized to explain the process by which arrest disrupts the schooling process, and, in turn, produces collateral educational damage. The results imply that institutional responses and disruptions in students’ educational trajectories, rather than social psychological factors, are responsible for the arrest-education link. PMID:25309003

  15. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Takatori, Hiroaki; Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi; Tanzawa, Hideki; Bukawa, Hiroki

    2012-01-01

    Cell division cycle associated 3 (CDCA3), part of the Skp1-cullin-F-box (SCF) ubiquitin ligase, refers to a trigger of mitotic entry and mediates destruction of the mitosis inhibitory kinase. Little is known about the relevance of CDCA3 to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of CDCA3 in OSCC. We evaluated CDCA3 mRNA and protein expression in both OSCC-derived cell lines and primary OSCCs and performed functional analyses of CDCA3 in OSCC-derived cells using the shRNA system. The CDCA3 expression at both the mRNA and protein levels was frequently up-regulated in all cell lines examined and primary tumors (mRNA, 51/69, 74 %; protein, 79/95, 83 %) compared to normal controls (p < 0.001). In contrast, no significant level of CDCA3 protein expression was seen in oral premalignant lesions (OPLs) (n = 20) compared with the expression in OSCCs. Among the clinical variables analyzed, the CDCA3 expression status was closely related to tumor size (p < 0.05). In addition, suppression of CDCA3 expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase. Further, there was up-regulation of the cyclin-dependent kinase inhibitors (p21 Cip1 , p27 Kip1 , p15 INK4B , and p16 INK4A ) in the knockdown cells. The current results showed that overexpression of CDCA3 occurs frequently during oral carcinogenesis and this overexpression might be associated closely with progression of OSCCs by preventing the arrest of cell-cycle progression at the G1 phase via decreased expression of the cyclin-dependent kinase inhibitors

  16. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Kuan Yoow Chan

    2010-08-01

    Full Text Available Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1 has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target.

  17. Return to Work in Out-of-Hospital Cardiac Arrest Survivors

    DEFF Research Database (Denmark)

    Kragholm, Kristian; Wissenberg, Mads; Mortensen, Rikke Normark

    2015-01-01

    BACKGROUND: Data on long-term function of out-of-hospital cardiac arrest survivors are sparse. We examined return to work as a proxy of preserved function without major neurologic deficits in survivors. METHODS AND RESULTS: In Denmark, out-of-hospital cardiac arrests have been systematically repo...

  18. Prolonged pregnancy: Methods, Causal Determinants and Outcome

    DEFF Research Database (Denmark)

    Olesen, Annette Wind

    Summary Prolonged pregnancy, defined as a pregnancy with a gestational length of 294 days or more, is a frequent condition. It is associated with an increased risk of fetal and maternal complications. Little is known about the aetiology of prolonged pregnancy. The aims of the thesis were 1......) to study the incidence of prolonged pregnancy as a function of methods for determining gestational age; 2) to determine the risk of obstetrical and fetal complications in prolonged pregnancy; 3) to validate the self-reported gestational age in the National Birth Cohort; 4) to determine whether...... the risk of recurrence of prolonged pregnancy as a function of change in male partner and social conditions (IV). The National Birth Cohort provided data for the study on prenatal risk indicators of prolonged pregnancy in a follow-up design (V). The self-reported gestational ages from this database...

  19. A new on-line leakage current monitoring system of ZnO surge arresters

    International Nuclear Information System (INIS)

    Lee, Bok-Hee; Kang, Sung-Man

    2005-01-01

    This paper presents a new on-line leakage current monitoring system of zinc oxide (ZnO) surge arresters. To effectively diagnose the deterioration of ZnO surge arresters, a new algorithm and on-line leakage current detection device, which uses the time-delay addition method, for discriminating the resistive and capacitive currents was developed to use in the aging test and durability evaluation for ZnO arrester blocks. A computer-based measurement system of the resistive leakage current, the on-line monitoring device can detect accurately the leakage currents flowing through ZnO surge arresters for power frequency ac applied voltages. The proposed on-line leakage current monitoring device of ZnO surge arresters is more highly sensitive and gives more linear response than the existing devices using the detection method of the third harmonic leakage currents. Therefore, the proposed leakage current monitoring device can be useful for predicting the defects and performance deterioration of ZnO surge arresters in power system applications

  20. Arrest of cytoplasmic streaming induces algal proliferation in green paramecia.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Takahashi

