WorldWideScience

Sample records for proliferation apoptosis angiogenesis

  1. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    Science.gov (United States)

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  2. Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Dong, L.F.; Swettenham, E.; Eliasson, J.; Wang, X. F.; Gold, M.; Medunic, Y.; Stantic, M.; Low, P.; Procházka, L.; Witting, P. K.; Turánek, J.; Akporiaye, E.T.; Ralph, S.J.; Neužil, Jiří

    2007-01-01

    Roč. 67, č. 24 (2007), s. 11906-11913 ISSN 0008-5472 R&D Projects: GA AV ČR KAN200520703; GA AV ČR IAA500520602 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : mitocans * proliferating endothelial cells * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.672, year: 2007

  3. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  4. Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats.

    Science.gov (United States)

    Silva, J F; Ocarino, N M; Vieira, A L S; Nascimento, E F; Serakides, R

    2013-08-01

    Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo- and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase-2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC-47, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1 and cyclooxygenase-2 (COX-2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX-2 expression in the corpus luteum (p hyperthyroidism did not alter COX-2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC-47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC-47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX-2 expression in the corpus luteum of female rats. © 2013 Blackwell Verlag GmbH.

  5. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  6. Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Zhou, Yufei; Li, Shaoxia; Li, Jiangtao; Wang, Dongfeng; Li, Quanxing

    2017-01-01

    This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC). NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis. The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis. These findings indicated that miR-135a promotes cell apoptosis and inhibits

  7. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    Science.gov (United States)

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis.

    Science.gov (United States)

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK as well as MMP-9.

  9. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10 -5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  10. Prognostic implication of apoptosis and angiogenesis in cervical uteri cancer

    International Nuclear Information System (INIS)

    Zaghloul, Mohamed S.; El Naggar, Mervat; El Deeb, Amany; Khaled, Hussein; Mokhtar, Nadia

    2000-01-01

    Purpose: A retrospective study was performed to investigate the relationship between spontaneous apoptosis and angiogenesis uterine cervix squamous cell carcinoma patients. The prognostic value of each (and both) of these biologic parameters was also tested. Methods and Materials: The pathologic materials of 40 cervical uteri squamous cell carcinoma patients were examined and immunohistochemically stained to determine the tumor angiogenesis (tumor microvascular score), using factor VIII-related antigen, and their tumor apoptotic index (AI), using the TdT-mediated dUTP nick end-labeling (TUNEL) method. Three patients were Stage I, 18 were Stage II, 15 were Stage III, and 4 were Stage IV (FIGO classification). All patients were treated with radical radiotherapy and all had follow-up for more than 2 years. Results: The mean AI was 15.1 ± 12.8, with a median of 8.3. The mean tumor microvascular score was 3 9.7 ± 14.4, with a median of 3 8. The patients' age and tumor grade did not seem to significantly affect the prognosis. On the other hand, AI and angiogenesis (tumor microvascular score) were of high prognostic significance. The 3-year disease-free survival (DFS) rate for the patients having AI above the median was 78% (confidence interval [CI] 69-87%), compared to 32% (CI 22-42%) for those having AI below the median. The DFS was 18% (CI 9-27%) for patients having an angiogenesis score above the median, while it was 86% (CI 78-94%) for those patients having a score below the median. Conclusion: Determination of both tumor microvascular score and AI can identify patients with the best prognosis of 100% DFS (with low angiogenesis score and high AI). Women with a high score and low AI had the worst prognosis (DFS = 3%, CI 1-5%). Moreover, high AI can compensate partially for the aggressive behavior of tumors showing a high rate of angiogenesis.

  11. Solena amplexicaulis induces cell cycle arrest, apoptosis and inhibits angiogenesis in hepatocarcinoma cells and HUVECs.

    Science.gov (United States)

    Ren, Jie; Xu, Yuan Yuan; Jiang, He Fei; Yang, Meng; Huang, Qian Hui; Yang, Jie; Hu, Kun; Wei, Kun

    2014-01-01

    Solena amplexicaulis (Lam.) Gandhi (SA) has been used as a traditional medicine for the treatment of dysentery, multiple abscess, gastralgia, urethritis, and eczema in the minority area of China. This study was aimed to examine the cell proliferation inhibitory activity of the SA extract (SACE) and its mechanism of action in human hepatoma cell line (HepG2) and evaluate its anti-angiogenesis activity in human umbilical vein endothelial cell line (HUVEC). SACE could inhibit the growth of HepG2 cells in a dose- and time-dependent manner. FCM analysis showed that SACE could induce G2/M phase arrest, cell apoptosis, the mitochondrial membrane potential loss (ΔΨm) and increase the production of intracellular ROS of HepG2 cells. After treatment with SACE, topical morphological changes of apoptotic body formation, obvious increase of apoptosis-related protein expressions, such as Bax, cytochrome c, caspase-3, PARP-1, and decrease of Bcl-2, procaspase-9 protein expressions were observed at the same time. Moreover, SACE caused the significant inhibition of endothelial cell migration and tube formation in HUVEC cells. The results suggested that SACE could act as an angiogenesis inhibitor and induce cell apoptosis via a caspase-dependent mitochondrial pathway. Therefore, SACE could be a potent candidate for the prevention and treatment of liver cancer.

  12. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    Science.gov (United States)

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  13. Role of PD 0332991 on the Proliferation and Apoptosis of Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chenlong ZHAO

    2018-05-01

    Full Text Available Background and objective Angiogenesis is an important process in the development of tumor. PD 0332991, a cell cycle inhibitor, can specifically inhibit CD4/6 phosphorylation and cell cycle progression. In xeongraft mice models, PD 0332991 treated mice had significantly decreased angiogenesis and vascular density compared with the control group, but the mechanism remains unknown. The purpose of this study is to investigate the role and molecular mechanism of PD 0332991 on vascular endothelial cells. Methods EA.hy926 cells, a kind of vascular endothelial cell, were used as the research model. The effects of PD 0332991 on the activity and proliferation of EA.hy926 cells were detected by the MTT, EdU assays. Wound-healing assays and transwell assays were used to determine the effects of PD 0332991 on the mobility of EA.hy926. The influence of PD 0332991 on cell cycle and apoptosis of endothelial cells was tested by flow cytometry, and the Western blot was applied to observe the expression of cell cycle related proteins in EA.hy926 cells treated by PD 0332991. Results PD 0332991 significantly inhibited the proliferation and mobility of EA.hy926 cells, caused cell cycle arrest and apoptosis. At the same time, PD 0332991 inhibited the expression of CDK4/6 and phosphorylation of Rb, and thus inhibited the cell cycle progression of EA.hy926 cells. Conclusion PD 0332991 can inhibit the proliferation and activity of endothelial cells and induces apoptosis.

  14. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  15. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model.

    Science.gov (United States)

    Shi, Jian-Hong; Cui, Nai-Peng; Wang, Shuo; Zhao, Ming-Zhi; Wang, Bing; Wang, Ya-Nan; Chen, Bao-Ping

    2016-01-01

    Y-box-binding protein 1 (YB1) is a multifunctional transcription factor with vital roles in proliferation, differentiation and apoptosis. In this study, we have examined the role of its C-terminal domain (YB1 CTD) in proliferation, angiogenesis and tumorigenicity in breast cancer. Breast cancer cell line SK-BR-3 was infected with GFP-tagged YB1 CTD adenovirus expression vector. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay showed that YB1 CTD decreased SK-BR-3 cell proliferation, and down-regulated cyclin B1 and up-regulated p21 levels in SK-BR-3 cells. YB1 CTD overexpression changed the cytoskeletal organization and slightly inhibited the migration of SK-BR-3 cells. YB1 CTD also inhibited secreted VEGF expression in SK-BR-3 cells, which decreased SK-BR-3-induced EA.hy926 endothelial cell angiogenesis in vitro. YB1 CTD overexpression attenuated the ability of SK-BR-3 cells to form tumours in nude mice, and decreased in vivo VEGF levels and angiogenesis in the xenografts in SK-BR-3 tumour-bearing mice. Taken together, our findings demonstrate the vital role of YB1 CTD overexpression in inhibiting proliferation, angiogenesis and tumorigenicity of breast cancer cell line SK-BR-3.

  16. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy

    Directory of Open Access Journals (Sweden)

    Carlos Rosas

    2014-01-01

    Full Text Available BACKGROUND: During the last few years it has been shown in several laboratories that Celecoxib (Cx, a non-steroidal anti-inflammatory agent (NSAID normally used for pain and arthritis, mediates antitumor and antiangiogenic effects. However, the effects of this drug on a tumor cell line resistant to chemotherapeutical drugs used in cancer have not been described. Herein we evaluate the angiogenic and antitumor effects of Cx in the development of a drug-resistant mammary adenocarcinoma tumor (TA3-MTXR. RESULTS: Cx reduces angiogenesis in the chick embryonic chorioallantoic membrane assay (CAM, inhibits the growth and microvascular density of the murine TA3-MTXR tumor, reduces microvascular density of tumor metastases, promotes apoptosis and reduces vascular endothelial growth factor (VEGF production and cell proliferation in the tumor. CONCLUSION: The antiangiogenic and antitumor Cx effects correlate with its activity on other tumor cell lines, suggesting that Prostaglandins (PGs and VEGF production are involved. These results open the possibility of using Celecoxib combined with other experimental therapies, ideally aiming to get synergic effects.

  17. Rapamycin enhances the anti-angiogenesis and anti-proliferation ability of YM155 in oral squamous cell carcinoma.

    Science.gov (United States)

    Li, Kong-Liang; Wang, Yu-Fan; Qin, Jia-Ruo; Wang, Feng; Yang, Yong-Tao; Zheng, Li-Wu; Li, Ming-Hua; Kong, Jie; Zhang, Wei; Yang, Hong-Yu

    2017-06-01

    YM155, a small molecule inhibitor of survivin, has been studied in many tumors. It has been shown that YM155 inhibited oral squamous cell carcinoma through promoting apoptosis and autophagy and inhibiting proliferation. It was found that YM155 also inhibited the oral squamous cell carcinoma-mediated angiogenesis through the inactivation of the mammalian target of rapamycin pathway. Rapamycin, a mammalian target of rapamycin inhibitor, played an important role in the proliferation and angiogenesis of oral squamous cell carcinoma cell lines. In our study, cell proliferation assay, transwell assay, tube formation assay, and western blot assay were used to investigate the synergistic effect of rapamycin on YM155 in oral squamous cell carcinoma. Either in vitro or in vivo, rapamycin and YM155 exerted a synergistic effect on the inhibition of survivin and vascular endothelial growth factor through mammalian target of rapamycin pathway. Overall, our results revealed that low-dose rapamycin strongly promoted the sensitivity of oral squamous cell carcinoma cell lines to YM155.

  18. Effect of triptolide on proliferation and apoptosis of angiotensin II ...

    African Journals Online (AJOL)

    Background: The effect of triptolide (TPL) on cardiac fibroblasts (CFbs) and cardiac fibrosis remain unknown till now. This study was conducted to explore the effects of TPL on proliferation and apoptosis of angiotensin II (Ang II)-induced CFbs. Materials and Methods: Ang II was used to promote proliferation of CFbs.

  19. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  20. Peroxisome Proliferator-Activated Receptor-γ Ligands: Potential Pharmacological Agents for Targeting the Angiogenesis Signaling Cascade in Cancer

    Directory of Open Access Journals (Sweden)

    Costas Giaginis

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPAR-γ has currently been considered as molecular target for the treatment of human metabolic disorders. Experimental data from in vitro cultures, animal models, and clinical trials have shown that PPAR-γ ligand activation regulates differentiation and induces cell growth arrest and apoptosis in a variety of cancer types. Tumor angiogenesis constitutes a multifaceted process implicated in complex downstream signaling pathways that triggers tumor growth, invasion, and metastasis. In this aspect, accumulating in vitro and in vivo studies have provided extensive evidence that PPAR-γ ligands can function as modulators of the angiogenic signaling cascade. In the current review, the crucial role of PPAR-γ ligands and the underlying mechanisms participating in tumor angiogenesis are summarized. Targeting PPAR-γ may prove to be a potential therapeutic strategy in combined treatments with conventional chemotherapy; however, special attention should be taken as there is also substantial evidence to support that PPAR-γ ligands can enhance angiogenic phenotype in tumoral cells.

  1. IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Rosana D Meyer

    Full Text Available Vascular endothelial growth factor receptor-2 (VEGFR-2 signaling is an obligate requirement for normal development and pathological angiogenesis such as cancer and age-related macular degeneration. Although autophosphorylation of tyrosine 1173 (Y1173 of VEGFR-2 is considered a focal point for its angiogenic signal relay, however, the mechanism of phosphorylation of Y1173, signaling proteins that are recruited to this residue and their role in angiogenesis is not fully understood.In this study we demonstrate that c-Src kinase directly through its Src homology 2 (SH2 domain and indirectly via c-Cbl binds to phospho-Y1057 of VEGFR-2. Activation of c-Src kinase by a positive feedback mechanism phosphorylates VEGFR-2 at multi-docking site, Y1173. c-Src also catalyzes tyrosine phosphorylation of IQGAP1 and acts as an adaptor to bridge IQGAP1 to VEGFR-2. In turn, IQGAP1 activates b-Raf and mediates proliferation of endothelial cells. Silencing expression of IQGAP1 and b-Raf revealed that their activity is essential for VEGF to stimulate angiogenesis in an in vivo angiogenesis model of chicken chorioallantoic membrane (CAM.Angiogenesis contributes to the pathology of numerous human diseases ranging from cancer to age-related macular degeneration. Determining molecular mechanism of tyrosine phosphorylation of VEGFR-2 and identification of molecules that are relaying its angiogenic signaling may identify novel targets for therapeutic intervention against angiogenesis-associated diseases. Our study shows that recruitment and activation of c-Src by VEGFR-2 plays a pivotal role in relaying angiogenic signaling of VEGFR-2; it phosphorylates VEGFR-2 at Y1173, facilitates association and activation of IQGAP1 and other signaling proteins to VEGFR-2. IQGAP1-dependent signaling, in part, is critically required for endothelial cell proliferation, a key step in angiogenesis. Thus, Y1057 of VEGFR-2 serves to regulate VEGFR-2 function in a combinatorial manner by

  2. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    OpenAIRE

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa...

  3. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines. Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of ...

  4. Paris polyphylla extract inhibits proliferation and promotes apoptosis ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Paris polyphylla extract (PPE) on proliferation and apoptosis in A549 human lung cancer cells. Methods: Morphological changes were examined by microscopy in A549 cells after exposure to PPE. Trypan blue staining of living cells was used to aid the construction of the cell growth curve ...

  5. ADAM-17 regulates endothelial cell morphology, proliferation, and in vitro angiogenesis

    International Nuclear Information System (INIS)

    Goeoz, Pal; Goeoz, Monika; Baldys, Aleksander; Hoffman, Stanley

    2009-01-01

    Modulation of angiogenesis is a promising approach for treating a wide variety of human diseases including ischemic heart disease and cancer. In this study, we show that ADAM-17 is an important regulator of several key steps during angiogenesis. Knocking down ADAM-17 expression using lentivirus-delivered siRNA in HUVECs inhibited cell proliferation and the ability of cells to form close contact in two-dimensional cultures. Similarly, ADAM-17 depletion inhibited the ability of HUVECs to form capillary-like networks on top of three-dimensional Matrigel as well as in co-culture with fibroblasts within a three-dimensional scaffold. In mechanistic studies, both baseline and VEGF-induced MMP-2 activation and Matrigel invasion were inhibited by ADAM-17 depletion. Based on our findings we propose that ADAM-17 is part of a novel pro-angiogenic pathway leading to MMP-2 activation and vessel formation.

  6. Effects of electrical stimulation on cell proliferation and apoptosis.

    Science.gov (United States)

    Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-03-01

    The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.

  7. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells

    OpenAIRE

    Lu, Yong; Jiang, Feng; Jiang, Hao; Wu, Kalina; Zheng, Xuguang; Cai, Yizhong; Katakowski, Mark; Chopp, Michael; To, Shing-Shun Tony

    2010-01-01

    Gallic acid, an organic acid, also known as 3,4,5-trihydroxybenzoic acid, is cytotoxic against certain cancer cells, without harming normal cells. The objective of this study is to evaluate whether gallic acid can inhibit glioma cell viability, proliferation, invasion and reduce glioma cell mediated angiogenesis. Treatment of U87 and U251n glioma cells with gallic acid inhibited cell viability in a dose- and time-dependent manner. BrdU and tube formation assays indicated that gallic acid sign...

  8. Effect of ozone therapy on cell apoptosis and angiogenesis in retina tissue of diabetic retinopathy rats

    Institute of Scientific and Technical Information of China (English)

    Xiao Liu

    2016-01-01

    ABSTRACT Objective:To study the effect of ozone therapy on cell apoptosis and angiogenesis in retina tissue of diabetic retinopathy rats.Methods:SD rats were selected as experimental animals and divided into control group, model group and ozone group, and after diabetic models were built, ozone enema was conducted. Retina tissue was collected, TUNEL kits were used to detect the number of apoptotic cells, and Elisa kits were used to detect the contents of nerve damage molecules, angiogenesis-related molecules and endoplasmic reticulum stress molecules. Results:The number of apoptotic cells in retina tissue of model group was significantly more than that of control group, and the number of apoptotic cells in retina tissue of ozone group was significantly less than that of model group; NgR, NR2B, ERK1, ERK2, GFAP, VEGF, STAT-3, HIF-1α, Apelin, APJ, PERK, IRE-1α, ATF-6, eIF2α and XBP-1 contents in retina tissue of model group were significantly higher than those of control group, and PEDF content was lower than that of control group; NgR, NR2B, ERK1, ERK2, GFAP, VEGF, STAT-3, HIF-1α, Apelin, APJ, PERK, IRE-1α, ATF-6, eIF2α and XBP-1 contents in retina tissue of ozone group were significantly lower than those of model group, and PEDF content was higher than that of model group.Conclusion:Ozone therapy can reduce the number of apoptotic cells while reduce nerve cell injury and inhibit angiogenesis and endoplasmic reticulum stress in retina tissue of diabetic rats.

  9. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.

    Science.gov (United States)

    Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.

  10. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    Science.gov (United States)

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  11. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension.

    Science.gov (United States)

    Xu, Weiling; Erzurum, Serpil C

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH. © 2011 American Physiological Society.

  12. The Use of Novel PET Tracers to Image Breast Cancer Biologic Processes Such as Proliferation, DNA Damage and Repair, and Angiogenesis.

    Science.gov (United States)

    Kenny, Laura

    2016-02-01

    The balance between proliferation and cell death is pivotal to breast tumor growth. Because of a combination of environmental and genetic factors leading to activation of oncogenes or inactivation of tumor suppressor genes, these processes become deregulated in cancer. PET imaging of proliferation, angiogenesis, and DNA damage and repair offers the opportunity to monitor therapeutic efficacy to detect changes in tumor biology that may precede physical size reduction and simultaneously allows the study of intratumoral and intertumoral heterogeneity.This review examines recent developments in breast cancer imaging using novel probes. The probes discussed here are not licensed for routine use and are at various stages of development ranging from preclinical development (e.g., the DNA repair marker γH2AX) to clinical validation in larger studies (such as the proliferation probe 3'-deoxy-3'-(18)F-fluorothymidine [(18)F-FLT]). In breast cancer, most studies have focused on proliferation imaging mainly based on (18)F-labeled thymidine analogs. Initial studies have been promising; however, the results of larger validation studies are necessary before being incorporated into routine clinical use. Although there are distinct advantages in using process-specific probes, properties such as metabolism need careful consideration, because high background uptake in the liver due to glucuronidation in the case of (18)F-FLT may limit utility for imaging of liver metastases.Targeting angiogenesis has had some success in tumors such as renal cell carcinoma; however, angiogenesis inhibitors have not been particularly successful in the clinical treatment of breast cancer. This could be potentially attributed to patient selection due to the lack of validated predictive and responsive biomarkers; the quest for a successful noninvasive biomarker for angiogenesis could solve this challenge. Finally, we look at cell death including apoptosis and DNA damage and repair probes, the most well

  13. Leptin Regulates Proliferation and Apoptosis in Human Prostate

    Directory of Open Access Journals (Sweden)

    Eduardo Leze

    2012-01-01

    Full Text Available This paper aimed to evaluate the leptin role on the cellular proliferation and the expression of fibroblast growth factor 2, aromatase enzyme, and apoptotic genes in the human prostate tissue. Methods. Fifteen samples of hyperplasic prostate tissue were divided in four symmetric parts maintained in RPMI medium supplemented with 10% fetal bovine serum, 1 ng/mL of gentamicin, and added with 50 ng/mL leptin (L or not (C. After 3 hours of incubation, gene expression was evaluated by real time RT-PCR. Cellular proliferation was evaluated by immunohistochemistry for PCNA. Results. The leptin treatment led to an increase cellular proliferation (C=21.8±0.5; L=64.8±0.9; P<0.0001 and in the expression of Bax (C=0.4±0.1; L=0.9±0.2; P<0.05 while Bcl-2 (C=19.9±5.6; L=5.6±1.8; P<0.05, Bcl-x (C=0.2±0.06; L=0.07±0.02; P<0.05, and aromatase expressions (C=1.9±0.6; L=0.4±0.1; P<0.04 were significantly reduced. Conclusion. Leptin has an important role in maintaining the physiological growth of the prostate since it stimulates both cellular proliferation and apoptosis, with the decrement in the aromatase gene expression.

  14. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  15. Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells

    Science.gov (United States)

    Gai, Jun-Wei; Wahafu, Wasilijiang; Song, Liming; Ping, Hao; Wang, Mingshuai; Yang, Feiya; Niu, Yinong; Qing, Wei; Xing, Nianzeng

    2018-01-01

    The aim of the present study was to investigate the expression and potential roles of CD74 in human urothelial cell carcinoma of the bladder (UCB) in vitro and in vivo. CD74 and macrophage migration inhibitory factor (MIF) were located and assayed in normal and UCB samples and cell lines using immunostaining. CD74 was knocked down using CD74 shRNA lentiviral particles in HT-1376 cells. The proliferative, invasive potential and microvessel density (MVD) of knockdown-CD74 HT-1376 cells were analyzed in vitro or in vivo. The expression of CD74 in an additional high grade UCB J82 cell line was also verified in vivo. All experiments were repeated at least 3 times. The majority of muscle-invasive bladder cancer (MIBC) samples, and only one high grade UCB cell line, HT-1376, expressed CD74, compared with normal, non-muscle-invasive bladder cancer (NMIBC) samples and other cell lines. The levels of proliferation and invasion were decreased in the CD74 knockdown-HT-1376 cells, and western blotting assay indicated that the levels of proteins associated with proliferation, apoptosis and invasion in the cells were affected correspondingly by different treatments in vitro. The tumorigenesis and MVD assays indicated less proliferation and angiogenesis in the knockdown-HT-1376 cells compared with the scramble cells. Notably, J82 cells exhibiting no signal of CD74 in vitro presented the expression of CD74 in vivo. The present study revealed the potential roles of CD74 in the proliferation, invasion and angiogenesis of MIBC, and that it may serve as a potential therapeutic target for UCB, but additional studies are required.

  16. Study of radionuclide 90Sr-90Y on cell proliferation and apoptosis in benign prostatic hyperplasia

    International Nuclear Information System (INIS)

    Zhang Tong; Wei Wei; Zou Benjie; Liu Fang; Xu Zhishun

    2003-01-01

    Objective: To investigate the effect of 90 Sr- 90 Yon cell proliferation and apoptosis in benign prostatic hyperplasia. Methods: The apoptosis and expression of Ki-67 in benign prostatic hyperplasia (BPH) before and after irradiation 90 Sr- 90 Y were detected by transferase-mediated dUTP-biotin nick end labeling (TUNEL) method and immunohistochemical technique, respectively. Results: The proliferation index (PI) of BPH after 90 Sr- 90 Y irradiation was much lower than that before irradiation, but there was no significant change in apoptosis index (AI). Conclusion: Irradiation with 90 Sr- 90 Y could restrain cell proliferation of BPH, but could not induce apoptosis

  17. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    Science.gov (United States)

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  18. Methotrexate treatment provokes apoptosis of proliferating keratinocyte in psoriasis patients.

    Science.gov (United States)

    Elango, Tamilselvi; Thirupathi, Anand; Subramanian, Swapna; Ethiraj, Purushoth; Dayalan, Haripriya; Gnanaraj, Pushpa

    2017-08-01

    Psoriasis is a chronic inflammatory skin disease characterized by hyper proliferation of keratinocytes. Recent data show that the epidermis thickening in psoriasis may be related to imbalance of homeostasis caused by abnormal apoptotic process. Maintenance of keratinocyte apoptotic process is very important in psoriasis. Methotrexate (MTX) has been used for many years to restore the normal skin in psoriasis condition. However, the exact mechanism of MTX in psoriasis condition is poorly understood. The aim of this study was to examine the role of MTX on keratinocyte apoptosis pathway in psoriasis patients. A total of 58 psoriasis vulgaris patients were recruited for this study. Nonlesional skin biopsies served as control. Skin biopsies of psoriatic patients were collected and analyzed for cytosolic, mitochondria and total cytochrome c by ELISA. Expression of caspase-9, NFκBp65, pAkt1 by western blot, real-time PCR and immunohistochemical analysis of c-FLIP protein was analyzed in nonlesional and lesional skin biopsies before (day 0) and after (at the end of 6 and 12 weeks) MTX treatment. After MTX treatment, a significant increase in cytochrome c was observed when compared with before MTX treatment in psoriasis patients (p psoriasis by controlling the acanthosis.

  19. Simultaneous Increases in Proliferation and Apoptosis of Vascular Smooth Muscle Cells Accelerate Diabetic Mouse Venous Atherosclerosis

    Science.gov (United States)

    Liu, Shuying; Zhang, Zhengyu; Wang, Jingjing; Zhou, Yuhuan; Liu, Kefeng; Huang, Jintao; Chen, Dadi; Wang, Junmei; Li, Chaohong

    2015-01-01

    Aims This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms. Methods Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression. Results Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis. Conclusions Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels. PMID:26488175

  20. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    Science.gov (United States)

    Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  1. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    Directory of Open Access Journals (Sweden)

    Mototaka Sato

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC.EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined.EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni. EMMPRIN-overexpressing RCC cells were resistant to sunitinib.Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  2. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    International Nuclear Information System (INIS)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long; Bao, Jin-ku

    2011-01-01

    Highlights: → ConA induces cancer cell death targeting apoptosis and autophagy. → ConA inhibits cancer cell angiogenesis. → ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca 2+ /Mn 2+ -dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-κB-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.

  3. Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Yang, Longjiang; Du, Juan; Hou, Jian; Jiang, Hua; Zou, Jianfeng

    2011-01-01

    Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models. In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth in vitro and in a SCID-rab myeloma model. PF4 and p17-70 significantly attenuated VEGF production, both in vitro and in vivo. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts. Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis

  4. Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis in murine acute lung injury.

    Science.gov (United States)

    Husain, Kareem D; Stromberg, Paul E; Woolsey, Cheryl A; Turnbull, Isaiah R; Dunne, W Michael; Javadi, Pardis; Buchman, Timothy G; Karl, Irene E; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    The aim of this study was to determine the effects of acute lung injury on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. Randomized, controlled study. University research laboratory. Genetically inbred mice. Following induction of acute lung injury, gut epithelial proliferation and apoptosis were assessed in a) C3H/HeN wild-type and C3H/HeJ mice, which lack functional Toll-like receptor 4 (n = 17); b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-alpha or control antibody (n = 22); and c) C57Bl/6 wild-type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n = 21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n = 24) as well as in a time course analysis following a fixed injury (n = 18). Acute lung injury caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-tumor necrosis factor-alpha antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe acute lung injury. Changes in both gut epithelial proliferation and death were apparent within 12 hrs, but proliferation was decreased 36 hrs following acute lung injury while apoptosis returned to normal. Acute lung injury causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving Toll-like receptor 4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the

  5. Effect of paricalcitol and GcMAF on angiogenesis and human peripheral blood mononuclear cell proliferation and signaling.

    Science.gov (United States)

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco; Amato, Marcello; Aterini, Stefano

    2012-01-01

    In addition to its role in calcium homeostasis and bone mineralization, vitamin D is involved in immune defence, cardiovascular function, inflammation and angiogenesis, and these pleiotropic effects are of interested in the treatment of chronic kidney disease. Here we investigated the effects of paricalcitol, a nonhypercalcemic vitamin D analogue, on human peripheral blood mononuclear cell proliferation and signaling, and on angiogenesis. These effects were compared with those of a known inhibitor of angiogenesis pertaining to the vitamin D axis, the vitamin D-binding protein-derived Gc-macrophage activating factor (GcMAF). Since the effects of vitamin D receptor agonists are associated with polymorphisms of the gene coding for the receptor, we measured the effects of both compounds on mononuclear cells harvested from subjects harboring different BsmI polymorphisms. Paricalcitol inhibited mononuclear cell viability with the bb genotype showing the highest effect. GcMAF, on the contrary, stimulated cell proliferation, with the bb genotype showing the highest stimulatory effect. Both compounds stimulated 3'-5'-cyclic adenosine monophosphate formation in mononuclear cells with the highest effect on the bb genotype. Paricalcitol and GcMAF inhibited the angiogenesis induced by proinflammatory prostaglandin E1. Polymorphisms of the vitamin D receptor gene, known to be associated with the highest responses to vitamin D receptor agonists, are also associated with the highest responses to GcMAF. These results highlight the role of the vitamin D axis in chronic kidney disease, an axis which includes vitamin D, its receptor and vitamin D-binding protein-derived GcMAF.

  6. Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels.

    Science.gov (United States)

    Hwang, Soojin; Lee, Dong-Hoon; Lee, In-Kyu; Park, Young Mi; Jo, Inho

    2014-04-28

    Far-infrared (FIR) radiation is known to lessen the risk of angiogenesis-related diseases including cancer. Because deficiency of secretory clusterin (sCLU) has been reported to inhibit angiogenesis of endothelial cells (EC), we investigated using human umbilical vein EC (HUVEC) whether sCLU mediates the inhibitory effects of FIR radiation. Although FIR radiation ranging 3-25μm wavelength at room temperature for 60min did not alter EC viability, further incubation in the culture incubator (at 37°C under 5% CO2) after radiation significantly inhibited EC proliferation, in vitro migration, and tube formation in a time-dependent manner. Under these conditions, we found decreased sCLU mRNA and protein expression in HUVEC and decreased sCLU protein secreted in culture medium. Expectedly, the replacement of control culture medium with the FIR-irradiated conditioned medium significantly decreased wound closure and tube formation of HUVEC, and vice versa. Furthermore, neutralization of sCLU with anti-sCLU antibody also mimicked all observed inhibitory effects of FIR radiation. Moreover, treatment with recombinant human sCLU protein completely reversed the inhibitory effects of FIR radiation on EC migration and angiogenesis. Lastly, vascular endothelial growth factor also increased sCLU secretion in the culture medium, and wound closure and tube formation of HUVEC, which were significantly reduced by FIR radiation. Our results demonstrate a novel mechanism by which FIR radiation inhibits the proliferation, migration, and angiogenesis of HUVEC, via decreasing sCLU. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Correlation of lung surface area to apoptosis and proliferation in human emphysema.

    Science.gov (United States)

    Imai, K; Mercer, B A; Schulman, L L; Sonett, J R; D'Armiento, J M

    2005-02-01

    Pulmonary emphysema is associated with alterations in matrix proteins and protease activity. These alterations may be linked to programmed cell death by apoptosis, potentially influencing lung architecture and lung function. To evaluate apoptosis in emphysema, lung tissue was analysed from 10 emphysema patients and six individuals without emphysema (normal). Morphological analysis revealed alveolar cells in emphysematous lungs with convoluted nuclei characteristic of apoptosis. DNA fragmentation was detected using terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL) and gel electrophoresis. TUNEL revealed higher apoptosis in emphysematous than normal lungs. Markers of apoptosis, including active caspase-3, proteolytic fragment of poly (ADP-ribose) polymerase, Bax and Bad, were detected in emphysematous lungs. Linear regression showed that apoptosis was inversely correlated with surface area. Emphysematous lungs demonstrated lower surface areas and increased cell proliferation. There was no correlation between apoptosis and proliferation, suggesting that, although both events increase during emphysema, they are not in equilibrium, potentially contributing to reduced lung surface area. In summary, cell-based mechanisms associated with emphysematous parenchymal damage include increased apoptosis and cell proliferation. Apoptosis correlated with airspace enlargement, supporting epidemiological evidence of the progressive nature of emphysema. These data extend the understanding of cell dynamics and structural changes within the lung during emphysema pathogenesis.

  8. Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis.

    Science.gov (United States)

    Gadau, S; Emanueli, C; Van Linthout, S; Graiani, G; Todaro, M; Meloni, M; Campesi, I; Invernici, G; Spillmann, F; Ward, K; Madeddu, P

    2006-02-01

    Benfotiamine, a vitamin B1 analogue, reportedly prevents diabetic microangiopathy. The aim of this study was to evaluate whether benfotiamine is of benefit in reparative neovascularisation using a type I diabetes model of hindlimb ischaemia. We also investigated the involvement of protein kinase B (PKB)/Akt in the therapeutic effects of benfotiamine. Streptozotocin-induced diabetic mice, given oral benfotiamine or vehicle, were subjected to unilateral limb ischaemia. Reparative neovascularisation was analysed by histology. The expression of Nos3 and Casp3 was evaluated by real-time PCR, and the activation state of PKB/Akt was assessed by western blot analysis and immunohistochemistry. The functional importance of PKB/Akt in benfotiamine-induced effects was investigated using a dominant-negative construct. Diabetic muscles showed reduced transketolase activity, which was corrected by benfotiamine. Importantly, benfotiamine prevented ischaemia-induced toe necrosis, improved hindlimb perfusion and oxygenation, and restored endothelium-dependent vasodilation. Histological studies revealed the improvement of reparative neovascularisation and the inhibition of endothelial and skeletal muscle cell apoptosis. In addition, benfotiamine prevented the vascular accumulation of advanced glycation end products and the induction of pro-apoptotic caspase-3, while restoring proper expression of Nos3 and Akt in ischaemic muscles. The benefits of benfotiamine were nullified by dominant-negative PKB/Akt. In vitro, benfotiamine stimulated the proliferation of human EPCs, while inhibiting apoptosis induced by high glucose. In diabetic mice, the number of circulating EPCs was reduced, with the deficit being corrected by benfotiamine. We have demonstrated, for the first time, that benfotiamine aids the post-ischaemic healing of diabetic animals via PKB/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. In addition, benfotiamine combats the diabetes-induced deficit in

  9. Correlation of serum GP73, SOD and GPC3 contents with cell proliferation and angiogenesis in liver cancer lesion

    Directory of Open Access Journals (Sweden)

    Hua Xin

    2017-11-01

    Full Text Available Objective: To study the correlation of serum GP73, SOD and GPC3 contents with cell proliferation and angiogenesis in liver cancer lesion. Methods: Patients who were diagnosed with primary liver cancer in Jianghan Oilfield General Hospital between June 2014 and February 2017 were selected as liver cancer group, and healthy subjects who received physical examination in Jianghan Oilfield General Hospital during the same period were selected as control group. Serum was collected from two groups of subjects to determine the contents of GP73, SOD and GPC3; liver cancer lesion and adjacent lesion were collected from liver cancer group to determine the expression of cell proliferation molecules and angiogenesis molecules. Results: Serum GP73 and GPC3 levels of liver cancer group were obviously higher than those of control group while SOD content was obviously lower than that of control group; DNMT3B, STC2, SIRT6, LETM1, EphB4, SULT2B1, HIF-1α, VEGF, Ang-2, HGF and TGF-β1 protein expression levels in liver cancer lesion of liver cancer group were significantly higher than those in adjacent lesion; DNMT3B, STC2, SIRT6, LETM1, EphB4, SULT2B1, HIF-1α, VEGF, Ang-2, HGF and TGF-β1 protein expression levels in liver cancer lesion of liver cancer group were positively correlated with serum GP73 and GPC3 levels, and negatively correlated with serum SOD level. Conclusion: The changes of GP73, SOD and GPC3 levels in the serum of patients with liver cancer are closely related to the cell proliferation and angiogenesis in liver cancer lesion.

  10. Hepatic proliferation and angiogenesis markers are increased after portal deprivation in rats: a study of molecular, histological and radiological changes.

    Directory of Open Access Journals (Sweden)

    Florent Guérin

    Full Text Available To determine the pathogenesis of liver nodules, and lesions similar to obliterative portal venopathy, observed after portosystemic shunts or portal vein thrombosis in humans.We conducted an experimental study comparing portacaval shunt (PCS, total portal vein ligation (PVL, and sham (S operated rats. Each group were either sacrificed at 6 weeks (early or 6 months (late. Arterial liver perfusion was studied in vivo using CT, and histopathological changes were noted. Liver mRNA levels were quantified by RT-QPCR for markers of inflammation (Il10, Tnfa, proliferation (Il6st, Mki67, Hgf, Hnf4a, angiogenesis: (Vegfa, Vegfr 1, 2 and 3; Pgf, oxidative stress (Nos2, and 3, Hif1a, and fibrosis (Tgfb. PCS and PVL were compared to the S group.Periportal fibrosis and arterial proliferation was observed in late PCS and PVL groups. CT imaging demonstrated increased arterial liver perfusion in the PCS group. RT-QPCR showed increased inflammatory markers in PCS and PVL early groups. Tnfa and Il10 were increased in PCS and PVL late groups respectively. All proliferative markers increased in the PCS, and Hnf4a in the PVL early groups. Mki67 and Hnf4a were increased in the PCS late group. Nos3 was increased in the early and late PCS groups, and Hif1a was decreased in the PVL groups. Markers of angiogenesis were all increased in the early PCS group, and Vegfr3 and Pgf in the late PCS group. Only Vegfr3 was increased in the PVL groups. Tgf was increased in the PCS groups.Portal deprivation in rats induces a sustained increase in intrahepatic markers of inflammation, angiogenesis, proliferation, and fibrosis.

  11. Advances in cell proliferation and apoptosis signal pathway and therapies of polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Xiao-ying LIAN

    2016-12-01

    Full Text Available Polycystic kidney disease (PKD is one of the monogenic inherited diseases. In PKD, excessive cell proliferation and fluid secretion, and disruption of the mechanisms controlling tubular diameter may all lead to cyst formation. Current evidence has demonstrated that intracellular calcium ion and cAMP imbalance drive both abnormal cell proliferation and apoptosis signal pathway. The present paper summarized the evidence implicating calcium ion and cAMP as central players in the signaling pathway of cell proliferation and apoptosis in PKD, and considered the potential therapeutic approaches targeted to slow cyst growth in PKD. DOI: 10.11855/j.issn.0577-7402.2016.11.13

  12. Modulation of ephrinB2 leads to increased angiogenesis in ischemic myocardium and endothelial cell proliferation

    International Nuclear Information System (INIS)

    Mansson-Broberg, Agneta; Siddiqui, Anwar J.; Genander, Maria; Grinnemo, Karl-Henrik; Hao Xiaojin; Andersson, Agneta B.; Waerdell, Eva; Sylven, Christer; Corbascio, Matthias

    2008-01-01

    Eph/ephrin signaling is pivotal in prenatal angiogenesis while its potential role in postnatal angiogenesis largely remains to be explored. Therefore its putative angiogenic and therapeutic effects were explored in endothelium and in myocardial ischemia. In culture of human aortic endothelial cells the fusion protein ephrinB2-Fc induced cell proliferation (p < 0.0005) and in the murine aortic ring model ephrinB2-Fc induced increased sprouting (p < 0.05). Myocardial infarction was induced by ligation of the left anterior descending artery in mouse. During the following 2 weeks mRNA of the receptor/ligand pair EphB4/ephrinB2 was expressed dichotomously (p < 0.05) and other Eph/ephrin pairs were expressed to a lesser degree. Twenty-four hours after intraperitoneal administration of ephrinB2-Fc it was detected in abundance throughout the myocardium along capillaries, showing signs of increased mitosis. After 4 weeks the capillary density was increased 28% in the periinfarcted area (p < 0.05) to a level not different from healthy regions of the heart where no change was observed. These results implicate that EphB4/ephrinB2 is an important signaling pathway in ischemic heart disease and its modulation may induce therapeutic angiogenesis

  13. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    Science.gov (United States)

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  14. The role of the vascular endothelial growth factor/vascular endothelial growth factor receptors axis mediated angiogenesis in curcumin-loaded nanostructured lipid carriers induced human HepG2 cells apoptosis

    Directory of Open Access Journals (Sweden)

    Fengling Wang

    2015-01-01

    Full Text Available Background: Curcumin (diferuloylmethane, the active constituent of turmeric extract has potent anti-cancer properties have been demonstrated in hepatocellular carcinoma (HCC. However, its underlying molecular mechanism of therapeutic effects remains unclear. Vascular endothelial growth factor (VEGF and its receptors (VEGFRs have crucial roles in tumor angiogenesis. Purpose: The goal of this study was to investigate the role of the VEGF/VEGFRs mediated angiogenesis during the proliferation and apoptosis of human HepG2 hepatoma cell line and the effect of curcumin-loaded nanostructured lipid carriers (Cur-NLC. Materials and Methods: The proliferation of HepG2 cells was determined by methyl thiazolyl tetrazolium after exposure to Cur-NLC and native curcumin. Apoptosis was quantified by flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodide staining. Cellular internalization of Cur-NLC was observed by fluorescent microscope. The level of VEGF was detected by enzyme-linked immunosorbent assay kits. The expression of VEGFRs was quantified by Western blotting. Results: Cur-NLC was more effective in inhibiting the proliferation and enhancing the apoptosis of HepG2 cells than native curcumin. Fluorescent microscope analysis showed that HepG2 cells internalized Cur-NLC more effectively than native curcumin. Furthermore, Cur-NLC down-regulated the level of VEGF and the expression of VEGFR-2, but had a slight effect on VEGFR-1. Conclusion: These results clearly demonstrated that Cur-NLC was more effective in anti-cancer activity than the free form of curcumin. These studies demonstrate for the 1 st time that Cur-NLC exerts an antitumor effect on HepG2 cells by modulating VEGF/VEGFRs signaling pathway.

  15. The novel brassinosteroid analog BR4848 inhibits angiogenesis in human endothelial cells and induces apoptosis in human cancer cells in vitro

    Czech Academy of Sciences Publication Activity Database

    Rárová, L.; Sedlák, David; Oklešťková, Jana; Steigerová, J.; Liebl, J.; Zahler, S.; Bartůněk, Petr; Kolář, Z.; Kohout, Ladislav; Kvasnica, Miroslav; Strnad, Miroslav

    2018-01-01

    Roč. 178 (2018), s. 263-271 ISSN 0960-0760 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LO1220; GA MŠk LM2015063 Institutional support: RVO:68378050 ; RVO:61389030 Keywords : Brassinosteroid analog * Cancer cell lines * Apoptosis * HUVEC * Angiogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.561, year: 2016

  16. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Apoptosis in Nasopharyngeal Carcinoma Cell Lines. Xin-Qing ... However, this requires clinical investigation to ascertain its ... results to restrict the growth of tumors locally in addition ..... MEK1/ERK1/2/iNOS/sGC/PKG pathway associated with.

  17. Effects of maternal smoking on the placental expression of genes related to angiogenesis and apoptosis during the first trimester.

    Directory of Open Access Journals (Sweden)

    Akihiro Kawashima

    Full Text Available Maternal cigarette smoking is reportedly associated with miscarriage, fetal growth restriction and placental abruption, and is paradoxically associated with a decreased risk of developing preeclampsia. In the present study, we investigated the gene expression levels of villous tissues in early gestation. We compared the expression levels of the genes related to angiogenesis and apoptosis in the villous tissues obtained from smoking and non-smoking pregnant women.We collected villous tissue samples from 57 women requesting surgical termination due to non-medical reasons at 6-8 weeks of gestation. The maternal cigarette smoking status was evaluated by the level of serum cotinine and patients were divided into active smokers and non-smokers by the serum cotinine level. The placental levels of VEGFA, PGF, FLT1, HIF1A, TP53, BAX and BCL2 mRNA were quantified by real time PCR.The gene expression level of PGF and HIF1A in the active smoker group was significantly higher than that in the non-smoker group. We did not observe any significant differences in the VEGFA or FLT1 expression between the groups. In active smoker group, the gene expression levels of TP53 and BAX were significantly higher than those in the non-smoker group. The ratio of BAX/BCL2 mRNA in the active smoker group was significantly higher than that in the non-smoker group.Our findings revealed that smoking might affect the placenta during early pregnancy. Maternal cigarette smoking in early pregnancy may be associated with villus hypoxia, which may influence angiogenesis and apoptosis.

  18. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    Science.gov (United States)

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  19. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    International Nuclear Information System (INIS)

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard; Gorelik, Elieser; Lokshin, Anna E.

    2008-01-01

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blocked TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-β-gal, p21 Waf1/Cip1 , p16 INK4a , and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects

  20. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein

    International Nuclear Information System (INIS)

    Wang, Jun; Jenkins, Sarah; Lamartiniere, Coral A

    2014-01-01

    Humans are exposed to an array of both harmful and beneficial hormonally active compounds in the environment and through diet. Two such chemicals are Bisphenol A (BPA), a plasticizer, and genistein, a component of soy. Prepubertal exposure to BPA increased mammary carcinogenesis, while genistein suppressed cancer in a chemically-induced model of rodent mammary cancer. The purpose of this research was to determine the effects of combinational exposure to genistein and BPA on cell proliferation, apoptosis, and associated proteins as markers of cancer in mammary glands of rats exposed prepubertally to these environmental chemicals. Prepubertal rats (postpartum days (PND) 2–20) were exposed through lactation via nursing dams treated orally with sesame oil (SO), BPA, genistein, or a combination of BPA and genistein (BPA + Gen). Cell proliferation, apoptosis and protein expressions were investigated for mechanistic studies in mammary glands of rats exposed to these environmental chemicals. Prepubertal exposure to genistein increased cell proliferation in mammary glands of PND21 rats, while BPA increased cell proliferation in adult (PND50) rats. Prepubertal combinational exposure to BPA + Gen increased cell proliferation and reduced apoptosis in PND21 rats, but reduced cell proliferation and increased apoptosis in PND50 rats. The altered mechanisms behind these cellular responses appear to be centered on differential protein expression of caspases, PARP, Bad, p21, Akts, PTEN, ER-β and SRCs 1–3, in the rat mammary gland. Prepubertal BPA exposure resulted in increased cell proliferation in mammary glands of PND50 rats, a process associated with increased risk of cancer development in a chemically-induced mammary cancer. On the other hand, genistein stimulated cell proliferation at PND21, a process that correlates with mammary gland maturation and chemoprevention. In contrast to single chemical exposure, combinational exposure to BPA + Gen performed most similarly to

  1. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  2. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  3. Effect of 103Pd on proliferation and apoptosis of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luo Quanyong; Zhu Jun; Lu Hankui; Zhu Ruisen

    2003-01-01

    This study aimed at the effect of γ-emitting radionuclide 103 Pd on the proliferation and apoptosis of vascular SMCs (smooth muscle cells) in vitro. The cavy aortic SMCs were cultured with culture medium M-199. The experiments were carried out in two groups, one for proliferation test and the other for apoptosis test. In each group, 103 Pd solutions with various radioactivities were respectively added to the culture solution to irradiate SMCs for 72 h, while non-radioactive palladium solution was added to the control. 3 H-thymidine incorporation test and liquid scintillator were used to detect the effect of 103 Pd on the proliferation of SMCs. Flow cytometer was used to detect the apoptotic SMCs. The inhibition rate of SMCs proliferation by 1.85 MBq 103 Pd solution was 2.3%, which was not significant, while the inhibition rate increased from 41.6% to 91.3% as the 103 Pd activity increased from 7.40 MBq to 37 MBq. The apoptosis rate of SMCs was extremely low (less than 4.0%) by 103 Pd with activity from 1.85 MBq to 37 MBq. The results suggest that the proliferation of SMCs can be repressed effectively in a dose-dependent fashion by 103 Pd in vitro. The mechanism of its inhibiting over neointima proliferation is likely to inhibit SMCs proliferation rather than to induce its apoptosis by 103 Pd. 103 Pd can be used as a γ-emitting intravascular brachytherapy radionuclide to inhibit SMCs proliferation

  4. RODENT AND HUMAN NEUROPROGENITOR CELLS FOR HIGH-CONTENT SCREENS OF CHEMICAL EFFECTS ON PROLIFERATION AND APOPTOSIS

    Science.gov (United States)

    The objective of these experiments is to develop high-throughput screens for proliferation and apoptosis in order to compare rodent and human neuroprogenitor cell responses to potential developmental neurotoxicants. Effects of 4 chemicals on proliferation and apoptosis in mouse c...

  5. TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Yanli Ge

    2012-05-01

    Full Text Available Trefoil Factor Family (TFF plays an essential role in the intestinal epithelial restitution, but the relationship between TFF1 and gastric cancer (GC is still unclear. The present study aimed to determine the role of TFF1 in repairing gastric mucosa and in the pathogenesis of GC.The TFF1 expression in different gastric mucosas was measured with immunohistochemistry. Then, siRNA targeting TFF1 or plasmids expressing TFF1 gene were transfected into BGC823 cells, SGC7901 cells and GES-1 cells. The cell proliferation was detected with MTT assay and apoptosis and cell cycle measured by flow cytometry.From normal gastric mucosa to mucosa with dysplasia and to gastric cancer, the TFF1 expression had a decreasing trend. Down-regulation of TFF1 expression significantly reduced the apoptosis of three cell lines and markedly facilitated their proliferation but had no significant effect on cell cycle. Over-expression of TFF1 could promote apoptosis of three cell lines and inhibit proliferation but had no pronounced effect on cell cycle. TFF1 can inhibit proliferation and induce apoptosis of GC cells in vitro.

  6. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini

    Directory of Open Access Journals (Sweden)

    Hideya Takahashi

    2014-04-01

    Full Text Available Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen. Results: Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  7. [RNA interference of HERC4 inhibits proliferation, apoptosis and migration of cervical cancer Hela cells].

    Science.gov (United States)

    Wei, Min; Zhang, Yan-Ling; Chen, Lan; Cai, Cui-Xia; Wang, Han-Duo

    2016-02-20

    To explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms. Three HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting. Transfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (PHela cells, increased the apoptosis rate (PHela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.

  8. An imbalance between apoptosis and proliferation contributes to follicular persistence in polycystic ovaries in rats

    Directory of Open Access Journals (Sweden)

    Neme Leandro G

    2009-07-01

    Full Text Available Abstract Background Cystic ovarian disease is an important cause of infertility that affects bovine, ovine, caprine and porcine species and even human beings. Alterations in the ovarian micro-environment of females with follicular cysts could alter the normal processes of proliferation and programmed cell death in ovarian cells. Thus, our objective was to evaluate apoptosis and proliferation in ovarian cystic follicles in rats in order to investigate the cause of cystic follicle formation and persistence. Methods We compared the number of in situ apoptotic cells by TUNEL assay, expression of active caspase-3 and members of Bcl-2 family by immunohistochemistry; and cell proliferation by the expression of the proliferation markers: PCNA and Ki-67. Results The proliferation index was low in granulosa of tertiary and cystic follicles of light exposed rats when compared with tertiary follicles of control animals, while in theca interna only cystic follicles presented low proliferation index when compared with tertiary follicles (p Conclusion These results show that the combination of weak proliferation indices and low apoptosis observed in follicular cysts, could explain the cause of the slow growth of cystic follicles and the maintenance of a static condition without degeneration, which leads to their persistence. These alterations may be due to structural and functional modifications that take place in these cells and could be related to hormonal changes in animals with this condition.

  9. The effect of yucca on proliferation, apoptosis, and steroidogenesis of porcine ovarian granulosa cells

    Directory of Open Access Journals (Sweden)

    Aneta Štochmaľová

    2014-02-01

    Full Text Available Yucca shidigera is a medicinal plant native to Mexico. Is a plant widely used in folk medicine to treat a variety of ailmentary disorders, but its action on reproductive processes and possible mechanisms of such action remains unknown. Yucca schidigera extract contains a number of steroidal saponins that, because of their biological activity, have attracted attention from the food industry for many years. Yucca extract is used as a natural feed additive with positive effect to microflora, digestion, metabolism and to improve animal muscle growth. Its extract has been used as a foodstuff and folk medicine to treat a wide variety of diseases for many years. Nevertheless, it remaines unknown, whether consumption of yucca can affect reproductive system. The aim of this study was to examine the effects of yucca on basic ovarian cell functions - proliferation, apoptosis and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without yucca extract (added at doses 0; 1; 10 and 100 μg.mL-1 of medium. Markers of proliferation (% of PCNA-positive cells and apoptosis (% cells containing bax were analysed by immunocytochemistry. Release of steroid hormones (progesterone and testosterone was measured by EIA. It was observed, that addition of yucca inhibited proliferation (expression of PCNA, increased apoptosis (expression of bax, stimulated progesterone and inhibited testosterone release. The ability of yucca to reduce ovarian cell proliferation, to promote ovarian cell apoptosis and affect steroidogenesis demonstrates the direct influence of yucca on female gonads. Furthermore, our observations suggest the multiple sites of action (proliferation, apoptosis, steroidogenesis of yucca on porcine ovarian cell functions. It is not to be excluded, that consumption of yucca can suppress female reproductive functions.

  10. Omentin-1 effects on mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro

    OpenAIRE

    Yin, Li; Huang, Dan; Liu, Xinxin; Wang, Yongshun; Liu, Jingjin; Liu, Fang; Yu, Bo

    2017-01-01

    Background Mesenchymal stem cells (MSCs) are emerging as an extremely promising therapeutic agent for tissue repair. However, limitations exist such as the low numbers of MSCs obtained from donors, and the poor survival and function of donor cells. Omentin-1, a new fat depot-specific secretory adipokine, exerts proproliferation, prosurvival, and proangiogenic functions in certain cells via an Akt-dependent mechanism; however, little is known about the influence of omentin-1 on MSCs. Methods M...

  11. Yorkie regulates epidermal wound healing in Drosophila larvae independently of cell proliferation and apoptosis.

    Science.gov (United States)

    Tsai, Chang-Ru; Anderson, Aimee E; Burra, Sirisha; Jo, Juyeon; Galko, Michael J

    2017-07-01

    Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Exogenous ghrelin regulates proliferation and apoptosis in the hypotrophic gut mucosa of the rat.

    Science.gov (United States)

    de Segura, Ignacio A Gómez; Vallejo-Cremades, María Teresa; Lomas, Jesús; Sánchez, Miriam F; Caballero, María Isabel; Largo, Carlota; De Miguel, Enrique

    2010-04-01

    Ghrelin is the natural endogenous ligand for growth hormone secretagogue receptors. This peptide regulates energy homeostasis and expenditure and is a potential link between gut absorptive function and growth. We hypothesized that ghrelin may induce a proliferative and antiapoptotic action promoting the recovery of the hypotrophic gut mucosa. Therefore, the aim of the study was to determine the action of exogenous ghrelin following gut mucosal hypotrophia in rats fed an elemental diet. An elemental diet provides readily absorbable simple nutrients and is usually given to patients with absorptive dysfunction. Male Wistar rats (n = 48) were fed the elemental diet for one week to induce mucosal hypotrophy and then treated for another week with systemic ghrelin and pair-fed with either a normoproteic or hyperproteic isocaloric liquid diet. Another group received a standard diet instead of the elemental diet and served as control (normotrophy). The elemental diet induced intestinal hypotrophia characterized by decreased proliferation in the ileum and increased apoptosis in jejunum and ileum. Ghrelin administration restored normal levels of proliferation in the ileum and apoptosis in the jejunum, with partial apoptosis restoration in the ileum. Ghrelin levels in plasma and fundus were increased in all groups, although the highest levels were found in rats treated with exogenous ghrelin. Ghrelin administration has a positive effect in the hypotrophic gut, regulating both proliferation and apoptosis towards a physiological balance counteracting the negative changes induced by an elemental diet in the intestines.

  13. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. EFFECT OF dbcAMP ON PROLIFERATION AND APOPTOSIS OF PORCINE GRANULOSA CELLS in vitro

    Directory of Open Access Journals (Sweden)

    Richard Alexa

    2013-02-01

    Full Text Available Cyclic nucleotide cAMP and its target protein kinase A (PKA dependent intracellular mechanisms can play an important role in regulation of ovarian cell function and in mediating gonadotropin action on these cells. The aim of the present study was to examine the effect of cAMP analogue, dibutyryl cyclic adenosine monophosphate (dbcAMP (0; 0.1; 1 and 10 µg/ml or FSH (0; 0,01; 1 IU/ml on proliferation and apoptosis of porcine granulosa cells in vitro. Indices of cell apoptosis (expression of apoptotic peptide bax and proliferation (expression of proliferation-associated peptide PCNA within ovarian granulosa cells were analysed by immunocytochemistry. It was observed that accumulation of PCNA was increased by dbcAMP and FSH at all doses added. The occurrence of bax was also stimulated by dbcAMP after exposition (at 0,1 and 1 µg/ml, but not at dose 10 µg/ml and by FSH (at all doses added. The stimulatory effect of both dbcAMP and FSH on both ovarian cell apoptosis and proliferation suggest, that these substances may promote ovarian follicular cell turnover. The similarity of dbcAMP and FSH effect may indicate that FSH can affect ovarian functions via cAMP-dependent intracellular mechanisms. The present data may provide new tools to regulate human and animal reproductive processes via cAMP-dependent mechanisms.

  15. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    Directory of Open Access Journals (Sweden)

    Xuefei Song

    2015-01-01

    Full Text Available Purpose. The purpose of this study was to determine the impact of cross-linking (CXL on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham’s F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2 during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA. Results. Following CXL, cell viability and proliferation decreased (P0.06. Five hours after CXL, FGFb secretion increased significantly (P=0.037; however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P>0.12. Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours, normalizing after 24 hours.

  16. Six2 Is a Coordinator of LiCl-Induced Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Jianing Liu

    2016-09-01

    Full Text Available The metanephric mesenchyme (MM cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET, the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM. The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM. However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3β that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2.

  17. Modulation of human melanoma cell proliferation and apoptosis by hydatid cyst fluid of Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Gao X

    2018-03-01

    Full Text Available Xiang-Yang Gao,1,* Guang-Hui Zhang,2,* Li Huang3 1Department of Laboratory Medicine, Pu’er People’s Hospital, Pu’er, 2Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of General Surgery, Shanghai General Hospital, Shanghai, China *These authors contributed equally to this work Objective: The objective of this paper was to assess the effects of hydatid cyst fluid (HCF of Echinococcus granulosus on melanoma A375 cell proliferation and apoptosis.Methods: A375 cells were classified into five groups by in vitro culture: normal group, control group, 10% HCF group, 20% HCF group and 30% HCF group. Trypan blue staining method was employed to detect the toxicity of HCF. Effects of different concentrations of HCF on melanoma A375 cell proliferation at different time points were evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Flow cytometry and propidium iodide (PI staining were used to detect cell cycle, and Annexin-V/PI double staining method was used to determine A375 cell apoptotic rate. Western blotting was applied to detect the expression of phosphorylated extracellular regulated protein kinases, proliferating cell nuclear antigen (PCNA, cell-cycle-related proteins (cyclin A, cyclin B1, cyclin D1 and cyclin E and apoptosis-related proteins (Bcl-2, Bax and caspase-3.Results: HCF with a high concentration was considered as atoxic to A375 cells. HCF promoted A375 cell proliferation, and the effects got stronger with an increase in concentrations but was retarded after reaching a certain range of concentrations. HCF increased phosphorylation level and expression of extracellular regulated protein kinase, as well as PCNA expression. HCF also promoted the transferring progression of A375 cells from the G0/G1 phase to the S phase to increase the cell number in S phase and increased the expression of cyclin A, cyclin D1 and

  18. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells

    Science.gov (United States)

    Zhang, Yuqing; Chen, Aaron Y.; Li, Min; Chen, Changyi; Yao, Qizhi

    2010-01-01

    Background Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have anti-tumor activities. The objective in this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. Materials and Methods Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with Kampferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation and MTS assay. Lactate dehydrogenase (LDH) release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by TUNEL assay. Results Upon the treatment with 70 μM kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (Pkaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil (5-FU) showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had a significantly less cytotoxicity than 5-FU in normal human pancreatic ductal epithelial cells (P=0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. Conclusions Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer. PMID:18570926

  19. Study of miR-155 expression in villus tissue of patients with recurrent spontaneous abortion and its relationship with apoptosis molecules and angiogenesis molecules

    Institute of Scientific and Technical Information of China (English)

    Hong-Ying Du; Man-Zhen Zuo; Qiao-Ling Wang; Xiao-Juan Xie

    2016-01-01

    Objective:To study miR-155 expression in villus tissue of patients with recurrent spontaneous abortion and its relationship with apoptosis molecules and angiogenesis molecules.Methods:40 cases of patients with unexplained recurrent spontaneous abortion were selected as URSA group, 30 cases of normal early pregnant women receiving artificial abortion were selected as control group, and villus tissue was collected to detect expression levels of miR-155, apoptosis molecules (Bcl-2, Bcl-xl, Bax, Bad, Fas and FasL) and angiogenesis molecules (HIF-1α, VEGF and sFlt-1).Results: MiR-155 expression level in villus tissue of URSA group was significantly lower than that of control group and the more the times of abortion, the lower the miR-155 expression level; pro-apoptosis molecules Bax, Bad, Fas and FasL expression levels in villus tissue of URSA group were higher than those of control group and negatively correlated with miR-155 expression level, and anti-apoptosis genes Bcl-2 and Bcl-xl expression levels were lower than those of control group and positively correlated with miR-155 expression level; HIF-1α and VEGF expression levels in villus tissue of URSA group were lower than those of control group and positively correlated with miR-155 expression level, and sFlt-1 expression level was higher than that of control group and negatively correlated with miR-155 expression level.Conclusions:MiR-155 is lowly expressed in villus tissue of patients with recurrent spontaneous abortion, and miR-155 may be involved in the occurrence and development of the disease through regulating the expression of apoptosis molecules and angiogenesis molecules.

  20. Orlistat Reduces Proliferation and Enhances Apoptosis in Human Pancreatic Cancer Cells (PANC-1).

    Science.gov (United States)

    Sokolowska, Ewa; Presler, Malgorzata; Goyke, Elzbieta; Milczarek, Ryszard; Swierczynski, Julian; Sledzinski, Tomasz

    2017-11-01

    Pancreatic cancer is a disease with very poor prognosis, and none of currently available pharmacotherapies have proven to be efficient in this indication. The aim of this study was to analyze the expression of fatty acid synthase (FASN) gene as a potential therapeutic target in proliferating human pancreatic cancer cells (PANC-1), and verify if orlistat, originally developed as an anti-obesity drug, inhibits PANC-1 proliferation. The effects of orlistat on gene expression, lipogenesis, proliferation and apoptosis was studied in PANC-1 cell culture. Expression of FASN increased during proliferation of PANC-1. Inhibition of FASN by orlistat resulted in a significant reduction of PANC-1 proliferation and enhanced apoptosis of these cells. This study showed, to our knowledge for the first time, that orlistat exhibits significant antitumor activity against PANC-1 cells. This implies that orlistat analogs with good oral bioavailability may find application in pharmacotherapy of pancreatic cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. A multiplexed method for kinetic measurements of apoptosis and proliferation using live-content imaging.

    Science.gov (United States)

    Artymovich, Katherine; Appledorn, Daniel M

    2015-01-01

    In vitro cell proliferation and apoptosis assays are widely used to study cancer cell biology. Commonly used methodologies are however performed at a single, user-defined endpoint. We describe a kinetic multiplex assay incorporating the CellPlayer(TM) NucLight Red reagent to measure proliferation and the CellPlayer(TM) Caspase-3/7 reagent to measure apoptosis using the two-color, live-content imaging platform, IncuCyte(TM) ZOOM. High-definition phase-contrast images provide an additional qualitative validation of cell death based on morphological characteristics. The kinetic data generated using this strategy can be used to derive informed pharmacology measurements to screen potential cancer therapeutics.

  2. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  3. Blocking Ihh signaling pathway inhibits the proliferation and promotes the apoptosis of PSCs.

    Science.gov (United States)

    Xu, Kai; Guo, Fengjing; Zhang, Shuwei; Liu, Cheng; Wang, Feixiong; Zhou, Zhiguo; Chen, Anmin

    2009-02-01

    The roles of Indian hedgehog (Ihh) signaling pathway in the proliferation and apoptosis of precartilaginous stem cells (PSCs) were investigated. PSCs, labeled with fibroblast growth factor receptor 3 (FGFR-3), were isolated from neonatal rats by immunomagnetic separation. After identification with FGFR-3 and Col II, the cells were incubated with different concentrations of cyclopamine (cyclo), the specific inhibitor of Ihh signaling pathway. The morphologic changes of the cells were observed under the inverted phase contrast microscope. The mRNA expression levels of Ihh, parathyroid hormonerelated peptide (PTHrP), protein Patched (Ptch), Bcl-2 and p21 were detected by RT-PCR. The protein expression levels of Ihh and Ptch were measured by Western blot. MTT assay was used to examine the effects of cyclo on proliferation of PSCs. Apoptosis rate of PSCs was examined by Annexin V/PI assay of flow cytometric analyses. After PSCs were incubated with cyclo, obvious morphologic changes were observed as compared with the control group. The mRNA expression levels of PTHrP, Ptch and Bcl-2 were decreased to varying degrees in a cyclo dose-dependent manner. However, the expression levels of Ihh and p21 mRNA were increased. The protein expression of Ptch and Ihh had the same change as the mRNA expression. Meanwhile, cyclo could obviously inhibit the proliferation and promote the apoptosis of PSCs. The results indicated that Ihh signaling pathway plays an important role in regulating the proliferation and apoptosis of PSCs, which is probably mediated by Bcl-2 and p21.

  4. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis

    DEFF Research Database (Denmark)

    Stutzin, A; Hoffmann, E K

    2006-01-01

    Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under phys...... as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis....

  5. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yang CM

    2017-02-01

    Full Text Available Chun-ming Yang,1 Shan Ji,2 Yan Li,3 Li-ye Fu,3 Tao Jiang,3 Fan-dong Meng31Department of Urology, The First Affiliated Hospital, China Medical University, 2Department of Endocrinology, The Fifth People’s Hospital of Shenyang, 3Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, ChinaAbstract: β-Catenin (CTNNB1 gene coding protein is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC.Keywords: kidney cancer, oncogene, β-catenin, survival time, tumor migration-related protein

  6. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  7. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    International Nuclear Information System (INIS)

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-01-01

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa

  8. Evaluation of cell proliferation and apoptosis in placentas of rats with severe diabetes

    Directory of Open Access Journals (Sweden)

    Marilza Vieira Cunha Rudge

    2012-04-01

    Full Text Available The aim of this work was to analyze the cell proliferation and apoptosis indexes on the 18th and 21st days of pregnancy of diabetic rats and to correlate with maternal glycemia and perinatal outcomes. Placentas from 20 Wistar rats were collected and divided into four experimental groups: control and diabetic of 18 and 21 days of pregnancy. The cell proliferation was analyzed using the PCNA expression and apoptosis by the TUNEL method. It was observed that PCNA and TUNEL indexes decreased from day 18 to 21 of pregnancy in the placentas of diabetic rats and these values were lower than control groups. Diabetic dams presented higher percentage of small for pregnancy age (SPA fetuses. However, there was no difference between the PCNA and TUNEL indexes in SPA and N-SPA fetuses in all the groups and these indexes were not correlated to maternal glycemic. Thus, placental cell proliferation and apoptosis did not interfere in the intrauterine growth restriction.

  9. Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Yong-Xian, Gui; Xiao-Huan, Li; Fan, Zhang; Guo-Fang, Tian

    2016-10-01

    The aim of the study is to investigate the underlying molecular mechanisms by which gemcitabine (gem) inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells in vitro. After PANC-1 cells had been treated by indicated concentration (0, 5, and 25 mg/L) of gem for 48 h, cell proliferation was evaluated by 3'-(4, 5 dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay; cell morphology was observed by transmission electron microscopy; Expression of c-IAP2 and Bcl-2 proteins was analyzed by Western blot; the activity of caspase-3 and -9 was detected by spectrophotometry. Gem significantly inhibited cell proliferation and could induce apoptosis of human pancreatic cancer PANC-1 cells, with a dose-dependent manner. Western blot analysis showed that gem significantly reduced c-IAP2 and Bcl-2 proteins expression level (P PANC-1 cells. Gem could induce apoptosis of human pancreatic cancer PANC-1 cells, probably through downregulating c-IAP2 and Bcl-2 expression levels, and at the same time activating caspase-3 and -9.

  10. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  11. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  12. THE EFFECT OF CURCUMIN ON SECRETORY ACTIVITY, PROLIFERATION AND APOPTOSIS OF THE PORCINE OVARIAN GRANULOSA CELLS

    Directory of Open Access Journals (Sweden)

    Attila Kádasi

    2012-08-01

    Full Text Available The aim of this in vitro study was to examine the effect of natural plant (Curcuma longa molecule curcumin on secretory activity, proliferation and apoptosis of porcine granulosa cells. The secretion of steroid hormones (progesterone, testosterone, accumulation of PCNA (marker of proliferation and bax (marker of apoptosis in granulosa cells of swine ovaries after curcumin treatment at the doses 0, 1, 10, 100 μg.mL-1 was determined by RIA and immunocytochemistry. It was observed that, addition of curcumin stimulated progesterone (at doses 1 and 10 μg.mL-1, but not 100 μg.mL-1 and testosterone at (100 μg.mL-1 but not 1 and 10 μg.mL-1 release. The number of cells contained PCNA was down-regulated by curcumin administration (at dose of 10 μg.mL-1, but not of 1 and 100 μg.mL-1. Bax expression was stimulated by curcumin at all doses added. Our results suggest a direct effect of curcumin on ovarian functions: steroidogenesis, proliferation and apoptosis. This could suggest antireproductive properties of curcumin in swine ovaries.

  13. [Effects of metformin on human oral cancer KB cell proliferation and apoptosis in vitro].

    Science.gov (United States)

    Wang, Fang; Xu, Jincheng; Xia, Fei; Liu, Zhe; Zhao, Surong; Liu, Hao; Jiang, Zhiwen

    2014-02-01

    To investigate the effects of metformin on the proliferation and apoptosis of human oral cancer cell line KB in vitro. Human oral cancer cell line KB was exposed to different doses of metformin (0, 1.25, 2.5, 5, 10, and 20 mmol/L), and the changes in cell viability were detected using MTT assay. Colony formation of the cells was observed following an 8-day metformin exposure. The changes in mitochondrial membrane potential were measured by JC-1 assay, and PI staining was used to observe the cell apoptosis. Western blotting was employed to detect the changes in the protein expressions of GRP78 and activated caspase-3. Metformin exposure caused time- and dose-dependent suppression of KB cell proliferation, and exposure to 5 mmol/L metformin for 24, 48 and 72 h resulted in cell survival rates of 68.0%, 36.9%, and 14.5%, respectively. Metformin significantly inhibited KB cell colony formation. Exposure of the cells to increased concentrations of metformin gradually increased the apoptotic rate and decreased mitochondrial membrane potential. Metformin caused an initial up-regulation followed by a down-regulation of GRP78 expression in KB cells and increased the expression of activated caspase-3. Metformin can inhibit the proliferation and induce apoptosis of KB cells, the mechanism of which may involve the activation of the mitochondrial apoptotic pathway and endoplasmic reticulum stress.

  14. Effect of leptin on proliferation and apoptosis of cholangiocarcinoma QBC939 cells

    Directory of Open Access Journals (Sweden)

    DAI Kai

    2013-03-01

    Full Text Available ObjectiveTo determine whether leptin can exert anti-proliferative and pro-apoptotic effects on human cholangiocarcinoma cells and to investigate the underlying molecular mechanisms. MethodsHuman cholangiocarcinoma QBC939 cells were cultured and treated with different concentrations of leptin. Changes in the proliferation rate were measured by the MTT assay. Changes in cell cycle and in the apoptosis incidence rate were detected by flow cytometry. Changes in cyclin D1, bax and bcl-2 gene expression were detected by measuring mRNA levels by real-time quantitative reverse transcription-polymerase chain reaction (qPCR. Changes in caspase-3 protease activity were detected by fluorometric assay. ResultsLeptin treatment significantly increased the proliferation rate of QBC939 cells in a dose- and time-dependent manner. Compared to untreated QBC939 cells, leptin treatment led to significantly more G0/G1 to S phase transition and significantly lower apoptosis rate. In addition, leptin-treated QBC939 cells showed enhanced mRNA expression of cyclin D1 and bcl-2, but decreased mRNA expression of bax. The leptin treatment also led to decreased caspase-3 activity. ConclusionLeptin promotes S to G0/G1 phase transition and proliferation, but inhibits apoptosis, of human cholangiocarcinoma cells in vitro.

  15. [Effects of three Wenyang Jianpi Tang on cell proliferation and apoptosis of nonalcoholic fatty liver cells].

    Science.gov (United States)

    Yang, Jia-Yao; Tao, Dong-Qing; Liu, Song; Zhang, Shu; Ma, Wei; Shi, Zhao-Hong

    2017-04-01

    To investigate the effects of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang on the cell proliferation and apoptosis of nonalcoholic fatty liver cells through the nonalcoholic fatty liver cell model established by inducing L02 cells with oleic acid. Different concentrations of oleic acid were added into L02 cells to induce the nonalcoholic fatty liver cell model. Oil red O staining was used to observe fatty droplets of fatty liver cells. Automatic biochemical analyzer was used to detect the levels of aspartic transaminase(AST), alanine aminotransferase(ALT), total cholesterol(TC), and triglyceride(TG) in the cell supernatants. There were five groups, namely normal group, model group, model and Sijunzi Tang group, model and Lizhong Tang group, and model and Fuzi Lizhong Tang group. The cell proliferation and apoptosis of the five groups were detected by MTT colorimetry test and flow cytometer. The expressions of PCNA, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax and Bcl-2 proteins of the five groups were detected by Western blot. The oil red O staining results showed that the optimum concentration of oleic acid that was used to induce nonalcoholic fatty liver cell models was 80 mg•L-1. The levels of AST, ALT, TC and TG in the nonalcoholic fatty liver cell supernatants were higher than that in normal liver cell supernatants(PTang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells(PTang showed the best effect. Western blot results showed that Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could down-regulate the expressions of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9 and Bax proteins, and up-regulate the expressions of PCNA and Bcl-2 proteins of nonalcoholic fatty liver cells. And Fuzi Lizhong Tang showed the best effect. In conclusion, all of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell

  16. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    International Nuclear Information System (INIS)

    Kheradmand, Arash; Dezfoulian, Omid; Alirezaei, Masoud; Rasoulian, Bahram

    2012-01-01

    Highlights: ► Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. ► Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. ► Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. ► Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.

  17. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis.

    Science.gov (United States)

    Feng, Y; Dai, X; Li, X; Wang, H; Liu, J; Zhang, J; Du, Y; Xia, L

    2012-10-01

    Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self-renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b-FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self-renewal. Colon CSCs were cultured in serum-free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence-activated cell sorting and western blotting. Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi-1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal-regulated kinase 1/2 (ERK 1/2). This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer. © 2012 Blackwell Publishing Ltd.

  18. Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells.

    Directory of Open Access Journals (Sweden)

    Shiwei Liu

    Full Text Available Pancreatic β cell dysfunction and reduction due to glucose toxicity play a crucial role in the development of type 2 diabetes mellitus (T2DM. Irisin, a novel exercise-induced myokine, reduces obesity, improves insulin resistance and lowers blood glucose by promoting the browning of white adipose tissue, thereby enhancing thermogenesis and increasing energy expenditure. Recent studies have reported that irisin promotes cell proliferation and protects cells from apoptosis. However, the effects of irisin on pancreatic β cells are unknown. Thus, the aim of this study was to investigate the effects and the potential underlying mechanisms of irisin on pancreatic β cell proliferation and apoptosis induced by high glucose. Both in vitro (INS-1 cells and in vivo (a T2DM rat model experiments were conducted. Irisin significantly increased the proliferation of INS-1 cells, with the most significant effect observed at 24 h with 100 ng/ml irisin. Irisin also promoted INS-1 cell proliferation via the ERK and p38 MAPK signaling pathways, protected the cells from high-glucose-induced apoptosis by regulating the expression of caspases, Bad, Bax, Bcl-2 and Bcl-xl, and improved pancreatic β cell function. Irisin significantly reduced the body weight and blood glucose values and increased the serum insulin levels of the diabetic rats. An oral glucose tolerance test (OGTT indicated that irisin also improved the glucose tolerance of T2DM rats. Together, these findings suggest that irisin may have applications in the prevention and treatment of T2DM because of its protective effect on the secretion of pancreatic β cells.

  19. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  20. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain

    Directory of Open Access Journals (Sweden)

    Katharine Askew

    2017-01-01

    Full Text Available Summary: Microglia play key roles in brain development, homeostasis, and function, and it is widely assumed that the adult population is long lived and maintained by self-renewal. However, the precise temporal and spatial dynamics of the microglial population are unknown. We show in mice and humans that the turnover of microglia is remarkably fast, allowing the whole population to be renewed several times during a lifetime. The number of microglial cells remains steady from late postnatal stages until aging and is maintained by the spatial and temporal coupling of proliferation and apoptosis, as shown by pulse-chase studies, chronic in vivo imaging of microglia, and the use of mouse models of dysregulated apoptosis. Our results reveal that the microglial population is constantly and rapidly remodeled, expanding our understanding of its role in the maintenance of brain homeostasis. : The mechanism or mechanisms underlying microglial homeostasis are unknown. Askew et al. show that microglia self-renewal is maintained by coupled proliferation and apoptosis, resulting in a stable microglia number over a mouse or human lifetime. Keywords: self-renewal, BrdU, CSF1R, CX3CR1, Macgreen, Vav-Bcl2, RNA-seq

  1. Effects of Raloxifene on the Proliferation and Apoptosis of Human Aortic Valve Interstitial Cells

    Directory of Open Access Journals (Sweden)

    Zhimin Fu

    2016-01-01

    Full Text Available We aimed to explore the effects of raloxifene (RAL on the proliferation and apoptosis of human aortic valve interstitial cells (AVICs. Different concentrations of RAL were used to act on AVICs. MTS kit is used to test the effects of different concentrations of RAL on the proliferation of AVICs. Cell cycle and apoptosis test used flow cytometry after seven-day treatment. The relative expression levels of caspase-3 and caspase-8 are tested with RT-qPCR and Western blot. The results of MTS testing revealed that the absorbance value (OD value of the cells in the concentration groups of 10 and 100 nmol/L RAL at a wavelength of 490 nm at five, seven, and nine days significantly decreased compared with that in the control group. Meanwhile, the results of flow cytometry of the cells collected after seven days showed that the ratio of the S stage and the cell apoptosis rate of AVICs can be significantly reduced by RAL in the concentration groups of 10 and 100 nmol/L. The mRNA and protein expressions of caspase-3 and caspase-8 were significantly decreased compared with those in the control group. This study laid the foundation for further treatment of aortic valve disease by using RAL.

  2. Effect of Docosahexaenoic Acid on Apoptosis and Proliferation in the Placenta: Preliminary Report

    Directory of Open Access Journals (Sweden)

    Ewa Wietrak

    2015-01-01

    Full Text Available Introduction. Observational studies confirm a higher incidence of preeclampsia in patients with low erythrocyte concentrations of omega-3 fatty acids. Observations point to an association of disorders of pregnancy, such as intrauterine growth restriction (IUGR and preeclampsia, with excessive apoptosis. One potential mechanism of action of docosahexaenoic acid (DHA promoting a reduction in the risk of pathological pregnancy may be by influencing these processes in the placenta. Materials and Methods. We investigated 28 pregnant women supplemented with a fish oil product containing 300 mg DHA starting from pregnancy week 20 until delivery (DHA group. The control group consisted of 50 women who did not receive such supplementation (control group. We determined the expression of Ki-67 and p21 as markers of proliferation and caspase 3 activity as a marker of apoptosis and DHA levels in umbilical cord blood. Results. Caspase 3 activity was significantly lower in the DHA group in comparison to the control group. Umbilical cord blood DHA concentration was higher in the DHA group. The expression of the proteins p21 and Ki-67 did not differ significantly between the groups. Conclusions. We observed an association between DHA supplementation and inhibition of placental apoptosis. We did not find an association between DHA and proliferation process in the placenta.

  3. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  4. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro

    Science.gov (United States)

    Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei

    2015-01-01

    Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin–eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway. PMID:25995620

  5. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors.

    Directory of Open Access Journals (Sweden)

    Alok De

    Full Text Available Patients with ovarian cancer (OC may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla, have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen - CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.

  6. A high ratio of apoptosis to proliferation correlates with improved survival after radiotherapy for cervical adenocarcinoma

    International Nuclear Information System (INIS)

    Sheridan, Mary T.; Cooper, Rachel A.; West, Catharine M.L.

    1999-01-01

    Purpose: A retrospective study was made of the role of apoptosis in determining radiotherapy outcome in 39 adenocarcinoma of the cervix. A comparison was also made of the detection of apoptosis by morphology and the TdT dUtp nick end-labeling (TUNEL) assay. Methods and Materials: The level of apoptosis was assessed in paraffin-embedded sections by cell morphology, the TUNEL assay, and a combination of the two. A total of 2,000 cells were counted per section, to obtain apoptotic (AI) and mitotic (MI) indices. Results: Patients with a high AI had a higher survival rate than those with a low AI, however, the difference was not significant. Using a ratio of apoptosis to proliferation indices, patients with an AI:MI > median had significantly better survival than those with AI:MI < median. This was true where the AI was quantified by morphology alone (p = 0.030) or in combination with the TUNEL assay (p = 0.008). Where the AI was quantified by a combination of morphology and TUNEL, the 5-year survival rates for women with AI:MI greater or less than the median were 81% and 25%, respectively. Conclusion: A high ratio of AI:MI in adenocarcinoma of the cervix indicates a good prognosis. A combination of the TUNEL assay and morphology provided the best discrimination between outcome groups

  7. [Effects of cucurmosin on the cell proliferation and apoptosis in human pancreatic PANC-1 cells].

    Science.gov (United States)

    Xu, Chun-Sen; Huang, He-Guang; Chen, Ming-Huang

    2012-02-01

    To observe the effects of cucurmosin (CUS) on the cell proliferation and apoptosis in pancreatic PANC-1 cells. The inhibition of CUS on the PANC-1 cell growth was observed using MTT assay. The inhibition ratio of CUS on the pancreatic orthotopic transplantation was in vivo observed in the NOD/SCID mouse model. The changes of microstructure of the apoptosis-inducing effect of CUS on PANC-1 was observed under electron microscope. The cell cycle and apoptosis after CUS intervention was detected using flow cytometry. The Caspase-3 activity after CUS treatment was detected using enzyme linked immunospecific assay (ELISA). Treatment with CUS at the dose of 0.125, 0.25, and 0.5 mg/kg inhibited the growth of pancreatic carcinoma PANC-1 xenografs with the ratio of 45.2%, 50.0%, and 59.7%, respectively (P PANC-1 cells in a dose-dependent maner. Being exposed to 40.0 microg/mL of the CUS for 24, 48, and 72 h, the percentage of G0/ G1 phase cells was 56.60% +/- 6.65%, 67.83% +/- 6.76%, and 77.00% +/- 6.73%, respectively (P PANC-1 cells in the G0/G1 phase of the cell cycle in a time-dependent maner. CUS significantly inhibited the growth of PANC-1 cells possibly through the G0/G1 cell cycle arrest and apoptosis.

  8. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  9. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn

    2010-01-01

    is associated with serine/threonine kinases and phosphatases and modulates the extracellular signal-regulated kinase pathway suggesting a role in the regulation of cellular growth. Here we provide evidence of a constitutive expression of PDCD10 in malignant T cells and cell lines from peripheral blood......, whereas an activator of Jak3 and NF-¿B, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10...

  10. Stat3 Expression and Its Correlation with Proliferation and Apoptosis/Autophagy in Gliomas

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2008-01-01

    Full Text Available Signal transducer and activator of transcription-3 (Stat3 was studied along with several steps of the PI3/Akt pathway in a series of 64 gliomas that included both malignant and low-grade tumors, using quantitative immunohistochemistry, Western blotting, and molecular biology techniques. The goal of the study was to investigate whether activated Stat3 (phospho-Stat3 levels correlated with cell proliferation, apoptosis, and autophagy. Stat3 and activated Akt (phospho-Akt expression increased with malignancy grade, but did not correlate with proliferation and survival within the category of glioblastomas. A correlation of Stat3 with Akt was found, indicating a regulation of the former by the PI3/Akt pathway, which, in turn, was in relation with EGFR amplification. Stat3 and Akt did not show any correlation with apoptosis, whereas they showed an inverse correlation with Beclin 1, a stimulator of autophagy, which was rarely positive in glioblastomas. Autophagy seems then to be inactivated in malignant gliomas.

  11. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development.

    Science.gov (United States)

    Inglis-Broadgate, Suzanne L; Thomson, Rachel E; Pellicano, Francesca; Tartaglia, Michael A; Pontikis, Charlie C; Cooper, Jonathan D; Iwata, Tomoko

    2005-03-01

    Mice with the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) exhibited a marked enlargement of the brain. The brain size was increased as early as E11.5, not secondary to the possible effect of Fgfr3 activity in the skeleton. Furthermore, the mutant brains showed a dramatic increase in cortical thickness, a phenotype opposite to that in FGF2 knockout mice. Despite this increased thickness, cortical layer formation was largely unaffected and no cortical folding was observed during embryonic days 11.5-18.5 (E11.5-E18.5). Measurement of cortical thickness revealed an increase of 38.1% in the EIIa;Fgfr3(+/K644E) mice at E14.5 and the advanced appearance of the cortical plate was frequently observed at this stage. Unbiased stereological analysis revealed that the volume of the ventricular zone (VZ) was increased by more than two fold in the EIIa;Fgfr3(+/K644E) mutants at E14.5. A relatively mild increase in progenitor cell proliferation and a profound decrease in developmental apoptosis during E11.5-E14.5 most likely accounts for the dramatic increase in total telecephalic cell number. Taken together, our data suggest a novel function of Fgfr3 in controlling the development of the cortex, by regulating proliferation and apoptosis of cortical progenitors.

  12. IL13Rα2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2018-03-01

    Full Text Available Mingjun Gu Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People’s Republic of China Aim: Papillary thyroid carcinoma (PTC is the most common type of thyroid cancer. Infiltrative growth and metastasis are the two most intractable characteristics of PTC. Interleukin-13 receptor α2 (IL13Rα2 with high affinity for Th2-derived cytokine IL-13 has been reported to be overexpressed in several tumors. In this study, an analysis of IL13Rα2 expression in PTC and matched paracancerous tissues was undertaken, and its biologic functions in PTC were assessed. Methods: IL13Rα2 and vascular endothelial growth factor (VEGF expression were detected by using real-time polymerase chain reaction and immunohistochemistry analyses. Cell proliferation, invasion, apoptosis, and caspase activity were measured with the Cell Counting Kit-8, Transwell, flow cytometry analyses, and biochemistry assay, respectively. Results: Upregulation of IL13Rα2 and VEGF was observed in PTC tissues compared with matched paracancerous tissues. Pearson’s correlation analysis indicated that IL13Rα2 mRNA level in the tested PTC tissues was positively correlated with VEGF mRNA level. Besides, inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion were detected in IL13Rα2-silenced TPC-1 cells. Increased activity of Caspase 3 and Caspase 9, along with elevated cleaved Caspase 3 and poly (ADP-ribose polymerase indicated the signal pathway of cell apoptosis induced by IL13Rα2 siRNA. In addition, downregulated metastasis- and angiogenesis-related proteins VEGF, VEGFR2, MMP2, and MMP9 indicated the decreased number of invading cells after knockdown of IL13Rα2. Conclusion: The results demonstrate that IL13Rα2 plays an important role in the progress of PTC. IL13Rα2 knockdown in PTC cells inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion. These data suggest that IL13Rα2

  13. [Function of the interleukin-1 gene system in immunomodulation, apoptosis and proliferation in the male gonad].

    Science.gov (United States)

    Rozwadowska, Natalia; Fiszer, Dorota; Kurpisz, Maciej

    2005-03-07

    Spermatogenesis is a phenomenon where two main processes proliferation and apoptosis, meet. Slight changes in their activities could lead to different pathologies, such as fertility disorder (excessive apoptosis) or testicular cancer (overproliferation). The IL-1 gene family includes genes which play important roles in both these processes and consists of IL-1?, IL-1ss, IL-18, the IL-1 receptor antagonist (IL-1RA), two IL-1 receptors (IL-1RI, IL-1RII), the IL-18 receptor (IL-18R?), and the receptor-associated proteins - IL-1RAcP and IL-18Rss. Caspase-1 (ICE - interleukin-1 converting enzyme), directly connected with apoptosis and responsible for the cleavage of IL-1b and IL-18, is also a member of the IL-1 family. The system of the numerous IL-1 receptors and their signal transduction involving protein cascades provokes a range of gene expressions necessary for the initiation and maintenance of inflammatory reaction. In the testis, IL-1 is constitutively expressed, where it creates a unique microenvironment for diploid gametogenic cell conversion into specialized haploid spermatozoa. It may also be an element of the physiological protection from autoimmune attack by host testicular antigens and a part of immune privilege. This review is to summarize the knowledge of the local control of spermatogenesis and immunomodulation in the male gonad. As infertility is one of the main problems of industrialized countries, study of the pathophysiology of the male genital tract appears essential in future clinical practice.

  14. Body protective compound-157 enhances alkali-burn wound healing in vivo and promotes proliferation, migration, and angiogenesis in vitro

    Directory of Open Access Journals (Sweden)

    Huang T

    2015-04-01

    Full Text Available Tonglie Huang,1,* Kuo Zhang,2,* Lijuan Sun,3 Xiaochang Xue,1 Cun Zhang,1 Zhen Shu,1 Nan Mu,1 Jintao Gu,1 Wangqian Zhang,1 Yukun Wang,1 Yingqi Zhang,1 Wei Zhang1 1State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, 2National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, 3Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin–eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs. Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of

  15. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    International Nuclear Information System (INIS)

    Meena, Ramovatar; Kesari, Kavindra Kumar; Rani, Madhu; Paulraj, R.

    2012-01-01

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca 10 (PO 4 ) 6 (OH) 2 ) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H 2 DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly (p < 0.05) increasing in a dose-dependent manner of HAP nanoparticles. Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant (p < 0.05) increase in the level of intracellular ROS in HAP-treated cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  16. Cannabidiol inhibits angiogenesis by multiple mechanisms.

    Science.gov (United States)

    Solinas, M; Massi, P; Cantelmo, A R; Cattaneo, M G; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, L M; Noonan, D M; Albini, A; Parolaro, D

    2012-11-01

    Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. The value of ultrasound contrast for assessing cancer cell proliferation and invasion function as well as angiogenesis in lesions of in patients with gastric cancer

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2017-06-01

    Full Text Available Objective: To study the value of ultrasound contrast for assessing cancer cell proliferation and invasion as well as angiogenesis in lesions of in patients with gastric cancer. Methods: A total of 39 patients with gastric cancer and 48 patients with gastric ulcer who were treated in our hospital between August 2012 and May 2016 were included in gastric cancer group and gastric ulcer group respectively, and 50 healthy subjects who accepted gastroscopy in our hospital during the same period were included in normal control group. The day after admission, color Doppler diasonograph was used to test the gastric ultrasound contrast parameters; fluorescence quantitative PCR method was used to detect the proliferation and invasion gene mRNA expression in stomach tissue; enzyme-linked immunosorbent assay (ELISA was used to detect the serum angiogenesis index levels. Results: Ultrasound contrast parameters ET and TTP levels of gastric cancer group and gastric ulcer group were significantly lower than those of normal control group, and ultrasound contrast parameters ET and TTP levels of gastric cancer group were significantly lower than those of gastric ulcer group; Stat3, Survivin, Bcl-2, 毬-catenin, eIF4E, CD44, UHRF1 and c-met mRNA expression in tissue as well as VEGF, EGFR, HIF-毩 and Ang-2 levels in serum of gastric cancer group were higher than those of gastric ulcer group and normal control group while E-cadherin mRNA expression in tissue was lower than those of gastric ulcer group and normal control group; Spearman correlation analysis showed that ultrasound contrast parameters ET and TTP levels were correlated with the cancer cell proliferation and invasion function as well as angiogenesis indexes in lesions. Conclusion: Ultrasound contrast parameters can accurately assess the malignant degree of gastric cancer, and is expected to become the reliable means for early diagnosis and treatment guidance of gastric cancer in the future.

  18. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier

    International Nuclear Information System (INIS)

    Garcia, Patrick Vianna; Seiva, Fábio Rodrigues Ferreira; Carniato, Amanda Pocol; Mello Júnior, Wilson de; Duran, Nelson; Macedo, Alda Maria; Oliveira, Alexandre Gabarra de; Romih, Rok; Nunes, Iseu da Silva; Nunes, Odilon da Silva; Fávaro, Wagner José

    2016-01-01

    The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. Thus, P-MAPA immunotherapy could be considered an important therapeutic

  19. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier.

    Science.gov (United States)

    Garcia, Patrick Vianna; Seiva, Fábio Rodrigues Ferreira; Carniato, Amanda Pocol; de Mello Júnior, Wilson; Duran, Nelson; Macedo, Alda Maria; de Oliveira, Alexandre Gabarra; Romih, Rok; Nunes, Iseu da Silva; Nunes, Odilon da Silva; Fávaro, Wagner José

    2016-07-07

    The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. Thus, P-MAPA immunotherapy could be considered an important therapeutic

  20. [Effects of icotinib hydrochloride on the proliferation and apoptosis of human lung cancer cell lines].

    Science.gov (United States)

    Ma, Li; Han, Xiao-hong; Wang, Shuai; Wang, Jian-fei; Shi, Yuan-kai

    2012-09-25

    To explore the effects of icotinib on the proliferation and apoptosis of various lung cancer cell lines. Human lung cancer cell lines HCC827, H1650, H1975, A549 and human epidermal cancer cell line A431 were treated in vitro with icotinib or gefitinib at a concentration gradient of 0 - 40 µmol/L. Their proliferation effects were analyzed by the thiazolyl blue (MTT) assay and the apoptotic effects detected by flow cytometer. The downstream signaling proteins were detected by Western blot. The median inhibitory concentrations (IC(50)) of icotinib for A431 and HCC827 cell lines were (0.04 ± 0.02) and (0.15 ± 0.06) µmol/L respectively. No significant differences existed between the inhibitions of gefitinib and icotinib on A431, HCC827, H1650, H1975 and A549 cell lines (all P > 0.05). Compared with H1650, H1975 and A549 cell lines, icotinib significantly inhibited A431 (P = 0.009, 0.005 and 0.000) and HCC827 (P = 0.001, 0.001 and 0.000) cell lines. And it lowered the expressions of p-AKT, p-ERK and survivin protein expression through the inhibited activity of p-EGFR protein. Icotinib can arrest the proliferation of lung adenocarcinoma cells with EGFR mutation or over-expression by inhibiting the signal pathways of AKT-ERK and survivin.

  1. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    Science.gov (United States)

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  2. Synergistic effects of rmhTRAIL and 17-AAG on the proliferation and apoptosis of multiple myeloma cells.

    Science.gov (United States)

    Wang, Jing; Li, Yun; Sun, Wei; Liu, Jing; Chen, Wenming

    2018-03-22

    This study aimed to investigate synergistic effects of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) and heat-shock protein 90 (HSP90) inhibitor (geldanamycin derivative 17 -allylamino- 17-demethoxy -geldanamycin, 17-AAG) on the proliferation and apoptosis of multiple myeloma (MM) cells. MTT assays evaluated inhibitory effects of rmhTRAIL and 17-AAG in different concentrations and treatment durations on the proliferation of RPMI8226 and U266 cells. The half maximal inhibitory concentration was calculated using OriginPro7.5. Synergistic effects of rmhTRAIL and 17-AAG on apoptosis of MM cells were detected using flow cytometry at 24 and 48 h post-treatment. To evaluate synergistic effects of rmhTRAIL and 17-AAG, the Q-value was calculated using King's formula. rmhTRAIL exhibited significant inhibitory effects on the proliferation of RPMI8226 cells in a dose- and time-dependent manner (>50%), whereas U266 cells were not sensitive to rmhTRAIL (80%). Significant synergistic effects of rmhTRAIL and 17-AAG on the proliferation of RPMI8226 cells were revealed (Q-value > 1.15), whereas synergistic effects were not evident on the proliferation of U266 cells (Q-value effects on apoptosis of RPMI8226 and U266 cells (Q-value > 1.15). The combined application of rmhTRAIL and 17-AAG revealed favorable synergistic effects in the treatment of MM.

  3. Proliferation, apoptosis and their relationship to clinical outcome in cancer of the uterine cervix

    International Nuclear Information System (INIS)

    Shun, Wong; Tsang, Richard; Fyles, Anthony; Levin, Wilfred; Manchul, Lee; Milosevic, Michael; Li, Yu-qing; Chapman, William; Pintilie, Melania

    1997-01-01

    Purpose: To assess the prognostic value of pretreatment tumor proliferation and apoptosis in carcinoma of the cervix. Materials and Methods: Eighty-four patients were studied prospectively from Mar 1991 to Dec 1996. Pre-treatment evaluation included examination under anaesthesia and obtaining a biopsy specimen 4-10 hours following the intravenous administration of BrdUrd (200 mg). Potential doubling time (T pot ) was obtained by deriving the labelling index (LI) and S-phase duration (T s ) using flow cytometry (FC). LI and its staining pattern, mitotic index (MI), and apoptotic index (AI) were also determined on histology slides. Seven patients were excluded: 2 patients had no tumor in the biopsy specimen; 2 had a vaginal primary; and 3 did not receive radiation therapy (RT). The remaining 77 patients (median age 57 years, range 28-83) were treated with radical RT. There were 61 squamous, 11 adeno and 5 adenosquamous carcinomas. FIGO stages were: Ib and IIa, 20; IIb, 29; III and IV, 28, with a median tumor size of 6 cm. The median external beam dose was 50 Gy (range 40-52.8 Gy, 1 pt had 26 Gy and died of progressive disease) in 25 daily fractions, and the intracavitary dose was 40 Gy (single line source) specified at 2 cm lateral of the midline. The median overall treatment time was 45 days (range 38-73 days). Results: To date, 27 patients have died of disease, and the median follow-up for alive patients is 3.2 yr (range 0.4-6.0 yr). Three patients were not evaluable for response. There were 43 diploid and 34 aneuploid tumors. The median/mean LI by FC were (6.7%(7.9%)) (range 1.5-23.9%). The median/mean T pot were (5.0(6.7)) days (range 1.2-42.1 days). The median/mean AI were (1.0%(1.6%)) (range 0-6.8%). Among 64 patients who completely responded to treatment, 25 patients have relapsed (6 pelvic, 17 non-pelvic, and 2 pelvic and distant). Although there was a significant correlation between LI determined by FC vs. by histology (r=0.40), LI by histology was

  4. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia.

    Science.gov (United States)

    Jalali, Fatemeh; Sharifi, Mohammadreza; Salehi, Rasoul

    2016-01-01

    Acute erythroleukemia is an uncommon subtype of acute myeloid leukemia which has been considered to be a subtype of AML with a worse prognosis. Intensive chemotherapy is the first line of treatment. In recent years, the effect of kefir on some malignancies has been experimented. Kefir is a kind of beverage, which obtained by incubation of kefir grains with raw milk. Kefir grains are a symbiotic complex of different kinds of yeasts and bacteria, especially lactic acid bacteria which gather in a mostly carbohydrate matrix, named kefiran. We investigated the effect of kefir on acute erythroleukemia cell line (KG-1) and peripheral blood mononuclear cells (PBMCs). The cell line and PBMCs were treated with different doses of kefir and milk and incubated for three different times. We used Polymixin B to block the lipopolysaccharide and NaOH (1 mol/l) to neutralize the acidic media. Viability was detected by MTT assay. Apoptosis and necrosis were assessed by annexin-propidium iodide staining. Our results showed that kefir induced apoptosis and necrosis in KG-1 cell line. It was revealed that kefir decreased proliferation in erythroleukemia cell line. We did not observe a remarkable effect of kefir on PBMCs. Our study suggested that kefir may have potential to be an effective treatment for erythroleukemia.

  5. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells

    International Nuclear Information System (INIS)

    Márquez-Ramírez, Sandra Gissela; Delgado-Buenrostro, Norma Laura; Chirino, Yolanda Irasema; Iglesias, Gisela Gutiérrez; López-Marure, Rebeca

    2012-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in the chemical, electrical and electronic industries. TiO 2 NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO 2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO 2 NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO 2 NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO 2 NPs were internalized and formation of vesicles was observed. TiO 2 NPs induced apoptosis after 96 h of treatment. Hence, TiO 2 NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO 2 NPs could cause brain injury and be hazardous to health.

  6. Non-genotoxic carcinogens: early effects on gap junctions, cell proliferation and apoptosis in the rat

    International Nuclear Information System (INIS)

    Mally, Angela; Chipman, James Kevin

    2002-01-01

    Non-genotoxic carcinogens are thought to induce tumour formation by disturbing the balance between cell growth and cell death. Gap junctions (GJ) contribute to the maintenance of tissue homeostasis by allowing the intercellular exchange of growth regulatory signals and potential inhibition of GJ intercellular communication through loss of connexin (Cx) plaques has been shown to be involved in the cancer process. We have investigated the time- and dose-dependent effects of the non-genotoxic hepatocarcinogens Wy-14,643, 2,3,7,8-tetrachlorodibenzo-p-dioxin, methapyrilene and hexachlorobenzene and the male rat kidney carcinogens chloroform, p-dichlorobenzene and d-limonene on gap junction plaque expression in relation to proliferation and apoptosis. With the exception of limonene, all non-genotoxic carcinogens significantly reduced the expression of GJ plaques containing Cx32 in their respective target tissue. No dose-dependent, significant effects were seen in non-target organs. Although alteration of Cx32 expression did not appear to correlate with induction of cell proliferation, out data suggest that the interaction of both processes--interference of GJ coupled with a proliferative stimulus (at the carcinogenic dose)--may be important in non-genotoxic carcinogenesis and provide a potential alert for non-genotoxic carcinogens in short-term toxicity tests

  7. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis.

    Science.gov (United States)

    Zhang, Qiang; Geng, Pei-Liang; Yin, Pei; Wang, Xiao-Lin; Jia, Jin-Peng; Yao, Jie

    2013-01-01

    To investigate the expression level of TUG1 and one of its transcript variants (n377360) in osteosarcoma cells and assess the role of TUG1 in proliferation and apoptosis in the U2OS cell line. TUG1 and n377360 expression levels in patients with osteosarcomas and the U2OS human osteosarcoma cell line were evaluated using real-time quantitative PCR. U2OS cells were transected with TUG1 and n377360 siRNA or non-targeting siRNA. MTS was performed to assess the cell proliferation and flow cytometry was applied to analyze apoptosis. We found significantly higher TUG1 and n377360 expression levels in osteosarcoma tissues compared with matched non-tumorous tissues. In line with this, suppression of TUG1 and n377360 expression by siRNA significantly impaired the cell proliferation potential of osteosarcoma cells. Furthermore, inhibition of TUG1 expression significantly promoted osteosarcoma cell apoptosis. The overexpression of TUG1 and n377360 in osteosarcoma specimens and the functional role of TUG1 and n377360 regarding cell proliferation and apoptosis in an osteosarcoma cell line provided evidence that the use of TUG1 or n377360 may be a viable but an as yet unexplored therapeutic strategy in tumors that over express these factors.

  8. Effect of helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue

    Directory of Open Access Journals (Sweden)

    Hua Xin

    2017-05-01

    Full Text Available Objective: To study the effect of Helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue. Methods: The gastric cancer tissues surgically removed in our hospital between May 2013 and October 2016 were collected and divided into Hp negative, Hp-L negative and Hp-L positive according to the condition of helicobacter pylori infection. The proliferation, apoptosis and invasion gene expression were detected. Results: LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-positive gastric cancer tissues were significantly higher than those in Hp-L-negative and Hp-negative gastric cancer tissues while ING5, PTPN13, Beclin1 and Mst1 mRNA expression were significantly lower than those in Hp-L-negative and Hp-negative gastric cancer tissues; LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, ING5, PTPN13, Beclin1, Mst1, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-negative gastric cancer tissues were not different from those in Hpnegative gastric cancer tissues. Conclusion: Helicobacter pylori L-form infection can influence the proliferation, apoptosis and invasion gene expression to promote cell proliferation and invasion, and inhibit cell apoptosis.

  9. Assessment of 16 chemicals on proliferation and apoptosis in human neuroprogenitor cells using high-content image analysis (HCA).

    Science.gov (United States)

    The need for efficient methods of screening chemicals for the potential to cause developmental neurotoxicity is paramount. We previously described optimization of an HCA assay for proliferation and apoptosis in ReNcell CX cells (ReN), identifying appropriate controls. Utility of ...

  10. Proliferation-linked apoptosis of adoptively transferred T cells after IL-15 administration in macaques.

    Directory of Open Access Journals (Sweden)

    Carolina Berger

    Full Text Available The adoptive transfer of antigen-specific effector T cells is being used to treat human infections and malignancy. T cell persistence is a prerequisite for therapeutic efficacy, but reliably establishing a high-level and durable T cell response by transferring cultured CD8(+ T cells remains challenging. Thus, strategies that promote a transferred high-level T cell response may improve the efficacy of T cell therapy. Lymphodepletion enhances persistence of transferred T cells in mice in part by reducing competition for IL-15, a common γ-chain cytokine that promotes T cell memory, but lymphodepleting regimens have toxicity. IL-15 can be safely administered and has minimal effects on CD4(+ regulatory T cells at low doses, making it an attractive adjunct in adoptive T cell therapy. Here, we show in lymphoreplete macaca nemestrina, that proliferation of adoptively transferred central memory-derived CD8(+ effector T (T(CM/E cells is enhanced in vivo by administering IL-15. T(CM/E cells migrated to memory niches, persisted, and acquired both central memory and effector memory phenotypes regardless of the cytokine treatment. Unexpectedly, despite maintaining T cell proliferation, IL-15 did not augment the magnitude of the transferred T cell response in blood, bone marrow, or lymph nodes. T cells induced to proliferate by IL-15 displayed increased apoptosis demonstrating that enhanced cycling was balanced by cell death. These results suggest that homeostatic mechanisms that regulate T cell numbers may interfere with strategies to augment a high-level T cell response by adoptive transfer of CD8(+ T(CM/E cells in lymphoreplete hosts.

  11. Effect of Ovarian Steroids on Colonic Epithelial Cell Proliferation and Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    K. Altunbas

    2007-01-01

    Full Text Available The aim of this study was to investigate the effects of steroid hormones on proliferation and apoptosis in the colon crypt epithelium. The research was conducted on adult ovariectomized (Ovx rats (Sprague Dawley. Ovx rats were injected for 15 days with 0.2 ml of sesame oil (control; C, or 17β-oestradiol (10 μg/d; E, or progesterone (2 mg/d; P, or E + P. Proliferative activity in the colon was assessed by using proliferating cell nuclear antigen (PCNA antibody. The proliferation index (PI, the number of PCNA positive cells divided by the total number of cells counted in the crypt column multiplied by 100, was calculated. PI was lower in the hormonetreated groups, especially in group P compared to that in group C. The apoptotic index (AI, the mean number of apoptotic cells, was detected by active caspase 3 immunoreactivity per crypt in the colon. AI was lower in the colon crypt epithelium of group E than that of the other groups. However, AI in the colon crypt epithelium in groups P and E + P was higher than that of both group E and group C. In addition, the colon crypt size (the number of epithelial cells lining one side of 10 well-oriented, longitudinally cut crypts was considerably lower in group E than that of the other groups. In conclusion, we showed that the decrease of AI in group E was balanced by progesterone; the decrease of PI in group P was also depressed by oestrogen.

  12. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis

    International Nuclear Information System (INIS)

    Hubbard, Kyle; Catalano, Jennifer; Puri, Raj K; Gnatt, Averell

    2008-01-01

    A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery

  13. Experimental study of the effect of 103Pd on the proliferation and apoptosis of vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luo Quanyong; Zhu Jun; Chen Libo; Lu Hankui; Zhu Ruisen

    2002-01-01

    Objective: To investigate the ability of γ emitting radionuclide 103 Pd to inhibit the vascular smooth muscle cell (SMC) proliferation and to induce its apoptosis in vitro. Methods: 103 Pd solution was added to the culture medium to irradiate SMCs for 72 h and non-radioactive Pd solution was added as control. 3 H-TdR incorporation test was used to detect the effect of 103 Pd on the proliferation of SMCs. Flow cytometer was used to detect the apoptotic SMCs. Results: The results showed that inhibition of SMC proliferation was evident and the effects were dose-dependant. Inhibition rate of SMC proliferation by 1.85 MBq 103 Pd was 2.3% , which was not significant. The inhibition rate increased from 41.6% to 91.2% as the dose of 103 Pd increased from 7.4 to 37.0 MBq, and the proliferation of SMCs was repressed significantly then. The apoptosis rate was extremely low (less than 4.0% ) with the 103 pd dose escalating from 1.85 to 37.0 MBq. Conclusions: This study suggests that proliferation of SMCs can be repressed effectively in vitro by 103 pd. 103 Pd can be used to inhibit the neointimal proliferation. 103 Pd radioactive stent implantation can be employed as a possible novel means to prevent restenosis

  14. Dynamics of cell proliferation and apoptosis reflect different life strategies in hydrothermal vent and cold seep vestimentiferan tubeworms.

    Science.gov (United States)

    Pflugfelder, Bettina; Cary, S Craig; Bright, Monika

    2009-07-01

    Deep-sea vestimentiferan tubeworms, which live in symbiosis with bacteria, exhibit different life strategies according to their habitat. At unstable and relatively short-lived hydrothermal vents, they grow extremely fast, whereas their close relatives at stable and long-persisting cold seeps grow slowly and live up to 300 years. Growth and age differences are thought to occur because of ecological and physiological adaptations. However, the underlying mechanisms of cell proliferation and death, which are closely linked to homeostasis, growth, and longevity, are unknown. Here, we show by immunohistochemical and ultrastructural cell cycle analyses that cell proliferation activities of the two species studied are higher than in any other characterized invertebrate, being only comparable with tumor and wound-healing processes. The slow growth in Lamellibrachia luymesi from cold seeps results from balanced activities of proliferation and apoptosis in the epidermis. In contrast, Riftia pachyptila from hydrothermal vents grows fast because apoptosis is down-regulated in this tissue. The symbiont-housing organ, the trophosome, exhibits a complex cell cycle and terminal differentiation pattern in both species, and growth is regulated by proliferation. These mechanisms have similarities to the up- and down-regulation of proliferation or apoptosis in various types of tumor, although they occur in healthy animals in this study, thus providing significant insights into the underlying mechanisms of growth and longevity.

  15. Fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation.

    Science.gov (United States)

    Yan, Weixin; Chen, Shouhui; Zhao, Yiyang; Ye, Xiaoyu

    2018-06-01

    The present study aimed to investigate the effect of fisetin on proliferation and apoptosis of gastric cancer cells, as well as the underlying mechanism. Proliferation in SGC7901 cancer and GES-1 normal cells was analyzed using a CCK-8 assay. Apoptosis was analyzed using an Annexin V/Propidium Iodide apoptosis kit and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was analyzed by western blot assay. Treatment of SGC7901 cells with various concentrations (1, 5, 10, 15 and 20 µM) of fisetin for 48 h resulted in a concentration dependent reduction in proliferation. Flow cytometry revealed a marked increase in apoptosis from 5 µM concentration of fisetin after 48 h. The percentage of apoptotic cells increased to 87% following treatment with 15 µM fisetin for 48 h, compared with 2% in control. Treatment of SGC7901 cells with fisetin for 48 h resulted in a reduction in the activation of ERK 1/2 in a concentration-dependent manner. The reduction in activation of ERK 1/2 was significant following treatment with 15 µM fisetin for 48 h. The inhibitory effect of fisetin on activation of ERK 1/2 was further demonstrated using the ERK 1/2 inhibitor, PD98059. The results indicated a significant reduction in the proliferation of SGC7901 cells following treatment with PD98059 (P<0.002). The reduction by PD98059 administration was comparable to that observed following fisetin treatment for 48 h. In conclusion, the current study demonstrates that fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation. Thus, fisetin may have therapeutic applications in the treatment of gastric cancer.

  16. [Effects of 17-AAG on the proliferation and apoptosis of human lung cancer A549 and H446 cells].

    Science.gov (United States)

    Niu, Ben; Lin, Jingshuang; Feng, Tao

    2015-04-01

    To observe the effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) on the apoptosis of human lung cancer cell lines A549 and H446, and to investigate the potential mechanisms. Proliferation inhibition and apoptosis assays, and the cell cycles were detected by MTT and flow cytometry respectively. Western blot was used to determine the expression level of proteins such as Hsp90, Hsp70, AKt, Her-2, Bcl-2 and Bax. After treated with 17-AAG, the proliferation of both A549 and H446 cells was inhibited significantly in a dose-dependent manner; as the concentration of 17-AAG was from 50 to 500 nmol/L, the IC₅₀ values to A549 and H446 cell lines were (222 ± 13) nmol/L and (189 ± 7) nmol/L respectively at 48 h. Cell cycle assays showed that 17-AAG was able to arrest cell cycles of A549 and H446 cell lines at the G₂/M phase. Apoptosis assay showed that 17-AAG was capable of inducing apoptosis in A549 and H446 cell lines. After treated with 17-AAG for 48 h, there were significant differences between the 400 nmol/L groups(46.3% for A549 cell line and 56.9% for H446 cell line) and the control group (11.9% for A549 cell line and 6.9% for H446 cell line, P AAG treatment: Akt and Her-2 decreased significantly while the expression of Hsp70 increased. Meanwhile, the expression of Bcl-2 decreased but that of Bax increased, indicating that 17-AAG was able to promote apoptosis mode in A549 and H446 cells. 17-AAG can regulate the expression level of apoptosis-related proteins such as Bax and Bcl-2 by Hsp90 signaling pathway in A549 and H446 cells, and ultimately inhibit cell proliferation and induce apoptosis.

  17. Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Lieke Thorsten

    2012-10-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a primary liver cancer with increasing incidence worldwide. Despite all efforts made in past years, prognosis remains to be poor. At least in part, this might be explained by a pronounced resistance of CC cells to undergo apoptosis. Thus, new therapeutic strategies are imperatively required. In this study we investigated the effect of Salinomycin, a polyether ionophore antibiotic, on CC cells as an appropriate agent to treat CC. Salinomycin was quite recently identified to induce apoptosis in cancer stem cells and to overcome apoptosis-resistance in several leukemia-cells and other cancer cell lines of different origin. Methods To delineate the effects of Salinomycin on CC, we established an in vitro cell culture model using three different human CC cell lines. After treatment apoptosis as well as migration and proliferation behavior was assessed and additional cell cycle analyses were performed by flowcytometry. Results By demonstrating Annexin V and TUNEL positivity of human CC cells, we provide evidence that Salinomycin reveals the capacity to break apoptosis-resistance in CC cells. Furthermore, we are able to demonstrate that the non-apoptotic cell fraction is characterized by sustainable impaired migration and proliferation. Cell cycle analyses revealed G2-phase accumulation of human CC cells after treatment with Salinomycin. Even though apoptosis is induced in two of three cell lines of CC cells, one cell line remained unaffected in regard of apoptosis but revealed as the other CC cells decreased proliferation and migration. Conclusion In this study, we are able to demonstrate that Salinomycin is an effective agent against previously resistant CC cells and might be a potential candidate for the treatment of CC in the future.

  18. Keratinocyte proliferation, differentiation, and apoptosis-Differential mechanisms of regulation by curcumin, EGCG and apigenin

    International Nuclear Information System (INIS)

    Balasubramanian, Sivaprakasam; Eckert, Richard L.

    2007-01-01

    We have proposed that it is important to examine the impact of chemopreventive agents on the function of normal human epidermal keratinocytes since these cells comprise the barrier that protects the body from a range of environmental insults. In this context, it is widely appreciated that cancer may be retarded by consumption or topical application of naturally occurring food-derived chemopreventive agents. Our studies show that (-)-epigallocatechin-3-gallate (EGCG), a green tea-derived polyphenol, acts to enhance the differentiation of normal human keratinocytes as evidenced by its ability to increase involucrin (hINV), transglutaminase type 1 (TG1) and caspase-14 gene expression. EGCG also stimulates keratinocyte morphological differentiation. These actions of EGCG are mediated via activation of a nPKC, Ras, MEKK1, MEK3, p38δ-ERK1/2 signaling cascade which leads to increased activator protein 1 (AP1) and CAATT enhancer binding protein (C/EBP) transcription factor expression, increased binding of these factors to DNA, and increased gene transcription. In contrast, apigenin, a dietary flavonoid derived from plants and vegetables, and curcumin, an agent derived from turmeric, inhibit differentiation by suppressing MAPK signal transduction and reducing API transcription factor level. Curcumin also acts to enhance apoptosis, although EGCG and apigenin do not stimulate apoptosis. In addition, all of these agents inhibit keratinocyte proliferation. These findings indicate that each of these diet-derived chemopreventive agents has a profound impact on normal human keratinocyte function and that they operate via distinct and sometimes opposing mechanisms. However, all are expected to act as chemopreventive agents

  19. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Procyanidins from evening primrose (Oenothera paradoxa) defatted seeds inhibit invasiveness of breast cancer cells and modulate the expression of selected genes involved in angiogenesis, metastasis, and apoptosis.

    Science.gov (United States)

    Lewandowska, Urszula; Szewczyk, Karolina; Owczarek, Katarzyna; Hrabec, Zbigniew; Podsędek, Anna; Sosnowska, Dorota; Hrabec, Elżbieta

    2013-01-01

    There is a growing interest in plant polyphenols (including flavanols) that exhibit pleiotropic biological activities such as antiinflammatory, antioxidant, and anticancer effects. Here, we report for the first time the inhibition of MDA-MB-231 breast cancer cell viability and invasiveness by an evening primrose flavanol preparation (EPFP). We observed a decrease in MDA-MB-231 viability of 50% vs. a control after 72 h of incubation with EPFP at a concentration of 58 μM gallic acid equivalents (GAE) and an inhibition of their invasiveness of 65% vs. a control at 75 μM GAE after 48 h of incubation. EPFP caused a 10-fold reduction in matrix metalloproteinase-9 (MMP-9) activity at 100 μM GAE. Furthermore, through modulation of mRNA expression, EPFP reduced the expression levels of the following proteins: antiapoptotic Bcl-2, angiogenic vascular endothelial growth factor (VEGF), and 2 transcription factors (c-Jun, c-Fos). Moreover, analysis by flow cytometry revealed that EPFP induced apoptosis in MDA-MB-231 cells. In conclusion, our data shows that EPFP inhibits cell viability by increasing apoptosis and decreases cell invasiveness by decreasing angiogenesis.

  1. Effects and mechanism of GA-13315 on the proliferation and apoptosis of KB cells in oral cancer.

    Science.gov (United States)

    Shen, Shan; Tang, Jingxia

    2017-08-01

    The present study describes the effects and mechanism of GA-13315 on the proliferation and apoptosis of KB cells in oral cancer. Oral cancer is twice as common in men than women. More than 90% of oral cancers in men and 85% in women are linked to lifestyle and environmental factors. PPP2R2B methylation may be associated with survival and prognosis in patients with gliomas. In tumor cell proliferation and apoptosis, the mechanism of PPP2R2B remains unclear. In the present study, we found that PPP2R2B expression of H1299 cells is significantly decreased after being treated by GA-13315. KB cells were isolated from patients with oral cancer and treated with GA-13315 (5 µM). Cells without GA-13315 treatment served as the control group. An MTT experiment was performed to detect the post-treatment cell growth between the groups. A flow cytometry was used to detect cell apoptosis. Western blot analysis and quantitative polymerase chain reaction methods were used for detecting the expression of PPP2R2B. Compared with the control group, the cell proliferation of the treatment group slowed after being treated with GA-13315. The difference was statistically significant (Poral cancer were weakened after being treated by GA-13315. GA-13315 can accelerate the apoptosis of oral cancer cells and presents a dose correlation. The biological effect is exerted through the decrease of PPP2R2B.

  2. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Tang, Yanping [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Wang, Jian [Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Yan, Zhongjie [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China); Xu, Ruxiang, E-mail: RuxiangXu@yahoo.com [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China)

    2013-06-14

    Highlights: •miR-421 is upregulated in nasopharyngeal carcinoma. •miR-421 induces cell proliferation and apoptosis resistance. •FOXO4 is a direct and functional target of miR-421. -- Abstract: microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box protein O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3′UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.

  3. Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells

    Directory of Open Access Journals (Sweden)

    Yuping Gu

    2016-08-01

    Full Text Available Nephron progenitor cells surround around the ureteric bud tips (UB and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM. Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2.

  4. Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells

    Science.gov (United States)

    Gu, Yuping; Zhao, Ya; Zhou, Yuru; Xie, Yajun; Ju, Pan; Long, Yaoshui; Liu, Jianing; Ni, Dongsheng; Cao, Fen; Lyu, Zhongshi; Mao, Zhaomin; Hao, Jin; Li, Yiman; Wan, Qianya; Kanyomse, Quist; Liu, Yamin; Ren, Die; Ning, Yating; Li, Xiaofeng; Zhou, Qin; Li, Bing

    2016-01-01

    Nephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM). Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2. PMID:27509493

  5. Comprehensive suppression of all apoptosis-induced proliferation pathways as a proposed approach to colorectal cancer prevention and therapy.

    Directory of Open Access Journals (Sweden)

    Michael Bordonaro

    Full Text Available Mutations in the WNT/beta-catenin pathway are present in the majority of all sporadic colorectal cancers (CRCs, and histone deacetylase inhibitors induce apoptosis in CRC cells with such mutations. This apoptosis is counteracted by (1 the signaling heterogeneity of CRC cell populations, and (2 the survival pathways induced by mitogens secreted from apoptotic cells. The phenomena of signaling heterogeneity and apoptosis-induced survival constitute the immediate mechanisms of resistance to histone deacetylase inhibitors, and probably other chemotherapeutic agents. We explored the strategy of augmenting CRC cell death by inhibiting all survival pathways induced by the pro-apoptotic agent LBH589, a histone deacetylase inhibitor: AKT, JAK/STAT, and ERK signaling. The apoptosis-enhancing ability of a cocktail of synthetic inhibitors of proliferation was compared to the effects of the natural product propolis. We utilized colorectal adenoma, drug-sensitive and drug-resistant colorectal carcinoma cells to evaluate the apoptotic potential of the combination treatments. The results suggest that an effective approach to CRC combination therapy is to combine apoptosis-inducing drugs (e.g., histone deacetylase inhibitors, such as LBH589 with agents that suppress all compensatory survival pathways induced during apoptosis (such as the cocktail of inhibitors of apoptosis-associated proliferation. The same paradigm can be applied to a CRC prevention approach, as the apoptotic effect of butyrate, a diet-derived histone deacetylase inhibitor, is augmented by other dietary agents that modulate survival pathways (e.g., propolis and coffee extract. Thus, dietary supplements composed by fermentable fiber, propolis, and coffee extract may effectively counteract neoplastic growth in the colon.

  6. The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer.

    Science.gov (United States)

    Su, Jingna; Zhou, Xiuxia; Yin, Xuyuan; Wang, Lixia; Zhao, Zhe; Hou, Yingying; Zheng, Nana; Xia, Jun; Wang, Zhiwei

    2017-09-15

    Pancreatic cancer (PC) is one of the most fatal cancers worldwide. The incidence and death rates are still increasing for PC. Curcumin is the biologically active diarylheptanoid constituent of the spice turmeric, which exerts its anticancer properties in various human cancers including PC. In particular, accumulating evidence has proved that curcumin targets numerous therapeutically important proteins in cell signaling pathways. The neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) is an E3 HECT ubiquitin ligase and is frequently over-expressed in various cancers. It has reported that NEDD4 might facilitate tumorigenesis via targeting and degradation of multiple tumor suppressor proteins including PTEN. Hence, in the present study we explore whether curcumin inhibits NEDD4, resulting in the suppression of cell growth, migration and invasion in PC cells. We found that curcumin inhibited cell proliferation and triggered apoptosis in PC, which is associated with increased expression of PTEN and p73. These results suggested that inhibition of NEDD4 might be beneficial to the antitumor properties of curcumin on PC treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  8. Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren's disease and adjacent palmar fascia cells

    International Nuclear Information System (INIS)

    Vi, Linda; Feng, Lucy; Zhu, Rebecca D.; Wu, Yan; Satish, Latha; Gan, Bing Siang; O'Gorman, David B.

    2009-01-01

    Dupuytren's disease, (DD), is a fibroproliferative condition of the palmar fascia in the hand, typically resulting in permanent contracture of one or more fingers. This fibromatosis is similar to scarring and other fibroses in displaying excess collagen secretion and contractile myofibroblast differentiation. In this report we expand on previous data demonstrating that POSTN mRNA, which encodes the extra-cellular matrix protein periostin, is up-regulated in Dupuytren's disease cord tissue relative to phenotypically normal palmar fascia. We demonstrate that the protein product of POSTN, periostin, is abundant in Dupuytren's disease cord tissue while little or no periostin immunoreactivity is evident in patient-matched control tissues. The relevance of periostin up-regulation in DD was assessed in primary cultures of cells derived from diseased and phenotypically unaffected palmar fascia from the same patients. These cells were grown in type-1 collagen-enriched culture conditions with or without periostin addition to more closely replicate the in vivo environment. Periostin was found to differentially regulate the apoptosis, proliferation, α smooth muscle actin expression and stressed Fibroblast Populated Collagen Lattice contraction of these cell types. We hypothesize that periostin, secreted by disease cord myofibroblasts into the extra-cellular matrix, promotes the transition of resident fibroblasts in the palmar fascia toward a myofibroblast phenotype, thereby promoting disease progression.

  9. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang; Zhou, Tengfei; Shen, Qiang; Cui, Qinghua; Qin, Xiaomei

    2013-01-01

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders

  10. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuemei; Li, Aiqin; Zhao, Liang; Zhou, Tengfei; Shen, Qiang [Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China); Cui, Qinghua [Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China); Qin, Xiaomei, E-mail: xmqin@bjmu.edu.cn [Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191 (China); Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing 100191 (China)

    2013-08-09

    Highlights: •This is the first demonstration that miR-15a is a novel target gene of KLF4. •A novel finding that KLF4 increases the expression of miR-15a in ECs and VSMCs. •The novel mechanism is that KLF4 inhibits the proliferation of ECs via miR-15a. •The novel mechanism is that KLF4 inhibits the proliferation of VSMCs via miR-15. •miR-15a mediates the anti-angiogenic activity of KLF4. -- Abstract: While recent insights indicate that the transcription factor Krüppel-like factor 4 (KLF4) is indispensable for vascular homeostasis, its exact role in proliferation and angiogenesis and how it functions remain unresolved. Thus, the aim of the present study was to evaluate the role of KLF4 in the proliferations of endothelial and vascular smooth muscle cells, as well as the angiogenesis. The overexpression of KLF4 in endothelial cells significantly impaired tube formation. KLF4 inhibited the formation of a vascular network in implanted Matrigel plugs in nude mice. Importantly, we found that KLF4 significantly upregulated the miR-15a expression in endothelial cells and vascular smooth muscle cells, and conversely, KLF4 depletion reduced the amount of miR-15a. Furthermore, KLF4 blocked cell cycle progression and decreased cyclin D1 expression in endothelial cells and vascular smooth muscle cells through the induction of miR-15a. Intriguingly, the delivery of a miR-15a antagomir to nude mice resulted in marked attenuation of the anti-angiogenic effect of KLF4. Collectively, our present study provide the first evidence that miR-15a as a direct transcriptional target of KLF4 that mediates the anti-proliferative and anti-angiogenic actions of KLF4, which indicates that KLF4 upregulation of miR-15a may represent a therapeutic option to suppress proliferative vascular disorders.

  11. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis.

    Science.gov (United States)

    Fang, Xianjun; Hong, Yali; Dai, Li; Qian, Yuanyuan; Zhu, Chao; Wu, Biao; Li, Shengnan

    2017-11-01

    Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in various diseases. Our previous study showed that its receptor CRHR1 mediated the development of colitis-associated cancer in mouse model. However, the detailed mechanisms remain unclear. In this study, we explored the oncogenetic role of CRH/CRHR1 signaling in colon cancer cells. Cell proliferation and colony formation assays revealed that CRH contributed to cell proliferation. Moreover, tube formation assay showed that CRH-treated colon cancer cell supernatant significantly promoted tube formation of human umbilical vein endothelial cells (HUVECs). And these effects could be reversed by the CRHR1 specific antagonist Antalarmin. Further investigation showed that CRH significantly upregulated the expressions of interlukin-6 (IL-6) and vascular endothelial growth factor (VEGF) through activating nuclear factor-kappa B (NF-κB). The CRH-induced IL-6 promoted phosphorylation of janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). STAT3 inhibition by Stattic significantly inhibited the CRH-induced cell proliferation. In addition, silence of VEGF resulted in declined tube formation induced by CRH. Taken together, CRH/CRHR1 signaling promoted human colon cancer cell proliferation via NF-κB/IL-6/JAK2/STAT3 signaling pathway and tumor angiogenesis via NF-κB/VEGF signaling pathway. Our results provide evidence to support a critical role for the CRH/CRHR1 signaling in colon cancer progression and suggest its potential utility as a new therapeutic target for colon cancer. © 2017 Wiley Periodicals, Inc.

  12. Effect of JTV1 gene on the proliferation and apoptosis of K562 cells and its mechanism

    Directory of Open Access Journals (Sweden)

    Yan WU

    2011-05-01

    Full Text Available Objective To investigate the effect of tumor-suppressing gene JTV1 on proliferation and apoptosis of leukemic K562 cells,and the changes in apoptosis factors Bcl-2,C-myc and Bax genes.Methods The recombinate vector pcDNA3.1-JTV1,and the empty vector pcDNA3.1 were transfected into K562 cells as control.The cell proliferation of K562 cells was evaluated by colony formation assay;the cell cycle and apoptosis rate were assessed by flow cytometry(FCM;the mRNA levels of apoptosis related genes Bax,Bcl-2 and C-myc were determined by RT-PCR;the protein levels of Bax,Bcl-2 and C-myc were assayed by Western Blotting.Results The colony formation assay showed that the proliferation of K562 cells decreased when the expression of JTV1 gene was up-regulated.FCM assay showed that the G phase cells in pcDNA3.1-JTV1 positive transfection group increased compared with that of the control group and the pcDNA3.1 empty vector transfected group,and the differences were statistically significant(P < 0.05.Compared with the control group and the empty vector group,the mRNA transcription level and the protein translation level of Bax gene increased significantly,and the mRNA transcription level and the protein translation level of Bcl-2 and C-myc gene were reduced significantly(P < 0.05.Conclusions The expressions of Bcl-2 and C-myc gene are inhibited when the gene JTV1 is up-regulated,leading to an increase in Bax gene expression,inhibition of K562 cell proliferation,and promotion of tumor cells apoptosis.Over expression of JTV1 gene can inhibit the proliferation of K562 cells and promote cell apoptosis by inhibiting Bcl-2 and C-myc expression and up-regulating that of Bax.

  13. Silencing of Tumor Necrosis Factor Receptor 1 by siRNA in EC109 Cells Affects Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Ma Changhui

    2009-01-01

    Full Text Available Tumor necrosis factor receptor 1 (TNFR1 is a membrane receptor able to bind TNF-α or TNF-β. TNFR1 can suppress apoptosis by activating the NF-κB or JNK/SAPK signal transduction pathway, or it can induce apoptosis through a series of caspase cascade reactions; the particular effect may depend on the cell line. In the present study, we first showed that TNFR1 is expressed at both the gene and protein levels in the esophageal carcinoma cell line EC109. Then, by applying a specific siRNA, we silenced the expression of TNFR1; this resulted in a significant time-dependent promotion of cell proliferation and downregulation of the apoptotic rate. These results suggest that TNFR1 is strongly expressed in the EC109 cell line and that it may play an apoptosis-mediating role, which may be suppressed by highly activated NF-κB.

  14. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  15. Hematopoietic Substrate-1-Associated Protein X-1 Regulates the Proliferation and Apoptosis of Endothelial Progenitor Cells Through Akt Pathway Modulation.

    Science.gov (United States)

    Guo, Xin-Bin; Deng, Xin; Wei, Ying

    2018-03-01

    Endothelial precursor cells (EPCs) are involved in vasculogenesis of various physiological and pathological processes. The proliferation and survival mechanism of EPCs needs to be explored further for the purpose of developing an effective glioma treatment. Hematopoietic substrate-1-associated protein X-1 (HAX-1) has been reported as an anti-apoptotic protein that plays an important role in several malignant tumors. However, the effect and mechanism of HAX-1 on EPCs remains unknown. This study aims to investigate the effect of HAX-1 on the proliferation and apoptosis of EPCs and explore its mechanism. According to our results, HAX-1 was overexpressed in EPCs. The results of clone formation and 5-ethynyl-2'-deoxyuridine proliferation assay showed that HAX-1 promoted multiplication of EPCs. Flow cytometry showed HAX-1 knockout cell cycle arrest mainly in G0/G1 phase. Apoptosis analysis showed that HAX-1 could protect EPCs from apoptosis in oxidative stress. Western blot assay indicated that HAX-1 could inhibit the activation of caspase cascade and reduce the expression of p21, Bcl-2-associated X protein, and p53. HAX-1 also enhanced the degradation rate and ubiquitination of p53 through the promotion of phosphorylation of proteins MDM-2 and Akt1. Co-immunoprecipitation and immunofluorescent colocalization assays were performed to test the influence of HAX-1 on the interaction between Akt1 and heat shock protein 90 (Hsp90), which is crucial for the activity of Akt1. In conclusion, this novel study suggests that HAX-1 could facilitate the Akt1 pathway through Hsp90, which led to a decline in the levels of p53, and finally promoted the proliferation and inhibited the apoptosis of EPCs. Stem Cells 2018;36:406-419. © 2017 AlphaMed Press.

  16. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis.

    Science.gov (United States)

    Xu, Longjiang; Leng, Hong; Shi, Xin; Ji, Jiang; Fu, Jinxiang; Leng, Hong

    2017-06-01

    MicroRNAs (miRNAs) have been demonstrated to contribute to malignant progression in psoriasis development. The purposes of the study was to evaluated the effects of miRNA-155 on cell proliferation, migration and apoptosis in psoriasis development via PTEN singaling pathway and identify its direct target protein. Quantitative real-time RT-PCR (qRT-PCR) was performed to examine the level of miR-155 in psoriasis cells, miR-155 was downregulated in a psoriasis cell line Hacat by transfected with small interfering RNA (siRNA), respectively. Cell survival was detected by the MTT assay and colony formation assay. Cell migration and invasion were measured via wound-healing assayand transwell assay. In addition, cell cycle and apoptosis about psoriasis cells was measured by flow cytometry. In this study, qRT-PCR assay showed that the expressions of miR-155 mRNA in psoriasis tissues were significantly higher than that in normal tissues. The assays about cell growth and proliferation showed that miR-155 knockdown led to a significant decrease in cell proliferation which was determined by MTT assay and colony formation assay compared to those of Lv-NC cells. Flow cytometry analysis showed that depletion of miR-155 could cause cell cycle change and the number of apoptotic cells was significantly increased in Lv-miR155 cells compared with control cells. In addition, the expression of several apoptosis-related factors were dramatically changed, such as PTEN, PIP 3 , AKT, p-AKT, Bax and Bcl-2. Our findings indicate that down-regulation of miR-155 significantly inhibits proliferation, migration, invasion and promotes apoptosis through PTEN singaling pathway in psoriasis cells. miR-155 might function as an oncogene miRNA in the progress of psoriasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Effects of DCK knockdown on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells.

    Science.gov (United States)

    Shang, Q-Y; Wu, C-S; Gao, H-R

    2017-09-01

    The present study explored the effect that deoxycytidine kinase (DCK) knockdown had on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells. Human cervical cancer HeLa cells that had received no prior treatment were selected from the HeLa group. The HeLa-negative control (NC) group consisted of cells that had undergone an empty vector treatment, and finally the HeLa-short hairpin RNA (shRNA) group included cells that were treated by means of shRNA-DCK expression. DCK expressions were evaluated by quantitative real-time polymerase chain reaction in addition to western blotting assays. Cell proliferation was estimated using the Cell Counting Kit-8 (CCK-8) assay and cell cycle progression. Cell apoptosis was determined by flow cytometry. BALB/c nude mice (n=24) were selected to establish transplanted tumor models, with gross tumor volume measured every 3 days. The results in vitro were as follows: compared with the HeLa group, the HeLa-shRNA group exhibited downregulation of DCK expression and inhibition of cell proliferation at 48, 72 and 96 h. Additionally, more cells in the HeLa-shRNA group were arrested in G0/G1 stage and less in S and G2/M stages, as well as in promotion of cell apoptosis. In vivo results are as follows: when comparing the HeLa and HeLa-NC groups, the gross tumor volume of the transplanted tumor in nude mice in the HeLa-shRNA group was found to have decreased in 13, 16, 19 and 22 days. Based on these findings, our study suggests that DCK knockdown facilitates apoptosis while inhibiting proliferation and tumorigenicity in vivo of cervical cancer HeLa cells.

  18. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  19. Exposure to low level GSM 935 MHz radiofrequency fields does not induce apoptosis in proliferating or differentiated murine neuroblastoma cells

    International Nuclear Information System (INIS)

    Moquet, J.; Ainsbury, E.; Bouffler, S.; Lloyd, D.

    2008-01-01

    The aim of this study was to investigate whether radiofrequency (RF) fields characteristic of mobile phones at non-thermal levels can induce apoptosis in murine neuroblastoma (N2a) cells in both proliferating and differentiated states. Cells were exposed continuously for 24 h to one of the three 935-MHz RF signals: global system for mobile communication (GSM) basic, GSM talk and a continuous wave, unmodulated signal; all at a specific energy absorption rate of 2 W kg -1 . The measured increase in temperature of the cells due to the RF fields was around 0.06 deg. C. At a number of time points between 0 and 48 h post-exposure, the cells were assessed for apoptosis under a fluorescence microscope using three independent assays: Annexin V, caspase activation and in situ end-labelling. No statistically significant differences in apoptosis levels were observed between the exposed and sham-exposed cells using the three assays at any time point post-exposure. These data suggest that RF exposures, characteristic of GSM mobile phones, do not significantly affect the apoptosis levels in proliferating and differentiated murine neuroblastoma cell line N2a. (authors)

  20. Effects of miRNA-197 overexpression on proliferation, apoptosis and migration in levonorgestrel treated uterine leiomyoma cells.

    Science.gov (United States)

    Wu, Xiaoli; Ling, Jing; Fu, Ziyi; Ji, Chenbo; Wu, Jiangping; Xu, Qing

    2015-04-01

    Uterine leiomyoma is the ahead benign tumor of the female genital tract, which resulted in menstrual abnormalities, recurrent pregnancy loss, and other serious gynecological disorders in women. Recently, as the process of exploring the brief molecular mechanisms of tumorgenesis, microRNAs (miRNAs) have attracted much more attention. In this study, we first confirmed that microRNA-197 (miR-197) was down-regulated significantly in human uterus leiomyoma by quantity real-time polymerase chain reaction, compared to normal uterus myometrium. Then we observed the potential effects of miR-197 overexpression on human uterus leiomyoma cells by cell counting kit 8, wound healing assay, and flow cytometric assessment separately. The data showed that miR-197 could inhibit cell proliferation, induce cell apoptosis, and block cell migration in vitro. Coincidently, levonorgestrel (LNG), a well-known uterus leiomyoma therapy, could induce miR-197 expression in human uterus leiomyoma cells, and over-expression of miR-197 showed a synergy effect on human uterus leiomyoma cell proliferation and apoptosis with LNG. In this study, the data showed that miR-197 could play an anti-oncogenic role in human uterus leiomyoma cells, and cooperate with LNG on the cell proliferation and apoptosis, which suggested that miR-197 might be a potential target and provided database for clinical treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. The role of curcumin on intestinal oxidative stress, cell proliferation and apoptosis after ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Yucel, Ahmet Fikret; Kanter, Mehmet; Pergel, Ahmet; Erboga, Mustafa; Guzel, Ahmet

    2011-12-01

    The aim of this study was to demonstrate the role of curcumin on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ curcumin; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Curcumin treatment significantly attenuated the severity of intestinal I/R injury, with inhibiting of I/R-induced apoptosis and cell proliferation. These results suggest that curcumin treatment has a protective effect against intestinal damage induced by intestinal I/R. This protective effect is possibly due to its ability to inhibit I/R-induced oxidative stress, apoptosis and cell proliferation.

  2. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells

    Science.gov (United States)

    Eghlidospour, Mahsa; Ghanbari, Amir

    2017-01-01

    Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro. We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differentiation. We also employed alamarBlue and caspase 3 apoptosis assays to assess harmful effects of mobile phone on NSCs. Our results showed that the number and size of resulting neurospheres and also the percentage of cells differentiated into neurons decreased significantly with increasing exposure duration to GSM 900-MHz radiofrequency (RF)-electromagnetic field (EMF). In contrast, exposure to GSM 900-MHz RF-EMF at different durations did not influence cell viability and apoptosis of NSCs and also their astrocytic differentiation. It is concluded that accumulating dose of GSM 900-MHz RF-EMF might have devastating effects on NSCs proliferation and neurogenesis requiring more causations in terms of using mobile devices. PMID:28713615

  3. MAGE-A inhibits apoptosis in proliferating myeloma cells through repression of Bax and maintenance of survivin.

    Science.gov (United States)

    Nardiello, Tricia; Jungbluth, Achim A; Mei, Anna; Diliberto, Maurizio; Huang, Xiangao; Dabrowski, Ania; Andrade, Valéria C C; Wasserstrum, Rebecca; Ely, Scott; Niesvizky, Ruben; Pearse, Roger; Coleman, Morton; Jayabalan, David S; Bhardwaj, Nina; Old, Lloyd J; Chen-Kiang, Selina; Cho, Hearn Jay

    2011-07-01

    The type I Melanoma Antigen GEnes (MAGEs) are commonly expressed in cancers, fueling speculation that they may be therapeutic targets with oncogenic potential. They form complexes with RING domain proteins that have E3 ubiquitin ligase activity and promote p53 degradation. MAGE-A3 was detected in tumor specimens from patients with multiple myeloma and its expression correlated with higher frequencies of Ki-67(+) malignant cells. In this report, we examine the mechanistic role of MAGE-A in promoting survival of proliferating multiple myeloma cells. The impact of MAGE-A3 expression on survival and proliferation in vivo was examined by immunohistochemical analysis in an independent set of tumor specimens segregated into two groups: newly diagnosed, untreated patients and patients who had relapsed after chemotherapy. The mechanisms of MAGE-A3 activity were investigated in vitro by silencing its expression by short hairpin RNA interference in myeloma cell lines and primary cells and assessing the resultant effects on proliferation and apoptosis. MAGE-A3 was detected in a significantly higher percentage of relapsed patients compared with newly diagnosed, establishing a novel correlation with progression of disease. Silencing of MAGE-A showed that it was dispensable for cell cycling, but was required for survival of proliferating myeloma cells. Loss of MAGE-A led to apoptosis mediated by p53-dependent activation of proapoptotic Bax expression and by reduction of survivin expression through both p53-dependent and -independent mechanisms. These data support a role for MAGE-A in the pathogenesis and progression of multiple myeloma by inhibiting apoptosis in proliferating myeloma cells through two novel mechanisms.

  4. A Novel Natural Product, KL-21, Inhibits Proliferation and Induces Apoptosis in Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Aysun Adan Gökbulut

    2015-06-01

    Full Text Available INTRODUCTION: The aims of this study were to examine the cytotoxic and apoptotic effects of KL-21, a novel plant product (produced by Naturin Natural Products, İzmir, Turkey, on 232B4 chronic lymphocytic leukemia (CLL cells and to determine the cytotoxic effects on healthy BEAS-2B human bronchial epithelial cells. METHODS: The cytotoxic effect of KL-21 was determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using the caspase-3 colorimetric assay. Changes in mitochondrial membrane potential were determined using the JC-1 dye-based method. Annexin V-FITC/PI double staining was performed to measure the apoptotic cell population. Effects of KL-21 on cell cycle profiles of CLL cells were investigated by flow cytometry. RESULTS: We detected time- and concentration-dependent increases in the cytotoxic effect of KL-21 on 232B4 CLL cells. However, we also showed that, especially at higher concentrations, KL-21 was less cytotoxic towards BEAS-2B healthy cells than towards CLL cells. Annexin-V/PI double staining results showed that the apoptotic cell population increased in 232B4 cells. Increasing concentrations of KL-21 increased caspase-3 enzyme activity and induced loss of mitochondrial membrane potential. KL-21 administration resulted in small increases in the percentage of the cells in the G0/G1 phase while it decreased the S phase cell population up to 1 mg/mL. At the highest concentration, most of the cells accumulated in the G0/G1 phase. DISCUSSION AND CONCLUSION: KL-21 has a growth-inhibitory effect on 232B4 CLL cells. KL-21 causes apoptosis and cell cycle arrest at G0/G1.

  5. Occipital foramina development involves localised regulation of mesenchyme proliferation and is independent of apoptosis

    Science.gov (United States)

    Akbareian, Sophia E; Pitsillides, Andrew A; Macharia, Raymond G; McGonnell, Imelda M

    2015-01-01

    Cranial foramina are holes within the skull, formed during development, allowing entry and exit of blood vessels and nerves. Once formed they must remain open, due to the vital structures they contain, i.e. optic nerves, jugular vein, carotid artery, and other cranial nerves and blood vessels. Understanding cranial foramina development is essential as cranial malformations lead to the stenosis or complete closure of these structures, resulting in blindness, deafness, facial paralysis, raised intracranial pressure and lethality. Here we focus on describing early events in the formation of the jugular, carotid and hypoglossal cranial foramina that form in the mesoderm-derived, endochondral occipital bones at the base of the embryonic chick skull. Whole-mount skeletal staining of skulls indicates the appearance of these foramina from HH32/D7.5 onwards. Haematoxylin & eosin staining of sections shows that the intimately associated mesenchyme, neighbouring the contents of these cranial foramina, is initially very dense and gradually becomes sparser as development proceeds. Histological examination also revealed that these foramina initially contain relatively large-diameter nerves, which later become refined, and are closely associated with the blood vessel, which they also innervate within the confines of the foramina. Interestingly cranial foramina in the base of the skull contain blood vessels lacking smooth muscle actin, which suggests these blood vessels belong to glomus body structures within the foramina. The blood vessel shape also appears to dictate the overall shape of the resulting foramina. We initially hypothesised that cranial foramina development could involve targeted proliferation and local apoptosis to cause ‘mesenchymal clearing’ and the creation of cavities in a mechanism similar to joint cavitation. We find that this is not the case, and propose that a mechanism reliant upon local nerve/blood vessel-derived restriction of ossification may

  6. Patterns of Apoptosis and Proliferation throughout the Biennial Reproductive Cycle of Viviparous Female Typhlonectes compressicauda (Amphibia, Gymnophiona

    Directory of Open Access Journals (Sweden)

    Michel Raquet

    2016-12-01

    Full Text Available Typhlonectes compressicauda is an aquatic gymnophionan amphibian living in South America. Its breeding cycle is linked to seasons, characterized by a regular alternation of rainy and dry seasons. During a complex biennial cycle, the female genital tract undergoes a series of alternations of increasing and decreasing, governed by equilibrium of proliferation and apoptotic phenomena. Immunohistochemical methods were used to visualize cell proliferation with the detection of Ki67 antibody, a protein present in proliferative cells; terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and Apostain were performed to detect apoptotic cells on sections of ovaries and oviducts. In ovaries, both phenomena affect the germinal nests and follicles according to the cycle period. In the oviduct, the balance was in favor of proliferation during preparation for reproduction, and in favor of apoptosis when genital ducts regress. Apoptosis and proliferation are narrowly implicated in the remodeling of the genital tract and they are accompanied by the differentiation of tissues according to the phase of the breeding cycle. These variations permit the capture of oocytes at ovulation, always at the same period, and the parturition after 6–7 months of gestation, at a period in which the newborns live with their mother, protected in burrows in the mud. During the intervening year of sexual inactivity, the female reconstitutes body reserves.

  7. Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    Science.gov (United States)

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P Hela cells in a dose-dependent manner after 72 h of treatment (P Hela cells in vitro.

  8. Pleurotus eous polysaccharides suppress angiogenesis and induce apoptosis via ROS-dependent JNK activation and mitochondrial mediated mechanisms in MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Jin-Kai Xu

    2015-03-01

    Full Text Available Breast cancer is one of the most prevalent cancers among women worldwide. Chemotherapy generally leads to drug resistance and severe side effects thus making it crucial to identify and develop highly efficient chemotherapeutic agents. Recently, edible mushrooms have been strongly investigated owing to their nutritional values and bioactive compounds with health benefits. The present study investigates the effects of polysaccharides isolated from the fruiting bodies of oyster mushroom, Pleutorus eous on MCF-7 human breast cancer cells. Viability of MCF-7 following exposure to P. eous polysaccharides (PEP (50 - 250 µg/mL were markedly decreased. A raise in the levels of Reactive Oxygen Species (ROS and apoptotic cell counts were observed following PEP treatment. Futhermore, PEP down-regulated VEGF and Bcl-2 and raised caspase-3, caspase-9, Bax, phospho-JNK expressions and as well caused a significant decrease in mitochondrial membrane potential of MCF-7 cells. Thus, PEP effectively suppressed angiogenesis by down-regulating VEGF, and induced apoptosis.

  9. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.

    Science.gov (United States)

    Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M

    2017-12-01

    Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. © FASEB.

  10. Triptolide Suppresses Alkali Burn-Induced Corneal Angiogenesis Along with a Downregulation of VEGFA and VEGFC Expression.

    Science.gov (United States)

    Wang, Geng; Li, Na; Lv, Xiaohong; Ahmed, Naila; Li, Xinlei; Liu, Huidong; Ma, Jing; Zhang, Yafang

    2017-07-01

    Triptolide (TPL) is an active compound extracted from a Chinese herbal medicine tripterygium wilfordii Hook. f. (Celastraceae), which has been used as an anti-inflammatory drug for years. It also inhibits the growth and proliferation of different types of cancer cells. The inhibitory effect of TPL on angiogenesis after chemical-induced corneal inflammation was studied in vivo. The effects of TPL on the proliferation, apoptosis, migration, and tube formation of rat aortic endothelial cells (RAECs) were studied in vitro. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. Migration was analyzed using the scratch wound healing assay and transwell assay. Tube formation assay was used to examine angiogenesis. Real-time PCR and Western blot were used to determine the expression of vascular endothelial growth factor A (VEGFA) and VEGFC. To study the in vivo effects of TPL, the mouse model of alkali burn-induced corneal angiogenesis was used. The angiogenesis was analyzed by determining the density of the newly generated blood vessels in corneas. We found that TPL induced apoptosis and inhibited the proliferation of RAECs in a dose-dependent manner. TPL inhibited migration and tube formation of RAECs and decreased the expression of VEGFA and VEGFC in vitro. Furthermore, TPL suppressed alkali burn-induced corneal angiogenesis and inhibited the expression of VEGFA and VEGFC in corneas in vivo. In conclusion, topical TPL as a pharmacological agent has the ability to reduce angiogenesis in cornea and may have clinical indications for the treatment of corneal angiogenesis diseases which have to be further explored. Anat Rec, 300:1348-1355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest

    International Nuclear Information System (INIS)

    Wang, Yaoxian; Yu, Hui; Zhang, Jin; Gao, Jing; Ge, Xin; Lou, Ge

    2015-01-01

    Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavanone that is found mainly in citrus fruits and has been shown to have some anti-neoplastic effects. The aim of the present study was to investigate the effect of hesperidin on apoptosis in human cervical cancer HeLa cells and to identify the mechanism involved. Cells were treated with hesperidin (0, 20, 40, 60, 80, and 100 μM) for 24, 48, or 72 h and relative cell viability was assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Hesperidin inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Hesperidin-induced apoptosis in HeLa cells was characterized by increased nuclear condensation and DNA fragmentation. Furthermore, increased levels of GADD153/CHOP and GRP78 indicated hesperidin-induced apoptosis in HeLa cells involved a caspase-dependent pathway, presumably downstream of the endoplasmic reticulum stress pathway. Both of these proteins are hallmarks of endoplasmic reticulum stress. Hesperidin also promoted the formation of reactive oxygen species, mobilization of intracellular Ca 2+ , loss of mitochondrial membrane potential (ΔΨm), increased release of cytochrome c and apoptosis-inducing factor from mitochondria, and promoted capase-3 activation. It also arrested HeLa cells in the G0/G1 phase in the cell cycle by downregulating the expression of cyclinD1, cyclinE1, and cyclin-dependent kinase 2 at the protein level. The effect of hesperidin was also verified on the human colon cancer cell HT-29 cells. We concluded that hesperidin inhibited HeLa cell proliferation through apoptosis involving endoplasmic reticulum stress pathways and cell cycle arrest

  12. Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose

    Science.gov (United States)

    Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua

    2017-01-01

    Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073

  13. Local injection of high-molecular hyaluronan promotes wound healing in old rats by increasing angiogenesis.

    Science.gov (United States)

    Huang, Luying; Wang, Yi; Liu, Hua; Huang, Jianhua

    2018-02-02

    Impaired angiogenesis contributes to delayed wound healing in aging. Hyaluronan (HA) has a close relationship with angiogenesis and wound healing. However, HA content decreases with age. In this study, we used high molecular weight HA (HMW-HA) (1650 kDa), and investigated its effects on wound healing in old rats by local injection. We found that HMW-HA significantly increases proliferation, migration and tube formation in endothelial cells, and protects endothelial cells against apoptosis. Local injection of HMW-HA promotes wound healing by increasing angiogenesis in old rats. HMW-HA increases the phosphorylation of Src, ERK and AKT, leading to increased angiogenesis, suggesting that local injection of HMW-HA promotes wound healing in elderly patients.

  14. Inositol Hexaphosphate Inhibits Proliferation and Induces Apoptosis of Colon Cancer Cells by Suppressing the AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Małgorzata Kapral

    2017-10-01

    Full Text Available Abstract: AKT, a serine/threonine protein kinase and mammalian target of rapamycin (mTOR plays a critical role in the proliferation and resistance to apoptosis that are essential to the development and progression of colon cancer. Therefore, AKT/mTOR signaling pathway has been recognized as an attractive target for anticancer therapy. Inositol hexaphosphate (InsP6, a natural occurring phytochemical, has been shown to have both preventive and therapeutic effects against various cancers, however, its exact molecular mechanisms of action are not fully understood. The aim of the in vitro study was to investigate the anticancer activity of InsP6 on colon cancer with the focus on inhibiting the AKT1 kinase and p70S6K1 as mTOR effector, in relation to proliferation and apoptosis of cells. The colon cancer Caco-2 cells were cultured using standard techniques and exposed to InsP6 at different concentrations (1 mM, 2.5 mM and 5 mM. Cellular proliferative activity was monitored by 5-bromo-2′-deoxyuridine (BrdU incorporation into cellular DNA. Flow cytometric analysis was performed for cell cycle progression and apoptosis studies. Real-time RT-qPCR was used to validate mRNA levels of CDNK1A, CDNK1B, CASP3, CASP9, AKT1 and S6K1 genes. The concentration of p21 protein as well as the activities of caspase 3, AKT1 and p70S6K1 were determined by the ELISA method. The results revealed that IP6 inhibited proliferation and stimulated apoptosis of colon cancer cells. This effect was mediated by an increase in the expression of genes encoding p21, p27, caspase 3, caspase 9 as well a decrease in transcription of AKT1 and S6K1. InsP6 suppressed phosphorylation of AKT1 and p70S6K1, downstream effector of mTOR. Based on these studies it may be concluded that InsP6 can reduce proliferation and induce apoptosis through inhibition of the AKT/mTOR pathway and mTOR effector followed by modulation of the expression and activity of several key components of these pathways in

  15. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  16. Somatostatin and opioid receptors do not regulate proliferation or apoptosis of the human multiple myeloma U266 cells

    Directory of Open Access Journals (Sweden)

    Allouche Stéphane

    2009-06-01

    Full Text Available Abstract Background opioid and somatostatin receptors (SSTRs that can assemble as heterodimer were individually reported to modulate malignant cell proliferation and to favour apoptosis. Materials and methods: SSTRs and opioid receptors expression were examined by RT-PCR, western-blot and binding assays, cell proliferation was studied by XTT assay and propidium iodide (PI staining and apoptosis by annexin V-PI labelling. Results almost all human malignant haematological cell lines studied here expressed the five SSTRs. Further experiments were conducted on the human U266 multiple myeloma cells, which express also μ-opioid receptors (MOP-R. XTT assays and cell cycle studies provide no evidence for a significant effect upon opioid or somatostatin receptors stimulation. Furthermore, neither direct effect nor potentiation of the Fas-receptor pathway was detected on apoptosis after these treatments. Conclusion these data suggest that SSTRs or opioid receptors expression is not a guaranty for an anti-tumoral action in U266 cell line.

  17. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  18. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2016-09-01

    Full Text Available Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G0/G1 phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  19. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    International Nuclear Information System (INIS)

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR −/− ) and wild-type (AhR +/+ ) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR −/− cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR −/− compared to AhR +/+ cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR +/+ fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR +/+ lung fibroblasts in response to serum, corresponding to a decrease in p27 KIP1 protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27 KIP1 in AhR −/− fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the expression of the microRNA miR-196a independent of

  20. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  1. Regulation of cell proliferation and apoptosis in neuroblastoma cells by ccp1, a FGF2 downstream gene

    Directory of Open Access Journals (Sweden)

    Inman Gareth J

    2010-11-01

    Full Text Available Abstract Background Coiled-coil domain containing 115 (Ccdc115 or coiled coil protein-1 (ccp1 was previously identified as a downstream gene of Fibroblast Growth Factor 2 (FGF2 highly expressed in embryonic and adult brain. However, its function has not been characterised to date. Here we hypothesized that ccp1 may be a downstream effecter of FGF2, promoting cell proliferation and protecting from apoptosis. Methods Forced ccp1 expression in mouse embryonic fibroblast (MEF and neuroblastoma SK-N-SH cell line, as well as down-regulation of ccp1 expression by siRNA in NIH3T3, was used to characterize the role of ccp1. Results Ccp1 over-expression increased cell proliferation, whereas down-regulation of ccp1 expression reduced it. Ccp1 was able to increase cell proliferation in the absence of serum. Furthermore, ccp1 reduced apoptosis upon withdrawal of serum in SK-N-SH. The mitogen-activated protein kinase (MAPK or ERK Kinase (MEK inhibitor, U0126, only partially inhibited the ccp1-dependent BrdU incorporation, indicating that other signaling pathway may be involved in ccp1-induced cell proliferation. Induction of Sprouty (SPRY upon FGF2 treatment was accelerated in ccp1 over-expressing cells. Conclusions All together, the results showed that ccp1 regulates cell number by promoting proliferation and suppressing cell death. FGF2 was shown to enhance the effects of ccp1, however, it is likely that other mitogenic factors present in the serum can also enhance the effects. Whether these effects are mediated by FGF2 influencing the ccp1 function or by increasing the ccp1 expression level is still unclear. At least some of the proliferative regulation by ccp1 is mediated by MAPK, however other signaling pathways are likely to be involved.

  2. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells.

    Science.gov (United States)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-01-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  3. Effects of overexpression of the SH2-containing inositol phosphatase SHIP on proliferation and apoptosis of erythroid AS-E2 cells

    NARCIS (Netherlands)

    Boer, AK; Drayer, AL; Vellenga, E

    Previous studies have demonstrated that SH2-containing inositol phosphatase (SHIP) is involved in the control of B cell, myeloid cell and macrophage activation and proliferation. The goal of the present study was to examine the role of SHIP during proliferation and apoptosis in cells of the

  4. Effects of overexpression of the SH2-containing inositol phosphatase SHIP on proliferation and apoptosis of erythroid AS-E2 cells

    NARCIS (Netherlands)

    Boer, AK; Drayer, AL; Vellenga, E

    2001-01-01

    Previous studies have demonstrated that SH2-containing inositol phosphatase (SHIP) is involved in the control of B cell, myeloid cell and macrophage activation and proliferation. The goal of the present study was to examine the role of SHIP during proliferation and apoptosis in cells of the

  5. Progesterone Alleviates Endometriosis via Inhibition of Uterine Cell Proliferation, Inflammation and Angiogenesis in an Immunocompetent Mouse Model

    Science.gov (United States)

    Kannan, Athilakshmi; Davila, Juanmahel; Zhao, Yuechao; Nowak, Romana A.; Bagchi, Milan K.; Bagchi, Indrani C.; Li, Quanxi

    2016-01-01

    Endometriosis, defined as growth of the endometrial cells outside the uterus, is an inflammatory disorder that is associated with chronic pelvic pain and infertility in women of childbearing age. Although the estrogen-dependence of endometriosis is well known, the role of progesterone in development of this disease remains poorly understood. In this study, we developed a disease model in which endometriosis was induced in the peritoneal cavities of immunocompetent female mice, and maintained with exogenous estrogen. The endometriosis-like lesions that were identified at a variety of ectopic locations exhibited abundant blood supply and extensive adhesions. Histological examination revealed that these lesions had a well-organized endometrial architecture and fibrotic response, resembling those recovered from clinical patients. In addition, an extensive proliferation, inflammatory response, and loss of estrogen receptor alpha (ERα) and progesterone receptor (PR) expression were also observed in these lesions. Interestingly, administration of progesterone before, but not after, lesion induction suppressed lesion expansion and maintained ERα and PR expressions. These progesterone-pretreated lesions exhibited attenuation in KI67, CD31, and pro-inflammatory cytokine expression as well as macrophage infiltration, indicating that progesterone ameliorates endometriosis progression by inhibiting cell proliferation, inflammation and neovascularization. Our studies further showed that suppression of global DNA methylation by application of DNA methyltransferase inhibitor to female mice bearing ectopic lesions restrained lesion expansion and restored ERα and PR expression in eutopic endometrium and ectopic lesions. These results indicate that epigenetic regulation of target gene expression via DNA methylation contributes, at least in part, to progesterone resistance in endometriosis. PMID:27776183

  6. Progesterone Alleviates Endometriosis via Inhibition of Uterine Cell Proliferation, Inflammation and Angiogenesis in an Immunocompetent Mouse Model.

    Directory of Open Access Journals (Sweden)

    Yanfen Li

    Full Text Available Endometriosis, defined as growth of the endometrial cells outside the uterus, is an inflammatory disorder that is associated with chronic pelvic pain and infertility in women of childbearing age. Although the estrogen-dependence of endometriosis is well known, the role of progesterone in development of this disease remains poorly understood. In this study, we developed a disease model in which endometriosis was induced in the peritoneal cavities of immunocompetent female mice, and maintained with exogenous estrogen. The endometriosis-like lesions that were identified at a variety of ectopic locations exhibited abundant blood supply and extensive adhesions. Histological examination revealed that these lesions had a well-organized endometrial architecture and fibrotic response, resembling those recovered from clinical patients. In addition, an extensive proliferation, inflammatory response, and loss of estrogen receptor alpha (ERα and progesterone receptor (PR expression were also observed in these lesions. Interestingly, administration of progesterone before, but not after, lesion induction suppressed lesion expansion and maintained ERα and PR expressions. These progesterone-pretreated lesions exhibited attenuation in KI67, CD31, and pro-inflammatory cytokine expression as well as macrophage infiltration, indicating that progesterone ameliorates endometriosis progression by inhibiting cell proliferation, inflammation and neovascularization. Our studies further showed that suppression of global DNA methylation by application of DNA methyltransferase inhibitor to female mice bearing ectopic lesions restrained lesion expansion and restored ERα and PR expression in eutopic endometrium and ectopic lesions. These results indicate that epigenetic regulation of target gene expression via DNA methylation contributes, at least in part, to progesterone resistance in endometriosis.

  7. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC50 of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose polymerase (PARP cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  8. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis Via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells.

    Science.gov (United States)

    Xu, Weili; Mi, Yaqing; He, Pan; He, Shenghua; Niu, Lingling

    2017-08-04

    γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC 50 ) of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose) polymerase (PARP) cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  9. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  10. Effects of resveratrol and other wine polyphenols on the proliferation, apoptosis and androgen receptor expression in LNCaP cells.

    Science.gov (United States)

    Ferruelo, A; Romero, I; Cabrera, P M; Arance, I; Andrés, G; Angulo, J C

    2014-01-01

    To address the effect of resveratrol and other red wine polyphenols on cell proliferation, apoptosis and androgen receptor (AR) expression in human prostate cancer LNCaP cells. LNCaP cells (5 × 102) were cultured in microtiter plate modules and treated with gallic acid, tannic acid and quercetin (1, 5 and 10 μM), rutin and morin (25, 50 and 75 μM) and resveratrol (5, 10 and 25 μM). To address the extent of proliferation at 24, 48, 72 and 96 hours, a colorimetric immunoassay method was used. An activity caspase 3/7 detection assay was used to disclose apoptosis at 24, 48 and 72 hours. AR mARN levels were determined by real time RT-PCR. All polyphenols studied significantly inhibited (P<.05) cell proliferation compared to control. However, there were moderate differences between them. Resveratrol was the strongest inhibitor at different times and doses. Also, caspase-3 and caspase-7 activity was significantly higher (P<.05) than control in the presence of all the compounds, but the earlier response was achieved by resveratrol. Resveratrol, quercetin and morin were the only nutrients that significantly inhibited AR mRNA expression. Again resveratrol produced the highest inhibition (90-250 times less than control), followed by morin (67-100 times) and quercetin (55-91 times). All polyphenols studied showed important antiproliferative effects and induced apoptosis when added to LNCaP cells culture. We confirm that resveratrol, morin and quercetin may achieve such effect through reduced expression of AR. The synergistic effects of these compounds and their potential to prevent progression of hormone-dependent prostate cancer merit further study. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  11. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells.

    Science.gov (United States)

    Gu, Shiyan; Sun, Donglei; Dai, Huangmei; Zhang, Zunzhen

    2018-04-20

    N 6 -methyladenosine (m 6 A) modification is implicated to play an important role in cellular biological processes, but its regulatory mechanisms in arsenite-induced carcinogenesis are largely unknown. Here, human bronchial epithelial (HBE) cells were chronically treated with 2.5 μM arsenite sodium (NaAsO 2 ) for about 13 weeks and these cells were identified with malignant phenotype which was demonstrated by increased levels of cellular proliferation, percentages of plate colony formation and soft agar clone formation, and high potential of resistance to apoptotic induction. Our results firstly demonstrated that m 6 A modification on RNA was significantly increased in arsenite-transformed cells and this modification may be synergistically regulated by methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP) and Fat mass and obesity-associated protein (FTO). In addition, knocking down of METTL3 in arsenite-transformed cells can dramatically reverse the malignant phenotype, which was manifested by lower percentages of clone and colony formation as well as higher rates of apoptotic induction. Given the critical roles of miRNAs in cellular proliferation and apoptosis, miRNAs regulated by m 6 A in arsenite-transformed cells were analyzed by Venn diagram and KEGG pathway in this study. The results showed that these m 6 A-mediated miRNAs can regulate pathways which are closely associated with cellular proliferation and apoptosis, implicating that these miRNAs may be the critical bridge by which m 6 A mediates dysregulation of cell survival and apoptosis in arsenite-transformed cells. Taken together, our results firstly demonstrated the significant role of m 6 A in the prevention of tumor occurrence and progression induced by arsenite. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    Science.gov (United States)

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  13. Transcriptome analysis of the spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis

    Directory of Open Access Journals (Sweden)

    Malik Assaf

    2012-11-01

    Full Text Available Abstract Background The development of complex responses to hypoxia has played a key role in the evolution of mammals, as inadequate response to this condition is frequently associated with cardiovascular diseases, developmental disorders, and cancers. Though numerous studies have used mice and rats in order to explore mechanisms that contribute to hypoxia tolerance, these studies are limited due to the high sensitivity of most rodents to severe hypoxia. The blind subterranean mole rat Spalax is a hypoxia tolerant rodent, which exhibits unique longevity and therefore has invaluable potential in hypoxia and cancer research. Results Using microarrays, transcript abundance was measured in brain and muscle tissues from Spalax and rat individuals exposed to acute and chronic hypoxia for varying durations. We found that Spalax global gene expression response to hypoxia differs from that of rat and is characterized by the activation of functional groups of genes that have not been strongly associated with the response to hypoxia in hypoxia sensitive mammals. Using functional enrichment analysis of Spalax hypoxia induced genes we found highly significant overrepresentation of groups of genes involved in anti apoptosis, cancer, embryonic/sexual development, epidermal growth factor receptor binding, coordinated suppression and activation of distinct groups of transcription factors and membrane receptors, in addition to angiogenic related processes. We also detected hypoxia induced increases of different critical Spalax hub gene transcripts, including antiangiogenic genes associated with cancer tolerance in Down syndrome human individuals. Conclusions This is the most comprehensive study of Spalax large scale gene expression response to hypoxia to date, and the first to use custom Spalax microarrays. Our work presents novel patterns that may underlie mechanisms with critical importance to the evolution of hypoxia tolerance, with special relevance to

  14. Activity of Metabotropic Glutamate Receptor 4 Suppresses Proliferation and Promotes Apoptosis With Inhibition of Gli-1 in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is the most lethal glioma variant in the adult brain and among the deadliest of human cancers. Increasing evidence has shown that metabotropic glutamate receptor subtype 4 (mGluR4 expression may play roles in regulating the growth of neural stem cells as well as several cancer cell lines. Here, we investigated the effects of mGluR4 on the growth and apoptosis of the LN229 GBM cell line. Involvement of Gli-1, one of the key transcription factors in the sonic Hedgehog (SHH signaling pathway, was further explored. In this study, mGluR4 was activated using selective agonist VU0155041; and gene-targeted siRNAs were used to generate loss of function of mGluR4 and Gli-1 in LN229 cells. The results demonstrated that LN229 cells expressed mGluR4 and the agonist VU0155041 decreased cell viability in a dose- and time-dependent manner. Activation of mGluR4 inhibited cyclin D1 expression, activated pro-caspase-8/9/3, and disrupted the balance of Bcl-2/Bax expression, which indicated cell cycle arrest and apoptosis of LN229 cells, respectively. Furthermore, Gli-1 expression was reduced by mGluR4 activation in LN229 cells, and downregulation of Gli-1 expression by gene-targeted siRNA resulted in both inhibition of cell proliferation and promotion of apoptosis. Moreover, VU0155041 treatment substantially blocked SHH-induced cyclin D1 expression and cell proliferation, while increasing TUNEL-positive cells and the activation of apoptosis-related proteins. We concluded that activation of mGluR4 expressed in LN229 cells could inhibit GBM cell growth by decreasing cell proliferation and promoting apoptosis. Further suppression of intracellular Gli-1 expression might be involved in the action of mGluR4 on cancer cells. Our study suggested a novel role of mGluR4, which might serve as a potential drug target for control of GBM cell growth.

  15. Regulation of the CD56 promoter and its association with proliferation, anti-apoptosis and clinical factors in multiple myeloma

    DEFF Research Database (Denmark)

    Damgaard, Tina; Knudsen, Lene M; Dahl, Inger Marie S

    2009-01-01

    the regulation of the CD56 promoter in relation to typical clinical factors. We used qPCR and FACS to measure the expression levels of CD56, and potential regulatory factors in patients with MM and related these with MM progression/prognosis. The transcription factors BTBD3, Pax5, RUNX1 and MMSET were positively...... associated with CD56 expression, as was CYCLIN D1, which is involved in disease progression, anti-apoptosis and proliferation. RUNX1 was negatively associated with the survival of stem-cell transplanted patients. Our findings propose four potential activators of the CD56 promoter and for CD56 to be involved...

  16. Apoptosis is increased and cell proliferation is decreased in out-of-phase endometria from infertile and recurrent abortion patients

    Directory of Open Access Journals (Sweden)

    Irigoyen Marcela

    2010-10-01

    Full Text Available Abstract Background Various endometrial abnormalities have been associated with luteal phase deficiency: a significant dyssynchrony in the maturation of the glandular epithelium and the stroma and a prevalence of out-of-phase endometrial biopsy specimens. Out-of phase endometrium is a controversial disorder related to failed implantation, infertility and early pregnancy loss. Given that the regulation of the apoptotic process in endometrium of luteal phase deficiency is still unknown, the aim of this study was to evaluate cell proliferation, apoptosis and the levels of the main effector caspase, caspase-3 in the luteal in-phase and out-of-phase endometrium. Methods Thirty-seven endometrial samples from sterile or recurrent abortion patients were included in this study: 21 in-phase samples (controls and 16 samples with out-of-phase endometrium. Biopsy specimens of eutopic endometrium were obtained from all subjects during days 21-25 of the menstrual cycle. The endometrium with endometrial maturity of cycle day 25 or less at the time of menstruation was considered out-of phase. Endometrial tissues were fixed in 10% buffered formaldehyde. For apoptosis quantification, sections were processed for in situ immunohistochemical localization of nuclei exhibiting DNA fragmentation, by the terminal deoxynucleotidyl transferase (TdT-mediated dUTP digoxygenin nick-end labeling (TUNEL technique. Expressions of Proliferating Cell Nuclear Antigen (PCNA as a marker of cell proliferation, and of cleaved caspase-3 as a marker of apoptosis, were assessed by immunohistochemistry in the luteal in-phase and out-of-phase endometrium from infertile and recurrent abortion patients. Results Luteal out-of-phase endometrium had increased apoptosis levels compared to in-phase endometrium (p Conclusions this study represents the first report describing variations at the cell proliferation and cell death levels in the out-of-phase endometrium in comparison with in

  17. Downregulation of mouse CCR3 by lentiviral shRNA inhibits proliferation and induces apoptosis of mouse eosinophils.

    Science.gov (United States)

    Zhu, Xin-Hua; Liao, Bing; Xu, Yi; Liu, Ke; Huang, Yun; Huang, Quan-Long; Liu, Yue-Hui

    2017-02-01

    RNA interference has been considered as an effective gene silencing method in basic and preclinical investigations. The aims of the present study were to construct a lentiviral vector expressing a short hairpin RNA (shRNA) targeting the murine CC chemokine receptor 3 (mCCR3), and to investigate its effects on the proliferation and apoptosis of mouse eosinophils. A recombinant lentiviral vector expressing four fragments of mouse CCR3 shRNA (pLVX‑mCCR3‑1+2+3+4‑shRNA) was constructed using subcloning techniques. This novel lentivirus was then packaged into 293T cells by co‑transduction with plasmids, including Baculo p35, pCMV R8.2 and VSV. The interference effects of the vector were verified using polymerase chain reaction (PCR) and western blot analyses. The effects of the interference on the proliferation and apoptosis of mouse eosinophils were investigated using 3‑(4,5‑dimethylthiazol‑2‑yl)‑5‑(3‑carboxymethoxyphenyl)‑2‑(4‑sulfophenyl)‑2H‑tetrazolium and terminal deoxynucleotidyl transferase dUTP nick end labeling methods, respectively. The results of the PCR and western blot analyses confirmed that the novel recombinant vector, pLVX‑mCCR3‑1+2+3+4‑shRNA, had high efficiency in inhibiting the mRNA and protein expression levels of mCCR3 in mouse eosinophils. The downregulation of mCCR3 significantly inhibited proliferation of the eosinophils. Furthermore, the present study found that the downregulation of mCCR3 significantly promoted apoptosis of the eosinophils. Therefore, the downregulation of mCCR3 led to the inhibition of proliferation and induction of apoptosis in mouse eosinophils. The predominant characteristics of allergic rhinitis are eosinophil infiltration and release of inflammatory mediators, which appear in a variety of clinical manifestations. The results of the present study indicate that mCCR3 silencing may serve as a putative approach for the treatment of allergic rhinitis.

  18. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway.

    Science.gov (United States)

    Li, Guang-Yong; Jung, Kyung Hee; Lee, Hyunseung; Son, Mi Kwon; Seo, JuHyeon; Hong, Sang-Won; Jeong, Yujeong; Hong, Sungwoo; Hong, Soon-Sun

    2013-02-01

    Abnormal activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is an essential step for the formation and growth of tumors in humans. HS-106 is an imidazopyridine derivative that inhibits the kinase activity of PI3K by binding to the ATP-binding cleft. We found that this compound suppressed breast cancer cell proliferation and induced apoptosis by specifically inhibiting the activity of target proteins in the PI3K/Akt/mTOR signaling pathway. Cell cycle analysis revealed that treatment with HS-106 resulted in cell cycle arrest at the G(2)/M phase due to up-regulation of p-cdc25 and down-regulation of cyclin B1. Also, HS-106 induced apoptosis by increasing the levels of cleaved caspase-3 and cleaved PARP. In addition, chromatin condensation and apoptotic bodies were detected in HS-106-treated breast cancer cells. Furthermore, HS-106 decreased the expression of hypoxia-inducible factor 1α (HIF-1α), and inhibited tube formation and migration of human umbilical vein endothelial cells (HUVECs) in vitro and blood vessel formation in an in vivo Matrigel plug assay. These results show that HS-106 may be an effective novel therapeutic candidate in clinical trials as a potential treatment for human breast cancers or other advanced malignancies with aberrant PI3K/Akt/mTOR signaling. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    International Nuclear Information System (INIS)

    Sun, Yue; Du, Chengli; Wang, Bo; Zhang, Yanling; Liu, Xiaoyan; Ren, Guoping

    2014-01-01

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer

  20. Reduced RAC1 activity inhibits cell proliferation and induces apoptosis in neurofibromatosis type 2(NF2)-associated schwannoma.

    Science.gov (United States)

    Wang, Ying; Wang, Bo; Li, Peng; Zhang, Qi; Liu, Pinan

    2017-12-01

    Objective To study the function and potential mechanism of RAC1 inhibitors in NF2-associated schwannoma. Methods In this study, we the downregulation of RAC1 activity and tumor cell phenotypes by RAC1 inhibitor NSC23766 in vitro. And we further validated the anti-proliferation effect by this RAC1 inhibitor in subcutaneous xenograft tumor model and sciatic nerve model. Results Pharmacological inhibition of RAC1 could significantly inhibit the proliferation of both RT4 cells and human NF2-associated primary schwannoma cells by inducing apoptosis. Pharmacological inhibition of RAC1 effectively reduced Rac1 activity and down-regulated the pathway downstream of Rac. Moreover, pharmacological inhibition of RAC1 showed a potential antitumor effect, with low toxicity in vivo. Conclusion RAC1 inhibitors may play a therapeutic role in patients with schwannoma.

  1. Defibrotide Stimulates Angiogenesis and Protects Endothelial Cells from Calcineurin Inhibitor-Induced Apoptosis via Upregulation of AKT/Bcl-xL.

    Science.gov (United States)

    Wang, Xiangmin; Pan, Bin; Hashimoto, Yuko; Ohkawara, Hiroshi; Xu, Kailin; Zeng, Lingyu; Ikezoe, Takayuki

    2018-01-01

    Sinusoidal obstruction syndrome is a life-threatening complication that can occur after haematopoietic stem cell transplantation. Defibrotide (DF) has been approved for the treatment of individuals with severe sinusoidal obstruction syndrome following haematopoietic stem cell transplantation in the European Union and the United States. However, the precise mechanisms by which DF protects endothelial cells remain to be elucidated. In this study, we found that DF stimulated angiogenesis in vitro and in vivo as assessed by vascular tube formation, scratch-wound repair and Matrigel plug assays. These effects were associated with an activation of pro-survival signalling pathways, including AKT (protein kinase B), ERK (extracellular signal-regulated kinases) and p38. More importantly, DF alleviated calcineurin inhibitor-induced growth inhibition and apoptosis of human umbilical vein endothelial cells and human hepatic sinusoidal endothelial cells in parallel with upregulation of anti-apoptotic protein B-cell lymphoma-extra-large (Bcl-xL), which was mediated by AKT (protein kinase B). Notably, these effects were abrogated when Bcl-xL was depleted by small interfering RNA (ribonucleic acid). In addition, DF counteracted calcineurin inhibitor-induced activation of nuclear factor-κB and Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) signalling and production of cytokines in vascular endothelial cell-derived EA.hy926 cells. Taken together, DF has pro-angiogenic, anti-apoptotic and anti-inflammatory effects on endothelial cells. DF is a potentially useful agent to prevent the development of, and treat individuals with, endothelial cell injury-related complications after haematopoietic stem cell transplantation. Schattauer GmbH Stuttgart.

  2. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    Science.gov (United States)

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  3. Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status

    International Nuclear Information System (INIS)

    Oya, N.; Zoelzer, F.; Werner, F.; Streffer, C.

    2003-01-01

    Purpose: The effects of serum starvation on radiation sensitivity, cell proliferation and apoptosis were investigated with particular consideration of the p53 status. Material and Methods: Four human tumor cell lines, Be11 (melanoma, p53 wild-type), MeWo (melanoma, p53 mutant), 4197 (squamous cell carcinoma, p53 wild-type) and 4451 (squamous cell carcinoma, p53 mutant), were used. After the cells had been incubated in starvation medium (0.5% FCS) for 1-6 days, changes in cell cycle distribution, induction of apoptosis and necrosis, and changes in radiation sensitivity were assessed by two-parameter flow cytometric measurements of DNA content/BrdU labeling, two-parameter flow cytometric measurements of DNA-dye-exclusion/Annexin V binding, and a conventional colony assay, respectively. Results: p53 wild-type cell lines showed a decrease in the BrdU labeling index and an increase in the apoptotic cell frequency in starvation medium. p53 mutant cell lines showed a decrease in the BrdU labeling index but no evidence of apoptosis. These cells went into necrosis instead. The radiation sensitivity was increased in 4451 and slightly decreased in Be11 and 4197 in starvation medium. Conclusion: These data suggest a functional involvement of p53 in starvation-induced G1-block and apoptosis in tumor cells. Altered radiosensitivity after culture in starvation medium seemed to be explained at least in part by the starvation-induced G1-block. The frequency of starvation-induced apoptosis or necrosis was not correlated with radiation sensitivity. (orig.)

  4. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2010-10-01

    Full Text Available Zhen Zhang, Xiumei Zhang, Wei Xue, Yuna YangYang, Derong Xu, Yunxue Zhao, Haiyan LouSchool of Medicine, Shandong University, Jinan, Republic of ChinaAbstract: This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P < 0.05. Compared with the same concentration of oridonin solution, oridonin nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.Keywords: oridonin, nanosuspension, carcinoma of prostate, PC-3 cells, cell cycle, apoptosis

  5. Profile of cell proliferation and apoptosis activated by the intrinsic and extrinsic pathways in the prostate of aging rats.

    Science.gov (United States)

    Gonzaga, Amanda C R; Campolina-Silva, Gabriel H; Werneck-Gomes, Hipácia; Moura-Cordeiro, Júnia D; Santos, Letícia C; Mahecha, Germán A B; Morais-Santos, Mônica; Oliveira, Cleida A

    2017-06-01

    Estrogens acting through the receptors ERα and ERβ participate in prostate normal growth and cancer. ERβ is highly expressed in the prostate epithelium, playing pro-apoptotic, anti-proliferative, and pro-differentiation roles. Apoptosis is activated by the intrinsic pathway after castration and by the extrinsic pathway after ERβ agonist treatment. This differential activation of apoptotic pathways is important since a major problem in the treatment of prostate cancer is the recurrence of tumors after androgen withdrawal. However, a comprehensive study about the pattern of apoptosis in the aging prostate is lacking, a knowledge gap that we aimed to address herein. Cellular age-related proliferative and apoptotic profiles of prostate tissue obtained from aging Wistar rats were evaluated. Cell death (caspase-3, -8, -9, TNFα) was assessed by immunohistochemistry, immunofluorescence, and TUNEL. Cell proliferation (MCM7) and cell survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) were determined by immunohistochemistry. As the rats aged, the number of proliferating cells gradually reduced in the normal epithelium of all prostate lobes, while increasing in focal areas of intraepithelial proliferation. Interestingly, in areas of intraepithelial proliferation, we observed a reduction in the number of cells positive for caspase-3, -8, and -9. Regardless the animal's age, few prostate epithelial cells were positive for caspase-3, caspase-9, and TUNEL. In contrast, a progressive increase was seen in the positivity for caspase-8, especially in the atrophic epithelium of ventral prostate, which coincided with a reduction in TNFα immunoreaction. However, morphology of most caspase-8 positive cells suggests that they were not apoptotic. We also found reduced ERβ expression in the same areas. Possibly, low levels of the pro-apoptotic inductors TNFα and ERβ direct caspase-8 activity to an alternative pro-survival role in the atrophic epithelium. This hypothesis is

  6. Progranulin modulates cholangiocarcinoma cell proliferation, apoptosis, and motility via the PI3K/pAkt pathway

    Directory of Open Access Journals (Sweden)

    Daya M

    2018-01-01

    Full Text Available Minerva Daya,1–3 Watcharin Loilome,1,3 Anchalee Techasen,3,4 Malinee Thanee,3 Prakasit Sa-Ngiamwibool,4,5 Attapol Titapun,5,6 Puangrat Yongvanit,3 Nisana Namwat1,31Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; 2Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Sampaloc, Manila, Philippines; 3Cholangiocarcinoma Research Institute, 4Faculty of Associated Medical Science, 5Department of Pathology, 6Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand Abstract: Progranulin (PGRN is a growth factor normally expressed in rapidly cycling epithelial cells for growth, differentiation, and motility. Several studies have shown the association of PGRN overexpression with the progression of numerous malignancies, including cholangiocarcinoma (CCA. However, the underlying mechanisms on how PGRN modulates CCA cell proliferation and motility is not clear. In this study, we investigated the prognostic significance of PGRN expression in human CCA tissue and the mechanisms of PGRN modulation of CCA cell proliferation and motility. We found that CCA tissues with high PGRN expression were correlated with poor prognosis and likelihood of metastasis. PGRN knockdown KKU-100 and KKU-213 cells demonstrated a reduced rate of proliferation and colony formation and decreased levels of phosphatidyl inositol-3-kinase (PI3K and phosphorylated Akt (pAkt proteins. Accumulation of cells at the G1 phase was observed and was accompanied by a reduction of cyclin D1 and CDK4 protein levels. Knockdown cells also induced apoptosis by increasing the Bax-to-Bcl-2 ratio. Increased cell apoptosis was confirmed by annexin V-FITC/PI staining. Moreover, suppression of PGRN reduced CCA cell migration and invasion in vitro. Investigating the biomarkers in epithelial–mesenchymal transition (EMT revealed a decrease in the expression of vimentin, snail, and metalloproteinase-9. In

  7. Donkey milk kefir induces apoptosis and suppresses proliferation of Ehrlich ascites carcinoma by decreasing iNOS in mice.

    Science.gov (United States)

    Esener, Obb; Balkan, B M; Armutak, E I; Uvez, A; Yildiz, G; Hafizoglu, M; Yilmazer, N; Gurel-Gurevin, E

    2018-04-12

    Donkey milk and donkey milk kefir exhibit antiproliferative, antimutagenic and antibacterial effects. We investigated the effects of donkey milk and donkey milk kefir on oxidative stress, apoptosis and proliferation in Ehrlich ascites carcinoma (EAC) in mice. Thirty-four adult male Swiss albino mice were divided into four groups as follows: group 1, administered 0.5 ml water; group 2, administered 0.5 ml water + EAC cells; group 3, administered 0.5 ml donkey milk + EAC cells; group 4, administered 0.5 ml donkey milk kefir + EAC cells. We introduced 2.5 x 10 6 EAC cells into each animal by subcutaneous injection. Tap water, donkey milk and donkey milk kefir were administered by gavage for 10 days. Animals were sacrificed on day 11. After measuring the short and long diameters of the tumors, tissues were processed for histology. To determine oxidative stress, cell death and proliferation iNOS and eNOS, active caspase-3 and proliferating cell nuclear antigen were assessed using immunohistochemistry. A TUNEL assay also was used to detect apoptosis. Tumor volume decreased in the donkey milk kefir group compared to the control and donkey milk groups. Tumor volume increased in the donkey milk group compared to the control group. Proliferating cell nuclear antigen levels were higher in the donkey milk kefir group compared to the control and donkey milk groups. The number of apoptotic cells was less in the donkey milk group, compared to the control, whereas it was highest in the donkey milk kefir group. Donkey milk administration increased eNOS levels and decreased iNOS levels, compared to the control group. In the donkey milk kefir group, iNOS levels were significantly lower than those of the control and donkey milk groups, while eNOS levels were similar to the control group. Donkey milk kefir induced apoptosis, suppressed proliferation and decreased co-expression of iNOS and eNOS. Donkey milk promoted development of the tumors. Therefore, donkey milk kefir appears to

  8. Expression of Caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion.

    Science.gov (United States)

    Sun, Yanxia; Guo, Yingzhen

    2018-05-01

    The present study aimed to detect the expression of Caspase-1 in the tumor tissues and tumor-adjacent tissues of patients with breast cancer, and to investigate the effects of Caspase-1 on the proliferation, apoptosis and invasion of breast cancer cells. Reverse transcription-quantitative polymerase chain reaction was used to detect Caspase-1 mRNA expression in breast cancer tissues and tumor-adjacent tissues from patients. Additionally, the human breast cancer MDA-MB-231 cell line was treated with the Caspase-1 small molecule inhibitor Ac-YVAD-CMK, following which the changes to Caspase-1 protein expression were detected via western blotting. The MTT method detected the changes to cell proliferation, flow cytometry detected the rate of apoptosis, and a Transwell assay was employed to assess invasion. Caspase-1 mRNA expression was significantly decreased in the breast cancer tissues of patients, compared with in the tumor-adjacent tissues, a difference that was statistically significant (P<0.05). Treatment with the Ac-YVAD-CMK markedly decreased the protein expression of Caspase-1 in MDA-MB-231 cells, and the difference was statistically significant (P<0.05). Following this treatment of Ac-YVAD-CMK cells, the proliferation and invasion abilities markedly increased, while the apoptotic levels significantly decreased (P<0.05). In conclusion, the expression of Caspase-1 is low in breast cancer tissues, which may promote the proliferation and invasion of breast cancer cells and could be closely associated with the occurrence and development of breast cancer.

  9. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury

    Science.gov (United States)

    Pushchina, Evgeniya V.; Shukla, Sachin; Varaksin, Anatoly A.; Obukhov, Dmitry K.

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration. PMID:27212918

  10. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  11. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  12. Molecular basis for the interplay of apoptosis and proliferation mediated by Bcl-xL:Bim interactions in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Abrol, Ravinder; Edderkaoui, Mouad; Goddard, William A.; Pandol, Stephen J.

    2012-01-01

    Highlights: ► Direct role of Bcl-2 protein interactions in cell proliferation is not clear. ► Designed Bcl-xL mutants show opposite effects on apoptosis and proliferation. ► Disrupting Bcl-xL:Bim interaction increased apoptosis in pancreatic cancer. ► Disrupting Bcl-xL:Bim interaction decreased proliferation in pancreatic cancer. ► Bcl-xL:Bim interaction can control both apoptosis and proliferation. -- Abstract: A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH 3 domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linked for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein–protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein–protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the inhibition of proliferation and cancer cell resistance to apoptosis.

  13. Molecular basis for the interplay of apoptosis and proliferation mediated by Bcl-xL:Bim interactions in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Abrol, Ravinder, E-mail: abrol@wag.caltech.edu [Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Edderkaoui, Mouad [Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, CA 90073 (United States); Goddard, William A. [Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Pandol, Stephen J., E-mail: stephen.pandol@va.gov [Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, CA 90073 (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Direct role of Bcl-2 protein interactions in cell proliferation is not clear. Black-Right-Pointing-Pointer Designed Bcl-xL mutants show opposite effects on apoptosis and proliferation. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction increased apoptosis in pancreatic cancer. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction decreased proliferation in pancreatic cancer. Black-Right-Pointing-Pointer Bcl-xL:Bim interaction can control both apoptosis and proliferation. -- Abstract: A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH{sub 3} domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linked for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein-protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein-protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the

  14. Phorbol Esters Isolated from Jatropha Meal Induced Apoptosis-Mediated Inhibition in Proliferation of Chang and Vero Cell Lines

    Directory of Open Access Journals (Sweden)

    Syahida Ahmad

    2012-10-01

    Full Text Available The direct feeding of Jatropha meal containing phorbol esters (PEs indicated mild to severe toxicity symptoms in various organs of different animals. However, limited information is available on cellular and molecular mechanism of toxicity caused by PEs present in Jatropha meal. Thus, the present study was conducted to determine the cytotoxic and mode of action of PEs isolated from Jatropha meal using human hepatocyte (Chang and African green monkey kidney (Vero cell lines. The results showed that isolated PEs inhibited cell proliferation in a dose-dependent manner in both cell lines with the CC50 of 125.9 and 110.3 μg/mL, respectively. These values were compatible to that of phorbol 12-myristate 13-acetate (PMA values as positive control i.e., 124.5 and 106.3 μg/mL respectively. Microscopic examination, flow cytometry and DNA fragmentation results confirmed cell death due to apoptosis upon treatment with PEs and PMA at CC50 concentration for 24 h in both cell lines. The Western blot analysis revealed the overexpression of PKC-δ and activation of caspase-3 proteins which could be involved in the mechanism of action of PEs and PMA. Consequently, the PEs isolated form Jatropha meal caused toxicity and induced apoptosis-mediated proliferation inhibition toward Chang and Vero cell lines involving over-expression of PKC-δ and caspase-3 as their mode of actions.

  15. Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice.

    Science.gov (United States)

    Piotrowska, Katarzyna; Tarnowski, Maciej; Zgutka, Katarzyna; Pawlik, Andrzej

    2016-03-19

    Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD) feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E) method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR). We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment.

  16. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis.

    Science.gov (United States)

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2-5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer.

  17. Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice

    Directory of Open Access Journals (Sweden)

    Katarzyna Piotrowska

    2016-03-01

    Full Text Available Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR. We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment.

  18. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    International Nuclear Information System (INIS)

    Ma, Gui-Fen; Chen, Shi-Yao; Sun, Zhi-Rong; Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng; Ma, Li-Li; Lian, Jing-Jing; Song, Dong-Li

    2013-01-01

    Highlights: ► The article revealed FoxP3 gene function in gastric cancer firstly. ► Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. ► Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. ► Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. ► FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis in GC cells by regulating apoptotic signaling, which could be a promising therapeutic approach for gastric cancer.

  19. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Gui-Fen [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: shiyao_chen@163.com [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Sun, Zhi-Rong [Department of Anesthesiology, Cancer Center, Fudan University, Shanghai (China); Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Li-Li; Lian, Jing-Jing [Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Song, Dong-Li [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  20. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells.

    Science.gov (United States)

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer.

  1. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Lamia Hamdan

    Full Text Available This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA, on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231 with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer.

  2. The relationship between apoptosis and the expression of proliferating cell nuclear antigen and the clinical stages in gastric carcinoma.

    Science.gov (United States)

    Tao, K; Chen, D; Tian, Y; Lu, X; Yang, X

    2000-01-01

    The relationship between the apoptosis and the expression of proliferating cell nuclear antigen (PCNA) and the clinical stages in gastric cancers was studied. By using terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) technique and PCNA immunohistochemical staining, the apoptosis and the expression of PCNA in tissue of gastric carcinoma were assayed in situ, the index of apoptosis (AI), index of PCNA (PI) and the rate of AI/PI were calculated. AI and PI in gastric cancer tissues were (6.5 +/- 3.7)% and (49.8 +/- 15.9)% respectively, and the rate of AI/PI was 0.13 +/- 0.05, which were obviously different from those of normal gastric mucosa in paragastric cancer (P stages of gastric carcinoma, the AI was decreased, PI was increased and the rate of AI/PI decreased in gastric carcinoma. There was significant difference in them between the gastric cancer tissues and normal gastric mucosa in pericarcinoma in TNM stage II to IV (P gastric carcinoma. The AI, PI and the rate of AI/PI would become the prognostic factors in advanced gastric carcinoma.

  3. Water extract of Semecarpus parvifolia Thw. leaves inhibits cell proliferation and induces apoptosis on HEp-2 cells.

    Science.gov (United States)

    Soysa, Preethi; Jayarthne, Panchima; Ranathunga, Imali

    2018-03-05

    Semecarpus parvifolia Thw is used as an ingredient of poly herbal decoctions to treat cancer in traditional medicine. The present study aims to investigate the antiproliferative activity on HEp 2 cells by the water extract of S. parvifolia leaves and to evaluate potential mechanisms. The plant extract was exposed to S. parvifolia for 24 hours and antiproliferative activity was quantified by Sulforhodamine B (SRB), 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and Lactate dehydrogenase (LDH) assays. Morphological changes were observed after staining cells with ethidium bromide/acridine orange (EB/AO) and Giemsa dye. Comet assay was performed to evaluate the DNA damage. The toxicity of the plant extract was determined by brine shrimp lethality assay. S. parvifolia leaves reduced the cell proliferation in a dose and time dependent manner. A two fold increase in NO level was observed at higher concentrations. Morphological changes characteristic to apoptosis were observed in light microscopy, Giemsa and EB/AO stained cells. Fragmented DNA further confirmed its capacity to induce apoptosis. No lethality was observed with brine shrimps. The results suggest that Semecarpus parvifolia Thw induces apoptosis in HEp-2 cells through a NO dependent pathway.

  4. The neem limonoids azadirachtin and nimbolide inhibit cell proliferation and induce apoptosis in an animal model of oral oncogenesis.

    Science.gov (United States)

    Harish Kumar, G; Vidya Priyadarsini, R; Vinothini, G; Vidjaya Letchoumy, P; Nagini, S

    2010-08-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention for their cytotoxicity against human cancer cell lines. However, the antiproliferative and apoptosis inducing effects of neem limonoids have not been tested in animal tumour models. The present study was therefore designed to evaluate the relative chemopreventive potential of the neem limonoids azadirachtin and nimbolide in the hamster buccal pouch (HBP) carcinogenesis model by analyzing the expression of proliferating cell nuclear antigen (PCNA), p21(waf1), cyclin D1, glutathione S-transferase pi (GST-P), NF-kappaB, inhibitor of kappaB (IkappaB), p53, Fas, Bcl-2, Bax, Bid, Apaf-1, cytochrome C, survivin, caspases-3, -6, -8 and -9, and poly(ADP-ribose) polymerase (PARP) by RT-PCR, immunohistochemical, and Western blot analyses. The results provide compelling evidence that azadirachtin and nimbolide mediate their antiproliferative effects by downregulating proteins involved in cell cycle progression and transduce apoptosis by both the intrinsic and extrinsic pathways. On a comparative basis, nimbolide was found to be a more potent antiproliferative and apoptosis inducing agent and offers promise as a candidate agent in multitargeted prevention and treatment of cancer.

  5. Human immunodeficiency virus envelope protein Gp120 induces proliferation but not apoptosis in osteoblasts at physiologic concentrations.

    Directory of Open Access Journals (Sweden)

    Nathan W Cummins

    Full Text Available Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis. Instead, in the osteoblast-like U2OS cell line, cells expressing CXCR4, a receptor for Gp120, had increased proliferation when treated with Gp120 compared to control (P<0.05, which was inhibited by pretreatment with a CXCR4 inhibitor and a G-protein inhibitor. This suggests that Gp120 is not an inducer of apoptosis in human osteoblasts and likely does not directly contribute to osteoporosis in infected patients by this mechanism.

  6. Inhibition of proliferation and differentiation and promotion of apoptosis by cyclin L2 in mouse embryonic carcinoma P19 cells

    International Nuclear Information System (INIS)

    Zhuo, Lili; Gong, Jie; Yang, Rong; Sheng, Yanhui; Zhou, Lei; Kong, Xiangqing; Cao, Kejiang

    2009-01-01

    Cyclin L2 (CCNL2) is a novel member of the cyclin gene family. In a previous study, we demonstrated that CCNL2 expression was upregulated in ventricular septum tissues from patients with ventricular septal defect compared to healthy controls. In the present study, we established a stable CCNL2-overexpressing P19 cell line that can differentiate to myocardial cells when treated with 1% dimethyl sulfoxide (DMSO). Our data showed that stable CCNL2-overexpressing P19 cells were less differentiated after treatment with 1% DMSO and that expression of myocardial cell differentiation-related genes (such as cardiac actin, GATA4, Mef2C, Nkx2.5, and BNP) were reduced compared to vector-only transfected P19. Moreover, P19 cells overexpressing the CCNL2 gene had a reduced growth rate and a remarkably decreased S phase. We also found that these cells underwent apoptosis, as detected by two different apoptosis assays. The anti-apoptotic Bcl-2 protein was also downregulated in these cells. In addition, real-time PCR analysis revealed that expression of Wnt and β-catenin was suppressed and GSK3β was induced in the CCNL2-overexpressing P19 cells. These data suggest that overexpression of CCNL2 inhibited proliferation and differentiation of mouse embryonic carcinoma P19 cells and induced them to undergo apoptosis, possibly through the Wnt signal transduction pathway.

  7. [Effects of rhynchophylla alkaloids on vascular adventitial fibroblast apoptosis and proliferation in the thoracic aorta of spontaneously hypertensive rats].

    Science.gov (United States)

    Dai, Guo-Hua; Sun, Jing-Chang; Qi, Dong-Mei

    2012-09-01

    To study the effects of rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids on the vascular adventitial fibroblasts (VAF) apoptosis and proliferation in thoracic aorta of spontaneously hypertensive rats (SHR), and on the Bcl-2, Bax, c-Fos, c-Myc, laminin (LN), and fibronectin (FN). Forty 8-week old male SHR were randomly divided into five groups, i. e., the model group, the captopril group (17.5 mg/kg), the isorhynchophylline group (5.0 mg/kg), the rhynchophylline group (5.0 mg/kg), and the rhynchophylla alkaloids group (50.0 mg/kg), 8 in each group. In addition, eight 8-week old male Wistar rats were selected as the normal group. Equal volume of normal saline was given to rats in the normal group and the model group by gastrogavage. Rats in the rest groups were perfused with isovolumic medication solution (10 mL/kg), six days per week for eight successive weeks. The dosage of drugs was adjusted according to the change of body weight. The VAF apoptosis rate of the thoracic aorta was measured by Annexin V-FITC combined with PI dyeing and flow cytometry. The protein expressions of thoracic aortic Bcl-2, Bax, c-Myc, c-Fos, FN, and LN were detected by immunohistochemical assay. The adventitial transforming growth factor beta1 (TGF-beta1) mRNA expression in the thoracic aorta was detected by in situ hybridization method. Compared with the model group, the tail arterial systolic pressure decreased, the VAF apoptosis and the protein expression of Bax increased, Bcl-2, c-Fos, FN, LN, and TGF-beta1 mRNA all decreased in the thoracic aorta of SHR in each treatment group after 4-and 8-week of intervention. Rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids could inhibit the protein expression of c-Myc with statistical difference (Prhynchophylla alkaloids group (P>0.05). There was statistical difference in increased VAF apoptosis and decreased protein expressions of Bcl-2, c-Myc, and LN (Prhynchophylla alkaloids group (P>0.05). Rhynchophylline

  8. Effect of long interval between hyperthermochemoradiation therapy and surgery for rectal cancer on apoptosis, proliferation and tumor response.

    Science.gov (United States)

    Kato, Toshihide; Fujii, Takaaki; Ide, Munenori; Takada, Takahiro; Sutoh, Toshinaga; Morita, Hiroki; Yajima, Reina; Yamaguchi, Satoru; Tsutsumi, Soichi; Asao, Takayuki; Oyama, Tetsunari; Kuwano, Hiroyuki

    2014-06-01

    Neoadjuvant chemoradiotherapy is commonly used to improve the local control and resectability of locally advanced rectal cancer, with surgery performed after an interval of a number of weeks. We have been conducting a clinical trial of preoperative chemoradiotherapy in combination with regional hyperthermia (hyperthermo-chemoradiation therapy; HCRT) for locally advanced rectal cancer. In the current study we assessed the effect of a longer (>10 weeks) interval after neoadjuvant HCRT on pathological response, oncological outcome and especially on apoptosis, proliferation and p53 expression in patients with rectal cancer. Forty-eight patients with proven rectal adenocarcinoma who underwent HCRT followed by surgery were identified for inclusion in this study. Patients were divided into two groups according to the interval between HCRT and surgery, ≤ 10 weeks (short-interval group) and >10 weeks (long-interval group). Patients in the long-interval group had a significantly higher rate of pathological complete response (pCR) (43.5% vs. 16.0%) than patients of the short-interval group. Patients of the long-interval group had a significantly higher rate of down-staging of T-stage (78.3% vs. 36.0%) and relatively higher rate of that of N-stage (52.2% vs. 36.0%) than patients of the short-interval group. Furthermore, apoptosis in the long-interval group was relatively higher compared to that of the short-interval group, without a significant difference in the Ki-67 proliferative index and expression of p53 in the primary tumor. In conclusion, we demonstrated that a longer interval after HCRT (>10 weeks) seemed to result in a better chance of a pCR, a result confirmed by the trends in tumor response markers, including apoptosis, proliferation and p53 expression. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1

    Science.gov (United States)

    Chen, Zhibo; Wang, Mian; He, Qiong; Li, Zilun; Zhao, Yang; Wang, Wenjian; Ma, Jieyi; Li, Yongxin; Chang, Guangqi

    2017-01-01

    Oxidized low-density lipoprotein (ox-LDL) is a major and critical mediator of atherosclerosis, and the underlying mechanism is thought to involve the ox-LDL-induced dysfunction of endothelial cells (ECs). MicroRNAs (miRNAs), which are a group of small non-coding RNA molecules that post-transcriptionally regulate the expression of target genes, have been associated with diverse cellular functions and the pathogenesis of various diseases, including atherosclerosis. miRNA-98 (miR-98) has been demonstrated to be involved in the regulation of cellular apoptosis; however, the role of miR-98 in ox-LDL-induced dysfunction of ECs and atherosclerosis has yet to be elucidated. Therefore, the present study aimed to investigate the role of miR-98 in ox-LDL-induced dysfunction of ECs and the underlying mechanism. It was demonstrated that miR-98 expression was markedly downregulated in ox-LDL-treated human umbilical vein ECs (HUVECs) and that miR-98 promoted the proliferation and alleviated apoptosis of HUVECs exposed to ox-LDL. In addition, the results demonstrated that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was a direct target of miR-98 in HUVECs, as indicated by a luciferase assay. The results of the present study suggested that miR-98 may inhibit the uptake of toxic ox-LDL, maintain HUVEC proliferation and protect HUVECs against apoptosis via the suppression of LOX-1. PMID:28565756

  10. Effects of IL-6 on proliferation and apoptosis of tumor cells multi-irradiated for tumor-bearing mice

    International Nuclear Information System (INIS)

    Liu Yongbiao; Yao Side

    2004-01-01

    A study was carried out on effects of IL-6 on the proliferation and apoptosis of tumor cells and the expression of apoptosis relevant genes (p53, bcl-2) in tumor cells for three kinds of fractional total-body-irradiated tumor-bearing mice. The apoptotic index, proliferative index, S phase fraction of S 180 sarcoma, H 22 hepatocarcinoma and Lewis lung cancer cells were measured by flowcytometry (FCM) after total-body-irradiation and irradiation plus IL-6. The protein expression level of p53, bcl-2 in three kinds of tumors was also determined by the immunohisto-chemical method (UltraSensitive S-P). The results showed that the S phase fraction and proliferation index in Lewis lung cancer cells were lower in the irradiated plus IL-6 group than in the control, while apoptotic index was higher (P 180 sarcoma cells were opposite (P 22 hepatocarcinoma. These results revealed that IL-6 promoted the apoptosis of irradiated Lewis lung cancer cells (P 180 sarcoma (P 22 hepatocarcinoma (P>0.05). In Lewis lung cancer the expression level of p53 was lower in the IL-6 group and higher in S 180 sarcoma (P 22 hepatocarcinoma as compared with the control (P>0.05). It is considered that tumor cell's proportion in the cellular cycle is changed by IL-6 and the effects of IL-6 on the expression of p53, bcl-2 in different three kinds of tumors are different. IL-6 has radio-sensitive effects on some tumors and opposite effects on other tumors, it may be related to the expression of p53 and bcl-2 in tumor cells. (authors)

  11. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xue; Kan, Shifeng; Liu, Zhen [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Guang [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 (Singapore); Zhang, Xiaoyan [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Chen, Yingyu [Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Peking University Center for Human Disease Genomics, Beijing 100191 (China); Bai, Yun, E-mail: baiyun@bjmu.edu.cn [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.

  12. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    International Nuclear Information System (INIS)

    Erdmann, Kati; Ringel, Jessica; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P; Fuessel, Susanne; Hampel, Silke

    2014-01-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  13. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  14. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis.

    Science.gov (United States)

    Pesant, Matthieu; Sueur, Stéphanie; Dutartre, Patrick; Tallandier, Mireille; Grimaldi, Paul A; Rochette, Luc; Connat, Jean-Louis

    2006-02-01

    Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma plays beneficial roles in cardiovascular disorders such as atherosclerosis and heart reperfusion. Although PPARalpha and gamma have been documented to reduce oxidative stress in the vasculature and the heart, the role of PPARdelta remains poorly studied. We focused on PPARdelta function in the regulation of oxidative stress-induced apoptosis in the rat cardiomyoblast cell line H9c2. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we showed that PPARdelta is the predominantly expressed isotype whereas PPARalpha was weakly detected. By performing cell viability assays, we also showed that the selective PPARdelta agonist GW501516 protected cells from H(2)O(2)-induced cell death. The protective effect of GW501516 was due to an inhibition of H(2)O(2)-triggered apoptosis as shown by annexin-V labeling, DNA fragmentation analysis, and caspase-3 activity measurement. We demonstrated by transient transfection of a dominant negative mutant of PPARdelta that the protection induced by GW501516 was totally dependent on PPARdelta. Semi-quantitative RT-PCR and Western blotting analysis demonstrated that GW501516 treatment upregulated catalase. Moreover, forced overexpression of catalase inhibited H(2)O(2)-triggered apoptosis, as evidenced by annexin-V labeling. Taken together, our results account for an important role of PPARdelta in inhibiting the onset of oxidative stress-induced apoptosis in H9c2 cells. PPARdelta appears to be a new therapeutic target for the regulation of heart reperfusion-associated oxidative stress and stimulation of enzymatic antioxidative defences.

  15. Proliferating Cell Nuclear Antigen (PCNA) Regulates Primordial Follicle Assembly by Promoting Apoptosis of Oocytes in Fetal and Neonatal Mouse Ovaries

    Science.gov (United States)

    Zhang, Yuanwei; Jiang, Xiaohua; Zhang, Huan; Ma, Tieliang; Zheng, Wei; Sun, Rui; Shen, Wei; Sha, Jiahao; Cooke, Howard J.; Shi, Qinghua

    2011-01-01

    Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PMID:21253613

  16. Proliferating cell nuclear antigen (PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.

    Directory of Open Access Journals (Sweden)

    Bo Xu

    Full Text Available Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA, a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer granulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.

  17. Linc00472 suppresses proliferation and promotes apoptosis through elevating PDCD4 expression by sponging miR-196a in colorectal cancer.

    Science.gov (United States)

    Ye, Yafei; Yang, Shengnan; Han, Yanping; Sun, Jingjing; Xv, Lijuan; Wu, Lina; Wang, Yongfeng; Ming, Liang

    2018-06-21

    Long intergenic non-coding RNA Linc00472 has been considered as a tumor suppressor in some cancers. However, the function and mechanism of Linc00472 in colorectal cancer has not been well elucidated. In this study, we found that Linc00472 was down-regulated in colorectal cancer tissues and cells. Elevated Linc00472 expression suppressed proliferation and induced apoptosis in colorectal cancer cells. Moreover, Linc00472 acted as a competing endogenous RNA (ceRNA) of miR-196a to release programmed cell death 4 (PDCD4). Furthermore, miR-196a overexpression or PDCD4 knockdown reversed Linc00472-mediated proliferation inhibition and apoptosis induction in colorectal cancer cells. Ectopic Linc00472 expression hindered tumor growth in vivo . Our study demonstrated that Linc00472 suppressed proliferation and induced apoptosis through up-regulating PDCD4 by decoying miR-196a, which may be an effective therapeutic target for colorectal cancer.

  18. Effects of anti-CD40 mAb on inducing malignant B cells proliferation arrest and apoptosis and its mechanism

    International Nuclear Information System (INIS)

    Tang Lin; Zhuang Yumei; Zhou Zhaohua; Yu Gehua; Pan Jianzhong; Zhang Xueguang

    2002-01-01

    Objective: To study the expression of CD 40 molecule and the biological effects mediated by CD 40 molecules on malignant B cells. Methods: Agonistic anti-human CD 40 monoclonal antibody (clone 5C11) was added to cell culture system. Cell counting, PI staining, Annexin-V staining and flow cytometric analysis were used to study the behavior of malignant B cell lines after treatment with mAb clone 5C11. Results: 5C11 induced homotypic aggregation and proliferation arrest and mediated apoptosis in multiple myeloma cell line XG2 that expressed CD 40 strongly; 5C11 induced B lymphoma cell line Daudi homotypic aggregation and proliferation arrest and apoptosis, the apoptosis of XG2 and Daudi by CD40 activation was not mediated by TNF. Conclusion: Agonistic anti-CD 40 mAb 5C11 can inhibit the proliferation of malignant B cells by inducing them to die apoplectically

  19. Effects of IL-6 on proliferation and apoptosis of tumor cells multi-irradiated for tumor-bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Yongbiao, Liu [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics; Xuzhou Medical Univ., Xuzhou (China); Side, Yao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics; Kai, Mei; Ying, Liu; Jie, Zhao; Xianwen, Zhang; Qiang, Zhou; Xingzhi, Hao [Xuzhou Medical Univ., Xuzhou (China)

    2004-05-15

    A study was carried out on effects of IL-6 on the proliferation and apoptosis of tumor cells and the expression of apoptosis relevant genes (p53, bcl-2) in tumor cells for three kinds of fractional total-body-irradiated tumor-bearing mice. The apoptotic index, proliferative index, S phase fraction of S{sub 180} sarcoma, H{sub 22} hepatocarcinoma and Lewis lung cancer cells were measured by flowcytometry (FCM) after total-body-irradiation and irradiation plus IL-6. The protein expression level of p53, bcl-2 in three kinds of tumors was also determined by the immunohisto-chemical method (UltraSensitive S-P). The results showed that the S phase fraction and proliferation index in Lewis lung cancer cells were lower in the irradiated plus IL-6 group than in the control, while apoptotic index was higher (P<0.05). However, the experimental results for S{sub 180} sarcoma cells were opposite (P<0.01). In addition, no significant effects were observed in H{sub 22} hepatocarcinoma. These results revealed that IL-6 promoted the apoptosis of irradiated Lewis lung cancer cells (P<0.05), while the apoptosis of S{sub 180} sarcoma (P<0.05) was restrained, and there was no significant effects on the cellular cycle of H{sub 22} hepatocarcinoma (P>0.05). In Lewis lung cancer the expression level of p53 was lower in the IL-6 group and higher in S{sub 180} sarcoma (P<0.05), while unvaried in H{sub 22} hepatocarcinoma as compared with the control (P>0.05). It is considered that tumor cell's proportion in the cellular cycle is changed by IL-6 and the effects of IL-6 on the expression of p53, bcl-2 in different three kinds of tumors are different. IL-6 has radio-sensitive effects on some tumors and opposite effects on other tumors, it may be related to the expression of p53 and bcl-2 in tumor cells. (authors)

  20. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation...

  1. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    International Nuclear Information System (INIS)

    Eigėlienė, Natalija; Härkönen, Pirkko; Erkkola, Risto

    2006-01-01

    Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E 2 or MPA or with E 2 +MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E 2 -treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E 2 +MPA to multilayered but organised epithelium. The proliferative response to E 2 in comparison to control (p < 0.001) was more pronounced than to MPA (p < 0.05) or E 2 +MPA (p < 0.05) at 7 and 14 days for Ki-67 and PCNA. E 2 treatment also decreased the proportion of apoptotic cells after 7 (p < 0.01) and 14 (p < 0.01) days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  2. Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells.

    Science.gov (United States)

    Liu, Qian; Liu, Hui; Cheng, Hepeng; Li, Yang; Li, Xiaodong; Zhu, Chaoyang

    2017-01-01

    Bladder cancer is a common serious disease around the world. Long noncoding RNAs (lncRNAs) have been demonstrated to participate in the development and progression of various cancers, including bladder cancer. The aim of this study was to investigate the effects of lncRNA taurine upregulated gene 1 (TUG1) on proliferation and apoptosis in bladder cancer cell lines and the underlying mechanism. The levels of TUG1 were detected by quantitative real time polymerase chain reaction (qRT-PCR) in bladder cancer tissues and cells. The mRNA and protein levels of zinc finger E-box binding homeobox 2 (ZEB2) were measured by qRT-PCR and Western blot analysis, respectively. The functional targets of TUG1 were predicted by online softwares and confirmed by luciferase reporter assay. The effects of TUG1 on cell proliferation and apoptosis were examined by MTT and apoptosis assay, respectively. The expression levels of β-catenin, cyclinD1, and c-Myc in T24 cells were determined by Western blot analysis. The levels of TUG1 and ZEB2 were significantly increased in bladder cancer tissues and cells. Knockdown of either TUG1 or ZEB2 inhibited proliferation and induced apoptosis in bladder cancer cells. Interestingly, ZEB2 overexpression reversed the effects of TUG1 knockdown on cell proliferation and apoptosis. Moreover, ZEB2 was verified as a direct target of miR-142 and miR-142 could specially bind to TUG1. In addition, downregulation of TUG1 inhibited the Wnt/β-catenin pathway by regulating ZEB2 expression in bladder cancer cells. Downregulation of TUG1 expression inhibited proliferation and induced apoptosis in bladder cancer cells by targeting ZEB2 mediated by miR-142 through the inactivation of Wnt/β-catenin pathway.

  3. Downregulation of the long noncoding RNA TUG1 inhibits the proliferation, migration, invasion and promotes apoptosis of renal cell carcinoma.

    Science.gov (United States)

    Zhang, Meng; Lu, Wei; Huang, Yiqiang; Shi, Jizhou; Wu, Xun; Zhang, Xiaolong; Jiang, Runze; Cai, Zhiming; Wu, Song

    2016-08-01

    Long non-coding RNAs, a newly discovered category of noncoding genes, play a leading role in various biological processes, including tumorigenesis. In our study, we aimed to examine the TUG1 expression, and explore the influence of TUG1 silencing on cell proliferation and apoptosis in renal cell carcinoma (RCC) cell lines. The TUG1 expression level was detected using quantitative real-time PCR reverse transcription-polymerase chain reaction in 40 paired clear cell renal cell carcinoma (ccRCC) and adjacent paired normal tissues, as well as four RCC cell lines and one normal human proximal tubule epithelial cell line HK-2. Small interfering RNA was applied to suppress the TUG1 expression in RCC cell lines (A489 and A704). In vitro assays were conducted to further deliberate its potential functions in RCC progression. The relative TUG1 expression was significantly higher in ccRCC tissues compared to the adjacent normal renal tissues. In addition, higher TUG1 expression was equally detected in RCC cell lines (particularly in A498 and A704) compared to HK-2. The ccRCC specimens with higher TUG1 expression had a higher Fuhrman grade and larger tumor size than those with lower TUG1 expression. In vitro assays results suggested that knockdown of TUG1 suppressed RCC cells migration, invasion and proliferation, while the apoptosis process was activated. Our results indicate that TUG1 is identified as a novel oncogene in the morbid state of RCC, which potentially acts as a therapeutic target/biomarker in RCC. The graphic abstract of the present work.

  4. Effect of fenofibrate on oxidative DNA damage and on gene expression related to cell proliferation and apoptosis in rats.

    Science.gov (United States)

    Nishimura, Jihei; Dewa, Yasuaki; Muguruma, Masako; Kuroiwa, Yuichi; Yasuno, Hiroaki; Shima, Tomomi; Jin, Mailan; Takahashi, Miwa; Umemura, Takashi; Mitsumori, Kunitoshi

    2007-05-01

    To investigate the relationship between fenofibrate (FF) and oxidative stress, enzymatic, histopathological, and molecular biological analyses were performed in the liver of male F344 rats fed 2 doses of FF (Experiment 1; 0 and 6000 ppm) for 3 weeks and 3 doses (Experiment 2; 0, 3000, and 6000 ppm) for 9 weeks. FF treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver. However, it decreased those of superoxide dismutase in the liver in both experiments. Increased 8-hydroxy-2'-deoxyguanosine levels in liver DNA and lipofuscin accumulation were observed in the treated rats of Experiment 2. In vitro measurement of reactive oxygen species (ROS) in rat liver microsomes revealed a dose-dependent increase due to FF treatment. Microarray (only Experiment 1) or real-time reverse transcription-polymerase chain reaction analyses revealed that the expression levels of metabolism and DNA repair-related genes such as Aco, Cyp4a1, Cat, Yc2, Gpx2, Apex1, Xrcc5, Mgmt, Mlh1, Gadd45a, and Nbn were increased in FF-treated rats. These results provide evidence of a direct or indirect relationship between oxidative stress and FF treatment. In addition, increases in the expression levels of cell cycle-related genes such as Chek1, Cdc25a, and Ccdn1; increases in the expression levels of cell proliferation-related genes such as Hdgfrp3 and Vegfb; and fluctuations in the expression levels of apoptosis-related genes such as Casp11 and Trp53inp1 were observed in these rats. This suggests that cell proliferation induction, apoptosis suppression, and DNA damage due to oxidative stresses are probably involved in the mechanism of hepatocarcinogenesis due to FF in rats.

  5. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy.

  6. Influence of 28-O-propynoylbetulin on proliferation and apoptosis of melanotic and amelanotic human melanoma cells

    Directory of Open Access Journals (Sweden)

    Anna Kaps

    2016-12-01

    Full Text Available Introduction: A relatively new approach in treatment of malignant melanoma is the use of betulin and its synthetic derivatives that have anticancer properties. The aim of the study was to determine the effect of an acetylenic derivative of betulin, 28-O-propynoylbetulin, on cell growth and apoptosis induction in human melanotic and amelanotic melanoma cells.Materials and methods: The A2058 and C32 cell lines were incubated with 28-O-propynoylbetulin (working solutions from 0.1 to 10 μg/ml. To evaluate cell proliferation, a sulforhodamine B based assay was conducted. In order to elucidate the early stages of apoptosis in both melanoma cell lines, caspase-3 activity was evaluated.Results: The administration of 28-O-propynoylbetulin at a concentration equal to or less than 1 μg/ml did not cause a statistically significant change in the cell proliferation in either melanoma cell line (compared to control, p>0.05. Higher concentrations of the compound (3 and 10 μg/ml inhibited the cell growth (in comparison to control, p<0.05. These results corresponded with caspase-3 activity results that revealed an increase of enzyme activity after 24-hour incubation with 3 and 10 μg/ml of the compound (compared to control, p<0.05.Discussion: The study revealed that 28-O-propynoylbetulin may have diverse effects on melanoma cells and could be a strong inhibitor of cell growth (C32 cells or exert a more potent proapoptotic effect (A2058 cells. These findings support the possibility of the use of EB5 in different antimelanoma approaches.

  7. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  8. Crude Flavonoid Extract of Medicinal Herb Zingibar officinale Inhibits Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Elkady, Ayman I; Abu-Zinadah, Osama A; Hussein, Rania Abd El Hamid

    2017-07-05

    There is an urgent need to improve the clinical management of hepatocellular carcinoma (HCC), one of the most common causes of global cancer-related deaths. Zingibar officinale is a medicinal herb used throughout history for both culinary and medicinal purposes. It has antioxidant, anticarcinogenic, and free radical scavenging properties. Previously, we proved that the crude flavonoid extract of Z. officinale (CFEZO) inhibited growth and induced apoptosis in several cancer cell lines. However, the effect of the CFEZO on an HCC cell line has not yet been evaluated. In this study, we explored the anticancer activity of CFEZO against an HCC cell line, HepG2. CFEZO significantly inhibited proliferation and induced apoptosis in HepG2 cells. Typical apoptotic morphological and biochemical changes, including cell shrinkage and detachment, nuclear condensation and fragmentation, DNA degradation, and comet tail formation, were observed after treatments with CFEZO. The apoptogenic activity of CFEZO involved induction of ROS, depletion of GSH, disruption of the mitochondrial membrane potential, activation of caspase 3/9, and an increase in the Bax/Bcl-2 ratio. CFEZO treatments induced upregulation of p53 and p21 expression and downregulation of cyclin D1 and cyclin-dependent kinase-4 expression, which were accompanied by G2/M phase arrest. These findings suggest that CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of HCC.

  9. Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling

    International Nuclear Information System (INIS)

    Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun; Kim, In-Ae; Seung Ko, Jea; Chung, Chong-Pyoung; Kim, Hyun-Man

    2005-01-01

    The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growth factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue

  10. Perlecan and tumor angiogenesis

    DEFF Research Database (Denmark)

    Jiang, Xinnong; Couchman, John R

    2003-01-01

    Perlecan is a major heparan sulfate proteoglycan (HSPG) of basement membranes (BMs) and connective tissues. The core protein of perlecan is divided into five domains based on sequence homology to other known proteins. Commonly, the N-terminal domain I of mammalian perlecan is substituted with thr...... have unwanted promoting effects on tumor cell proliferation and tumor angiogenesis. Understanding of these attributes at the molecular level may offer opportunities for therapeutic intervention....

  11. The role of Sep (O-phosphoserine) tRNA: Sec (selenocysteine) synthase (SEPSECS) in proliferation, apoptosis and hormone secretion of trophoblast cells.

    Science.gov (United States)

    Zhao, H-D; Zhang, W-G; Sun, M-N; Duan, Q-F; Li, F-L; Li, H

    2013-11-01

    To investigate whether Sep (O-phosphoserine) tRNA: Sec (selenocysteine) synthase (SEPSECS), which plays an essential role in the synthesis of selenoprotein, affects proliferation, apoptosis and hormone secretion of human trophoblast cells. Human trophoblast JEG-3 cells were divided into four groups: control group, SEPSECS silenced-expression group, empty vector group and SEPSECS over-expression group. Over-expression and silenced-expression were achieved by transfection with plasmid DNA or RNA oligonucleotide, respectively. 3-[4,5-dimethylthiazol-2-yl] -2,5-diphenyltetrazolium bromide (MTT) and colony formation assays were performed to investigate cell proliferation, while apoptosis was tested by annexin V-FITC, PI double staining and caspases-3 activation assays, enzyme-linked immunosorbent assay (ELISA) was used to determine the level of progesterone (PG) and human chorionic gonadotropin (hCG). SEPSECS silenced-expression clearly inhibited proliferation of JEG-3 cells (p < 0.05), significantly induced cell apoptosis (p < 0.01) and reduced the production of PG and hCG (p < 0.05). On the contrary, SEPSECS over-expression significantly promoted both cell proliferation (p < 0.01) and secretion of PG and hCG (p < 0.05). SEPSECS significantly affects proliferation, apoptosis and hormone secretion of human trophoblast cells, suggesting that a potential relationship exists among SEPSECS, cell proliferation, apoptosis and hormone production of human placental trophoblast cells. Furthermore, this may provide a clue to uncover the relationship between selenium and human placental in association with an emphasis on the importance of selenium adequacy during pregnancy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells

    Directory of Open Access Journals (Sweden)

    Waraporn Kaewkorn

    2012-01-01

    Full Text Available Sericin is a silk protein woven from silkworm cocoons (Bombyx mori. In animal model, sericin has been reported to have anti-tumoral action against colon cancer. The mechanisms underlying the activity of sericin against cancer cells are not fully understood. The present study investigated the effects of sericin on human colorectal cancer SW480 cells compared to normal colonic mucosal FHC cells. Since the size of the sericin protein may be important for its activity, two ranges of molecular weight were tested. Sericin was found to decrease SW480 and FHC cell viability. The small sericin had higher anti-proliferative effects than that of the large sericin in both cell types. Increased apoptosis of SW480 cells is associated with increased caspase-3 activity and decreased Bcl-2 expression. The anti-proliferative effect of sericin was accompanied by cell cycle arrest at the S phase. Thus, sericin reduced SW480 cell viability by inducing cell apoptosis via caspase-3 activation and down-regulation of Bcl-2 expression. The present study provides scientific data that support the protective effect of silk sericin against cancer cells of the colon and suggests that this protein may have significant health benefits and could potentially be developed as a dietary supplement for colon cancer prevention.

  13. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice.

    Science.gov (United States)

    Zhang, Lu; Xie, Xingxing; Zhou, Yigang; Yu, Dainan; Deng, Yu; Ouyang, Jiexiu; Yang, Bei; Luo, Dan; Zhang, Dalei; Kuang, Haibin

    2018-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have recently found applications in a wide variety of consumer goods. TiO 2 NPs exposure significantly increases fetal deformities and mortality. However, the potential toxicity of TiO 2 NPs on the growth and development of placenta has been rarely studied during mice pregnancy. The objective of this study was to investigate the effects of maternal exposure of TiO 2 NPs on the placentation. Mice were administered TiO 2 NPs by gavage at 0, 1 and 10 mg/kg/day from gestational day (GD) 1 to GD 13. Uteri and placentas from these mice were collected and counted the numbers of implanted and resorbed embryo and measured the placental weight on GD 13. Placental morphometry was observed by hematoxylin and eosin staining. The levels of Hand1, Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA were assessed by qRT-PCR. Uterine NK (uNK) cells were detected by using DBA lectin. Laminin immunohistochemical staining was to identify fetal vessels. Western blotting and transmission electron micrograph (TEM) were used to assess the apoptosis of placenta. No treatment-related difference was observed in the numbers of implanted and resorbed embryos and weight of placenta between the groups. However, 1 mg/kg/day TiO 2 NPs treatment significantly reduced the ratio of placenta/body weight on GD 13. The proportion of spongiotrophoblast in the 10 mg/kg/day dose group became higher than that in the control group, yet that of labyrinth was significantly lower in 10 mg/kg/day mice. The expression levels of Hand1 , Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA markedly decreased in TiO 2 NP treated placentas. Furthermore, TiO 2 NPs treatment impaired the formation of intricate networks of fetal vessels and reduced the number of uNK cells, and inhibited proliferation and induced apoptosis of placenta by nuclear pyknosis, the activation of caspase-3 and upregulation of Bax protein and downregulation of Bcl-2 protein on GD 13. Gestational exposure to TiO 2 NPs

  14. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-06-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  15. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-03-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  16. Effect of excessive intake of dietary carbohydrates and fats on incidence of apoptosis and proliferation in male rats

    International Nuclear Information System (INIS)

    El-Mahdy, A.A.

    2006-01-01

    This study was planned to investigate the programmed cell death and cellular aging by estimating the relation between cell proliferation and cell death in tissue of pancreas and testis. All the biochemical parameters in this study were carried out on two aged groups (adult and senile) of male albino rats. Moreover, the study extended to emphasize the possible effect of certain dietary elements such as carbohydrate and fat on the rate of apoptosis and proliferation in some tissues and their physiological functions. Two aged groups of rats (adult and senile) were included in this study. According to the data obtained, it could be concluded that excess dietary carbohydrate could be considered as a high risk factor when given to the adult and senile age, since it produced some significant changes in the blood chemistry with non-significant changes on the proliferative and apoptotic balance of the tested tissues. Moreover, excess dietary fat could be considered as high risk factor when given to adult and senile age groups

  17. Expression of TRIM28 correlates with proliferation and Bortezomib-induced apoptosis in B-cell non-Hodgkin lymphoma.

    Science.gov (United States)

    Zhang, Pei-Pei; Ding, Da-Zhi; Shi, Bing; Zhang, Shu-Qing; Gu, Ling-Li; Wang, Yu-Chan; Cheng, Chun

    2018-03-23

    Tripartite motif containing 28 (TRIM28) as a transcriptional co-repressor has been reported playing a role in regulating DNA damage response (DDR), cell differentiation, immune response, and tumorigenesis. The present study was performed to explore the biological function and clinical significance of TRIM28 in B-cell non-Hodgkin lymphoma (B-NHL). Results of the study displayed that high expression of TRIM28 was positively associated with the poorer survival of B-NHL patients as an independent prognostic factor. In addition, TRIM28 could promote the B-NHL cells proliferation through modulating cell cycle progression. The change of cyclinA, P21, and PCNA expression after TRIM28 expression modified further illustrated the mechanism in which TRIM28 participated in cell proliferation progression. Moreover, inhibition TRIM28 expression in B-NHL cells enhanced the sensibility to Bortezomib by regulating p53-mediated apoptosis pathway. Taken together, the present study showed that TRIM28 functions as a tumor promoter in B-NHL and may be a novel target for drug resistance to Bortezomib.

  18. Overexpression of IRS2 in isolated pancreatic islets causes proliferation and protects human β-cells from hyperglycemia-induced apoptosis

    International Nuclear Information System (INIS)

    Mohanty, S.; Spinas, G.A.; Maedler, K.; Zuellig, R.A.; Lehmann, R.; Donath, M.Y.; Trueb, T.; Niessen, M.

    2005-01-01

    Studies in vivo indicate that IRS2 plays an important role in maintaining functional β-cell mass. To investigate if IRS2 autonomously affects β-cells, we have studied proliferation, apoptosis, and β-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that β-cell proliferation was significantly increased in rat islets overexpressing IRS2 while IRS1 was less effective. Moreover, proliferation of a β-cell line, INS-1, was decreased after repression of Irs2 expression using RNA oligonucleotides. Overexpression of IRS2 in human islets significantly decreased apoptosis of β-cells, induced by 33.3 mM D-glucose. However, IRS2 did not protect cultured rat islets against apoptosis in the presence of 0.5 mM palmitic acid. Overexpression of IRS2 in isolated rat islets significantly increased basal and D-glucose-stimulated insulin secretion as determined in perifusion experiments. Therefore, IRS2 is sufficient to induce proliferation in rat islets and to protect human β-cells from D-glucose-induced apoptosis. In addition, IRS2 can improve β-cell function. Our results indicate that IRS2 acts autonomously in β-cells in maintenance and expansion of functional β-cell mass in vivo

  19. Apoptosis, proliferation, Bax, Bcl-2 and p53 status prior to and after preoperative radiochemotherapy for locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Tannapfel, Andrea; Nuesslein, Siegfried; Fietkau, Rainer; Katalinic, Alexander; Koeckerling, Ferdinand; Wittekind, Christian

    1998-01-01

    Purpose: To investigate the relationship between apoptotic cell death, proliferative activity, and the expression of apoptosis regulating proteins in rectal cancer prior to and after radiochemotherapy. Materials and Methods: In 32 patients dispositioned to receive preoperative radiochemotherapy for locally advanced rectal carcinoma, pretherapy biopsies and the final resected specimen after radiochemotherapy were available for analyses. Apoptotic cells were identified and quantified using in situ end labeling (ISEL) technique. The expression of the bax protein was assessed immunohistochemically. Additionally, double immunostaining was performed for apoptotic cells and bax expression. The proliferative activity was determined by immunohistochemical assessment of the Ki67 (MIB-1) and the proliferating cell nuclear antigen (PCNA). p53- and bcl-2 expression was analyzed immunohistochemically. A clinical-to-pathologic downstaging after radiochemotherapy was achieved in 25 of 32 patients (78%). During follow-up, tumor recurrence was observed in six cases. In one case, no residual tumor was detected after radiochemotherapy. Results: After radiochemotherapy, the apoptotic index increased significantly in almost every case examined. In contrast, the proliferative activity was significantly decreased in resected specimens as compared to biopsies. Bax immunostaining was detected in 12/31 (39%) biopsies and in 26/31 (84%) resected specimens. In the resected specimen, significantly more apoptotic cells that were bax-positive were found than in biopsies. Bcl-2 immunostaining occurred in 15/31 biopsies and 12/31 resected specimens, respectively. Tumors that were immunohistochemically negative for p53 (20/31 [65%]) generally exhibited a higher apoptotic index and a high expression level of bax than p53-positive tumors (11/31 [35%]). However, we did not find any correlation between the (pre- and post-therapeutic) rate of apoptosis or the level of bax expression and the degree of

  20. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells.

    Science.gov (United States)

    Sabarwal, Akash; Agarwal, Rajesh; Singh, Rana P

    2017-02-01

    The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  2. Selumetinib suppresses cell proliferation, migration and trigger apoptosis, G1 arrest in triple-negative breast cancer cells.

    Science.gov (United States)

    Zhou, Yan; Lin, Shuchen; Tseng, Kuo-Fu; Han, Kun; Wang, Yaling; Gan, Zhi-Hua; Min, Da-Liu; Hu, Hai-Yan

    2016-10-21

    Triple-negative breast cancer (TNBC) has aggressive progression with poor prognosis and ineffective treatments. Selumetinib is an allosteric, ATP-noncompetitive inhibitor of MEK1/2, which has benn known as effective antineoplastic drugs for several malignant tumors. We hypothesized that Selumetinib might be potential drug for TNBC and explore the mechanism. After treated with Selumetinib, the viability and mobility of HCC1937 and MDA-MB-231 were detected by MTT, tunnel, wound-healing assay, transwell assay and FCM methods. MiR array was used to analysis the change of miRs. We predicted and verified CUL1 is the target of miR-302a using Luciferase reporter assay. We also silenced the CUL1 by siRNA, to clarify whether CUL1 take part in the cell proliferation, migration and regulated its substrate TIMP1 and TRAF2. Moreover, after transfection, the antagomir of miR-302a and CUL1 over-expressed plasmid into HCC1937 and MDA-MB-231 cell accompanied with the Selumetinib treatment, we detected the proliferation and migration again. Selumetinib reduce the proliferation, migration, triggered apoptosis and G1 arrest in TNBC cell lines. In this process, the miR-302a was up-regulated and inhibited the CUL1 expression. The later negatively regulated the TIMP1 and TRAF2. As soon as we knockdown miR-302a and over-expression CUL1 in TNBC cells, the cytotoxicity of Selumetinib was reversed. MiR-302a targeted regulated the CUL1 expression and mediated the Selumetinib-induced cytotoxicity of triple-negative breast cancer.

  3. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo.

    Science.gov (United States)

    Cartland, Siân P; Genner, Scott W; Zahoor, Amna; Kavurma, Mary M

    2016-12-02

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  4. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Siân P. Cartland

    2016-12-01

    Full Text Available Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A and fibroblast growth-factor-2 (FGF-2 either separately (10 ng/mL or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1 cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  5. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    Science.gov (United States)

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Up-regulation of hypoxia inducible factor-1α by cobalt chloride correlates with proliferation and apoptosis in PC-2 cells

    Directory of Open Access Journals (Sweden)

    Dai Zhi-Jun

    2012-03-01

    Full Text Available Abstract Background The exact mechanism of the effects of hypoxia on the proliferation and apoptosis in carcinoma cells is still conflicting. This study investigated the variation of hypoxia-inducible factor-1α(HIF-1α expression and the apoptosis effect of hypoxia stimulated by cobalt chloride (CoCl2 in pancreatic cancer PC-2 cells. Methods PC-2 cells were cultured with different concentration (50-200 μmol/L of CoCl2 after 24-120 hours to simulate hypoxia in vitro. The proliferation of PC-2 cells was examined by MTT assay. The cellular morphology of PC-2 cells were observed by light inverted microscope and transmission electron microscope(EM. The expression of HIF-1α on mRNA and protein level was measured by semi-quantitive RT-PCR and Western blot analysis. Apoptosis of PC-2 cells were demonstrated by flow cytometry with Annexin V-FITC/PI double staining. Results MTT assay showed that the proliferation of PC-2 cells were stimulated in the first 72 h, while after treated over 72 h, a dose- dependent inhibition of cell growth could be observed. By using transmission electron microscope, swollen chondrosomes, accumulated chromatin under the nuclear membrane and apoptosis bodies were observed. Flow cytometer(FCM analysis showed the apoptosis rate was correlated with the dosage of CoCl2. RT-PCR and Western blot analysis indicated that hypoxia could up-regulate the expression of HIF-1α on both mRNA and protein levels. Conclusion Hypoxic microenvironment stimulated by CoCl2 could effectively induce apoptosis and influence cell proliferation in PC-2 cells, the mechanism could be related to up-expression of HIF-1α.

  7. Angiogenesis in gliomas.

    Directory of Open Access Journals (Sweden)

    Elzbieta Czykier

    2008-02-01

    Full Text Available Brain gliomas are characterized by invasive growth and neovascularisation potential. Angiogenesis plays a major role in the progression of gliomas and its determination has a great prognostic value. The aim of the study was to assess the vascularisation of chosen brain gliomas and to estimate how it is correlated with tumour histological type, malignancy grade, location and size, and with age and sex of patients. Tumour vascularisation analysis was based on the determination of microvascular proliferation (MVP and microvessel density (MVD. Microvascular proliferation was measured with immunohistochemical methods using mouse monoclonal antibodies to detect cell proliferation antigens. The following antibodies were used Ki-67 and PCNA (DAKO. Identification of vessels was performed by CD31 antibody and anti-human von Willebrand factor (DAKO. The highest microvascular proliferation and microvascular density were observed in multiform glioblastomas and the lowest in oligodendrogliomas. Significant correlation was observed between the vascularisation and malignancy grade.

  8. Effects of Urtica dioica on oxidative stress, proliferation and apoptosis after partial hepatectomy in rats.

    Science.gov (United States)

    Oguz, Serhat; Kanter, Mehmet; Erboga, Mustafa; Toydemir, Toygar; Sayhan, Mustafa Burak; Onur, Hatice

    2015-05-01

    The present study was performed to investigate the effect of Urtica dioica (UD) on liver regeneration after partial hepatectomy (PH) in rats. A total of 24 male Sprague Dawley rats were divided into three groups: sham-operated, PH and PH + UD; each group contains eight animals. The rats in UD-treated groups were given UD oils (2 ml/kg/day) once a day orally for 7 days starting 3 days prior to hepatectomy operation. At day 7 after resection, liver samples were collected. The levels of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) were estimated in liver homogenates. Moreover, histopathological examination, mitotic index (MI), proliferating cell nuclear antigen labeling, proliferation index (PI), transferase-mediated deoxyuridine triphosphate nick end-labeling assay, apoptotic index (AI) were evaluated at day 7 after hepatectomy. As a result, UD significantly increased MI and PI, significantly decreased AI and also attenuated hepatic vacuolar degeneration and sinusoidal congestion in PH rats. UD treatment significantly decreased the elevated tissue MDA level and increased the reduced SOD activity and GSH level in the tissues. These results suggest that UD pretreatment was beneficial for rat liver regeneration after partial hepatectomy. © The Author(s) 2013.

  9. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    Science.gov (United States)

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  10. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation

    Directory of Open Access Journals (Sweden)

    Dowling Catherine

    2009-06-01

    Full Text Available Abstract Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  11. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.

    LENUS (Irish Health Repository)

    Gill, Catherine

    2009-01-01

    BACKGROUND: Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. METHODS: cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. RESULTS: PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. CONCLUSION: Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  12. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts

    International Nuclear Information System (INIS)

    Chang, J.-K.; Li, C.-J.; Liao, H.-J.; Wang, C.-K.; Wang, G.-J.; Ho, M.-L.

    2009-01-01

    It has been reported that anti-inflammatory drugs (AIDs) inhibited bone repair in animal studies, and suppressed proliferation and induced cell death in rat osteoblast cultures. In this study, we further investigated the molecular mechanisms of AID effects on proliferation and cell death in human osteoblasts (hOBs). We examined the effects of dexamethasone (10 -7 and 10 -6 M), non-selective non-steroidal anti-inflammatory drugs (NSAIDs): indomethacin, ketorolac, piroxicam and diclofenac (10 -5 and 10 -4 M), and COX-2 inhibitor: celecoxib (10 -6 and 10 -5 M) on proliferation, cytotoxicity, cell death, and mRNA and protein levels of cell cycle and apoptosis-related regulators in hOBs. All the tested AIDs significantly inhibited proliferation and arrested cell cycle at G0/G1 phase in hOBs. Celecoxib and dexamethasone, but not non-selective NSAIDs, were found to have cytotoxic effects on hOB, and further demonstrated to induce apoptosis and necrosis (at higher concentration) in hOBs. We further found that indomethacin, celecoxib and dexamethasone increased the mRNA and protein expressions of p27 kip1 and decreased those of cyclin D2 and p-cdk2 in hOBs. Bak expression was increased by celecoxib and dexamethasone, while Bcl-XL level was declined only by dexamethasone. Furthermore, the replenishment of PGE1, PGE2 or PGF2α did not reverse the effects of AIDs on proliferation and expressions of p27 kip1 and cyclin D2 in hOBs. We conclude that the changes in expressions of regulators of cell cycle (p27 kip1 and cyclin D2) and/or apoptosis (Bak and Bcl-XL) by AIDs may contribute to AIDs caused proliferation suppression and apoptosis in hOBs. This effect might not relate to the blockage of prostaglandin synthesis by AIDs

  13. Long Non-Coding RNA MEG3 Inhibits Cell Proliferation and Induces Apoptosis in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Gang Luo

    2015-11-01

    Full Text Available Background/Aims: Long non-coding RNAs (lncRNAs play important roles in diverse biological processes, such as cell growth, apoptosis and migration. Although downregulation of lncRNA maternally expressed gene 3 (MEG3 has been identified in several cancers, little is known about its role in prostate cancer progression. The aim of this study was to detect MEG3 expression in clinical prostate cancer tissues, investigate its biological functions in the development of prostate cancer and the underlying mechanism. Methods: MEG3 expression levels were detected by qRT-PCR in both tumor tissues and adjacent non-tumor tissues from 21 prostate cancer patients. The effects of MEG3 on PC3 and DU145 cells were assessed by MTT assay, colony formation assay, western blot and flow cytometry. Transfected PC3 cells were transplanted into nude mice, and the tumor growth curves were determined. Results: MEG3 decreased significantly in prostate cancer tissues relative to adjacent normal tissues. MEG3 inhibited intrinsic cell survival pathway in vitro and in vivo by reducing the protein expression of Bcl-2, enhancing Bax and activating caspase 3. We further demonstrated that MEG3 inhibited the expression of cell cycle regulatory protein Cyclin D1 and induced cell cycle arrest in G0/G1 phase. Conclusions: Our study presents an important role of MEG3 in the molecular etiology of prostate cancer and implicates the potential application of MEG3 in prostate cancer therapy.

  14. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  15. Serine/Threonine Kinase 35, a Target Gene of STAT3, Regulates the Proliferation and Apoptosis of Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2018-01-01

    Full Text Available Background/Aims: Serine/threonine kinase 35 (STK35 may be associated with Parkinson disease and human colorectal cancer, but there have been no reports on the expression levels or roles of STK35 in osteosarcoma. Methods: STK35 mRNA expression was determined in osteosarcoma and bone cyst tissues by real-time PCR. Cell proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8 assay and flow cytometry analysis, respectively. Results: STK35 was up-regulated in osteosarcoma tissues as indicated by analyzing publicly available expression data (GEO dataset E-MEXP-3628 and real-time PCR analysis on our own cohort. We subsequently investigated the effects of STK35 knockdown on two osteosarcoma cell lines, MG63 and U2OS. STK35 knockdown inhibited the growth of osteosarcoma cells in vitro and in xenograft tumors. Meanwhile, STK35 knockdown enhanced apoptosis. Expression of the active forms and the activity of two major executioner caspases, caspase 3 and caspase 7, were also increased in osteosarcoma cells with STK35 silenced. Additionally, Gene Set Enrichment Analysis (GSEA identified that the JAK/STAT signaling pathway was positively correlated with STK35 expression. The mRNA expression of STK35 was repressed by STAT3 small interfering RNA (siRNA, but not by siRNA of STAT4, STAT5A or STAT6. A luciferase reporter assay further demonstrated that STAT3 transcriptionally regulated STK35 expression. A chromatin immunoprecipitation (ChIP assay confirmed the direct recruitment of STAT3 to the STK35 promoter. The promotion effects of STAT3 knockdown on cell apoptosis were partially abolished by STK35 overexpression. Furthermore, STK35 mRNA expression was positively correlated with STAT3 mRNA expression in osteosarcoma tissues by Pearson correlation analysis. Conclusions: These results collectively reveal that STAT3 regulates the transcription of STK35 in osteosarcoma. STK35 may exert an oncogenic role in osteosarcoma.

  16. Imaging angiogenesis.

    Science.gov (United States)

    Charnley, Natalie; Donaldson, Stephanie; Price, Pat

    2009-01-01

    There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

  17. Balance of life and death in alveolar epithelial type II cells: proliferation, apoptosis, and the effects of cyclic stretch on wound healing.

    Science.gov (United States)

    Crosby, Lynn M; Luellen, Charlean; Zhang, Zhihong; Tague, Larry L; Sinclair, Scott E; Waters, Christopher M

    2011-10-01

    After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveolar type II (ATII) cells and found that CS altered the balance between proliferation and cell death. We measured cell migration, size, and density; intercellular gap formation; cell number, proliferation, and apoptosis; cytoskeletal organization; and focal adhesions in response to scratch wounding followed by CS for up to 24 h. Under static conditions, wounds were closed by 24 h, but repair was inhibited by CS. Wounding stimulated cell motility and proliferation, actin and vinculin redistribution, and focal adhesion formation at the wound edge, while CS impeded cell spreading, initiated apoptosis, stimulated cytoskeletal reorganization, and attenuated focal adhesion formation. CS also caused significant intercellular gap formation compared with static cells. Our results suggest that CS alters several mechanisms of epithelial repair and that an imbalance occurs between cell death and proliferation that must be overcome to restore the epithelial barrier.

  18. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, M.O., E-mail: mari.mauro@hotmail.com [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil); Sartori, Daniele [General Biology Department, State University of Londrina (UEL), Londrina (Brazil); Oliveira, Rodrigo Juliano [Coordination of Open and Distance Education, Graduate Program in Animal Science, Federal University of Mato Grosso do Sul (UFMS), Campo Grande (MS) (Brazil); Ishii, Priscila Lumi [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil); Mantovani, Mario Sergio [General Biology Department, State University of Londrina (UEL), Londrina (Brazil); Ribeiro, Lucia Regina [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil)

    2011-10-01

    Intestinal cancers are correlated with diet. Thus, determining and understanding nutrient-genome interactions is important. The present work assessed the action of the oligoelement selenium on cell proliferation, cytotoxicity, and in situ apoptosis induction and on the expression CASP9, BCL-XL and APC genes in intestinal adenocarcinoma cells (HT29). HT29 cells were cultured and treated with selenium at concentrations of 5, 50 and 500 ng/mL with or without the damage-inducing agent doxorubicin. These cells were then evaluated for cytotoxicity (MTT), cell proliferation and in situ apoptosis induction. To evaluate gene expression, only the cells treated with 500 ng/mL of selenium were used. RNA was extracted from these cells, and the expressions of CASP9, BCL-XL and APC were analyzed by the RT-PCR method. The GAPDH gene was used as a reference gene. The MTT assay showed that selenium was not cytotoxic at any of the concentrations tested. The cell proliferation assay showed that selenium did not interfere with cell proliferation at the three concentrations tested. In contrast, when the three concentrations were combined with doxorubicin, a significant decrease in the proliferation rate was observed. The apoptosis rate was significantly increased in the selenium (500 ng/mL) and doxorubicin group. CASP9 expression was increased and BCL-XL expression decreased in the selenium (500 ng/mL) and doxorubicin group. APC was significantly increased in the selenium group alone. These results show that selenium increases apoptosis, especially when it is associated with a damage-inducing agent. Also, selenium has an important role in the expression of the APC gene, which is related to cell cycle regulation.

  19. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells

    International Nuclear Information System (INIS)

    Mauro, M.O.; Sartori, Daniele; Oliveira, Rodrigo Juliano; Ishii, Priscila Lumi; Mantovani, Mario Sergio; Ribeiro, Lucia Regina

    2011-01-01

    Intestinal cancers are correlated with diet. Thus, determining and understanding nutrient-genome interactions is important. The present work assessed the action of the oligoelement selenium on cell proliferation, cytotoxicity, and in situ apoptosis induction and on the expression CASP9, BCL-XL and APC genes in intestinal adenocarcinoma cells (HT29). HT29 cells were cultured and treated with selenium at concentrations of 5, 50 and 500 ng/mL with or without the damage-inducing agent doxorubicin. These cells were then evaluated for cytotoxicity (MTT), cell proliferation and in situ apoptosis induction. To evaluate gene expression, only the cells treated with 500 ng/mL of selenium were used. RNA was extracted from these cells, and the expressions of CASP9, BCL-XL and APC were analyzed by the RT-PCR method. The GAPDH gene was used as a reference gene. The MTT assay showed that selenium was not cytotoxic at any of the concentrations tested. The cell proliferation assay showed that selenium did not interfere with cell proliferation at the three concentrations tested. In contrast, when the three concentrations were combined with doxorubicin, a significant decrease in the proliferation rate was observed. The apoptosis rate was significantly increased in the selenium (500 ng/mL) and doxorubicin group. CASP9 expression was increased and BCL-XL expression decreased in the selenium (500 ng/mL) and doxorubicin group. APC was significantly increased in the selenium group alone. These results show that selenium increases apoptosis, especially when it is associated with a damage-inducing agent. Also, selenium has an important role in the expression of the APC gene, which is related to cell cycle regulation.

  20. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Li, Youjun, E-mail: liyoujunn@126.com [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong [Central Hospital Affiliated to Shenyang Medical College (China)

    2016-03-18

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  1. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    International Nuclear Information System (INIS)

    Li, Zhi; Li, Youjun; Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong

    2016-01-01

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  2. Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD.

    Science.gov (United States)

    Kim, Hyoji; Choi, Hoyun; Lee, Suk Kyeong

    2015-01-28

    Although Epstein-Barr virus (EBV) BamHI A rightward transcript (BART) microRNAs (miRNAs) are ubiquitously expressed in EBV-associated tumors, the role of most BART miRNAs is unclear. In this study, we showed that Bcl-2-associated death promoter (BAD) expression was significantly lower in EBV-infected AGS-EBV cells than in EBV-negative AGS cells and investigated whether BART miRNAs target BAD. Using bioinformatics analysis, five BART miRNAs showing seed match with the 3' untranslated region (3'-UTR) of BAD were selected. Of these, only miR-BART20-5p reduced BAD expression when individually transfected into AGS cells. A luciferase assay revealed that miR-BART20-5p directly targets BAD. The expression of BAD mRNA and protein was decreased by miR-BART20-5p and increased by an inhibitor of miR-BART20-5p. PE-Annexin V staining and cell proliferation assays showed that miR-BART20-5p reduced apoptosis and enhanced cell growth. Furthermore, miR-BART20-5p increased chemoresistance to 5-fluorouracil and docetaxel. Our data suggest that miR-BART20-5p contributes to tumorigenesis of EBV-associated gastric carcinoma by directly targeting the 3'-UTR of BAD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Q

    2017-05-01

    Full Text Available Qian Liu,* Hui Liu,* Hepeng Cheng, Yang Li, Xiaodong Li, Chaoyang Zhu Department of Urology Surgery, Huaihe Hospital of Henan University, Kaifeng, People’s Republic of China *These authors contributed equally to this work Background: Bladder cancer is a common serious disease around the world. Long noncoding RNAs (lncRNAs have been demonstrated to participate in the development and progression of various cancers, including bladder cancer. The aim of this study was to investigate the effects of lncRNA taurine upregulated gene 1 (TUG1 on proliferation and apoptosis in bladder cancer cell lines and the underlying mechanism.Methods: The levels of TUG1 were detected by quantitative real time polymerase chain reaction (qRT-PCR in bladder cancer tissues and cells. The mRNA and protein levels of zinc finger E-box binding homeobox 2 (ZEB2 were measured by qRT-PCR and Western blot analysis, respectively. The functional targets of TUG1 were predicted by online softwares and confirmed by luciferase reporter assay. The effects of TUG1 on cell proliferation and apoptosis were examined by MTT and apoptosis assay, respectively. The expression levels of β-catenin, cyclinD1, and c-Myc in T24 cells were determined by Western blot analysis.Results: The levels of TUG1 and ZEB2 were significantly increased in bladder cancer tissues and cells. Knockdown of either TUG1 or ZEB2 inhibited proliferation and induced apoptosis in bladder cancer cells. Interestingly, ZEB2 overexpression reversed the effects of TUG1 knockdown on cell proliferation and apoptosis. Moreover, ZEB2 was verified as a direct target of miR-142 and miR-142 could specially bind to TUG1. In addition, downregulation of TUG1 inhibited the Wnt/β-catenin pathway by regulating ZEB2 expression in bladder cancer cells.Conclusion: Downregulation of TUG1 expression inhibited proliferation and induced apoptosis in bladder cancer cells by targeting ZEB2 mediated by miR-142 through the inactivation of Wnt

  4. Effects of PKM2 Gene Silencing on the Proliferation and Apoptosis of Colorectal Cancer LS-147T and SW620 Cells

    Directory of Open Access Journals (Sweden)

    Ran Ao

    2017-07-01

    Full Text Available Background/Aims: This paper aims to explore the effects of pyruvate kinase (PK M2 gene silencing on the proliferation and apoptosis of colorectal cancer (CRC LS-147T and SW620 cells. Methods: CRC LS-147T and SW620 cells highly expressing PKM2 were randomly selected by quantitative real-time polymerase chain reaction (qRT-PCR and then assigned into the blank (no transfection, PKM2-shRNA (transfection with shRNA and empty plasmid (transfection with empty plasmid groups. Immunofluorescence was applied to detect PKM2 protein expression. qRT-PCR and Western blotting were conducted to assess mRNA and protein expression of PKM2, p53 and p21. The cell counting kit-8 (CCK-8 assay was used to assess cell proliferation. Flow cytometry was used to assess the cell cycle and apoptosis rate, and a senescence-associated β-galactosidase staining kit was used to assess cell senescence. Results: PKM2 exhibited high mRNA expression among CRC LS-147T and SW620 cells with remarkable protein expression noted in the cytoplasm and nucleus. The PKM2-shRNA group exhibited reduced PKM2 mRNA and protein expression, whereas p53 and p21 expression was increased compared with the blank and empty plasmid groups. Cell proliferation in PKM2-shRNA cells decreased significantly compared with the blank group and empty plasmid groups. The PKM2-shRNA group exhibited more cells in the G1 phase and fewer cells in the G2/M phase compared with the blank and empty plasmid groups. In addition, the PKM2-shRNA group exhibited significantly increased apoptosis rates and β-galactosidase activity compared with the blank and empty plasmid groups. Conclusion: Our study demonstrates that PKM2 gene silencing suppresses proliferation and promotes apoptosis in LS-147T and SW620 cells.

  5. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Yuanli Dong

    2015-01-01

    Full Text Available Background: Hypocretin (HCRT signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy. Our previous study showed that xingshentongqiao decoction (XSTQ is clinically effective for the treatment of narcolepsy. To determine whether XSTQ improves narcolepsy by modulating HCRT signaling, we investigated its effects on SH-SY5Y cell proliferation, apoptosis, and HCRT receptor 1/2 (orexin receptor 1 [OX1R] and orexin receptor 2 [OX2R] expression. The signaling pathways involved in these processes were also assessed. Methods: The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays. OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis. Western blotting for mitogen-activated protein kinase (MAPK pathway activation was performed to further assess the signaling mechanism of XSTQ. Results: XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells. This effect was accompanied by the upregulation of OX1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK. Conclusions: XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells. XSTQ also promotes OX1R and OX2R expression. These effects are associated with the repression of the Erk1/2, p38 MAPK, and JNK signaling pathways. These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation, which may explain its ability to treat narcolepsy.

  6. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells

    International Nuclear Information System (INIS)

    He Xiaoqing; Chen Rui; Yang Ping; Li Aiping; Zhou Jianwei; Liu Qizhan

    2007-01-01

    Biphasic dose-response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high-dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose-response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. In the present study, we aimed at investigating the relationship between biphasic effect of arsenite on cell proliferation and apoptosis and activation of JNK and ERK1/2 in human embryo lung fibroblast (HELF) cells. Our results demonstrated that cell proliferation may be stimulated at lower concentrations (0.1 and 0.5 μM) arsenite but inhibited at higher concentrations (5 and 10 μM). When cell apoptosis was used as the endpoint, the concentration-response curves were changed to U-shapes. During stimulation phospho-JNK levels were significantly increased at 3, 6, and 12 h after 0.1 or 0.5 μM arsenite exposure. Phospho-ERK1/2 levels were increased with different concentrations (0.1-10 μM) of arsenite at 6, 12, and 24 h. Blocking of JNK pathway with 20 μM SP600125 or ERK1/2 by 100 μM PD98059 significantly inhibited biphasic effect of arsenite in cells. Data in the present study suggest that activation of JNK and ERK1/2 may be involved in biphasic effect of arsenite when measuring cell proliferation and apoptosis in HELF cells. JNK activation seems to play a more critical role than ERK1/2 activation in the biphasic process

  7. Downregulation of the long non-coding RNA taurine-upregulated gene 1 inhibits glioma cell proliferation and invasion and promotes apoptosis.

    Science.gov (United States)

    Zhao, Zhijun; Wang, Bin; Hao, Junhai; Man, Weitao; Chang, Yongkai; Ma, Shunchang; Hu, Yeshuai; Liu, Fusheng; Yang, Jun

    2018-03-01

    Expression of the long non-coding RNA taurine-upregulated gene 1 (TUG1) is associated with various aggressive tumors. The present study aimed to investigate the biological function of TUG1 in regulating apoptosis, proliferation, invasion and cell cycle distribution in human glioma U251 cells. Lentivirus-mediated TUG1-specific microRNA was transfected into U251 cells to abrogate the expression of TUG1. Flow cytometry analysis was used to examine the cell cycle distribution and apoptosis of U251 cells. Cellular proliferation was examined using Cell Counting Kit-8 (CCK-8) assays and invasion was examined by Transwell assays. The apoptotic rate of cells in the TUG1-knockdown group was significantly higher than in the negative control (NC) group (11.58 vs. 9.14%, PTUG1-knockdown group was lower compared with that of the NC group. A Transwell invasion assay was performed, which revealed that the number of invaded cells from the TUG1-knockdown group was the less compared with that of the NC group. In addition, the G 0 /G 1 phase population was significantly increased within the treated group (44.85 vs. 38.45%, PTUG1 may inhibit proliferation and invasion, and promote glioma U251 cell apoptosis. In addition, knockdown of TUG1 may have an effect on cell cycle arrest. The data presented in the current study indicated that TUG1 may be a novel therapeutic target for glioma.

  8. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    Science.gov (United States)

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  9. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  10. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinsheng; Jiang, Fuquan; Song, Haitao; Li, Xu; Xian, Jiantao; Gu, Xinquan, E-mail: guxqprofessor@163.com

    2016-02-12

    Sperm-associated antigen 9(SPAG9), as a well-recognized oncogene protein, has a critical effect on renal cell carcinoma (RCC) progression. Our study tried to explore the mediator of miR-200a-3p, a tumor suppressing miRNA on SPAG9 expression and renal cell proliferation and apoptosis. We found the expression of miR-200a-3p was significantly lower in RCC specimens. Based on in vitro assays, we found miR-200a-3p significantly inhibit cancer cell proliferation by inducing apoptosis. In addition, our study uncovered that miR-200a-3p directly regulates oncogenic SPAG9 in 786-O and ACHN cells. Silencing of SPAG9 resulted in significantly decreased in the growth and the cell cycle of the renal cancer cell lines. Understanding of oncogenic SPAG9 regulated by miR-200a-3p might be beneficial to reveal new therapeutic targets for RCC. - Highlights: • MiR-200a-3p is downregulated in renal cell carcinoma. • MiR-200a-3p regulates cell proliferation through inducing apoptosis. • MiR-200a-3p is involved in cell cycle regulation. • SPAG9 is a potential target of miR-200a-3p.

  11. High Leptin Level Attenuates Embryo Development in Overweight/Obese Infertile Women by Inhibiting Proliferation and Promotes Apoptosis in Granule Cell.

    Science.gov (United States)

    Lin, Xian-Hua; Wang, Hui; Wu, Dan-Dan; Ullah, Kamran; Yu, Tian-Tian; Ur Rahman, Tanzil; Huang, He-Feng

    2017-07-01

    Obesity appears to be associated with female reproductive dysfunction and infertility. Women with obesity undergoing in vitro fertilization (IVF) had poor oocyte quality, decreased embryo development, and poor pregnancy outcome. However, the mechanism linking obesity to poor reproductive outcomes is still unclear. Obesity is frequently accompanied with elevated leptin levels. Here we aimed to evaluate the effect of high leptin level in follicular fluid (FF) on the proliferation and apoptosis in granule cells and correlate these findings with poor reproductive outcomes in infertile women with overweight or obesity who underwent IVF treatment. We investigated clinical and ongoing pregnancy rates in 189 infertile women who underwent IVF. Leptin levels were quantified in peripheral blood and FF as well. In vitro cell model was used to explore the potential effect of high leptin on the proliferation and apoptosis in granulosa cells. Results showed reduced clinical and ongoing pregnancy rates in overweight/obesity women who underwent IVF compared to control with normal BMI. On the other hand, leptin levels presented significant increase in peripheral blood and FF in overweight/obese women. Leptin level in FF was negatively correlated to good quality embryo rate. Importantly, in vitro study showed that leptin inhibited cells proliferation and promoted apoptosis by upregulation of caspase-3 and downregulation of Bcl-2 in granulosa cells in a dose dependent manner. These observations suggest that leptin may acts as a local mediator to attenuate embryo development and reduce fertility in obese patients. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Effects of low dose radiation combined with cyclophosphamide on tumor cell apoptosis, cell cycle and proliferation of bone marrow in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2004-01-01

    Objective: To study the effect of low dose radiation (LDR) combined with cyclophosphamide on tumor cell apoptosis, cell cycle, and proliferation of bone marrow in mice tumor-bearing mice. Methods: Kunming strain male mice were implanted with S180 sarcoma cells in the left hind leg subcutaneously as an experimental animal model. Five and 8 days after implantation, the mice were given 75 mGy whole-body γ-ray radiation and CTX(300 mg/kg) by intraperitoneal injection 36 hour after LDR. All mice were sacrificed to measure the tumor volume, tumor cell apoptosis, and cell cycle; the proliferation of bone marrow was analyzed by flow cytometry. Results: Tumor growth was significantly slowed down in the treated groups. The apoptosis of tumor cells increased significantly after LDR. The tumor cells were arrested in G 1 phase in CTX and CTX+LDR groups, more significantly in the latter group than in the former group. Concentration of bone marrow cells and proliferation index in CTX + LDR group were higher than those in CTX group, although concentration of bone marrow cells in CTX and CTX+LDR groups were much lower than that in normal mice. Conclusion: Low dose radiation combined with cyclophosphamide causes more significant G 1 -phase arrest than cyclophosphamide alone and enhances anti-tumor effect markedly. At the same time LDR significantly protects hematopoietic function of bone marrow, which is of practical significance as an adjuvant chemotherapy

  13. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Zhou, Xiuping; Meng, Qingming; Xu, Xuebin; Zhi, Tongle; Shi, Qiong; Wang, Yong; Yu, Rutong

    2012-01-01

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  14. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jun-jun [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Wang, Yan [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Ding, Jing-xin; Jin, Hong-yan [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Yang, Gong, E-mail: yanggong@fudan.edu.cn [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Hua, Ke-qin, E-mail: huakeqin@126.com [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China)

    2015-05-01

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 and OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis.

  15. Polydatin inhibits cell proliferation and induces apoptosis in laryngeal cancer and HeLa cells via suppression of the PDGF/AKT signaling pathway.

    Science.gov (United States)

    Li, Haixia; Shi, Baoyuan; Li, Yanyun; Yin, Fengfang

    2017-07-01

    Polydatin (PD), a stilbene compound extracted from Polygonum cuspidatum, is suggested to possess anti-cancer activities, including inhibition of cell proliferation, cell cycle arrest, and induction of apoptosis. The platelet-derived growth factor (PDGF)/AKT signaling pathway plays complex roles in tumor suppression. However, the effect of PD on the PDGF/AKT signaling pathway in laryngeal cancer and HeLa cells has not been explored. MTT assay and flow cytometry showed that PD inhibited cell proliferation and induced apoptosis in Hep-2 and AMC-HN-8 cells. Western blot analysis indicated that PD inhibited the expression levels of PDGF-B and phosphorylated AKT (p-AKT) in both cells. Treatment of PDGF-B siRNA or PDGFR inhibitor found that after the PDGF signaling was inactivated, p-AKT expression was significantly decreased in Hep-2 cells. Tumor xenograft experiment in nude mice indicated PD significantly inhibited the growth of Hep-2 cells in vivo. In conclusion, PD inhibited cell proliferation and induced apoptosis in laryngeal cancer and HeLa cells via inactivation of the PDGF/AKT signaling pathway. © 2017 Wiley Periodicals, Inc.

  16. NF-κB is involved in the LPS-mediated proliferation and apoptosis of MAC-T epithelial cells as part of the subacute ruminal acidosis response in cows.

    Science.gov (United States)

    Fan, Wen-Jie; Li, He-Ping; Zhu, He-Shui; Sui, Shi-Ping; Chen, Pei-Ge; Deng, Yue; Sui, Tong-Ming; Wang, Yue-Ying

    2016-11-01

    To determine the effect of NF-κB on cell proliferation and apoptosis, we investigate the expression of inflammation and apoptosis-related factors in the bovine mammary epithelial cell line, MAC-T. MAC-T cells were cultured in vitro and MTT and LDH assays used to determine the effects of lipopolysaccharide (LPS) on proliferation and cytotoxicity respectively. RT-PCR and western blotting were used to evaluate the effect of LPS and NF-κB inhibition [pyrrolidine dithiocarbamate (PDTC) treatment] on the expression of inflammation and apoptosis-related factors. LPS significantly inhibited MAC-T cell proliferation in a dose- and time-dependent manner. Furthermore, LPS promoted apoptosis while the NF-кB inhibitor PDTC attenuated this effect. After LPS treatment, the NF-кB signaling pathway was activated, and the expression of inflammation and apoptosis-related factors increased. When PDTC blocked NF-кB signaling, the expression of inflammation and apoptosis-related factors were decreased in MAC-T cells. LPS activates the TLR4/NF-κB signaling pathway, inhibits proliferation and promotes apoptosis in MAC-T cells. NF-кB inhibition attenuates MAC-T cell apoptosis and TLR4/NF-κB signaling pathway. NF-кB inhibitor alleviating MAC-T cell apoptosis is presumably modulated by NF-кB.

  17. Unveiling the role of PAK2 in CD44 mediated inhibition of proliferation, differentiation and apoptosis in AML cells

    KAUST Repository

    Aldehaiman, Mansour M.

    2018-04-01

    Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the accumulation of immature nonfunctional highly proliferative hematopoietic cells in the blood, due to a blockage in myeloid differentiation at various stages. Since the success of the differentiation agent, All-trans retinoic acid (ATRA), in the treatment of acute promyelocytic leukemia (APL), much effort has gone into trying to find agents that are able to differentiate AML cells and specifically the leukemic stem cell (LSC). CD44 is a cell surface receptor that is over-expressed on AML cells. When bound to anti-CD44 monoclonal antibodies (mAbs), this differentiation block is relieved in AML cells and their proliferation is reduced. The molecular mechanisms that AML cells undergo to achieve this reversal of their apparent phenotype is not fully understood. To this end, we designed a study using quantitative phosphoproteomics approaches aimed at identifying differences in phosphorylation found on proteins involved in signaling pathways post-treatment with CD44-mAbs. The Rho family of GTPases emerged as one of the most transformed pathways following the treatment with CD44-mAbs. The P21 activated kinase 2(PAK2), a target of the Rho family of GTPases, was found to be differentially phosphorylated in AML cells post-treatment with CD44-mAbs. This protein has been found to possess a role similar to that of a switch that determines whether the cell survives or undergoes apoptosis. Beyond confirming these results by various biochemical approaches, our study aimed to determine the effect of knock down of PAK2 on AML cell proliferation and differentiation. In addition, over-expression of PAK2 mutants using plasmid cloning was also explored to fully understand how levels of PAK2 as well as the alteration of specific phospohorylation sites could alter AML cell responses to CD44-mAbs. Results from this study will be important in determining whether PAK2 could be used as a potential therapeutic target

  18. Boron Affects Immune Function Through Modulation of Splenic T Lymphocyte Subsets, Cytokine Secretion, and Lymphocyte Proliferation and Apoptosis in Rats.

    Science.gov (United States)

    Jin, Erhui; Li, Shenghe; Ren, Man; Hu, Qianqian; Gu, Youfang; Li, Kui

    2017-08-01

    This study demonstrated the mechanisms of boron effects in a rat model and provided a scientific basis for the rational of boron use. These findings were achieved by investigating the effects of boron (10, 20, 40, 80, 160, 320, and 640 mg/L in drinking water or 1.5, 3, 6, 12, 24, 48, and 96 mg/kg BW) on rat serum immunoglobulins (IgGs), splenic cytokines, lymphocyte subsets, as well as on lymphocyte proliferation and apoptosis. Addition of 20 (3) and 40 (6) mg/L (mg/kg BW) of boron to drinking water significantly increased rat serum IgG concentrations, splenic IFN-γ and IL-4 expression as well as the number of splenic CD3 + , CD4 + and proliferating cell nuclear antigen (PCNA) + cells. Supplementation of drinking water with 40 mg/L (6 mg/kg BW) boron also markedly increased splenic IL-2 expression and the CD4 + /CD8 + cell ratio and reduced splenic CD8 + cell number. Supplementation with 80 mg/L (12 mg/kg BW) boron significantly increased CD3 + and PCNA + cell numbers (P boron markedly reduced the serum IgG concentrations; splenic IL-2 and IL-10 expression; the number of CD3 + , CD4 + and PCNA + cells; and increased the number of splenic CD8 + and caspase-3 + cells and promoted caspase-3 expression in CD3 + cells. In conclusion, these findings suggest that the supplementation of rat drinking water with 20(3) and 40(6) mg/L (mg/kg BW) boron can markedly enhance humoral and cellular immune functions, while boron concentrations above 320 mg/L (48 mg/kg BW) can have an inhibitory effect or even toxicity on immune functions. These results exhibit a U-shaped response characteristic of low and high doses of boron supplementation on immune function and imply that proper boron supplementation in food for humans and animals could be used as an immunity regulator.

  19. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Chiara Focaccetti

    Full Text Available Antimetabolites are a class of effective anticancer drugs interfering in essential biochemical processes. 5-Fluorouracil (5-FU and its prodrug Capecitabine are widely used in the treatment of several solid tumors (gastro-intestinal, gynecological, head and neck, breast carcinomas. Therapy with fluoropyrimidines is associated with a wide range of adverse effects, including diarrhea, dehydration, abdominal pain, nausea, stomatitis, and hand-foot syndrome. Among the 5-FU side effects, increasing attention is given to cardiovascular toxicities induced at different levels and intensities. Since the mechanisms related to 5-FU-induced cardiotoxicity are still unclear, we examined the effects of 5-FU on primary cell cultures of human cardiomyocytes and endothelial cells, which represent two key components of the cardiovascular system. We analyzed at the cellular and molecular level 5-FU effects on cell proliferation, cell cycle, survival and induction of apoptosis, in an experimental cardioncology approach. We observed autophagic features at the ultrastructural and molecular levels, in particular in 5-FU exposed cardiomyocytes. Reactive oxygen species (ROS elevation characterized the endothelial response. These responses were prevented by a ROS scavenger. We found induction of a senescent phenotype on both cell types treated with 5-FU. In vivo, in a xenograft model of colon cancer, we showed that 5-FU treatment induced ultrastructural changes in the endothelium of various organs. Taken together, our data suggest that 5-FU can affect, both at the cellular and molecular levels, two key cell types of the cardiovascular system, potentially explaining some manifestations of 5-FU-induced cardiovascular toxicity.

  20. MicroRNA-340 inhibits the proliferation and promotes the apoptosis of colon cancer cells by modulating REV3L

    Science.gov (United States)

    Arivazhagan, Roshini; Lee, Jaesuk; Bayarsaikhan, Delger; Kwak, Peter; Son, Myeongjoo; Byun, Kyunghee; Salekdeh, Ghasem Hosseini; Lee, Bonghee

    2018-01-01

    DNA Directed Polymerase Zeta Catalytic Subunit (REV3L) has recently emerged as an important oncogene. Although the expressions of REV3L are similar in normal and cancer cells, several mutations in REV3L have been shown to play important roles in cancer. These mutations cause proteins misfolding and mislocalization, which in turn alters their interactions and biological functions. miRNAs play important regulatory roles during the progression and metastasis of several human cancers. This study was undertaken to determine how changes in the location and interactions of REV3L regulate colon cancer progression. REV3L protein mislocalization confirmed from the immunostaining results and the known interactions of REV3L was found to be broken as seen from the PLA assay results. The mislocalized REV3L might interact with new proteins partners in the cytoplasm which in turn may play role in regulating colon cancer progression. hsa-miR-340 (miR-340), a microRNA down-regulated in colon cancer, was used to bind to and downregulate REV3L, and found to control the proliferation and induce the apoptosis of colon cancer cells (HCT-116 and DLD-1) via the MAPK pathway. Furthermore, this down-regulation of REV3L also diminished colon cancer cell migration, and down-regulated MMP-2 and MMP-9. Combined treatment of colon cancer cells with miR-340 and 5-FU enhanced the inhibitory effects of 5-FU. In addition, in vivo experiments conducted on nude mice revealed tumor sizes were smaller in a HCT-116-miR-340 injected group than in a HCT-116-pCMV injected group. Our findings suggest mutations in REV3L causes protein mislocalization to the cytoplasm, breaking its interaction and is believed to form new protein interactions in cytoplasm contributing to colon cancer progression. Accordingly, microRNA-340 appears to be a good candidate for colon cancer therapy. PMID:29435169

  1. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    Science.gov (United States)

    Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing

    2017-08-01

    The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and

  2. miR-320a regulates cell proliferation and apoptosis in multiple myeloma by targeting pre-B-cell leukemia transcription factor 3

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yinghao [Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou, 215006 (China); Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China); Wu, Depei, E-mail: wudepei@medmail.com.cn [Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health, Collaborative Innovation Center of Hematology, Suzhou, 215006 (China); Wang, Jishi, E-mail: lgylhlyh@aliyun.com [Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China); Li, Yan; Chai, Xiao; Kang, Qian [Department of Hematology, Affiliated Hospital of Guizhou Medical University, The Hematopoietic Stem Cell Transplant Center of Guizhou Province, Blood Diseases Diagnosis and Treatment Center of Guizhou Province, Guiyang, 550004, Guizhou Province (China)

    2016-05-13

    Aberrant expression of microRNAs (miRNAs) is implicated in cancer development and progression. While miR-320a is reported to be deregulated in many malignancy types, its biological role in multiple myeloma (MM) remains unclear. Here, we observed reduced expression of miR-320a in MM samples and cell lines. Ectopic expression of miR-320a dramatically suppressed cell viability and clonogenicity and induced apoptosis in vitro. Mechanistic investigation led to the identification of Pre-B-cellleukemia transcription factor 3 (PBX3) as a novel and direct downstream target of miR-320a. Interestingly, reintroduction of PBX3 abrogated miR-320a-induced MM cell growth inhibition and apoptosis. In a mouse xenograft model, miR-320a overexpression inhibited tumorigenicity and promoted apoptosis. Our findings collectively indicate that miR-320a inhibits cell proliferation and induces apoptosis in MM cells by directly targeting PBX3, supporting its utility as a novel and potential therapeutic agent for miRNA-based MM therapy. -- Highlights: •Expression of miR-320a in MM cell induces apoptosis in vitro. •miR-320a represses PBX3 via targeting specific sequences in the 3′UTR region. •Exogenous expression of PBX3 reverses the effects of miR-320a in inhibiting MM cell growth and promoting apoptosis. •Overexpression of miR-320a inhibits tumor growth and increases apoptosis in vivo.

  3. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression.

    Science.gov (United States)

    Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd

    2015-01-01

    Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression

  4. Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin

    Science.gov (United States)

    Cai, Qing; Ren, Qu; Wei, Lizhao

    2015-01-01

    Curcumin is a widely known natural phytochemical from plant Curcuma longa. In recent years, curcumin has received increasing attention because of its capability to induce apoptosis and inhibit cell proliferation as well as its anti-inflammatory properties in different cancer cells. However, the therapeutic benefits of curcumin are severely hampered due to its particularly low absorption via trans-dermal or oral bioavailability. Phototherapy with visible light is gaining more and more support in dermatological therapy. Red light is part of the visible light spectrum, which is able to deeply penetrate the skin to about 6 mm, and directly affect the fibroblast of the skin dermis. Blue light is UV-free irradiation which is fit for treating chronic inflammation diseases. In this study, we show that curcumin at low concentrations (1.25–3.12 μM) has a strong anti-proliferative effect on TNF-α-induced psoriasis-like inflammation when applied in combination with light-emitting-diode devices. The treatment was especially effective when LED blue light at 405 nm was combined with red light at 630 or 660 nm, which markedly amplified the anti-proliferative and apoptosis-inducing effects of curcumin. The experimental results demonstrated that this treatment reduced the viability of human skin keratinocytes, decreased cell proliferation, induced apoptosis, inhibited NF-κB activity and activated caspase-8 and caspase-9 while preserving the cell membrane integrity. Moreover, the combined treatment also down-regulated the phosphorylation level of Akt and ERK. Taken together, our results indicated that the combination of curcumin with LED blue light united red light irradiation can attain a higher efficiency of regulating proliferation and apoptosis in skin keratinocytes. PMID:26382065

  5. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway

    International Nuclear Information System (INIS)

    Zhu, Hongxue; Li, Xuechao; Song, Yarong; Zhang, Peng; Xiao, Yajun; Xing, Yifei

    2015-01-01

    Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cell apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.

  6. Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin.

    Directory of Open Access Journals (Sweden)

    Tianhui Niu

    Full Text Available Curcumin is a widely known natural phytochemical from plant Curcuma longa. In recent years, curcumin has received increasing attention because of its capability to induce apoptosis and inhibit cell proliferation as well as its anti-inflammatory properties in different cancer cells. However, the therapeutic benefits of curcumin are severely hampered due to its particularly low absorption via trans-dermal or oral bioavailability. Phototherapy with visible light is gaining more and more support in dermatological therapy. Red light is part of the visible light spectrum, which is able to deeply penetrate the skin to about 6 mm, and directly affect the fibroblast of the skin dermis. Blue light is UV-free irradiation which is fit for treating chronic inflammation diseases. In this study, we show that curcumin at low concentrations (1.25-3.12 μM has a strong anti-proliferative effect on TNF-α-induced psoriasis-like inflammation when applied in combination with light-emitting-diode devices. The treatment was especially effective when LED blue light at 405 nm was combined with red light at 630 or 660 nm, which markedly amplified the anti-proliferative and apoptosis-inducing effects of curcumin. The experimental results demonstrated that this treatment reduced the viability of human skin keratinocytes, decreased cell proliferation, induced apoptosis, inhibited NF-κB activity and activated caspase-8 and caspase-9 while preserving the cell membrane integrity. Moreover, the combined treatment also down-regulated the phosphorylation level of Akt and ERK. Taken together, our results indicated that the combination of curcumin with LED blue light united red light irradiation can attain a higher efficiency of regulating proliferation and apoptosis in skin keratinocytes.

  7. Effect of tamoxifen, methoxyprogesterone acetate and combined treatment on cellular proliferation and apoptosis in SKOV3/DDP cells via the regulation of vascular endothelial growth factor.

    Science.gov (United States)

    Wen, Lv; Hong, Ding; Yanyin, Wu; Mingyue, Zhang; Baohua, Li

    2013-05-01

    The aim of this study was to investigate the effect of tamoxifen (TAM), methoxyprogesterone acetate (MPA) and their combined treatment on cisplatin-resistant ovarian cancer SKOV3/DDP cells, as well as the potential mechanisms. MTT assay was used to investigate the effect of different concentrations (0.01, 0.1, 1, 10 and 100 μM) of TAM, MPA and their combined treatment on the proliferation of cisplatin-resistant ovarian cancer SKOV3/DDP cells. Flow cytometry was employed to analyze the cell cycle and apoptosis rate of SKOV3/DDP cells treated with medium concentration (10 μM) of TAM, MPA and their combined treatment. Change in the protein level of vascular endothelial growth factor (VEGF) in response to drug treatments was measured using Western-blot. The proliferation of SKOV3/DDP cells was inhibited by 1, 10 and 100 μM of TAM or MPA in a dose-dependent manner. Compared to the control group, 10 μM TAM could significantly arrest SKOV3/DDP cells in the G0/G1 stage and induce apoptosis (p < 0.01). However, 10 μM MPA only promoted cell apoptosis, while exhibited little effect on the cell cycle. We further found that 10 μM TAM could remarkably reduce the protein expression of VEGF, while 10 μM MPA only induce a slight reduction. Strikingly, the combined treatment of TAM and MPA exhibited additive effect on the proliferation, cell cycle, apoptosis rate and VEGF expression of SKOV3/DDP cells. We found that TAM, MPA and their combined treatment exhibited significant inhibitory effect on the cisplatin-resistant ovarian cancer SKOV3/DDP cells. Hence, TAM and MPA could be potential cytotoxic drugs to treat cisplatin-resistant patients with advanced ovarian cancer.

  8. BCG strain S4-Jena: An early BCG strain is capable to reduce the proliferation of bladder cancer cells by induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Hermann Inge-Marie

    2010-06-01

    Full Text Available Abstract Background Intravesical immunotherapy with Mycobacterium bovis bacillus Calmette-Guérin has been established as the most effective adjuvant treatment for high risk non-muscle-invasive bladder cancer (NMIBC. We investigated the differences between the S4-Jena BCG strain and commercially available BCG strains. We tested the genotypic varieties between S4-Jena and other BCG strains and analysed the effect of the BCG strains TICE and S4-Jena on two bladder cancer cell lines. Results In contrast to commercially available BCG strains the S4-Jena strain shows genotypic differences. Spoligotyping verifies the S4-Jena strain as a BCG strain. Infection with viable S4-Jena or TICE decreased proliferation in the T24 cell line. Additionally, hallmarks of apoptosis were detectable. In contrast, Cal29 cells showed only a slightly decreased proliferation with TICE. Cal29 cells infected with S4-Jena, though, showed a significantly decreased proliferation in contrast to TICE. Concordantly with these results, infection with TICE had no effect on the morphology and hallmarks of apoptosis of Cal29 cells. However, S4-Jena strain led to clearly visible morphological changes and caspases 3/7 activation and PS flip. Conclusions S4-Jena strain has a direct influence on bladder cancer cell lines as shown by inhibition of cell proliferation and induction of apoptosis. The data implicate that the T24 cells are responder for S4-Jena and TICE BCG. However, the Cal29 cells are only responder for S4-Jena and they are non-responder for TICE BCG. S4-Jena strain may represent an effective therapeutic agent for NMIBC.

  9. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19).

    Science.gov (United States)

    Pan, Xiao-Wen; Zhao, Xin-Huai

    2015-06-17

    Casein and soy protein were digested by papain to three degrees of hydrolysis (DH) 7.3%-13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells). Six casein and soy protein hydrolysates at five levels (0.01-0.2 mg/mL) mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%-114% and 104%-123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment), or from 19.5% to 17.7% and 12.4% (NaF treatment), respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment), or from 14.5% to 11.0% (NaF treatment), but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  10. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  11. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-01-01

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G 0 /G 1 -S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  12. Effects of PARP-1 inhibitors AG-014699 and AZD2281 on proliferation and apoptosis of human hepatoma cell line HepG2

    Directory of Open Access Journals (Sweden)

    DU Senrong

    2015-06-01

    Full Text Available ObjectiveTo observe the inhibitory and pro-apoptotic effects of two poly(ADP-ribose polymerase (PARP-1 inhibitors, AG-014699 and AZD2281, on human hepatoma HepG2 cells and preliminarily explore the mechanism by which AG-014699 induces HepG2 cell apoptosis, and to provide a new therapeutic target for hepatoma. MethodsThe effects of different concentrations of AG-014699 and AZD2281 on HepG2 cell proliferation were determined by MTT assay. The cell apoptosis rate was measured by flow cytometry. The expression levels of caspase-3 and caspase-8 were measured by Western Blot. Inter-group comparison was made by t test. ResultsBoth AG-014699 and AZD2281 suppressed HepG2 cell proliferation in a time- and dose-dependent manner. However, the sensitivity of HepG2 cells to the two PARP-1 inhibitors was different. The half-maximal inhibitory concentrations of AG-014699 and AZD2281 at 48 h determined by MTT assay were about 20 μmol/L and 400 μmol/L, respectively. Flow cytometry and Western blot were not used to evaluate the apoptosis of HepG2 cells exposed to AZD2281 to which these cells were not sensitive. HepG2 cell apoptosis could be induced by 10, 30, and 50 μmol/L AG-014699, and the highest apoptosis rate at 48 h was significantly higher than that of the control group (3100%±2.13% vs 09%±0013%, P<0.01. Compared with those in the control group, the protein levels of caspase-3 and caspase-8 in HepG2 cells after 48-h exposure to 30, and 50 μmol/L AG-014699 increased. ConclusionThe two PARP-1 inhibitors AG-014699 and AZD2281 can inhibit the proliferation of HepG2 cells, which showed different sensitivities to the two inhibitors. AG-014699 can induce HepG2 cell apoptosis by up-regulating the protein expression of caspase-3 and caspase-8.

  13. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1–RAGE and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ping; Dai, Weiqi; Wang, Fan; Lu, Jie; Shen, Miao; Chen, Kan; Li, Jingjing; Zhang, Yan; Wang, Chengfen; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Guo, Chuan-Yong, E-mail: guochuanyong@hotmail.com; Xu, Ling, E-mail: xuling606@sina.com

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethyl pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1–RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.

  14. Histomorfometria, apoptose e proliferação celular em neoplasias intraepiteliais do colo uterino Histomorphometry, apoptosis and cell proliferation in cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Rodrigo Tadeu de Puy e Souza

    2011-12-01

    alterations. Accumulation of such mutations and unbalance of genomic homeostasis induce changes in certain genes as well as affect cell proliferation and apoptosis. Immunohistochemical markers of cellular proliferation, apoptosis and cell survival in cervical intraepithelial lesions still require morphometric studies in order to define their role in the development of dysplasias caused by invasive carcinoma. OBJECTIVES: In order to better understand the processes of cellular proliferation, apoptosis and epithelial turn over in such precursory lesions, histomorphometric evaluation for mitosis and apoptosis as well as immunohistochemical reactions for Bax, Bcl-2 and Ki-67 proteins (reactivity, localization and intensity were carried out in cervical biopsies. METHODS: Samples were split into four groups: 1. cervicitis (n = 20; 2. light dysplasia (n = 20; 3. moderate dysplasia (n = 20; 4. severe dysplasia (n = 20. RESULTS: Intense proliferation and apoptosis were observed in lesions with high, extensive, intense, and diffuse Ki-67 and Bax immunolabeling. Proliferation and apoptosis were mild or null in groups 1 and 2. Bcl-2 immunolabeling was more intense in high degree lesions and mild in the other groups. Extensive Ki-67 and Bax immunolabeling suggests an increased cellular turn over, which was also corroborated by histomorphometry. The more severe the dysplasia is the higher Bcl-2 expression. CONCLUSION: These data indicate that the pre-neoplastic process is dynamic and is concomitant with apoptosis and mitosis.

  15. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    Science.gov (United States)

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  16. Effects of metamizole, MAA, and paracetamol on proliferation, apoptosis, and necrosis in the pancreatic cancer cell lines PaTu 8988 t and Panc-1.

    Science.gov (United States)

    Malsy, Manuela; Graf, Bernhard; Bundscherer, Anika

    2017-12-06

    Adenocarcinoma of the pancreas is one of the most aggressive cancer diseases affecting the human body. Recent research has shown the importance of the perioperative phase in disease progression. Particularly during this vulnerable phase, substances such as metamizole and paracetamol are given as general anesthetics and postoperative analgesics. Therefore, the effects of metamizole and paracetamol on tumor progression should be investigated in more detail because the extent to which these substances influence the carcinogenesis of pancreatic carcinoma is still unclear. This study analyzed the influence of metamizole and its active metabolites MAA (4-N-methyl-aminoantipyrine) and paracetamol on the proliferation, apoptosis, and necrosis of the pancreatic cancer cell lines PaTu 8988t and Panc-1 in vitro. Cell proliferation was measured by means of the ELISA BrdU assay and the rate of apoptosis by flow cytometry using the Annexin V assay. Metamizole and paracetamol significantly inhibited cell proliferation in pancreatic cancer cells. After the addition of metamizole to PaTu 8988t cells, the rate of apoptosis was reduced after 3 h of incubation but significantly increased after 9 h of incubation. The oncogenic potential of pancreatic adenocarcinoma is mainly characterized by its extreme growth rate. Non-opioid analgesics such as metamizole and paracetamol are given as general anesthetics and postoperative analgesics. The combination of metamizole or paracetamol with cytotoxic therapeutic approaches may achieve synergistic effects. Further studies are necessary to identify the underlying mechanisms so that new therapeutic options may be developed for the treatment of this aggressive tumor.

  17. Influence of mycotoxin zearalenone and its derivatives (alpha and beta zearalenol on apoptosis and proliferation of cultured granulosa cells from equine ovaries

    Directory of Open Access Journals (Sweden)

    Minoia Paolo

    2006-11-01

    Full Text Available Abstract Background The mycotoxin zearalenone (ZEA and its derivatives, alpha and beta-zearalenol (alpha and beta-ZOL, synthesized by genera Fusarium, often occur as contaminants in cereal grains and animal feeds. The importance of ZEA on reproductive disorders is well known in domestic animals species, particularly in swine and cattle. In the horse, limited data are available to date on the influence of dietary exposure to ZEA on reproductive health and on its in vitro effects on reproductive cells. The aim of this study was to evaluate the effects of ZEA and its derivatives, alpha and beta-ZOL, on granulosa cells (GCs from the ovaries of cycling mares. Methods The cell proliferation was evaluated by using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT test after 3 days exposure at different concentrations of ZEA and its derivatives (from 1 × 10-7 to 0.1 microM. The apoptosis induction was evaluated after 1 day exposure, by DNA analysis using flow cytometry. Results An increase in cell proliferation with respect to the control was observed in the presence of ZEA at 1 × 10-3 and 1 × 10-4 microM and apoptosis was induced by all mycotoxins at different concentrations. Conclusion The simultaneous presence of apoptosis and proliferation in GC cultures treated with zearalenones could indicate that these mycotoxins could be effective in inducing follicular atresia. These effects of zearalenones may result from both direct interaction with oestrogen-receptors as well as interaction with the enzymes 3alpha (beta-hydroxysteroid dehydrogenase (HSD, involved in the synthesis and metabolism of endogenous steroid hormones. These cellular disturbances, described for the first time in equine GCs cultured in vitro, could be hypothesized as referred to reproductive failures of unknown ethiology in the mare.

  18. MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2

    Science.gov (United States)

    Werner, Tamara V.; Hart, Martin; Nickels, Ruth; Kim, Yoo-Jin; Menger, Michael D.; Bohle, Rainer M.; Keller, Andreas; Ludwig, Nicole; Meese, Eckart

    2017-01-01

    Micro (mi)RNAs are short, noncoding RNAs and deregulation of miRNAs and their targets are implicated in tumor generation and progression in many cancers. Meningiomas are mostly benign, slow growing tumors of the central nervous system with a small percentage showing a malignant phenotype. Following in silico prediction of potential targets of miR-34a-3p, SMAD4, FRAT1, and BCL2 have been confirmed as targets by dual luciferase assays with co-expression of miR-34a-3p and reporter gene constructs containing the respective 3'UTRs. Disruption of the miR-34a-3p binding sites in the 3'UTRs resulted in loss of responsiveness to miR-34a-3p overexpression. In meningioma cells, overexpression of miR-34a-3p resulted in decreased protein levels of SMAD4, FRAT1 and BCL2, while inhibition of miR-34a-3p led to increased levels of these proteins as confirmed by Western blotting. Furthermore, deregulation of miR-34a-3p altered cell proliferation and apoptosis of meningioma cells in vitro. We show that SMAD4, FRAT1 and BCL2 are direct targets of miR-34a-3p and that deregulation of miR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro. As part of their respective signaling pathways, which are known to play a role in meningioma genesis and progression, deregulation of SMAD4, FRAT1 and BCL2 might contribute to the aberrant activation of these signaling pathways leading to increased proliferation and inhibition of apoptosis in meningiomas. PMID:28340489

  19. Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α

    Directory of Open Access Journals (Sweden)

    Alessio Paone

    2010-07-01

    Full Text Available Toll-like receptors (TLRs recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-induciblefactor 1 (HIF-1regulates several cellular processes, includingapoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific 1.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF. Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of 1.3 isoform of hif-1α in LNCaP cells allows poly(I:CI-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists.

  20. Effect of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) combined with ionizing radiation on proliferation and apoptosis of breast cancer MCF-7 cell lines

    International Nuclear Information System (INIS)

    Zhang Yusong; Fu Jinxiang; Zhou Jianying; Zhou Liying; Guo Xiaokui; Zhuang Zhixiang

    2007-01-01

    Objective: To investigate the effect of Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) on breast cancer MCF-7 cell lines and the possibility of TRAIL combined with radiotherapy. Methods: 1 x 10 4 /ml MCF-7 cell suspension were added to each well of 96-well plates, MCF cell were treated with radiotherapy(RT), TRAIL at different concentration or RT combined with TRAIL. MTT working solution was added and calculated the inhibitory rates of MCF-7 cells. MCF-7 cell suspension was added to 6-well plates then treated with TRAIL(1 μg/ml), 8 Gy RT or TRAIL combined with 8 Gy RT. The rates of apoptosis were detected by flow cytometry after incubated 48 h. RT-PCR methods were employed to analyze the expression of apoptosis related gene in different treatment group. Results: MCF-7 cell lines were resistant to TRAIL, but the inhibitory rate was upregulated when MCF-7 cell was treated with TRAIL combined with RT, which had a significant difference compared with RT or TRAIL alone. The expression of Bcl-2 and Bcl-Xl gene were down-regulated when MCF-7 cell lines was treated with 8 Gy RT combined with TRAIL. Conclusions: In vitro, MCF-7 cell lines are resistant to TRAIL, but TRAIL combined with radiotherapy increased the cytotoxic effect. TRAIL has a promising prospect in clinical use. (authors)

  1. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression.

    Science.gov (United States)

    Luo, Cheng-Lin; Liu, Yu-Qiong; Wang, Peng; Song, Chun-Hua; Wang, Kai-Juan; Dai, Li-Ping; Zhang, Jian-Ying; Ye, Hua

    2016-08-01

    Cervical cancer is a cause of cancer death, making it as the one of the most common cause for death among women globally. Though many studies before have explored a lot for cervical cancer prevention and treatment, there are still a lot far from to know based on the molecular mechanisms. Janus kinase 2 (JAK2) has been reported to play an essential role in the progression of apoptosis, autophagy and proliferation for cells. We loaded gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles to cervical cancer cells due to the propertities of quercetin in ameliorating cellular processes and the easier absorbance of nanoparticles. Here, in our study, quercetin nanoparticles (NQ) were administrated to cells to investigate the underlying mechanism by which the cervical cancer was regulated. First, JAK2-inhibited carvical cancer cell lines were involved for our experiments in vitro and in vivo. Western blotting, quantitative RT-PCR (qRT-PCR), ELISA, Immunohistochemistry, and flow-cytometric analysis were used to determine the key signaling pathway regulated by JAK2 for cervical cancer progression. And the role of quercetin nanoparticles was determined during the process. Data here indicated that JAK2, indeed, expressed highly in cancer cell lines compared to the normal cervical cells. And apoptosis and autophagy were found in JAK2-inhibited cancer cells through activating Caspase-3, and suppressing Cyclin-D1 and mTOR regulated by Signal Transducer and Activator of Transcription (STAT) 3/5 and phosphatidylinositide 3-kinase/protein kinases (PI3K/AKT) signaling pathway. The cervical cancer cells proliferation was inhibited. Further, tumor size and weight were reduced by inhibition of JAK2 in vivo experiments. Notably, administration with quercetin nanoparticles displayed similar role with JAK2 suppression, which could inhibit cervical cancer cells proliferation, invasion and migration. In addition, autophogy and apoptosis were induced, promoting cervical cancer cell

  2. MicroRNA-101 inhibits cell proliferation, promotes cell apoptosis and increases sensitivity of breast cancer MDA-MB-231 cells to paclitaxel

    Directory of Open Access Journals (Sweden)

    Qiu-Lin Ke

    2016-02-01

    Full Text Available Objective: To explore the effect that miR-101 inhibits breast cancer MDA-MB-231 cell proliferation and increases the chemosensitivity of paclitaxel to breast cancer MDA-MB-231 cells and its influence on protein expression level of target gene Bcl2. Methods: miR-101 was artificially synthesized, it used liposome 3000 to transfect MDA-MB-231 cells, and experiment was divided into three groups: blank control group, negative control group and miR-101 group. MTT assay was used to detect the effect of miR-101 on MDA-MB-231 cell proliferation and chemosensitivity of paclitaxel-mediated MDA-MB-231 cells; flow cytometer was used to detect cell apoptosis. Real-time PCR and Western bloting were used to detect the changes of mRNA and protein expression levels of Bcl2. Results: After miR-101 transfected MDA-MB- 231 cells, cell proliferation ability significantly decreased compared with negative control group, and differences had statistical significance (P<0.01; after paclitaxel was used to process cells, IC50 of miR-101-processing group decreased by 2.45 times compared with blank control group, differences had statistical significance (P<0.05 and differences between blank control group and negative control group had no statistical significance; detection results by flow cytometer showed that both early-stage and late-stage apoptosis rates of MDA-MB-231 cells of miR-101 group were significantly higher than those of negative control group (P<0.05, and early-stage apoptosis rate was more significant (P<0.01; after transfection of miR-101, mRNA and protein levels of Bcl2 of MDA-MB-231 cells significantly decreased, and differences had statistical significance (P<0.05. Conclusion: miR-101 can inhibit breast cancer MDAMB- 231 cell proliferation through targeting and downregulating Bcl2, thereby increasing the chemosensitivity of breast cancer cells to paclitaxel and promoting cell apoptosis.

  3. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    International Nuclear Information System (INIS)

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-01

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  4. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Honghai; Du, Bin [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Jiang, Huili [Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Gao, Jun, E-mail: gaoj1666@126.com [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China)

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  5. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-07-01

    Full Text Available Peroxisome proliferator-activated receptor α (PPARα is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF. However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN- and lipopolysaccharide (LPS-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1 PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78, Grp94 and C/EBP-homologous protein (CHOP in vivo; (2 the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA treatment reversed liver protection and increased hepatocyte apoptosis; (3 in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF.

  6. Advances and challenges in skeletal muscle angiogenesis

    DEFF Research Database (Denmark)

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva

    2016-01-01

    The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis demonstrating tissue capillary supply is under strict control...... rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathologic) angiogenesis....

  7. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  8. In Vivo Bystander Effect: Cranial X-Irradiation Leads to Elevated DNA Damage, Altered Cellular Proliferation and Apoptosis, and Increased p53 Levels in Shielded Spleen

    International Nuclear Information System (INIS)

    Koturbash, Igor; Loree, Jonathan; Kutanzi, Kristy; Koganow, Clayton; Pogribny, Igor; Kovalchuk, Olga

    2008-01-01

    Purpose: It is well accepted that irradiated cells may 'forward' genome instability to nonirradiated neighboring cells, giving rise to the 'bystander effect' phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. Methods and Materials: We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. Results: We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. Conclusion: Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis

  9. Cell proliferation and apoptosis in gill filaments of the lucinid Codakia orbiculata (Montagu, 1808) (Mollusca: Bivalvia) during bacterial decolonization and recolonization.

    Science.gov (United States)

    Elisabeth, Nathalie H; Gustave, Sylvie D D; Gros, Olivier

    2012-08-01

    The shallow-water bivalve Codakia orbiculata which harbors gill-endosymbiotic sulfur-oxidizing γ-proteobacteria can lose and acquire its endosymbionts throughout its life. Long-term starvation and recolonization experiments led to changes in the organization of cells in the lateral zone of gill filaments. This plasticity is linked to the presence or absence of gill-endosymbionts. Herein, we propose that this reorganization can be explained by three hypotheses: (a) a variation in the number of bacteriocytes and granule cells due to proliferation or apoptosis processes, (b) a variation of the volume of these two cell types without modification in the number, and (c) a combination of both number and cell volume variation. To test these hypotheses, we analyzed cell reorganization in terms of proliferation and apoptosis in adults submitted to starvation and returned to the field using catalyzed reporter deposition fluorescence in situ hybridization, immunohistochemistry, and structural analyses. We observed that cell and tissue reorganization in gills filaments is due to a variation in cell relative abundance that maybe associated with a variation in cell apparent volume and depends on the environment. In fact, bacteriocytes mostly multiply in freshly collected and newly recolonized individuals, and excess bacteriocytes are eliminated in later recolonization stages. We highlight that host tissue regeneration in gill filaments of this symbiotic bivalve can occur by both replication of existing cells and division of undifferentiated cells localized in tissular bridges, which might be a tissue-specific multipotent stem cell zone. Copyright © 2012 Wiley Periodicals, Inc.

  10. Morphological adaptation of sheep's rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis.

    Science.gov (United States)

    Xu, Lei; Wang, Yue; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong

    2018-01-01

    The objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation. Twenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet (containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for 7 (G7, n  = 5), 14 (G14, n  = 5) and 28 d (G28, n  = 5), respectively. In contrast, the control group (CON, n  = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased ( P  genes IGFBP-2 ( P  = 0.034) and IGFBP 5 ( P  gene Caspase 8 decreased (quadratic, P  = 0.012), while Bad mRNA expression tended to decrease (cubic, P  = 0.053) after HG feeding. These results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.

  11. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats.

    Science.gov (United States)

    Zheng, Qin; Li, Yulin; Zhang, Dandan; Cui, Xinyuan; Dai, Kuixing; Yang, Yu; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2017-10-26

    Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS.

  12. Electroacupuncture Promotes Proliferation of Amplifying Neural Progenitors and Preserves Quiescent Neural Progenitors from Apoptosis to Alleviate Depressive-Like and Anxiety-Like Behaviours

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available The present study was designed to investigate the effects of electroacupuncture (EA on depressive-like and anxiety-like behaviours and neural progenitors in the hippocampal dentate gyrus (DG in a chronic unpredictable stress (CUS rat model of depression. After being exposed to a CUS procedure for 2 weeks, rats were subjected to EA treatment, which was performed on acupoints Du-20 (Bai-Hui and GB-34 (Yang-Ling-Quan, once every other day for 15 consecutive days (including 8 treatments, with each treatment lasting for 30 min. The behavioural tests (i.e., forced swimming test, elevated plus-maze test, and open-field entries test revealed that EA alleviated the depressive-like and anxiety-like behaviours of the stressed rats. Immunohistochemical results showed that proliferative cells (BrdU-positive in the EA group were significantly larger in number compared with the Model group. Further, the results showed that EA significantly promoted the proliferation of amplifying neural progenitors (ANPs and simultaneously inhibited the apoptosis of quiescent neural progenitors (QNPs. In a word, the mechanism underlying the antidepressant-like effects of EA is associated with enhancement of ANPs proliferation and preserving QNPs from apoptosis.

  13. miR-139-5p regulates proliferation, apoptosis, and cell cycle of uterine leiomyoma cells by targeting TPD52

    Directory of Open Access Journals (Sweden)

    Chen H

    2016-10-01

    Full Text Available Hong Chen,1 Hong Xu,1 Yu-gang Meng,1 Yun Zhang,2 Jun-ying Chen,1 Xiao-ning Wei1 1Department of Gynaecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 2Department of Gynaecology, The People’s Hospital of Suzhou High Tech District, Suzhou, Jiangsu, People’s Republic of China Background: Uterine leiomyoma is one of the most common benign tumors in women. It dramatically decreases the quality of life in the affected women. However, there is a lack of effective treatment paradigms. Micro-RNAs are small noncoding RNA molecules that are extensively expressed in organisms, and they are interrelated with the occurrence and development of the tumor. miR-139-5p was found to be downregulated in various cancers, but its function and mechanism in uterine leiomyoma remain unknown. The aim of this study was to investigate the role of miR-139-5p and its target gene in uterine leiomyoma.Methods: By using a bioinformatic assay, it was found that TPD52 was a potential target gene of miR-139-5p. Then, expressions of miR-139-5p and TPD52 in uterine leiomyoma and adjacent myometrium tissues were evaluated by quantitative real-time polymerase chain reaction and Western blot. Proliferation, apoptosis, and cell cycle of uterine leiomyoma cells transfected by miR-139-5p mimics or TPD52 siRNA were determined.Results: It was observed that the expression of miR-139-5p in uterine leiomyoma tissues was significantly lower (P<0.001 than that in the adjacent myometrium tissues. Overexpression of miR-139-5p inhibited the growth of uterine leiomyoma cells and induced apoptosis and G1 phase arrest. Dual-luciferase reporter assay and Western blot validated that TPD52 is the target gene of miR-139-5p. Furthermore, downregulation of TPD52 by siRNA in uterine leiomyoma cells inhibited cell proliferation and induced cell apoptosis and G1 phase arrest.Conclusion: Data suggested that miR-139-5p inhibited the proliferation of uterine leiomyoma cells

  14. Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis

    International Nuclear Information System (INIS)

    Patel, Divya; Chaudhary, Jaideep

    2012-01-01

    Highlights: ► E2A, considered as a tumor suppressor is highly expressed in prostate cancer. ► Silencing of E2A attenuates cell proliferation and promotes apoptosis. ► E2A regulates c-myc, Id1, Id3 and CDKN1A expression. ► Loss of E2A promotes doxorubicin dependent apoptosis in prostate cancer cells. ► Results suggest that E2A acts as a tumor promoter at least in prostate cancer. -- Abstract: E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.

  15. Effects of MicroRNA-206 on Osteosarcoma Cell Proliferation, Apoptosis, Migration and Invasion by Targeting ANXA2 Through the AKT Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Bao-Long Pan

    2018-02-01

    Full Text Available Background/Aims: This study aimed to investigate the mechanism by which microRNA-206 (miR-206 affects the proliferation, apoptosis, migration and invasion of osteosarcoma (OS cells by targeting ANXA2 via the AKT signaling pathway. Methods: A total of 132 OS tissues and 120 osteochondroma tissues were examined in this study. The targeting relationship between miR-206 and ANXA2 was verified with a dual-luciferase reporter assay. The miR-206 expression and ANXA2, AKT, PARP, FASN, Survivin, Bax, Mcl-1 and Bcl-1 mRNA and protein expression in the above two groups were examined by qRT-PCR and western blotting. The cultured OS cells were divided into 6 groups: a blank group, negative control (NC group, miR-206 mimic group, miR-206 inhibitor group, si-ANXA2 group and miR-206 inhibitor + si-ANXA2 group. Cell cycle and apoptosis were assessed by flow cytometry, cell migration was examined with a wound-healing assay, and cell invasion was assessed with a Transwell assay. Pearson correlation analysis was used to determine the correlation between ANXA2 mRNA expression and miR-206 expression in OS. Results: OS tissues exhibited increased mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-2; decreased miR-206 expression; and decreased Bax mRNA and protein expression. ANXA2 mRNA expression was strongly negatively correlated with miR-206 expression in OS. ANXA2 was found to be a miR-206 target gene. In the miR-206 mimic group and the si-ANXA2 group, the mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-1 decreased markedly, cell proliferation was inhibited, apoptosis was promoted, higher cell growth in G1 phase and decreased growth in S phase was detected, and decreased cell migration and invasion were observed compared with those in the blank group. Conclusion: The current results demonstrate that miR-206 overexpression inhibits OS cell proliferation, migration and invasion and promotes apoptosis through

  16. [Overexpression of N-myc downstream regulated gene 2 (NDRG2) inhibits proliferation, migration and promotes apoptosis in SW480 rectal cancer cells].

    Science.gov (United States)

    Li, Zhiqiang; Sun, Yang; Wan, Hongxing; Chai, Fang

    2017-01-01

    Objective To investigate the role of N-myc downstream regulated gene 2 (NDRG2) gene in the proliferation, migration and apoptosis of rectal cancer cells. Methods Human rectal cancer SW480 cells were cultured and transfected with pCDNA3.1-NDRG2 and empty vector (SW480-Ve). SW480 cells were set as a control group. Cell proliferation was detected in SW480 cells, SW480-Ve cells and SW480-NDRG2 cells by MTT assay; cell migration distance in the three groups at 24, 48, 72 hours was tested by wound healing assay; apoptosis rate was determined in the three groups at 48 hours by flow cytometry; the expressions of Bax, caspase-3, Bcl-2 proteins in the three groups were examined by Western blotting. Results After the cells were cultured for 7 days, cell survival rate in SW480-NDRG2 group was significantly lower than that in SW480 cells and SW480-Ve cells; the cell survival rate decreased gradually with the prolongation of the culture time; and it had no significant difference between SW480-Ve group and SW480 group. Cell migration distance in SW480-NDRG2 group was significantly lower than that in SW480-Ve cells and SW480 cells, and it had also no significant difference between SW480-Ve cells and SW480 cells. The apoptosis rate in SW480-NDRG2 group was significantly higher than that in SW480 group and SW480-Ve group, and SW480 cells and SW480-Ve cells had no significant difference in the rate. The expressions of Bax and caspase-3 proteins in SW480-NDRG2 group were significantly higher than those in SW480 cells and SW480-Ve cells; Bcl-2 protein expression was significantly lower in SW480-NDRG2 group than in SW480 cells and SW480-Ve cells; and the expressions of Bax, caspase-3 and Bcl-2 proteins were not significantly different between SW480 cells and SW480-Ve cells. Conclusion Overexpression of NDRG2 can inhibit the proliferation, reduce cell migration, and promote cell apoptosis by regulating the expressions of Bcl-2, Bax and caspase-3 proteins in SW480 cells.

  17. Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

    International Nuclear Information System (INIS)

    Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie; Garnier, Celine; Guiguen, Francois; Jin Yuhuai; Narayan, Opendra; Chebloune, Yahia

    2007-01-01

    Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef. We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes

  18. Morin Inhibits Proliferation of SW480 Colorectal Cancer Cells by Inducing Apoptosis Mediated by Reactive Oxygen Species Formation and Uncoupling of Warburg Effect

    Directory of Open Access Journals (Sweden)

    Thomas Sithara

    2017-09-01

    Full Text Available The study under investigation focuses on in vitro antiproliferative efficacy of the flavonoid morin and the mechanisms by which it inhibits the growth of colon cancer using SW480 colon cancer cells with emphasis on Warburg effect. It was found that the cell proliferation was significantly inhibited by morin in a dose and time dependent manner. Morin induced apoptosis that was correlated with increased levels of reactive oxygen species formation and loss of mitochondrial membrane potential of the cells. In addition, an increase in cleaved PARP, cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and Bax as well as a decrease in Bcl 2 was observed, indicating morin is inducing both intrinsic as well as extrinsic pathway of apoptosis. This was further confirmed by using downstream caspase 3 inhibitor which indicated that caspase 3 inhibition reduces morin induced cell death. Moreover, the impact of morin on over all energy status when determined in terms of total cellular ATP level showed a decline with low level of glucose uptake and Glut1 expression. The results indicate that morin exerts antiproliferative activity by inducing apoptosis and by reducing Warburg effect in the evaluated cell lines and provide preliminary evidence for its anticancer activity.

  19. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano.

    Science.gov (United States)

    Tu, Lv-Ying; Bai, Hai-Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-11-01

    Kaempferol has been identified as a potential cancer therapeutic agent by an increasing amount of evidences. However, the changes in the topography of cell membrane induced by kaempferol at subcellular- or nanometer-level were still unclear. In this work, the topographical changes of cytomembrane in human cervical cancer cell (SiHa) induced by kaempferol, as well as the role of kaempferol in apoptosis induction and its possible mechanisms, were investigated. At the macro level, MTT assays showed that kaempferol inhibited the proliferation of SiHa cells in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that kaempferol could induce SiHa cell apoptosis, mitochondrial membrane potential disruption, and intracellular free calcium elevation. At the micro level, fluorescence imaging by laser scanning confocal microscopy (LSCM) indicated that kaempferol could also destroy the networks of microtubules. Using high resolution atomic force microscopy (AFM), we determined the precise changes of cellular membrane induced by kaempferol at subcellular or nanometer level. The spindle-shaped SiHa cells shrank after kaempferol treatment, with significantly increased cell surface roughness. These data showed structural characterizations of cellular topography in kaempferol-induced SiHa cell apoptosis and might provide novel integrated information from macro to nano level to assess the impact of kaempferol on cancer cells, which might be important for the understanding of the anti-cancer mechanisms of drugs. SCANNING 38:644-653, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  20. Sigma-1 and Sigma-2 receptor ligands induce apoptosis and autophagy but have opposite effect on cell proliferation in uveal melanoma.

    Science.gov (United States)

    Longhitano, Lucia; Castracani, Carlo Castruccio; Tibullo, Daniele; Avola, Roberto; Viola, Maria; Russo, Giuliano; Prezzavento, Orazio; Marrazzo, Agostino; Amata, Emanuele; Reibaldi, Michele; Longo, Antonio; Russo, Andrea; Parrinello, Nunziatina Laura; Volti, Giovanni Li

    2017-10-31

    Uveal melanoma is the most common primary intraocular tumor in adults, with about 1200-1500 new cases occurring per year in the United States. Metastasis is a frequent occurrence in uveal melanoma, and outcomes are poor once distant spread occurs and no clinically significant chemotherapeutic protocol is so far available. The aim of the present study was to test the effect of various σ 1 and σ 2 receptor ligands as a possible pharmacological strategy for this rare tumor. Human uveal melanoma cells (92.1) were treated with various concentrations of different σ 2 ligands (haloperidol and haloperidol metabolite II) and σ 1 ligand ((+)-pentazocine) at various concentrations (1, 10 and 25 μM) and time points (0, 4 h, 8 h, 24 h and 48 h). Cell proliferation and migration were evaluated respectively by continuous cell monitoring by xCELLigence analysis, clonogenic assay and wound healing. Apoptosis and autophagy were also measured by cytofluorimetric and microscopy analysis. Our results showed that σ 2 receptor ligands significantly reduced cell proliferation whereas (+)-pentazocine exhibited opposite results. All tested ligands showed significant decrease in cell migration. Interestingly, both σ 1 and σ 2 receptor ligands showed significant increase of autophagy and apoptosis at all concentrations. Taken all together these results suggest that sigma receptors mediates opposite biological effects but they also share common pharmacological effect on apoptosis and autophagy in uveal melanoma. In conclusion, these data provide the first evidence that sigma receptors may represent a "druggable" target to develop new chemotherapic agent for uveal melanoma.

  1. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  2. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    International Nuclear Information System (INIS)

    Lopez, Jesus Adrian; Alvarez-Salas, Luis Marat

    2011-01-01

    Highlights: → In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. → We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. → We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. → miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. → In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  3. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    Science.gov (United States)

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.

  4. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  5. TSA suppresses miR-106b-93-25 cluster expression through downregulation of MYC and inhibits proliferation and induces apoptosis in human EMC.

    Science.gov (United States)

    Zhao, Zhi-Ning; Bai, Jiu-Xu; Zhou, Qiang; Yan, Bo; Qin, Wei-Wei; Jia, Lin-Tao; Meng, Yan-Ling; Jin, Bo-Quan; Yao, Li-Bo; Wang, Tao; Yang, An-Gang

    2012-01-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to decrease proliferation and increase apoptosis in different cancer cells. A significant number of genes have been identified as potential effectors responsible for the anti-tumor function of HDAC inhibitor. However, the molecular mechanisms of these HDAC inhibitors in this process remain largely undefined. In the current study, we searched for microRNAs (miRs) that were affected by HDAC inhibitor trichostatin (TSA) and investigated their effects in endometrial cancer (EMC) cells. Our data showed that TSA significantly inhibited the growth of EMC cells and induced their apoptosis. Among the miRNAs that altered in the presence of TSA, the miR-106b-93-25 cluster, together with its host gene MCM7, were obviously down-regulated in EMC cells. p21 and BIM, which were identified as target genes of miR-106b-93-25 cluster, increased in TSA treated tumor cells and were responsible for cell cycle arrest and apoptosis. We further identified MYC as a regulator of miR-106b-93-25 cluster and demonstrated its down-regulation in the presence of TSA resulted in the reduction of miR-106b-93-25 cluster and up-regulation of p21 and BIM. More important, we found miR-106b-93-25 cluster was up-regulated in clinical EMC samples in association with the overexpression of MCM7 and MYC and the down-regulation of p21 and BIM. Thus our studies strongly indicated TSA inhibited EMC cell growth and induced cell apoptosis and cell cycle arrest at least partially through the down-regulation of the miR-106b-93-25 cluster and up-regulation of it's target genes p21 and BIM via MYC.

  6. Urtica dioica Extract Inhibits Proliferation and Induces Apoptosis and Related Gene Expression of Breast Cancer Cells In Vitro and In Vivo.

    Science.gov (United States)

    Mohammadi, Ali; Mansoori, Behzad; Baradaran, Pooneh Chokhachi; Khaze, Vahid; Aghapour, Mahyar; Farhadi, Mehrdad; Baradaran, Behzad

    2017-10-01

    Currently, because the prevalence of breast cancer and its consequent mortality has increased enormously in the female population, a number of studies have been designed to identify natural products with special antitumor properties. The main purpose of the present study was to determine the effect of Urtica dioica on triggering apoptosis and diminishing growth, size, and weight of the tumor in an allograft model of BALB/c mice. In the present study, a BALB/c mouse model of breast cancer (4T1) was used. After emergence of tumor, 2 groups of mice received the extract, 1 group at a dose of 10 mg/kg and 1 group at a dose of 20 mg/kg, by intraperitoneal injection for 28 days. During the test and after removal of the tumor mass, the size and weight of the tumor were measured. To assess the induction of apoptosis in the cancer cells, the TUNEL (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling) assay was performed. The Ki-67 test was used to evaluate tumor proliferation. The results showed that the tumor size in the mice treated with the extract decreased significantly. The weight of the tumor mass in the treated mice after resection was less than that in the control group. The TUNEL assay findings revealed that apoptosis occurred in the treated group. The Ki-67 test findings also demonstrated that administration of the extract suppressed the growth of tumor cells. These results suggest that U. dioica extract can decrease the growth of breast tumors and induce apoptosis in tumor cells; thus, it might represent an ideal therapeutic tool for breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of amelogenins on angiogenesis-associated processes of endothelial cells

    DEFF Research Database (Denmark)

    Almqvist, S; Kleinman, H K; Werthén, M

    2011-01-01

    To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay.......To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay....

  8. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    International Nuclear Information System (INIS)

    Dai, Guodong; Peng, Tao; Zhou, Xuhong; Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi; Yuan, Yulin

    2013-01-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  9. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Guodong [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Peng, Tao; Zhou, Xuhong [Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Yuan, Yulin, E-mail: yuanyulin19620120@126.com [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China)

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  10. Vanadium(III)-l-cysteine enhances the sensitivity of murine breast adenocarcinoma cells to cyclophosphamide by promoting apoptosis and blocking angiogenesis.

    Science.gov (United States)

    Basu, Abhishek; Bhattacharjee, Arin; Baral, Rathindranath; Biswas, Jaydip; Samanta, Amalesh; Bhattacharya, Sudin

    2017-05-01

    Various epidemiological and preclinical studies have already established the cancer chemopreventive potential of vanadium-based compounds. In addition to its preventive efficacy, studies have also indicated the abilities of vanadium-based compounds to induce cell death selectively toward malignant cells. Therefore, the objective of the present investigation is to improve the therapeutic efficacy and toxicity profile of an alkylating agent, cyclophosphamide, by the concurrent use of an organovanadium complex, vanadium(III)-l-cysteine. In this study, vanadium(III)-l-cysteine (1 mg/kg body weight, per os) was administered alone as well as in combination with cyclophosphamide (25 mg/kg body weight, intraperitoneal) in concomitant and pretreatment schedule in mice bearing breast adenocarcinoma cells. The results showed that the combination treatment significantly decreased the tumor burden and enhanced survivability of tumor-bearing mice through generation of reactive oxygen species in tumor cells. These ultimately led to DNA damage, depolarization of mitochondrial membrane potential, and apoptosis in tumor cells. Further insight into the molecular pathway disclosed that the combination treatment caused upregulation of p53 and Bax and suppression of Bcl-2 followed by the activation of caspase cascade and poly (ADP-ribose) polymerase cleavage. Administration of vanadium(III)-l-cysteine also resulted in significant attenuation of peritoneal vasculature and sprouting of the blood vessels by decreasing the levels of vascular endothelial growth factor A and matrix metalloproteinase 9 in the ascites fluid of tumor-bearing mice. Furthermore, vanadium(III)-l-cysteine significantly attenuated cyclophosphamide-induced hematopoietic, hepatic, and genetic damages and provided additional survival advantages. Hence, this study suggested that vanadium(III)-l-cysteine may offer potential therapeutic benefit in combination with cyclophosphamide by augmenting anticancer efficacy and

  11. Apoptosis and reduced cell proliferation of HL-60 cell line caused by human telomerase reverse transcriptase inhibition by siRNA.

    Science.gov (United States)

    Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin

    2010-01-01

    The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.

  12. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis.

    Science.gov (United States)

    Yamato, Ichiro; Sho, Masayuki; Shimada, Keiji; Hotta, Kiyohiko; Ueda, Yuko; Yasuda, Satoshi; Shigi, Naoko; Konishi, Noboru; Tsujikawa, Kazutake; Nakajima, Yoshiyuki

    2012-09-15

    The PCA-1/ALKBH3 gene implicated in DNA repair is expressed in several human malignancies but its precise contributions to cancer remain mainly unknown. In this study, we have determined its functions and clinical importance in pancreatic cancer. PCA-1/ALKBH3 functions in proliferation, apoptosis and angiogenesis were evaluated in human pancreatic cancer cells in vitro and in vivo. Further, PCA-1/ALKBH3 expression in 116 patients with pancreatic cancer was evaluated by immunohistochemistry. siRNA-mediated silencing of PCA-1/ALKBH3 expression induced apoptosis and suppressed cell proliferation. Conversely, overexpression of PCA-1/ALKBH3 increased anchorage-independent growth and invasiveness. In addition, PCA-1/ALKBH3 silencing downregulated VEGF expression and inhibited angiogenesis in vivo. Furthermore, immunohistochemical analysis showed that PCA-1/ALKBH3 expression was abundant in pancreatic cancer tissues, where it correlated with advanced tumor status, pathological stage and VEGF intensity. Importantly, patients with low positivity of PCA-1/ALKBH3 expression had improved postoperative prognosis compared with those with high positivity. Our results establish PCA-1/ALKBH3 as important gene in pancreatic cancer with potential utility as a therapeutic target in this fatal disease.

  13. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia.

    Science.gov (United States)

    Wang, Xinfeng; Zhang, Lina; Zhao, Fan; Xu, Ruirong; Jiang, Jie; Zhang, Chenglu; Liu, Hong; Huang, Hongming

    2018-04-13

    This study aimed to investigate the correlation of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) with clinicopathological feature and prognosis, and to explore its effect on cell proliferation and apoptosis as well as the relevant target genes in adult acute myeloid leukemia (AML). LncRNA TUG1 expression was detected in bone marrow samples from 186 AML patients and 62 controls. Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor lentivirus vectors were transfected in KG-1 cells. Rescue experiment was performed by transfection of lncRNA TUG1 inhibitor and aurora kinase A (AURKA) mimic lentivirus vectors. Cell proliferation, apoptosis, RNA, and protein expressions were determined by CKK-8, annexin V-FITC-propidium iodide, quantitative polymerase chain reaction, and western blot assays. LncRNA TUG1 expression was higher in AML patients compared to controls and correlated with higher white blood cell counts, monosomal karyotype, FLT3-ITD mutation, poor-risk stratification, and poor prognosis, which independently predicted worse event-free survival and overall survival. In vitro, lncRNA TUG1 expression was higher in AML cell lines (KG-1, MOLM-14, HL-60, NB-4, and THP-1 cells) compared to controls. LncRNA TUG1 mimic promoted cell proliferation and decreased cell apoptosis rate, while lncRNA TUG1 inhibitor repressed cell proliferation and increased cell apoptosis rate. Rescue experiment showed that AURKA attenuated the influence of lncRNA TUG1 on AML cell proliferation and apoptosis. In conclusion, lncRNA TUG1 associates with advanced disease and worse prognosis in adult AML patients, and it induces AML cell proliferation and represses cell apoptosis via targeting AURKA.

  14. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Zou, Lihui [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Xiao, Fei [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Wang, Chen, E-mail: chenwangcjfh@163.com [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China)

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  15. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    International Nuclear Information System (INIS)

    Zhang, Shuai; Zou, Lihui; Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo; Xiao, Fei; Wang, Chen

    2015-01-01

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension

  16. Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells.

    Science.gov (United States)

    Fjaeraa, Christina; Nånberg, Eewa

    2009-05-01

    Ellagic acid, a polyphenolic compound found in berries, fruits and nuts, has been shown to possess growth-inhibiting and apoptosis promoting activities in cancer cell lines in vitro. The objective of this study was to investigate the effect of ellagic acid in human neuroblastoma SH-SY5Y cells. In cultures of SH-SY5Y cells incubated with ellagic acid, time- and concentration-dependent inhibitory effects on cell number were demonstrated. Ellagic acid induced cell detachment, decreased cell viability and induced apoptosis as measured by DNA strand breaks. Ellagic acid-induced alterations in cell cycle were also observed. Simultaneous treatment with all-trans retinoic acid did not rescue the cells from ellagic acid effects. Furthermore, the results suggested that pre-treatment with all-trans retinoic acid to induce differentiation and cell cycle arrest did not rescue the cells from ellagic acid-induced cell death.

  17. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    International Nuclear Information System (INIS)

    Campbell, Sharon E; Krishnan, Koyamangalath; Stone, William L; Lee, Steven; Whaley, Sarah; Yang, Hongsong; Qui, Min; Goforth, Paige; Sherman, Devin; McHaffie, Derek

    2006-01-01

    Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-γ-tocopherol without damage to normal colon cells. The amount growth

  18. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Sherman Devin

    2006-01-01

    Full Text Available Abstract Background Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. Methods The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29 and primary colon cells (CCD-112CoN, nontransformed normal phenotype was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Results Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. Conclusion This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR

  19. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines.

    Science.gov (United States)

    Campbell, Sharon E; Stone, William L; Lee, Steven; Whaley, Sarah; Yang, Hongsong; Qui, Min; Goforth, Paige; Sherman, Devin; McHaffie, Derek; Krishnan, Koyamangalath

    2006-01-17

    Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-gamma-tocopherol isoform is found primarily in the US diet, while RRR-alpha-tocopherol is highest in the plasma. The effectiveness of RRR-alpha- and RRR-gamma-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-alpha- or RRR-gamma-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Treatment with RRR-gamma-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-alpha-tocopherol did not. Further, RRR-gamma-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-gamma-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-gamma-tocopherol to induce cell death. This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-gamma-tocopherol without damage to

  20. Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    Liou, S.-F.; Lin, H.-H.; Liang, J.-C.; Chen, I.-J.; Yeh, J.-L.

    2009-01-01

    In this research, we conducted an in vitro analysis to evaluate the prostate cancer cells response to labedipinedilol-A in order to determine the effect of this selective α 1 -adrenoceptor antagonist to suppress prostate cancer cell growth by affecting cell proliferation and apoptosis. Here, we report that treatment of androgen-sensitive (LNCaP) and androgen-insensitive (PC-3) prostate cancer cells with labedipinedilol-A inhibited cell proliferation in concentration-dependent and time-dependent manners. Moreover, norepinephrine-stimulated proliferation of both cell lines are markedly inhibited by labedipinedilol-A. The probable involvement of α 1 -adrenoceptors in this cellular response is suggested. Labedipinedilol-A-induced growth inhibition was associated with G 0 /G 1 arrest, and G 2 /M arrest depending upon concentrations. Cell cycle blockade was associated with reduced amounts of cyclin D1/2, cyclin E, Cdk2, Cdk4, and Cdk6 and increased levels of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27). In addition, labedipinedilol-A also induced apoptosis in PC-3 cells, as determined by using Hoechst 33342 staining, DNA fragmentation, and Annexin V staining assay. Furthermore, labedipinedilol-A triggered the mitochondrial apoptotic pathway, as indicated by increasing the expression of Bax, but decreasing the level of Bcl-2, resulting in mitochondrial membrane potential loss, cytochrome c release, and activation of caspase-9 and -3. We further investigated the role of MAPK cascades in the anti-proliferative and apoptosis effects of labedipinedilol-A, and confirmed that labedipinedilol-A could activate JNK1/2 but not p38 in both cell lines. Unlike JNK1/2, however, labedipinedilol-A treatment resulted in down-regulation of phospho-ERK1/2 expression. We concluded that labedipinedilol-A possessed the growth-suppressive and apoptotic effects on LNCaP and PC-3 cells by its α 1 -adrenoceptor blockade, and the apoptotic effects of labedipinedilol-A primarily through

  1. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine; Felipe, Karina Bettega; Farias, Mirelle Sifroni; Ourique da Silva, Fabiana; Bücker, Nádia Cristina Falcão [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Pich, Claus Tröger [Campus de Araranguá, Universidade Federal de Santa Catarina, Araranguá (Brazil); Ferreira, Eduardo Antonio [Universidade de Brasília, Faculdade de Ceilândia, DF (Brazil); Filho, Danilo Wilhelm [Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Verrax, Julien; Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil)

    2013-01-18

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.

  2. Metformin inhibits proliferation and cytotoxicity and induces apoptosis via AMPK pathway in CD19-chimeric antigen receptor-modified T cells

    Directory of Open Access Journals (Sweden)

    Mu Q

    2018-04-01

    Full Text Available Qian Mu,1,2,* Miao Jiang,1,* Yuzhu Zhang,1 Fei Wu,1 Hui Li,1 Wen Zhang,1 Fang Wang,1 Jiang Liu,1 Liang Li,1 Dongshan Wang,3 Wenjuan Wang,1 Shiwu Li,1 Haibo Song,4 Dongqi Tang1 1Gene and Immunotherapy Center, The Second Hospital of Shandong University, Jinan, People’s Republic of China; 2Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 3Health Management Center, The Second Hospital of Shandong University, Jinan, People’s Republic of China; 4Central Research Laboratory, Zibo Maternal and Child Health Hospital, Affiliated to Shandong Academy of Medical Science, Zibo, People’s Republic of China *These authors contributed equally to this work Background: CD19-chimericantigen receptor (CAR modified T cells (CD19-CAR T cells have been well documented to possess potent anti-tumor properties against CD19-expressingleukemia cells. As a traditional medicine, metformin has been widely used to treat type II diabetes mellitus and more recently has become a candidate for the treatment of cancer. However, no report has revealed the direct effect of metformin on CD19-CAR T cell biological function and its underling mechanisms. Purpose: The purpose of this research was to explore the effect of metformin on CD19-CAR T cell biological function and the mechanisms involved. Methods: CD19-CAR T cells proliferation, apoptosis and cytotoxicity were mainly tested by CCK-8 assay, flow cytometry and ELISA. The detection of mechanism primarily used western blot. Bioluminescence imaging is the main application technology of animal studies. Results: In the current study, it was found that metformin inhibited CD19-CAR T cell proliferation and cytotoxicity and induced apoptosis. Furthermore, our study revealed that metformin activated AMPK and suppressed mTOR and HIF1α expression. By using an AMPK inhibitor, compound C, we demonstrated the crucial roles of AMPK in CD19

  3. Paullinia cupana Mart var. sorbilis, guaraná, reduces cell proliferation and increases apoptosis of B16/F10 melanoma lung metastases in mice

    Directory of Open Access Journals (Sweden)

    H. Fukumasu

    2008-04-01

    Full Text Available We showed that guaraná (Paullinia cupana Mart var. sorbilis had a chemopreventive effect on mouse hepatocarcinogenesis and reduced diethylnitrosamine-induced DNA damage. In the present experiment, we evaluated the effects of guaraná in an experimental metastasis model. Cultured B16/F10 melanoma cells (5 x 10(5 cells/animal were injected into the tail vein of mice on the 7th day of guaraná treatment (2.0 mg P. cupana/g body weight, per gavage and the animals were treated with guaraná daily up to 14 days until euthanasia (total treatment time: 21 days. Lung sections were obtained for morphometric analysis, apoptotic bodies were counted to calculate the apoptotic index and proliferating cell nuclear antigen-positive cells were counted to determine the proliferation index. Guaraná-treated (GUA animals presented a 68.6% reduction in tumor burden area compared to control (CO animals which were not treated with guaraná (CO: 0.84 ± 0.26, N = 6; GUA: 0.27 ± 0.24, N = 6; P = 0.0043, a 57.9% reduction in tumor proliferation index (CO: 23.75 ± 20.54, N = 6; GUA: 9.99 ± 3.93, N = 6; P = 0.026 and a 4.85-fold increase in apoptotic index (CO: 66.95 ± 22.95, N = 6; GUA: 324.37 ± 266.74 AB/mm², N = 6; P = 0.0152. In this mouse model, guaraná treatment decreased proliferation and increased apoptosis of tumor cells, consequently reducing the tumor burden area. We are currently investigating the molecular pathways of the effects of guaraná in cultured melanoma cells, regarding principally the cell cycle inhibitors and cyclins.

  4. Galectins in angiogenesis: consequences for gestation.

    Science.gov (United States)

    Blois, Sandra M; Conrad, Melanie L; Freitag, Nancy; Barrientos, Gabriela

    2015-04-01

    Members of the galectin family have been shown to exert several roles in the context of reproduction. They contribute to placentation, maternal immune regulation and facilitate angiogenesis encompassing decidualisation and placenta formation during pregnancy. In the context of neo-vascularisation, galectins have been shown to augment signalling pathways that lead to endothelial cell activation, cell proliferation, migration and tube formation in vitro in addition to angiogenesis in vivo. Angiogenesis during gestation ensures not only proper foetal growth and development, but also maternal health. Consequently, restriction of placental blood flow has major consequences for both foetus and mother, leading to pregnancy diseases. In this review we summarise both the established and the emerging roles of galectin in angiogenesis and discuss the possible implications during healthy and pathological gestation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage.

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-11-05

    The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC 50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N -acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of

  6. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells

    DEFF Research Database (Denmark)

    Nielsen, C H; Albertsen, L; Bendtzen, K

    2007-01-01

    The mechanism of action of methotrexate (MTX) in autoimmune diseases (AID) is unclear. A pro-apoptotic effect has been demonstrated in mitogen-stimulated peripheral blood mononuclear cells (PBMC), but studies employing conventional antigens have disputed a pro-apoptotic effect. CD4+ T helper (Th....... Exposure of CA-stimulated PBMC to MTX significantly increased their level of cleaved poly(ADP-ribose) polymerase (PARP), and a similar tendency was observed in TT-stimulated cells. Unlike CA and TT, the mitogen phytohaemagglutinin (PHA) induced proliferation of both CD4- and CD4+ T cells, and induced......) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th...

  7. Long Non-Coding RNA TUG1 Promotes Proliferation and Inhibits Apoptosis of Osteosarcoma Cells by Sponging miR-132-3p and Upregulating SOX4 Expression.

    Science.gov (United States)

    Li, Gang; Liu, Keyu; Du, Xinhui

    2018-03-01

    Long non-coding RNA taurine upregulated gene 1 (TUG1) is reported to be a vital regulator of the progression of various cancers. This study aimed to explore the exact roles and molecular mechanisms of TUG1 in osteosarcoma (OS) development. Real-time quantitative PCR was applied to detect the expressions of TUG1 and microRNA-132-3p (miR-132-3p) in OS tissues and cells. Western blot was performed to measure protein levels of sex determining region Y-box 4 (SOX4). Cell viability was assessed using XTT assay. Cell apoptosis was evaluated using flow cytometry and caspase-3 activity detection assays. Bioinformatics analysis and luciferase reporter experiments were employed to confirm relationships among TUG1, miR-132-3p, and SOX4. TUG1 was highly expressed in human OS tissues, OS cell lines, and primary OS cells. TUG1 knockdown hindered proliferation and induced apoptosis in human OS cell lines and primary OS cells. Moreover, TUG1 inhibited miR-132-3p expression by direct interaction, and introduction of miR-132-3p inhibitor partly abrogated the effect of TUG1 knockdown on the proliferation and apoptosis of OS cells. Furthermore, SOX4 was validated as a target of miR-132-3p. Further functional analyses revealed that miR-132-3p inhibited proliferation and induced apoptosis of OS cells, while this effect was greatly abated following SOX4 overexpression. Moreover, TUG1 knockdown suppressed proliferation and promoted apoptosis by upregulating miR-132-3p and downregulating SOX4 in primary OS cells. TUG1 facilitated proliferation and suppressed apoptosis by regulating the miR-132-3p/SOX4 axis in human OS cell lines and primary OS cells. This finding provides a potential target for OS therapy. © Copyright: Yonsei University College of Medicine 2018

  8. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Chun-Mei; Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei; Sun, Wen-Sheng; Liu, Yu-Gang; Jia, Ji-Hui

    2011-01-01

    Highlights: → miR-29c was significantly downregulated in HBV-related HCC. → TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. → Overexpression of miR-29c suppressed TNFAIP3. → miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  9. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Mei [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China); Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Sun, Wen-Sheng [Institute of Immunology, Shandong University School of Medicine, Jinan 250012 (China); Liu, Yu-Gang, E-mail: liu.yugang@sdu.edu.cn [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Jia, Ji-Hui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China)

    2011-08-05

    Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  10. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    International Nuclear Information System (INIS)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan; Seok, Heon; Lee, Dong Gun; Hwang, Jae Sam; Kim, Ho

    2013-01-01

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects

  11. Knockdown of hypoxia-inducible factor-1 alpha reduces proliferation, induces apoptosis and attenuates the aggressive phenotype of retinoblastoma WERI-Rb-1 cells under hypoxic conditions.

    Science.gov (United States)

    Xia, Tian; Cheng, Hao; Zhu, Yu

    2014-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1α) plays a critical role in tumor cell adaption to hypoxia by inducing the transcription of numerous genes. The role of HIF-1α in malignant retinoblastoma remains unclear. We analyzed the role of HIF-1α in WERI-Rb-1 retinoblastoma cells under hypoxic conditions. CoCl2 (125 mmol/L) was added to the culture media to mimic hypoxia. HIF-1α was silenced using siRNA. Gene and protein expression were measured by semi-quantitative RT-PCR and Western blotting. Cell cycle and apoptosis were analyzed by flow cytometry. Cell proliferation, adhesion and invasion were assayed using MTT, Transwell invasion, and cell adhesion assays respectively. Hypoxia significantly upregulated HIF-1α protein expression and the HIF-1α target genes VEGF, GLUT1, and Survivin mRNA. HIF-1α mRNA expression was not affected by hypoxia. Transfection of the siRNA expression plasmid pRNAT-CMV3.2/Neo-HIF-1α silenced HIF-1α by approximately 80% in hypoxic WERI-Rb-1 cells. The knockdown of HIF-1α under hypoxic conditions downregulated VEGF, GLUT1, and Survivin mRNA. It also inhibited proliferation, promoted apoptosis, induced the G0/G1 phase cell cycle arrest, and reduced the adhesion and invasion of WERI-Rb-1 cells. HIF-1α plays a major role in the survival and aggressive phenotype of retinoblastoma cells under hypoxic conditions. Targeting HIF-1α may be a promising therapeutic strategy for human malignant retinoblastoma.

  12. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Seok, Heon [Department of Biomedical Science, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Lee, Dong Gun [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  13. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis.

    Science.gov (United States)

    Dewangan, Jayant; Kaushik, Shweta; Rath, Srikanta Kumar; Balapure, Anil K

    2018-01-15

    Angiogenesis is a recognized hallmark of cancer which promotes cancer cell progression and metastasis. Inhibition of angiogenesis to attenuate cancer growth is becoming desirable strategy for breast cancer management. The present study is aimed to investigate the antiangiogenic efficacy of a novel selective estrogen receptor modulator Centchroman (CC) on human breast cancer cells. Effect of CC on cell viability was evaluated using Sulforhodamine B assay. Endothelial cell proliferation, wound healing, Boyden chamber cell invasion, tube formation and chorioallantoic membrane (CAM) assays were performed to assess the effect of CC on migration, invasion and angiogenesis. Apoptosis, reactive oxygen species generation, caspase-3/7 and intracellular calcium ion level were measured through flow cytometry. Expression levels of HIF-1α, VEGF, VEGFR2, AKT and ERK were assessed by western blot analysis. CC selectively induces apoptosis in human breast cancer cells without affecting non-tumorigenic breast epithelial cells MCF-10A. Moreover, it inhibits migratory, invasive and mammosphere forming potential of breast cancer. Furthermore, CC also inhibited VEGF-induced migration, invasion and tube formation of HUVECs in vitro. CC effectively inhibited neovasculature formation in chicken CAM. Western blot analysis demonstrated that CC inhibited expression of HIF-1α and its downstream target VEGF. Interestingly, CC also suppressed VEGFR2 phosphorylation and consequently attenuated AKT and ERK phosphorylation. Our findings suggest that CC downregulates VEGF-induced angiogenesis by modulating HIF-1α/VEGFR2 pathway and recommend it (CC) as a potential therapeutic drug for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Angiogenesis and Therapeutic Approaches to NF1 Tumors

    National Research Council Canada - National Science Library

    Muir, David F

    2007-01-01

    .... Invivo and in vitro models were used to firmly conclude that Nf1 haploinsufficiency in endothelial cells results inexaggerated proliferation and angiogenesis in response to key pro-angiogenic factors...

  15. Cucurbitacin B inhibits proliferation, induces G2/M cycle arrest and autophagy without affecting apoptosis but enhances MTT reduction in PC12 cells

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2016-03-01

    Full Text Available In the present study, the effect of cucurbitacin B (a natural product with anti-cancer effect was studied on PC12 cells. It significantly reduced the cell number, changed cell morphology and inhibited colony formation while MTT results showed increased cell viability. Cucurbitacin B treatment increased activity of succinode hydrogenase. No alteration in the integrity of mem-brane, the release of lactic dehydrogenase, the mitochondrial membrane potential, and the expression of apoptotic proteins suggested that cucurbitacin B did not induce apoptosis. The cell cycle was remarkably arrested at G2/M phase. Furthermore, cucurbitacin B induced autophagy as evidence by accumulation of autophagic vacuoles and the increase of LC3II. In addition, cucurbitacin B up-regulated the expression of p-beclin-1, p-ULK1, p-Wee1, p21 and down-regulated p-mTOR, p-p70S6K, CDC25C, CDK1, Cyclin B1. In conclusion, cucurbitacin B inhibited PC12 proliferation but caused MTT pitfall. Cucurbitacin B induced G2/M cell cycle arrest, autophagy, but not the apoptosis in PC12 cells.

  16. A eudesmane-type sesquiterpene isolated from Pluchea odorata (L.) Cass. combats three hallmarks of cancer cells: Unrestricted proliferation, escape from apoptosis and early metastatic outgrowth in vitro

    International Nuclear Information System (INIS)

    Blaschke, Michael; McKinnon, Ruxandra; Nguyen, Chi Huu; Holzner, Silvio; Zehl, Martin; Atanasov, Atanas Georgiev; Schelch, Karin; Krieger, Sigurd; Diaz, Rene; Frisch, Richard; Feistel, Björn; Jäger, Walter; Ecker, Gerhard F.

    2015-01-01

    Highlights: • PO-1 perturbs cell cycle regulators and progression. • PO-1 inhibits HL-60 cell expansion. • PO-1 and PO-2 attenuate tumour cell intravasation through the endothelial barrier. - Abstract: Pluchea odorata is ethno pharmaceutically used to treat inflammation-associated disorders. The dichloromethane extract (DME) was tested in the carrageenan-induced rat paw oedema assay investigating its effect on inflammation that was inhibited by 37%. Also an in vitro anti-neoplastic potential was reported. However, rather limited information about the bio-activity of purified compounds and their cellular mechanisms are available. Therefore, two of the most abundant eudesmanes in P. odorata were isolated and their anti-neoplastic and anti-intravasative activities were studied. HL-60 cells were treated with P. odorata compounds and metabolic activity, cell number reduction, cell cycle progression and apoptosis induction were correlated with relevant protein expression. Tumour cell intravasation through lymph endothelial monolayers was measured and potential causal mechanisms were analyzed by Western blotting. Compound PO-1 decreased the metabolic activity of HL-60 cells (IC 50 = 8.9 μM after 72 h) and 10 μM PO-1 induced apoptosis, while PO-2 showed just weak anti-neoplastic activities at concentrations beyond 100 μM. PO-1 arrested the cell cycle in G1 and this correlated with induction of JunB expression. Independent of this mechanism 25 μM PO-1 decreased MCF-7 spheroid intravasation through the lymph endothelial barrier. Hence, PO-1 inhibits an early step of metastasis, impairs unrestricted proliferation and induces apoptosis at low micromolar concentrations. These results warrant further testing in vivo to challenge the potential of PO-1 as novel lead compound

  17. Dose dependent activation of retinoic acid-inducible gene-I promotes both proliferation and apoptosis signals in human head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jingzhou Hu

    Full Text Available The retinoic-acid-inducible gene (RIG-like receptor (RLR family proteins are major pathogen reorganization receptors (PRR responsible for detection of viral RNA, which initiates antiviral response. Here, we evaluated the functional role of one RLR family member, RIG-I, in human head and neck squamous cell carcinoma (HNSCC. RIG-I is abundantly expressed both in poorly-differentiated primary cancer and lymph node metastasis, but not in normal adjacent tissues. Activation of RIG-I by transfection with low dose of 5'-triphosphate RNA (3p-RNA induces low levels of interferon and proinflammatory cytokines and promotes NF-κB- and Akt-dependent cell proliferation, migration and invasion. In contrast, activation of RIG-I by a high dose of 3p-RNA induces robust mitochondria-derived apoptosis accompanied by decreased activation of Akt, which is independent of the interferon and TNFα receptor, but can be rescued by over-expression of constitutively active Akt. Furthermore, co-immunoprecipitation experiments indicate that the CARD domain of RIG-I is essential for inducing apoptosis by interacting with caspase-9. Together, our results reveal a dual role of RIG-I in HNSCC through regulating activation of Akt, in which RIG-I activation by low-dose viral dsRNA increases host cell survival, whereas higher level of RIG-I activation leads to apoptosis. These findings highlight the therapeutic potential of dsRNA mediated RIG-I activation in the treatment of HNSCC.

  18. A eudesmane-type sesquiterpene isolated from Pluchea odorata (L.) Cass. combats three hallmarks of cancer cells: Unrestricted proliferation, escape from apoptosis and early metastatic outgrowth in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Michael [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); McKinnon, Ruxandra [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Nguyen, Chi Huu [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Holzner, Silvio [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Zehl, Martin [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Atanasov, Atanas Georgiev [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Schelch, Karin [Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria); Krieger, Sigurd [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Diaz, Rene; Frisch, Richard [Institute for Ethnobiology, Playa Diana, San José/Petén (Guatemala); Feistel, Björn [Finzelberg GmbH & Co. KG, Koblenzer Strasse 48-54, D-56626 Andernach (Germany); Jäger, Walter [Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Ecker, Gerhard F. [Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna (Austria); and others

    2015-07-15

    Highlights: • PO-1 perturbs cell cycle regulators and progression. • PO-1 inhibits HL-60 cell expansion. • PO-1 and PO-2 attenuate tumour cell intravasation through the endothelial barrier. - Abstract: Pluchea odorata is ethno pharmaceutically used to treat inflammation-associated disorders. The dichloromethane extract (DME) was tested in the carrageenan-induced rat paw oedema assay investigating its effect on inflammation that was inhibited by 37%. Also an in vitro anti-neoplastic potential was reported. However, rather limited information about the bio-activity of purified compounds and their cellular mechanisms are available. Therefore, two of the most abundant eudesmanes in P. odorata were isolated and their anti-neoplastic and anti-intravasative activities were studied. HL-60 cells were treated with P. odorata compounds and metabolic activity, cell number reduction, cell cycle progression and apoptosis induction were correlated with relevant protein expression. Tumour cell intravasation through lymph endothelial monolayers was measured and potential causal mechanisms were analyzed by Western blotting. Compound PO-1 decreased the metabolic activity of HL-60 cells (IC{sub 50} = 8.9 μM after 72 h) and 10 μM PO-1 induced apoptosis, while PO-2 showed just weak anti-neoplastic activities at concentrations beyond 100 μM. PO-1 arrested the cell cycle in G1 and this correlated with induction of JunB expression. Independent of this mechanism 25 μM PO-1 decreased MCF-7 spheroid intravasation through the lymph endothelial barrier. Hence, PO-1 inhibits an early step of metastasis, impairs unrestricted proliferation and induces apoptosis at low micromolar concentrations. These results warrant further testing in vivo to challenge the potential of PO-1 as novel lead compound.

  19. St. John’s Wort Regulates Proliferation and Apoptosis in MCF-7 Human Breast Cancer Cells by Inhibiting AMPK/mTOR and Activating the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Mi-Kyoung You

    2018-03-01

    Full Text Available St. John’s Wort (SJW has been used as an estrogen agonist in the systems affected by menopause. