WorldWideScience

Sample records for proliferation gag expression

  1. Intragenic HIV-1 env sequences that enhance gag expression

    International Nuclear Information System (INIS)

    Suptawiwat, Ornpreya; Sutthent, Ruengpung; Lee, T.-H.; Auewarakul, Prasert

    2003-01-01

    Expression of HIV-1 genes is regulated at multiple levels including the complex RNA splicing and transport mechanisms. Multiple cis-acting elements involved in these regulations have been previously identified in various regions of HIV-1 genome. Here we show that another cis-acting element was present in HIV-1 env region. This element enhanced the expression of Gag when inserted together with Rev response element (RRE) into a truncated HIV-1 genome in the presence of Rev. The enhancing activity was mapped to a 263-bp fragment in the gp41 region downstream to RRE. RNA analysis showed that it might function by promoting RNA stability and Rev-dependent RNA export. The enhancement was specific to Rev-dependent expression, since it did not enhance Gag expression driven by Sam68, a cellular protein that has been shown to be able to substitute for Rev in RNA export function

  2. Enhanced cellular immune response against SIV Gag induced by immunization with DNA vaccines expressing assembly and release-defective SIV Gag proteins

    International Nuclear Information System (INIS)

    Bu Zhigao; Ye Ling; Compans, Richard W.; Yang Chinglai

    2003-01-01

    Codon-optimized genes were synthesized for the SIVmac239 Gag, a mutant Gag with mutations in the major homology region, and a chimeric Gag containing a protein destruction signal at the N-terminus of Gag. The mutant and chimeric Gag were expressed at levels comparable to that observed for the wild-type Gag protein but their stability and release into the medium were found to be significantly reduced. Immunization of mice with DNA vectors encoding the mutant or chimeric Gag induced fourfold higher levels of anti-SIV Gag CD4 T cell responses than the DNA vector encoding the wild-type SIV Gag. Moreover, anti-SIV Gag CD8 T cell responses induced by DNA vectors encoding the mutant or chimeric Gag were found to be 5- to 10-fold higher than those induced by the DNA construct for the wild-type Gag. These results indicate that mutations disrupting assembly and/or stability of the SIV Gag protein effectively enhance its immunogenicity when expressed from DNA vaccines

  3. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  4. Orthoretroviral-like prototype foamy virus gag-pol expression is compatible with viral replication

    Directory of Open Access Journals (Sweden)

    Reh Juliane

    2011-08-01

    Full Text Available Abstract Background Foamy viruses (FVs unlike orthoretroviruses express Pol as a separate precursor protein and not as a Gag-Pol fusion protein. A unique packaging strategy, involving recognition of briding viral RNA by both Pol precursor and Gag as well as potential Gag-Pol protein interactions, ensures Pol particle encapsidation. Results Several Prototype FV (PFV Gag-Pol fusion protein constructs were generated to examine whether PFV replication is compatible with an orthoretroviral-like Pol expression. During their analysis, non-particle-associated secreted Pol precursor protein was discovered in extracellular wild type PFV particle preparations of different origin, copurifying in simple virion enrichment protocols. Different analysis methods suggest that extracellular wild type PFV particles contain predominantly mature p85PR-RT and p40IN Pol subunits. Characterization of various PFV Gag-Pol fusion constructs revealed that PFV Pol expression in an orthoretroviral manner is compatible with PFV replication as long as a proteolytic processing between Gag and Pol proteins is possible. PFV Gag-Pol translation by a HIV-1 like ribosomal frameshift signal resulted in production of replication-competent virions, although cell- and particle-associated Pol levels were reduced in comparison to wild type. In-frame fusion of PFV Gag and Pol ORFs led to increased cellular Pol levels, but particle incorporation was only marginally elevated. Unlike that reported for similar orthoretroviral constructs, a full-length in-frame PFV Gag-Pol fusion construct showed wildtype-like particle release and infectivity characteristics. In contrast, in-frame PFV Gag-Pol fusion with C-terminal Gag ORF truncations or non-removable Gag peptide addition to Pol displayed wildtype particle release, but reduced particle infectivity. PFV Gag-Pol precursor fusion proteins with inactivated protease were highly deficient in regular particle release, although coexpression of p71Gag

  5. [The humoral immune response in mice induced by recombinant Lactococcus lactis expressing HIV-1 gag].

    Science.gov (United States)

    Zhao, Xiaofei; Zhang, Cairong; Liu, Xiaojuan; Ma, Zhenghai

    2014-11-01

    To analyze the humoral immune response induced by recombinant Lactococcus lactis expressing HIV-1 gag in mice immunized orally, intranasally, subcutaneously or in the combined way of above three. Fifty BALB/c mice were randomly divided into 5 groups, 10 mice per group. The mice were immunized consecutively three times at two week intervals with 10(9) CFU of recombinant Lactococcus lactis expressing gag through oral, intranasal, subcutaneous administration or the mix of them. The mice that were immunized orally with Lactococcus lactis containing PMG36e served as a control group. The sera of mice were collected before primary immunization and 2 weeks after each immunization to detect the gag specific IgG by ELISA. Compared with the control group, the higher titer of serum gag specific IgG was detected in the four groups immunized with recombinant Lactococcus lactis expressing gag, and it was the highest in the mixed immunization group (PLactococcus lactis expressing gag can induce humoral immune response in mice by oral, intranasal, subcutaneous injection or the mix of them, and the mixed immunization can enhance the immune effects of Lactococcus lactis vector vaccine.

  6. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  7. Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system.

    Science.gov (United States)

    Kraus, Benjamin; Fischer, Katrin; Sliva, Katja; Schnierle, Barbara S

    2014-03-26

    Human endogenous retroviruses (HERVs) are remnants of ancestral infections and chromosomally integrated in all cells of an individual, are transmitted only vertically and are defective in viral replication. However enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed inter-alia in HIV-infected individuals and tumor patients. Therefore HERV-K might serve as a tumor-specific antigen or even as a constant target for the development of an HIV vaccine. To verify our hypothesis, we tested the immunogenicity of HERV-K Gag by using a recombinant vaccinia virus (MVA-HKcon) expressing the HERV-K Gag protein and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) and the HERV-K Gag protein (RLZ-HKGag cells). Subcutaneous application of RLZ-HKGag cells into syngenic BALB/c mice resulted in the formation of local tumors in MVA vaccinated mice. MVA-HKcon vaccination reduced the tumor growth. Furthermore, intravenous injection of RLZ-HKGag cells led to the formation of pulmonary metastases. Vaccination of tumor-bearing mice with MVA-HKcon drastically reduced the number of pulmonary RLZ-HKGag tumor nodules compared to vaccination with wild-type MVA. The data demonstrate that HERV-K Gag is a useful target for vaccine development and might offer new treatment opportunities for cancer patients.

  8. Expression of feline immunodeficiency virus gag and env precursor proteins in Spodoptera frugiperda cells and their use in immunodiagnosis

    NARCIS (Netherlands)

    Horzinek, M.C.; Verschoor, E.J.; Vliet, A.L.W. van; Egberink, H.F.; Hesselink, W.; Ronde, A. de

    1993-01-01

    The gag and env genes of the feline immunodeficiency virus strain UT113 were cloned into a baculovirus transfer vector. The recombinant plasmids were used to create recombinant baculoviruses that expressed either the gag or the env precursor protein in insect cells (Sf9 cells). Leader sequence

  9. Regulation of HIV-Gag Expression and Targeting to the Endolysosomal/Secretory Pathway by the Luminal Domain of Lysosomal-Associated Membrane Protein (LAMP-1) Enhance Gag-Specific Immune Response

    Science.gov (United States)

    Lucas, Carolina Gonçalves de Oliveira; Rigato, Paula Ordonhez; Gonçalves, Jorge Luiz Santos; Sato, Maria Notomi; Maciel, Milton; Peçanha, Ligia Maria Torres; August, J. Thomas; de Azevedo Marques, Ernesto Torres; de Arruda, Luciana Barros

    2014-01-01

    We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field. PMID:24932692

  10. Induction of feline immunodeficiency virus specific antibodies in cats with an attenuated Salmonella strain expressing the Gag protein.

    NARCIS (Netherlands)

    E.J. Tijhaar (Edwin); C.H.J. Siebelink (Kees); J.A. Karlas (Jos); M.C. Burger; F.R. Mooi (Frits); A.D.M.E. Osterhaus (Albert)

    1997-01-01

    textabstractSalmonella typhimurium aroA strains (SL3261), expressing high levels of the Gag protein of feline immunodeficiency virus (FIV) fused with maltose binding protein (SL3261-MFG), were constructed using an invertible promoter system that allows the stable expression of heterologous antigens

  11. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens

    International Nuclear Information System (INIS)

    Bolesta, Elizabeth; Gzyl, Jaroslaw; Wierzbicki, Andrzej; Kmieciak, Dariusz; Kowalczyk, Aleksandra; Kaneko, Yutaro; Srinivasan, Alagarsamy; Kozbor, Danuta

    2005-01-01

    We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K b transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8 + T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolΔFsΔPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8 + T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolΔFsΔPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses

  12. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice.

    Directory of Open Access Journals (Sweden)

    Tsungai Ivai Jongwe

    Full Text Available Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA vaccines expressing HIV-1C mosaic Gag (GagM were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C.

  13. Differences in Env and Gag protein expression patterns and epitope availability in feline immunodeficiency virus infected PBMC compared to infected and transfected feline model cell lines.

    Science.gov (United States)

    Roukaerts, Inge D M; Grant, Chris K; Theuns, Sebastiaan; Christiaens, Isaura; Acar, Delphine D; Van Bockstael, Sebastiaan; Desmarets, Lowiese M B; Nauwynck, Hans J

    2017-01-02

    Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission. Copyright © 2016. Published by Elsevier B.V.

  14. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2014-01-01

    Full Text Available Human immunodeficiency virus type-1 (HIV-1-specific dendritic cell (DC vaccines have been applied to clinical trials that show only induction of some degree of immune responses, warranting the search of other more efficient vaccine strategies. Since HIV-1-specific CD8+ cytotoxic T lymphocytes (CTLs have been found to recognize some HIV-1 structural protein Gag conserved and cross-strain epitopes, Gag has become one of the most attractive target candidates for HIV-1 vaccine development. In this study, we generated HIV-1 Gag-specific Gag-Texo vaccine by using ConA-stimulated polyclonal CD8+ T-cells with uptake of Gag-expressing adenoviral vector AdVGag-transfected DC (DCGag-released exosomes (EXOs, and assessed its stimulation of Gag-specific CD8+ CTL responses and antitumor immunity. We demonstrate that Gag-Texo and DCGag vaccines comparably stimulate Gag-specific effector CD8+ CTL responses. Gag-Texo-stimulated CTL responses result in protective immunity against Gag-expressing BL6-10Gag melanoma in 8/8 wild-type C57BL/6 mice. In addition, we show that Gag-Texo vaccine also induces CTL responses leading to protective and long-term immunity against Gag/HLA-A2-expressing BL6-10Gag/A2 melanoma in 8/8 and 2/8 transgenic HLA-A2 mice, respectively. The average number of lung tumor colonies in mice with 30-days post-immunization is only 23, which is significantly less than that (>300 in control ConA-T-immunized HLA-A2 mice. Furthermore, Gag-Texo vaccine also induces some degree of therapeutic immunity. The average number (50 and size (0.23 mm in diameter of lung tumor colonies in Gag-Texo-immunized HLA-A2 mice bearing 6-day-established lung BL6-10Gag/A2 melanoma metastasis are significantly less than the average number (>300 and size (1.02 mm in diameter in control ConA-T-immunized HLA-A2 mice. Taken together, HIV-1 Gag-Texo vaccine capable of stimulating Gag-specific CTL responses and therapeutic immunity may be useful as a new immunotherapeutic

  15. Effects of UVA1 Phototherapy on Expression of Human Endogenous Retroviral Sequence (HERV)-K10 gag in Morphea: A Preliminary Study.

    Science.gov (United States)

    Kowalczyk, Michał Jacek; Teresiak-Mikołajczak, Ewa; Dańczak-Pazdrowska, Aleksandra; Żaba, Ryszard; Adamski, Zygmunt; Osmola-Mańkowska, Agnieszka

    2017-01-28

    BACKGROUND Morphea, also known as localized scleroderma, is a rare autoimmune connective tissue disease characterized by skin fibrosis. UVA1 phototherapy is an important asset in the reduction of clinical manifestations in morphea. There are studies claiming that UV light modulates the expression of some human endogenous retroviral sequences. The aim of this study was to determine if the expression of HERV-K10 gag element is lowered by UVA1 phototherapy in morphea, a disease in which such irradiation has a soothing effect. MATERIAL AND METHODS The expression levels of the HERV-K10 gag were assessed by real-time PCR (polymerase chain reaction) in peripheral blood mononuclear cells (PBMC) and skin-punch biopsies of healthy volunteers and 9 morphea patients before and after phototherapy. Additionally, correlations between the HERV-K10 gag expression and age, disease duration, the Localized Scleroderma Skin Severity Index (LoSSI), and antinuclear antibody (ANA) titers were assessed. RESULTS In PBMC, HERV-K10 gag mRNA was significantly elevated after UVA1 phototherapy compared to healthy controls. Most of the patients responded with an increased expression level of this sequence. However, we found no statistical evidence at this point that phototherapy indeed has an effect on the HERV-K10 gag expression (there were no statistical differences in PBMC of morphea patients before and after phototherapy). Similarly, there was no statistically relevant effect of the UVA1 on the expression of HERV-K10 gag in skin. CONCLUSIONS At this point, the effect of UVA1 phototherapy on the expression of HERV-K10 gag cannot be statistically confirmed.

  16. Human endogenous retrovirus K Gag coassembles with HIV-1 Gag and reduces the release efficiency and infectivity of HIV-1.

    Science.gov (United States)

    Monde, Kazuaki; Contreras-Galindo, Rafael; Kaplan, Mark H; Markovitz, David M; Ono, Akira

    2012-10-01

    Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.

  17. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic

    International Nuclear Information System (INIS)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-01-01

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160ΔV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  18. Expression of MiR-9 promotes proliferation, migration and ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of miR-9 on the proliferation, differentiation and migration of human neural stem cells (NSCs). Methods: The expression of miR-9 was investigated by quantitative real-time polymerase chain reaction (RT-PCR). Cell proliferation was assessed by cell counting kit-8 (CCK8) assay, while cell ...

  19. Heparin (GAG-hed) inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    International Nuclear Information System (INIS)

    Villanueva, Rita; Morales-Peza, Néstor; Castelán-Sánchez, Irma; García-Villa, Enrique; Tapia, Rocio; Cid-Arregui, Ángel; García-Carrancá, Alejandro; López-Bayghen, Esther; Gariglio, Patricio

    2006-01-01

    High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G 2 /M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have

  20. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes.

    Science.gov (United States)

    Bissa, Massimiliano; Forlani, Greta; Zanotto, Carlo; Tosi, Giovanna; De Giuli Morghen, Carlo; Accolla, Roberto S; Radaelli, Antonia

    2018-01-01

    A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can

  1. Preferential Ty1 retromobility in mother cells and nonquiescent stationary phase cells is associated with increased concentrations of total Gag or processed Gag and is inhibited by exposure to a high concentration of calcium.

    Science.gov (United States)

    Peifer, Andrew C; Maxwell, Patrick H

    2018-03-21

    Retrotransposons are abundant mobile DNA elements in eukaryotic genomes that are more active with age in diverse species. Details of the regulation and consequences of retrotransposon activity during aging remain to be determined. Ty1 retromobility in Saccharomyces cerevisiae is more frequent in mother cells compared to daughter cells, and we found that Ty1 was more mobile in nonquiescent compared to quiescent subpopulations of stationary phase cells. This retromobility asymmetry was absent in mutant strains lacking BRP1 that have reduced expression of the essential Pma1p plasma membrane proton pump, lacking the mRNA decay gene LSM1 , and in cells exposed to a high concentration of calcium. Mother cells had higher levels of Ty1 Gag protein than daughters. The proportion of protease-processed Gag decreased as cells transitioned to stationary phase, processed Gag was the dominant form in nonquiescent cells, but was virtually absent from quiescent cells. Treatment with calcium reduced total Gag levels and the proportion of processed Gag, particularly in mother cells. We also found that Ty1 reduced the fitness of proliferating but not stationary phase cells. These findings may be relevant to understanding regulation and consequences of retrotransposons during aging in other organisms, due to conserved impacts and regulation of retrotransposons.

  2. Mechanical stimulation increases proliferation, differentiation and protein expression in culture

    DEFF Research Database (Denmark)

    Grossi, Alberto; Yadav, Kavita; Lawson, Moira Ann

    2007-01-01

    Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. Myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or load...... to elucidate also the signaling pathway by which this mechanical stimulation can causes an increase in protein expression. When mechanically stimulated via laminin receptors on cell surface, C(2)C(12) cells showed an increase in cell proliferation and differentiation. Populations undergoing mechanical...... stimulation through laminin receptors show an increase in expression of Myo-D, myogenin and an increase in ERK1/2 phosphorylation. Cells stimulated via fibronectin receptors show no significant increases in fusion competence. We conclude that load induced signalling through integrin containing laminin...

  3. Immunogenicity of seven new recombinant yellow fever viruses 17D expressing fragments of SIVmac239 Gag, Nef, and Vif in Indian rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Mauricio A Martins

    Full Text Available An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV. Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (rYF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIVmac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5 vectors resulted in robust expansion of SIV-specific CD8(+ T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4(+ cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D - a clinically relevant vaccine vector - can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D

  4. HIV-1 matrix dependent membrane targeting is regulated by Gag mRNA trafficking.

    Directory of Open Access Journals (Sweden)

    Jing Jin

    Full Text Available Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV post-transcriptional regulatory element (PRE mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.

  5. Proteolytic Processing and Assembly of gag and gag-pol Proteins of TED, a Baculovirus-Associated Retrotransposon of the Gypsy Family

    Science.gov (United States)

    Hajek, Kathryn L.; Friesen, Paul D.

    1998-01-01

    TED (transposable element D) is an env-containing member of the gypsy family of retrotransposons that represents a possible retrovirus of invertebrates. This lepidopteran (moth) retroelement contains gag and pol genes that encode proteins capable of forming viruslike particles (VLP) with reverse transcriptase. Since VLP are likely intermediates in TED transposition, we investigated the roles of gag and pol in TED capsid assembly and maturation. By using constructed baculovirus vectors and TED Gag-specific antiserum, we show that the principal translation product of gag (Pr55gag) is cleaved to produce a single VLP structural protein, p37gag. Replacement of Asp436 within the retrovirus-like active site of the pol-encoded protease (PR) abolished Pr55gag cleavage and demonstrated the requirement for PR in capsid processing. As shown by expression of an in-frame fusion of TED gag and pol, PR is derived from the Gag-Pol polyprotein Pr195gag-pol. The PR cleavage site within Pr55gag was mapped to a position near the junction of a basic, nucleocapsid-like domain and a C-terminal acidic domain. Once released by cleavage, the C-terminal fragment was not detected. This acidic fragment was dispensable for VLP assembly, as demonstrated by the formation of VLP by C-terminal Pr55gag truncation proteins and replacement of the acidic domain with a heterologous protein. In contrast, C-terminal deletions that extended into the adjacent nucleocapsid-like domain of Pr55gag abolished VLP recovery and demonstrated that this central region contributes to VLP assembly or stability, or both. Collectively, these data suggest that the single TED protein p37gag provides both capsid and nucleocapsid functions. TED may therefore use a simple processing strategy for VLP assembly and genome packaging. PMID:9765414

  6. Determinants of Glycosaminoglycan (GAG Structure

    Directory of Open Access Journals (Sweden)

    Kristian Prydz

    2015-08-01

    Full Text Available Proteoglycans (PGs are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-, from which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin, a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain becomes attached to the linker tetrasaccharide is influenced by the structure of the protein core, modifications occurring to the linker tetrasaccharide itself, and the biochemical environment of the Golgi apparatus, where GAG polymerization and modification by sulfation and epimerization take place. The same cell type may produce different GAG chains that vary, depending on the extent of epimerization and sulfation. However, it is not known to what extent these differences are caused by compartmental segregation of protein cores en route through the secretory pathway or by differential recruitment of modifying enzymes during synthesis of different PGs. The topic of this review is how different aspects of protein structure, cellular biochemistry, and compartmentalization may influence GAG synthesis.

  7. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    Science.gov (United States)

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Lentiviral Gag assembly analyzed through the functional characterization of chimeric simian immunodeficiency viruses expressing different domains of the feline immunodeficiency virus capsid protein.

    Directory of Open Access Journals (Sweden)

    María J Esteva

    Full Text Available To gain insight into the functional relationship between the capsid (CA domains of the Gag polyproteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively, we constructed chimeric SIVs in which the CA-coding region was partially or totally replaced by the equivalent region of the FIV CA. The phenotypic characterization of the chimeras allowed us to group them into three categories: the chimeric viruses that, while being assembly-competent, exhibit a virion-associated unstable FIV CA; a second group represented only by the chimeric SIV carrying the N-terminal domain (NTD of the FIV CA which proved to be assembly-defective; and a third group constituted by the chimeric viruses that produce virions exhibiting a mature and stable FIV CA protein, and which incorporate the envelope glycoprotein and contain wild-type levels of viral genome RNA and reverse transcriptase. Further analysis of the latter group of chimeric SIVs demonstrated that they are non-infectious due to a post-entry impairment, such as uncoating of the viral core, reverse transcription or nuclear import of the preintegration complex. Furthermore, we show here that the carboxyl-terminus domain (CTD of the FIV CA has an intrinsic ability to dimerize in vitro and form high-molecular-weight oligomers, which, together with our finding that the FIV CA-CTD is sufficient to confer assembly competence to the resulting chimeric SIV Gag polyprotein, provides evidence that the CA-CTD exhibits more functional plasticity than the CA-NTD. Taken together, our results provide relevant information on the biological relationship between the CA proteins of primate and nonprimate lentiviruses.

  9. Expression of MiR-9 promotes proliferation, migration and ...

    African Journals Online (AJOL)

    differentiation of human neural stem cells. Fei Zeng ... Keywords: Neural stem cells, MicroRNA, Mir-9, Migration, Differentiation, Proliferation ... Neural stem cells (NSCs) are basically ..... application of patient-specific pluripotent stem cells. J.

  10. Periodontal Ligament Mesenchymal Stromal Cells Increase Proliferation and Glycosaminoglycans Formation of Temporomandibular Joint Derived Fibrochondrocytes

    Directory of Open Access Journals (Sweden)

    Jianli Zhang

    2014-01-01

    Full Text Available Objectives. Temporomandibular joint (TMJ disorders are common disease in maxillofacial surgery. The aim of this study is to regenerate fibrocartilage with a mixture of TMJ fibrochondrocytes and periodontal ligament derived mesenchymal stem cells (PD-MSCs. Materials and Methods. Fibrochondrocytes and PD-MSC were cocultured (ratio 1 : 1 for 3 weeks. Histology and glycosaminoglycans (GAGs assay were performed to examine the deposition of GAG. Green florescent protein (GFP was used to track PD-MSC. Conditioned medium of PD-MSCs was collected to study the soluble factors. Gene expression of fibrochondrocytes cultured in conditioned medium was tested by quantitative PCR (qPCR. Results. Increased proliferation of TMJ-CH was observed in coculture pellets when compared to monoculture. Enhanced GAG production in cocultures was shown by histology and GAG quantification. Tracing of GFP revealed the fact that PD-MSC disappears after coculture with TMJ-CH for 3 weeks. In addition, conditioned medium of PD-MSC was also shown to increase the proliferation and GAG deposition of TMJ-CH. Meanwhile, results of qPCR demonstrated that conditioned medium enhanced the expression levels of matrix-related genes in TMJ-CH. Conclusions. Results from this study support the mechanism of MSC-chondrocyte interaction, in which MSCs act as secretor of soluble factors that stimulate proliferation and extracellular matrix deposition of chondrocytes.

  11. A new avenue to the synthesis of GAG-mimicking polymers highly promoting neural differentiation of embryonic stem cells.

    Science.gov (United States)

    Wang, Mengmeng; Lyu, Zhonglin; Chen, Gaojian; Wang, Hongwei; Yuan, Yuqi; Ding, Kaiguo; Yu, Qian; Yuan, Lin; Chen, Hong

    2015-10-28

    A new strategy for the fabrication of glycosaminoglycan (GAG) analogs was proposed by copolymerizing the sulfonated unit and the glyco unit, 'splitted' from the sulfated saccharide building blocks of GAGs. The synthetic polymers can promote cell proliferation and neural differentiation of embryonic stem cells with the effects even better than those of heparin.

  12. Pericentriolar Targeting of the Mouse Mammary Tumor Virus GAG Protein.

    Directory of Open Access Journals (Sweden)

    Guangzhi Zhang

    Full Text Available The Gag protein of the mouse mammary tumor virus (MMTV is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV, assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules.

  13. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Shaoping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Teo, Wee Eong [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Zhu Xiao [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Beuerman, Roger [Singapore Eye Research Institute, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751 (Singapore); Ramakrishna, Seeram [Division of Bioengineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore); Yung, Lin Yue Lanry [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260 (Singapore)]. E-mail: cheyly@nus.edu.sg

    2007-03-15

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds.

  14. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning

    International Nuclear Information System (INIS)

    Zhong Shaoping; Teo, Wee Eong; Zhu Xiao; Beuerman, Roger; Ramakrishna, Seeram; Yung, Lin Yue Lanry

    2007-01-01

    Collagen and glycosaminoglycan (GAG) are native constituents of human tissues and are widely utilized to fabricate scaffolds serving as an analog of native extracellular matrix (ECM).The development of blended collagen and GAG scaffolds may potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native ECM. In this study, we were able to obtain a novel nanofibrous collagen-GAG scaffold by electrospinning with collagen and chondroitin sulfate (CS), a widely used GAG. The electrospun collagen-GAG scaffold exhibited a uniform fiber structure in nano-scale diameter. By crosslinking with glutaraldehyde vapor, the collagen-GAG scaffolds could resist from collagenase degradation and enhance the biostability of the scaffolds. This led to the increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without crosslinking did not increase the biostability but still promoted cell growth. In conclusion, the electrospun collagen-GAG scaffolds, with high surface-to-volume ratio, may potentially provide a better environment for tissue formation/biosynthesis compared with the traditional scaffolds

  15. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  16. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  17. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples.

    Science.gov (United States)

    Mullins, Christina S; Hühns, Maja; Krohn, Mathias; Peters, Sven; Cheynet, Valérie; Oriol, Guy; Guillotte, Michèle; Ducrot, Sandrine; Mallet, François; Linnebacher, Michael

    2016-01-01

    A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.

  18. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples.

    Directory of Open Access Journals (Sweden)

    Christina S Mullins

    Full Text Available A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC.The expression of HERV-H Gag proteins (Gag-H was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium.Taken together, the Gag-H antibody clone(s present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.

  19. Generation, Characterization and Application of Antibodies Directed against HERV-H Gag Protein in Colorectal Samples

    Science.gov (United States)

    Mullins, Christina S.; Hühns, Maja; Krohn, Mathias; Peters, Sven; Cheynet, Valérie; Oriol, Guy; Guillotte, Michèle; Ducrot, Sandrine; Mallet, François; Linnebacher, Michael

    2016-01-01

    Introduction A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). Results The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. Conclusion Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut. PMID:27119520

  20. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges.

    Science.gov (United States)

    Lakhashe, Samir K; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B; Dipasquale, Janet M; Hemashettar, Girish; Yoon, John K; Rasmussen, Robert A; Yang, Feng; Lee, Sandra J; Montefiori, David C; Novembre, Francis J; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R; Robert-Guroff, Marjorie; Johnson, Welkin E; Lieberman, Judy; Ruprecht, Ruth M

    2011-08-05

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Cytochromes P450 are Expressed in Proliferating Cells in Barrett's Metaplasia

    Directory of Open Access Journals (Sweden)

    Steven J. Hughes

    1999-06-01

    Full Text Available The expression of cytochromes P450 (CYP in Barrett's esophagus and esophageal squamous mucosa was investigated. Esophagectomy specimens from 23 patients were examined for CYP expression of CYP1A2, CYP3A4, CYP2C9/10, and CYP2E1 by immunohistochemical analysis, and the expression of CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 in these tissues was further confirmed by reverse transcription polymerase chain reaction. Immunohistochemical analysis of esophageal squamous mucosa (n = 12 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 proteins, but it was noted that cells within the basal proliferative zone did not express CYPs. Immunohistochemical analysis of Barrett's esophagus (n = 13 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 that was prominent in the basal glandular regions, which are areas containing a high percentage of actively proliferating cells. Immunohistochemical staining for both proliferating cell nuclear antigen and the CYPs further supported the colocalization of CYP expression to areas of active cell proliferation in Barrett's esophagus, whereas in the esophageal squamous epithelium, CYP expression is limited to cells that are not proliferating. RT-PCR with amplification product sequence analysis confirmed CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 mRNA expression in Barrett's esophagus. These data suggest that the potential ability of cells in Barrett's esophagus to both activate carcinogens and proliferate may be important risk factors affecting carcinogenesis in this metaplastic tissue.

  2. Study on the correlation of MLCK and FAP expression with uterine fibroid cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Wei Lin1

    2017-06-01

    Full Text Available Objective: To study the correlation of myosin light chain kinase (MLCK and fibroblast activation protein (FAP expression with uterine fibroid cell proliferation and invasion. Methods: Uterine fibroids samples and normal uterine muscle samples next to fibroids that were surgically removed in Wuhan Red Cross Hospital between May 2014 and January 2017 were chosen, fluorescence quantitative PCR kits were used to deterct MLCK and FAP mRNA expression, and enzyme-linked immunosorbent assay kits were used to determine proliferation and invasion gene protein expression. Results: MLCK and FAP mRNA expression in uterine fibroids samples were significantly higher than those in normal uterine muscle samples, and Survivin, Livin, Bcl-2, Snail, N-cadherin and MMP2 protein expression were significantly higher than those in normal uterine muscle samples; Survivin, Livin, Bcl-2, Snail, N-cadherin and MMP2 protein expression in uterine fibroids samples with high MLCK and FAP expression were significantly higher than those in uterine fibroids samples with low MLCK and FAP expression. Conclusion: Highly expressed MLCK and FAP in uterine fibroids can promote the proliferation and invasion of uterine fibroids.

  3. Expression of a novel non-coding mitochondrial RNA in human proliferating cells.

    Science.gov (United States)

    Villegas, Jaime; Burzio, Veronica; Villota, Claudio; Landerer, Eduardo; Martinez, Ronny; Santander, Marcela; Martinez, Rodrigo; Pinto, Rodrigo; Vera, María I; Boccardo, Enrique; Villa, Luisa L; Burzio, Luis O

    2007-01-01

    Previously, we reported the presence in mouse cells of a mitochondrial RNA which contains an inverted repeat (IR) of 121 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). Here, we report the structure of an equivalent transcript of 2374 nt which is over-expressed in human proliferating cells but not in resting cells. The transcript contains a hairpin structure comprising an IR of 815 nt linked to the 5' end of the 16S mtrRNA and forming a long double-stranded structure or stem and a loop of 40 nt. The stem is resistant to RNase A and can be detected and isolated after digestion with the enzyme. This novel transcript is a non-coding RNA (ncRNA) and several evidences suggest that the transcript is synthesized in mitochondria. The expression of this transcript can be induced in resting lymphocytes stimulated with phytohaemagglutinin (PHA). Moreover, aphidicolin treatment of DU145 cells reversibly blocks proliferation and expression of the transcript. If the drug is removed, the cells re-assume proliferation and over-express the ncmtRNA. These results suggest that the expression of the ncmtRNA correlates with the replicative state of the cell and it may play a role in cell proliferation.

  4. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    Directory of Open Access Journals (Sweden)

    Y. Liu

    Full Text Available Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2 significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.

  5. Expression of Nanog gene promotes NIH3T3 cell proliferation

    International Nuclear Information System (INIS)

    Zhang Jingyu; Wang Xia; Chen Bing; Suo Guangli; Zhao Yanhong; Duan Ziyuan; Dai Jianwu

    2005-01-01

    Cells are the functional elements in tissue engineering and regenerative medicine. A large number of cells are usually needed for these purposes. However, there are numbers of limitations for in vitro cell proliferation. Nanog is an important self-renewal determinant in embryonic stem cells. However, it remains unknown whether Nanog will influence the cell cycle and cell proliferation of mature cells. In this study, we expressed Nanog in NIH3T3 cells and showed that expression of Nanog in NIH3T3 promoted cells to enter into S phase and enhanced cell proliferation. This suggests that Nanog gene might function in a similar fashion in mature cells as in ES cells. In addition, it may provide an approach for in vitro cell expansion

  6. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation...

  7. Cell proliferation and expression of connexins differ in melanotic and amelanotic canine oral melanomas.

    Science.gov (United States)

    Teixeira, Tarso Felipe; Gentile, Luciana Boffoni; da Silva, Tereza Cristina; Mennecier, Gregory; Chaible, Lucas Martins; Cogliati, Bruno; Roman, Marco Antonio Leon; Gioso, Marco Antonio; Dagli, Maria Lucia Zaidan

    2014-03-01

    Melanoma is a malignant neoplasm occurring in several animal species, and is the most frequently found tumor in the oral cavity in dogs. Melanomas are classified into two types: melanotic and amelanotic. Prior research suggests that human amelanotic melanomas are more aggressive than their melanotic counterparts. This study evaluates the behavior of canine melanotic and amelanotic oral cavity melanomas and quantifies cell proliferation and the expression of connexins. Twenty-five melanomas (16 melanotic and 9 amelanotic) were collected from dogs during clinical procedures at the Veterinary Hospital of the School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil. After diagnosis, dogs were followed until death or euthanasia. Histopathology confirmed the gross melanotic or amelanotic characteristics and tumors were classified according to the WHO. HMB45 or Melan A immunostainings were performed to confirm the diagnosis of amelanotic melanomas. Cell proliferation was quantified both by counting mitotic figures and PCNA positive nuclei. Expressions of connexins 26 and 43 were evaluated by immunohistochemistry, qRT-PCR and Western blot. Dogs bearing amelanotic melanomas presented a shorter lifespan in comparison to those with melanotic melanomas. Cell proliferation was significantly higher in amelanotic melanomas. Expressions of Connexins 26 and 43 were significantly reduced in amelanotic melanomas. The results presented here suggest that oral cavity melanotic and amelanotic melanomas differ regarding their behavior, cell proliferation and connexin expression in dogs, indicating a higher aggressiveness of amelanotic variants.

  8. Sirtuin 1 stimulates the proliferation and the expression of glycolysis genes in pancreatic neoplastic lesions.

    Science.gov (United States)

    Pinho, Andreia V; Mawson, Amanda; Gill, Anthony; Arshi, Mehreen; Warmerdam, Max; Giry-Laterriere, Marc; Eling, Nils; Lie, Triyana; Kuster, Evelyne; Camargo, Simone; Biankin, Andrew V; Wu, Jianmin; Rooman, Ilse

    2016-11-15

    Metabolic reprogramming is a feature of neoplasia and tumor growth. Sirtuin 1 (SIRT1) is a lysine deacetylase of multiple targets including metabolic regulators such as p53. SIRT1 regulates metaplasia in the pancreas. Nevertheless, it is unclear if SIRT1 affects the development of neoplastic lesions and whether metabolic gene expression is altered.To assess neoplastic lesion development, mice with a pancreas-specific loss of Sirt1 (Pdx1-Cre;Sirt1-lox) were bred into a KrasG12D mutant background (KC) that predisposes to the development of pancreatic intra-epithelial neoplasia (PanIN) and ductal adenocarcinoma (PDAC). Similar grade PanIN lesions developed in KC and KC;Sirt1-lox mice but specifically early mucinous PanINs occupied 40% less area in the KC;Sirt1-lox line, attributed to reduced proliferation. This was accompanied by reduced expression of proteins in the glycolysis pathway, such as GLUT1 and GAPDH.The stimulatory effect of SIRT1 on proliferation and glycolysis gene expression was confirmed in a human PDAC cell line. In resected PDAC samples, higher proliferation and expression of glycolysis genes correlated with poor patient survival. SIRT1 expression per se was not prognostic but low expression of Cell Cycle and Apoptosis Regulator 2 (CCAR2), a reported SIRT1 inhibitor, corresponded to poor patient survival.These findings open perspectives for novel targeted therapies in pancreatic cancer.

  9. Sirtuin 1 stimulates the proliferation and the expression of glycolysis genes in pancreatic neoplastic lesions

    Science.gov (United States)

    Pinho, Andreia V.; Mawson, Amanda; Gill, Anthony; Arshi, Mehreen; Warmerdam, Max; Giry-Laterriere, Marc; Eling, Nils; Lie, Triyana; Kuster, Evelyne; Camargo, Simone; Biankin, Andrew V.; Wu, Jianmin; Rooman, Ilse

    2016-01-01

    Metabolic reprogramming is a feature of neoplasia and tumor growth. Sirtuin 1 (SIRT1) is a lysine deacetylase of multiple targets including metabolic regulators such as p53. SIRT1 regulates metaplasia in the pancreas. Nevertheless, it is unclear if SIRT1 affects the development of neoplastic lesions and whether metabolic gene expression is altered. To assess neoplastic lesion development, mice with a pancreas-specific loss of Sirt1 (Pdx1-Cre;Sirt1-lox) were bred into a KrasG12D mutant background (KC) that predisposes to the development of pancreatic intra-epithelial neoplasia (PanIN) and ductal adenocarcinoma (PDAC). Similar grade PanIN lesions developed in KC and KC;Sirt1-lox mice but specifically early mucinous PanINs occupied 40% less area in the KC;Sirt1-lox line, attributed to reduced proliferation. This was accompanied by reduced expression of proteins in the glycolysis pathway, such as GLUT1 and GAPDH. The stimulatory effect of SIRT1 on proliferation and glycolysis gene expression was confirmed in a human PDAC cell line. In resected PDAC samples, higher proliferation and expression of glycolysis genes correlated with poor patient survival. SIRT1 expression per se was not prognostic but low expression of Cell Cycle and Apoptosis Regulator 2 (CCAR2), a reported SIRT1 inhibitor, corresponded to poor patient survival. These findings open perspectives for novel targeted therapies in pancreatic cancer. PMID:27494892

  10. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  11. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  12. Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells.

    Directory of Open Access Journals (Sweden)

    Emma C Skoog

    Full Text Available Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.

  13. RAE-1 expression is induced during experimental autoimmune encephalomyelitis and is correlated with microglia cell proliferation.

    Science.gov (United States)

    Djelloul, Mehdi; Popa, Natalia; Pelletier, Florence; Raguénez, Gilda; Boucraut, José

    2016-11-01

    Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Hsuan [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Pan, Shiow-Lin; Wang, Jing-Chi; Teng, Che-Ming [National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Kuo, Sung-Hsin [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Cheng, Jason Chia-Hsien [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (China)

    2014-12-15

    The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation. (orig.) [German] Die vorliegende Studie untersucht, ob die Strahlung die Expression von VEGF-C (vascular endothelial growth factor C) mittels Aktivierung des PI3K/Akt/mTOR-Signalwegs induziert und anschliessend die endothelialen Zellen beeinflusst. Die durch Strahlentherapie induzierte Mikrolymphgefaessdichte (MLVD) im Tumor wurde in

  15. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms

    International Nuclear Information System (INIS)

    Kobune, M; Iyama, S; Kikuchi, S; Horiguchi, H; Sato, T; Murase, K; Kawano, Y; Takada, K; Ono, K; Kamihara, Y; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kato, J

    2012-01-01

    Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers including cancer stem cells. However, involvement of the Hh-signaling system in the bone marrow (BM) microenvironment during the development of myeloid neoplasms is unknown. In this study, we assessed the expression of Hh-related genes in primary human CD34 + cells, CD34 + blastic cells and BM stromal cells. Both Indian Hh (Ihh) and its signal transducer, smoothened (SMO), were expressed in CD34 + acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)-derived cells. However, Ihh expression was relatively low in BM stromal cells. Remarkably, expression of the intrinsic Hh-signaling inhibitor, human Hh-interacting protein (HHIP) in AML/MDS-derived stromal cells was markedly lower than in healthy donor-derived stromal cells. Moreover, HHIP expression levels in BM stromal cells highly correlated with their supporting activity for SMO + leukemic cells. Knockdown of HHIP gene in stromal cells increased their supporting activity although control cells marginally supported SMO + leukemic cell proliferation. The demethylating agent, 5-aza-2′-deoxycytidine rescued HHIP expression via demethylation of HHIP gene and reduced the leukemic cell-supporting activity of AML/MDS-derived stromal cells. This indicates that suppression of stromal HHIP could be associated with the proliferation of AML/MDS cells

  16. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  17. Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression

    Directory of Open Access Journals (Sweden)

    Byler Timothy K

    2012-08-01

    Full Text Available Abstract Background Prevention of bladder cancer recurrence is a central challenge in the management of this highly prevalent disease. The histone deacetylase inhibitor valproic acid (sodium valproate has anti-angiogenic properties and has been shown to decrease bladder cancer growth in model systems. We have previously shown reduced expression of thrombospondin-1 in a mouse model and in human bladder cancer relative to normal urothelium. We speculated that inhibition of angiogenesis by valproate might be mediated by this anti-angiogenic protein. Methods Bladder cancer cell lines UMUC3 and T24 were treated with valproate or another histone deacetylase inhibitor, vorinostat, in culture for a period of three days. Proliferation was assessed by alamar blue reduction. Gene expression was evaluated by reverse transcription of RNA and quantitative PCR. Results Proliferation assays showed treatment with valproate or vorinostat decreased proliferation in both cell lines. Histone deacetylase inhibition also increased relative expression of thrombospondin-1 up to 8 fold at 5 mM valproate. Conclusions Histone deacetylase inhibitors warrant further study for the prevention or treatment of bladder cancer.

  18. Knockdown of Ran GTPase expression inhibits the proliferation and migration of breast cancer cells.

    Science.gov (United States)

    Sheng, Chenyi; Qiu, Jian; Wang, Yingying; He, Zhixian; Wang, Hua; Wang, Qingqing; Huang, Yeqing; Zhu, Lianxin; Shi, Feng; Chen, Yingying; Xiong, Shiyao; Xu, Zhen; Ni, Qichao

    2018-05-03

    Breast cancer is the second leading cause of cancer‑associated mortality in women worldwide. Strong evidence has suggested that Ran, which is a small GTP binding protein involved in the transport of RNA and protein across the nucleus, may be a key cellular protein involved in the metastatic progression of cancer. The present study investigated Ran gene expression in breast cancer tissue samples obtained from 140 patients who had undergone surgical resection for breast cancer. Western blot analysis of Ran in breast cancer tissues and paired adjacent normal tissues showed that expression of Ran was significantly increased in breast cancer tissues. Immunohistochemistry analyses conducted on formalin‑fixed paraffin‑embedded breast cancer tissue sections revealed that Ran expression was associated with tumor histological grade, nerve invasion and metastasis, vascular metastasis and Ki‑67 expression (a marker of cell proliferation). Kaplan‑Meier survival analysis showed that increased Ran expression in patients with breast cancer was positively associated with a poor survival prognosis. Furthermore, in vitro experiments demonstrated that highly migratory MDA‑MB‑231 cancer cells treated with Ran‑si‑RNA (si‑Ran), which knocked down expression of Ran, exhibited decreased motility in trans‑well migration and wound healing assays. Cell cycle analysis of Ran knocked down MDA‑MB‑231 cells implicated Ran in cell cycle arrest and the inhibition of proliferation. Furthermore, a starvation and re‑feeding (CCK‑8) assay was performed, which indicated that Ran regulated breast cancer cell proliferation. Taken together, the results provide strong in vitro evidence of the involvement of Ran in the progression of breast cancer and suggest that it could have high potential as a therapeutic target and/or marker of disease.

  19. Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2.

    Science.gov (United States)

    Ozen, Ilknur; Galichet, Christophe; Watts, Colin; Parras, Carlos; Guillemot, François; Raineteau, Olivier

    2007-05-01

    Little is known of the transcription factors expressed by adult neural progenitors produced in the hippocampal neurogenic niche. Here, we study the expression of the proneural basic helix-loop-helix (bHLH) transcription factor Neurogenin-2 (Ngn2) in the adult hippocampus. We have characterized the pattern of expression of Ngn2 in the adult hippocampus using immunostaining for Ngn2 protein and a Ngn2-green fluorescent protein (GFP) reporter mouse strain. A significant proportion of Ngn2-expressing cells were mitotically active. Ngn2-GFP expression was restricted to the subgranular zone and declined with age. Neuronal markers were used to determine the phenotype of Ngn2-expressing cells. The vast majority of Ngn2-GFP-positive cells expressed the immature neuronal markers, doublecortin (DCX) and polysialic acid-neural cell adhesion molecule (PSA-NCAM). Finally, the pattern of Ngn2 expression was studied following seizure induction. Our data show an increase in neurogenesis, detected in these animals by bromodeoxyuridine (BrdU) and DCX staining that was contemporaneous with a marked increase in Ngn2-GFP-expression. Taken together, our results show that Ngn2-GFP represents a specific marker for neurogenesis and its modulation in the adult hippocampus. Ngn2 transient expression in proliferating neuronal progenitors supports the idea that it plays a significant role in adult neurogenesis.

  20. Six1 promotes proliferation of pancreatic cancer cells via upregulation of cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Zhaoming Li

    Full Text Available Six1 is one of the transcription factors that act as master regulators of development and are frequently dysregulated in cancers. However, the role of Six1 in pancreatic cancer is not clear. Here we show that the relative expression of Six1 mRNA is increased in pancreatic cancer and correlated with advanced tumor stage. In vitro functional assays demonstrate that forced overexpression of Six1 significantly enhances the growth rate and proliferation ability of pancreatic cancer cells. Knockdown of endogenous Six1 decreases the proliferation of these cells dramatically. Furthermore, Six1 promotes the growth of pancreatic cancer cells in a xenograft assay. We also show that the gene encoding cyclin D1 is a direct transcriptional target of Six1 in pancreatic cancer cells. Overexpression of Six1 upregulates cyclin D1 mRNA and protein, and significantly enhances the activity of the cyclin D1 promoter in PANC-1 cells. We demonstrate that Six1 promotes cell cycle progression and proliferation by upregulation of cyclin D1. These data suggest that Six1 is overexpressed in pancreatic cancer and may contribute to the increased cell proliferation through upregulation of cyclin D1.

  1. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa.

    Directory of Open Access Journals (Sweden)

    Nives Hörmann

    Full Text Available The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs. Here, we report that colonization of germ-free (GF Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2 and protein-kinase B (AKT induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area.

  3. Upregulation of miR-3607 promotes lung adenocarcinoma proliferation by suppressing APC expression.

    Science.gov (United States)

    Lin, Yong; Gu, Qiangye; Sun, Zongwen; Sheng, Baowei; Qi, Congcong; Liu, Bing; Fu, Tian; Liu, Cun; Zhang, Yan

    2017-11-01

    Lung cancer is the leading cause of worldwide cancer-related deaths, although many drugs and new therapeutic approaches have been used, the 5-years survival rate is still low for lung cancer patients. microRNAs have been shown to regulate lung cancer initiation and development, here we studied the role of miR-3607 in lung cancer cell proliferation. We found miR-3607 was upregulated in lung cancer tissues and cells, miR-3607 overexpression promoted lung cancer cell A549 proliferation determined by MTT assay, colony formation assay, anchorage-independent growth ability assay and bromodeoxyuridine incorporation assay, while the opposite phenotypes were shown when miR-3607 was knocked down. Predicted analysis suggested a Wnt signaling pathway regulator adenomatous polyposis coli (APC) was the target of miR-3607, miR-3607 could directly bind to the 3'UTR of APC, and promoted Cyclin D1 and c-Myc expression which can be suppressed by APC. Double knockdown of miR-3607 and APC copied the phenotypes of miR-3607 overexpression, suggesting miR-3607 promoted lung cancer cell A549 proliferation by targeting APC. In conclusion, our study suggested miR-3607 contributes to lung cancer cell proliferation by inhibiting APC. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans.

    Science.gov (United States)

    Martinez, Pierre; Denys, Agnès; Delos, Maxime; Sikora, Anne-Sophie; Carpentier, Mathieu; Julien, Sylvain; Pestel, Joël; Allain, Fabrice

    2015-05-01

    Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells.

    Science.gov (United States)

    Daniele, Giulia; Simonetti, Giorgia; Fusilli, Caterina; Iacobucci, Ilaria; Lonoce, Angelo; Palazzo, Antonio; Lomiento, Mariana; Mammoli, Fabiana; Marsano, Renè Massimiliano; Marasco, Elena; Mantovani, Vilma; Quentmeier, Hilmar; Drexler, Hans G; Ding, Jie; Palumbo, Orazio; Carella, Massimo; Nadarajah, Niroshan; Perricone, Margherita; Ottaviani, Emanuela; Baldazzi, Carmen; Testoni, Nicoletta; Papayannidis, Cristina; Ferrari, Sergio; Mazza, Tommaso; Martinelli, Giovanni; Storlazzi, Clelia Tiziana

    2017-07-01

    We here describe a leukemogenic role of the homeobox gene UNCX , activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX -positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1 , was revealed. Similar results were obtained in UNCX -transduced CD34 + cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1 We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX , associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML. Copyright© 2017 Ferrata Storti Foundation.

  6. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation.

    Science.gov (United States)

    Yin, Chong; Zhang, Yan; Hu, Lifang; Tian, Ye; Chen, Zhihao; Li, Dijie; Zhao, Fan; Su, Peihong; Ma, Xiaoli; Zhang, Ge; Miao, Zhiping; Wang, Liping; Qian, Airong; Xian, Cory J

    2018-07-01

    Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation. © 2017 Wiley Periodicals, Inc.

  7. Caveolin-1 interacts with the Gag precursor of murine leukaemia virus and modulates virus production

    Directory of Open Access Journals (Sweden)

    Koester Mario

    2006-09-01

    Full Text Available Abstract Background Retroviral Gag determines virus assembly at the plasma membrane and the formation of virus-like particles in intracellular multivesicular bodies. Thereby, retroviruses exploit by interaction with cellular partners the cellular machineries for vesicular transport in various ways. Results The retroviral Gag precursor protein drives assembly of murine leukaemia viruses (MLV at the plasma membrane (PM and the formation of virus like particles in multivesicular bodies (MVBs. In our study we show that caveolin-1 (Cav-1, a multifunctional membrane-associated protein, co-localizes with Gag in a punctate pattern at the PM of infected NIH 3T3 cells. We provide evidence that Cav-1 interacts with the matrix protein (MA of the Gag precursor. This interaction is mediated by a Cav-1 binding domain (CBD within the N-terminus of MA. Interestingly, the CBD motif identified within MA is highly conserved among most other γ-retroviruses. Furthermore, Cav-1 is incorporated into MLV released from NIH 3T3 cells. Overexpression of a GFP fusion protein containing the putative CBD of the retroviral MA resulted in a considerable decrease in production of infectious retrovirus. Moreover, expression of a dominant-negative Cav-1 mutant affected retroviral titres significantly. Conclusion This study demonstrates that Cav-1 interacts with MLV Gag, co-localizes with Gag at the PM and affects the production of infectious virus. The results strongly suggest a role for Cav-1 in the process of virus assembly.

  8. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells.

    Science.gov (United States)

    Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A; de Boer, Jan; Watt, Fiona M

    2016-01-13

    It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation.

  9. LEPREL1 Expression in Human Hepatocellular Carcinoma and Its Suppressor Role on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Jianguo Wang

    2013-01-01

    Full Text Available Background. Hepatocellular carcinoma (HCC is one of the most aggressive malignancies worldwide. It is characterized by its high invasive and metastatic potential. Leprecan-like 1 (LEPREL1 has been demonstrated to be downregulated in the HCC tissues in previous proteomics studies. The present study is aimed at a new understanding of LEPREL1 function in HCC. Methods. Quantitative RT-PCR, immunohistochemical analysis, and western blot analysis were used to evaluate the expression of LEPREL1 between the paired HCC tumor and nontumorous tissues. The biology function of LEPREL1 was investigated by Cell Counting Kit-8 (CCK8 assay and colony formation assay in HepG2 and Bel-7402 cells. Results. The levels of LEPREL1 mRNA and protein were significantly lower in the HCC tissues as compared to those of the nontumorous tissues. Reduced LEPREL1 expression was not associated with conventional clinical parameters of HCC. Overexpression of LEPREL1 in HepG2 and Bel-7402 cells inhibited cell proliferation (P<0.01 and colony formation (P<0.05. LEPREL1 suppressed tumor cell proliferation through regulation of the cell cycle by downregulation of cyclins. Conclusions. Clinical parameters analysis suggested that LEPREL1 was an independent factor in the development of HCC. The biology function experiments showed that LEPREL1 might serve as a potential tumor suppressor gene by inhibiting the HCC cell proliferation.

  10. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  11. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    International Nuclear Information System (INIS)

    Guo, Kai; Jin, Faguang

    2015-01-01

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells

  12. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Leifheit Erica C

    2004-07-01

    Full Text Available Abstract Background The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF has previously been associated with various types of adenocarcinoma. Methods MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA, anti-MIF antibody or MIF anti-sense on cell growth and cytokine expression were analyzed. Results Human bladder cancer cells (HT-1376 secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. Conclusions This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma.

  13. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    International Nuclear Information System (INIS)

    Meyer-Siegler, Katherine L; Leifheit, Erica C; Vera, Pedro L

    2004-01-01

    The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) has previously been associated with various types of adenocarcinoma. MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA), anti-MIF antibody or MIF anti-sense) on cell growth and cytokine expression were analyzed. Human bladder cancer cells (HT-1376) secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma

  14. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres.

    Science.gov (United States)

    Popa, Natalia; Cedile, Oriane; Pollet-Villard, Xavier; Bagnis, Claude; Durbec, Pascale; Boucraut, José

    2011-01-01

    Improving and controlling the capacity of endogenous or grafted adult neural stem cells to repair the nervous system relies on a better knowledge of interactions between immune cells and neural stem cells. Class I major histocompatibility complex (MHC) family members comprise numerous proteins playing either immune or nonimmune function. Among the latter, MHC functions in the central nervous system has started to receive recent interest. Here, our first goal was to investigate the potential relationship between MHC class I molecules and neurogenesis. For the first time, we report the expression of two MHC class I-related members by neural stem/progenitor cells: retinoic acid early induced transcript (RAE)-1 and CD1d. The expression of RAE-1 but not CD1d disappears when differentiation of neurosphere cells is induced. Interestingly, RAE-1 transcripts are expressed in the brain during development, and we demonstrate they persist in one of the main area of adult neurogenesis, the subventricular zone (SVZ). So far, RAE-1 is only known for its immune functions as a ligand of the activating receptor NKG2D expressed by natural killer (NK) cells, natural killer T, Tγδ, and some T CD8 lymphocytes. Here, we do not detect any NKG2D expression in the SVZ either in physiological or in pathological conditions. Interestingly, inhibition of RAE-1 expression in neurosphere cells reduces cell proliferation without alteration of cell viability, which argues for a nonimmune role for RAE-1. These results reveal an unexpected role of RAE-1 in regulating adult SVZ neurogenesis by supporting stem/progenitor cells proliferation. © 2010 Wiley-Liss, Inc.

  15. Enzalutamide inhibits proliferation of gemcitabine-resistant bladder cancer cells with increased androgen receptor expression.

    Science.gov (United States)

    Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi

    2017-01-01

    Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.

  16. Vitamin D Proliferates Vaginal Epithelium through RhoA Expression in Postmenopausal Atrophic Vagina tissue.

    Science.gov (United States)

    Lee, Arum; Lee, Man Ryul; Lee, Hae-Hyeog; Kim, Yeon-Suk; Kim, Jun-Mo; Enkhbold, Temuulee; Kim, Tae-Hee

    2017-09-30

    Postmenopausal atrophic vagina (PAV) is the thinning of the walls of the vagina and decreased lugae of the vagina. PAV is caused by decreased estrogen levels in postmenopausal women. However, the harmful effects of hormone replacement therapy (HRT) have resulted in considerable caution in its use. Various estrogen agonist treatment options are available. Vitamin D is influences the regulation of differentiation and proliferation of various cells, especially tissues lining stratified squamous epithelium, such as the vaginal epithelium. In this study, we hypothesized that vitamin D could provide an alternative and a safe treatment option for PAV by promoting the proliferation and differentiation of the vaginal epithelium. Thirty six patients were enrolled in this case-control study. Vitamin D associated proteins in a vitamin D and sex hormone treated vaginal epithelial cell line as well as normal and PAV tissues were measured. To confirm of cell-to-cell junction protein expression, cell line and tissue studies included RT-PCR, immunohistochemistry staining, and immunoblot analyses. The expression of cell-to-cell junction proteins was higher in women with symptoms of atrophic vagina tissue compared to women without the symptoms. Vitamin D stimulated the proliferation of the vaginal epithelium by activating p-RhoA and Erzin through the vitamin D receptor (VDR). The results suggest that vitamin D positively regulates cell-to-cell junction by increasing the VDR/p-RhoA/p-Ezrin pathway. This is the first study to verify the relationship of the expression of RhoA and Ezrin proteins in vaginal tissue of PAV.

  17. Traditional Chinese Medicine Baicalin Suppresses mESCs Proliferation through Inhibition of miR-294 Expression

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2015-03-01

    Full Text Available Background: Traditional Chinese herbal medicines (TCMs have been widely used against a broad spectrum of biological activities, including influencing the cardiac differentiation from mouse embryonic stem cells (mESCs. However, their effects and mechanisms of action on ESCs proliferation remain to be determined. The present study aimed to determine the effect of three TCMs, baicalin, ginsenoside Rg1, and puerarin, on mESCs proliferation and to elucidate the possible mechanism of their action. Methods: Cell proliferation was examined with a cell proliferation assay Cell Counting Kit-8 (CCK-8, propidium iodide (PI staining was used to visualize cell cycle. The mRNA expression level of c-myc, c-fos, c-jun, GAPDH and microRNAs were measured by quantitative real time RT-PCR. Results: We found that baicalin 50 μM suppressed the proliferation of mESCs as observations in more cells in G1 phase and less cells in either S phase or G2/M phase. Moreover, baicalin suppressed the expressions of c-jun and c-fos in mESCs and down-regulated the expression of miR-294. Overexpression of miR-294 in mESCs significantly reversed the effects of baicalin both on mESC proliferation and c-fos/c-jun expression. Conclusions: Baicalin down-regulation of miR-294 may be its key mechanism of action in decreasing mESCs proliferation.

  18. Edge restenosis: impact of low dose irradiation on cell proliferation and ICAM-1 expression

    Directory of Open Access Journals (Sweden)

    Hannekum Andreas

    2006-07-01

    Full Text Available Abstract Background Low dose irradiation (LDI of uninjured segments is the consequence of the suggestion of many authors to extend the irradiation area in vascular brachytherapy to minimize the edge effect. Atherosclerosis is a general disease and the uninjured segment close to the intervention area is often atherosclerotic as well, consisting of neointimal smooth muscle cells (SMC and quiescent monocytes (MC. The current study imitates this complex situation in vitro and investigates the effect of LDI on proliferation of SMC and expression of intercellular adhesion molecule-1 (ICAM-1 in MC. Methods Plaque tissue from advanced primary stenosing lesions of human coronary arteries (9 patients, age: 61 ± 7 years was extracted by local or extensive thrombendarterectomy. SMC were isolated and identified by positive reaction with smooth muscle α-actin. MC were isolated from buffy coat leukocytes using the MACS cell isolation kit. For identification of MC flow-cytometry analysis of FITC-conjugated CD68 and CD14 (FACScan was applied. SMC and MC were irradiated using megavoltage photon irradiation (CLINAC2300 C/D, VARIAN, USA of 6 mV at a focus-surface distance of 100 cm and a dose rate of 6 Gy min-1 with single doses of 1 Gy, 4 Gy, and 10 Gy. The effect on proliferation of SMC was analysed at day 10, 15, and 20. Secondly, total RNA of MC was isolated 1 h, 2 h, 3 h, and 4 h after irradiation and 5 μg of RNA was used in standard Northern blot analysis with ICAM-1 cDNA-probes. Results Both inhibitory and stimulatory effects were detected after irradiation of SMC with a dose of 1 Gy. At day 10 and 15 a significant antiproliferative effect was found; at day 20 after irradiation cell proliferation was significantly stimulated. Irradiation with 4 Gy and 10 Gy caused dose dependent inhibitory effects at day 10, 15, and 20. Expression of ICAM-1 in human MC was neihter inhibited nor stimulated by LDI. Conclusion Thus, the stimulatory effect of LDI on SMC

  19. miR-494 represses HOXA10 expression and inhibits cell proliferation in oral cancer.

    Science.gov (United States)

    Libório-Kimura, Tatiana N; Jung, Hyun Min; Chan, Edward K L

    2015-02-01

    miR-494 was identified as a candidate of the most significantly underexpressed microRNAs (miRNAs) in our oral cancer screen. The aim of this study was to validate whether miR-494 has a functional role in oral cancer. Quantitative miRNA analyses were performed on oral tumor RNA and oral cancer cell lines. HOXA10 was selected for further analysis based on bioinformatics analysis of miR-494 targets and a previous report of overexpression of HOXA10 in oral cancer. Transient transfection of miRNA-mimic and inhibitor were performed in SCC-25 (tongue), CAL 27 (tongue), and FaDu (pharynx) cancer cells and regulation of HOXA10 by miR-494 was investigated. Dual luciferase assay was used to verify the interaction between miR-494 and HOXA10 in reporter cells. The effect of miR-494 on cell proliferation was examined. Our data showed that miR-494 was underexpressed whereas HOXA10 was overexpressed in oral cancer compared to normal tissues. An inverse correlation between miR-494 and HOXA10 was observed in the human tissues (pcancer cell lines significantly reduced the expression of HOXA10 mRNA. The luciferase reporter that contains the 3'UTR of HOXA10 showed a significantly reduced luciferase activity by miR-494 indicating a direct interaction between HOXA10 and miR-494. Significant reduction in cell proliferation was demonstrated in tongue cancer cells transfected with miR-494. miR-494 repressed the expression of HOXA10 and also reduced the proliferation of oral cancer cells. These data give more evidence of the role of miR-494 as a tumor suppressor miRNA in oral cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    Directory of Open Access Journals (Sweden)

    Nilay J Lakhkar

    2015-11-01

    Full Text Available In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5 that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.

  1. Stem cell proliferation and differentiation and stochastic bistability in gene expression

    International Nuclear Information System (INIS)

    Zhdanov, V. P.

    2007-01-01

    The process of proliferation and differentiation of stem cells is inherently stochastic in the sense that the outcome of cell division is characterized by probabilities that depend on the intracellular properties, extracellular medium, and cell-cell communication. Despite four decades of intensive studies, the understanding of the physics behind this stochasticity is still limited, both in details and conceptually. Here, we suggest a simple scheme showing that the stochastic behavior of a single stem cell may be related to (i) the existence of a short stage of decision whether it will proliferate or differentiate and (ii) control of this stage by stochastic bistability in gene expression or, more specifically, by transcriptional 'bursts.' Our Monte Carlo simulations indicate that our proposed scheme may operate if the number of mRNA (or protein) molecules generated during the high-reactive periods of gene expression is below or about 50. The stochastic-burst window in the space of kinetic parameters is found to increase with decreasing the mRNA and/or regulatory-protein numbers and increasing the number of regulatory sites. For mRNA production with three regulatory sites, for example, the mRNA degradation rate constant may change in the range ±10%

  2. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jiajia [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China); Zhu, Xi [Department of Urology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing (China); Zhang, Jie, E-mail: zhangjiebjmu@163.com [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China)

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.

  3. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette

    2002-01-01

    -Thymidine incorporation assay, respectively. T cells and RPE cells were cultured directly together or in a transwell system for determination of the effect of cell contact. The importance of cell surface molecules was examined by application of a panel of blocking antibodies (CD2, CD18, CD40, CD40L, CD54, CD58......) in addition to use of TCR negative T cell lines. The expression of IL2R-alpha -beta and -gamma chains of activated T cells was analysed by flow cytometry after incubation of T cells alone or with RPE cells. Human RPE cells were found to inhibit the proliferation of activated T cells by a cell contact......-beta and -gamma chain expression within 24 hr after removal from the coculture. It is concluded that the cultured human adult and foetal RPE cells inhibit the proliferation of activated T cells by a process that does not involve apoptosis. It depends on cell contact but the involved surface molecules were...

  4. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    International Nuclear Information System (INIS)

    Zheng, Jiajia; Zhu, Xi; Zhang, Jie

    2014-01-01

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy

  5. Reduced proliferation and osteocalcin expression in osteoblasts of male idiopathic osteoporosis.

    Science.gov (United States)

    Ruiz-Gaspà, Sílvia; Blanch-Rubió, Josep; Ciria-Recasens, Manuel; Monfort, Jordi; Tío, Laura; Garcia-Giralt, Natàlia; Nogués, Xavier; Monllau, Joan C; Carbonell-Abelló, Jordi; Pérez-Edo, Lluis

    2010-03-01

    Osteoporosis is characterized by low bone mineral density (BMD), resulting in increasing susceptibility to bone fractures. In men, it has been related to some diseases and toxic habits, but in some instances the cause of the primary--or idiopathic--osteoporosis is not apparent. In a previous study, our group compared histomorphometric measurements in cortical and cancellous bones from male idiopathic osteoporosis (MIO) patients to those of control subjects and found reduced bone formation without major differences in bone resorption. To confirm these results, this study analyzed the etiology of this pathology, examining the osteoblast behavior in vitro. We compared two parameters of osteoblast activity in MIO patients and controls: osteoblastic proliferation and gene expression of COL1A1 and osteocalcin, in basal conditions and with vitamin D(3) added. All these experiments were performed from a first-passage osteoblastic culture, obtained from osteoblasts that had migrated from the transiliac explants to the plate. The results suggested that the MIO osteoblast has a slower proliferation rate and decreased expression of genes related to matrix formation, probably due to a lesser or slower response to some stimulus. We concluded that, contrary to female osteoporosis, in which loss of BMD is predominantly due to increased resorption, low BMD in MIO seems to be due to an osteoblastic defect.

  6. Pseudogene PHBP1 promotes esophageal squamous cell carcinoma proliferation by increasing its cognate gene PHB expression.

    Science.gov (United States)

    Feng, Feiyue; Qiu, Bin; Zang, Ruochuan; Song, Peng; Gao, Shugeng

    2017-04-25

    Natural antisense transcripts (NATs) as one of the most diverse classes of long noncoding RNAs (lncRNAs), have been demonstrated involved in fundamental biological processes in human. Here, we reported that human prohibitin gene pseudogene 1 (PHBP1) was upregulated in ESCC, and increased PHBP1 expression in ESCC was associated with clinical advanced stage. Functional experiments showed that PHBP1 knockdown inhibited ESCC cells proliferation, colony formation and xenograft tumor growth in vitro and in vivo by causing cell-cycle arrest at the G1-G0 phase. Mechanisms analysis revealed that PHBP1 transcript as an antisense transcript of PHB is partially complementary to PHB mRNA and formed an RNA-RNA hybrid with PHB, consequently inducing an increase of PHB expression at both the mRNA and protein levels. Furthermore, PHBP1 expression is strongly correlated with PHB expression in ESCC tissues. Collectively, this study elucidates an important role of PHBP1 in promoting ESCC partly via increasing PHB expression.

  7. Immunohistochemical Expression of Survivin in Breast Carcinoma: Relationship with Clinico pathological Parameters, Proliferation and Molecular Classification

    International Nuclear Information System (INIS)

    YOUSSEF, N.S.; HEWEDI, I.H.; ABD RABOH, N.M.

    2008-01-01

    Background and Objective: Survivin is a novel member of the inhibitor of apoptosis (IAP) gene family. It is associated with more aggressive behavior and parameters of poor prognosis in most human cancers including gastric, colorectal and bladder carcinomas. However, conflicting data exist on its prognostic effect in breast cancer. This current study is designed to assess survivin expression in breast carcinoma relating results with clinico pathological parameters, proliferation (MIB-1) and molecular classification. Material and Methods: Our retrospective study com- prised of 65 archived cases of breast carcinoma. Samples from the tumor and the adjacent normal breast tissue were immuno stained for survivin and MIB-1. Nuclear and cytoplasmic survivin expression was evaluated in normal breast tissue and carcinoma regarding both the intensity and the percentage of positive cells. ER, PR, HER2 were used as surrogate markers to classify the cases into four molecular subtypes. Results: Survivin expression was detected in 78.5% of breast carcinomas. The adjacent normal breast tissue was immuno negative. Survivin expression showed significant association with increased tumor size ( p <0.0001), high histologic grade ( p =0.04), lymph node metastases ( p <0.001), advanced tumor stage ( p <0.0001), MIB-1 expression ( p =0.02), negative estrogen receptor status ( p =0.01) and negative progesterone receptor status ( p <0.0001). The subcellular localization of survivin significantly related to histologic grade, stage and lymph node involvement. The percentage of TNP (triple negative phenotype) and HER2+/ER-PR- tumors expressing survivin were significantly higher compared to the Luminal subtypes ( p =0.01). Conclusion: Survivin expression was associated with parameters of poor prognosis in breast cancer. Moreover, the cancer-specific expression of survivin, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a potential target for novel

  8. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes.

    Science.gov (United States)

    Pu, Meng; Wang, Jianlin; Huang, Qike; Zhao, Ge; Xia, Congcong; Shang, Runze; Zhang, Zhuochao; Bian, Zhenyuan; Yang, Xishegn; Tao, Kaishan

    2017-07-01

    Hepatocellular carcinoma is one of the most prevalent neoplasms and the leading cause of cancer-related mortality worldwide. Mitochondrial ribosomal protein S23 is encoded by a nuclear gene and participates in mitochondrial protein translation. Mitochondrial ribosomal protein S23 overexpression has been found in many types of cancer. In this study, we explored mitochondrial ribosomal protein S23 expression in primary hepatocellular carcinoma tissues compared with matched adjacent non-tumoral liver tissues using mitochondrial ribosomal protein S23 messenger RNA and protein levels collected from public databases and clinical samples. Immunohistochemistry was performed to analyze the relationship between mitochondrial ribosomal protein S23 and various clinicopathological features. The results indicated that mitochondrial ribosomal protein S23 was significantly overexpressed in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 expression was correlated with the tumor size and tumor-metastasis-node stage. Moreover, patients with high mitochondrial ribosomal protein S23 expression levels presented poorer survival rates. Mitochondrial ribosomal protein S23 was an independent prognostic factor for survival, especially at the early stage of hepatocellular carcinoma. In addition, the downregulation of mitochondrial ribosomal protein S23 decreased the proliferation of hepatocellular carcinoma in vitro and in vivo. In conclusion, we verified for the first time that mitochondrial ribosomal protein S23 expression was upregulated in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 levels can predict poor clinical outcomes in hepatocellular carcinoma, and this protein plays a key role in tumor proliferation. Therefore, mitochondrial ribosomal protein S23 may be a potential therapeutic target for hepatocellular carcinoma.

  9. Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis.

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsujioka

    Full Text Available Organ regenerative ability depends on the animal species and the developmental stage. The molecular bases for variable organ regenerative ability, however, remain unknown. Previous studies have identified genes preferentially expressed in the blastema tissues in various animals, but transcriptome analysis of the isolated proliferating blastema cells has not yet been reported. In the present study, we used RNA-sequencing analysis to analyze the gene expression profile of isolated proliferating blastema cells of regenerating Xenopus laevis tadpole tails. We used flow cytometry to isolate proliferating cells, and non-proliferating blastema cells, from regenerating tadpole tails as well as proliferating tail bud cells from tail bud embryos, the latter two of which were used as control cells, based on their DNA content. Among the 28 candidate genes identified by RNA-sequencing analysis, quantitative reverse transcription-polymerase chain reaction identified 10 genes whose expression was enriched in regenerating tadpole tails compared with non-regenerating tadpole tails or tails from the tail bud embryos. Among them, whole mount in situ hybridization revealed that chromosome segregation 1-like and interleukin 11 were expressed in the broad area of the tail blastema, while brevican, lysyl oxidase, and keratin 18 were mainly expressed in the notochord bud in regenerating tails. We further combined whole mount in situ hybridization with immunohistochemistry for the incorporated 5-bromo-2-deoxyuridine to confirm that keratin 18 and interleukin 11 were expressed in the proliferating tail blastema cells. Based on the proposed functions of their homologs in other animal species, these genes might have roles in the extracellular matrix formation in the notochord bud (brevican and lysyl oxidase, cell proliferation (chromosome segregation 1-like and keratin 18, and in the maintenance of the differentiation ability of proliferating blastema cells (interleukin 11

  10. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Pedicini Piernicola

    2012-08-01

    Full Text Available Abstract Purpose To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr and the reduction of the effective doubling time (TD during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC. Methods A survey of the published papers comparing 3-years of local regional control rate (LCR for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of TD were obtained by a model incorporating the overall time corrected biologically effective dose (BED and a 3-year clinical LCR for high and low EGFr groups of patients (HEGFr and LEGFr, respectively. By obtaining the TD from the above analysis and the sub-sites’ potential doubling time (Tpot from flow cytometry and immunohistochemical methods, we were able to estimate the average TD for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (Dprolif, was estimated. Results The averages of TD were 77 (27-9095% days in LEGFr and 8.8 (7.3-11.095% days in HEGFr, if an onset of accelerated proliferation TK at day 21 was assumed. The correspondent HEGFr sub-sites’ TD were 5.9 (6.6, 5.9 (6.6, 4.6 (6.1, 14.3 (12.9 days, with respect to literature immunohistochemical (flow cytometry data of Tpot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The Dprolif for the HEGFr groups were 0.33 (0.29, 0.33 (0.29, 0.42 (0.31, 0.14 (0.15 Gy/day if α = 0.3 Gy-1 and α/β = 10 Gy were assumed. Conclusions A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced TD and Dprolif for each head and neck

  11. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pedicini, Piernicola; Fiorentino, Alba; Improta, Giuseppina; Storto, Giovanni; Benassi, Marcello; Orecchia, Roberto; Salvatore, Marco; Nappi, Antonio; Strigari, Lidia; Alicia Jereczek-Fossa, Barbara; Alterio, Daniela; Cremonesi, Marta; Botta, Francesca; Vischioni, Barbara; Caivano, Rocchina

    2012-01-01

    To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr) and the reduction of the effective doubling time (T D ) during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT) is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC). A survey of the published papers comparing 3-years of local regional control rate (LCR) for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of T D were obtained by a model incorporating the overall time corrected biologically effective dose (BED) and a 3-year clinical LCR for high and low EGFr groups of patients (H EGFr and L EGFr ), respectively. By obtaining the T D from the above analysis and the sub-sites’ potential doubling time (T pot ) from flow cytometry and immunohistochemical methods, we were able to estimate the average T D for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (D prolif ), was estimated. The averages of T D were 77 (27-90) 95% days in L EGFr and 8.8 (7.3-11.0) 95% days in H EGFr , if an onset of accelerated proliferation T K at day 21 was assumed. The correspondent H EGFr sub-sites’ T D were 5.9 (6.6), 5.9 (6.6), 4.6 (6.1), 14.3 (12.9) days, with respect to literature immunohistochemical (flow cytometry) data of T pot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The D prolif for the H EGFr groups were 0.33 (0.29), 0.33 (0.29), 0.42 (0.31), 0.14 (0.15) Gy/day if α = 0.3 Gy -1 and α/β = 10 Gy were assumed. A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced T D and D prolif for each head and neck sub-site

  12. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  13. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  14. Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.

    Science.gov (United States)

    Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa

    2018-04-07

    Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. EGFR signaling promotes β-cell proliferation and survivin expression during pregnancy.

    Directory of Open Access Journals (Sweden)

    Elina Hakonen

    Full Text Available Placental lactogen (PL induced serotonergic signaling is essential for gestational β-cell mass expansion. We have previously shown that intact Epidermal growth factor -receptor (EGFR function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced β-cell mass compensation. Islets were isolated from wild-type and β-cell-specific EGFR-dominant negative mice (E1-DN, stimulated with PL and analyzed for β-cell proliferation and expression of genes involved in gestational β-cell growth. β-cell mass dynamics were analyzed both with traditional morphometrical methods and three-dimensional optical projection tomography (OPT of whole-mount insulin-stained pancreata. Insulin-positive volume analyzed with OPT increased 1.4-fold at gestational day 18.5 (GD18.5 when compared to non-pregnant mice. Number of islets peaked by GD13.5 (680 vs 1134 islets per pancreas, non-pregnant vs. GD13.5. PL stimulated beta cell proliferation in the wild-type islets, whereas the proliferative response was absent in the E1-DN mouse islets. Serotonin synthesizing enzymes were upregulated similarly in both the wild-type and E1-DN mice. However, while survivin (Birc5 mRNA was upregulated 5.5-fold during pregnancy in the wild-type islets, no change was seen in the E1-DN pregnant islets. PL induced survivin expression also in isolated islets and this was blocked by EGFR inhibitor gefitinib, mTOR inhibitor rapamycin and MEK inhibitor PD0325901. Our 3D-volumetric analysis of β-cell mass expansion during murine pregnancy revealed that islet number increases during pregnancy. In addition, our results suggest that EGFR signaling is required for lactogen-induced survivin expression via MAPK and mTOR pathways.

  16. miR-30a suppresses osteosarcoma proliferation and metastasis by downregulating MEF2D expression

    Directory of Open Access Journals (Sweden)

    Du L

    2018-04-01

    Full Text Available Liuxue Du,* Tianpei Chen,* Kai Zhao,* Dong Yang Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China *These authors contributed equally to this work Abstract: Many studies have revealed that microRNAs (miRNAs play crucial roles in cancer development and progression. miRNA-30a (miR-30a, as a member of the miR-30 family, has been implicated in various cancers. However, the role of miR-30a in osteosarcoma remains unclear. In the current study, we found that miR-30a was significantly downregulated in osteosarcoma tissues and cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR. In addition, miR-30a could inhibit cancer cell growth, migration, and invasion in vitro. Furthermore, bioinformatics of miRNA target prediction and luciferase reporter assay indicated that MEF2D is a direct target of miR-30a. miR-30a was able to reduce the mRNA and protein expression of MEF2D as assessed using RT-PCR and Western blotting assay. Interestingly, overexpression of MEF2D partially reversed the miR-30a-reduced cell proliferation, migration, and invasion of osteosarcoma cell, indicating that miR-30a suppresses osteosarcoma cell proliferation and metastasis partially mediated by inhibition of MEF2D. Overall, our study demonstrated that miR-30a functions as a tumor suppressor by targeting MEF2D in osteosarcoma, providing a promising prognostic biomarker and a therapeutic strategy for osteosarcoma. Keywords: miR-30a, MEF2D, osteosarcoma, proliferation, invasion, migration

  17. Endophilins interact with Moloney murine leukemia virus Gag and modulate virion production

    Directory of Open Access Journals (Sweden)

    De Camilli Pietro

    2003-12-01

    Full Text Available Abstract Background The retroviral Gag protein is the central player in the process of virion assembly at the plasma membrane, and is sufficient to induce the formation and release of virus-like particles. Recent evidence suggests that Gag may co-opt the host cell's endocytic machinery to facilitate retroviral assembly and release. Results A search for novel partners interacting with the Gag protein of the Moloney murine leukemia virus (Mo-MuLV via the yeast two-hybrid protein-protein interaction assay resulted in the identification of endophilin 2, a component of the machinery involved in clathrin-mediated endocytosis. We demonstrate that endophilin interacts with the matrix or MA domain of the Gag protein of Mo-MuLV, but not of human immunodeficiency virus, HIV. Both exogenously expressed and endogenous endophilin are incorporated into Mo-MuLV viral particles. Titration experiments suggest that the binding sites for inclusion of endophilin into viral particles are limited and saturable. Knock-down of endophilin with small interfering RNA (siRNA had no effect on virion production, but overexpression of endophilin and, to a lesser extent, of several fragments of the protein, result in inhibition of Mo-MuLV virion production, but not of HIV virion production. Conclusions This study shows that endophilins interact with Mo-MuLV Gag and affect virion production. The findings imply that endophilin is another component of the large complex that is hijacked by retroviruses to promote virion production.

  18. Stat3 Expression and Its Correlation with Proliferation and Apoptosis/Autophagy in Gliomas

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2008-01-01

    Full Text Available Signal transducer and activator of transcription-3 (Stat3 was studied along with several steps of the PI3/Akt pathway in a series of 64 gliomas that included both malignant and low-grade tumors, using quantitative immunohistochemistry, Western blotting, and molecular biology techniques. The goal of the study was to investigate whether activated Stat3 (phospho-Stat3 levels correlated with cell proliferation, apoptosis, and autophagy. Stat3 and activated Akt (phospho-Akt expression increased with malignancy grade, but did not correlate with proliferation and survival within the category of glioblastomas. A correlation of Stat3 with Akt was found, indicating a regulation of the former by the PI3/Akt pathway, which, in turn, was in relation with EGFR amplification. Stat3 and Akt did not show any correlation with apoptosis, whereas they showed an inverse correlation with Beclin 1, a stimulator of autophagy, which was rarely positive in glioblastomas. Autophagy seems then to be inactivated in malignant gliomas.

  19. Vimentin expression influences flow dependent VASP phosphorylation and regulates cell migration and proliferation

    International Nuclear Information System (INIS)

    Lund, Natalie; Henrion, Daniel; Tiede, Petra; Ziche, Marina; Schunkert, Heribert; Ito, Wulf D.

    2010-01-01

    The cytoskeleton plays a central role for the integration of biochemical and biomechanical signals across the cell required for complex cellular functions. Recent studies indicate that the intermediate filament vimentin is necessary for endothelial cell morphogenesis e.g. in the context of leukocyte transmigration. Here, we present evidence, that the scaffold provided by vimentin is essential for VASP localization and PKG mediated VASP phosphorylation and thus controls endothelial cell migration and proliferation. Vimentin suppression using siRNA technique significantly decreased migration velocity by 50% (videomicroscopy), diminished transmigration activity by 42.5% (Boyden chamber) and reduced proliferation by 43% (BrdU-incorporation). In confocal microscopy Vimentin colocalized with VASP and PKG in endothelial cells. Vimentin suppression was accompanied with a translocation of VASP from focal contacts to the perinuclear region. VASP/Vimentin and PKG/Vimentin colocalization appeared to be essential for proper PKG mediated VASP phosphorylation because we detected a diminished expression of PKG and p Ser239 -VASP in vimentin-suppressed cells, Furthermore, the induction of VASP phosphorylation in perfused arteries was markedly decreased in vimentin knockout mice compared to wildtypes. A link is proposed between vimentin, VASP phosphorylation and actin dynamics that delivers an explanation for the important role of vimentin in controlling endothelial cell morphogenesis.

  20. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    Science.gov (United States)

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer.

    Science.gov (United States)

    Su, Jingna; Zhou, Xiuxia; Yin, Xuyuan; Wang, Lixia; Zhao, Zhe; Hou, Yingying; Zheng, Nana; Xia, Jun; Wang, Zhiwei

    2017-09-15

    Pancreatic cancer (PC) is one of the most fatal cancers worldwide. The incidence and death rates are still increasing for PC. Curcumin is the biologically active diarylheptanoid constituent of the spice turmeric, which exerts its anticancer properties in various human cancers including PC. In particular, accumulating evidence has proved that curcumin targets numerous therapeutically important proteins in cell signaling pathways. The neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) is an E3 HECT ubiquitin ligase and is frequently over-expressed in various cancers. It has reported that NEDD4 might facilitate tumorigenesis via targeting and degradation of multiple tumor suppressor proteins including PTEN. Hence, in the present study we explore whether curcumin inhibits NEDD4, resulting in the suppression of cell growth, migration and invasion in PC cells. We found that curcumin inhibited cell proliferation and triggered apoptosis in PC, which is associated with increased expression of PTEN and p73. These results suggested that inhibition of NEDD4 might be beneficial to the antitumor properties of curcumin on PC treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Ameloblastin inhibits cranial suture closure by modulating MSX2 expression and proliferation.

    Directory of Open Access Journals (Sweden)

    Phimon Atsawasuwan

    Full Text Available Deformities of cranial sutures such as craniosynostosis and enlarged parietal foramina greatly impact human development and quality of life. Here we have examined the role of the extracellular matrix protein ameloblastin (Ambn, a recent addition to the family of non-collagenous extracellular bone matrix proteins, in craniofacial bone development and suture formation. Using RT-PCR, western blot and immunohistochemistry, Ambn was localized in mouse calvarial bone and adjacent condensed mesenchyme. Five-fold Ambn overexpression in a K14-driven transgenic mouse model resulted in delayed posterior frontal suture fusion and incomplete suture closure. Moreover, Ambn overexpressor skulls weighed 13.2% less, their interfrontal bones were 35.3% thinner, and the width between frontal bones plus interfrontal suture was 14.3% wider. Ambn overexpressing mice also featured reduced cell proliferation in suture blastemas and in mesenchymal cells from posterior frontal sutures. There was a more than 2-fold reduction of Msx2 in Ambn overexpressing calvariae and suture mesenchymal cells, and this effect was inversely proportionate to the level of Ambn overexpression in different cell lines. The reduction of Msx2 expression as a result of Ambn overexpression was further enhanced in the presence of the MEK/ERK pathway inhibitor O126. Finally, Ambn overexpression significantly reduced Msx2 down-stream target gene expression levels, including osteogenic transcription factors Runx2 and Osx, the bone matrix proteins Ibsp, ColI, Ocn and Opn, and the cell cycle-related gene CcnD1. Together, these data suggest that Ambn plays a crucial role in the regulation of cranial bone growth and suture closure via Msx 2 suppression and proliferation inhibition.

  3. Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stochiometry

    Directory of Open Access Journals (Sweden)

    Fogarty Keir H

    2010-09-01

    Full Text Available Abstract Background Human T-lymphotropic virus type 1 (HTLV-1 is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an EYFP reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells. Results The codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM. Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS. The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions. Conclusions In summary, our studies represent the first quantitative biophysical

  4. The Greek version of the Gagging Assessment Scale in children and adolescents: psychometric properties, prevalence of gagging, and the association between gagging and dental fear.

    Science.gov (United States)

    Katsouda, Maria; Provatenou, Efthymia; Arapostathis, Konstantinos; Coolidge, Trilby; Kotsanos, Nikolaos

    2017-03-01

    No studies assessing the association between gagging and dental fear are available in pediatric samples. To assess the psychometric properties of the Greek version of the Gagging Assessment Scale (GAS), to explore the prevalence of gagging, and to evaluate the relationship between gagging and dental fear in a pediatric sample. A total of 849 8- and 14-year-old children filled out a questionnaire consisting of demographic items, the Greek version of the GAS, and the Greek Children's Fear Survey Schedule Dental Subscale (CFSS-DS); the older children also completed the Greek version of the Modified Dental Anxiety Scale (MDAS). The short form of dentist part of the Gagging Problem Assessment (GPA-de-c/SF) was used to objectively assess gagging. A total of 51 children (6.0%) demonstrated gagging on the GPA-de-c/SF. Children rated as gaggers on the GPA-de-c/SF had significantly higher GAS scores. There were no relationships between GPA-de-c/SF and the CFSS-DS or MDAS. The GAS ratings were significantly correlated with the CFSS-DS (rho = 0.420, P fear was correlated with the self-report gagging assessment, but not with the objective gagging assessment. © 2016 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effect of helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue

    Directory of Open Access Journals (Sweden)

    Hua Xin

    2017-05-01

    Full Text Available Objective: To study the effect of Helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue. Methods: The gastric cancer tissues surgically removed in our hospital between May 2013 and October 2016 were collected and divided into Hp negative, Hp-L negative and Hp-L positive according to the condition of helicobacter pylori infection. The proliferation, apoptosis and invasion gene expression were detected. Results: LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-positive gastric cancer tissues were significantly higher than those in Hp-L-negative and Hp-negative gastric cancer tissues while ING5, PTPN13, Beclin1 and Mst1 mRNA expression were significantly lower than those in Hp-L-negative and Hp-negative gastric cancer tissues; LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, ING5, PTPN13, Beclin1, Mst1, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-negative gastric cancer tissues were not different from those in Hpnegative gastric cancer tissues. Conclusion: Helicobacter pylori L-form infection can influence the proliferation, apoptosis and invasion gene expression to promote cell proliferation and invasion, and inhibit cell apoptosis.

  6. Subtype-Specific Differences in Gag-Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression.

    Science.gov (United States)

    Kiguoya, Marion W; Mann, Jaclyn K; Chopera, Denis; Gounder, Kamini; Lee, Guinevere Q; Hunt, Peter W; Martin, Jeffrey N; Ball, T Blake; Kimani, Joshua; Brumme, Zabrina L; Brockman, Mark A; Ndung'u, Thumbi

    2017-07-01

    There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates ( r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases ( P identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes. IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that

  7. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  8. Standardizing evaluation of sarcoma proliferation- higher Ki-67 expression in the tumor periphery than the center

    DEFF Research Database (Denmark)

    Fernebro, J; Engellau, J; Persson, A

    2007-01-01

    Soft tissue sarcomas often present as large and histopathologically heterogenous tumors. Proliferation has repeatedly been identified as a prognostic factor and immunostaining for Ki-67 represents the most commonly used proliferation marker. There is, however, a lack of consensus on how to evaluate...... of proliferation in soft tissue sarcomas should be standardized for clinical application of Ki-67 as a prognostic marker....

  9. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  10. Comparison of Proliferating Cell Nuclear Antigen Expression in Odontogenic Keratocyst and Ameloblastoma: An Immunohistochemical Study

    Directory of Open Access Journals (Sweden)

    Hiroshi Takahashi

    1998-01-01

    Full Text Available Proliferating cell nuclear antigen (PCNA is a nuclear protein synthesized in the late G1 and S phase of the cell cycle, and immunohistochemical detection of the protein represents a useful marker for the proliferating fraction of cells in tissue specimens. PCNA expression was studied in odontogenic keratocysts (n = 15 and ameloblastomas (n = 46 using an avidin–biotin–peroxidase complex method on routinely processed paraffin sections. The percentage of PCNA-positive cells determined by point counting was significantly lower in the ameloblastomas (mean 9.4%, standard deviation (SD 11.0 than in odontogenic keratocysts (mean 29.9%, SD 24.0. In ameloblastomas, the mean percentage of PCNA-positive cells was lowest in the acanthomatous pattern and highest in plexiform pattern. The mean percentage of PCNA-positive cells in plexiform pattern was non-significantly higher than that in follicular pattern. The mean percentage of PCNA-positive cells in plexiform and follicular patterns was significantly higher than that in cyctic and acanthomatous patterns. The frequency of PCNA-positive cells was significantly higher in the peripheral cells of follicular and plexiform patterns than in the central cells of both patterns (p < 0.01. Therefore, peripheral cells were regarded as reserve cell of central cells. The mean percentage of PCNA-positive cells in the epithelial lining of odontogenic keratocyst was not significantly different from those in the peripheral cells of follicular and plexiform patterns of ameloblastoma. In contrast, the odontogenic keratocyst exhibited a mean percentage of PCNA-positive cells which was statistically higher than that in other histological elements of ameloblastomas. The present study suggests that odontogenic keratocyst is regarded as benign odontogenic tumour.

  11. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms.

    Science.gov (United States)

    Bavik, Claes; Coleman, Ilsa; Dean, James P; Knudsen, Beatrice; Plymate, Steven; Nelson, Peter S

    2006-01-15

    The greatest risk factor for developing carcinoma of the prostate is advanced age. Potential molecular and physiologic contributors to the frequency of cancer occurrence in older individuals include the accumulation of somatic mutations through defects in genome maintenance, epigenetic gene silencing, oxidative stress, loss of immune surveillance, telomere dysfunction, chronic inflammation, and alterations in tissue microenvironment. In this context, the process of prostate carcinogenesis can be influenced through interactions between intrinsic cellular alterations and the extrinsic microenvironment and macroenvironment, both of which change substantially as a consequence of aging. In this study, we sought to characterize the molecular alterations that occur during the process of prostate fibroblast senescence to identify factors in the aged tissue microenvironment capable of promoting the proliferation and potentially the neoplastic progression of prostate epithelium. We evaluated three mechanisms leading to cell senescence: oxidative stress, DNA damage, and replicative exhaustion. We identified a consistent program of gene expression that includes a subset of paracrine factors capable of influencing adjacent prostate epithelial growth. Both direct coculture and conditioned medium from senescent prostate fibroblasts stimulated epithelial cell proliferation, 3-fold and 2-fold, respectively. The paracrine-acting proteins fibroblast growth factor 7, hepatocyte growth factor, and amphiregulin (AREG) were elevated in the extracellular environment of senescent prostate fibroblasts. Exogenous AREG alone stimulated prostate epithelial cell growth, and neutralizing antibodies and small interfering RNA targeting AREG attenuated, but did not completely abrogate the growth-promoting effects of senescent fibroblast conditioned medium. These results support the concept that aging-related changes in the prostate microenvironment may contribute to the progression of prostate

  12. Gp120 stability on HIV-1 virions and Gag-Env pseudovirions is enhanced by an uncleaved Gag core

    International Nuclear Information System (INIS)

    Hammonds, Jason; Chen Xuemin; Ding Lingmei; Fouts, Timothy; De Vico, Anthony; Megede, Jan zur; Barnett, Susan; Spearman, Paul

    2003-01-01

    Human immunodeficiency virus type-1 (HIV-1) particles incorporate a trimeric envelope complex (Env) made of gp120 (SU) and gp41 (TM) heterodimers. It has been previously established that soluble CD4 (sCD4) interaction leads to shedding of gp120 from viral particles, and that gp120 may also be easily lost from virions during incubation or particle purification procedures. In the design of HIV particle or pseudovirion-based HIV vaccines, it may be important to develop strategies to maximize the gp120 content of particles. We analyzed the gp120 retention of HIV-1 laboratory-adapted isolates and primary isolates following incubation with sCD4 and variations in temperature. NL4-3 shed gp120 readily in a temperature- and sCD4-dependent manner. Surprisingly, inactivation of the viral protease led to markedly reduced shedding of gp120. Gp120 shedding was shown to vary markedly between HIV-1 strains, and was not strictly determined by whether the isolate was adapted to growth on immortalized T cell lines or was a primary isolate. Pseudovirions produced by expression of codon-optimized gag and env genes also demonstrated enhanced gp120 retention when an immature core structure was maintained. Pseudovirions of optimal stability were produced through a combination of an immature Gag protein core and a primary isolate Env. These results support the feasibility of utilizing pseudovirion particles as immunogens for the induction of humoral responses directed against native envelope structures

  13. New Insights into HTLV-1 Particle Structure, Assembly, and Gag-Gag Interactions in Living Cells

    Directory of Open Access Journals (Sweden)

    Jolene L. Johnson

    2011-06-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 has a reputation for being extremely difficult to study in cell culture. The challenges in propagating HTLV-1 has prevented a rigorous analysis of how these viruses replicate in cells, including the detailed steps involved in virus assembly. The details for how retrovirus particle assembly occurs are poorly understood, even for other more tractable retroviral systems. Recent studies on HTLV-1 using state-of-the-art cryo-electron microscopy and fluorescence-based biophysical approaches explored questions related to HTLV-1 particle size, Gag stoichiometry in virions, and Gag-Gag interactions in living cells. These results provided new and exciting insights into fundamental aspects of HTLV-1 particle assembly—which are distinct from those of other retroviruses, including HIV-1. The application of these and other novel biophysical approaches promise to provide exciting new insights into HTLV-1 replication.

  14. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    International Nuclear Information System (INIS)

    Giallongo, Cesarina; Palumbo, Giuseppe A; Di Raimondo, Francesco; La Cava, Piera; Tibullo, Daniele; Barbagallo, Ignazio; Parrinello, Nunziatina; Cupri, Alessandra; Stagno, Fabio; Consoli, Carla; Chiarenza, Annalisa

    2013-01-01

    SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis. Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML

  15. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    Directory of Open Access Journals (Sweden)

    Giallongo Cesarina

    2013-02-01

    Full Text Available Abstract Background SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. Methods We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM, in vitro, using ATP-lite and cell cycle analysis. Results Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Conclusion Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML.

  16. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanxia [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China); Department of Rehabilitation, Xi' an Children' s Hospital, Xi' an 710003 (China); Liu, Xiaoguai [The 3rd Department of Infectious Diseases, Xi' an Children' s Hospital, Xi' an 710003 (China); Wang, Yaping, E-mail: yapwangyy@163.com [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China)

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  17. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    International Nuclear Information System (INIS)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-01-01

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  18. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  19. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    International Nuclear Information System (INIS)

    Ramos-Solano, Moisés; Meza-Canales, Ivan D.; Torres-Reyes, Luis A.; Alvarez-Zavala, Monserrat

    2015-01-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation

  20. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  1. Lactoferrin promote primary rat osteoblast proliferation and differentiation via up-regulation of insulin-like growth factor-1 expression.

    Science.gov (United States)

    Hou, Jian-ming; Wu, Man; Lin, Qing-ming; Lin, Fan; Xue, Ying; Lan, Xu-hua; Chen, En-yu; Wang, Mei-li; Yang, Hai-yan; Wang, Feng-xiong

    2014-08-01

    The aim of this study was to explore the effect of lactoferrin (LF) in primary fetal rat osteoblasts proliferation and differentiation and investigate the underlying molecular mechanisms. Primary rat osteoblasts were obtained from the calvarias of neonatal rats. Osteoblasts were treated with LF (0.1-1000 μg/mL), or OSI-906 [a selective inhibitor of insulin-like growth factor 1 (IGF-1) receptor and insulin receptor]. The IGF-1 was then knocked down by small hairpin RNA (shRNA) technology and then was treated with recombinant human IGF-1 or LF. Cell proliferation and differentiation were measured by MTT assay and alkaline phosphatase (ALP) assay, respectively. The expression of IGF-1 and IGF binding protein 2 (IGFBP2) mRNA were analyzed using real-time PCR. LF promotes the proliferation and differentiation of osteoblasts in a certain range (1-100 μg/mL) in time- and dose-dependent manner. The mRNA level of IGF-1 was significantly increased, while the expression of IGFBP2 was suppressed by LF treatment. Knockdown of IGF-1 by shRNA in primary rat osteoblast dramatically decreased the abilities of proliferation and differentiation of osteoblasts and blocked the proliferation and differentiation effect of LF in osteoblasts. OSI906 (5 μM) blocked the mitogenic and differentiation of LF in osteoblasts. Proliferation and differentiation of primary rat osteoblasts in response to LF are mediated in part by stimulating of IGF-1 gene expression and alterations in the gene expression of IGFBP2.

  2. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    Science.gov (United States)

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  3. MIB-1 (KI-67) proliferation index and cyclin-dependent kinase inhibitor p27(Kip1) protein expression in nephroblastoma

    NARCIS (Netherlands)

    M.A.I. Ghanem (Mazen); Th.H. van der Kwast (Theo); M.K. Sudaryo; R.B. Mathoera (Rejiv); M.M. van den Heuvel-Eibrink (Marry); A.A. Al-Doray; R.J.M. Nijman (Rien); G.J. van Steenbrugge (Gert Jan)

    2004-01-01

    textabstractPURPOSE: A number of studies have indicated that the tumor proliferation marker MIB-1 and cell cycle inhibitor p27(Kip1) expression are of prognostic importance in a variety of cancers. The present study was performed to evaluate the prognostic value of these

  4. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Jin, Rong [Department of Immunology, Peking University Health Science Center, Beijing (China); Wang, Hong-Cheng [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing [Department of Immunology, Peking University Health Science Center, Beijing (China); Sun, Xiao-Hong, E-mail: sunx@omrf.org [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Zhang, Yu, E-mail: zhangyu007@bjmu.edu.cn [Department of Immunology, Peking University Health Science Center, Beijing (China)

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  5. HIV-1 p24(gag derived conserved element DNA vaccine increases the breadth of immune response in mice.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag region according to two principles: the immunogen must (i include strictly conserved elements of the virus that cannot mutate readily, and (ii exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24(gag DNA immunogens that express 7 highly Conserved Elements (CE of 12-24 amino acids in length and differ by only 1 amino acid in each CE ('toggle site', together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55(gag DNA induced poor, CD4(+ mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4(+ and CD8(+ T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55(gag, which recognize the virus encoded p24(gag protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4(+ and CD8(+ T cells to additional regions of Gag compared to vaccination with p55(gag DNA, achieving maximal cross-clade reactive cellular and humoral responses.

  6. Dysregulation of gene expression within the peroxisome proliferator activated receptor pathway in morbidly obese patients.

    Science.gov (United States)

    Hindle, A Katharine; Koury, Jadd; McCaffrey, Tim; Fu, Sidney W; Brody, Fred

    2009-06-01

    The causes of obesity are multifactorial but may include dysregulation of a family of related genes, such as the peroxisome proliferator activated receptor gamma (PPARgamma). When activated, the PPARgamma pathway promotes lipid metabolism. This study used microarray technology to evaluate differential gene expression profiles in obese patients undergoing bariatric surgery. The study enrolled six morbidly obese patients with a body mass index (BMI) exceeding 35 and four nonobese individuals. Blood samples were stabilized in PaxGene tubes (PreAnalytiX), and total RNA was extracted. Next, 100 ng of total RNA was amplified and labeled using the Ovation RNA Amplification System V2 with the Ovation whole-blood reagent (NuGen) before it was hybridized to an Affymetrix (Santa Clara, CA) focus array containing more than 8,500 verified genes. The data were analyzed using an analysis of variance (ANOVA) (p < 0.05) in the GeneSpring program, and potential pathways were identified with the Ingenuity program. Real-time quantitative reverse transcriptase-polymerase chain reaction was used to validate the array data. A total of 97 upregulated genes and 125 downregulated genes were identified. More than a 1.5-fold change was identified between the morbidly obese patients and the control subjects for a cluster of dysregulated genes involving pathways regulating cell metabolism and lipid formation. Specifically, the PPARgamma pathway showed a plethora of dysregulated genes including tumor necrosis factor-alpha (TNFalpha). In morbidly obese patients, TNFalpha expression was increased (upregulated) 1.6-fold. These findings were confirmed using quantitative polymerase chain reaction with a 2.8-fold change. Microarrays are a powerful tool for identifying biomarkers indicating morbid obesity by analyzing differential gene expression profiles. This study confirms the association of PPARgamma with morbid obesity. Also, these findings in blood support previous work documented in tissue

  7. Retinoic acid receptor gamma impacts cellular adhesion, Alpha5Beta1 integrin expression and proliferation in K562 cells.

    Science.gov (United States)

    Kelley, Melissa D; Phomakay, Raynin; Lee, Madison; Niedzwiedz, Victoria; Mayo, Rachel

    2017-01-01

    The interplay between cellular adhesion and proliferation is complex; however, integrins, particularly the α5β1 subset, play a pivotal role in orchestrating critical cellular signals that culminate in cellular adhesion and growth. Retinoids modify the expression of a variety of adhesive/proliferative signaling proteins including α5β1 integrins; however, the role of specific retinoic acid receptors involved in these processes has not been elucidated. In this study, the effect of all-trans-retinoic acid receptor (RAR) agonists on K562 cellular adhesion, proliferation, and α5β1 integrin cell surface expression was investigated. RARγ agonist exposure increased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin and FN-120 in a time- and concentration dependent manner, while RARα or RARβ agonist treatment had no effect on cellular adhesion. Due to the novel RARγ- dependent cellular adhesion response exhibited by K562 cells, we examined α5 and β1 integrin subunit expression when K562 cells were exposed to retinoid agonists or vehicle for 24, 48, 72 or 96 hours. Our data demonstrates no differences in K562 cell surface expression of the α5 integrin subunit when cells were exposed to RARα, RARβ, or RARγ agonists for all time points tested. In contrast, RARγ agonist exposure resulted in an increase in cell surface β1 integrin subunit expression within 48 hours that was sustained at 72 and 96 hours. Finally, we demonstrate that while exposure to RARα or RARβ agonists have no effect on K562 cellular proliferation, the RARγ agonist significantly dampens K562 cellular proliferation levels in a time- and concentration- dependent manner. Our study is the first to report that treatment with a RARγ specific agonist augments cellular adhesion to α5β1 integrin substrates, increases cell surface levels of the β1 integrin subunit, and dampens cellular proliferation in a time and concentration dependent manner in a human

  8. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression.

    Science.gov (United States)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    International Nuclear Information System (INIS)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-01-01

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  10. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela [Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Gutiérrez, Silvina; Torres, Alicia Inés [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); De Paul, Ana Lucía, E-mail: adepaul@cmefcm.uncor.edu [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina)

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  11. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  12. Estrogen induced β-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    International Nuclear Information System (INIS)

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Cheorl-Ho; Jeong, Han-Sol; Joo, Myungsoo; Youn, BuHyun; Ha, Ki-Tae

    2012-01-01

    Highlights: ► We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. ► Estrogen-induced B4GALT1 expression through the direct binding of ER-α to ERE in MCF-7 cells. ► B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. ► Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose β-1,4-N-acetylglucosamine (Galβ1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Galβ1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-α-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering these results, we propose that estrogen regulates the expression of B4GALT1 through the direct binding of ER-α to ERE and

  13. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takeuchi, Kentaro; Inada, Hirohiko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yamasaki, Daisuke [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Doi, Takefumi [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  14. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Tachibana, Keisuke; Takeuchi, Kentaro; Inada, Hirohiko; Yamasaki, Daisuke; Ishimoto, Kenji; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Doi, Takefumi

    2009-01-01

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial β-oxidation. The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that plays an important role in the regulation of β-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPARα and found that PPARα induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPARα regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  15. Expression of Caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion.

    Science.gov (United States)

    Sun, Yanxia; Guo, Yingzhen

    2018-05-01

    The present study aimed to detect the expression of Caspase-1 in the tumor tissues and tumor-adjacent tissues of patients with breast cancer, and to investigate the effects of Caspase-1 on the proliferation, apoptosis and invasion of breast cancer cells. Reverse transcription-quantitative polymerase chain reaction was used to detect Caspase-1 mRNA expression in breast cancer tissues and tumor-adjacent tissues from patients. Additionally, the human breast cancer MDA-MB-231 cell line was treated with the Caspase-1 small molecule inhibitor Ac-YVAD-CMK, following which the changes to Caspase-1 protein expression were detected via western blotting. The MTT method detected the changes to cell proliferation, flow cytometry detected the rate of apoptosis, and a Transwell assay was employed to assess invasion. Caspase-1 mRNA expression was significantly decreased in the breast cancer tissues of patients, compared with in the tumor-adjacent tissues, a difference that was statistically significant (P<0.05). Treatment with the Ac-YVAD-CMK markedly decreased the protein expression of Caspase-1 in MDA-MB-231 cells, and the difference was statistically significant (P<0.05). Following this treatment of Ac-YVAD-CMK cells, the proliferation and invasion abilities markedly increased, while the apoptotic levels significantly decreased (P<0.05). In conclusion, the expression of Caspase-1 is low in breast cancer tissues, which may promote the proliferation and invasion of breast cancer cells and could be closely associated with the occurrence and development of breast cancer.

  16. ESCRT-independent budding of HIV-1 gag virus-like particles from Saccharomyces cerevisiae spheroplasts.

    Directory of Open Access Journals (Sweden)

    Andrew P Norgan

    Full Text Available Heterologous expression of HIV-1 Gag in a variety of host cells results in its packaging into virus-like particles (VLPs that are subsequently released into the extracellular milieu. This phenomenon represents a useful tool for probing cellular factors required for viral budding and has contributed to the discovery of roles for ubiquitin ligases and the endosomal sorting complexes required for transport (ESCRTs in viral budding. These factors are highly conserved throughout eukaryotes and have been studied extensively in the yeast Saccharomyces cerevisiae, a model eukaryote previously utilized as a host for the production of VLPs. We used heterologous expression of HIV Gag in yeast spheroplasts to examine the role of ESCRTs and associated factors (Rsp5, a HECT ubiquitin ligase of the Nedd4 family; Bro1, a homolog of Alix; and Vps4, the AAA-ATPase required for ESCRT function in all contexts/organisms investigated in the generation of VLPs. Our data reveal: 1 characterized Gag-ESCRT interaction motifs (late domains are not required for VLP budding, 2 loss of function alleles of the essential HECT ubiquitin ligase Rsp5 do not display defects in VLP formation, and 3 ESCRT function is not required for VLP formation from spheroplasts. These results suggest that the egress of HIV Gag from yeast cells is distinct from the most commonly described mode of exit from mammalian cells, instead mimicking ESCRT-independent VLP formation observed in a subset of mammalian cells. As such, budding of Gag from yeast cells appears to represent ESCRT-independent budding relevant to viral replication in at least some situations. Thus the myriad of genetic and biochemical tools available in the yeast system may be of utility in the study of this aspect of viral budding.

  17. TIEG1-null tenocytes display age-dependent differences in their gene expression, adhesion, spreading and proliferation properties

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Oualid; Gumez, Laurie [Laboratoire de Biomecanique et Bioingenierie UMR CNRS 6600, Universite de Technologie de Compiegne, Compiegne (France); Hawse, John R.; Subramaniam, Malayannan; Spelsberg, Thomas C. [Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN (United States); Bensamoun, Sabine F., E-mail: sabine.bensamoun@utc.fr [Laboratoire de Biomecanique et Bioingenierie UMR CNRS 6600, Universite de Technologie de Compiegne, Compiegne (France)

    2011-07-15

    The remodeling of extracellular matrix is a crucial mechanism in tendon development and the proliferation of fibroblasts is a key factor in this process. The purpose of this study was to further elucidate the role of TIEG1 in mediating important tenocyte properties throughout the aging process. Wildtype and TIEG1 knockout tenocytes adhesion, spreading and proliferation were characterized on different substrates (fibronectin, collagen type I, gelatin and laminin) and the expression levels of various genes known to be involved with tendon development were analyzed by RT-PCR. The experiments revealed age-dependent and substrate-dependent properties for both wildtype and TIEG1 knockout tenocytes. Taken together, our results indicate an important role for TIEG1 in regulating tenocytes adhesion, spreading, and proliferation throughout the aging process. Understanding the basic mechanisms of TIEG1 in tenocytes may provide valuable information for treating multiple tendon disorders.

  18. Interactions between nattokinase and heparin/GAGs.

    Science.gov (United States)

    Zhang, Fuming; Zhang, Jianhua; Linhardt, Robert J

    2015-12-01

    Nattokinase (NK) is a serine protease extracted from a traditional Japanese food called natto. Due to its strong fibrinolytic and thrombolytic activity, NK is regarded as a valuable dietary supplement or nutraceutical for the oral thrombolytic therapy. In addition, NK has been investigated for some other medical applications including treatment of hypertension, Alzheimer's disease, and vitreoretinal disorders. The most widely used clinical anticoagulants are heparin and low molecular weight heparins. The interactions between heparin and proteins modulate diverse patho-physiological processes and heparin modifies the activity of serine proteases. Indeed, heparin plays important roles in almost all of NK's potential therapeutically applications. The current report relies on surface plasmon resonance spectroscopy to examine NK interacting with heparin as well as other glycosaminoglycans (GAGs). These studies showed that NK is a heparin binding protein with an affinity of ~250 nM. Examination with differently sized heparin oligosaccharides indicated that the interaction between NK and heparin is chain-length dependent and the minimum size for heparin binding is a hexasaccharide. Studies using chemically modified heparin showed the 6-O-sulfo as well as the N-sulfo groups but not the 2-O-sulfo groups within heparin, are essential for heparin's interaction with NK. Other GAGs (including HS, DS, and CSE) displayed modest binding affinity to NK. NK also interfered with other heparin-protein interactions, including heparin's interaction with antithrombin and fibroblast growth factors.

  19. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    International Nuclear Information System (INIS)

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie

    2013-01-01

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs

  20. Correlation of contrast-enhanced ultrasound parameters with oncogene expression and cell proliferation activity in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Ce Zhang

    2017-01-01

    Objective: To study the correlation of contrast-enhanced ultrasound parameters with oncogene expression and cell proliferation activity in breast cancer. Methods: Breast cancer lesions and benign breast lesions surgically removed in Zigong Third People's Hospital between May 2014 and February 2017 were selected, contrast-enhanced ultrasound was done before operation to draw the time-intensity curve and calculate the area under the curve (AUC), and the expression of proliferation molecules and tumor suppressor genes were detected after operation. Results:The contrast-enhanced ultrasound parameter AUC of the breast cancer lesion was greatly higher than that of the benign breast lesion; ECT2, ZKSCAN3, USP39 and EphA2 mRNA expression in breast cancer lesions were obviously higher than those in benign breast lesions whereas HPK1, TCEAL17, CCN5, ATG2B and ATG4D mRNA expression were greatly lower than those in benign breast lesions; ECT2, ZKSCAN3, USP39 and EphA2 mRNA expression in breast cancer lesions with high AUC were greatly higher than those in breast cancer lesions with low AUC whereas HPK1, TCEAL17, CCN5, ATG2B and ATG4D mRNA expression were greatly lower than those in breast cancer lesions with low AUC. Conclusion: The contrast-enhanced ultrasound parameter AUC of breast cancer lesion significantly increases and is closely related to the higher expression of pro-proliferation molecules and the lower expression of tumor suppressor genes.

  1. The effect of γ-tocopherol on proliferation, integrin expression, adhesion, and migration of human glioma cells

    International Nuclear Information System (INIS)

    Samandari, Elika; Visarius, Theresa; Zingg, Jean-Marc; Azzi, Angelo

    2006-01-01

    The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. γ-tocopherol at 50 μM concentration exerted more inhibitory effect than α-tocopherol at the same concentration on glioma cell proliferation. Integrin α5 and β1 protein levels were increased upon both α- and γ-tocopherol treatments. In parallel, an increase in the α5β1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where γ-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin α5 and β1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the α5β1 heterodimer. Cell migration is stimulated by γ-tocopherol. It is concluded that α5 and β1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events

  2. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang; He, Zehong; Wang, Xiuei; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn

    2017-04-01

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.

  3. Clinical significance of cyclin-dependent kinase inhibitor p27Kip1 expression and proliferation in non-Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Skjødt, Karsten; Mortensen, Leif Spange

    1999-01-01

    The cyclin-dependent kinase inhibitor p27Kip1 is a negative cell cycle regulator linking extracellular growth-regulatory signals to the cell cycle machinery in G1. We investigated the pattern and prognostic value of p27Kip1 expression in a population-based group of 203 non-Hodgkin's lymphoma (NHL...... between p27Kip1 and Ki-67 expression. Low expression of p27Kip1, defined as nuclear p27Kip1 expression in lymphomas behaved differently as those with low p27Kip1...... expression tended to do better. Likewise, a high proliferation rate (Ki-67 >40%) was associated with poor survival in indolent and aggressive lymphomas. Multivariate analysis using the proportional hazards model showed that only p27Kip1, and not Ki-67, maintained independent prognostic significance...

  4. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    International Nuclear Information System (INIS)

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR −/− ) and wild-type (AhR +/+ ) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR −/− cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR −/− compared to AhR +/+ cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR +/+ fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR +/+ lung fibroblasts in response to serum, corresponding to a decrease in p27 KIP1 protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27 KIP1 in AhR −/− fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the expression of the microRNA miR-196a independent of

  5. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  6. Use of training dentures in management of gagging

    Directory of Open Access Journals (Sweden)

    Shweta Yadav

    2011-01-01

    Full Text Available Gagging is a frequent impediment to the performance of dental procedures. This stimulation of the gagging reflex, or more accurately, the vomiting reflex, is a special problem in prosthodontic service. A hypersensitive gagging reflex often prevents the dentist from carrying out critical procedures or causes them to performat a less than satisfactory level. In addition, once having suffered an unpleasant gagging experience in a dentist′s office, the patients develop a fear of further visits to dentists. The purpose of this paper is to describe methods of managing the gagging patient that has a sound rationale based on modified treatment approaches starting from impression making to design of the prosthesis aided by training dentures to help the patient to tolerate prosthesis in mouth before fabrication of definite prosthesis.

  7. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells.

    Science.gov (United States)

    Hanson, Amanda M; Gambill, Jessica; Phomakay, Venusa; Staten, C Tyler; Kelley, Melissa D

    2014-01-01

    Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.

  8. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    Science.gov (United States)

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  9. Expression of Peroxisome Proliferator-Activated Receptor-γ in Key Neuronal Subsets Regulating Glucose Metabolism and Energy Homeostasis

    OpenAIRE

    Sarruf, David A.; Yu, Fang; Nguyen, Hong T.; Williams, Diana L.; Printz, Richard L.; Niswender, Kevin D.; Schwartz, Michael W.

    2008-01-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-γ agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARγ is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARγ distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spa...

  10. Role of Gag and lipids during HIV-1 assembly in CD4 T cells and Macrophages

    Directory of Open Access Journals (Sweden)

    Charlotte eMariani

    2014-06-01

    Full Text Available HIV-1 is an RNA enveloped virus that preferentiallyinfects CD4+ T lymphocytes andalso macrophages. In CD4+ T cells, HIV-1mainly buds from the host cell plasma membrane.The viral Gag polyprotein targets theplasma membrane and is the orchestrator ofthe HIV assembly as its expression is sufficientto promote the formation of virus-likeparticles particles carrying a lipidic envelopederiving from the host cell membrane. Certainlipids are enriched in the viral membraneand are thought to play a key role in theassembly process and the envelop composition.A large body of work performed oninfected CD4+ T cells has provided importantknowledge about the assembly process andthe membrane virus lipid composition. WhileHIV assembly and budding in macrophages isthought to follow the same general Gag-drivenmechanism as in T-lymphocytes, the HIV cyclein macrophage exhibits specific features.In these cells, new virions bud from the limitingmembrane of seemingly intracellular compartments,where they accumulate while remaininginfectious. These structures are now oftenreferred to as Virus Containing Compartments(VCCs. Recent studies suggest that VCCsrepresent intracellularly sequestered regionsof the plasma membrane, but their precisenature remains elusive. The proteomic andlipidomic characterization of virions producedby T cells or macrophages has highlightedthe similarity between their composition andthat of the plasma membrane of producercells, as well as their enrichment in acidiclipids, some components of raft lipids andin tetraspanin-enriched microdomains. Greatchances are that Gag promotes the coalescenceof these components into an assemblyplatform from which viral budding takesplace. How Gag exactly interacts with membranelipids and what are the mechanisms involvedin the interaction between the differentmembrane nanodomains within the assemblyplatform remains unclear. Here we review recentliterature regarding the role of Gag andlipids

  11. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dho, So Hee [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Ji Young; Lee, Kwang-Pyo; Kwon, Eun-Soo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lim, Jae Cheong [Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Chang-Jin [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Jeong, Dongjun, E-mail: juny1024@sch.ac.kr [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

    2017-02-01

    NADPH oxidase (NOX) generates reactive oxygen species (ROS) and has been suggested to mediate cell proliferation in some cancers. Here, we show that an increase in the expression of NOX5 long form (NOX5-L) is critical for tumor progression in breast tumor tissues. Immunostaining of clinical samples indicated that NOX5 was overexpressed in 41.1% of breast ductal carcinoma samples. NOX5-L depletion consistently suppressed cell proliferation, invasion, and migration in vitro. Antibody-mediated neutralization of NOX5-L attenuated tumor progression in a mouse xenograft model. Promoter analysis revealed that NOX5-L expression is regulated by STAT5A in breast cancer cells. Based on our novel findings, we suggest that inhibition of NOX5-L may be a promising therapeutic strategy that exerts anti-cancer effects via the modulation of ROS-mediated cell signaling. - Highlights: • The ROS-generating protein, NOX5-L, determines cellular proliferation and metastasis in subset of breast tumor. • Tumor growth was attenuated by the treatment of anti-NOX5-L antibody in a xenograft model. • NOX5-L expression is transcriptionally regulated by STAT5A in breast cancer cells.

  12. The orphan nuclear receptor LRH-1 and ERα activate GREB1 expression to induce breast cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Ashwini L Chand

    Full Text Available BACKGROUND: Liver Receptor Homolog 1 (LRH-1, NR5A2 is an orphan nuclear receptor that is over-expressed in cancers in tissues such as the breast, colon and pancreas. LRH-1 plays important roles in embryonic development, steroidogenesis and cholesterol homeostasis. In tumor cells, LRH-1 induces proliferation and cell cycle progression. High LRH-1 expression is demonstrated in breast cancers, positively correlating with ERα status and aromatase activity. LRH-1 dependent cellular mechanisms in breast cancer epithelial cells are poorly defined. Hence in the present study we investigated the actions of LRH-1 in estrogen receptor α (ERα positive breast cancer cells. RESULTS: The study aimed to investigate LRH-1 dependent mechanisms that promote breast cancer proliferation. We identified that LRH-1 regulated the expression of Growth Regulation by Estrogen in Breast Cancer 1 (GREB1 in MCF-7 and MDA-MB-231 cells. Over-expression of LRH-1 increased GREB1 mRNA levels while knockdown of LRH-1 reduced its expression. GREB1 is a well characterised ERα target gene, with three estrogen response elements (ERE located on its promoter. Chromatin immunoprecipitation studies provided evidence of the co-localisation of LRH-1 and ERα at all three EREs. With electrophoretic mobility shift assays, we demonstrated direct binding of LRH-1 to EREs located on GREB1 and Trefoil Factor 1 (TFF1, pS2 promoters. LRH-1 and ERα co-operatively activated transcription of ERE luciferase reporter constructs suggesting an overlap in regulation of target genes in breast cancer cells. Over-expression of LRH-1 resulted in an increase in cell proliferation. This effect was more pronounced with estradiol treatment. In the presence of ICI 182,780, an ERα antagonist, LRH-1 still induced proliferation. CONCLUSIONS: We conclude that in ER-positive breast cancer cells, LRH-1 promotes cell proliferation by enhancing ERα mediated transcription of target genes such as GREB-1. Collectively

  13. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    Science.gov (United States)

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  14. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    Science.gov (United States)

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the

  15. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  16. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    Directory of Open Access Journals (Sweden)

    Marta ePardo

    2015-03-01

    Full Text Available ABSTRACTBrain glycogen synthase kinase-3 (GSK3 is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC. To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with wild-type mice. Environmental enrichment (EE increased NPC proliferation in male, but not female, GSK3 knockin mice and wild-type mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched wild-type mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 hr pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.

  17. Leukemia inhibitory factor increases the proliferation of human endometrial stromal cells and expression of genes related to pluripotency

    Directory of Open Access Journals (Sweden)

    Mojdeh Salehnia

    2017-08-01

    Full Text Available Background: Concerning the low population of human endometrial mesenchymal cells within the tissue and their potential application in the clinic and tissue engineering, some researches have been focused on their in vitro expansion. Objective: The aim of this study was to evaluate the effect of leukemia inhibitory factor (LIF as a proliferative factor on the expansion and proliferation of human endometrial stromal cells. Materials and Methods: In this experimental study, the isolated and cultured human endometrial stromal cells from women at ovulatory phase aged 20-35 years, after fourth passage were divided into control and LIF-treated groups. In the experimental group, the endometrial cells were treated by 10 ng/ml LIF in culture media and the cultured cells without adding LIF considered as control group. Both groups were evaluated and compared for proliferation rate using MTT assay, for CD90 marker by flow cytometric analysis and for the expression of Oct4, Nanog, PCNA and LIFr genes using real-time RT-PCR. Results: The proliferation rate of control and LIF-treated groups were 1.17±0.17 and 1.61±0.06 respectively and there was a significant increase in endometrial stromal cell proliferation following in vitro treatment by LIF compared to control group (p=0.049. The rate of CD90 positive cells was significantly increased in LIFtreated group (98.96±0.37% compared to control group (94.26±0.08% (p=0.0498. Also, the expression ratio of all studied genes was significantly increased in the LIFtreated group compared to control group (p=0.0479. Conclusion: The present study showed that LIF has a great impact on proliferation, survival, and maintenance of pluripotency of human endometrial stromal cells and it could be applicable in cell therapies.

  18. Modulation of RIZ gene expression is associated to estradiol control of MCF-7 breast cancer cell proliferation

    International Nuclear Information System (INIS)

    Gazzerro, Patrizia; Abbondanza, Ciro; D'Arcangelo, Andrea; Rossi, Mariangela; Medici, Nicola; Moncharmont, Bruno; Puca, Giovanni Alfredo

    2006-01-01

    The retinoblastoma protein-interacting zinc-finger (RIZ) gene, a member of the nuclear protein methyltransferase superfamily, is characterized by the presence of the N-terminal PR domain. The RIZ gene encodes for two proteins, RIZ1 and RIZ2. While RIZ1 contains the PR (PRDI-BF1 and RIZ homologous) domain, RIZ2 lacks it. RIZ gene expression is altered in a variety of human cancers and RIZ1 is now considered to be a candidate tumor suppressor. Estradiol treatment of MCF-7 cells produced a selective decrease of RIZ1 transcript and an increase of total RIZ mRNA. Experiments of chromatin immunoprecipitation indicated that RIZ2 protein expression was controlled by estrogen receptor and RIZ1 had a direct repressor function on c-myc gene expression. To investigate the role of RIZ gene products as regulators of the proliferation/differentiation transition, we analyzed the effects of forced suppression of RIZ1 induced in MCF-7 cells by siRNA of the PR domain-containing form. Silencing of RIZ1 expression stimulated cell proliferation, similar to the effect of estradiol on these cells, associated with a transient increase of c-myc expression

  19. Effects of homeodomain protein CDX2 expression on the proliferation and migration of lovo colon cancer cells.

    Science.gov (United States)

    Zheng, Jian-bao; Sun, Xue-jun; Qi, Jie; Li, Shou-shuai; Wang, Wei; Ren, Hai-liang; Tian, Yong; Lu, Shao-ying; Du, Jun-kai

    2011-09-01

    The homeobox gene, CDX2, plays a major role in development, especially in the gut, and also functions as a tumor suppressor in the adult colon. In the present study, we investigated the effects of CDX2 expression on the proliferation, migration, and apoptosis of the human colon cancer cell line, Lovo. Lovo cells exogenously expressing CDX2 exhibited no significant differences in the percentage of cells in G1- and S-phase or in apoptosis, as determined by flow cytometry. MTT assay also confirmed that CDX2 expression had no effect on proliferation in these cells. Interestingly, conditioned medium collected from CDX2-overexpressing Lovo cells showed a significant decrease in secretion of MMP-2 and the invasive potential of these cells was significantly inhibited. Collectively, these data suggest that CDX2 may play a critical role in the migration and metastasis of colon carcinoma and over-expression of CDX2 in colon cancer cells markedly inhibits invasion. Based on these results, exogenous expression of CDX2 might be a promising option in the treatment of colon carcinoma.

  20. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    Science.gov (United States)

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic

  1. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    International Nuclear Information System (INIS)

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-01-01

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα

  2. Influence of the neural tube/notochord complex on MyoD expression and cellular proliferation in chicken embryos

    Directory of Open Access Journals (Sweden)

    H.J. Alves

    2003-02-01

    Full Text Available Important advances have been made in understanding the genetic processes that control skeletal muscle formation. Studies conducted on quails detected a delay in the myogenic program of animals selected for high growth rates. These studies have led to the hypothesis that a delay in myogenesis would allow somitic cells to proliferate longer and consequently increase the number of embryonic myoblasts. To test this hypothesis, recently segmented somites and part of the unsegmented paraxial mesoderm were separated from the neural tube/notochord complex in HH12 chicken embryos. In situ hybridization and competitive RT-PCR revealed that MyoD transcripts, which are responsible for myoblast determination, were absent in somites separated from neural tube/notochord (1.06 and 0.06 10-3 attomol MyoD/1 attomol ß-actin for control and separated somites, respectively; P<0.01. However, reapproximation of these structures allowed MyoD to be expressed in somites. Cellular proliferation was analyzed by immunohistochemical detection of incorporated BrdU, a thymidine analogue. A smaller but not significant (P = 0.27 number of proliferating cells was observed in somites that had been separated from neural tube/notochord (27 and 18 for control and separated somites, respectively. These results confirm the influence of the axial structures on MyoD activation but do not support the hypothesis that in the absence of MyoD transcripts the cellular proliferation would be maintained for a longer period of time.

  3. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression

    International Nuclear Information System (INIS)

    Suzuki, Tomoyuki; Dai, Ping; Hatakeyama, Tomoya; Harada, Yoshinori; Tanaka, Hideo; Yoshimura, Norio; Takamatsu, Tetsuro

    2013-01-01

    Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells

  4. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Can [Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou 215123 (China); Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Wang, Lili; Zhu, Lifang [Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhang, Chenping, E-mail: zhang_cping@163.com [Department of Head and Neck Tumors, Shanghai Ninth People’s Hospital Affiliated Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Zhou, Jianhua [Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou 215123 (China)

    2014-11-28

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future.

  5. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    International Nuclear Information System (INIS)

    Xiao, Can; Wang, Lili; Zhu, Lifang; Zhang, Chenping; Zhou, Jianhua

    2014-01-01

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future

  6. Evaluation of insulin medium or chondrogenic medium on proliferation and chondrogenesis of ATDC5 cells.

    Science.gov (United States)

    Yao, Yongchang; Zhai, Zhichen; Wang, Yingjun

    2014-01-01

    The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.

  7. Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

    Directory of Open Access Journals (Sweden)

    Yongchang Yao

    2014-01-01

    Full Text Available Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM was used to induce chondrogenesis while chondrogenic medium (CM, which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs, was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured in IM, CM, and GM for a certain time. Then the proliferation and the chondrogenesis progress of cells in these groups were analyzed. Results. Compared with CM and GM, IM promoted the proliferation of cells significantly. CM was effective for enhancement of cartilage specific markers, while IM induced the cells to express endochondral ossification related genes. Although GAG deposition per cell in CM group was significantly higher than that in IM and GM groups, the total GAG contents in IM group were the most. Conclusion. This study demonstrated that CM focused on induction of chondrogenic differentiation while IM was in favor of promoting proliferation and expression of endochondral ossification related genes. Combinational use of these two media would be more beneficial to bone/cartilage repair.

  8. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng; Wu, Dingguo; You, Yu; Sun, Jing; Lu, Lele; Tan, Jiaxing; Bie, Ping, E-mail: bieping2010@163.com

    2015-08-15

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.

  9. IL-27 inhibits lymphatic endothelial cell proliferation by STAT1-regulated gene expression

    DEFF Research Database (Denmark)

    Nielsen, Sebastian Rune; Hammer, Troels; Gibson, Josefine

    2013-01-01

    OBJECTIVE: IL-27 belongs to the IL-12 family of cytokines and is recognized for its role in Th cell differentiation and as an inhibitor of tumor-angiogenesis. The purpose of this study was to investigate the effect of IL-27 on proliferation of lymphatic endothelial cells to gain insight into the ...

  10. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Dilli Ram Bhandari

    Full Text Available BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs and adipose tissue-derived MSCs (hAD-MSCs strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA. After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs. These

  11. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    International Nuclear Information System (INIS)

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-01-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and β-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  12. PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation

    Directory of Open Access Journals (Sweden)

    Joanna J. Gell

    2018-03-01

    Full Text Available Germ cell tumors (GCTs are a heterogeneous group of tumors occurring in gonadal and extragonadal locations. GCTs are hypothesized to arise from primordial germ cells (PGCs, which fail to differentiate. One recently identified susceptibility loci for human GCT is PR (PRDI-BF1 and RIZ domain proteins 14 (PRDM14. PRDM14 is expressed in early primate PGCs and is repressed as PGCs differentiate. To examine PRDM14 in human GCTs we profiled human GCT cell lines and patient samples and discovered that PRDM14 is expressed in embryonal carcinoma cell lines, embryonal carcinomas, seminomas, intracranial germinomas and yolk sac tumors, but is not expressed in teratomas. To model constitutive overexpression in human PGCs, we generated PGC-like cells (PGCLCs from human pluripotent stem cells (PSCs and discovered that elevated expression of PRDM14 does not block early PGC formation. Instead, we show that elevated PRDM14 in PGCLCs causes proliferation and differentiation defects in the germline. Keywords: Germ cell tumor, PRDM14, Cell differentiation, Primordial germ cell, Proliferation

  13. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  14. Influence of radiotherapy on expression of the proliferating cell nuclear antigen (PCNA) and c-fos in human cervical cancer

    International Nuclear Information System (INIS)

    Shi Mei; Wei Lichun; Sun Chaoyang; Ma Haixin; Guo Yan

    2001-01-01

    Objective: To investigate changes of proliferating cell nuclear antigen (PCNA) expression in human cervical cancer following irradiation. Methods: Immunohistochemical staining for PCNA was performed in frozen sections of formalin-fixed cervical cancer biopsy tissues. Results: The majority of the cancer cells showed PCNA-immunoreactivity before irradiation. Following irradiation (30-40 Gy/15-20 f) PCNA-immuno-positive staining was hardly detectable in most of the cancer cells. The PCNA-immunoreactivity, however, increased after radiotherapy, and moderate or heavy immuno-positive staining for PCNA was seen in irradiated mesenchymal tissue cells. On the other hand, after irradiation Fos-immunoreactivity decreased remarkably, and Fos-immuno-positive staining was hardly detectable in most of cancer cells. No obvious change in Fos-immuno-reactivity, however, was seen in mesenchymal connective tissue following irradiation. Conclusion: Irradiation inhibits PCNA and c-fos expression in cervical cancer cells whereas it induces the expression of PCNA in mesenchymal tissue cells. The present results suggest that expression of PCNA and c-fos may be regarded as a molecular marker for evaluating the cancer cell proliferation and mesenchymal tissue repair during radiotherapy of human cervical cancer

  15. Expression of TRIM28 correlates with proliferation and Bortezomib-induced apoptosis in B-cell non-Hodgkin lymphoma.

    Science.gov (United States)

    Zhang, Pei-Pei; Ding, Da-Zhi; Shi, Bing; Zhang, Shu-Qing; Gu, Ling-Li; Wang, Yu-Chan; Cheng, Chun

    2018-03-23

    Tripartite motif containing 28 (TRIM28) as a transcriptional co-repressor has been reported playing a role in regulating DNA damage response (DDR), cell differentiation, immune response, and tumorigenesis. The present study was performed to explore the biological function and clinical significance of TRIM28 in B-cell non-Hodgkin lymphoma (B-NHL). Results of the study displayed that high expression of TRIM28 was positively associated with the poorer survival of B-NHL patients as an independent prognostic factor. In addition, TRIM28 could promote the B-NHL cells proliferation through modulating cell cycle progression. The change of cyclinA, P21, and PCNA expression after TRIM28 expression modified further illustrated the mechanism in which TRIM28 participated in cell proliferation progression. Moreover, inhibition TRIM28 expression in B-NHL cells enhanced the sensibility to Bortezomib by regulating p53-mediated apoptosis pathway. Taken together, the present study showed that TRIM28 functions as a tumor promoter in B-NHL and may be a novel target for drug resistance to Bortezomib.

  16. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    International Nuclear Information System (INIS)

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-01-01

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3

  17. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity

    International Nuclear Information System (INIS)

    Lu, Zheng; Ping, Liang; JianBo, Zhou; XiaoBing, Huang; Yu, Wen; Zheng, Wang; Jing, Li

    2012-01-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG 2 cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG 2 cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG 2 cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G 1 phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+) BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms

  18. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Directory of Open Access Journals (Sweden)

    Dong Hongmei

    2010-12-01

    Full Text Available Abstract Background Hedgehog (HH signaling is critical for the expansion of granule neuron precursors (GNPs within the external granular layer (EGL during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1 are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Methods Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Results Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Conclusions Primary tumorspheres derived from ptch1+/-/p53

  19. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    International Nuclear Information System (INIS)

    Cohen, Joseph R; Resnick, Daniel Z; Niewiadomski, Pawel; Dong, Hongmei; Liau, Linda M; Waschek, James A

    2010-01-01

    Hedgehog (HH) signaling is critical for the expansion of granule neuron precursors (GNPs) within the external granular layer (EGL) during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB) - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA) antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1) are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Primary MB tumorsphere cultures were prepared from thirteen ptch1 +/- /p53 +/- double mutant mice and treated with the smoothened (SMO) agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [ 3 H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Primary tumorspheres derived from ptch1 +/- /p53 +/- mice exhibit constitutive HH pathway activity

  20. Selective Expression of an Endogenous Inhibitor of FAK Regulates Proliferation and Migration of Vascular Smooth Muscle Cells

    Science.gov (United States)

    Taylor, Joan M.; Mack, Christopher P.; Nolan, Kate; Regan, Christopher P.; Owens, Gary K.; Parsons, J. Thomas

    2001-01-01

    Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538–540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [3H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals. PMID:11238893

  1. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    International Nuclear Information System (INIS)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard

    2007-01-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4 1 2 1 2 or P4 3 2 1 2 and diffracted to a resolution of 1.6 Å

  2. Fibrates suppress bile acid synthesis via peroxisome proliferator-activated receptor-α-mediated downregulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase expression

    NARCIS (Netherlands)

    Post, S.M.; Duez, H.; Gervois, P.P.; Staels, B.; Kuipers, F.; Princen, H.M.G.

    2001-01-01

    Fibrates are hypolipidemic drugs that affect the expression of genes involved in lipid metabolism by activating peroxisome proliferator-activated receptors (PPARs). Fibrate treatment causes adverse changes in biliary lipid composition and decreases bile acid excretion, leading to an increased

  3. Fibrates suppress bile acid synthesis via peroxisome proliferator-activated receptor-alpha-mediated downregulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase expression

    NARCIS (Netherlands)

    Post, SM; Duez, H; Gervois, PP; Staels, B; Kuipers, F; Princen, HMG

    2001-01-01

    Fibrates are hypolipidemic drugs that affect the expression of genes involved in lipid metabolism by activating peroxisome proliferator-activated receptors (PPARs). Fibrate treatment causes adverse changes in biliary lipid composition and decreases bile acid excretion, leading to an increased

  4. ROS1 Expression in Invasive Ductal Carcinoma of the Breast Related to Proliferation Activity

    OpenAIRE

    Eom, Minseob; Lkhagvadorj, Sayamaa; Oh, Sung Soo; Han, Airi; Park, Kwang Hwa

    2013-01-01

    Purpose ROS1 is an oncogene, expressed primarily in glioblastomas of the brain that has been hypothesized to mediate the effects of early stage tumor progression. In addition, it was reported that ROS1 expression was observed in diverse cancer tissue or cell lines and ROS1 is associated with the development of several tumors. However, ROS1 expression has not been studied in breast cancer to date. Therefore, we investigated ROS1 expression at the protein and gene level to compare expression pa...

  5. Effects of resveratrol and other wine polyphenols on the proliferation, apoptosis and androgen receptor expression in LNCaP cells.

    Science.gov (United States)

    Ferruelo, A; Romero, I; Cabrera, P M; Arance, I; Andrés, G; Angulo, J C

    2014-01-01

    To address the effect of resveratrol and other red wine polyphenols on cell proliferation, apoptosis and androgen receptor (AR) expression in human prostate cancer LNCaP cells. LNCaP cells (5 × 102) were cultured in microtiter plate modules and treated with gallic acid, tannic acid and quercetin (1, 5 and 10 μM), rutin and morin (25, 50 and 75 μM) and resveratrol (5, 10 and 25 μM). To address the extent of proliferation at 24, 48, 72 and 96 hours, a colorimetric immunoassay method was used. An activity caspase 3/7 detection assay was used to disclose apoptosis at 24, 48 and 72 hours. AR mARN levels were determined by real time RT-PCR. All polyphenols studied significantly inhibited (P<.05) cell proliferation compared to control. However, there were moderate differences between them. Resveratrol was the strongest inhibitor at different times and doses. Also, caspase-3 and caspase-7 activity was significantly higher (P<.05) than control in the presence of all the compounds, but the earlier response was achieved by resveratrol. Resveratrol, quercetin and morin were the only nutrients that significantly inhibited AR mRNA expression. Again resveratrol produced the highest inhibition (90-250 times less than control), followed by morin (67-100 times) and quercetin (55-91 times). All polyphenols studied showed important antiproliferative effects and induced apoptosis when added to LNCaP cells culture. We confirm that resveratrol, morin and quercetin may achieve such effect through reduced expression of AR. The synergistic effects of these compounds and their potential to prevent progression of hormone-dependent prostate cancer merit further study. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  6. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    Science.gov (United States)

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  7. Safety and immunogenicity of a live recombinant canarypox virus expressing HIV type 1 gp120 MN MN tm/gag/protease LAI (ALVAC-HIV, vCP205) followed by a p24E-V3 MN synthetic peptide (CLTB-36) administered in healthy volunteers at low risk for HIV infection. AGIS Group and L'Agence Nationale de Recherches sur Le Sida.

    Science.gov (United States)

    Salmon-Céron, D; Excler, J L; Finkielsztejn, L; Autran, B; Gluckman, J C; Sicard, D; Matthews, T J; Meignier, B; Valentin, C; El Habib, R; Blondeau, C; Raux, M; Moog, C; Tartaglia, J; Chong, P; Klein, M; Milcamps, B; Heshmati, F; Plotkin, S

    1999-05-01

    A live recombinant canarypox vector expressing HIV-1 gpl20 MN tm/gag/protease LAI (ALVAC-HIV, vCP205) alone or boosted by a p24E-V3 MN synthetic peptide (CLTB-36) was tested in healthy volunteers at low risk for HIV infection for their safety and immunogenicity. Both antigens were well tolerated. ALVAC-HIV (vCP205) induced low levels of neutralizing antibodies against HIV-1 MN in 33% of the volunteers. None of them had detectable neutralizing antibodies against a nonsyncytium-inducing HIV-1 clade B primary isolate (Bx08). After the fourth injection of vCP205, CTL activity was detected in 33% of the volunteers and was directed against Env, Gag, and Pol. This activity was mediated by both CD4+ and CD8+ lymphocytes. On the other hand, the CLTB-36 peptide was poorly immunogenic and induced no neutralizing antibodies or CTLs. Although the ALVAC-HIV (vCP205) and CLTB-36 prime-boost regimen was not optimal, further studies with ALVAC-HIV (vCP205) are warranted because of its clear induction of a cellular immune response and utility as a priming agent for other subunit antigens such as envelope glycoproteins, pseudoparticles, or new peptides.

  8. HIV-1 subtype A gag variability and epitope evolution.

    Science.gov (United States)

    Abidi, Syed Hani; Kalish, Marcia L; Abbas, Farhat; Rowland-Jones, Sarah; Ali, Syed

    2014-01-01

    The aim of this study was to examine the course of time-dependent evolution of HIV-1 subtype A on a global level, especially with respect to the dynamics of immunogenic HIV gag epitopes. We used a total of 1,893 HIV-1 subtype A gag sequences representing a timeline from 1985 through 2010, and 19 different countries in Africa, Europe and Asia. The phylogenetic relationship of subtype A gag and its epidemic dynamics was analysed through a Maximum Likelihood tree and Bayesian Skyline plot, genomic variability was measured in terms of G → A substitutions and Shannon entropy, and the time-dependent evolution of HIV subtype A gag epitopes was examined. Finally, to confirm observations on globally reported HIV subtype A sequences, we analysed the gag epitope data from our Kenyan, Pakistani, and Afghan cohorts, where both cohort-specific gene epitope variability and HLA restriction profiles of gag epitopes were examined. The most recent common ancestor of the HIV subtype A epidemic was estimated to be 1956 ± 1. A period of exponential growth began about 1980 and lasted for approximately 7 years, stabilized for 15 years, declined for 2-3 years, then stabilized again from about 2004. During the course of evolution, a gradual increase in genomic variability was observed that peaked in 2005-2010. We observed that the number of point mutations and novel epitopes in gag also peaked concurrently during 2005-2010. It appears that as the HIV subtype A epidemic spread globally, changing population immunogenetic pressures may have played a role in steering immune-evolution of this subtype in new directions. This trend is apparent in the genomic variability and epitope diversity of HIV-1 subtype A gag sequences.

  9. HIV-1 subtype A gag variability and epitope evolution.

    Directory of Open Access Journals (Sweden)

    Syed Hani Abidi

    Full Text Available OBJECTIVE: The aim of this study was to examine the course of time-dependent evolution of HIV-1 subtype A on a global level, especially with respect to the dynamics of immunogenic HIV gag epitopes. METHODS: We used a total of 1,893 HIV-1 subtype A gag sequences representing a timeline from 1985 through 2010, and 19 different countries in Africa, Europe and Asia. The phylogenetic relationship of subtype A gag and its epidemic dynamics was analysed through a Maximum Likelihood tree and Bayesian Skyline plot, genomic variability was measured in terms of G → A substitutions and Shannon entropy, and the time-dependent evolution of HIV subtype A gag epitopes was examined. Finally, to confirm observations on globally reported HIV subtype A sequences, we analysed the gag epitope data from our Kenyan, Pakistani, and Afghan cohorts, where both cohort-specific gene epitope variability and HLA restriction profiles of gag epitopes were examined. RESULTS: The most recent common ancestor of the HIV subtype A epidemic was estimated to be 1956 ± 1. A period of exponential growth began about 1980 and lasted for approximately 7 years, stabilized for 15 years, declined for 2-3 years, then stabilized again from about 2004. During the course of evolution, a gradual increase in genomic variability was observed that peaked in 2005-2010. We observed that the number of point mutations and novel epitopes in gag also peaked concurrently during 2005-2010. CONCLUSION: It appears that as the HIV subtype A epidemic spread globally, changing population immunogenetic pressures may have played a role in steering immune-evolution of this subtype in new directions. This trend is apparent in the genomic variability and epitope diversity of HIV-1 subtype A gag sequences.

  10. Expression of CAR in SW480 and HepG2 cells during G1 is associated with cell proliferation

    International Nuclear Information System (INIS)

    Osabe, Makoto; Sugatani, Junko; Takemura, Akiko; Yamazaki, Yasuhiro; Ikari, Akira; Kitamura, Naomi; Negishi, Masahiko; Miwa, Masao

    2008-01-01

    Constitutive androstane receptor (CAR) is a transcription factor to regulate the expression of several genes related to drug-metabolism. Here, we demonstrate that CAR protein accumulates during G1 in human SW480 and HepG2 cells. After the G1/S phase transition, CAR protein levels decreased, and CAR was hardly detected in cells by the late M phase. CAR expression in both cell lines was suppressed by RNA interference-mediated suppression of CDK4. Depletion of CAR by RNA interference in both cells and by hepatocyte growth factor treatment in HepG2 cells resulted in decreased MDM2 expression that led to p21 upregulation and repression of HepG2 cell growth. Thus, our results demonstrate that CAR expression is an early G1 event regulated by CDK4 that contributes to MDM2 expression; these findings suggest that CAR may influence the expression of genes involved in not only the metabolism of endogenous and exogenous substances but also in the cell proliferation

  11. Induced ICER Iγ down-regulates cyclin A expression and cell proliferation in insulin-producing β cells

    International Nuclear Information System (INIS)

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan

    2005-01-01

    We have previously found that cyclin A expression is markedly reduced in pancreatic β-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER Iγ) in transgenic mice. Here we further examined regulatory effects of ICER Iγ on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER Iγ directly repressed cyclin A gene transcription. In addition, upon ICER Iγ overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER Iγ on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER Iγ expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER Iγ in pancreatic β cells. Since ICER Iγ is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting β-cell proliferation

  12. Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation

    International Nuclear Information System (INIS)

    Ochoa-Hernández, Alejandra B; Bravo-Cuellar, Alejandro; Jave-Suarez, Luis F; Barros-Núñez, Patricio; Aguilar-Lemarroy, Adriana; Ramos-Solano, Moisés; Meza-Canales, Ivan D; García-Castro, Beatriz; Rosales-Reynoso, Mónica A; Rosales-Aviña, Judith A; Barrera-Chairez, Esperanza; Ortíz-Lazareno, Pablo C; Hernández-Flores, Georgina

    2012-01-01

    WNT7a, a member of the Wnt ligand family implicated in several developmental processes, has also been reported to be dysregulated in some types of tumors; however, its function and implication in oncogenesis is poorly understood. Moreover, the expression of this gene and the role that it plays in the biology of blood cells remains unclear. In addition to determining the expression of the WNT7A gene in blood cells, in leukemia-derived cell lines, and in samples of patients with leukemia, the aim of this study was to seek the effect of this gene in proliferation. We analyzed peripheral blood mononuclear cells, sorted CD3 and CD19 cells, four leukemia-derived cell lines, and blood samples from 14 patients with Acute lymphoblastic leukemia (ALL), and 19 clinically healthy subjects. Reverse transcription followed by quantitative Real-time Polymerase chain reaction (qRT-PCR) analysis were performed to determine relative WNT7A expression. Restoration of WNT7a was done employing a lentiviral system and by using a recombinant human protein. Cell proliferation was measured by addition of WST-1 to cell cultures. WNT7a is mainly produced by CD3 T-lymphocytes, its expression decreases upon activation, and it is severely reduced in leukemia-derived cell lines, as well as in the blood samples of patients with ALL when compared with healthy controls (p ≤0.001). By restoring WNT7A expression in leukemia-derived cells, we were able to demonstrate that WNT7a inhibits cell growth. A similar effect was observed when a recombinant human WNT7a protein was used. Interestingly, restoration of WNT7A expression in Jurkat cells did not activate the canonical Wnt/β-catenin pathway. To our knowledge, this is the first report evidencing quantitatively decreased WNT7A levels in leukemia-derived cells and that WNT7A restoration in T-lymphocytes inhibits cell proliferation. In addition, our results also support the possible function of WNT7A as a tumor suppressor gene as well as a therapeutic

  13. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  14. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-01-01

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba 2+ -sensitive inward rectifier K + current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca 2+ imaging study revealed that the hypoxic stress enhanced store-operated Ca 2+ (SOC) entry, which was significantly reduced in the presence of 100 μM Ba 2+ . On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba 2+ . We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca 2+ entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca 2+ (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC channels were not affected by hypoxia.

  15. Connection between Proliferation Rate and Temozolomide Sensitivity of Primary Glioblastoma Cell Culture and Expression of YB-1 and LRP/MVP.

    Science.gov (United States)

    Moiseeva, N I; Susova, O Yu; Mitrofanov, A A; Panteleev, D Yu; Pavlova, G V; Pustogarov, N A; Stavrovskaya, A A; Rybalkina, E Yu

    2016-06-01

    Glioblastomas (GBL) are the most common and aggressive brain tumors. They are distinguished by high resistance to radiation and chemotherapy. To find novel approaches for GBL classification, we obtained 16 primary GBL cell cultures and tested them with real-time PCR for mRNA expression of several genes (YB-1, MGMT, MELK, MVP, MDR1, BCRP) involved in controlling cell proliferation and drug resistance. The primary GBL cultures differed in terms of proliferation rate, wherein a group of GBL cell cultures with low proliferation rate demonstrated higher resistance to temozolomide. We found that GBL primary cell cultures characterized by high proliferation rate and lower resistance to temozolomide expressed higher mRNA level of the YB-1 and MDR1 genes, whereas upregulated expression of MVP/LRP mRNA was a marker in the group of GBL with low proliferation rate and high resistance. A moderate correlation between expression of YB-1 and MELK as well as YB-1 and MDR1 was found. In the case of YB-1 and MGMT expression, no correlation was found. A significant negative correlation was revealed between mRNA expression of MVP/LRP and MELK, MDR1, and BCRP. No correlation in expression of YB-1 and MVP/LRP genes was observed. It seems that mRNA expression of YB-1 and MVP/LRP may serve as a marker for GBL cell cultures belonging to distinct groups, each of which is characterized by a unique pattern of gene activity.

  16. Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes

    International Nuclear Information System (INIS)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo

    2005-01-01

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPARα-specific activator. Phytol induced the increase in PPARα-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPARα. Moreover, the addition of phytol upregulated the expression of PPARα-target genes at both mRNA and protein levels in PPARα-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPARα ligand and that it stimulates the expression of PPARα-target genes in intact cells. Because PPARα activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism

  17. Identification of the protease cleavage sites in a reconstituted Gag polyprotein of an HERV-K(HML-2 element

    Directory of Open Access Journals (Sweden)

    Kurth Reinhard

    2011-05-01

    Full Text Available Abstract Background The human genome harbors several largely preserved HERV-K(HML-2 elements. Although this retroviral family comes closest of all known HERVs to producing replication competent virions, mutations acquired during their chromosomal residence have rendered them incapable of expressing infectious particles. This also holds true for the HERV-K113 element that has conserved open reading frames (ORFs for all its proteins in addition to a functional LTR promoter. Uncertainty concerning the localization and impact of post-insertional mutations has greatly hampered the functional characterization of these ancient retroviruses and their proteins. However, analogous to other betaretroviruses, it is known that HERV-K(HML-2 virions undergo a maturation process during or shortly after release from the host cell. During this process, the subdomains of the Gag polyproteins are released by proteolytic cleavage, although the nature of the mature HERV-K(HML-2 Gag proteins and the exact position of the cleavage sites have until now remained unknown. Results By aligning the amino acid sequences encoded by the gag-pro-pol ORFs of HERV-K113 with the corresponding segments from 10 other well-preserved human specific elements we identified non-synonymous post-insertional mutations that have occurred in this region of the provirus. Reversion of these mutations and a partial codon optimization facilitated the large-scale production of maturation-competent HERV-K113 virus-like particles (VLPs. The Gag subdomains of purified mature VLPs were separated by reversed-phase high-pressure liquid chromatography and initially characterized using specific antibodies. Cleavage sites were identified by mass spectrometry and N-terminal sequencing and confirmed by mutagenesis. Our results indicate that the gag gene product Pr74Gag of HERV-K(HML-2 is processed to yield p15-MA (matrix, SP1 (spacer peptide of 14 amino acids, p15, p27-CA (capsid, p10-NC (nucleocapsid and two

  18. Identification of the protease cleavage sites in a reconstituted Gag polyprotein of an HERV-K(HML-2) element.

    Science.gov (United States)

    George, Maja; Schwecke, Torsten; Beimforde, Nadine; Hohn, Oliver; Chudak, Claudia; Zimmermann, Anja; Kurth, Reinhard; Naumann, Dieter; Bannert, Norbert

    2011-05-09

    The human genome harbors several largely preserved HERV-K(HML-2) elements. Although this retroviral family comes closest of all known HERVs to producing replication competent virions, mutations acquired during their chromosomal residence have rendered them incapable of expressing infectious particles. This also holds true for the HERV-K113 element that has conserved open reading frames (ORFs) for all its proteins in addition to a functional LTR promoter. Uncertainty concerning the localization and impact of post-insertional mutations has greatly hampered the functional characterization of these ancient retroviruses and their proteins. However, analogous to other betaretroviruses, it is known that HERV-K(HML-2) virions undergo a maturation process during or shortly after release from the host cell. During this process, the subdomains of the Gag polyproteins are released by proteolytic cleavage, although the nature of the mature HERV-K(HML-2) Gag proteins and the exact position of the cleavage sites have until now remained unknown. By aligning the amino acid sequences encoded by the gag-pro-pol ORFs of HERV-K113 with the corresponding segments from 10 other well-preserved human specific elements we identified non-synonymous post-insertional mutations that have occurred in this region of the provirus. Reversion of these mutations and a partial codon optimization facilitated the large-scale production of maturation-competent HERV-K113 virus-like particles (VLPs). The Gag subdomains of purified mature VLPs were separated by reversed-phase high-pressure liquid chromatography and initially characterized using specific antibodies. Cleavage sites were identified by mass spectrometry and N-terminal sequencing and confirmed by mutagenesis. Our results indicate that the gag gene product Pr74Gag of HERV-K(HML-2) is processed to yield p15-MA (matrix), SP1 (spacer peptide of 14 amino acids), p15, p27-CA (capsid), p10-NC (nucleocapsid) and two C-terminally encoded glutamine- and

  19. Expression, purification, crystallization and preliminary crystallographic analysis of the proliferation-associated protein Ebp1

    Energy Technology Data Exchange (ETDEWEB)

    Kowalinski, Eva; Bange, Gert; Wild, Klemens; Sinning, Irmgard, E-mail: irmi.sinning@bzh.uni-heidelberg.de [Heidelberg University Biochemistry Center, INF 328, D-69120 Heidelberg (Germany)

    2007-09-01

    Preliminary X-ray analysis of the proliferation-associated protein Ebp1 from Homo sapiens is provided. ErbB-3-binding protein 1 (Ebp1) is a member of the family of proliferation-associated 2G4 proteins (PA2G4s) and plays a role in cellular growth and differentiation. Ligand-induced activation of the transmembrane receptor ErbB3 leads to dissociation of Ebp1 from the receptor in a phosphorylation-dependent manner. The non-associated protein is involved in transcriptional and translational regulation in the cell. Here, the overexpression, purification, crystallization and preliminary crystallographic studies of Ebp1 from Homo sapiens are reported. Initially observed crystals were improved by serial seeding to single crystals suitable for data collection. The optimized crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 and diffracted to a resolution of 1.6 Å.

  20. Expression of Peroxisomes-Proliferate Activated Receptors-γ in Diabetics, Obese and Normal Subjects

    International Nuclear Information System (INIS)

    Afzal, N.

    2016-01-01

    Background: Current research in type 2 diabetes mellitus focuses on the role of Peroxisome-Proliferator Activated Receptors (PPARs) in the pathogenesis of the Insulin Resistance Syndrome (IRS), which are pre-diabetic lesion and the hallmark of fully developed type 2 diabetes mellitus. This study aims at identifying the abnormal status of the PPAR-g in adipose tissues of type 2 diabetes mellitus patients, when compared with matched normal controls. Methods: This cross-sectional study was conducted in Ayub Medical College, Abbottabad, from 2012 to 2014. Sample included three equal groups of patients. Group-1 with diagnosed type 2 diabetes mellitus, aged 40-65 years, acting as the test group, Group-2 included non-diabetic obese, and Group-3 with normal subjects. Transcription Factor Assay for Peroxisome Proliferator Activated Receptor Gamma (gamma PPAR) was done on ELISA Technique from Nuclear Extract procured from Adipose Tissue of the subjects. Results: Mean age of enrolled participants was 48.93 SD±6.52.years. Patients ranged between ages of 40 years to 67 years. The mean values of PPAR in normal, obese and diabetic group were 1.72 SD±0.28, 1.282 SE±0.18 and 1.283 SE±0.18 respectively. The difference in mean values of PPAR was significant ρ<0.05. Conclusion: The levels of PPAR-g in patients with type 2 Diabetes Mellitus and Obese cases are significantly lower than normal controls. (author)

  1. Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation

    International Nuclear Information System (INIS)

    Wang, Pingzhang; Sun, Bo; Hao, Dongxia; Zhang, Xiujun; Shi, Taiping; Ma, Dalong

    2010-01-01

    Mitogen-activated protein kinase (MAPK) cascades play an important role in regulation of AP-1 activity through the phosphorylation of distinct substrates. In the present study, we identified a novel protein, TMEM174, whose RNA transcripts are highly expressed in human kidney tissue. TMEM174 is comprised of 243 amino acids, and contains two predicted transmembrane helices which determine its subcellular localization in endoplasmic reticulum and influences its functions. Over-expression of TMME174 enhanced the transcriptional activity of AP-1 and promoted cell proliferation, whereas the truncated mutant TMEM174ΔTM without the transmembrane regions did not retain these functions. The possible mechanism of activation of AP-1 by TMEM174 was further examined. Our results suggest the potential role of TMEM174 in renal development and physiological function.

  2. Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pingzhang [Chinese National Human Genome Center, 3-707 North YongChang Road BDA, Beijing 100191 (China); Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191 (China); Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191 (China); Sun, Bo; Hao, Dongxia [Department of Biology, Northchina Coal Medical College, No. 57 JianShe South Road, Tangshan 063000 (China); Zhang, Xiujun, E-mail: zhangxiujun66@yahoo.com.cn [Department of Biology, Northchina Coal Medical College, No. 57 JianShe South Road, Tangshan 063000 (China); Shi, Taiping, E-mail: taiping_shi@yahoo.com.cn [Chinese National Human Genome Center, 3-707 North YongChang Road BDA, Beijing 100191 (China); Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191 (China); Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Dalong [Chinese National Human Genome Center, 3-707 North YongChang Road BDA, Beijing 100191 (China); Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191 (China); Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191 (China)

    2010-04-16

    Mitogen-activated protein kinase (MAPK) cascades play an important role in regulation of AP-1 activity through the phosphorylation of distinct substrates. In the present study, we identified a novel protein, TMEM174, whose RNA transcripts are highly expressed in human kidney tissue. TMEM174 is comprised of 243 amino acids, and contains two predicted transmembrane helices which determine its subcellular localization in endoplasmic reticulum and influences its functions. Over-expression of TMME174 enhanced the transcriptional activity of AP-1 and promoted cell proliferation, whereas the truncated mutant TMEM174{Delta}TM without the transmembrane regions did not retain these functions. The possible mechanism of activation of AP-1 by TMEM174 was further examined. Our results suggest the potential role of TMEM174 in renal development and physiological function.

  3. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  4. Cell Proliferation (KI-67) Expression Is Associated with Poorer Prognosis in Nigerian Compared to British Breast Cancer Women

    Science.gov (United States)

    Agboola, Ayodeji O. J.; Banjo, Adekumbiola A. F.; Anunobi, Charles C.; Salami, Babatunde; Agboola, Mopelola Deji; Musa, Adewale A.; Nolan, Christopher C.; Rakha, Emad A.; Ellis, Ian O.; Green, Andrew R.

    2013-01-01

    Background. Black women with breast cancer (BC) in Nigeria have higher mortality rate compared with British women. This study investigated prognostic features of cell proliferation biomarker (Ki-67) in Nigerian breast cancer women. Materials and Methods. The protein expression of Ki-67 was investigated in series of 308 Nigerian women, prepared as a tissue microarray (TMA), using immunohistochemistry. Clinic-pathological parameters, biomarkers, and patient outcome of tumours expressing Ki-67 in Nigerian women were correlated with UK grade-matched series. Results. A significantly larger proportion of breast tumours from Nigerian women showed high Ki-67 expression. Those tumours were significantly correlated with negative expression of the steroid hormone receptors (ER and PgR), p21, p27, E-cadherin, BRCA-1, and Bcl-2 (all P < 0.001), but positively associated with EGFR (P = 0.003), p53, basal cytokeratins: CK56, CK14, triple negative, and basal phenotype using Nielsen's classification (all P < 0.001) compared to UK women. Multivariate analyses showed that race was also associated with BCSS independent of tumour size, lymph node status, and ER status. Conclusion. Ki-67 expression was observed to have contributed to the difference in the BCSS in Nigerian compared with British BC women. Therefore, targeting Ki-67 in the indigenous black women with BC might improve the patient outcome in the black women with BC. PMID:23691362

  5. The expressions of P53 protein and proliferating cell nuclear antigen in specimens by CT-guidance percutaneous lung biopsy

    International Nuclear Information System (INIS)

    Zhuang Yiping; Shen Zongli; Zhang Jin; Kang Zheng; Zhu Yueqing; Feng Yong; Shen Wenrong; Wang Yaping

    2004-01-01

    Objective: To evaluate relations between lung cancer and the expressions of P53 protein together with proliferating cell nuclear antigen (PCNA) in specimens of lung lesions by needle biopsy. Methods: CT-guidance percutaneous biopsy of lung lesions were performed in 66 patients with the determination of expressions of p53 protein and PCNA by flow cytometer (FCM). Results: 1. The sensitivity of CT-guidance percutaneous biopsy was 94.3% in 53 cases of lung cancer with the diagnostic accuracy of 90.9% totally. The complication rate of pneumothorax was 4.6%. 2. The expression of P53 protein was (29.9 ± 2.7)% in lung cancer (53 cases), while (17.9 ± 2.8)% in benign lesions (13 cases) (t=2.0, P 2 =6.10, P 2 =9.71, P 0.05). Conclusions: FCM plays and valuable role in determining the expression of P53 protein and PCNA in the specimen of lung cancer by CT-guided percutaneous biopsy. The expression of p53 and PCNA may be useful in the diagnosis of lung cancer by providing the relation between imaging of lung cancer and the molecular mechanism, and furthermore revealing the characteristics of molecular biology of lung cancer at protein level. (authors)

  6. Effect of fenofibrate on oxidative DNA damage and on gene expression related to cell proliferation and apoptosis in rats.

    Science.gov (United States)

    Nishimura, Jihei; Dewa, Yasuaki; Muguruma, Masako; Kuroiwa, Yuichi; Yasuno, Hiroaki; Shima, Tomomi; Jin, Mailan; Takahashi, Miwa; Umemura, Takashi; Mitsumori, Kunitoshi

    2007-05-01

    To investigate the relationship between fenofibrate (FF) and oxidative stress, enzymatic, histopathological, and molecular biological analyses were performed in the liver of male F344 rats fed 2 doses of FF (Experiment 1; 0 and 6000 ppm) for 3 weeks and 3 doses (Experiment 2; 0, 3000, and 6000 ppm) for 9 weeks. FF treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver. However, it decreased those of superoxide dismutase in the liver in both experiments. Increased 8-hydroxy-2'-deoxyguanosine levels in liver DNA and lipofuscin accumulation were observed in the treated rats of Experiment 2. In vitro measurement of reactive oxygen species (ROS) in rat liver microsomes revealed a dose-dependent increase due to FF treatment. Microarray (only Experiment 1) or real-time reverse transcription-polymerase chain reaction analyses revealed that the expression levels of metabolism and DNA repair-related genes such as Aco, Cyp4a1, Cat, Yc2, Gpx2, Apex1, Xrcc5, Mgmt, Mlh1, Gadd45a, and Nbn were increased in FF-treated rats. These results provide evidence of a direct or indirect relationship between oxidative stress and FF treatment. In addition, increases in the expression levels of cell cycle-related genes such as Chek1, Cdc25a, and Ccdn1; increases in the expression levels of cell proliferation-related genes such as Hdgfrp3 and Vegfb; and fluctuations in the expression levels of apoptosis-related genes such as Casp11 and Trp53inp1 were observed in these rats. This suggests that cell proliferation induction, apoptosis suppression, and DNA damage due to oxidative stresses are probably involved in the mechanism of hepatocarcinogenesis due to FF in rats.

  7. Chemokine CXCL3 mediates prostate cancer cells proliferation, migration and gene expression changes in an autocrine/paracrine fashion.

    Science.gov (United States)

    Xin, Hua; Cao, Yu; Shao, Ming-Liang; Zhang, Wei; Zhang, Chun-Bin; Wang, Jing-Tao; Liang, Li-Chun; Shao, Wen-Wu; Qi, Ya-Ling; Li, Yue; Zhang, Ze-Yu; Yang, Zhe; Sun, Yu-Hong; Zhang, Peng-Xia; Jia, Lin-Lin; Wang, Wei-Qun

    2018-05-01

    We have previously indicated that CXCL3 was upregulated in the tissues of prostate cancer, and exogenous administration of CXCL3 played a predominant role in the tumorigenicity of prostate cancer cells. In the present study, we further explored the role and the underlying mechanism of CXCL3 overexpression in the oncogenic potential of prostate cancer in an autocrine/paracrine fashion. CXCL3-overexpressing prostate cancer cell line PC-3 and immortalized prostate stromal cell line WPMY-1 were established by gene transfection. CCK-8, transwell assays and growth of tumor xenografts were conducted to characterize the effects of CXCL3 on PC-3 cells' proliferation and migration. Western blotting was conducted to test whether CXCL3 could affect the expression of tumorigenesis-associated genes. The results showed that CXCL3 overexpression in PC-3 cells and the PC-3 cells treated with the supernatants of CXCL3-transfected WPMY-1 cells stimulated the proliferation and migration of PC-3 cells in vitro and in a nude mouse xenograft model. Western blotting revealed higher levels of p-ERK, Akt and Bcl-2 and lower levels of Bax in the tumor xenografts transplanted with CXCL3-transfected PC-3 cells. Moreover, the tumor xenografts derived from the PC-3 cells treated with supernatants of CXCL3-transfected WPMY-1 cells showed higher expression of ERK, Akt and Bcl-2 and lower expression of Bax. These findings suggest that CXCL3 autocrine/paracrine pathways are involved in the development of prostate cancer by regulating the expression of the target genes that are related to the progression of malignancies.

  8. Beyond Gap Junction Channel Function: the Expression of Cx43 Contributes to Aldosterone-Induced Mesangial Cell Proliferation via the ERK1/2 and PKC Pathways

    Directory of Open Access Journals (Sweden)

    Aiqing Zhang

    2015-06-01

    Full Text Available Aims: This study aimed to explore the precise mechanism and signaling pathways of mesangial cell (MC proliferation from a new point of view considering Connexin 43 (Cx43. Methods: MC proliferation was measured by the incorporation of 3H-thymidine (3H-TdR. Cx43 was over-expressed in MC cells using lipofectamine 2000, and the expression level was tested with reverse transcription-polymerase chain reaction (RT-PCR and Western blot analyses. The gap junction channel function was explored by Lucifer Yellow scrape loading and dye transfer (SLDT, and the intracellular calcium concentrations ([Ca2+]i were characterized by confocal microscopy on cells loaded with Fura-3/AM. Results: There was an inverse correlation between Cx43 expression and MC proliferation (P0.05. Our data also showed that the mineralcorticoid receptor (MR antagonist spironolactone, ERK1/2 inhibitor PD98059 and PKC inhibitor GF109203X could attenuate the down-regulation of Cx43 expression in Aldo-induced MC proliferation; however, the PI3K inhibitor LY294002 could block MC proliferation without affecting Cx43 expression at either the mRNA or protein level. In addition, Aldo promoted MC proliferation in parallel with increasing [Ca2+]i (PConclusions: Our study provides preliminary evidence that Cx43 is an important regulator of Aldo-promoted MC proliferation. Furthermore, reduced Cx43 expression promoted MC proliferation independent of the gap junction channel function, and this process might be mediated through the ERK1/2- and PKC-dependent pathways.

  9. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.

    Science.gov (United States)

    Sha'ban, Munirah; Yoon, Sun Jung; Ko, Youn Kyung; Ha, Hyun Jung; Kim, Soon Hee; So, Jung Won; Idrus, Ruszymah Bt Hj; Khang, Gilson

    2008-01-01

    Previously, we have proven that fibrin and poly(lactic-co-glycolic acid) (PLGA) scaffolds facilitate cell proliferation, matrix production and early chondrogenesis of rabbit articular chondrocytes in in vitro and in vivo experiments. In this study, we evaluated the potential of fibrin/PLGA scaffold for intervertebral disc (IVD) tissue engineering using annulus fibrosus (AF) and nucleus pulposus (NP) cells in relation to potential clinical application. PLGA scaffolds were soaked in cells-fibrin suspension and polymerized by dropping thrombin-sodium chloride (CaCl(2)) solution. A PLGA-cell complex without fibrin was used as control. Higher cellular proliferation activity was observed in fibrin/PLGA-seeded AF and NP cells at each time point of 3, 7, 14 and 7 days using the MTT assay. After 3 weeks in vitro incubation, fibrin/PLGA exhibited a firmer gross morphology than PLGA groups. A significant cartilaginous tissue formation was observed in fibrin/PLGA, as proven by the development of cells cluster of various sizes and three-dimensional (3D) cartilaginous histoarchitecture and the presence of proteoglycan-rich matrix and glycosaminoglycan (GAG). The sGAG production measured by 1,9-dimethylmethylene blue (DMMB) assay revealed greater sGAG production in fibrin/PLGA than PLGA group. Immunohistochemical analyses showed expressions of collagen type II, aggrecan core protein and collagen type I genes throughout in vitro culture in both fibrin/PLGA and PLGA. In conclusion, fibrin promotes cell proliferation, stable in vitro tissue morphology, superior cartilaginous tissue formation and sGAG production of AF and NP cells cultured in PLGA scaffold. The 3D porous PLGA scaffold-cell complexes using fibrin can provide a vehicle for delivery of cells to regenerate tissue-engineered IVD tissue.

  10. EMMPRIN Expression in Oral Squamous Cell Carcinomas: Correlation with Tumor Proliferation and Patient Survival

    Directory of Open Access Journals (Sweden)

    Luís Silva Monteiro

    2014-01-01

    Full Text Available The aim of our study was to explore the clinicopathological and prognostic significance of extracellular matrix metalloproteinase inducer (EMMPRIN expression in oral squamous cell carcinomas (OSCC, and its relation with the proliferative tumor status of OSCC. We examined EMMPRIN and Ki-67 proteins expression by immunohistochemistry in 74 cases with OSCC. Statistical analysis was conducted to examine their clinicopathological and prognostic significance in OSCC. EMMPRIN membrane expression was observed in all cases, with both membrane and cytoplasmic tumor expression in 61 cases (82.4%. EMMPRIN overexpression was observed in 56 cases (75.7%. Moderately or poorly differentiated tumors showed EMMPRIN overexpression more frequently than well-differentiated tumors (P=0.002. Overexpression of EMMPRIN was correlated with high Ki-67 expression (P=0.004. In the multivariate analysis, EMMPRIN overexpression reveals an adverse independent prognostic value for cancer-specific survival (CSS (P=0.034. Our results reveal that EMMPRIN protein is overexpressed in more than two-thirds of OSCC cases, especially in high proliferative and less differentiated tumors. The independent value of EMMPRIN overexpression in CSS suggests that this protein could be used as an important biological prognostic marker for patients with OSCC. Moreover, the high expression of EMMPRIN makes it a possible therapeutic target in OSCC patients.

  11. EMMPRIN expression in oral squamous cell carcinomas: correlation with tumor proliferation and patient survival.

    Science.gov (United States)

    Monteiro, Luís Silva; Delgado, Maria Leonor; Ricardo, Sara; Garcez, Fernanda; do Amaral, Barbas; Pacheco, José Júlio; Lopes, Carlos; Bousbaa, Hassan

    2014-01-01

    The aim of our study was to explore the clinicopathological and prognostic significance of extracellular matrix metalloproteinase inducer (EMMPRIN) expression in oral squamous cell carcinomas (OSCC), and its relation with the proliferative tumor status of OSCC. We examined EMMPRIN and Ki-67 proteins expression by immunohistochemistry in 74 cases with OSCC. Statistical analysis was conducted to examine their clinicopathological and prognostic significance in OSCC. EMMPRIN membrane expression was observed in all cases, with both membrane and cytoplasmic tumor expression in 61 cases (82.4%). EMMPRIN overexpression was observed in 56 cases (75.7%). Moderately or poorly differentiated tumors showed EMMPRIN overexpression more frequently than well-differentiated tumors (P = 0.002). Overexpression of EMMPRIN was correlated with high Ki-67 expression (P = 0.004). In the multivariate analysis, EMMPRIN overexpression reveals an adverse independent prognostic value for cancer-specific survival (CSS) (P = 0.034). Our results reveal that EMMPRIN protein is overexpressed in more than two-thirds of OSCC cases, especially in high proliferative and less differentiated tumors. The independent value of EMMPRIN overexpression in CSS suggests that this protein could be used as an important biological prognostic marker for patients with OSCC. Moreover, the high expression of EMMPRIN makes it a possible therapeutic target in OSCC patients.

  12. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rui Xiang

    2012-02-01

    Full Text Available MicroRNAs (miRNAs have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92 cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2 is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  13. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes.

    Science.gov (United States)

    Xiang, Rui; Lei, Han; Chen, Mianzhi; Li, Qinwei; Sun, Huan; Ai, Jianzhong; Chen, Tielin; Wang, Honglian; Fang, Yin; Zhou, Qin

    2012-02-01

    MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3' untranslated regions (3'UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3'UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3'UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  14. Downregulation of cytochrome c oxidase subunit 7A1 expression is important in enhancing cell proliferation in adenocarcinoma cells

    International Nuclear Information System (INIS)

    Mishra, Nawneet; Timilsina, Uddhav; Ghimire, Dibya; Dubey, Ravi C.; Gaur, Ritu

    2017-01-01

    Mitochondrial Dysfunction has been implicated in multiple human diseases, including cancer. Among all cancer, lung cancer is the most common type of cancer worldwide with low survival rates. Mammals possess multiple subunits of the mitochondrial enzyme Cytochrome C oxidase (COX). The COX subunits are expressed in a tissue specific manner and have been implicated in cancer cell metabolism although their molecular and regulatory mechanisms are not clearly understood. In this study, we aimed at identifying novel gene signatures in lung cancer. We performed extensive analysis of seven different Gene Expression Omnibus (GEO) datasets pertaining to different stages of lung adenocarcinoma and identified that multiple subunits of COX genes are differentially expressed in these patients. Amongst all COX genes, the expression of COX7A1 gene was observed to be highly down regulated in these patients. In order to validate the GEO datasets, we looked at the expression of multiple COX genes using quantitative real time PCR (qPCR) using human lung adenocarcinoma cell line A549. Our results confirmed that COX 7A1 gene expression was indeed highly reduced in these cells. Overexpression of COX7A1 in human lung cancer cells led to inhibition of cell proliferation and increase in cell death via apoptosis. These results indicated that low level of COX7A1 gene expression is essential to regulate cell viability and inhibit cell death in lung adenocarcinoma. Our study has identified COX7A1 as a novel gene that might play a crucial role in the etiology of lung adenocarcinoma and can serve as a biomarker for lung cancer disease progression.

  15. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico); Sandoval, Alejandro [School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla (Mexico); Monroy, Alma; Felix, Ricardo [Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City (Mexico); Monjaraz, Eduardo, E-mail: emguzman@siu.buap.mx [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico)

    2010-12-03

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.

  16. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1 in Human Macrophages

    Directory of Open Access Journals (Sweden)

    G. Chinetti-Gbaguidi

    2016-01-01

    Full Text Available Tissue factor (TF is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa. Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1. Peroxisome proliferator-activated receptor gamma (PPARγ is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway.

  17. Diverse effects of lead nitrate on the proliferation, differentiation, and gene expression of stem cells isolated from a dental origin.

    Science.gov (United States)

    Abdullah, Mariam; Rahman, Fazliny Abd; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Abu Kasim, Noor Hayaty; Musa, Sabri

    2014-01-01

    Lead (Pb(2+)) exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb(2+) toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb(2+) concentrations (160, 80, 40, 20, and 10 µM) for 24 hours to identify the adverse effects of Pb(2+) on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb(2+) treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb(2+) continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1) and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb(2+) exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  18. Diverse Effects of Lead Nitrate on the Proliferation, Differentiation, and Gene Expression of Stem Cells Isolated from a Dental Origin

    Directory of Open Access Journals (Sweden)

    Mariam Abdullah

    2014-01-01

    Full Text Available Lead (Pb2+ exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb2+ toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb2+ concentrations (160, 80, 40, 20, and 10 µM for 24 hours to identify the adverse effects of Pb2+ on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb2+ treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb2+ continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1 and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb2+ exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  19. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts

    International Nuclear Information System (INIS)

    Wang Zhirong; Chen Yan; Labinskyy, Nazar; Hsieh Tzechen; Ungvari, Zoltan; Wu, Joseph M.

    2006-01-01

    Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol

  20. Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells.

    Science.gov (United States)

    Shahi, Mehdi Hayat; Holt, Roseline; Rebhun, Robert B

    2014-01-01

    The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors.

  1. Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Mehdi Hayat Shahi

    Full Text Available The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors.

  2. Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst

    Directory of Open Access Journals (Sweden)

    Thara Purath Sajeevan

    2014-01-01

    Full Text Available Introduction: p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. Aim: The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC and periapical cyst (PA. Materials and Methods: A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. Results: The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%, whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1 OKC showed p53 expression in 6 cases (60% whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2 The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. Conclusion: OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA.

  3. The STAT3 inhibitor pimozide impedes cell proliferation and induces ROS generation in human osteosarcoma by suppressing catalase expression.

    Science.gov (United States)

    Cai, Nan; Zhou, Wei; Ye, Lan-Lan; Chen, Jun; Liang, Qiu-Ni; Chang, Gang; Chen, Jia-Jie

    2017-01-01

    Currently, there is a considerable need to develop new treatments for osteosarcoma (OS), a very aggressive bone cancer. The activation of STAT3 signaling is positively associated with poor prognosis and aggressive progression in OS patients. Our previous study reported that the FDA-approved antipsychotic drug pimozide had anti-tumor activity against hepatocellular carcinoma and prostate cancer cells by suppressing STAT3 activity. Therefore, the aim of this study was to investigate the specific effect of pimozide on OS cells and the underlying molecular mechanism. Pimozide inhibited cell proliferation, colony formation, and sphere formation capacities of the OS cells in a dose-dependent manner, inducing G0/G1 phase cell cycle arrest. Pimozide reduced the percentage of side population cells representing cancer stem-like cells and enhanced the sensitivity of OS cells to 5-FU induced proliferative inhibition. In addition, pimozide induced apoptosis of U2OS cells, which showed increased expression of cleaved-PARP, a marker of programmed cell death. Moreover, pimozide suppressed Erk signaling in OS cells. Importantly, pimozide induced ROS generation by downregulating the expression of the antioxidant enzyme catalase (CAT). NAC treatment partially reversed the ROS generation and cytotoxic effects induced by pimozide. CAT treatment attenuated the pimozide-induced proliferation inhibition. The decrease of CAT expression induced by pimozide was potentially mediated through the suppression of cellular STAT3 activity in OS cells. Thus, pimozide may be a novel STAT3 inhibitor that suppresses cellular STAT3 activity to inhibit OS cells or stem-like cells and is a novel potential anti-cancer agent in OS treatment.

  4. Immunohistochemical study of p53 and proliferating cell nuclear antigen expression in odontogenic keratocyst and periapical cyst.

    Science.gov (United States)

    Sajeevan, Thara Purath; Saraswathi, Tillai Rajasekaran; Ranganathan, Kannan; Joshua, Elizabeth; Rao, Uma Devi K

    2014-07-01

    p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA) is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC) and periapical cyst (PA). A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%), whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1) OKC showed p53 expression in 6 cases (60%) whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2) The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA.

  5. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Science.gov (United States)

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC.

  6. HIV-1 Tat regulates the expression of the dcw operon and stimulates the proliferation of bacteria.

    Science.gov (United States)

    Wei, Jinsong; Zhang, Yumin; Knapp, Pamela E; Zhao, Tianyong

    2016-01-01

    Infections of pathogenic bacteria are very common in acquired immunodeficiency syndrome (AIDS) patients. However, the biological effects of HIV-1 Tat on bacteria are incompletely understood. In this study, HIV-1 Tat was expressed in Escherichia coli and Pseudomonas aeruginosa (PA01) to investigate its biological effects on bacteria. Bacterial cells expressing either HIV-1 Tat1-86 (Tat1-86) or HIV-1 Tat1-72 (Tat1-72) grow significantly faster than those with either only an empty vector or an unrelated control (GFP or Rluc). Supplementation of purified HIV-1 Tat1-86 or Tat1-101 protein into bacterial culture medium stimulated the growth of both E. coli and PA01. The expression profile of certain cell division-associated genes, such as those in the division cell wall (dcw) operon (ftsA, ftsQ, ftsW and ftsZ), yafO and zipA, was altered in HIV-1 Tat1-86 expressing E. coli BL21(DE3). Furthermore, the expression of firefly luciferase (Fluc) reporter gene, when engineered for control by the dcw promoter and terminator, was enhanced by HIV-1 Tat in E. coli, confirming that HIV-1 Tat transcriptionally regulates the expression of the dcw operon. The finding that HIV-1 Tat stimulates bacterial growth whether it is produced intracellularly or applied extracellularly may have relevance for HIV patients who are highly susceptible to opportunistic bacterial infections. Contents category: Viruses -Retroviruses. The GenBank accession number for the sequence of HIV-1 Tat1-86 is AF324439.1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres

    DEFF Research Database (Denmark)

    Popa, Natalia; Cédile, Oriane; Pollet-Villard, Xavier

    2011-01-01

    playing either immune or nonimmune function. Among the latter, MHC functions in the central nervous system has started to receive recent interest. Here, our first goal was to investigate the potential relationship between MHC class I molecules and neurogenesis. For the first time, we report the expression......, and we demonstrate they persist in one of the main area of adult neurogenesis, the subventricular zone (SVZ). So far, RAE-1 is only known for its immune functions as a ligand of the activating receptor NKG2D expressed by natural killer (NK) cells, natural killer T, Tγδ, and some T CD8 lymphocytes. Here...

  8. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  9. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  10. Effects on Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells Engineered to Express Neurotrophic Factors

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotential cells with capability to form colonies in vitro and differentiate into distinctive end-stage cell types. Although MSCs secrete many cytokines, the efficacy can be improved through combination with neurotrophic factors (NTFs. Moreover, MSCs are excellent opportunities for local delivery of NTFs into injured tissues. The aim of this present study is to evaluate the effects of overexpressing NTFs on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells (HUMSCs. Overexpressing NTFs had no effect on cell proliferation. Overexpressing NT-3, BDNF, and NGF also had no significant effect on the differentiation of HUMSCs. Overexpressing NTFs all promoted the neurite outgrowth of embryonic chick E9 dorsal root ganglion (DRG. The gene expression profiles of the control and NT-3- and BDNF-modified HUMSCs were compared using RNA sequencing and biological processes and activities were revealed. This study provides novel information about the effects of overexpressing NTFs on HUMSCs and insight into the choice of optimal NTFs for combined cell and gene therapy.

  11. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    International Nuclear Information System (INIS)

    Garcia-Becerra, Rocio; Diaz, Lorenza; Camacho, Javier; Barrera, David; Ordaz-Rosado, David; Morales, Angelica; Ortiz, Cindy Sharon; Avila, Euclides; Bargallo, Enrique; Arrecillas, Myrna; Halhali, Ali; Larrea, Fernando

    2010-01-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  12. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    Science.gov (United States)

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  13. Let-7b Regulates Myoblast Proliferation by Inhibiting IGF2BP3 Expression in Dwarf and Normal Chicken

    Science.gov (United States)

    Lin, Shumao; Luo, Wen; Ye, Yaqiong; Bekele, Endashaw J.; Nie, Qinghua; Li, Yugu; Zhang, Xiquan

    2017-01-01

    The sex-linked dwarf chicken is caused by the mutation of growth hormone receptor (GHR) gene and characterized by shorter shanks, lower body weight, smaller muscle fiber diameter and fewer muscle fiber number. However, the precise regulatory pathways that lead to the inhibition of skeletal muscle growth in dwarf chickens still remain unclear. Here we found a let-7b mediated pathway might play important role in the regulation of dwarf chicken skeletal muscle growth. Let-7b has higher expression in the skeletal muscle of dwarf chicken than in normal chicken, and the expression of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which is a translational activator of IGF2, showed opposite expression trend to let-7b. In vitro cellular assays validated that let-7b directly inhibits IGF2BP3 expression through binding to its 3′UTR region, and the protein level but not mRNA level of IGF2 would be reduced in let-7b overexpressed chicken myoblast. Let-7b can inhibit cell proliferation and induce cell cycle arrest in chicken myoblast through let-7b-IGF2BP3-IGF2 signaling pathway. Additionally, let-7b can also regulate skeletal muscle growth through let-7b-GHR-GHR downstream genes pathway, but this pathway is non-existent in dwarf chicken because of the deletion mutation of GHR 3′UTR. Notably, as the loss binding site of GHR for let-7b, let-7b has enhanced its binding and inhibition on IGF2BP3 in dwarf myoblast, suggesting that the miRNA can balance its inhibiting effect through dynamic regulate its binding to target genes. Collectively, these results not only indicate that let-7b can inhibit skeletal muscle growth through let-7b-IGF2BP3-IGF2 signaling pathway, but also show that let-7b regulates myoblast proliferation by inhibiting IGF2BP3 expression in dwarf and normal chickens. PMID:28736533

  14. Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts.

    Science.gov (United States)

    Gadbail, A R; Chaudhary, M; Patil, S; Gawande, M

    2009-10-01

    The purpose of this study was to evaluate the biological aggressiveness of odontogenic keratocyst/keratocystic odontogenic tumour (KCOT), radicular cyst (RC) and dentigerous cyst (DC) by observing the actual proliferative activity of epithelium, and p53 protein expression. The actual proliferative activity was measured by Ki-67 Labelling Index and argyrophilic nucleolar organizing regions (AgNOR) count per nucleus. The p53 protein expression was also evaluated. Ki-67 positive cells were observed higher in suprabasal cell layers of KCOT with uniform distribution, a few of them were predominantly observed in basal cell layer in RC and DC. The AgNOR count was significantly higher in suprabasal cell layers of KCOT. The actual proliferative activity was noted to be higher in suprabasal cell layers of KCOT. The p53 immunolabelling was dense and scattered in basal and suprabasal cell layers in KCOT. The weakly stained p53 positive cells were observed diffusely distributed in KCOT, whereas they were mainly seen in basal cell layer of RC and DC. The quantitative and qualitative differences of the proliferative activity and the p53 protein expression in sporadic KCOT may be associated with intrinsic growth potential that could play a role in its development and explain locally aggressive biological behaviour. AgNOR count and p53 protein detection in odontogenic lesions can be of great consequence to predict the biological behaviour and prognosis.

  15. Peroxisome Proliferator-Activated Receptor γ Regulates the Expression of Lipid Phosphate Phosphohydrolase 1 in Human Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yazi Huang

    2014-01-01

    Full Text Available Lipid phosphate phosphohydrolase 1 (LPP1, a membrane ectophosphohydrolase regulating the availability of bioactive lipid phosphates, plays important roles in cellular signaling and physiological processes such as angiogenesis and endothelial migration. However, the regulated expression of LPP1 remains largely unknown. Here, we aimed to examine a role of peroxisome proliferator-activated receptor γ (PPARγ in the transcriptional control of LPP1 gene expression. In human umbilical vein endothelial cells (HUVECs, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR demonstrated that activation of PPARγ increased the mRNA level of LPP1. Chromatin immunoprecipitation assay showed that PPARγ binds to the putative PPAR-responsive elements (PPREs within the 5′-flanking region of the human LPP1 gene. Genomic fragment containing 1.7-kilobase of the promoter region was cloned by using PCR. The luciferase reporter assays demonstrated that overexpression of PPARγ and rosiglitazone, a specific ligand for PPARγ, could significantly upregulate the reporter activity. However, site-directed mutagenesis of the PPRE motif abolished the induction. In conclusion, our results demonstrated that PPARγ transcriptionally activated the expression of LPP1 gene in ECs, suggesting a potential role of PPARγ in the metabolism of phospholipids.

  16. BAG3 promotes proliferation of ovarian cancer cells via post-transcriptional regulation of Skp2 expression.

    Science.gov (United States)

    Yan, Jing; Liu, Chuan; Jiang, Jing-Yi; Liu, Hans; Li, Chao; Li, Xin-Yu; Yuan, Ye; Zong, Zhi-Hong; Wang, Hua-Qin

    2017-10-01

    Bcl-2 associated athanogene 3 (BAG3) contains a modular structure, through which BAG3 interacts with a wide range of proteins, thereby affording its capacity to regulate multifaceted biological processes. BAG3 is often highly expressed and functions as a pro-survival factor in many cancers. However, the oncogenic potential of BAG3 remains not fully understood. The cell cycle regulator, S-phase kinase associated protein 2 (Skp2) is increased in various cancers and plays an important role in tumorigenesis. The current study demonstrated that BAG3 promoted proliferation of ovarian cancer cells via upregulation of Skp2. BAG3 stabilized Skp2 mRNA via its 3'-untranslated region (UTR). The current study demonstrated that BAG3 interacted with Skp2 mRNA. In addition, miR-21-5p suppressed Skp2 expression, which was compromised by forced BAG3 expression. These results indicated that at least some oncogenic functions of BAG3 were mediated through posttranscriptional regulation of Skp2 via antagonizing suppressive action of miR-21-5p in ovarian cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The proliferation marker pKi-67 becomes masked to MIB-1 staining after expression of its tandem repeats.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Duchrow, Michael

    2002-11-01

    The Ki-67 antigen, pKi-67, is one of the most commonly used markers of proliferating cells. The protein can only be detected in dividing cells (G(1)-, S-, G(2)-, and M-phase) but not in quiescent cells (G(0)). The standard antibody to detect pKi-67 is MIB-1, which detects the so-called 'Ki-67 motif' FKELF in 9 of the protein's 16 tandem repeats. To investigate the function of these repeats we expressed three of them in an inducible gene expression system in HeLa cells. Surprisingly, addition of a nuclear localization sequence led to a complete absence of signal in the nuclei of MIB-1-stained cells. At the same time antibodies directed against different epitopes of pKi-67 did not fail to detect the protein. We conclude that the overexpression of the 'Ki-67 motif', which is present in the repeats, can lead to inability of MIB-1 to detect its antigen as demonstrated in adenocarcinoma tissue samples. Thereafter, in order to prevent the underestimation of Ki-67 proliferation indices in MIB-1-labeled preparations, additional antibodies (for example, MIB-21) should be used. Additionally, we could show in a mammalian two-hybrid assay that recombinant pKi-67 repeats are capable of self-associating with endogenous pKi-67. Speculating that the tandem repeats are intimately involved in its protein-protein interactions, this offers new insights in how access to these repeats is regulated by pKi-67 itself.

  18. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis.

    Science.gov (United States)

    Sarruf, David A; Yu, Fang; Nguyen, Hong T; Williams, Diana L; Printz, Richard L; Niswender, Kevin D; Schwartz, Michael W

    2009-02-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.

  19. Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines

    Science.gov (United States)

    Campbell, Sharon E; Stone, William L; Whaley, Sarah G; Qui, Min; Krishnan, Koyamangalath

    2003-01-01

    Background Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. Results We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of

  20. Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines

    International Nuclear Information System (INIS)

    Campbell, Sharon E; Stone, William L; Whaley, Sarah G; Qui, Min; Krishnan, Koyamangalath

    2003-01-01

    Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of α-tocopherol. Our data suggest that

  1. Genetic diversity in the feline leukemia virus gag gene.

    Science.gov (United States)

    Kawamura, Maki; Watanabe, Shinya; Odahara, Yuka; Nakagawa, So; Endo, Yasuyuki; Tsujimoto, Hajime; Nishigaki, Kazuo

    2015-06-02

    Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Differential expression of peroxisome proliferator activated receptor gamma and cyclin D1 does not affect proliferation of asthma- and non-asthma-derived airway smooth muscle cells

    NARCIS (Netherlands)

    Lau, Justine Y; Oliver, Brian G; Moir, Lyn M; Black, Judith L; Burgess, Janette K

    UNLABELLED: PPARgamma levels in asthma- and non-asthma-derived airway smooth muscle cells and PPARgamma activation-induced cell proliferation were investigated. In the presence of FBS, PPARgamma levels were higher in subconfluent asthma-derived cells but lower in confluent cells compared with

  3. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-01-01

    Highlights: • As 2 O 3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As 2 O 3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As 2 O 3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As 2 O 3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As 2 O 3 ) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As 2 O 3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As 2 O 3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As 2 O 3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As 2 O 3 than HPV 16-positive CaSki and SiHa cells. After As 2 O 3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As 2 O 3 is a potential anticancer drug for cervical cancer

  4. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone

    Directory of Open Access Journals (Sweden)

    M Fukuda

    2009-12-01

    Full Text Available We examined immunohistochemically the fracture repair process in rat tibial bone using antibodies to PCNA, BMP2, TGF-b 1,-2,-3, TGF-b R1,- R2, bFGF, bFGFR, PDGF, VEGF, and S-100. The peak level of cell proliferation as revealed by PCNA labelling appeared first in primitive mesenchymal cells and inflammatory cells at the fracture edges and neighboring periosteum at 2-days after fracture, followed by the peaks of periosteal primitive fibroblasts and chondroblasts, which appeared at fracture edges at 3- and 4-days after fracture, respectively. BMP2 was weakly positive in primitive mesenchymal cells, osteoblasts and chondroblasts. At 3-days post-fracture, periosteal osteoblasts produced osteoid tissue and callus with marrow spaces lined by osteoblasts and osteoclasts, and all primitive mesenchymal cells and osteoblasts were positive for TGF-b 1,-2,-3, and TGF-b R1,-R2. They were also positive for vascular growth factors bFGF, FGFR and PDGF, but negative for VEGF, and the peak of PCNA labelling of vascular endothelial cells in the marrow space was delayed to 4-days after fracture. Chondroblasts at fracture edges produced hypertrophic chondrocytes at 5-days after fracture and they were positive for TGF-b 1,-2,-3, and TGF-b R1,-R2. Primitive chondroblasts were positive for vascular growth factors VEGF as well as bFGF, FGFR, and the peak of PCNA labelling of vascular endothelial cells in the cartilage was at 5-days after fracture. Hypertrophic chondrocytes were also positive for these growth factors but negative for bFGF and bFGFR. S-100 protein-induced calcification was only positive on chondroblasts and hypertrophic chondrocytes. At 7-days after fracture, bone began to be formed from the cartilage at fracture edges, by a process similar to bone formation in the growth plate. Enchondral ossification established a bridge between both fracture edges and periosteal membranous ossification encompassed the fracture site like a sheath at 14- day after

  5. Downregulation of CD147 expression by RNA interference inhibits HT29 cell proliferation, invasion and tumorigenicity in vitro and in vivo.

    Science.gov (United States)

    Li, Rui; Pan, Yuqin; He, Bangshun; Xu, Yeqiong; Gao, Tianyi; Song, Guoqi; Sun, Huiling; Deng, Qiwen; Wang, Shukui

    2013-12-01

    We investigated the effect of CD147 silencing on HT29 cell proliferation and invasion. We constructed a novel short hairpin RNA (shRNA) expression vector pYr-mir30-shRNA. The plasmid was transferred to HT29 cells. The expression of CD147, MCT1 (lactate transporters monocarboxylate transporter 1) and MCT4 (lactate transporters monocarboxylate transporter 4) were monitored by quantitative PCR and western blotting, respectively. The MMP-2 (matrix metalloproteinase-2) and MMP-9 (matrix metalloproteinase-9) activities were determined by gelatin zymography assay, while the intracellular lactate concentration was determined by the lactic acid assay kit. WST-8 assay was used to determine the HT29 cell proliferation and the chemosensitivity. Invasion assay was used to determine the invasion of HT29 cells. In addition, we established a colorectal cancer model, and detected CD147 expression in vivo. The results showed that the expression of CD147 and MCT1 was significantly reduced at both mRNA and protein levels, and also the activity of MMP-2 and MMP-9 was reduced. The proliferation and invasion were decreased, but chemosensitivity to cisplatin was increased. In vivo, the CD147 expression was also significantly decreased, and reduced the tumor growth after CD147 gene silencing. The results demonstrated that silencing of CD147 expression inhibited the proliferation and invasion, suggesting CD147 silencing might be an adjuvant gene therapy strategy to chemotherapy.

  6. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  7. Regulation of hepatic peroxisome proliferator-activated receptor alpha expression but not adiponectin by dietary protein in finishing pigs.

    Science.gov (United States)

    Weber, T E; Kerr, B J; Spurlock, M E

    2008-10-01

    Soy protein regulates adiponectin and peroxisome proliferator-activated receptor alpha (PPARalpha) in some species, but the effect of dietary soy protein on adiponectin and PPARalpha in the pig has not been studied. Therefore, the objective of this study was to determine whether soya bean meal reduction or replacement influences serum adiponectin, adiponectin mRNA, serum metabolites and the expression of PPARalpha and other genes involved in lipid deposition. Thirty-three pigs (11 pigs per treatment) were subjected to one of three dietary treatments: (i) reduced crude protein (CP) diet containing soya bean meal (RCP-Soy), (ii) high CP diet containing soya bean meal (HCP-Soy) or (iii) high CP diet with corn gluten meal replacing soya bean meal (HCP-CGM) for 35 days. Dietary treatment had no effect on overall growth performance, feed intake or measures of body composition. There was no effect of dietary treatment on serum adiponectin or leptin. Dietary treatment did not affect the abundance of the mRNAs for adiponectin, PPARalpha, PPARgamma2, lipoprotein lipase or fatty acid synthase in adipose tissue. The mRNA expression of PPARalpha, PPARgamma2, lipoprotein lipase or fatty acid synthetase in loin muscle was not affected by dietary treatment. In liver tissue, the relative abundance of PPARalpha mRNA was greater (p Soy diets when compared to pigs fed RCP-Soy or HCP-CGM diets. Hepatic mRNA expression of acyl-CoA oxidase or fatty acid synthase was not affected by dietary treatment. Western blot analysis indicated that hepatic PPARalpha protein levels were decreased (p Soy diets when compared to pigs fed the HCP-Soy diets. These data suggest that increasing the soy protein content of swine diets increases hepatic expression of PPARalpha without associated changes in body composition.

  8. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Meador, Lydia R. [Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ (United States); Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Kessans, Sarah A. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Kilbourne, Jacquelyn; Kibler, Karen V. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Pantaleo, Giuseppe [Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne (Switzerland); Swiss Vaccine Research Institute, Lausanne (Switzerland); Roderiguez, Mariano Esteban [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia – CSIC, Madrid (Spain); Blattman, Joseph N. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Jacobs, Bertram L., E-mail: bjacobs@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Mor, Tsafrir S., E-mail: tsafrir.mor@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States)

    2017-07-15

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.

  9. The relationship between apoptosis and the expression of proliferating cell nuclear antigen and the clinical stages in gastric carcinoma.

    Science.gov (United States)

    Tao, K; Chen, D; Tian, Y; Lu, X; Yang, X

    2000-01-01

    The relationship between the apoptosis and the expression of proliferating cell nuclear antigen (PCNA) and the clinical stages in gastric cancers was studied. By using terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) technique and PCNA immunohistochemical staining, the apoptosis and the expression of PCNA in tissue of gastric carcinoma were assayed in situ, the index of apoptosis (AI), index of PCNA (PI) and the rate of AI/PI were calculated. AI and PI in gastric cancer tissues were (6.5 +/- 3.7)% and (49.8 +/- 15.9)% respectively, and the rate of AI/PI was 0.13 +/- 0.05, which were obviously different from those of normal gastric mucosa in paragastric cancer (P stages of gastric carcinoma, the AI was decreased, PI was increased and the rate of AI/PI decreased in gastric carcinoma. There was significant difference in them between the gastric cancer tissues and normal gastric mucosa in pericarcinoma in TNM stage II to IV (P gastric carcinoma. The AI, PI and the rate of AI/PI would become the prognostic factors in advanced gastric carcinoma.

  10. Homeostatic Proliferation and IL-7R Alpha Expression Do Not Correlate with Enhanced T Cell Proliferation and Protection in Chronic Mouse Malaria

    OpenAIRE

    Stephens, Robin; Seddon, Benedict; Langhorne, Jean

    2011-01-01

    While chronic infection has been shown to enhance protection from disease caused by several pathogens, the mechanisms are not known. The gamma-c family of cytokines IL-7, IL-2, and IL-15 are implicated in homeostatic proliferation, which is thought to maintain T cell memory. However in chronic infection, prolonged antigen exposure itself may contribute to lymphocyte survival. We have previously observed that chronic malaria infection enhances protection to re-infection, as well as enhancing B...

  11. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Hidajat, Rachmat; Hamilton, Garrett; Horn, Noah; Nickols, Brian; Prather, Raphael O. [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD (United States); Tumpey, Terrence M. [Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD (United States)

    2016-01-15

    Influenza VLPs comprised of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins have been previously used for immunological and virological studies. Here we demonstrated that influenza VLPs can be made in Sf9 cells by using the bovine immunodeficiency virus gag (Bgag) protein in place of M1. We showed that Bgag can be used to prepare VLPs for several influenza subtypes including H1N1 and H10N8. Furthermore, by using Bgag, we prepared quadri-subtype VLPs, which co-expressed within the VLP the four HA subtypes derived from avian-origin H5N1, H7N9, H9N2 and H10N8 viruses. VLPs showed hemagglutination and neuraminidase activities and reacted with specific antisera. The content and co-localization of each HA subtype within the quadri-subtype VLP were evaluated. Electron microscopy showed that Bgag-based VLPs resembled influenza virions with the diameter of 150–200 nm. This is the first report of quadri-subtype design for influenza VLP and the use of Bgag for influenza VLP preparation. - Highlights: • BIV gag protein was configured as influenza VLP core component. • Recombinant influenza VLPs were prepared in Sf9 cells using baculovirus expression system. • Single- and quadri-subtype VLPs were prepared by using BIV gag as a VLP core. • Co-localization of H5, H7, H9, and H10 HA was confirmed within quadri-subtype VLP. • Content of HA subtypes within quadri-subtype VLP was determined. • Potential advantages of quadri-subtype VLPs as influenza vaccine are discussed.

  12. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Hidajat, Rachmat; Hamilton, Garrett; Horn, Noah; Nickols, Brian; Prather, Raphael O.; Tumpey, Terrence M.; Pushko, Peter

    2016-01-01

    Influenza VLPs comprised of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins have been previously used for immunological and virological studies. Here we demonstrated that influenza VLPs can be made in Sf9 cells by using the bovine immunodeficiency virus gag (Bgag) protein in place of M1. We showed that Bgag can be used to prepare VLPs for several influenza subtypes including H1N1 and H10N8. Furthermore, by using Bgag, we prepared quadri-subtype VLPs, which co-expressed within the VLP the four HA subtypes derived from avian-origin H5N1, H7N9, H9N2 and H10N8 viruses. VLPs showed hemagglutination and neuraminidase activities and reacted with specific antisera. The content and co-localization of each HA subtype within the quadri-subtype VLP were evaluated. Electron microscopy showed that Bgag-based VLPs resembled influenza virions with the diameter of 150–200 nm. This is the first report of quadri-subtype design for influenza VLP and the use of Bgag for influenza VLP preparation. - Highlights: • BIV gag protein was configured as influenza VLP core component. • Recombinant influenza VLPs were prepared in Sf9 cells using baculovirus expression system. • Single- and quadri-subtype VLPs were prepared by using BIV gag as a VLP core. • Co-localization of H5, H7, H9, and H10 HA was confirmed within quadri-subtype VLP. • Content of HA subtypes within quadri-subtype VLP was determined. • Potential advantages of quadri-subtype VLPs as influenza vaccine are discussed.

  13. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Robert A.; Datta, Siddhartha A.K.; Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M. (NCI); (Cornell); (CM); (NIST)

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.

    Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our

  14. The comparison of nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) with Ki67 proliferation marker expression in common skin tumors.

    Science.gov (United States)

    Zduniak, Krzysztof; Agrawal, Siddarth; Symonowicz, Krzysztof; Jurczyszyn, Kamil; Ziółkowski, Piotr

    2014-03-01

    Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) is a chromosomal protein of unknown function. Its amino acid composition and structure of its DNA binding domain resemble those of high mobility group A (HMGA) proteins which are associated with various malignancies. Since changes in expression of HMGA are considered as a marker of tumor progression, it is possible that similar changes in expression of NUCKS could be a useful tool in diagnosis of malignant skin tumors. To investigate this assumption we used specific antibodies against NUCKS for immunohistochemistry of squamous (SCC) and basal cell carcinoma (BCC) as well as keratoacanthoma (KA). We found high expression of NUCKS in nuclei of SCC and BCC cells which exceeded expression of the well-known proliferation marker Ki67. Expression of NUCKS in benign KA was much below that of malignant tumors. With the present study and based on our previous experience we would like to suggest the NUCKS protein as a novel proliferation marker for immunohistochemical evaluation of formalin-fixed and paraffin-embedded skin tumor specimens. We would like to emphasize that NUCKS abundance in malignant skin tumors is higher than that of the well-known proliferation marker Ki67, thus allowing more precise assessment of tumor proliferation potential.

  15. Lectin-like oxidized LDL receptor-1 expresses in mouse bone marrow-derived mesenchymal stem cells and stimulates their proliferation

    International Nuclear Information System (INIS)

    Zhang, Fenxi; Wang, Congrui; Jing, Suhua; Ren, Tongming; Li, Yonghai; Cao, Yulin; Lin, Juntang

    2013-01-01

    The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs and which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals

  16. Lectin-like oxidized LDL receptor-1 expresses in mouse bone marrow-derived mesenchymal stem cells and stimulates their proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi [Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang 453003 (China); Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003 (China); Wang, Congrui [Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003 (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Xinxiang 453003 (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Xinxiang 453003 (China); Li, Yonghai; Cao, Yulin [Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003 (China); Lin, Juntang, E-mail: juntang.lin@googlemail.com [Stem Cell and Biotheraphy Technology Research Center, College of Lifescience and Technology, Xinxiang Medical University, Xinxiang 453003 (China)

    2013-04-15

    The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs and which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.

  17. Effect of peroxisome proliferator-activated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia.

    Science.gov (United States)

    Hill, M R; Clarke, S; Rodgers, K; Thornhill, B; Peters, J M; Gonzalez, F J; Gimble, J M

    1999-07-01

    Inflammatory mediators orchestrate the host immune and metabolic response to acute bacterial infections and mediate the events leading to septic shock. Tumor necrosis factor (TNF) has long been identified as one of the proximal mediators of endotoxin action. Recent studies have implicated peroxisome proliferator-activated receptor alpha (PPARalpha) as a potential target to modulate regulation of the immune response. Since PPARalpha activators, which are hypolipidemic drugs, are being prescribed for a significant population of older patients, it is important to determine the impact of these drugs on the host response to acute inflammation. Therefore, we examined the role of PPARalpha activators on the regulation of TNF expression in a mouse model of endotoxemia. CD-1 mice treated with dietary fenofibrate or Wy-14,643 had fivefold-higher lipopolysaccharide (LPS)-induced TNF plasma levels than LPS-treated control-fed animals. Higher LPS-induced TNF levels in drug-fed animals were reflected physiologically in significantly lower glucose levels in plasma and a significantly lower 50% lethal dose than those in LPS-treated control-fed animals. Utilizing PPARalpha wild-type (WT) and knockout (KO) mice, we showed that the effect of fenofibrate on LPS-induced TNF expression was indeed mediated by PPARalpha. PPARalpha WT mice fed fenofibrate also had a fivefold increase in LPS-induced TNF levels in plasma compared to control-fed animals. However, LPS-induced TNF levels were significantly decreased and glucose levels in plasma were significantly increased in PPARalpha KO mice fed fenofibrate compared to those in control-fed animals. Data from peritoneal macrophage studies indicate that Wy-14,643 modestly decreased TNF expression in vitro. Similarly, overexpression of PPARalpha in 293T cells decreased activity of a human TNF promoter-luciferase construct. The results from these studies suggest that any anti-inflammatory activity of PPARalpha in vivo can be masked by other

  18. Linc00472 suppresses proliferation and promotes apoptosis through elevating PDCD4 expression by sponging miR-196a in colorectal cancer.

    Science.gov (United States)

    Ye, Yafei; Yang, Shengnan; Han, Yanping; Sun, Jingjing; Xv, Lijuan; Wu, Lina; Wang, Yongfeng; Ming, Liang

    2018-06-21

    Long intergenic non-coding RNA Linc00472 has been considered as a tumor suppressor in some cancers. However, the function and mechanism of Linc00472 in colorectal cancer has not been well elucidated. In this study, we found that Linc00472 was down-regulated in colorectal cancer tissues and cells. Elevated Linc00472 expression suppressed proliferation and induced apoptosis in colorectal cancer cells. Moreover, Linc00472 acted as a competing endogenous RNA (ceRNA) of miR-196a to release programmed cell death 4 (PDCD4). Furthermore, miR-196a overexpression or PDCD4 knockdown reversed Linc00472-mediated proliferation inhibition and apoptosis induction in colorectal cancer cells. Ectopic Linc00472 expression hindered tumor growth in vivo . Our study demonstrated that Linc00472 suppressed proliferation and induced apoptosis through up-regulating PDCD4 by decoying miR-196a, which may be an effective therapeutic target for colorectal cancer.

  19. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, M.O., E-mail: mari.mauro@hotmail.com [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil); Sartori, Daniele [General Biology Department, State University of Londrina (UEL), Londrina (Brazil); Oliveira, Rodrigo Juliano [Coordination of Open and Distance Education, Graduate Program in Animal Science, Federal University of Mato Grosso do Sul (UFMS), Campo Grande (MS) (Brazil); Ishii, Priscila Lumi [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil); Mantovani, Mario Sergio [General Biology Department, State University of Londrina (UEL), Londrina (Brazil); Ribeiro, Lucia Regina [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil)

    2011-10-01

    Intestinal cancers are correlated with diet. Thus, determining and understanding nutrient-genome interactions is important. The present work assessed the action of the oligoelement selenium on cell proliferation, cytotoxicity, and in situ apoptosis induction and on the expression CASP9, BCL-XL and APC genes in intestinal adenocarcinoma cells (HT29). HT29 cells were cultured and treated with selenium at concentrations of 5, 50 and 500 ng/mL with or without the damage-inducing agent doxorubicin. These cells were then evaluated for cytotoxicity (MTT), cell proliferation and in situ apoptosis induction. To evaluate gene expression, only the cells treated with 500 ng/mL of selenium were used. RNA was extracted from these cells, and the expressions of CASP9, BCL-XL and APC were analyzed by the RT-PCR method. The GAPDH gene was used as a reference gene. The MTT assay showed that selenium was not cytotoxic at any of the concentrations tested. The cell proliferation assay showed that selenium did not interfere with cell proliferation at the three concentrations tested. In contrast, when the three concentrations were combined with doxorubicin, a significant decrease in the proliferation rate was observed. The apoptosis rate was significantly increased in the selenium (500 ng/mL) and doxorubicin group. CASP9 expression was increased and BCL-XL expression decreased in the selenium (500 ng/mL) and doxorubicin group. APC was significantly increased in the selenium group alone. These results show that selenium increases apoptosis, especially when it is associated with a damage-inducing agent. Also, selenium has an important role in the expression of the APC gene, which is related to cell cycle regulation.

  20. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells

    International Nuclear Information System (INIS)

    Mauro, M.O.; Sartori, Daniele; Oliveira, Rodrigo Juliano; Ishii, Priscila Lumi; Mantovani, Mario Sergio; Ribeiro, Lucia Regina

    2011-01-01

    Intestinal cancers are correlated with diet. Thus, determining and understanding nutrient-genome interactions is important. The present work assessed the action of the oligoelement selenium on cell proliferation, cytotoxicity, and in situ apoptosis induction and on the expression CASP9, BCL-XL and APC genes in intestinal adenocarcinoma cells (HT29). HT29 cells were cultured and treated with selenium at concentrations of 5, 50 and 500 ng/mL with or without the damage-inducing agent doxorubicin. These cells were then evaluated for cytotoxicity (MTT), cell proliferation and in situ apoptosis induction. To evaluate gene expression, only the cells treated with 500 ng/mL of selenium were used. RNA was extracted from these cells, and the expressions of CASP9, BCL-XL and APC were analyzed by the RT-PCR method. The GAPDH gene was used as a reference gene. The MTT assay showed that selenium was not cytotoxic at any of the concentrations tested. The cell proliferation assay showed that selenium did not interfere with cell proliferation at the three concentrations tested. In contrast, when the three concentrations were combined with doxorubicin, a significant decrease in the proliferation rate was observed. The apoptosis rate was significantly increased in the selenium (500 ng/mL) and doxorubicin group. CASP9 expression was increased and BCL-XL expression decreased in the selenium (500 ng/mL) and doxorubicin group. APC was significantly increased in the selenium group alone. These results show that selenium increases apoptosis, especially when it is associated with a damage-inducing agent. Also, selenium has an important role in the expression of the APC gene, which is related to cell cycle regulation.

  1. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors.

    Directory of Open Access Journals (Sweden)

    Esther D Quakkelaar

    Full Text Available Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs, RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.

  2. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts

    International Nuclear Information System (INIS)

    Chang, J.-K.; Li, C.-J.; Liao, H.-J.; Wang, C.-K.; Wang, G.-J.; Ho, M.-L.

    2009-01-01

    It has been reported that anti-inflammatory drugs (AIDs) inhibited bone repair in animal studies, and suppressed proliferation and induced cell death in rat osteoblast cultures. In this study, we further investigated the molecular mechanisms of AID effects on proliferation and cell death in human osteoblasts (hOBs). We examined the effects of dexamethasone (10 -7 and 10 -6 M), non-selective non-steroidal anti-inflammatory drugs (NSAIDs): indomethacin, ketorolac, piroxicam and diclofenac (10 -5 and 10 -4 M), and COX-2 inhibitor: celecoxib (10 -6 and 10 -5 M) on proliferation, cytotoxicity, cell death, and mRNA and protein levels of cell cycle and apoptosis-related regulators in hOBs. All the tested AIDs significantly inhibited proliferation and arrested cell cycle at G0/G1 phase in hOBs. Celecoxib and dexamethasone, but not non-selective NSAIDs, were found to have cytotoxic effects on hOB, and further demonstrated to induce apoptosis and necrosis (at higher concentration) in hOBs. We further found that indomethacin, celecoxib and dexamethasone increased the mRNA and protein expressions of p27 kip1 and decreased those of cyclin D2 and p-cdk2 in hOBs. Bak expression was increased by celecoxib and dexamethasone, while Bcl-XL level was declined only by dexamethasone. Furthermore, the replenishment of PGE1, PGE2 or PGF2α did not reverse the effects of AIDs on proliferation and expressions of p27 kip1 and cyclin D2 in hOBs. We conclude that the changes in expressions of regulators of cell cycle (p27 kip1 and cyclin D2) and/or apoptosis (Bak and Bcl-XL) by AIDs may contribute to AIDs caused proliferation suppression and apoptosis in hOBs. This effect might not relate to the blockage of prostaglandin synthesis by AIDs

  3. Yi Qi Qing Re Gao-containing serum inhibits lipopolysaccharide-induced rat mesangial cell proliferation by suppressing the Wnt pathway and TGF-β1 expression.

    Science.gov (United States)

    Yang, Liping; Sun, Xueyan; Zhan, Yongli; Liu, Huijie; Wen, Yumin; Mao, Huimin; Dong, X I; Li, Ping

    2016-04-01

    The aim of the present study was to investigate the effect of Yi Qi Qing Re Gao-containing serum (YQ-S) on rat mesangial cell (MC) proliferation and to investigate the underlying mechanism. MCs were divided into the control, lipopolysaccharide (LPS)-stimulated, YQ-S and fosinopril-containing serum (For-S) groups, and cultured for 48 h. An MTT assay was used to evaluate the proliferation of MCs. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were conducted to detect the expression levels of Wnt4, β-catenin and transforming growth factor (TGF)-β1 in MCs. The results indicated that YQ-S inhibited LPS-induced MC proliferation. The Wnt4 and TGF-β1 mRNA expression levels were reduced in the YQ-S group (P<0.01 or P<0.05). Furthermore, the Wnt4, β-catenin and TGF-β1 protein expression levels were suppressed in the YQ-S group (P<0.01 or P<0.05). Therefore, YQ-S appears to inhibit MC proliferation, and its mechanism may involve the inhibition of the Wnt signaling pathway and downregulation of TGF-β1 expression.

  4. miRNA analysis in B-cell chronic lymphocytic leukaemia : proliferation centres characterized by low miR-150 and high BIC/milk-155 expression

    NARCIS (Netherlands)

    Wang, M.; Tan, L. P.; Dijkstra, M. K.; van Lom, K.; Robertus, J-L; Harms, G.; Blokzijl, T.; Kooistra, K.; van t'Veer, M. B.; Rosati, S.; Visser, L.; Jongen-Lavrencic, M.; Kluin, P. M.; van den Berg, Anke

    Several miRNAs have been reported to be associated with immunoglobulin heavy chain (IgH) mutation and ZAP-70 expression status in blood samples of B-cell chronic lymphocytic leukaemia/small lymphocytic lymphoma (B-CLL/SLL). In the bone marrow and lymphoid tissues, proliferation centres (PCs)

  5. A combination of biomolecules enhances expression of E-cadherin and peroxisome proliferator-activated receptor gene leading to increased cell proliferation in primary human meniscal cells: an in vitro study.

    Science.gov (United States)

    Pillai, Mamatha M; Elakkiya, V; Gopinathan, J; Sabarinath, C; Shanthakumari, S; Sahanand, K Santosh; Dinakar Rai, B K; Bhattacharyya, Amitava; Selvakumar, R

    2016-10-01

    The present study investigates the impact of biomolecules (biotin, glucose, chondroitin sulphate, proline) as supplement, (individual and in combination) on primary human meniscus cell proliferation. Primary human meniscus cells isolated from patients undergoing meniscectomy were maintained in Dulbecco's Modified Eagle's Medium (DMEM). The isolated cells were treated with above mentioned biomolecules as individual (0-100 µg/ml) and in combinations, as a supplement to DMEM. Based on the individual biomolecule study, a unique combination of biomolecules (UCM) was finalized using one way ANOVA analysis. With the addition of UCM as supplement to DMEM, meniscal cells reached 100 % confluency within 4 days in 60 mm culture plate; whereas the cells in medium devoid of UCM, required 36 days for reaching confluency. The impact of UCM on cell viability, doubling time, histology, gene expression, biomarkers expression, extra cellular matrix synthesis, meniscus cell proliferation with respect to passages and donor's age were investigated. The gene expression studies for E-cadherin and peroxisome proliferator-activated receptor (PPAR∆) using RT-qPCR and immunohistochemical analysis for Ki67, CD34 and Vimentin confirmed that UCM has significant impact on cell proliferation. The extracellular collagen and glycosaminoglycan secretion in cells supplemented with UCM were found to increase by 31 and 37 fold respectively, when compared to control on the 4th day. The cell doubling time was reduced significantly when supplemented with UCM. The addition of UCM showed positive influence on different passages and age groups. Hence, this optimized UCM can be used as an effective supplement for meniscal tissue engineering.

  6. Abnormal expression of 11 beta-hydroxysteroid dehydrogenase type 2 in human pituitary adenomas: a prereceptor determinant of pituitary cell proliferation.

    Science.gov (United States)

    Rabbitt, E H; Ayuk, J; Boelaert, K; Sheppard, M C; Hewison, M; Stewart, P M; Gittoes, N J L

    2003-03-20

    The physiological effects of glucocorticoids (GCs) are, at least in part, mediated by inhibition of cell proliferation. Two isozymes of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) interconvert cortisol (F) and inactive cortisone (E), and are thus able to modulate GC action at an autocrine level. Previously, we have demonstrated absent expression of 11 beta-HSD2 in normal pituitaries; however, in a small number of pituitary tumors analysed, 11 beta-HSD2 was readily demonstrable. Here we have used real-time RT-PCR to quantify expression of mRNA for 11 beta-HSD1 and 2 in 105 human pituitary tumors and have performed enzyme expression and activity studies in primary pituitary cultures. Overall, pituitary tumors expressed lower levels of 11 beta-HSDl mRNA compared with normals (0.2-fold, Pprotein (mean+/-s.d.)) but no detectable 11 beta-HSDl activity. Proliferation assays showed that addition of glycyrrhetinic acid (an 11 beta-HSD2 inhibitor) resulted in a 30.3+/-7.7% inhibition of cell proliferation. In summary, we describe a switch in expression from 11 beta-HSDl to 11 beta-HSD2 in neoplastic pituitary tissue. We propose that abnormal expression of 11 beta-HSD2 acts as a proproliferative prereceptor determinant of pituitary cell growth, and may provide a novel target for future tumor therapy.

  7. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression

    DEFF Research Database (Denmark)

    Gagliardi, Mark; Maynard, Scott; Miyake, Tetsuaki

    2003-01-01

    in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF......Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBPbeta. In this report, we describe the role of C....../EBPbeta in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBPbeta had...

  8. Central nervous system-specific consequences of simian immunodeficiency virus Gag escape from major histocompatability complex class I-mediated control

    Science.gov (United States)

    Beck, Sarah E.; Queen, Suzanne E.; Viscidi, Raphael; Johnson, Darius; Kent, Stephen J.; Adams, Robert J.; Tarwater, Patrick M.; Mankowski, Joseph L.

    2016-01-01

    In the fourth decade of the HIV epidemic, the relationship between host immunity and HIV central nervous system (CNS) disease remains incompletely understood. Using a simian immunodeficiency virus (SIV)/macaque model, we examined CNS outcomes in pigtailed macaques expressing the MHC class I allele Mane-A1*084:01 which confers resistance to SIV-induced CNS disease and induces the prototypic viral escape mutation Gag K165R. Insertion of gag K165R into the neurovirulent clone SIV/17E-Fr reduced viral replication in vitro compared to SIV/17E-Fr. We also found lower CSF, but not plasma, viral loads in macaques inoculated with SIV/17E-Fr K165R versus those inoculated with wildtype. Although escape mutation K165R was genotypically stable in plasma, it rapidly reverted to wildtype Gag KP9 in both CSF and in microglia cultures. We induced robust Gag KP9-specific CTL tetramer responses by vaccinating Mane-A*084:01-positive pigtailed macaques with a Gag KP9 virus-like particle (VLP) vaccine. Upon SIV/17E-Fr challenge, vaccinated animals had lower SIV RNA in CSF compared to unvaccinated controls, but showed no difference in plasma viral loads. These data clearly demonstrate that viral fitness in the CNS is distinct from the periphery and underscores the necessity of understanding the consequences of viral escape in CNS disease with the advent of new therapeutic vaccination strategies. PMID:26727909

  9. Advanced glycation end products promote ChREBP expression and cell proliferation in liver cancer cells by increasing reactive oxygen species.

    Science.gov (United States)

    Chen, Hanbei; Li, Yakui; Zhu, Yemin; Wu, Lifang; Meng, Jian; Lin, Ning; Yang, Dianqiang; Li, Minle; Ding, WenJin; Tong, Xuemei; Su, Qing

    2017-08-01

    The aim of the study was to elucidate the mechanism by which advanced glycation end products (AGEs) promote cell proliferation in liver cancer cells.We treated liver cancer HepG2 cells with 200 mg/L AGEs or bovine serum albumin (BSA) and assayed for cell viability, cell cycle, and apoptosis. We performed real-time PCR and Western blot analysis for RNA and protein levels of carbohydrate responsive element-binding protein (ChREBP) in AGEs- or BSA-treated HepG2 cells. We analyzed the level of reactive oxygen species (ROS) in HepG2 cells treated with AGEs or BSA.We found that increased S-phase cell percentage and decreased apoptosis contributed to AGEs-induced liver cancer cell proliferation. Real-time PCR and Western blot analysis showed that AGEs stimulated RNA and protein levels of ChREBP, a transcription factor promoting glycolysis and maintaining cell proliferation in liver cancer cells. Intriguingly, the level of ROS was higher in AGEs-treated liver cancer cells. Treating liver cancer cells with antioxidant N-acetyl cystein (NAC) partly blocked AGEs-induced ChREBP expression and cell proliferation.Our results suggest that the AGEs-ROS-ChREBP pathway plays a critical role in promoting ChREBP expression and liver cancer cell proliferation.

  10. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sweeny, Larissa, E-mail: larissasweeny@gmail.com [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States); Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States); Zhou, Tong [Department of Medicine, Division of Immunology and Rheumatology, 1825 University Boulevard, Shelby Biomedical Research Building 302, Birmingham, Alabama (United States); Rosenthal, Eben L., E-mail: oto@uab.edu [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States)

    2012-08-15

    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: Black-Right-Pointing-Pointer We investigated AGR2 in head and neck squamous cell carcinoma for the first time. Black-Right-Pointing-Pointer We explored the relationship between AGR2 and CD147 for the first time. Black-Right-Pointing-Pointer AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  11. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Sweeny, Larissa; Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L.

    2012-01-01

    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: ► We investigated AGR2 in head and neck squamous cell carcinoma for the first time. ► We explored the relationship between AGR2 and CD147 for the first time. ► AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. ► Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. ► Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  12. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  13. Spindle assembly checkpoint protein expression correlates with cellular proliferation and shorter time to recurrence in ovarian cancer.

    LENUS (Irish Health Repository)

    McGrogan, Barbara

    2014-07-01

    Ovarian carcinoma (OC) is the most lethal of the gynecological malignancies, often presenting at an advanced stage. Treatment is hampered by high levels of drug resistance. The taxanes are microtubule stabilizing agents, used as first-line agents in the treatment of OC that exert their apoptotic effects through the spindle assembly checkpoint. BUB1-related protein kinase (BUBR1) and mitotic arrest deficient 2 (MAD2), essential spindle assembly checkpoint components, play a key role in response to taxanes. BUBR1, MAD2, and Ki-67 were assessed on an OC tissue microarray platform representing 72 OC tumors of varying histologic subtypes. Sixty-one of these patients received paclitaxel and platinum agents combined; 11 received platinum alone. Overall survival was available for all 72 patients, whereas recurrence-free survival (RFS) was available for 66 patients. Increased BUBR1 expression was seen in serous carcinomas, compared with other histologies (P = .03). Increased BUBR1 was significantly associated with tumors of advanced stage (P = .05). Increased MAD2 and BUBR1 expression also correlated with increased cellular proliferation (P < .0002 and P = .02, respectively). Reduced MAD2 nuclear intensity was associated with a shorter RFS (P = .03), in ovarian tumors of differing histologic subtype (n = 66). In this subgroup, for those women who received paclitaxel and platinum agents combined (n = 57), reduced MAD2 intensity also identified women with a shorter RFS (P < .007). For the entire cohort of patients, irrespective of histologic subtype or treatment, MAD2 nuclear intensity retained independent significance in a multivariate model, with tumors showing reduced nuclear MAD2 intensity identifying patients with a poorer RFS (P = .05).

  14. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Directory of Open Access Journals (Sweden)

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  15. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    International Nuclear Information System (INIS)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.; Walker, M.H.; Fried, V.A.; Look, A.T.; Rettenmier, C.W.; Sherr, C.J.

    1986-01-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical

  16. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.; Walker, M.H.; Fried, V.A.; Look, A.T.; Rettenmier, C.W.; Sherr, C.J.

    1986-08-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence of the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical.

  17. Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Østergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    Traumatic brain injury represents a leading cause of morbidity in young individuals and there is an imperative need for neuroprotective treatments limiting the neurologic impairment following such injury. It has recently been demonstrated that bio-liberated gold ions liberated from small metallic...... gold implants reduce inflammation and neuronal apoptosis, while generating an increased neuronal stem cell response following focal brain damage. In this study mice were subjected to a unilateral traumatic cryo-lesion with concomitant injection of 25-45 microm gold particles near the lesion. Placebo...... increase in cell proliferation in both the ipsilateral and the contralateral subventricular zone was found in response to gold-treatment. In conclusion: we confirmed the previously demonstrated anti-inflammatory effect of bio-liberated gold ions, and further show that metallic gold increases growth factor...

  18. Real-time visualization of HIV-1 GAG trafficking in infected macrophages.

    Directory of Open Access Journals (Sweden)

    Karine Gousset

    2008-03-01

    Full Text Available HIV-1 particle production is driven by the Gag precursor protein Pr55(Gag. Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.

  19. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Directory of Open Access Journals (Sweden)

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  20. Association between expression of cumulus expansion markers and real-time proliferation of porcine follicular granulosa cells in a primary cell culture model.

    Science.gov (United States)

    Ciesiółka, S; Budna, J; Bryja, A; Kranc, W; Chachuła, A; Dyszkiewicz-Konwińska, M; Piotrowska, H; Bukowska, D; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    Folliculogenesis is a compound process that involves both ovarian follicle growth and oocyte development, which is tightly attached to the follicular wall. During this process, cells that form the follicle structure undergo substantial morphological and molecular modifications that finally lead to differentiation and specialization of ovarian follicular cells. The differentiation of ovarian cells encompasses formation of follicle, which is composed of theca (TCs), mural granulosa (GCs), and cumulus cells (CCs). It was previously hypothesized that GCs and CCs represent undifferentiated and highly specialized follicular cells, respectively, which may have similar primordial cell origins. In this study, we investigated the expression pattern of cumulus expansion markers such as COX2, HAS2, PTX3, and TSG6 in porcine GCs during short-term, in vitro culture. We hypothesized that these genes may display an important function in GCs in relation to cellular real-time proliferation. The expression pattern of COX2, HAS2, PTX3, and TSG6 was evaluated after using RT-qPCR in relation to confocal microscopy observations of protein expression and distribution during real-time proliferation of porcine follicular GCs. The COX2 and HAS2 mRNAs were highly expressed after 120 h of in vitro culture (IVC), whereas PTX3 and TSG6 mRNAs were increased during the first 24-48 h of IVC (P less than 0.001, P less than 0.01). Conversely, all of the encoded proteins were highly expressed after 144-168 h of IVC as compared to other culture periods (P less than 0.001, P less than 0.01). When analyzing the realtime proliferation of GCs in vitro, we observed a logarithmic increase of cell proliferation between 0 h and 120 h of IVC. However, after 120-168 h of IVC, the cells reached the lag phase of proliferation. Since it is well accepted that porcine GCs undergo luteinization shortly after 24-48 h of IVC, the expression pattern of investigated genes indicated that Cox2 and Has2 are independent from

  1. The thermodynamics of Pr55Gag-RNA interaction regulate the assembly of HIV.

    Directory of Open Access Journals (Sweden)

    Hanumant S Tanwar

    2017-02-01

    Full Text Available The interactions that occur during HIV Pr55Gag oligomerization and genomic RNA packaging are essential elements that facilitate HIV assembly. However, mechanistic details of these interactions are not clearly defined. Here, we overcome previous limitations in producing large quantities of full-length recombinant Pr55Gag that is required for isothermal titration calorimetry (ITC studies, and we have revealed the thermodynamic properties of HIV assembly for the first time. Thermodynamic analysis showed that the binding between RNA and HIV Pr55Gag is an energetically favourable reaction (ΔG<0 that is further enhanced by the oligomerization of Pr55Gag. The change in enthalpy (ΔH widens sequentially from: (1 Pr55Gag-Psi RNA binding during HIV genome selection; to (2 Pr55Gag-Guanosine Uridine (GU-containing RNA binding in cytoplasm/plasma membrane; and then to (3 Pr55Gag-Adenosine(A-containing RNA binding in immature HIV. These data imply the stepwise increments of heat being released during HIV biogenesis may help to facilitate the process of viral assembly. By mimicking the interactions between A-containing RNA and oligomeric Pr55Gag in immature HIV, it was noted that a p6 domain truncated Pr50Gag Δp6 is less efficient than full-length Pr55Gag in this thermodynamic process. These data suggest a potential unknown role of p6 in Pr55Gag-Pr55Gag oligomerization and/or Pr55Gag-RNA interaction during HIV assembly. Our data provide direct evidence on how nucleic acid sequences and the oligomeric state of Pr55Gag regulate HIV assembly.

  2. The Foreseeable Harms of Trump's Global Gag Rule.

    Science.gov (United States)

    Bingenheimer, Jeffrey B; Skuster, Patty

    2017-09-01

    As one of his first acts as President of the United States, Donald Trump signed an executive order reinstating a version of the global gag rule. Under this rule, US grantees are barred from receiving global health funding if they engage in abortion-related work: not only abortion services, but also abortion referrals and counseling or advocacy for the liberalization of abortion laws. Critics of the Trump global gag rule generally raise three classes of objections: (1) that the rule fails to accomplish its presumed objective of reducing the number of abortions; (2) that it negatively affects the health and well-being of individuals and populations in affected countries; and (3) that it interferes with governments' ability to meet their international obligations. In this commentary, we examine the scientific and policy bases for these criticisms. © 2017 The Population Council, Inc.

  3. [Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome].

    Science.gov (United States)

    Makhnovskii, P A; Kuzmin, I V; Nefedova, L N; Kima, A I

    2016-01-01

    Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.

  4. Gene Expression of Glucose Transporter 1 (GLUT1, Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation

    Directory of Open Access Journals (Sweden)

    Andreas Kjaer

    2013-10-01

    Full Text Available Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs and hexokinases (HKs, which can be imaged by 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET. The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs in comparison with 14 colorectal adenocarcinomas (CRAs. The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38% compared to CRAs (86%, P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.111 and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53. There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047, but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36% than CRAs (86%, (P = 0.04. The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

  5. The effects of human serum to the morphology, proliferation and gene expression level of the respiratory epithelium in vitro.

    Science.gov (United States)

    Yunus, Mohd Heikal Mohd; Siang, Kan Chan; Hashim, Nurul Izzati; Zhi, Ng Pei; Zamani, Nur Fathurah; Sabri, Primuharsa Putra; Busra, Mohd Fauzi; Chowdhury, Shiplu Roy; Idrus, Ruszymah Binti Haji

    2014-08-01

    The culture of human airway epithelial cells has played an important role in advancing our understanding of the metabolic and molecular mechanisms underlying normal function and disease pathology of airway epithelial cells. The present study focused on investigating the effects of human serum (HS) on the qualitative and quantitative properties of the human respiratory epithelium compared to the fetal bovine serum (FBS), as a supplement in culture. Respiratory epithelial (RE) cells derived from human nasal turbinate were co-cultured with fibroblasts, subsequently separated at 80-90% confluency by differential trypsinization. RE cells were then sub-cultured into 2 different plates containing 5% allogenic HS and FBS supplemented media respectively up to passage 1 (P1). Cell morphology, growth rate, cell viability and population doubling time were assessed under light microscope, and levels of gene expression were measured via real time reverse transcriptase-polymerase chain reaction (qRT-PCR). RE cells appeared as polygonal shape and expanded when cultured in HS whereas RE cells in FBS were observed to be easily matured thus limit the RE cells expansion. Proliferation rate of RE cells in HS supplemented media (7673.18 ± 1207.15) was 3 times higher compared to RE in FBS supplemented media (2357.68 ± 186.85). Furthermore, RE cells cultured in HS-supplemented media required fewer days (9.15 ± 1.10) to double in numbers compared to cells cultured in FBS-supplemented media (13.66 ± 0.81). Both the differences were significant (p0.05). In conclusion, HS is a comparatively better choice of media supplement in accelerating growth kinetics of RE cells in vitro thus producing a better quality of respiratory epithelium for future tracheal reconstruction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Over-expression of miR-151a-3p inhibits proliferation and migration of PC-3 prostate cancer cells].

    Science.gov (United States)

    Zhang, Yi; Hao, Tongtong; Zhang, Han; Wei, Pengtao; Li, Xiaohui

    2018-03-01

    Objective To observe the effect of microRNA-151a-3p (miR-151a-3p) up-regulation on the proliferation and migration of prostate cancer cells and explore the possible molecular mechanism. Methods The expression of miR-151a-3p in PC-3M, C4-2B, 22RV1, DU-145, PC-3, LNCap human prostate cancer cells and RWPE-1 human normal prostate epithelial cells was detected by real-time fluorescence quantitative PCR. PC-3 cells with the lowest expression of miR-151a-3p were used for subsequent experiments. Bioinformatics and dual-luciferase reporter assay were performed to predict and test potential target genes of miR-151a-3p. The miR-151a-3p mimics or negative control microRNAs (miR-NCs) were transfected into PC-3 cells. Real-time fluorescence quantitative PCR was used to detect the expression of miR-151a-3p and potential target gene mRNA. The protein expressions of target genes and downstream signaling pathway proteins were analyzed by Western blotting. The proliferation of PC-3 cells was examined by MTT assay, and the migration of PC-3 cells was detected by Transwell TM assay. Results The expression level of miR-151a-3p in the prostate cancer cells was significantly lower than that in RWPE-1 normal human prostate epithelial cells. PC-3 cells had the lowest expression level of miR-151a-3p. The bioinformatics and dual-luciferase reporter assay showed that NEK2 was the potential target gene for miR-151a-3p. After transfection with miR-151a-3p mimics, the expression of miR-151a-3p in PC-3 cells significantly increased and the expression of NEK2 mRNA significantly decreased. The protein expressions of PI3K-AKT-mTOR signaling pathway were also reduced. Up-regulation of miR-151a-3p significantly inhibited the proliferation and migration of PC-3 cells. Conclusion The expression of miR-151a-3p is reduced in prostate cancer cells. Up-regulation of miR-151a-3p can inhibit the proliferation and migration of P-3 in prostate cancer by decreasing the expression of NEK2 and PI3K

  7. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  8. FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells

    International Nuclear Information System (INIS)

    Nakao, Kazuhisa; Itoh, Makoto; Tomita, Yusuke; Tomooka, Yasuhiro; Tsuji, Takashi

    2004-01-01

    We investigated the effects of both cytokines and extracellular matrices on the proliferation and differentiation of immature adult rat incisor dental pulp cells. These immature cells, which have a high-proliferative potency in vitro and do not express mRNAs for dentin non-collagenous proteins such as dentin sialoprotein (DSP), bone sialoprotein (BSP), and osteocalcin, exist in the root regions of adult rat incisors. Fibroblast growth factor-2 (FGF-2) stimulated the proliferation of these immature cells and the subsequent production of mineralized calcium was induced by β-glycerophosphate treatment. Additionally, FGF-2 dramatically induced the expression of DSP and BSP mRNAs, but only in collagen type I gel cultures, whereas neither plate-coated collagen type I nor fibronectin, laminin or collagen type IV cultures could produce this effect and generate sufficient physiological levels of these transcripts. Although bone morphogenetic protein-4 could not induce the proliferation of immature dental pulp cells nor upregulate DSP mRNA expression, it had a synergistic effect upon DSP transcript levels in conjunction with FGF-2. These results suggest that both the presence of FGF-2 and the three-dimensional formation of immature dental pulp cells in collagen type I gel cultures are essential for both DSP expression and odontoblast differentiation. These observations provide valuable information concerning the study of the commitment and differentiation of odontoblast lineages, and also provide a basis for the rational design of cytokine and extracellular matrix based compounds for regenerative therapies in new dental treatments

  9. BAFF induces spleen CD4+ T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    International Nuclear Information System (INIS)

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-01-01

    Highlights: ► Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4 + T cells. ► Carrying out siRNA technology to study FOXO3A protein function. ► Helpful to understand the T cell especially CD4 + T cell‘s role in immunological reaction. -- Abstract: The TNF ligand family member “B cell-activating factor belonging to the TNF family” (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4 + spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4 + T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4 + spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4 + T cell proliferation.

  10. The inhibition of LPS-induced splenocyte proliferation by ortho-substituted and microbially dechlorinated polychlorinated biphenyls is associated with a decreased expression of cyclin D2

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Quensen, John F.; Smith, Andrew; Kurtz, David T.; London, Lucille; Morris, Pamela J.

    2004-01-01

    Immunological effects of polychlorinated biphenyls (PCBs) have been demonstrated in our laboratories with the preferential inhibition of lipopolysaccharide (LPS)-induced splenocyte proliferation by ortho-substituted PCB congeners. An investigation of the mechanism behind this immunotoxicity revealed an interruption in the progression of murine lymphocytes from G 0 /G 1 into S phase by Aroclor 1242 and the di-ortho-substituted congener, 2,2'-chlorobiphenyl (CB), whereas, a non-ortho-substituted congener, 4,4'-CB, did not affect cell cycle progression. This interruption of cell cycle progression by 2,2'-CB and Aroclor 1242 was associated with a decreased expression of the cell cycle regulatory protein, cyclin D2, while expression was not affected by exposure to the non-ortho-substituted 4,4'-CB. These results suggest the preferential inhibition of LPS-induced splenocyte proliferation by ortho-substituted congeners is a result of a decreased expression of cyclin D2, which leads to an interruption in cell cycle progression. In addition, PCB mixtures with an increased percentage of chlorines in the ortho position following an environmentally occurring degradation process inhibited LPS-induced proliferation, interrupted cell cycle progression, and decreased cyclin D2 expression. This study provides evidence for a mechanism of action of the immunological effects of ortho-substituted individual congeners as well as environmentally relevant mixtures enriched in congeners with this substitution pattern

  11. Progesterone and DNA Damage Encourage Uterine Cell Proliferation and Decidualization through Up-regulating Ribonucleotide Reductase 2 Expression during Early Pregnancy in Mice*

    Science.gov (United States)

    Lei, Wei; Feng, Xu-Hui; Deng, Wen-Bo; Ni, Hua; Zhang, Zhi-Rong; Jia, Bo; Yang, Xin-Ling; Wang, Tong-Song; Liu, Ji-Long; Su, Ren-Wei; Liang, Xiao-Huan; Qi, Qian-Rong; Yang, Zeng-Ming

    2012-01-01

    Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus. PMID:22403396

  12. A Reliable and Valid Survey to Predict a Patient’s Gagging Intensity

    Directory of Open Access Journals (Sweden)

    Casey M. Hearing

    2014-07-01

    Full Text Available Objectives: The aim of this study was to devise a reliable and valid survey to predict the intensity of someone’s gag reflex. Material and Methods: A 10-question Predictive Gagging Survey was created, refined, and tested on 59 undergraduate participants. The questions focused on risk factors and experiences that would indicate the presence and strength of someone’s gag reflex. Reliability was assessed by administering the survey to a group of 17 participants twice, with 3 weeks separating the two administrations. Finally, the survey was given to 25 dental patients. In these cases, patients completed an informed consent form, filled out the survey, and then had a maxillary impression taken while their gagging response was quantified from 1 to 5 on the Fiske and Dickinson Gagging Intensity Index. Results: There was a moderate positive correlation between the Predictive Gagging Survey and Fiske and Dickinson’s Gagging Severity Index, r = +0.64, demonstrating the survey’s validity. Furthermore, the test-retest reliability was r = +0.96, demonstrating the survey’s reliability. Conclusions: The Predictive Gagging Survey is a 10-question survey about gag-related experiences and behaviours. We established that it is a reliable and valid method to assess the strength of someone’s gag reflex.

  13. A novel protective MHC-I haplotype not associated with dominant Gag-specific CD8+ T-cell responses in SIVmac239 infection of Burmese rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Naofumi Takahashi

    Full Text Available Several major histocompatibility complex class I (MHC-I alleles are associated with lower viral loads and slower disease progression in human immunodeficiency virus (HIV and simian immunodeficiency virus (SIV infections. Immune-correlates analyses in these MHC-I-related HIV/SIV controllers would lead to elucidation of the mechanism for viral control. Viral control associated with some protective MHC-I alleles is attributed to CD8+ T-cell responses targeting Gag epitopes. We have been trying to know the mechanism of SIV control in multiple groups of Burmese rhesus macaques sharing MHC-I genotypes at the haplotype level. Here, we found a protective MHC-I haplotype, 90-010-Id (D, which is not associated with dominant Gag-specific CD8+ T-cell responses. Viral loads in five D+ animals became significantly lower than those in our previous cohorts after 6 months. Most D+ animals showed predominant Nef-specific but not Gag-specific CD8+ T-cell responses after SIV challenge. Further analyses suggested two Nef-epitope-specific CD8+ T-cell responses exerting strong suppressive pressure on SIV replication. Another set of five D+ animals that received a prophylactic vaccine using a Gag-expressing Sendai virus vector showed significantly reduced viral loads compared to unvaccinated D+ animals at 3 months, suggesting rapid SIV control by Gag-specific CD8+ T-cell responses in addition to Nef-specific ones. These results present a pattern of SIV control with involvement of non-Gag antigen-specific CD8+ T-cell responses.

  14. Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells

    Science.gov (United States)

    Gai, Jun-Wei; Wahafu, Wasilijiang; Song, Liming; Ping, Hao; Wang, Mingshuai; Yang, Feiya; Niu, Yinong; Qing, Wei; Xing, Nianzeng

    2018-01-01

    The aim of the present study was to investigate the expression and potential roles of CD74 in human urothelial cell carcinoma of the bladder (UCB) in vitro and in vivo. CD74 and macrophage migration inhibitory factor (MIF) were located and assayed in normal and UCB samples and cell lines using immunostaining. CD74 was knocked down using CD74 shRNA lentiviral particles in HT-1376 cells. The proliferative, invasive potential and microvessel density (MVD) of knockdown-CD74 HT-1376 cells were analyzed in vitro or in vivo. The expression of CD74 in an additional high grade UCB J82 cell line was also verified in vivo. All experiments were repeated at least 3 times. The majority of muscle-invasive bladder cancer (MIBC) samples, and only one high grade UCB cell line, HT-1376, expressed CD74, compared with normal, non-muscle-invasive bladder cancer (NMIBC) samples and other cell lines. The levels of proliferation and invasion were decreased in the CD74 knockdown-HT-1376 cells, and western blotting assay indicated that the levels of proteins associated with proliferation, apoptosis and invasion in the cells were affected correspondingly by different treatments in vitro. The tumorigenesis and MVD assays indicated less proliferation and angiogenesis in the knockdown-HT-1376 cells compared with the scramble cells. Notably, J82 cells exhibiting no signal of CD74 in vitro presented the expression of CD74 in vivo. The present study revealed the potential roles of CD74 in the proliferation, invasion and angiogenesis of MIBC, and that it may serve as a potential therapeutic target for UCB, but additional studies are required.

  15. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    International Nuclear Information System (INIS)

    Zhou, Heng; Guo, Wei; Long, Cong; Wang, Huan; Wang, Jingchao; Sun, Xiaoping

    2015-01-01

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression

  16. E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation

    OpenAIRE

    Carcagno, Abel L.; Marazita, Mariela C.; Ogara, María F.; Ceruti, Julieta M.; Sonzogni, Silvina V.; Scassa, María E.; Giono, Luciana E.; Cánepa, Eduardo T.

    2011-01-01

    Background: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality o...

  17. The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions

    International Nuclear Information System (INIS)

    Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa; Morita, Ritsuko; Ogawa, Miho; Tsuji, Takashi

    2011-01-01

    Research highlights: → Bioengineered teeth regulated the contact area of epithelium and mesenchyme. → The crown width is regulated by the contact area of the epithelium and mesenchyme. → This regulation is associated with cell proliferation and Sonic hedgehog expression. → The cusp number is correlated with the crown width of the bioengineered tooth. → Cell proliferation and Shh expression areas regulate the tooth morphogenesis. -- Abstract: Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.

  18. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Yuanli Dong

    2015-01-01

    Full Text Available Background: Hypocretin (HCRT signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy. Our previous study showed that xingshentongqiao decoction (XSTQ is clinically effective for the treatment of narcolepsy. To determine whether XSTQ improves narcolepsy by modulating HCRT signaling, we investigated its effects on SH-SY5Y cell proliferation, apoptosis, and HCRT receptor 1/2 (orexin receptor 1 [OX1R] and orexin receptor 2 [OX2R] expression. The signaling pathways involved in these processes were also assessed. Methods: The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays. OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis. Western blotting for mitogen-activated protein kinase (MAPK pathway activation was performed to further assess the signaling mechanism of XSTQ. Results: XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells. This effect was accompanied by the upregulation of OX1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK. Conclusions: XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells. XSTQ also promotes OX1R and OX2R expression. These effects are associated with the repression of the Erk1/2, p38 MAPK, and JNK signaling pathways. These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation, which may explain its ability to treat narcolepsy.

  19. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Heng [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Long, Cong; Wang, Huan; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)

    2015-01-16

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.

  20. MicroRNA-330-3p Expression Indicates Good Prognosis and Suppresses Cell Proliferation by Targeting Bmi-1 in Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Zhenxin Zheng

    2018-03-01

    Full Text Available Background/Aims: Growing evidence has shown that miR-330-3p is closely related to the biological behavior of cancer, including proliferation, metastasis, and prognosis. However, there have been no reports on miR-330-3p expression and function in osteosarcoma. Methods: Expression of miR-330-3p in osteosarcoma tissues and cell lines was examined by quantitative PCR. Effects of miR-330-3p on osteosarcoma cell proliferation were investigated in vitro with the Cell Counting Kit-8 colorimetric assay. Targets of miR-330-3p were identified by dual-luciferase reporter assay. Results: The results showed that expression of miR-330 decreased in osteosarcoma tissues and cell lines. Prognosis of patients with high miR-330-3p expression was much better than that of those with low expression (P=0.001, and multivariate analysis suggested that miR-330-3p is an independent prognostic factor for osteosarcoma. In addition, miR-330-3p overexpression significantly inhibited the growth of MG-63 and U2OS osteosarcoma cells. Dual-luciferase reporter assay demonstrated that Bmi-1 was a direct target gene of miR-330-3p, and in a recovery experiment, miR-330-3p suppressed osteosarcoma cell proliferation by directly targeting Bmi-1. Conclusion: Our results suggest that miR-330-3p acts as a tumor suppressor by regulating Bmi-1 expression in osteosarcoma. Thus, miR-330-3p may represent a novel therapeutic target for the treatment of osteosarcoma.

  1. Expression and contributions of the Kir2.1 inward-rectifier K+ channel to proliferation, migration and chemotaxis of microglia in unstimulated and anti-inflammatory states

    Directory of Open Access Journals (Sweden)

    Doris eLam

    2015-05-01

    Full Text Available When microglia respond to CNS damage, they can range from pro-inflammatory (classical, M1 to anti-inflammatory, alternative (M2 and acquired deactivation states. It is important to determine how microglial functions are affected by these activation states, and to identify molecules that regulate their behavior. Microglial proliferation and migration are crucial during development and following damage in the adult, and both functions are Ca2+-dependent. In many cell types, the membrane potential and driving force for Ca2+ influx are regulated by inward-rectifier K+ channels, including Kir2.1, which is prevalent in microglia. However, it is not known whether Kir2.1 expression and contributions are altered in anti-inflammatory states. We tested the hypothesis that Kir2.1 contributes to Ca2+ entry, proliferation and migration of rat microglia. Kir2.1 (KCNJ2 transcript expression, current amplitude, and proliferation were comparable in unstimulated microglia and following alternative activation (IL-4 stimulated and acquired deactivation (IL-10 stimulated. To examine functional roles of Kir2.1 in microglia, we first determined that ML133 was more effective than the commonly used blocker, Ba2+; i.e., ML133 was potent (IC50=3.5 M and voltage independent. Both blockers slightly increased proliferation in unstimulated or IL-4 (but not IL-10-stimulated microglia. Stimulation with IL-4 or IL-10 increased migration and ATP-induced chemotaxis, and blocking Kir2.1 greatly reduced both but ML133 was more effective. In all three activation states, blocking Kir2.1 with ML133 dramatically reduced Ca2+ influx through Ca2+-release-activated Ca2+ (CRAC channels. Thus, Kir2.1 channel activity is necessary for microglial Ca2+ signaling and migration under resting and anti-inflammatory states but the channel weakly inhibits proliferation.

  2. Effects of an illicit cocktail on serum immunoglobulins, lymphocyte proliferation and cytokine gene expression in the veal calf

    International Nuclear Information System (INIS)

    Cantiello, Michela; Carletti, Monica; Cannizzo, Francesca T.; Nebbia, Carlo; Bellino, Claudio; Pie, Sandrine; Oswald, Isabelle P.; Bollo, Enrico; Dacasto, Mauro

    2007-01-01

    At the European Union level, the use of growth promoters (GPs) in cattle and other food-producing species is forbidden; nonetheless, the illicit use of anabolic hormones, β-agonists and corticosteroids, often administered in cocktails at lower concentrations to overcome control procedures, is still of public concern. The immune system (IS) is a multicomponent system that provide a coordinated response toward infectious diseases, not self-neoplasms and xenobiotics; in this respect, some GPs have been proved able to cause both morphological alterations in lymphoid organs and a modulating effect upon some immunological parameters. Therefore, in the present study the effects of an illicit cocktail upon the cattle IS functions were investigated by using some common endpoints adopted for the IS testing in humans. Twelve cross-bred male veal calves were divided in two experimental groups (n = 6); the first group was administered a cocktail of 17β-oestradiol (10 mg, 3 im injections at 17 days intervals), clenbuterol (20 μg kg -1 , per os for 40 days) and dexamethasone (4 mg per os for 6 days and, then, 5 mg for further 6 days) for a total of 55 days. The second one was used as control. Blood sampling were taken at T 0 and after 15 (T 1 ), 34 (T 2 ), 48 (T 3 ) days as well as the day before slaughtering (T 4 ). Immune endpoints considered were the thymus weight, the serum immunoglobulin G (IgG) and M (IgM) levels, the lymphocyte proliferation assay and the lymphocyte interleukins 1β and 8, tumour necrosis factor α and interferon γ (IFN-γ) gene expression levels. The administration of the illicit cocktail resulted in: (a) a reduction (P 1 , whereas in the second part of the study increasing levels (P 2 and T 4 for IgM and IgG, respectively) were recorded; (c) an overall reduction (P 1 ; in phytohaemagglutinin-stimulated cells, such a decrease was delayed up to T 2 (P 1 and T 2 . Taken together, present data suggest that GPs, even given in cocktails at sub

  3. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Sun, Wenxing [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Public Health, Nantong University, Nantong 226019 (China); Gao, Ying [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Lifan [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Chen, Jie, E-mail: jiechen@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.

  4. Silencing CAPN2 Expression Inhibited Castration-Resistant Prostate Cancer Cells Proliferation and Invasion via AKT/mTOR Signal Pathway

    Directory of Open Access Journals (Sweden)

    Pu Li

    2017-01-01

    Full Text Available The mRNA expression of CAPN2 was upregulated in CRPC cells (DU145 and PC3 than that in non-CRPC cells. Silencing CAPN2 expression could inhibit DU145 and PC3 cells proliferation by cell cycle arrest at G1 phase. Knockdown of CPAN2 level suppressed the migration and invasion capacity of CRPC cells by reducing matrix metalloproteinase-2 (MMP-2 and MMP-9 activation, as well as repressing the phosphorylation protein expression of AKT and mTOR. In addition, we found that the expression of CAPN2 was elevated in Pca tissues than that in normal control tissues. Therefore, we showed the important roles of CAPN2 in the development and progression in CRPC cells, suggesting a new therapeutic intervention for treating castration-resistant prostate cancer patients.

  5. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Norlaily Mohd Ali

    2016-01-01

    Full Text Available Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (60 years donors were expanded under hypoxic (5% O2 and normal (20% O2 culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia > young (normoxia > old aged (hypoxia > old aged (normoxia.

  6. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats

    International Nuclear Information System (INIS)

    Yin Jinbo; Ma Yuxin; Yin Qing; Xu Haiwei; An Ning; Liu Shiyong; Fan Xiaotang; Yang Hui

    2007-01-01

    The dentate gyrus (DG) of the hippocampus is one of a few regions in the adult mammalian brain characterized by ongoing neurogenesis. Proliferation of neural precursors in the granule cell layer of the DG has been identified in pentylenetetrazol (PTZ) kindling epilepsy model, however, little is known about the molecular mechanism. We previously reported that the expression pattern of bone morphogenetic proteins-4 (BMP4) mRNA in the hippocampus was developmentally regulated and mainly localized in the DG of the adult. To explore the role of BMP4 in epileptic activity, we detected BMP4 expression in the DG during PTZ kindling process and explore its correlation with cell proliferation combined with bromodeoxyuridine (BrdU) labeling technique. We found that dynamic changes in BMP4 level and BrdU labeled cells dependent on the kindling stage of PTZ induced seizure-prone state. The number of BMP4 mRNA-positive cells and BrdU labeled cells reached the top level 1 day after PTZ kindled, then declined to base level 2 months later. Furthermore, there was a significant correlation between increased BMP4 mRNA expression and increased number of BrdU labeled cells. After effectively blocked expression of BMP4 with antisense oligodeoxynucleotides(ASODN), the BrdU labeled cells in the dentate gyrus subgranular zone(DG-SGZ) and hilus were significantly decreased 16d after First PTZ injection and 1, 3, 7, 14d after kindled respectively. These findings suggest that increased proliferation in the DG of the hippocampus resulted from kindling epilepsy elicited by PTZ maybe be modulated by BMP4 over-expression

  7. Topical application of bFGF on acid-conditioned and non-conditioned dentin: effect on cell proliferation and gene expression in cells relevant for periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Godoy Rocha

    Full Text Available Abstract Periodontal regeneration is still a challenge in terms of predictability and magnitude of effect. In this study we assess the biological effects of combining chemical root conditioning and biological mediators on three relevant cell types for periodontal regeneration. Material and Methods: Bovine dentin slices were conditioned with 25% citric acid followed by topical application of basic fibroblast growth factor (bFGF, 10 and 50 ng. We used ELISA to assess the dynamics of bFGF release from the dentin surface and RT-qPCR to study the expression of Runx2, Col1a1, Bglap and fibronectin by periodontal ligament (PDL fibroblasts, cementoblasts and bone marrow stromal cells (BMSC grown onto these dentin slices. We also assessed the effects of topical application of bFGF on cell proliferation by quantification of genomic DNA. Results: Acid conditioning significantly increased the release of bFGF from dentin slices. Overall, bFGF application significantly (p<0.05 increased cell proliferation, except for BMSC grown on non-conditioned dentin slices. Dentin substrate discretely increased expression of Col1a1 in all cell types. Expression of Runx2, Col1a1 and Fn was either unaffected or inhibited by bFGF application in all cell types. We could not detect expression of the target genes on BMSC grown onto conditioned dentin. Conclusion: Acid conditioning of dentin improves the release of topically-applied bFGF. Topical application of bFGF had a stimulatory effect on proliferation of PDL fibroblasts, cementoblasts and BMSC, but did not affect expression of Runx2, Col1a1, Bglap and fibronectin by these cells.

  8. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of β-catenin

    International Nuclear Information System (INIS)

    Cho, Il-Rae; Koh, Sang Seok; Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong; Choi, Young-Whan; Horio, Yoshiyuki; Oh, Sangtaek; Chung, Young-Hwa

    2012-01-01

    Highlights: ► SIRT1 inhibits protein levels of β-catenin and its transcriptional activity. ► Nuclear localization of SIRT1 is not required for the decrease of β-catenin expression. ► SIRT1-mediated degradation of β-catenin is not required for GSK-3β and Siah-1 but for proteosome. ► SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of β-catenin, we postulated that β-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target β-catenin in a colon cancer model, suppresses β-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of β-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced β-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of β-catenin. Treatment with MG132, a proteasomal inhibitor, restored β-catenin protein levels, suggesting that SIRT1-mediated degradation of β-catenin requires proteasomal activity. It was reported that inhibition of GSK-3β or Siah-1 stabilizes β-catenin in colon cancer cells, but suppression of GSK-3β or Siah-1 using siRNA in the presence of resveratrol instead diminished β-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3β and Siah-1 are not involved in SIRT1-mediated degradation of β-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target

  9. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  10. Solution Properties of Murine Leukemia Virus Gag Protein: Differences from HIV-1 Gag▿

    Science.gov (United States)

    Datta, Siddhartha A. K.; Zuo, Xiaobing; Clark, Patrick K.; Campbell, Stephen J.; Wang, Yun-Xing; Rein, Alan

    2011-01-01

    Immature retrovirus particles are assembled from the multidomain Gag protein. In these particles, the Gag proteins are arranged radially as elongated rods. We have previously characterized the properties of HIV-1 Gag in solution. In the absence of nucleic acid, HIV-1 Gag displays moderately weak interprotein interactions, existing in monomer-dimer equilibrium. Neutron scattering and hydrodynamic studies suggest that the protein is compact, and biochemical studies indicate that the two ends can approach close in three-dimensional space, implying the need for a significant conformational change during assembly. We now describe the properties of the Gag protein of Moloney murine leukemia virus (MLV), a gammaretrovirus. We found that this protein is very different from HIV-1 Gag: it has much weaker protein-protein interaction and is predominantly monomeric in solution. This has allowed us to study the protein by small-angle X-ray scattering and to build a low-resolution molecular envelope for the protein. We found that MLV Gag is extended in solution, with an axial ratio of ∼7, comparable to its dimensions in immature particles. Mutational analysis suggests that runs of prolines in its matrix and p12 domains and the highly charged stretch at the C terminus of its capsid domain all contribute to this extended conformation. These differences between MLV Gag and HIV-1 Gag and their implications for retroviral assembly are discussed. PMID:21917964

  11. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    International Nuclear Information System (INIS)

    Cao, Qizhi; Fu, Aili; Yang, Shude; He, Xiaoli; Wang, Yue; Zhang, Xiaoshu; Zhou, Jiadi; Luan, Xiying; Yu, Wenzheng; Xue, Jiangnan

    2015-01-01

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy

  12. HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Chi F

    2016-05-01

    Full Text Available Feng Chi, Rong Wu, Xueying Jin, Min Jiang, Xike Zhu Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Abstract: HER2 positivity has been well studied in various cancers, but its importance in non-small-cell lung cancer (NSCLC is still being explored. In this study, quantitative reverse transcription polymerase chain reaction (qRT-PCR was performed to detect HER2 and COX-2 expression in NSCLC tissues. Then, pcDNA3.1-HER2 was used to overexpress HER2, while HER2 siRNA and COX-2 siRNA were used to silence HER2 and COX-2 expression. MTT assay and invasion assay were used to detect the effects of HER2 on cell proliferation and invasion. Our study revealed that HER2 and COX-2 expression were upregulated in NSCLC tissues and HER2 exhibited a significant positive correlation with the levels of COX-2 expression. Overexpression of HER2 evidently elevated COX-2 expression, while silencing of HER2 evidently decreased COX-2 expression. Furthermore, overexpressed HER2 induced the ERK phosphorylation, and this was abolished by the treatment with U0126, a pharmacological inhibitor of MEK, an upstream kinase of ERK. HER2-induced expression and promoter activity of COX-2 were also suppressed by U0126, suggesting that the MEK/ERK signaling pathway regulates COX-2 expression. In addition, HER2 induced activation of AKT signaling pathway, which was reversed by pretreatment with U0126 and COX-2 siRNA. MTT and invasion assays revealed that HER2 induced cell proliferation and invasion that were reversed by pretreatment with U0126 and COX-2 siRNA. In this study, our results demonstrated for the first time that HER2 elevated COX-2 expression through the activation of MEK/ERK pathway, which subsequently induced cell proliferation and invasion via AKT pathway in NSCLC tissues. Keywords: HER2, MEK/ERK, COX-2, AKT signaling pathway, non-small-cell lung cancer

  13. Identification and expression analysis of peroxisome proliferator-activated receptors cDNA in a reptile, the leopard gecko (Eublepharis macularius).

    Science.gov (United States)

    Kato, Keisuke; Oka, Yoshitaka; Park, Min Kyun

    2008-05-01

    Despite the physiological and evolutionary significance of lipid metabolism in amniotes, the molecular mechanisms involved have been unclear in reptiles. To elucidate this, we investigated peroxisome proliferators-activated receptors (PPARs) in the leopard gecko (Eublepharis macularius). PPARs belong to a nuclear hormone-receptor family mainly involved in lipid metabolism. Although PPARs have been widely studied in mammals, little information about them is yet available from reptiles. We identified in the leopard gecko partial cDNA sequences of PPARalpha and beta, and full sequences of two isoforms of PPARgamma. This is the first report of reptilian PPARgamma mRNA isoforms. We also evaluated the organ distribution of expression of these genes by using RT-PCR and competitive PCR. The expression level of PPARalpha mRNA was highest in the large intestine, and moderate in the liver and kidney. The expression level of PPARbeta mRNA was highest in the kidney and large intestine, and moderate in the liver. Similarly to the expression of human PPARgamma isoforms, PPARgammaa was expressed ubiquitously, whereas the expression of PPARgammab was restricted. The highest levels of their expression, however, were observed in the large intestine, rather than in the adipose tissue as in mammals. Taken together, these results showed that the profile of PPARbeta mRNA expression in the leopard gecko is similar to that in mammals, and that those of PPAR alpha and gamma are species specific. This may reflect adaptation to annual changes in lipid storage due to seasonal food availability.

  14. Anomalous expression of Thy1 (CD90) in B-cell lymphoma cells and proliferation inhibition by anti-Thy1 antibody treatment

    International Nuclear Information System (INIS)

    Ishiura, Yoshihito; Kotani, Norihiro; Yamashita, Ryusuke; Yamamoto, Harumi; Kozutsumi, Yasunori; Honke, Koichi

    2010-01-01

    The anti-CD20 monoclonal antibody (Ab) rituximab is accepted to be an effective therapeutic Ab for malignant B-cell lymphoma; however, discovery of other cell surface antigens is required for the option of antibody medicine. Considering that many tumor-associated antigens are glycans, we have searched glycoconjugates for the candidate antigens that therapeutic Abs target. To this end, we first focused on the difference in the glycogenes expression in terms of Epstein-Barr virus (EBV) infection of a Burkitt's lymphoma cell line, Akata. Using DNA array, flow cytometry and Western blotting, we found that Thy1 was highly expressed in EBV-positive Akata cells. Subsequently, Thy1 was found to be expressed in other B-cell lymphoma cell lines: BJAB, MutuI, and MutuIII, irrespective of EBV infection. Treatment of these cells with an anti-Thy1 monoclonal antibody inhibited proliferation more strongly than the therapeutic Ab rituximab. The B-cell lymphoma cell lines were classified based on the extent of the proliferation inhibition, which was not correlated with the expression level of Thy1. It is suggested that stable residence of receptor tyrosine kinases in lipid rafts sustains cell growth in B-cell lymphoma cells.

  15. Anomalous expression of Thy1 (CD90) in B-cell lymphoma cells and proliferation inhibition by anti-Thy1 antibody treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ishiura, Yoshihito [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kotani, Norihiro, E-mail: kotani@kochi-u.ac.jp [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kochi System Glycobiology Center, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); Yamashita, Ryusuke [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Yamamoto, Harumi [Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Yoshida Shimo-Adachi, Sakyo, Kyoto 606-8501 (Japan); Kozutsumi, Yasunori [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Yoshida Shimo-Adachi, Sakyo, Kyoto 606-8501 (Japan); Honke, Koichi [Department of Biochemistry, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kochi System Glycobiology Center, Kochi University Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505 (Japan)

    2010-05-28

    The anti-CD20 monoclonal antibody (Ab) rituximab is accepted to be an effective therapeutic Ab for malignant B-cell lymphoma; however, discovery of other cell surface antigens is required for the option of antibody medicine. Considering that many tumor-associated antigens are glycans, we have searched glycoconjugates for the candidate antigens that therapeutic Abs target. To this end, we first focused on the difference in the glycogenes expression in terms of Epstein-Barr virus (EBV) infection of a Burkitt's lymphoma cell line, Akata. Using DNA array, flow cytometry and Western blotting, we found that Thy1 was highly expressed in EBV-positive Akata cells. Subsequently, Thy1 was found to be expressed in other B-cell lymphoma cell lines: BJAB, MutuI, and MutuIII, irrespective of EBV infection. Treatment of these cells with an anti-Thy1 monoclonal antibody inhibited proliferation more strongly than the therapeutic Ab rituximab. The B-cell lymphoma cell lines were classified based on the extent of the proliferation inhibition, which was not correlated with the expression level of Thy1. It is suggested that stable residence of receptor tyrosine kinases in lipid rafts sustains cell growth in B-cell lymphoma cells.

  16. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    International Nuclear Information System (INIS)

    Miyatake, Kazumasa; Tsuji, Kunikazu; Yamaga, Mika; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Muneta, Takeshi

    2013-01-01

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis

  17. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Vallon, Mario, E-mail: m.vallon@arcor.de [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Rohde, Franziska; Janssen, Klaus-Peter [Chirurgische Klinik und Poliklinik, Technische Universitaet Muenchen, Munich (Germany); Essler, Markus [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany)

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  18. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyatake, Kazumasa [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); Tsuji, Kunikazu, E-mail: ktsuji.gcoe@tmd.ac.jp [International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo (Japan); Yamaga, Mika; Yamada, Jun; Matsukura, Yu; Abula, Kahaer [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); Sekiya, Ichiro [Section of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo (Japan); Muneta, Takeshi [Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo (Japan); International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo (Japan)

    2013-02-01

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis.

  19. Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation.

    Science.gov (United States)

    Diotel, Nicolas; Vaillant, Colette; Kah, Olivier; Pellegrini, Elisabeth

    2016-01-01

    Adult fish exhibit a strong neurogenic capacity due to the persistence of radial glial cells. In zebrafish, radial glial cells display well-established markers such as the estrogen-synthesizing enzyme (AroB) and the brain lipid binding protein (Blbp), which is known to strongly bind omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). While Blpb is mainly described in the telencephalon of adult zebrafish, its expression in the remaining regions of the brain is poorly documented. The present study was designed to further investigate Blbp expression in the brain, its co-expression with AroB, and its link with radial glial cells proliferation in zebrafish. We generated a complete and detailed mapping of Blbp expression in the whole brain and show its complete co-expression with AroB, except in some tectal and hypothalamic regions. By performing PCNA and Blbp immunohistochemistry on cyp19a1b-GFP (AroB-GFP) fish, we also demonstrated preferential Blbp expression in proliferative radial glial cells in almost all regions studied. To our knowledge, this is the first complete and detailed mapping of Blbp-expressing cells showing strong association between Blbp and radial glial cell proliferation in the adult brain of fish. Given that zebrafish is now recognized models for studying neurogenesis and brain repair, our data provide detailed characterization of Blbp in the entire brain and open up a broad field of research investigating the role of omega-3 polyunsaturated fatty acids in neural stem cell activity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Influence of Polyphenol Extract from Evening Primrose (Oenothera Paradoxa Seeds on Proliferation of Caco-2 Cells and on Expression, Synthesis and Activity of Matrix Metalloproteinases and Their Inhibitors

    Directory of Open Access Journals (Sweden)

    Szewczyk Karolina

    2014-09-01

    Full Text Available Evening primrose (Oenothera paradoxa Hudziok seeds are a rich source of not only a valuable oil containing an essential fatty acid - ᵧ-linolenic acid (GLA - but also polyphenols which can be obtained from the biomass remaining after oil pressing. The aim of our studies was to evaluate the influence of a polyphenol extract from defatted seeds of evening primrose on human colorectal adenocarcinoma Caco-2 cell proliferation and matrix metalloproteinases (MMPs synthesis and activity. To assess the effect of evening primrose extract on Caco-2 cell proliferation, crystal violet staining and sulforhodamine B (SRB assays were used whereas mRNA expression and activity of MMPs were evaluated by RT-PCR and gelatin zymography.

  1. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Fujita, Norihisa, E-mail: nori@ph.ritsumei.ac.jp [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); School of Pharmacy, Ristumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delay of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.

  2. Bioinformatics prediction of miR-30a targets and its inhibition of cell proliferation of osteosarcoma by up-regulating the expression of PTEN

    Directory of Open Access Journals (Sweden)

    Biao Zhong

    2017-11-01

    Full Text Available Abstract Background MiRNAs are frequently abnormally expressed in the progression of human osteosarcoma. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN is one of the tumor suppressors in various types of human cancer. In the present study, we detected how hsa-miR-30a-3p regulated PTEN and further tested the role of hsa-miR-30a-3p in the cell proliferation of osteosarcoma cells. Methods The levels of miR-30a were determined by real time PCR. The expression of PTEN was tested by western blotting analysis. Cell distribution of PTEN was observed with confocal laser scanning microscope. Cell viability was determined by MTT assay. Results The expression of miR-30a and PTEN was obviously decreased in MG-63, 143B and Saos-2 cells compared with primary osteoblasts. TargetScan analysis data showed miR-30a might bind with position 30-57 of 3’UTR of PTEN. Transfection with miR-30a-3p increased the level of PTEN in MG-63 cells, while transfection with miR-30a-3p inhibitor significantly decreased the expression of PTEN in osteosarcoma cells. Transfection with miR-30a-3p significantly inhibited cell proliferation of osteosarcoma cells, while miR-30a inhibitor obviously promoted cell viability of MG63 cells and Saos-2 cells. Inhibition of PTEN eliminated the proliferation inhibitory effect of miR-30a-3p. Conclusion Thus, all these findings revealed the anti-tumor effects of miR-30a in human osteosarcoma cells, which could be mediated by regulating the level of PTEN.

  3. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  4. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) gamma2 gene expression in brown adipocytes: intracellular signalling and effects on PPARgamma2 and PPARgamma1 protein levels

    DEFF Research Database (Denmark)

    Lindgren, Eva M; Nielsen, Ronni; Petrovic, Natasa

    2004-01-01

    phases, with the highest mRNA levels being found at the time of transition between the phases. PPARgamma2 mRNA levels were downregulated by noradrenaline treatment (EC50, 0.1 microM) in both proliferative and differentiating cells, with a lagtime of 1 h and lasting up to 4 h, after which expression...... was thus to investigate the influence of noradrenaline on PPARgamma gene expression in brown adipocytes. In primary cultures of brown adipocytes, PPARgamma2 mRNA levels were 20-fold higher than PPARgamma1 mRNA levels. PPARgamma expression occurred during both the proliferation and the differentiation...... gradually recovered. The down-regulation was beta-adrenoceptor-induced and intracellularly mediated via cAMP and protein kinase A; the signalling pathway did not involve phosphoinositide 3-kinase, Src, p38 mitogen-activated protein kinase or extracellular-signal-regulated kinases 1 and 2. Treatment...

  5. Cloning of peroxisome proliferators activated receptors in the cobia (Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture.

    Science.gov (United States)

    Tsai, Mei-Ling; Chen, Houng-Yung; Tseng, Mei-Cheuh; Chang, Rey-Chang

    2008-12-01

    We present the cDNA sequences and tissue mRNA expression of peroxisome proliferator-activated receptor (PPAR) alpha, beta and gamma isotypes in the cobia (Rachycentron canadum), a warm water pelagic fish that is becoming a fish of choice for offshore cage farming. RT-PCR and real-time PCR showed that PPARalpha mRNA predominated in red muscle, heart and liver whereas PPARbeta was expressed mainly in liver and pyloric caeca. In contrast, PPARgamma transcripts were detected in all of the tissues examined, with the highest level occurring in visceral fat depot. Our 52-wk time-series investigation showed that while the mRNA expression of PPARgamma in the cobia was positively (P cobia.

  6. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    Science.gov (United States)

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  7. Quantitation of multiple myeloma oncogene 1/interferon-regulatory factor 4 gene expression in malignant B-cell proliferations and normal leukocytes.

    Science.gov (United States)

    Yamada, M; Asanuma, K; Kobayashi, D; Moriai, R; Yajima, T; Yagihashi, A; Yamamori, S; Watanabe, N

    2001-01-01

    We studied multiple myeloma oncogene 1/interferon-regulatory factor 4 (MUM1/IRF4) mRNA expression in various malignant human hematopoietic cell lines and normal leukocyte fractions. A quantitative reverse transcription-polymerase chain reaction was used to assess expression and chromosomes were examined for anomalies by fluorescent in situ hybridization. Among 12 cell lines examined, mRNA transcripts were expressed only in B-lymphoblastic and myeloma cell lines. Myeloma cells and malignant cell lines derived from mature B cells expressed more transcript than cell lines derived from immature B cells. Transcript levels, however, showed no association with chromosomal translocations. Expression in B-cell fractions from healthy donors was much less than in the malignant cells. In addition, MUM1/IRF4 mRNA expressed in samples from patients with acute lymphoblastic leukemia derived from B cells but not T cells. Our results suggested that MUM1/IRF4 gene expression is related to stage of differentiation of malignant B cells and they indicated the possibility that the quantitative analysis of MUM1/IRF4 gene is a useful tool for detection of malignant B-cell proliferations in clinical laboratory tests.

  8. Biocompatibility evaluation in vitro. Part I: Morphology expression and proliferation of human and rat osteoblasts on the biomaterials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The biocompatibility evaluation of calcium phosphate based biomaterials is performed by tissue culture in vitro model. Three kinds of bioceramic materials which are potential to deal with bone trauma and/or conduct tissue growth are recommodated. The biological research results show that human and animal osteoblast cells anchor the materials surface in two hours in culture. Confocal laser scanning microscopy (CLSM) demonstrated the normal cell distribution and proliferation on both of dense and porous biomaterials. Hydroxyapatite and tricalcium phosphate stimulate cell proliferation. However, DNA and protein synthesis were considerably limited and the apoptosis phenomenon would be present on the hydroxyapatite (HA) materials by adding Al, Mg elements. Several important methods of biocompatibility evaluation of implant materials are described and the related biological molecular techniques such as tissue culture, cell transfection, cellular DNA stain, and Lowry assay are involved in the present research.

  9. ΔNp63α is an oncogene that induces Lsh expression and promotes stem-like proliferation

    Science.gov (United States)

    Keyes, William M.; Pecoraro, Matteo; Aranda, Victoria; Vernersson-Lindahl, Emma; Li, Wangzhi; Vogel, Hannes; Guo, Xuecui; Garcia, Elvin L.; Michurina, Tatyana V.; Enikolopov, Grigori; Muthuswamy, Senthil K.; Mills, Alea A.

    2014-01-01

    SUMMARY The p53 homolog p63 is essential for development, yet its role in cancer is not clear. We discovered that p63 deficiency evokes the tumor suppressive mechanism of cellular senescence, causing a striking absence of stratified epithelia such as the skin. Here we identify the predominant p63 isoform, ΔNp63α, as a protein that bypasses oncogene induced senescence to drive tumorigenesis in vivo. Interestingly, bypass of senescence promotes stem-like proliferation and maintains survival of the keratin 15-positive stem cell population. Furthermore, we identify the chromatin remodeling protein Lsh as a new target of ΔNp63α that is an essential mediator of senescence bypass. These findings indicate that ΔNp63α is an oncogene that cooperates with Ras to promote tumor-initiating stem-like proliferation, and suggest that Lsh-mediated chromatin remodeling events are critical to this process. PMID:21295273

  10. Programmed Cell Death, Proliferating Cell Nuclear Antigen and p53 Expression in Mouse Colon Mucosa during Diet-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Mauro Risio

    2000-01-01

    Full Text Available Western‐style diets (WDs trigger and sustain the early phases of tumorigenesis in mouse colon, and when continued throughout the life span lead to the development of dysplastic crypts. In order to evaluate the roles both of cell proliferation and programmed cell death (PCD in WD‐induced tumorigenesis, immunohistochemical detection of proliferating nuclear antigen (PCNA, in situ end labeling (TUNEL of DNA breaks, and p53 protein were carried out in mouse colonic mucosa during prolonged feeding of two WDs. PCNA Labeling Index of colonic crypts was significantly higher in WD‐treated animals than in controls only at the beginning of the nutritional study, the gap rapidly bridged by increased cell proliferation spontaneously occurring in the colonic mucosa during aging. A transient early homeostatic activation of PCD at the base of the crypt also was observed in WD groups. No changes in PCD were seen in the upper third of the crypt or in surface epithelium throughout the study, indicating that PCD in that colonic crypt segment produces a constant flux of cell loss, uninfluenced by homeostatic fluctuations. A major finding was an irreversible, progressive, age‐related decline of PCD at the crypt base in both control and treated animals that occurred during the second half of the rodents  life span. p53 protein was not immunohistochemically detected, suggesting that neither overexpression of wild‐type nor mutated forms of the protein are involved in the above mentioned changes.

  11. High Endogenous Expression of Chitinase 3-Like 1 and Excessive Epithelial Proliferation with Colonic Tumor Formation in MOLF/EiJ Mice.

    Directory of Open Access Journals (Sweden)

    Daren Low

    Full Text Available Colorectal cancer (CRC development is mediated by uncontrolled survival and proliferation of tumor progenitor cells. Using animal models to identify and study host-derived factors that underlie this process can aid interventions in preventing tumor expansion and metastasis. In healthy steady states in humans and mice (e.g. C57BL/6 strain, colonic Chitinase 3-like 1 (CHI3L1 gene expression is undetectable. However, this expression can be induced during intestinal inflammation and tumorigenesis where CHI3L1 plays an important role in tissue restitution and cell proliferation. Here, we show that a wild-derived mouse strain MOLF/EiJ expresses high levels of colonic epithelial CHI3L1 at the steady state due to several nucleotide polymorphisms in the proximal promoter regions of the CHI3L1 gene. Interestingly, these mice spontaneously developed polypoid nodules in the colon with signs of immune cell infiltrations at steady state. The CHI3L1 positive colonic epithelial cells were highly proliferative and exhibited malignant transformation and expansion when exposed in vivo to azoxymethane, one of the well-known colonic carcinogens.

  12. Long noncoding RNA NEAT1 promotes cell proliferation and invasion by regulating hnRNP A2 expression in hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Mang YY

    2017-02-01

    Full Text Available Yuanyi Mang, Li Li, Jianghua Ran, Shengning Zhang, Jing Liu, Laibang Li, Yiming Chen, Jian Liu, Yang Gao, Gang Ren Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People’s Republic of China Abstract: Growing evidence demonstrates that long noncoding RNAs (lncRNAs are involved in the progression of various cancers, including hepatocellular carcinoma (HCC. The role of nuclear-enriched abundant transcript 1 (NEAT1, an essential lncRNA for the formation of nuclear body paraspeckles, has not been fully explored in HCC. We aimed to determine the expression, roles and functional mechanisms of NEAT1 in the proliferation and invasion of HCC. Based on real-time polymerase chain reaction data, we suggest that NEAT1 is upregulated in HCC tissues compared with noncancerous liver tissues. The knockdown of NEAT1 altered global gene expression patterns and reduced HCC cell proliferation, invasion and migration. RNA immunoprecipitation and RNA pull-down assays confirmed that U2AF65 binds to NEAT1. Furthermore, the study indicated that NEAT1 regulated hnRNP A2 expression and that this regulation may be associated with the NEAT1–U2AF65 protein complex. Thus, the NEAT1-hnRNP A2 regulation mechanism promotes HCC pathogenesis and may provide a potential target for the prognosis and treatment of HCC. Keywords: long noncoding RNA, NEAT1, RNA-binding protein, HCC

  13. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    Science.gov (United States)

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  14. Exosomes carring gag/env of ALV-J possess negative effect on immunocytes.

    Science.gov (United States)

    Wang, Guihua; Wang, Zhenzhen; Zhuang, Pingping; Zhao, Xiaomin; Cheng, Ziqiang

    2017-11-01

    J subgroup avian leukosis virus (ALV-J) is an exogenous retrovirus of avian. A key feature of ALV-J infection is leading to severe immunosuppressive characteristic of diseases. Viral components of retrovirus were reported closely associated with immunosuppression, and several similarities between exosomes and retrovirus preparations have lead to the hypotheses of retrovirus hijacker exosomes pathway. In this study, we purified exosomes from DF-1 cells infected and uninfected by ALV-J. Electron microscopy and mass spectrometry (MS) analysis showed that ALV-J not only increased the production of exosomes from ALV-J infected DF-1 cells (Exo-J) but also stimulated some proteins expression, especially ALV-J components secreted in exosomes. Immunosuppressive domain peptide (ISD) of envelope subunit transmembrane (TM) and gag of ALV-J were secreted in Exo-J. It has been reported that HIV gag was budded from endosome-like domains of the T cell plasma membrane. But env protein was first detected in exosomes from retrovirus infected cells. We found that Exo-J caused negative effects on splenocytes in a dose-dependant manner by flow cytometric analysis. And low dose of Exo-J activated immune activity of splenocytes, while high dose possessed immunosuppressive properties. Interestingly, Exo-J has no significant effects on the immunosuppression induced by ALV-J, and the immunosuppressive effects induced by Exo-J lower than that by ALV-J. Taken together, our data indicated that Exo-J supplied a microenvironment for the replication and transformation of ALV-J. Copyright © 2017. Published by Elsevier Ltd.

  15. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

    Directory of Open Access Journals (Sweden)

    Tiffiny Rye-McCurdy

    2016-09-01

    Full Text Available Retroviruses specifically package full-length, dimeric genomic RNA (gRNA even in the presence of a vast excess of cellular RNA. The “psi” (Ψ element within the 5′-untranslated region (5′UTR of gRNA is critical for packaging through interaction with the nucleocapsid (NC domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1 Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity.

  16. Self-reported gagging in dentistry: prevalence, psycho-social correlates and oral health

    NARCIS (Netherlands)

    van Houtem, C.M.H.H.; van Wijk, A.J.; Boomsma, D.I.; Ligthart, L.; Visscher, C.M.; de Jongh, A.

    2015-01-01

    Although gagging has a profound effect on the delivery of dental care, it is a relatively under-investigated phenomenon. This study aimed to derive a prevalence estimate of gagging during dental treatment based on patient-reported information, to determine some socio-demographic and psychological

  17. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  18. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Directory of Open Access Journals (Sweden)

    João A Paredes

    Full Text Available Loss of thymidine kinase 2 (TK2 causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA depletion syndrome (MDS in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  19. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Science.gov (United States)

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  20. How Can Hypnodontics Manage Severe Gag Reflex for Root Canal Therapy? A Case Report

    Science.gov (United States)

    Ramazani, Mohsen; zarenejad, Nafiseh; Parirokh, Masoud; Zahedpasha, Samir

    2016-01-01

    In endodontics, severe involuntary gagging can have a severe impact on treatment procedure. There are many ways to ease the gag reflex, one of which is hypnosis. A 34-year-old male was referred for root canal treatment of a molar tooth. He had not received any dental treatments for the past nine years due to fear of severe gag reflex. Three hypnotic sessions based upon eye fixation, progressive muscle relaxation and guided imagery techniques were spent for psychosomatic management. The gag reflex was controlled and reduced to a normal level, and the required dental treatments including root canal therapy and restoration were performed successfully. This report shows that hypnosis can control gag reflex for dental treatments. PMID:27141226

  1. Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis

    International Nuclear Information System (INIS)

    Patel, Divya; Chaudhary, Jaideep

    2012-01-01

    Highlights: ► E2A, considered as a tumor suppressor is highly expressed in prostate cancer. ► Silencing of E2A attenuates cell proliferation and promotes apoptosis. ► E2A regulates c-myc, Id1, Id3 and CDKN1A expression. ► Loss of E2A promotes doxorubicin dependent apoptosis in prostate cancer cells. ► Results suggest that E2A acts as a tumor promoter at least in prostate cancer. -- Abstract: E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.

  2. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression.

    Science.gov (United States)

    Fang, Zheng; Zhao, Junfang; Xie, Weihong; Sun, Qiang; Wang, Haibin; Qiao, Bin

    2017-12-01

    Chemotherapy resistance has become the main obstacle for the effective treatment of human cancers. Long non-coding RNA urothelial cancer associated 1 (UCA1) is generally regarded as an oncogene in some cancers. However, the function and molecular mechanism of UCA1 implicated in cisplatin (CDDP) chemoresistance of oral squamous cell carcinoma (OSCC) is still not fully established. UCA1 expression in tumor tissues and cells was tested by qRT-PCR. MTT, flow cytometry and caspase-3 activity analysis were explored to evaluate the CDDP sensitivity in OSCC cells. Western blot analysis was used to measure BCL2, Bax and SF1 protein expression. Luciferase reporter assay was conducted to investigate the molecular relationship between UCA1, miR-184, and SF1. Nude mice model was used to confirm the functional role of UCA1 in CDDP resistance in vivo. UCA1 expression was upregulated in OSCC tissues, cell lines, and CDDP resistant OSCC cells. Function analysis revealed that UCA1 facilitated proliferation, enhanced CDDP chemoresistance, and suppressed apoptosis in OSCC cells. Mechanisms investigation indicated that UCA1 could interact with miR-184 to repress its expression. Rescue experiments suggested that downregulation of miR-184 partly reversed the tumor suppression effect and CDDP chemosensitivity of UCA1 knockdown in CDDP-resistant OSCC cells. Moreover, UCA1 could perform as a miR-184 sponge to modulate SF1 expression. The OSCC nude mice model experiments demonstrated that depletion of UCA1 further boosted CDDP-mediated repression effect on tumor growth. UCA1 accelerated proliferation, increased CDDP chemoresistance and restrained apoptosis partly through modulating SF1 via sponging miR-184 in OSCC cells, suggesting that targeting UCA1 may be a potential therapeutic strategy for OSCC patients. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  4. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway.

    Science.gov (United States)

    Su, Chao; Wang, Wenchang; Wang, Cunchuan

    2018-05-01

    The present study aimed to investigate the association between insulin-like growth factor-1 (IGF-1) and matrix metalloproteinase-11 (MMP-11) expression in gastric cancer (GC) and the underlying mechanisms in SGC-7901 cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that the expression of IGF-1 and MMP-11 was significantly upregulated in GC tissues compared with normal gastric tissue. Furthermore, IGF-1 significantly and dose-dependently promoted MMP-11. Western blotting revealed that the addition of IGF-1 to SGC-7901 cells led to an evident enhancement in signal transducer and activator of transcription 3 (STAT3), IGF-1R and Janus kinase 1 (JAK1) phosphorylation at 20 and 40 min. A decrease in the extent of the elevated expression of MMP-11 and the enhanced phosphorylation of STAT3, JAK1 and IGF-1 receptor (IGF-1R) induced by IGF-1 in SGC-7901 cells were observed following treatment with NT157 (an IGF-1R inhibitor). Furthermore, piceatannol (a JAK1 inhibitor) or small interfering RNA against STAT3 reduced the extent of the increased expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Piceatannol treatment induced the dose-dependent decline in the enhancement of STAT3 phosphorylation induced by IGF-1, indicating that the JAK1/STAT3 pathway may be implicated in the elevated expression of MMP-11 induced by IGF-1 in SGC-7901 cells. Finally, IGF-1 treatment significantly promoted the proliferation and invasion of SGC-7901 cells, which was inhibited following NT157, piceatannol or si-STAT3 treatment. The present study therefore demonstrated that IGF-1-induced MMP-11 may have facilitated the proliferation and invasion of SGC-7901 cells via the JAK1/STAT3 pathway.

  5. Sequences within both the 5' UTR and Gag are required for optimal in vivo packaging and propagation of mouse mammary tumor virus (MMTV genomic RNA.

    Directory of Open Access Journals (Sweden)

    Farah Mustafa

    Full Text Available BACKGROUND: This study mapped regions of genomic RNA (gRNA important for packaging and propagation of mouse mammary tumor virus (MMTV. MMTV is a type B betaretrovirus which preassembles intracellularly, a phenomenon distinct from retroviruses that assemble the progeny virion at cell surface just before budding such as the type C human and feline immunodeficiency viruses (HIV and FIV. Studies of FIV and Mason-Pfizer monkey virus (MPMV, a type D betaretrovirus with similar intracellular virion assembly processes as MMTV, have shown that the 5' untranslated region (5' UTR and 5' end of gag constitute important packaging determinants for gRNA. METHODOLOGY: Three series of MMTV transfer vectors containing incremental amounts of gag or 5' UTR sequences, or incremental amounts of 5' UTR in the presence of 400 nucleotides (nt of gag were constructed to delineate the extent of 5' sequences that may be involved in MMTV gRNA packaging. Real time PCR measured the packaging efficiency of these vector RNAs into MMTV particles generated by co-transfection of MMTV Gag/Pol, vesicular stomatitis virus envelope glycoprotein (VSV-G Env, and individual transfer vectors into human 293T cells. Transfer vector RNA propagation was monitored by measuring transduction of target HeLaT4 cells following infection with viral particles containing a hygromycin resistance gene expression cassette on the packaged RNA. PRINCIPAL FINDINGS: MMTV requires the entire 5' UTR and a minimum of ~120 nucleotide (nt at the 5' end of gag for not only efficient gRNA packaging but also propagation of MMTV-based transfer vector RNAs. Vector RNAs without the entire 5' UTR were defective for both efficient packaging and propagation into target cells. CONCLUSIONS/SIGNIFICANCE: These results reveal that the 5' end of MMTV genome is critical for both gRNA packaging and propagation, unlike the recently delineated FIV and MPMV packaging determinants that have been shown to be of bipartite nature.

  6. Generation and characterization of Dyt1 DeltaGAG knock-in mouse as a model for early-onset dystonia.

    Science.gov (United States)

    Dang, Mai T; Yokoi, Fumiaki; McNaught, Kevin St P; Jengelley, Toni-Ann; Jackson, Tehone; Li, Jianyong; Li, Yuqing

    2005-12-01

    A trinucleotide deletion of GAG in the DYT1 gene that encodes torsinA protein is implicated in the neurological movement disorder of Oppenheim's early-onset dystonia. The mutation removes a glutamic acid in the carboxy region of torsinA, a member of the Clp protease/heat shock protein family. The function of torsinA and the role of the mutation in causing dystonia are largely unknown. To gain insight into these unknowns, we made a gene-targeted mouse model of Dyt1 DeltaGAG to mimic the mutation found in DYT1 dystonic patients. The mutated heterozygous mice had deficient performance on the beam-walking test, a measure of fine motor coordination and balance. In addition, they exhibited hyperactivity in the open-field test. Mutant mice also showed a gait abnormality of increased overlap. Mice at 3 months of age did not display deficits in beam-walking and gait, while 6-month mutant mice did, indicating an age factor in phenotypic expression as well. While striatal dopamine and 4-dihydroxyphenylacetic acid (DOPAC) levels in Dyt1 DeltaGAG mice were similar to that of wild-type mice, a 27% decrease in 4-hydroxy, 3-methoxyphenacetic acid (homovanillic acid) was detected in mutant mice. Dyt1 DeltaGAG tissues also have ubiquitin- and torsinA-containing aggregates in neurons of the pontine nuclei. A sex difference was noticed in the mutant mice with female mutant mice exhibiting fewer alterations in behavioral, neurochemical, and cellular changes. Our results show that knocking in a Dyt1 DeltaGAG allele in mouse alters their motor behavior and recapitulates the production of protein aggregates that are seen in dystonic patients. Our data further support alterations in the dopaminergic system as a part of dystonia's neuropathology.

  7. Reduced miR-433 expression is associated with advanced stages and early relapse of colorectal cancer and restored miR-433 expression suppresses the migration, invasion and proliferation of tumor cells in vitro and in nude mice.

    Science.gov (United States)

    Zhang, Jian; Zhang, Lei; Zhang, Tong; Dong, Xin-Min; Zhu, Yu; Chen, Long-Hua

    2018-05-01

    The expression of microRNA (miR-433) is altered in various types of human cancer. The present study analyzed the prognostic and biological value of miR-433 expression in colorectal cancer using reverse transcription-quantitative polymerase chain reaction in 125 colorectal tissue specimens (including a test cohort of 40 cases of paired colorectal cancer and adjacent normal mucosae and a confirmation cohort of 85 cases of stage I-III colorectal cancer). In vitro and nude mouse xenograft experiments were subsequently used to assess the effects of miR-433 expression on the regulation of colorectal cancer cell proliferation, adhesion, migration, and invasion. The data indicated that miR-433 expression was significantly downregulated in colorectal cancer tissues in the test and confirmation patient cohorts and that low miR-433 expression was associated with advanced tumor stage and early relapse. Furthermore, the restoration of miR-433 expression was able to significantly inhibit the proliferation of tumor cells by inducing G1-S cell cycle arrest, suppressing cyclinD1 and CDK4 expression, and markedly inhibited the migratory and invasive capacities of tumor cells in vitro . The restoration of miR-433 expression or liposome-based delivery of miR-433 mimics suppressed the growth of colorectal cancer cell xenografts in nude mice. In conclusion, miR-433 may be a putative tumor suppressor in colorectal cancer, and the detection of low miR-433 expression will be investigated in further studies as a putative biomarker for the detection of early relapse in patients with colorectal cancer.

  8. More expression of BDNF associates with lung squamous cell carcinoma and is critical to the proliferation and invasion of lung cancer cells

    International Nuclear Information System (INIS)

    Zhang, Si-yang; Hui, Lin-ping; Li, Chun-yan; Gao, Jian; Cui, Ze-shi; Qiu, Xue-shan

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been reported to promote tumorigenesis and progression in several human malignancies. The purpose of this study was to explore the function of BDNF in lung squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The expression of BDNF was examined in 110 samples of lung SCC and ADC by immunohistochemistry. The protein level of BDNF was examined in 25 lung SCC or ADC samples and paired non-tumors by western blot. BDNF expression was also evaluated in human bronchial epithelial cells (HBE) and 4 lung cancer cell lines using western blot. Three BDNF mRNA variants containing exons IV, VI and IX were evaluated in HBE, two SCC (SK, LK2) and two ADC (A549, LTE) cell lines by RT-PCR. The expression and secretion of BDNF were also determined in cells using western blot and ELISA. Then the shRNA specific for BDNF was transfected into LK2 or A549 cells to further elucidate the BDNF knockdown on cell proliferation, apoptosis and invasion, which were confirmed by MTT, flow cytometry and transwell examinations. 71.8 % (79 out of 110) of lung SCC and ADC samples were detected positive BDNF, and high expression of BDNF was significantly correlated with histological type and T stage. Compared with non-tumorous counterparts, BDNF was apparently overexpressed in SCC and ADC tissues. In cell studies, the extensive expression and secretion of BDNF were demonstrated in lung cancer cells compared with HBE cells. Interestingly, the expressions of BDNF mRNA variant IV and VI were identical in all cells examined. However, more expression of BDNF mRNA variant IX was found in SK and LK2 cells. The apoptotic cells were increased, and the cell proliferation and invasion were both attenuated once the expression of BDNF was inhibited. When retreated by rhBDNF, BDNF knockdown cells showed less apoptotic or more proliferative and invasive. Our data show that BDNF probably facilitates the tumorigenesis of lung SCC and ADC. The expression of BDNF m

  9. NKAP regulates iNKT cell proliferation and differentiation into ROR-��t expressing NKT17 cells

    OpenAIRE

    Thapa, Puspa; Chen, Meibo W.; McWilliams, Douglas C.; Belmonte, Paul; Constans, Megan; Sant���Angelo, Derek B.; Shapiro, Virginia Smith

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique lineage with characteristics of both adaptive and innate lymphocytes, and recognize glycolipid presented by an MHC Class I-like CD1d molecule. During thymic development, iNKT cells also differentiate into NKT1, NKT2 and NKT17 functional subsets that preferentially produce cytokines IFN-��, IL-4 and IL-17, respectively, upon activation. Newly selected iNKT cells undergo a burst of proliferation, which is defective in mice with a specific del...

  10. The effect of culture density and proliferation rate on the expression of ouabain-sensitive Na/K ATPase pumps in cultured human retinal pigment epithelium

    International Nuclear Information System (INIS)

    Burke, J.M.; Jaffe, G.J.; Brzeski, C.M.

    1991-01-01

    The number and activity of ouabain-sensitive Na/K ATPase pumps expressed by many cell types in vitro, including human retinal pigment epithelial cells (RPE), have been shown to decline with increasing culture density. Cell proliferation also declined as cultures became dense so it was unclear if pump number was modulated by cell proliferation or culture confluency. By exposing RPE cultures to various feeding regimens, using culture medium containing or lacking serum, it was possible to produce RPE cultures with a range of culture densities and growth rates. These were analyzed for proliferative activity by quantifying [ 3 H]thymidine incorporation and for Na/K ATPase pump number by measuring specific [ 3 H]ouabain binding. The results suggest that pump number is modulated by culture density and, further, that the density-dependent regulation of pump number requires serum. Although density-dependent modulation of culture growth is also serum requiring, cell proliferation and pump number did not appear to be related; cultures of similar density which differed significantly in growth rate had similar numbers of pumps. The view that elevated numbers of pumps were not necessarily found in proliferating cells was further supported by qualitative examination of radioautographs of cells dually labeled with [ 3 H]thymidine and [ 3 H]ouabain. Cycling cells which had [ 3 H]thymidine-labeled nuclei did not have notably higher labeling with [ 3 H]ouabain. However, [ 3 H]ouabain labeling, as an indicator of pump site number and distribution, did vary among cells in an RPE population and also within individual cells. This latter observation suggests that unpolarized RPE cells in sparse cultures may have regionally different requirements for ionic regulation

  11. The effect of culture density and proliferation rate on the expression of ouabain-sensitive Na/K ATPase pumps in cultured human retinal pigment epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J.M.; Jaffe, G.J.; Brzeski, C.M. (Medical College of Wisconsin, Milwaukee (USA))

    1991-06-01

    The number and activity of ouabain-sensitive Na/K ATPase pumps expressed by many cell types in vitro, including human retinal pigment epithelial cells (RPE), have been shown to decline with increasing culture density. Cell proliferation also declined as cultures became dense so it was unclear if pump number was modulated by cell proliferation or culture confluency. By exposing RPE cultures to various feeding regimens, using culture medium containing or lacking serum, it was possible to produce RPE cultures with a range of culture densities and growth rates. These were analyzed for proliferative activity by quantifying ({sup 3}H)thymidine incorporation and for Na/K ATPase pump number by measuring specific ({sup 3}H)ouabain binding. The results suggest that pump number is modulated by culture density and, further, that the density-dependent regulation of pump number requires serum. Although density-dependent modulation of culture growth is also serum requiring, cell proliferation and pump number did not appear to be related; cultures of similar density which differed significantly in growth rate had similar numbers of pumps. The view that elevated numbers of pumps were not necessarily found in proliferating cells was further supported by qualitative examination of radioautographs of cells dually labeled with ({sup 3}H)thymidine and ({sup 3}H)ouabain. Cycling cells which had ({sup 3}H)thymidine-labeled nuclei did not have notably higher labeling with ({sup 3}H)ouabain. However, ({sup 3}H)ouabain labeling, as an indicator of pump site number and distribution, did vary among cells in an RPE population and also within individual cells. This latter observation suggests that unpolarized RPE cells in sparse cultures may have regionally different requirements for ionic regulation.

  12. Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells

    International Nuclear Information System (INIS)

    Manzotti, G; Mariani, S A; Corradini, F; Bussolari, R; Cesi, V; Vergalli, J; Ferrari-Amorotti, G; Fragliasso, V; Soliera, A R; Cattelani, S; Raschellà, G; Holyoake, T L; Calabretta, B

    2012-01-01

    The c-Myb gene encodes the p75 c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is p c-Mybex9b , which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of p c-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of p c-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75 c-Myb , p c-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of p c-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of p c-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34 + cells, without affecting the levels of p75 c-Myb . Together, these studies indicate that expression of the low-abundance p c-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells

  13. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over...

  14. miR-22 regulates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma.

    Science.gov (United States)

    Qiu, Kaifeng; Huang, Zixian; Huang, Zhiquan; He, Zhichao; You, Siping

    2016-06-01

    Tongue squamous cell carcinoma (TSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) in China, and its survival rate remains unsatisfactory. miR-22 has been identified as a tumor suppressor in many human cancers, and high expression of CD147 occurs in many tumors. The aim of the present study was to investigate the expression and function of miR-22 in TSCC and its relationship with the expression of CD147. TCA8113 cells were transiently transfected with a miR-22 mimic/inhibitor. Subsequently, a validation with Real-time RT-PCR was performed to analyze the miR-22 expression level, and a CCK-8 proliferation assay and transwell migration and invasion assays were carried out. Cotransfections using As-miR-22/si-CD147 mRNA or a miR-22/CD147 overexpression vector were applied, and we investigated the biological effects on cotranscribed TCA8113 cells. qRT-PCR confirmed that miR-22 or As-miR-22 were successfully transfected into TCA8113 cells. Suppressing miR-22 resulted in a promotion of cell proliferation and motility and an up-regulation of CD147 in TCA8113 cells in vitro. In contrast, increasing miR-22 inhibited cell proliferation and motility and down-regulated CD147. Furthermore, the reduction or overexpression of CD147 can reverse the promoting or suppressive effects of miR-22, respectively. The down-expression of miR-22 can regulate cell growth and motility in TSCC cells, which indicates that miR-22 acts as a tumor suppressor in TSCC. Additionally, CD147 is subsequently up-regulated when miR-22 inhibited. Taken together, the findings of this research defined a novel relationship between the down-regulation of miR-22 and the up-regulation of CD147 and demonstrated that CD147 is a downstream factor of miR-22. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Relationship of preoperative gastric cancer CT enhancement ratio and perfusion parameters with serum tumor marker levels and proliferation molecule expression in tumor lesions

    Directory of Open Access Journals (Sweden)

    Yong-Hong Wang

    2017-06-01

    Full Text Available Objective: To study the relationship of preoperative gastric cancer CT enhancement ratio and perfusion parameters with serum tumor marker levels and proliferation molecule expression in tumor lesions. Methods: A total of 68 patients with gastric cancer treated in the Second Hospital of Yulin City between May 2012 and May 2016 were chosen as observation group and sub-divided into early and middle gastric cancer group (n=41 and advanced gastric cancer group (n=27 according to the tumor stage; 50 patients diagnosed with benign gastric diseases in our hospital during the same period were selected as benign gastric lesion group. CT enhancement rate and perfusion parameters of three groups of patients were detected by CT scan, serum tumor marker levels were evacuated by enzyme-linked immunosorbent assay (ELISA, and the proliferation gene mRNA expression levels were detected by RTPCR method. Results: CER, AF, BV and CL levels of advanced gastric cancer group were higher than those of early and middle gastric cancer group and benign gastric lesion group; serum CA72-4, CA19-9, CA125 and CEA contents of advanced gastric cancer group were higher than those of early and middle gastric cancer group and benign gastric lesion group; CADM1, miRNA-34a and Cystatin M mRNA expression in tissue of advanced gastric cancer group were lower than those of early and middle gastric cancer group and benign gastric lesion group while Survivin and I2PP2A mRNA expression were higher than those of early and middle gastric cancer group and benign gastric lesion group. The Pearson test showed that the CT enhancement rate and perfusion parameters in patients with gastric cancer are directly correlated with the serum tumor marker levels and the proliferation gene expression in tumor lesions. Conclusion: Preoperative gastric cancer CT enhancement rate and perfusion parameters are directly related to the tumor malignancy, and can be used as a reliable method for the long-term tumor

  16. Expression and Localization of Peroxisome Proliferator-Activated Receptors and Nuclear Factor κB in Normal and Lesional Psoriatic Skin

    DEFF Research Database (Denmark)

    Westergaard, Majken; Henningsen, Jeanette; Johansen, Claus

    2003-01-01

    Abnormal epidermal proliferation and differentiation characterize the inflammatory skin disease psoriasis. Here we demonstrate that expression of PPARdelta mRNA and protein is markedly upregulated in psoriatic lesions and that lipoxygenase products accumulating in psoriatic lesions are potent...... activators of PPARdelta. The expression levels of NF-kappaB p50 and p65 were not significantly altered in lesional compared with nonlesional psoriatic skin. In the basal layer of normal epidermis both p50 and p65 were sequestered in the cytoplasm, whereas p50, but not p65, localized to nuclei...... in the suprabasal layers, and this distribution was maintained in lesional psoriatic skin. In normal human keratinocytes PPAR agonists neither impaired IL-1beta-induced translocation of p65 nor IL-1beta-induced NF-kappaB DNA binding. We show that PPARdelta physically interacts with the N-terminal Rel homology...

  17. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisomes proliferate-activated receptor {gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunjung; Shin, Soyoung; Lee, Jeeyoung; Lee, So Jung; Kim, Jinkyoung; Yoon, Doyoung; Kim, Yangmee [Konkuk Univ., Seoul (Korea, Republic of); Woo, Eunrhan [Chosun Univ., Gwangju (Korea, Republic of)

    2012-07-15

    Human peroxisomes proliferate-activated receptor gamma (hPPAR{gamma}) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. Previously, we verified that amentoflavone is an activator of hPPAR{gamma} and probed the molecular basis of its action. In this study, we investigated the mechanism of action of amentoflavone in cancer cells and demonstrated that amentoflavone showed strong cytotoxicity against MCF-7 and HeLa cancer cell lines. We showed that hPPAR{gamma} expression in MCF-7 and HeLa cells is specifically stimulated by amentoflavone, and suggested that amentoflavone-induced cytotoxic activities are mediated by activation of hPPAR{gamma} in these two cancer cell lines. Moreover, amentoflavone increased PTEN levels in these two cancer cell lines, indicating that the cytotoxic activities of amentoflavone are mediated by increasing of PTEN expression levels due to hPPAR{gamma} activation.

  18. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    International Nuclear Information System (INIS)

    Hong, Wei; Li, Jinru; Wang, Bo; Chen, Linfeng; Niu, Wenyan; Yao, Zhi; Baniahmad, Aria

    2011-01-01

    Highlights: ► Corepressor Alien interacts with histone methyltransferase ESET in vivo. ► Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TRβ1. ► ESET-mediated H3K9 methylation is required for liganded TRβ1-repressed transcription. ► ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TRβ1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TRβ1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TRβ1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TRβ1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  19. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    Science.gov (United States)

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.

  20. Long-term omega-3 supplementation modulates behavior, hippocampal fatty acid concentration, neuronal progenitor proliferation and central TNF-α expression in 7 month old unchallenged mice

    Science.gov (United States)

    Grundy, Trent; Toben, Catherine; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.

    2014-01-01

    Dietary polyunsaturated fatty acid (PUFA) manipulation is being investigated as a potential therapeutic supplement to reduce the risk of developing age-related cognitive decline (ARCD). Animal studies suggest that high omega (Ω)-3 and low Ω-6 dietary content reduces cognitive decline by decreasing central nervous system (CNS) inflammation and modifying neuroimmune activity. However, no previous studies have investigated the long term effects of Ω-3 and Ω-6 dietary levels in healthy aging mice leaving the important question about the preventive effects of Ω-3 and Ω-6 on behavior and underlying molecular pathways unaddressed. We aimed to investigate the efficacy of long-term Ω-3 and Ω-6 PUFA dietary supplementation in mature adult C57BL/6 mice. We measured the effect of low, medium, and high Ω-3:Ω-6 dietary ratio, given from the age of 3–7 months, on anxiety and cognition-like behavior, hippocampal tissue expression of TNF-α, markers of neuronal progenitor proliferation and gliogenesis and serum cytokine concentration. Our results show that a higher Ω-3:Ω-6 PUFA diet ratio increased hippocampal PUFA, increased anxiety, improved hippocampal dependent spatial memory and reduced hippocampal TNF-α levels compared to a low Ω-3:Ω-6 diet. Furthermore, serum TNF-α concentration was reduced in the higher Ω-3:Ω-6 PUFA ratio supplementation group while expression of the neuronal progenitor proliferation markers KI67 and doublecortin (DCX) was increased in the dentate gyrus as opposed to the low Ω-3:Ω-6 group. Conversely, Ω-3:Ω-6 dietary PUFA ratio had no significant effect on astrocyte or microglia number or cell death in the dentate gyrus. These results suggest that supplementation of PUFAs may delay aging effects on cognitive function in unchallenged mature adult C57BL/6 mice. This effect is possibly induced by increasing neuronal progenitor proliferation and reducing TNF-α. PMID:25484856

  1. Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2018-01-01

    Full Text Available Background/Aims: Glioblastoma (GBM is a malignant brain tumor with a poor prognosis. Proteasome subunit beta type-4 (PSMB4 is an essential subunit that contributes to the assembly of the 20S proteasome complex. However, the role of PSMB4 in glioblastomas remains to be clarified. The aim of this study was to investigate the role of PSMB4 in GBM tumor progression. Methods: We first analyzed the PSMB4 protein and mRNA expression in 80 clinical brain specimens and 77 datasets from the National Center for Biotechnology Information (NCBI Gene Expression Omnibus (GEO database. Next, we inhibited the PSMB4 expression by siRNA in cellular and animal models to explore PSMB4’s underlying mechanisms. The cell survival after siPSMB4 transfection was assayed by MTT assay. Annexin V and propidium iodide staining was used to monitor the apoptosis by flow cytometric analysis. Moreover, the migration and invasion were evaluated by wound healing and Transwell assays. The expression of migration-related and invasion-related proteins after PSMB4 inhibition was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of PSMB4 knockdown in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher PSMB4 expression had a shorter survival time than those with lower PSMB4 expression. The staining of clinical brain tissues showed elevated PSMB4 expression in GBM tissues compared with normal brain tissues. The PSMB4 inhibition decreased proliferation, migration and invasion abilities in human GBM cells. Downregulated PSMB4 resulted in cell cycle arrest and apoptosis in vitro. In an orthotropic xenograft mouse model, the glioma tumors progression was reduced when PSMB4 was down-regulated. The decreased PSMB4 enhanced the anti-tumor effect of temozolomide (TMZ on tumor growth. In addition, the absence of PSMB4 decreased the expression of phosphorylated focal adhesion kinase and

  2. [miR-143 inhibits cell proliferation through targeted regulating the expression of K-ras gene in HeLa cells].

    Science.gov (United States)

    Qin, H X; Cui, H K; Pan, Y; Hu, R L; Zhu, L H; Wang, S J

    2016-12-23

    Objective: To explore the effect of microRNA miR-143 on the proliferation of cervical cancer HeLa cells through targeted regulating the expression of K-ras gene. Methods: The luciferase report carrier containing wild type 3'-UTR of K-ras gene (K-ras-wt) or mutated 3'-UTR of the K-ras (K-ras-mut) were co-transfected with iR-143 mimic into the HeLa cells respectively, and the targeting effect of miR-143 in the transfectants was verified by the dual luciferase report system. HeLa cells were also transfected with miR-143 mimic (miR-143 mimic group), mimic control (negative control group), and miR-143 mimic plus K-ras gene (miR-143 mimic+ K-ras group), respectively. The expression of miR-143 in the transfected HeLa cells was detected by real-time PCR (RT-PCR), and the expression of K-ras protein was detected by Western blot. The cell proliferation activity of each group was examined by MTT assay. In addition, human cervical cancer tissue samples ( n =5) and cervical intraepithelial neoplasia tissue samples ( n =5) were also examined for the expression of miR-143 and K-ras protein by RT-PCR and Western blot, respectively. Results: The luciferase report assay showed that co-transfection with miR-143 mimic decreased the luciferase activity of the K-ras-wt significantly, but did not inhibit the luciferase activity of the K-ras-mut. The expression of miR-143 in the HeLa cells transfected with miR-143 mimic was significantly higher than that in the HeLa cells transfected with the mimic control (3.31±0.45 vs 0.97±0.22, P cell proliferative activity of the miR-143 mimic group was significantly lower than that of the negative control group ( P cell proliferative activity of the miR-143 mimic+ K-ras group was also significantly lower than the control group ( P HeLa cells through targeted regulating the expression of K-ras gene. In human cervical cancer tissues of a small sample set, the expression of miR-143 is downregulated, and the expression of K-ras is upregulated.

  3. Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis of its expression in relation to cell proliferation.

    Science.gov (United States)

    Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K

    1999-09-01

    We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.

  4. Activation of β-Adrenoceptors by Dobutamine May Induce a Higher Expression of Peroxisome Proliferator-Activated Receptors δ (PPARδ in Neonatal Rat Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Ming-Ting Chou

    2012-01-01

    Full Text Available Recent evidence showed the role of peroxisome proliferator-activated receptors (PPARs in cardiac function. Cardiac contraction induced by various agents is critical in restoring the activity of peroxisome proliferator-activated receptors δ (PPARδ in cardiac myopathy. Because dobutamine is an agent widely used to treat heart failure in emergency setting, this study is aimed to investigate the change of PPARδ in response to dobutamine. Neonatal rat cardiomyocytes were used to examine the effects of dobutamine on PPARδ expression levels and cardiac troponin I (cTnI phosphorylation via Western blotting analysis. We show that treatment with dobutamine increased PPARδ expression and cTnI phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. These increases were blocked by the antagonist of β1-adrenoceptors. Also, the action of dobutamine was related to the increase of calcium ions and diminished by chelating intracellular calcium. Additionally, dobutamine-induced action was reduced by the inhibition of downstream messengers involved in this calcium-related pathway. Moreover, deletion of PPARδ using siRNA generated the reduction of cTnI phosphorylation in cardiomyocytes treated with dobutamine. Thus, we concluded that PPARδ is increased by dobutamine in cardiac cells.

  5. Arabidopsis Tic40 expression in tobacco chloroplasts results in massive proliferation of the inner envelope membrane and upregulation of associated proteins.

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Li, Ming; Lee, Sueng-Bum; Schnell, Danny; Daniell, Henry

    2008-12-01

    The chloroplast inner envelope membrane (IM) plays essential roles in lipid synthesis, metabolite transport, and cellular signaling in plants. We have targeted a model nucleus-encoded IM protein from Arabidopsis thaliana, pre-Tic40-His, by relocating its expression from the nucleus to the chloroplast genome. Pre-Tic40-His was properly targeted, processed, and inserted. It attained correct topology and was folded and assembled into a TIC complex, where it accounted for up to 15% of the total chloroplast protein. These results confirm the existence of a novel pathway for protein targeting to the IM. Tic40-His overexpression resulted in a massive proliferation of the IM (up to 19 layers in electron micrographs) without significant effects on plant growth or reproduction. Consistent with IM proliferation, the expression levels of other endogenous IM proteins (IEP37, PPT, Tic110) were significantly (10-fold) upregulated but those of outer envelope membrane (Toc159), stromal (hsp93, cpn60), or thylakoid (LHCP, OE23) proteins were not increased, suggesting retrograde signal transduction between chloroplast and nuclear genomes to increase lipid and protein components for accommodation of increased accumulation of Tic40. This study opens the door for understanding the regulation of membrane biogenesis within the organelle and the utilization of transgenic chloroplasts as bioreactors for hyperaccumulation of membrane proteins for biotechnological applications.

  6. Morphological adaptation of sheep's rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis.

    Science.gov (United States)

    Xu, Lei; Wang, Yue; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong

    2018-01-01

    The objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation. Twenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet (containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for 7 (G7, n  = 5), 14 (G14, n  = 5) and 28 d (G28, n  = 5), respectively. In contrast, the control group (CON, n  = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased ( P  genes IGFBP-2 ( P  = 0.034) and IGFBP 5 ( P  gene Caspase 8 decreased (quadratic, P  = 0.012), while Bad mRNA expression tended to decrease (cubic, P  = 0.053) after HG feeding. These results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.

  7. Discovery of peroxisome proliferator-activated receptor α (PPARα) activators with a ligand-screening system using a human PPARα-expressing cell line.

    Science.gov (United States)

    Tachibana, Keisuke; Yuzuriha, Tomohiro; Tabata, Ryotaro; Fukuda, Syohei; Maegawa, Takashi; Takahashi, Rika; Tanimoto, Keiichi; Tsujino, Hirofumi; Nunomura, Kazuto; Lin, Bangzhong; Matsuura, Yoshiharu; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro Js; Kodama, Tatsuhiko; Kobayashi, Tadayuki; Ishimoto, Kenji; Miyachi, Hiroyuki; Doi, Takefumi

    2018-05-15

    Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator responsive elements (PPRE) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of > 12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo. Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The Effect of Soy Isoflavone on the Proliferation and Differentiation of Adipose-Derived Mesenchymal Stem Cells into Chondrocytes and Expression of Collagen II and Aggrecan Genes

    Directory of Open Access Journals (Sweden)

    Fatemeh Bamdadpasand Shekarsarayi

    2017-03-01

    Full Text Available Background and Objectives: Due to the lack of blood vessels in cartilage tissue, its damage is not repairable. This study was conducted to investigate the effect of soy isoflavone on proliferation and differentiation of adipose-derived mesenchymal stem cells into chondrocytes and expression of collagen II and aggrecan genes. Methods: In this experimental study, human subcutaneous fat was obtained during liposuction and incubated with collagenase enzyme (type 1 for the breakdown of collagen, and collagenase was deactivated by DMEM medium, and was cultured in the cell sediment after centrifugation, the cells were isolated after the third passage, were placed in chondrogenic medium for differentiate into the cartilage, and were divided into three groups, including control, treatment with TGF-β1, and treatment with soy isoflavones tablets. The tablets were dissolved in distilled water, sterilized by passing through a 0.2 um filter and were added to the culture medium. After 48 hours, cell viability was determined by MTT assay, and after 14 days, collagen II and aggrecan gene expressions were assessed by real-time PCR technique. Data were statistically analyzed by one-way ANOVA and Tukey's post-hoc test using SPSS 20 and p<0.05. Results: The results of MTT assay showed a significant increase in viability in the TGF-β1 group compared to the control and soy isoflavone groups (p<0.05. The RT-PCR indicated a significant increase in the expression of collagen II and aggrecan genes in isoflavones and TGF-β1 groups compared to the control group, and also, the mean CT associated with collagen II gene had a significant increase in isoflavone and TGF-β1groups compared to the control group (p<0.05. Conclusion: Soy in culture medium increases the expression of collagen II and aggrecan genes and cell proliferation, but this increase is not high compared to the TGF-β1 group.

  9. CNPY2 promoted the proliferation of renal cell carcinoma cells and increased the expression of TP53

    International Nuclear Information System (INIS)

    Taniguchi, Hidefumi; Ito, Saya; Ueda, Takashi; Morioka, Yukako; Kayukawa, Naruhiro; Ueno, Akihisa; Nakagawa, Hideo; Fujihara, Atsuko; Ushijima, So; Kanazawa, Motohiro; Hongo, Fumiya; Ukimura, Osamu

    2017-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer. However, the mechanisms underlying the progression of the disease are not well understood. The data in this report suggest that canopy FGF signaling regulator 2 (CNPY2) is a promoter of RCC progression. We found that CNPY2 significantly promoted growth of RCC cells and upregulated TP53 gene expression. Although TP53 is widely known as a tumor suppressor, in RCC TP53 promoted tumor cell growth. A typical p53 target gene, CDKN1A, was upregulated by both p53 and CNPY2 in RCC cells, suggesting that CNPY2 increased the expression level of TP53. Consistent with these results, CNPY2 and TP53 expression levels were positively correlated in RCC patients. These findings suggested that CNPY2 promoted cancer cell growth in RCC through regulating TP53 gene expression. - Highlights: • CNPY2 promoted growth of renal cell carcinoma (RCC) cells. • TP53 expression levels were increased by CNPY2 in RCC cells. • Growth of RCC cells was promoted by TP53. • CNPY2 expression positively correlated with TP53 expression in RCC patients.

  10. Tap and Dbp5, but not Gag, are involved in DR-mediated nuclear export of unspliced Rous sarcoma virus RNA

    International Nuclear Information System (INIS)

    LeBlanc, Jason J.; Uddowla, Sabena; Abraham, Benjamin; Clatterbuck, Sarah; Beemon, Karen L.

    2007-01-01

    All retroviruses must circumvent cellular restrictions on the export of unspliced RNAs from the nucleus. While the unspliced RNA export pathways for HIV and Mason-Pfizer monkey virus are well characterized, that of Rous sarcoma virus (RSV) is not. We have previously reported that the RSV direct repeat (DR) elements are involved in the cytoplasmic accumulation of unspliced viral RNA. Here, using fluorescent in situ hybridization (FISH), we demonstrate that unspliced viral RNAs bearing a single point mutation (G8863C) in the DR exhibit a restricted cellular localization in and around the nucleus. In contrast, wild type unspliced viral RNA had a diffuse localization throughout the nucleus and cytoplasm. Since the RSV Gag protein has a transient localization in the nucleus, we examined the effect of Gag over-expression on a DR-mediated reporter construct. While Gag did not enhance DR-mediated nuclear export, the dominant-negative expression of two cellular export factors, Tap and Dbp5, inhibited expression of the same reporter construct. Furthermore, FISH studies using the dominant-negative Dbp5 demonstrated that unspliced wild type RSV RNA was retained within the nucleus. Taken together, these results further implicate the DR in nuclear RNA export through interactions with Tap and Dbp5

  11. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    Science.gov (United States)

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  12. Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice

    International Nuclear Information System (INIS)

    Girroir, Elizabeth E.; Hollingshead, Holly E.; He Pengfei; Zhu Bokai; Perdew, Gary H.; Peters, Jeffrey M.

    2008-01-01

    The expression patterns of PPARβ/δ have been described, but the majority of these data are based on mRNA data. To date, there are no reports that have quantitatively examined the expression of PPARβ/δ protein in mouse tissues. In the present study, a highly specific PPARβ/δ antibody was developed, characterized, and used to examine tissue expression patterns of PPARβ/δ. As compared to commercially available anti-PPARβ/δ antibodies, one of six polyclonal anti-PPARβ/δ antibodies developed was significantly more effective for immunoprecipitation of in vitro-translated PPARβ/δ. This antibody was used for quantitative Western blot analysis using radioactive detection methods. Expression of PPARβ/δ was highest in colon, small intestine, liver, and keratinocytes as compared to other tissues including heart, spleen, skeletal muscle, lung, brain, and thymus. Interestingly, PPARβ/δ expression was localized in the nucleus and RXRα can be co-immunoprecipitated with nuclear PPARβ/δ. Results from these studies demonstrate that PPARβ/δ expression is highest in intestinal epithelium, liver, and keratinocytes, consistent with significant biological roles in these tissues

  13. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression.

    Science.gov (United States)

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2018-01-01

    Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator

  14. Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats.

    Science.gov (United States)

    Silva, J F; Ocarino, N M; Vieira, A L S; Nascimento, E F; Serakides, R

    2013-08-01

    Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo- and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase-2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC-47, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1 and cyclooxygenase-2 (COX-2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX-2 expression in the corpus luteum (p hyperthyroidism did not alter COX-2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC-47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC-47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX-2 expression in the corpus luteum of female rats. © 2013 Blackwell Verlag GmbH.

  15. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    Science.gov (United States)

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed

  16. The role of acupuncture in controlling the gagging reflex using a review of ten cases.

    Science.gov (United States)

    Fiske, J; Dickinson, C

    2001-06-09

    The gagging reflex is a physiological reaction which safeguards the airway from foreign bodies. In some people this response is exaggerated to the extent that the acceptance/provision of dental treatment is not possible. The aim of this paper is to review the role of acupuncture in controlling gagging as a safe, cheap, quick and relatively non-invasive technique. Ten people agreed to try ear acupuncture to control gagging during dental treatment. Prior to treatment the severity of gagging was assessed. Acupuncture needles were inserted into a specific anti-gagging point on each ear, manipulated briefly and left in situ. Dental treatment was then carried out and the effectiveness of the acupuncture in preventing gagging was assessed. After treatment, the needles were removed and the patient discharged. All acupuncture was carried out by a dentist trained in its use. Four people had a severe gag reflex which made treatment impossible and six had a very severe reflex which made treatment impossible and affected their dental attendance. Ear acupuncture completely controlled the gag reflex in eight cases (23 treatment episodes) and partially controlled the reflex in two cases (two treatment episodes). Dental treatment could be carried out in all cases and at all visits. The cost of materials was 0.2 pounds per person per visit. Additional clinical time was in the order of 2-3 minutes. There were no adverse reactions to the technique and, on all occasions, patients were fit to leave the surgery and travel home unaccompanied. Ear acupuncture was successful in controlling the gag reflex. It is a safe, quick, inexpensive and relatively noninvasive technique. A controlled clinical trial is required to investigate any placebo effect.

  17. High Expression of FAM83B Predicts Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma and Correlates with Cell Cycle and Cell Proliferation.

    Science.gov (United States)

    Shen, Chao-Qin; Yan, Ting-Ting; Liu, Wei; Zhu, Xiao-Qiang; Tian, Xiang-Long; Fu, Xue-Liang; Hua, Rong; Zhang, Jun-Feng; Huo, Yan-Miao; Liu, De-Jun; Yang, Jian-Yu; Sun, Yong-Wei; Fang, Jing-Yuan; Chen, Hao-Yan; Hong, Jie

    2017-01-01

    FAM83B (family with sequence similarity 83, member B) seems to emerge as a new class of players involved in the development of a variety of malignant tumors. Yet the molecular mechanisms are not well understood. The present study is intended to investigate the expression and function of FAM83B in pancreatic ductal adenocarcinoma (PDAC). In this study, we found that the expression of FAM83B was significantly increased both in PDAC cell lines and PDAC tumor tissues. FAM83B expression was positively related with advanced clinical stage and poor vital status. Higher FAM83B expression predicted shorter overall survival in PDAC patients, regardless of lymphatic metastasis status and histological differentiation. Actually, FAM83B may act as an independent prognostic indicator as well. What's more, down-regulation of FAM83B in PDAC cells contributed to G0/G1 phase arrest and inhibition of cell proliferation. Finally, a subcutaneous xenograft model indicated that knockdown of FAM83B significantly reduced the tumor volume in vivo . Our findings have provided supporting evidence for the potential molecular biomarker role of FAM83B in PDAC. It's of great interest and broad significance to target FAM83B in PDAC, which may conduce to develop a meaningful and effective strategy in the diagnosis and treatment of PDAC.

  18. Influence of the structure of poly (L-lactic acid) electrospun fibers on the bioactivity of endothelial cells: proliferation and inflammatory cytokines expression.

    Science.gov (United States)

    Liu, Xiaoyan; Zhang, Xiazhi; Wu, Keke; Yang, Wufeng; Jiao, Yanpeng; Zhou, Changren

    2017-02-01

    Electrospinning has been used to fabricate random and aligned poly (L-lactic acid) (PLLA) fibers with three kinds of diameter under optimal conditions. The main purpose of this paper was to investigate the influence of the diameter and orientation of fibers on the bioactivity of endothelial cells, especially on the inflammatory cytokines expression. The morphology of electrospun fibers and the cells on the fibers after 3 and 6 days culture were observed by scanning electron microscopy. Also the cell proliferation activity and cell cycle were tested and the results showed that the random fibers were more favorable for endothelial cells growth. The effect of PLLA film (served as a control) and six kinds of PLLA fibers mats on the inflammatory cytokines expression after cells incubated for 2 and 4 days were investigated. It was concluded that there was more intense inflammatory cytokines expression by cells on flat PLLA film than that on electrospun fiber mats. Also the fiber diameter has greater effect on the activity and inflammatory cytokines expression of endothelial cells than the fiber orientation, in which fibers with smaller size has weaker inflammatory reaction.

  19. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma.

    Science.gov (United States)

    Gao, Ling; Ren, Wenhao; Zhang, Linmei; Li, Shaoming; Kong, Xinjuan; Zhang, Hao; Dong, Jianwei; Cai, Guangfeng; Jin, Changxiong; Zheng, Danqing; Zhi, Keqian

    2017-04-01

    PTENp1, non-coding RNA (ncRNA) pseudogene, is involved in oral squamous cell carcinoma (OSCC). The precise effects mediated by PTENp1 transcripts within intricate regulatory networks involving molecular interactions with ancestral gene PTEN and tumorigenicity in OSCC remain unclear. Here, we found that PTENp1 was aberrantly expressed in OSCC. There was a positive correlation between the expression levels of PTENp1 and PTEN. Further, we showed that PTENp1 acted as a competing endogenous RNA that protects PTEN transcripts from being inhibited by miR-21, and consequently inhibited proliferation and colony formation and triggered S-G2/M cell cycle arrest through the AKT pathway. Also, the homogeneous relationship between expression of PTENp1 and PTEN was confirmed in OSCC tumor xenografts. Finally, low expression of PTENp1 and PTEN was negatively associated with histological differentiation and OSCC prognosis. The present work provided the first evidence for the extraordinary crosstalk among PTENp1, PTEN, and miR-21, and rendered a new light on the treatment of OSCC. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Peroxisome proliferator-activated receptor α (PPARα mRNA expression in human hepatocellular carcinoma tissue and non-cancerous liver tissue

    Directory of Open Access Journals (Sweden)

    Kurokawa Tsuyoshi

    2011-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor α (PPARα regulates lipid metabolism in the liver. It is unclear, however, how this receptor changes in liver cancer tissue. On the other hand, mouse carcinogenicity studies showed that PPARα is necessary for the development of liver cancer induced by peroxisome proliferators, and the relationship between PPARα and the development of liver cancer have been the focus of considerable attention. There have been no reports, however, demonstrating that PPARα is involved in the development of human liver cancer. Methods The subjects were 10 patients who underwent hepatectomy for hepatocellular carcinoma. We assessed the expression of PPARα mRNA in human hepatocellular carcinoma tissue and non-cancerous tissue, as well as the expression of target genes of PPARα, carnitine palmitoyltransferase 1A and cyclin D1 mRNAs. We also evaluated glyceraldehyde 3-phosphate dehydrogenase, a key enzyme in the glycolytic system. Results The amounts of PPARα, carnitine palmitoyltransferase 1A and glyceraldehyde 3-phosphate dehydrogenase mRNA in cancerous sections were significantly increased compared to those in non-cancerous sections. The level of cyclin D1 mRNA tends to be higher in cancerous than non-cancerous sections. Although there was a significant correlation between the levels of PPARα mRNA and cyclin D1 mRNA in both sections, however the correlation was higher in cancerous sections. Conclusion The present investigation indicated increased expression of PPARα mRNA and mRNAs for PPARα target genes in human hepatocellular carcinoma. These results might be associated with its carcinogenesis and characteristic features of energy production.

  1. Effects of the peroxisome proliferator clofibric acid on superoxide dismutase expression in the human HepG2 hepatoma cell line.

    Science.gov (United States)

    Bécuwe, P; Bianchi, A; Keller, J M; Dauça, M

    1999-09-15

    We examined the effects of clofibric acid, a peroxisome proliferator, on the production of superoxide radicals, on the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and on the expression of superoxide dismutases (SODs) in the human HepG2 hepatoma cell line. To this end, HepG2 cells were treated for 1 or 5 days with 0.25, 0.50, or 0.75 mM clofibric acid. The production of superoxide radicals was only enhanced in HepG2 cells exposed for 5 days to the different clofibric acid concentrations. However, this overproduction of superoxide radicals was not accompanied by increased rates of lipid peroxidation, as the MDA and 4-HNE levels did not change significantly. Manganese (Mn) SOD activity was increased when HepG2 cells were treated for 1 day with 0.50 or 0.75 mM clofibric acid. For this duration of treatment, no change was observed in total SOD and copper/zinc (Cu/Zn) SOD activities. For a 5-day treatment, total SOD and MnSOD activities as well as the enzyme apoprotein and MnSOD mRNA levels increased whatever the clofibric acid concentration used. This transcriptional induction of the MnSOD gene was correlated with an activation of the activator protein-1 transcription factor for 1 and 5 days of treatment, but was independent of nuclear factor-kappa B and of peroxisome proliferator-activated receptor. On the other hand, the PP exerted very little effect if any on Cu,ZnSOD expression. In contrast to rodent data, PP treatment of human hepatoma cells induces MnSOD expression.

  2. High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer

    DEFF Research Database (Denmark)

    Rask, Lene; Balslev, Eva; Jørgensen, Stine

    2011-01-01

    features, we performed in situ hybridization and semi-quantitative assessment of the miR-21 signal on 12 LN negative grade I (assumed low risk), and 12 LN positive grade II (high risk) breast cancers. miR-21 was predominantly seen in cancer associated fibroblast-like cells, with no difference in expression......Low-risk and high-risk breast cancer patients are stratified primarily according to their lymph node (LN) status and grading. However, some low-risk patients relapse, and some high-risk patients have a favorable clinical outcome, implying a need for better prognostic and predictive tests. Micro...... RNAs are often aberrantly expressed in cancer and microRNA-21 is upregulated in a variety of cancers, including breast cancer. High miR-21 levels have been associated with poor prognosis. To determine the cellular localization of miR-21 and to compare its expression levels with histopathological...

  3. Peroxisome proliferator-activated receptor gamma and spermidine/spermine N1-acetyltransferase gene expressions are significantly correlated in human colorectal cancer

    International Nuclear Information System (INIS)

    Linsalata, Michele; Giannini, Romina; Notarnicola, Maria; Cavallini, Aldo

    2006-01-01

    The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates adipogenic differentiation and glucose homeostasis. Spermidine/spermine N 1 -acetyltransferase (SSAT) and ornithine decarboxylase (ODC) are key enzymes involved in the metabolism of polyamines, compounds that play an important role in cell proliferation. While the PPARγ role in tumour growth has not been clearly defined, the involvement of the altered polyamine metabolism in colorectal carcinogenesis has been established. In this direction, we have evaluated the PPARγ expression and its relationship with polyamine metabolism in tissue samples from 40 patients operated because of colorectal carcinoma. Since it is known that the functional role of K-ras mutation in colorectal tumorigenesis is associated with cell growth and differentiation, polyamine metabolism and the PPARγ expression were also investigated in terms of K-ras mutation. PPARγ, ODC and SSAT mRNA levels were evaluated by reverse transcriptase and real-time PCR. Polyamines were quantified by high performance liquid chromatography (HPLC). ODC and SSAT activity were measured by a radiometric technique. PPARγ expression, as well as SSAT and ODC mRNA levels were significantly higher in cancer as compared to normal mucosa. Tumour samples also showed significantly higher polyamine levels and ODC and SSAT activities in comparison to normal samples. A significant and positive correlation between PPARγ and the SSAT gene expression was observed in both normal and neoplastic tissue (r = 0.73, p < 0.0001; r = 0.65, p < 0.0001, respectively). Moreover, gene expression, polyamine levels and enzymatic activities were increased in colorectal carcinoma samples expressing K-ras mutation as compared to non mutated K-ras samples. In conclusion, our data demonstrated a close relationship between PPARγ and SSAT in human colorectal cancer and this could represent an attempt to decrease polyamine levels and to reduce cell

  4. Immunohistochemical expression of protein 53, murine double minute 2, B-cell lymphoma 2, and proliferating cell nuclear antigen in odontogenic cysts and keratocystic odontogenic tumor.

    Science.gov (United States)

    Galvão, Hebel Cavalcanti; Gordón-Núñez, Manuel Antonio; de Amorim, Rivadavio Fernandes Batista; Freitas, Roseana de Almeida; de Souza, Lelia Batista

    2013-01-01

    Even though odontogenic cysts share a similar histogenesis, they show different growth and differentiation profile due to differences in the proliferative cellular activity. We perform an immunohistochemical assessment of protein 53 (p53), proliferating cell nuclear antigen (PCNA), B-cell lymphoma 2 (bcl-2), and murine double minute 2 (MDM2) expression in odontogenic cysts and keratocystic odontogenic tumor analyzing their correlation with the biological behavior of these lesions. By the streptavidin-biotin-peroxidase method with antibodies against p53, PCNA, bcl-2, and MDM2 proteins, 11 radicular cysts, 11 dentigerous cysts, and 11 keratocystic odontogenic tumor were analyzed. The non-parametric Mann-Whitney U-test and Kruskall-Wallis test (P ≤ 0.05) were used to analyze the data. Immunopositivity for PCNA was observed in all cases appraised, predominantly in the suprabasal layer of keratocystic odontogenic tumor epithelial lining (SD ± 19.44), but no significant differences were found among the groups of lesions. Bcl-2 immunoexpression was observed especially in the basal layer of keratocystic odontogenic tumor. PCNA LI was significantly higher than bcl-2 LI in keratocystic odontogenic tumor. MDM2 and p53 immunoexpression were not detected in the lesions studied. Among the evaluated lesions, the keratocystic odontogenic tumor showed different immunoexpression of the proliferation and apoptosis markers. The results of this study suggest that the keratocystic odontogenic tumor presents distinct biological behavior of the odontogenic cysts, as for the processes of proliferation, apoptosis, and differentiation, reinforcing the information in favor of the neoplastic nature of this lesion.

  5. Modulation of expression of the nuclear receptor NR0B2 (small heterodimer partner 1 and its impact on proliferation of renal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Prestin K

    2016-08-01

    Full Text Available Katharina Prestin,1,* Maria Olbert,2,* Janine Hussner,1 Tamara L Isenegger,1 Daniel G Gliesche,1 Kerstin Böttcher,2 Uwe Zimmermann,3 Henriette E Meyer zu Schwabedissen1 1Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland; 2Center of Drug Absorption and Transport, Institute of Pharmacology, 3Department of Urology, University Medicine Greifswald, Greifswald, Germany *These authors contributed equally to this work Abstract: Mammalian nuclear receptors (NRs are transcription factors regulating the expression of target genes that play an important role in drug metabolism, transport, and cellular signaling pathways. The orphan and structurally unique receptor small heterodimer partner 1 (syn NR0B2 is not only known for its modulation of drug response, but has also been reported to be involved in hepatocellular carcinogenesis. Indeed, previous studies show that NR0B2 is downregulated in human hepatocellular carcinoma, suggesting that NR0B2 acts as a tumor suppressor via inhibition of cellular growth and activation of apoptosis in this tumor entity. The aim of our study was to elucidate whether NR0B2 may also play a role in other tumor entities. Comparing NR0B2 expression in renal cell carcinoma and adjacent nonmalignant transformed tissue revealed significant downregulation in vivo. Additionally, the impact of heterologous expression of NR0B2 on cell cycle progression and proliferation in cells of renal origin was characterized. Monitoring fluorescence intensity of resazurin turnover in RCC-EW cells revealed no significant differences in metabolic activity in the presence of NR0B2. However, there was a significant decrease of cellular proliferation in cells overexpressing this NR, and NR0B2 was more efficient than currently used antiproliferative agents. Furthermore, flow cytometry analysis showed that heterologous overexpression of NR0B2 significantly reduced the amount of cells passing the G1 phase, while on

  6. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts

    DEFF Research Database (Denmark)

    Almqvist, Sofia; Werthén, Maria; Johansson, Anna

    2010-01-01

    Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100...

  7. Fibrates suppress fibrinogen gene expression in rodents via activation of the peroxisome proliferator-activated receptor-α

    NARCIS (Netherlands)

    Kockx, M.; Gervois, P.P.; Poulain, P.; Derudas, B.; Peters, J.M.; Gonzalez, F.J.; Princen, H.M.G.; Kooistra, T.; Staels, B.

    1999-01-01

    Plasma fibrinogen levels have been identified as an important risk factor for cardiovascular diseases. Among the few compounds known to lower circulating fibrinogen levels in humans are certain fibrates. We have studied the regulation of fibrinogen gene expression by fibrates in rodents. Treatment

  8. Differential clade-specific HLA-B*3501 association with HIV-1 disease outcome is linked to immunogenicity of a single Gag epitope

    DEFF Research Database (Denmark)

    Matthews, Philippa C; Koyanagi, Madoka; Kløverpris, Henrik N

    2012-01-01

    -clade sequences, which critically reduces recognition of the Gag NY10 epitope. These data suggest that in spite of any inherent HLA-linked T-cell receptor repertoire differences that may exist, maximizing the breadth of the Gag-specific CD8(+) T-cell response, by the addition of even a single epitope, may......The strongest genetic influence on immune control in HIV-1 infection is the HLA class I genotype. Rapid disease progression in B-clade infection has been linked to HLA-B*35 expression, in particular to the less common HLA-B*3502 and HLA-B*3503 subtypes but also to the most prevalent subtype, HLA...

  9. MicroRNA-450a-3p represses cell proliferation and regulates embryo development by regulating Bub1 expression in mouse.

    Directory of Open Access Journals (Sweden)

    Min Luo

    Full Text Available Bub1 is a critical component of the spindle assembly checkpoint (SAC and closely linked to cell proliferation and differentiation. We previously found that spontaneous abortion embryos contained a low level of Bub1 protein but normal mRNA level, while the knockdown of Bub1 leads to abnormal numerical chromosomes in embryonic cells. Here, we investigated the mechanism through which governs the post-transcriptional regulation of Bub1 protein expression level. We first conducted bioinformatics analysis and identified eight putative miRNAs that may target Bub1. Luciferase reporter assay confirmed that miR-450a-3p can directly regulate Bub1 by binding to the 3'-untranslated region of Bub1 mRNA. We found that the overexpression of miR-450a-3p in mouse embryonic fibroblast (MEF cells down-regulated Bub1 protein level, repressed cell proliferation, increased apoptosis and restricted most cells in G1 phase of the cell cycle. Furthermore, when the fertilized eggs were microinjected with miR-450a-3p mimics, the cleavage of zygotes was effectively suppressed. Our results strongly suggest that an abnormally decreased Bub1 level regulated by miRNAs may be implicated in the pathogenesis of spontaneous miscarriage. Therefore, the blockade of miR-450a-3p may be explored as a novel therapeutic strategy for preventing spontaneous miscarriages.

  10. Association of high proliferation marker Ki-67 expression with DCEMR imaging features of breast: a large scale evaluation

    Science.gov (United States)

    Saha, Ashirbani; Harowicz, Michael R.; Grimm, Lars J.; Kim, Connie E.; Ghate, Sujata V.; Walsh, Ruth; Mazurowski, Maciej A.

    2018-02-01

    One of the methods widely used to measure the proliferative activity of cells in breast cancer patients is the immunohistochemical (IHC) measurement of the percentage of cells stained for nuclear antigen Ki-67. Use of Ki-67 expression as a prognostic marker is still under investigation. However, numerous clinical studies have reported an association between a high Ki-67 and overall survival (OS) and disease free survival (DFS). On the other hand, to offer non-invasive alternative in determining Ki-67 expression, researchers have made recent attempts to study the association of Ki-67 expression with magnetic resonance (MR) imaging features of breast cancer in small cohorts (AUC) of the values predicted. Our model was able to predict high versus low Ki-67 in the test set with an AUC of 0.67 (95% CI: 0.58-0.75, p<1.1e-04). Thus, a moderate strength of association of Ki-67 values and MRextracted imaging features was demonstrated in our experiments.

  11. Selenium is critical for cancer-signaling gene expression but not cell proliferation in human colon Caco-2 cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H

    2007-01-01

    Selenium (Se) is a potential anticarcinogenic nutrient, and the essential role of Se in cell growth is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. To understand the molecular basis of Se-anticancer effects at nutritional doses (nmol/L) for cultured cells, we generated Se-deficient colon Caco-2 cells by gradually reducing serum in media because serum contains a trace amount of Se. The glutathione peroxidase (GPx) activity of Se-deficient Caco-2 cells was 10.8 mU/mg protein compared to 133.6 approximately 146.3 mU/mg protein in Caco-2 cells supplemented with 500 nmol/L selenite, SeMSC or SeMet (three tested Se-chemical forms) after 7-d culture in serum free media. Interestingly, there were no detectable differences in cell growth, cell cycle progression between Se-deficient cells and cells supplemented with 500 nmol/L Se. To examine differential cancer signaling-gene expression between Se-deficient and Se-supplemented cells, we employed a cancer signal pathway-specific array assay coupled with the real time PCR analysis. Our data demonstrate that although Caco-2 cells are resistant to Se deprivation, Se may exert its anticancer property through increasing the expression of humoral defense gene (A2M) and tumor suppressor-related genes (IGFBP3, HHIP) while decreasing pro-inflammatory gene (CXC L9, HSPB2) expression.

  12. MiR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression.

    Science.gov (United States)

    Chen, Zheng-Gang; Zheng, Chuan-Yi; Cai, Wang-Qing; Li, Da-Wei; Ye, Fu-Yue; Zhou, Jian; Wu, Ran; Yang, Kun

    2017-08-11

    Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA (miR)-26b/cyclooxygenase (COX)-2 axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased level of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting miR-26b mimic into U-373 cells. The invasive cell number and wounld closing rate were reduced in U-373 cells transfected with miR-26b mimic. Besides, COX2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume and the expression of matrix metalloproteinase (MMP)-2, MMP-9). Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for treatment of glioma.

  13. Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

    International Nuclear Information System (INIS)

    Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie; Garnier, Celine; Guiguen, Francois; Jin Yuhuai; Narayan, Opendra; Chebloune, Yahia

    2007-01-01

    Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef. We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes

  14. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells.

    Directory of Open Access Journals (Sweden)

    Laura Mercurio

    Full Text Available The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM, the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC, a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells.Confocal microscopy, immunoprecipitation, western blot analyses, and the evaluation of migration and invasion potential were performed on U87MG cells after PC-PLC inhibition with the xanthate D609. The intracellular metabolome was investigated by magnetic resonance spectroscopy; lactate levels and lactate dehydrogenase (LDH activity were analyzed by colorimetric assay.Our studies demonstrated that CXCR4 and PC-PLC co-localize and are associated on U87MG cell membrane. D609 reduced CXCR4 expression, cell proliferation and invasion, interfering with AKT and EGFR activation and expression. Metabolic analyses showed a decrease in intracellular lactate concentration together with a decrement in LDH activity.Our data suggest that inhibition of PC-PLC could represent a new molecular approach in glioma biology not only for its ability in modulating cell metabolism, glioma growth and motility, but also for its inhibitory effect on crucial molecules involved in cancer progression.

  15. Decreased expression of miR‑490‑3p in colorectal cancer predicts poor prognosis and promotes cell proliferation and invasion by targeting RAB14.

    Science.gov (United States)

    Wang, Bo; Yin, Mujun; Cheng, Cheng; Jiang, Hongpeng; Jiang, Kewei; Shen, Zhanlong; Ye, Yingjiang; Wang, Shan

    2018-06-19

    Growing evidence indicates a potential role for miR‑490‑3p in tumorigenesis. However, its function in colorectal carcinoma (CRC) remains undefined. In this study, miR‑490‑3p was markedly downregulated in fifty colorectal cancer tissue samples compared with the corresponding adjacent non‑cancerous specimens, by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of miR‑490‑3p were closely associated with tumor differentiation and distant metastasis. In addition, both Kaplan-Meier and multivariate analyses indicated CRC patients with elevated miR‑490‑3p amounts had prolonged overall survival. Overexpression of miR‑490‑3p markedly reduced proliferation, colony formation and invasion in CRC cells by enhancing apoptosis and promoting G2/M phase arrest. Furthermore, ectopic expression of miR‑490‑3p resulted in decreased expression of RAB14, which was directly targeted by miR‑490‑3p, as shown by the dual-luciferase reporter gene assay. Finally, in a nude mouse model, miR‑490‑3p overexpression significantly suppressed the growth of CRC cells. The above results indicated that miR‑490‑3p might constitute a prognostic indicator and a novel molecular target for miRNA-based CRC therapy.

  16. Lysophosphatidic acid activates peroxisome proliferator activated receptor-γ in CHO cells that over-express glycerol 3-phosphate acyltransferase-1.

    Directory of Open Access Journals (Sweden)

    Cliona M Stapleton

    2011-04-01

    Full Text Available Lysophosphatidic acid (LPA is an agonist for peroxisome proliferator activated receptor-γ (PPARγ. Although glycerol-3-phosphate acyltransferase-1 (GPAT1 esterifies glycerol-3-phosphate to form LPA, an intermediate in the de novo synthesis of glycerolipids, it has been assumed that LPA synthesized by this route does not have a signaling role. The availability of Chinese Hamster Ovary (CHO cells that stably overexpress GPAT1, allowed us to analyze PPARγ activation in the presence of LPA produced as an intracellular intermediate. LPA levels in CHO-GPAT1 cells were 6-fold higher than in wild-type CHO cells, and the mRNA abundance of CD36, a PPARγ target, was 2-fold higher. Transactivation assays showed that PPARγ activity was higher in the cells that overexpressed GPAT1. PPARγ activity was enhanced further in CHO-GPAT1 cells treated with the PPARγ ligand troglitazone. Extracellular LPA, phosphatidic acid (PA or a membrane-permeable diacylglycerol had no effect, showing that PPARγ had been activated by LPA generated intracellularly. Transient transfection of a vector expressing 1-acylglycerol-3-phosphate acyltransferase-2, which converts endogenous LPA to PA, markedly reduced PPARγ activity, as did over-expressing diacylglycerol kinase, which converts DAG to PA, indicating that PA could be a potent inhibitor of PPARγ. These data suggest that LPA synthesized via the glycerol-3-phosphate pathway can activate PPARγ and that intermediates of de novo glycerolipid synthesis regulate gene expression.

  17. Short-hairpin Mediated Myostatin Knockdown Resulted in Altered Expression of Myogenic Regulatory Factors with Enhanced Myoblast Proliferation in Fetal Myoblast Cells of Goats.

    Science.gov (United States)

    Kumar, Rohit; Singh, Satyendra Pal; Mitra, Abhijit

    2018-01-02

    Myostatin (MSTN) is a well-known negative regulator of skeletal muscle development. Reduced expression due to natural mutations in the coding region and knockout as well as knockdown of MSTN results in an increase in the muscle mass. In the present study, we demonstrated as high as 60 and 52% downregulation (p < 0.01) of MSTN mRNA and protein in the primary fetal myoblast cells of goats using synthetic shRNAs (n = 3), without any interferon response. We, for the first time, evaluated the effect of MSTN knockdown on the expression of MRFs (namely, MyoD, Myf5), follistatin (FST), and IGFs (IGF-1 & IGF-2) in goat myoblast cells. MSTN knockdown caused an upregulation (p < 0.05) of MyoD and downregulation (p < 0.01) of MYf5 and FST expression. Moreover, we report up to ∼four fold (p < 0.001) enhanced proliferation in myoblasts after four days of culture. The anti-MSTN shRNA demonstrated in the present study could be used for the production of transgenic goats to increase the muscle mass.

  18. Palateless custom bar supported overdenture: A treatment modality to treat patient with severe gag reflex

    Directory of Open Access Journals (Sweden)

    Kunwarjeet Singh

    2012-01-01

    Conclusion: Palateless custom bar supported overdenture procedure can be successfully used for the management of patients with severe gag reflex with improved denture retention, stability, chewing efficiency and comfort of the patient.

  19. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line

    Directory of Open Access Journals (Sweden)

    Y Kobayashi

    2009-06-01

    Full Text Available Low-intensity pulsed ultrasound (LIPUS stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1 exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x105 cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm2 compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF. These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration.

  20. Anti-RhoC siRNAs inhibit the proliferation and invasiveness of breast cancer cells via modulating the KAI1, MMP9, and CXCR4 expression

    Directory of Open Access Journals (Sweden)

    Xu X

    2017-03-01

    Full Text Available Xu-Dong Xu,1 Han-Bin Shen,1 Li Zhu,2 Jian-Qin Lu,2 Lin Zhang,3 Zhi-Yong Luo,3 Ya-Qun Wu3 1Department of Thyroid and Breast Surgery, The Fifth Hospital of Wuhan, Hanyang District, 2Department of Oncology, 3Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China Abstract: Overexpression of RhoC in breast cancer cells indicates poor prognosis. In the present study, we aim to investigate the possible antitumor effects of anti-RhoC small-interfering RNA (siRNA in inflammatory breast cancer cells. In this study, a specific anti-RhoC siRNA was used to inhibit RhoC synthesis. Transfection of anti-RhoC siRNA into two IBC cells SUM149 and SUM190 induced extensive degradation of target mRNA and led to significant decrease in the synthesis of protein. Anti-RhoC siRNA inhibited cell proliferation and invasion, increased cell apoptosis, and induced cell cycle arrest in vitro. Moreover, the transfection of siRNA increased the expression of KAI1 and decreased the expression of MMP9 and CXCR4 in both mRNA and protein levels. Furthermore, transplantation tumor experiments in BALB/c-nu mice showed that intratumoral injection of anti-RhoC siRNA inhibited tumor growth and increased survival rate. Our results suggested that RhoC gene silencing with specific anti-RhoC siRNA would be a potential therapeutic method for metastatic breast cancer. Keywords: gene silencing, proliferation, apoptosis, cell cycle arrest

  1. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression.

    Science.gov (United States)

    Zhang, E-b; Yin, D-d; Sun, M; Kong, R; Liu, X-h; You, L-h; Han, L; Xia, R; Wang, K-m; Yang, J-s; De, W; Shu, Y-q; Wang, Z-x

    2014-05-22

    Recently, a novel class of transcripts, long non-coding RNAs (lncRNAs), is being identified at a rapid pace. These RNAs have critical roles in diverse biological processes, including tumorigenesis. Here we report that taurine-upregulated gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is generally downregulated in non-small cell lung carcinoma (NSCLC) tissues. In a cohort of 192 NSCLC patients, the lower expression of TUG1 was associated with a higher TNM stage and tumor size, as well as poorer overall survival (PTUG1 expression serves as an independent predictor for overall survival (PTUG1 expression was induced by p53, and luciferase and chromatin immunoprecipitation (ChIP) assays confirmed that TUG1 was a direct transcriptional target of p53. TUG1 knockdown significantly promoted the proliferation in vitro and in vivo. Moreover, the lncRNA-mediated regulation of the expression of HOX genes in tumorigenesis and development has been recently receiving increased attention. Interestingly, inhibition of TUG1 could upregulate homeobox B7 (HOXB7) expression; ChIP assays demonstrated that the promoter of HOXB7 locus was bound by EZH2 (enhancer of zeste homolog 2), a key component of PRC2, and was H3K27 trimethylated. This TUG1-mediated growth regulation is in part due to specific modulation of HOXB7, thus participating in AKT and MAPK pathways. Together, these results suggest that p53-regulated TUG1 is a growth regulator, which acts in part through control of HOXB7. The p53/TUG1/PRC2/HOXB7 interaction might serve as targets for NSCLC diagnosis and therapy.

  2. Over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available Sodium antimony gluconate (SAG unresponsiveness of Leishmania donovani (Ld had effectively compromised the chemotherapeutic potential of SAG. 60s ribosomal L23a (60sRL23a, identified as one of the over-expressed protein in different resistant strains of L.donovani as observed with differential proteomics studies indicates towards its possible involvement in SAG resistance in L.donovani. In the present study 60sRL23a has been characterized for its probable association with SAG resistance mechanism.The expression profile of 60s ribosomal L23a (60sRL23a was checked in different SAG resistant as well as sensitive strains of L.donovani clinical isolates by real-time PCR and western blotting and was found to be up-regulated in resistant strains. Ld60sRL23a was cloned, expressed in E.coli system and purified for raising antibody in swiss mice and was observed to have cytosolic localization in L.donovani. 60sRL23a was further over-expressed in sensitive strain of L.donovani to check its sensitivity profile against SAG (Sb V and III and was found to be altered towards the resistant mode.This study reports for the first time that the over expression of 60sRL23a in SAG sensitive parasite decreases the sensitivity of the parasite towards SAG, miltefosine and paramomycin. Growth curve of the tranfectants further indicated the proliferative potential of 60sRL23a assisting the parasite survival and reaffirming the extra ribosomal role of 60sRL23a. The study thus indicates towards the role of the protein in lowering and redistributing the drug pressure by increased proliferation of parasites and warrants further longitudinal study to understand the underlying mechanism.

  3. An anticholinergic reverses motor control and corticostriatal LTD deficits in Dyt1 ΔGAG knock-in mice.

    Science.gov (United States)

    Dang, Mai T; Yokoi, Fumiaki; Cheetham, Chad C; Lu, Jun; Vo, Viet; Lovinger, David M; Li, Yuqing

    2012-01-15

    DYT1 early-onset generalized torsion dystonia is an inherited movement disorder associated with mutations in DYT1 that codes for torsinA protein. The most common mutation seen in this gene is a trinucleotide deletion of GAG. We previously reported a motor control deficit on a beam-walking task in our Dyt1 ΔGAG knock-in heterozygous mice. In this report we show the reversal of this motor deficit with the anticholinergic trihexyphenidyl (THP), a drug commonly used to treat movement problems in dystonia patients. THP also restored the reduced corticostriatal long-term depression (LTD) observed in these mice. Corticostriatal LTD has long been known to be dependent on D2 receptor activation. In this mouse model, striatal D2 receptors were expressed at lower quantities in comparison to wild-type mice. Furthermore, the mice were also partially resistant to FPL64176, an agonist of L-type calcium channels that have been previously reported to cause severe dystonic-like symptoms in wild-type mice. Our findings collectively suggest that altered communication between cholinergic interneurons and medium spiny neurons is responsible for the LTD deficit and that this synaptic plasticity modification may be involved in the striatal motor control abnormalities in our mouse model of DYT1 dystonia. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes.

    Science.gov (United States)

    Setz, Christian; Friedrich, Melanie; Rauch, Pia; Fraedrich, Kirsten; Matthaei, Alina; Traxdorf, Maximilian; Schubert, Ulrich

    2017-08-12

    In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)-the proteasome holoenzymes and a number of ubiquitin ligases-play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1 NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.

  5. Specificity of Plasma Membrane Targeting by the Rous Sarcoma Virus Gag Protein

    OpenAIRE

    Scheifele, Lisa Z.; Rhoads, Jonathan D.; Parent, Leslie J.

    2003-01-01

    Budding of C-type retroviruses begins when the viral Gag polyprotein is directed to the plasma membrane by an N-terminal membrane-binding (M) domain. While dispersed basic amino acids within the M domain are critical for stable membrane association and consequent particle assembly, additional residues or motifs may be required for specific plasma membrane targeting and binding. We have identified an assembly-defective Rous sarcoma virus (RSV) Gag mutant that retains significant membrane affin...

  6. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Li, Jinru; Wang, Bo [College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Chen, Linfeng [Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, Boston, 02115 MA (United States); Niu, Wenyan; Yao, Zhi [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); Baniahmad, Aria, E-mail: aban@mti.uni-jena.de [Institute for Human Genetics, Jena University Hospital, 07740 Jena (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  7. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  8. Potent nonnucleoside reverse transcriptase inhibitors target HIV-1 Gag-Pol.

    Directory of Open Access Journals (Sweden)

    Anna Figueiredo

    2006-11-01

    Full Text Available Nonnucleoside reverse transcriptase inhibitors (NNRTIs target HIV-1 reverse transcriptase (RT by binding to a pocket in RT that is close to, but distinct, from the DNA polymerase active site and prevent the synthesis of viral cDNA. NNRTIs, in particular, those that are potent inhibitors of RT polymerase activity, can also act as chemical enhancers of the enzyme's inter-subunit interactions. However, the consequences of this chemical enhancement effect on HIV-1 replication are not understood. Here, we show that the potent NNRTIs efavirenz, TMC120, and TMC125, but not nevirapine or delavirdine, inhibit the late stages of HIV-1 replication. These potent NNRTIs enhanced the intracellular processing of Gag and Gag-Pol polyproteins, and this was associated with a decrease in viral particle production from HIV-1-transfected cells. The increased polyprotein processing is consistent with premature activation of the HIV-1 protease by NNRTI-enhanced Gag-Pol multimerization through the embedded RT sequence. These findings support the view that Gag-Pol multimerization is an important step in viral assembly and demonstrate that regulation of Gag-Pol/Gag-Pol interactions is a novel target for small molecule inhibitors of HIV-1 production. Furthermore, these drugs can serve as useful probes to further understand processes involved in HIV-1 particle assembly and maturation.

  9. Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers

    Directory of Open Access Journals (Sweden)

    Muriaux Delphine

    2007-08-01

    Full Text Available Abstract Background The HIV-1 nucleocapsid protein (NC is formed of two CCHC zinc fingers flanked by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse transcriptase (RT, gRNA dimerization and packaging, and virion assembly. Results We previously reported a role for the first NC zinc finger in virion structure and replication 1. To investigate the role of both NC zinc fingers in intracellular Gag trafficking, and in virion assembly, we generated series of NC zinc fingers mutations. Results show that all Zinc finger mutations have a negative impact on virion biogenesis and maturation and rendered defective the mutant viruses. The NC zinc finger mutations caused an intracellular accumulation of Gag, which was found either diffuse in the cytoplasm or at the plasma membrane but not associated with endosomal membranes as for wild type Gag. Evidences are also provided showing that the intracellular interactions between NC-mutated Gag and the gRNA were impaired. Conclusion These results show that Gag oligomerization mediated by gRNA-NC interactions is required for correct Gag trafficking, and assembly in HIV-1 producing cells and the release of infectious viruses.

  10. Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly.

    Science.gov (United States)

    Olson, Erik D; Musier-Forsyth, Karin

    2018-03-31

    Retroviral Gag proteins are responsible for coordinating many aspects of virion assembly. Gag possesses two distinct nucleic acid binding domains, matrix (MA) and nucleoc