    Full Text Available A green ciliate Paramecium bursaria, bearing several hundreds of endosymbiotic algae, demonstrates rotational microtubule-based cytoplasmic streaming, in which cytoplasmic granules and endosymbiotic algae flow in a constant direction. However, its physiological significance is still unknown. We investigated physiological roles of cytoplasmic streaming in P. bursaria through host cell cycle using video-microscopy. Here, we found that cytoplasmic streaming was arrested in dividing green paramecia and the endosymbiotic algae proliferated only during the arrest of cytoplasmic streaming. Interestingly, arrest of cytoplasmic streaming with pressure or a microtubule drug also induced proliferation of endosymbiotic algae independently of host cell cycle. Thus, cytoplasmic streaming may control the algal proliferation in P. bursaria. Furthermore, confocal microscopic observation revealed that a division septum was formed in the constricted area of a dividing paramecium, producing arrest of cytoplasmic streaming. This is a first report to suggest that cytoplasmic streaming controls proliferation of eukaryotic cells.

  1. Prolonged CT urography in duplex kidney.

    Science.gov (United States)

    Gong, Honghan; Gao, Lei; Dai, Xi-Jian; Zhou, Fuqing; Zhang, Ning; Zeng, Xianjun; Jiang, Jian; He, Laichang

    2016-05-13

    Duplex kidney is a common anomaly that is frequently associated with multiple complications. Typical computed tomography urography (CTU) includes four phases (unenhanced, arterial, parenchymal and excretory) and has been suggested to considerably aid in the duplex kidney diagnosi. Unfortunately, regarding duplex kidney with prolonged dilatation, the affected parenchyma and tortuous ureters demonstrate a lack of or delayed excretory opacification. We used prolonged-delay CTU, which consists of another prolonged-delay phase (1- to 72-h delay; mean delay: 24 h) to opacify the duplicated ureters and affected parenchyma. Seventeen patients (9 males and 8 females; age range: 2.5-56 y; mean age: 40.4 y) with duplex kidney were included in this study. Unenhanced scans did not find typical characteristics of duplex kidney, except for irregular perirenal morphology. Duplex kidney could not be confirmed on typical four-phase CTU, whereas it could be easily diagnosed in axial and CT-3D reconstruction using prolonged CTU (prolonged-delay phase). Between January 2005 and October 2010, in this review board-approved study (with waived informed consent), 17 patients (9 males and 8 females; age range: 2.5 ~ 56 y; mean age: 40.4 y) with suspicious duplex kidney underwent prolonged CTU to opacify the duplicated ureters and confirm the diagnosis. Our results suggest the validity of prolonged CTU to aid in the evaluation of the function of the affected parenchyma and in the demonstration of urinary tract malformations.

  2. The relevance of crack arrest phenomena for pressure vessel structural integrity assessment

    International Nuclear Information System (INIS)

    Connors, D.C.; Dowling, A.R.; Flewitt, P.E.J.

    1996-01-01

    The potential role of a crack arrest argument for the structural integrity assessments of steel pressure vessels and the relationship between crack initiation and crack arrest philosophies are described. A typical structural integrity assessment using crack initiation fracture mechanics is illustrated by means of a case study based on assessment of the steel pressure vessels for Magnox power stations. Evidence of the occurrence of crack arrest in structures is presented and reviewed, and the applications to pressure vessels which are subjected to similar conditions are considered. An outline is given of the material characterisation that would be required to undertake a crack arrest integrity assessment. It is concluded that crack arrest arguments could be significant in the structural integrity assessment of PWR reactor pressure vessels under thermal shock conditions, whereas for Magnox steel pressure vessels it would be limited in its potential to supporting existing arguments. (author)

  3. GLP-1 analogues for neuroprotection after out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Wiberg, Sebastian; Hassager, Christian; Thomsen, Jakob Hartvig

    2016-01-01

    one-to-one fashion to a 6-hour and 15-minute infusion of either Exenatide or placebo. Patients are eligible for inclusion if resuscitated from cardiac arrest with randomization from 20 minutes to 240 minutes after return of spontaneous circulation. The co-primary endpoint is feasibility, defined......Background: Attenuating the neurological damage occurring after out-of-hospital cardiac arrest is an ongoing research effort. This dual-centre study investigates the neuroprotective effects of the glucagon-like-peptide-1 analogue Exenatide administered within 4 hours from the return of spontaneous...... circulation to comatose patients resuscitated from out-of-hospital cardiac arrest. Methods/design: This pilot study will randomize a total of 120 unconscious patients with sustained return of spontaneous circulation after out-of-hospital cardiac arrest undergoing targeted temperature management in a blinded...

  4. 1-L-MT, an IDO inhibitor, prevented colitis-associated cancer by inducing CDC20 inhibition-mediated mitotic death of colon cancer cells.

    Science.gov (United States)

    Liu, Xiuting; Zhou, Wei; Zhang, Xin; Ding, Yang; Du, Qianming; Hu, Rong

    2018-04-01

    Indoleamine 2,3-dioxygenase 1 (IDO1), known as IDO, catabolizes tryptophan through kynurenine pathway, whose activity is correlated with impaired clinical outcome of colorectal cancer. Here we showed that 1-L-MT, a canonical IDO inhibitor, suppressed proliferation of human colorectal cancer cells through inducing mitotic death. Our results showed that inhibition of IDO decreased the transcription of CDC20, which resulted in G2/M cycle arrest of HCT-116 and HT-29. Furthermore, 1-L-MT induced mitochondria injuries and caused apoptotic cancer cells. Importantly, 1-L-MT protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and size. What is more, IDO1-/- mice exhibited fewer tumor burdens and reduced proliferation in the neoplastic epithelium, while, 1-L-MT did not exhibit any further protective effects on IDO-/- mice, confirming the critical role of IDO and the protective effect of 1-L-MT-mediated IDO inhibition in CRC. Furthermore, 1-L-MT also alleviated CRC in Rag1-/- mice, demonstrating the modulatory effects of IDO independent of its role in modulating adaptive immunity. Taken together, our findings validated that the anti-proliferation effect of 1-L-MT in vitro and the prevention of CRC in vivo were through IDO-induced cell cycle disaster of colon cancer cells. Our results identified 1-L-MT as a promising candidate for the chemoprevention of CRC. © 2018 UICC.

  5. A crack arrest test using a toughness gradient steel plate

    International Nuclear Information System (INIS)

    Okamura, H.; Yagawa, G.; Urabe, Y.; Satoh, M.; Sano, J.

    1995-01-01

    Pressurized thermal shock (PTS) is a phenomenon that can occur in the reactor pressure vessels (RPVs) with internal pressure and is one of the most severe stress conditions that can be applied to the vessel. Preliminary research has shown that no PTS concern is likely to exist on Japanese RPVs during their design service lives. However, public acceptance of vessel integrity requires analyses and experiment in order to establish an analytical method and a database for life extension of Japanese RPVs. The Japanese PTS integrity study was carried out from FY 1983 to FY 1991 as a national project by Japan Power Engineering and Inspection Corporation (JAPEIC) under contract with Ministry of International Trade and Industry (MITI) in cooperation with LWR utilities and vendors. Here, a crack arrest test was carried out using a toughness gradient steel plate with three layers to study the concept of crack arrest toughness. Four-point bending load with thermal shock was applied to the large flat plate specimen with a surface crack. Five crack initiations and arrests were observed during the test and the propagated crack bifurcated. Finally, cracks were arrested at the boundary of the first and the second layer, except for a small segment of the crack. The first crack initiation took place slightly higher than the lower bound of K Ic data obtained by ITCT specimens. That is, the K IC concept for brittle crack initiation was verified for heavy section steel plates. The first crack arrest took place within the scatter band of K Ia and K Id data for the first layer. That is, the K Ia concept appears applicable for crack arrest of a short crack jump

  6. Detection of mitotic nuclei in breast histopathology images using localized ACM and Random Kitchen Sink based classifier.

    Science.gov (United States)

    Beevi, K Sabeena; Nair, Madhu S; Bindu, G R

    2016-08-01

    The exact measure of mitotic nuclei is a crucial parameter in breast cancer grading and prognosis. This can be achieved by improving the mitotic detection accuracy by careful design of segmentation and classification techniques. In this paper, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage, in order to handle diffused intensities present along object boundaries. Further, the application of a new optimal machine learning algorithm capable of classifying strong non-linear data such as Random Kitchen Sink (RKS), shows improved classification performance. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for MITOS-ATYPIA CONTEST 2014. The proposed framework achieved 95% recall, 98% precision and 96% F-score.

  7. HPV16-E2 induces prophase arrest and activates the cellular DNA damage response in vitro and in precursor lesions of cervical carcinoma.

    Science.gov (United States)

    Xue, Yuezhen; Toh, Shen Yon; He, Pingping; Lim, Thimothy; Lim, Diana; Pang, Chai Ling; Abastado, Jean-Pierre; Thierry, Françoise

    2015-10-27

    Cervical intraepithelial neoplasia (CIN) is caused by human papillomavirus (HPV) infection and is the precursor to cervical carcinoma. The completion of the HPV productive life cycle depends on the expression of viral proteins which further determines the severity of the cervical neoplasia. Initiation of the viral productive replication requires expression of the E2 viral protein that cooperates with the E1 viral DNA helicase. A decrease in the viral DNA replication ability and increase in the severity of cervical neoplasia is accompanied by simultaneous elevated expression of E6 and E7 oncoproteins. Here we reveal a novel and important role for the HPV16-E2 protein in controlling host cell cycle during malignant transformation. We showed that cells expressing HPV16-E2 in vitro are arrested in prophase alongside activation of a sustained DDR signal. We uncovered evidence that HPV16-E2 protein is present in vivo in cells that express both mitotic and DDR signals specifically in CIN3 lesions, immediate precursors of cancer, suggesting that E2 may be one of the drivers of genomic instability and carcinogenesis in vivo.

  8. Cardiopulmonary resuscitation duration and survival in out-of-hospital cardiac arrest patients.

    Science.gov (United States)

    Adnet, Frederic; Triba, Mohamed N; Borron, Stephen W; Lapostolle, Frederic; Hubert, Hervé; Gueugniaud, Pierre-Yves; Escutnaire, Josephine; Guenin, Aurelien; Hoogvorst, Astrid; Marbeuf-Gueye, Carol; Reuter, Paul-Georges; Javaud, Nicolas; Vicaut, Eric; Chevret, Sylvie

    2017-02-01

    Relationship between cardiopulmonary arrest and resuscitation (CPR) durations and survival after out-of-hospital cardiac arrest (OHCA) remain unclear. Our primary aim was to determine the association between survival without neurologic sequelae and cardiac arrest intervals in the setting of witnessed OHCA. We analyzed 27,301 non-traumatic, witnessed OHCA patients in France included in the national registry from June 1, 2011 through December 1, 2015. We analyzed cardiac arrest intervals, designated as no-flow (NF; from collapse to start of CPR) and low-flow (LF; from start of CPR to cessation of resuscitation) in relation to 30-day survival without sequelae. We determined the influence of recognized prognostic factors (age, gender, initial rhythm, location of cardiac arrest) on this relation. For the entire cohort, the area delimited by a value of NF greater than 12min (95% confidence interval: 11-13min) and LF greater than 33min (95% confidence interval: 29-45min), yielded a probability of 30-day survival of less than 1%. These sets of values were greatly influenced by initial cardiac arrest rhythm, age, sex and location of cardiac arrest. Extended CPR duration (greater than 40min) in the setting of initial shockable cardiac rhythm is associated with greater than 1% survival with NF less than 18min. The NF interval was highly influential on the LF interval regardless of outcome, whether return of spontaneous circulation (padvanced techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Crack-arrest tests on two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstad, R.K.

    1994-03-01

    The objective of the Heavy-Section Steel Irradiation Program Sixth Irradiation Series is to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest toughness data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degrees C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). This is the second report giving the results of the tests on irradiated duplex-type crack-arrest specimens. A previous report gave results of tests on irradiated weld-embrittled-type specimens. Charpy V-notch (CVN) specimens irradiated in the same capsules as the crack-arrest specimens were also tested, and a 41-J transition temperature shift was determined from these specimens. open-quotes Mean close-quote curves of the same form as the American Society of Mechanical Engineers (ASME) K la curve were fit to the data with only the open-quotes reference temperatureclose quotes as a parameter. The shift between the mean curves agrees well with the 41-J transition temperature shift obtained from the CVN specimen tests. Moreover, the four data points resulting from tests on the duplex crack-arrest specimens of the present study did not make a significant change to mean curve fits to either the previously obtained data or all the data combined

  10. Main Complications of Mild Induced Hypothermia after Cardiac Arrest: A Review Article

    Directory of Open Access Journals (Sweden)

    Hassan Soleimanpour

    2014-03-01

    Full Text Available The aim of the present study is to assess the complications of mild induced hypothermia (MIH in patients with cardiac arrest. Presently, based on the guidelines of the American heart Association, MIH following successful cardiopulmonary resuscitation (CPR in unconscious adult patients due to ventricular fibrillation (VF with out-of-hospital cardiac arrest (OOHCA is essential and required. However, MIH could be associated with complications in Patients with cardiac arrest. Studies conducted on the precautions and care following cardiac arrest and MIH were included. Valid scientific data bases were used for data collection. The obtained results from different studies revealed that mild MIH could be associated with numerous complications and the knowledge and awareness of the medical staff from the complications is required to guarantee successful therapeutic approaches in MIH following cardiac arrest which is a novel medical facility with different styles and complications. Overall, further future studies are required to improve the quality of MIH, to increase survival and to decrease complications rates.

  11. Therapeutic Hypothermia after In-Hospital Cardiac Arrest in Children.

    Science.gov (United States)

    Moler, Frank W; Silverstein, Faye S; Holubkov, Richard; Slomine, Beth S; Christensen, James R; Nadkarni, Vinay M; Meert, Kathleen L; Browning, Brittan; Pemberton, Victoria L; Page, Kent; Gildea, Marianne R; Scholefield, Barnaby R; Shankaran, Seetha; Hutchison, Jamie S; Berger, John T; Ofori-Amanfo, George; Newth, Christopher J L; Topjian, Alexis; Bennett, Kimberly S; Koch, Joshua D; Pham, Nga; Chanani, Nikhil K; Pineda, Jose A; Harrison, Rick; Dalton, Heidi J; Alten, Jeffrey; Schleien, Charles L; Goodman, Denise M; Zimmerman, Jerry J; Bhalala, Utpal S; Schwarz, Adam J; Porter, Melissa B; Shah, Samir; Fink, Ericka L; McQuillen, Patrick; Wu, Theodore; Skellett, Sophie; Thomas, Neal J; Nowak, Jeffrey E; Baines, Paul B; Pappachan, John; Mathur, Mudit; Lloyd, Eric; van der Jagt, Elise W; Dobyns, Emily L; Meyer, Michael T; Sanders, Ronald C; Clark, Amy E; Dean, J Michael

    2017-01-26

    Targeted temperature management is recommended for comatose adults and children after out-of-hospital cardiac arrest; however, data on temperature management after in-hospital cardiac arrest are limited. In a trial conducted at 37 children's hospitals, we compared two temperature interventions in children who had had in-hospital cardiac arrest. Within 6 hours after the return of circulation, comatose children older than 48 hours and younger than 18 years of age were randomly assigned to therapeutic hypothermia (target temperature, 33.0°C) or therapeutic normothermia (target temperature, 36.8°C). The primary efficacy outcome, survival at 12 months after cardiac arrest with a score of 70 or higher on the Vineland Adaptive Behavior Scales, second edition (VABS-II, on which scores range from 20 to 160, with higher scores indicating better function), was evaluated among patients who had had a VABS-II score of at least 70 before the cardiac arrest. The trial was terminated because of futility after 329 patients had undergone randomization. Among the 257 patients who had a VABS-II score of at least 70 before cardiac arrest and who could be evaluated, the rate of the primary efficacy outcome did not differ significantly between the hypothermia group and the normothermia group (36% [48 of 133 patients] and 39% [48 of 124 patients], respectively; relative risk, 0.92; 95% confidence interval [CI], 0.67 to 1.27; P=0.63). Among 317 patients who could be evaluated for change in neurobehavioral function, the change in VABS-II score from baseline to 12 months did not differ significantly between the groups (P=0.70). Among 327 patients who could be evaluated for 1-year survival, the rate of 1-year survival did not differ significantly between the hypothermia group and the normothermia group (49% [81 of 166 patients] and 46% [74 of 161 patients], respectively; relative risk, 1.07; 95% CI, 0.85 to 1.34; P=0.56). The incidences of blood-product use, infection, and serious adverse

  12. Cardiac arrest during gamete release in chum salmon regulated by the parasympathetic nerve system.

    Directory of Open Access Journals (Sweden)

    Yuya Makiguchi

    Full Text Available Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta at the moment of gamete release for 7.39+/-1.61 s in females and for 5.20+/-0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a beta-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release.

  13. Effects of Mutagen-Sensitive Mus Mutations on Spontaneous Mitotic Recombination in Aspergillus

    OpenAIRE

    Zhao, P.; Kafer, E.

    1992-01-01

    Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus(+) controls in both tests. Two mutations, musK and musL, reduced reco...

  14. SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication

    Science.gov (United States)

    Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi

    2013-01-01

    Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434

  15. Optimizing Neurologically Intact Survival from Sudden Cardiac Arrest: A Call to Action

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Goodloe

    2014-11-01

    Full Text Available The U.S. national out-of-hospital and in-hospital cardiac arrest survival rates, although improving recently, have remained suboptimal despite the collective efforts of individuals, communities, and professional societies. Only until very recently, and still with inconsistency, has focus been placed specifically on survival with pre-arrest neurologic function. The reality of current approaches to sudden cardiac arrest is that they are often lacking an integrative, multi-disciplinary approach, and without deserved funding and outcome analysis. In this manuscript, a multidisciplinary group of authors propose practice, process, technology, and policy initiatives to improve cardiac arrest survival with a focus on neurologic function. [West J Emerg Med. 2014;15(7:-0.

  16. [After your heart arrest, would you like to test a medicinal elixir?].

    Science.gov (United States)

    Carron, P-N; Hugli, O; Liaudet, L; Yersin, B

    2005-02-09

    So far, cardiac arrest is still associated with high mortality or severe neurological disability in survivors. At the tissue level, cardiac arrest results into an acute condition of generalized hypoxia. A better understanding of the pathophysiology of ischemia-reperfusion and of the inflammatory response that develops after cardiac arrest could help to design novel therapeutic strategies in the future. It seems unlikely that a single drug, acting as a , might be able to improve survival or neurological prognosis. Lessons learned from pathophysiological mechanisms rather indicate that combined therapies, involving thrombolysis, neuroprotective agents, antioxidants and anti-inflammatory molecules, together with temperature cooling, might represent helpful strategies to improve patient's outcome after cardiac arrest.

  17. Influence of radiation (Co60) in pre-implant rabbit embryos: effect on mitotic index and embryonic pole malformations

    International Nuclear Information System (INIS)

    Approbato, M.S.; Moura, K.K.V.O.; Florencio, R.S.; Cunha Junior, C.; Garcia, R.; Faria, R.S.; Benedetti, L.N.; Goulart, F.B.

    1995-01-01

    We studied the effect of ionizing irradiation on 12 New Zealand rabbits (65 embryos), at three different times: at match time (zero hour), two days after and four days after, with two different irradiation doses: five c Gy and ten c Gy. Six rabbits (36 blastocysts) were used as controls. the matching instant was the zero hour. Exactly six days after (± 60 minutes) the embryos of each rabbit was picked up by flushing the uterus with culture media. the embryos were fixed in methanol for 48 hours, and colored with acid Mayer hematoxylin. The following embryo parameters were studied: mitotic index; embryonic pole malformations. There were no gross abnormalities of embryo pole. The mitotic index were altered both by the time and doses. (author)

  18. [Brain function recovery after prolonged posttraumatic coma].

    Science.gov (United States)

    Klimash, A V; Zhanaidarov, Z S

    2016-01-01

    To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.

  19. 38 CFR 3.375 - Determination of inactivity (complete arrest) in tuberculosis.

    Science.gov (United States)

    2010-07-01

    ... inactivity (complete arrest) in tuberculosis. 3.375 Section 3.375 Pensions, Bonuses, and Veterans' Relief...) in tuberculosis. (a) Pulmonary tuberculosis. A veteran shown to have had pulmonary tuberculosis will...) Nonpulmonary disease. Determination of complete arrest of nonpulmonary tuberculosis requires absence of...

  20. [Pathophysiology of prolonged hypokinesia].

    Science.gov (United States)

    Kovalenko, E A

    1976-01-01

    Hypokinesia is an important problem in modern medicine. In the pathogenetic effect of prolonged hypokinesia the main etiological factor is diminished motor activity; of major importance are disorders in the energy and plastic metabolism which affect the muscle system; the contributing factors are cardiovascular deconditioning and orthostatic intolerance. This is attributed to a decreased oxygen supply and eliminated hydrostatic influences during a prolonged recumbency. Blood redistribution in the vascular bed is related to the Gauer-Henry reflex and subsequent changes in the fluid-electrolyte balance. Decreased load on the bone system induces changes in the protein-phosphate-calcium metabolism, diminished bone density and increased calcium content in the blood and urine. Changes in the calcium metabolism are systemic. The activity of the higher nervous system and reflex functions is lowered. Changes in the function of the autonomic nervous system which include a noticeable decline of its adaptive-trophic role as a result of the decrease of afferent and efferent impulsation are of great importance. Changes in the hormonal function involve a peculiar stress-reaction which develops at an early stage of hypokinesia as a response to an unusual situation. Prolonged hypokinesia may result in a disturbed function of the pituitary-adrenal system. It is assumed that prolonged hypokinesia may induce a specific disease of hypokinesia during which man cannot lead a normal mode of life and work.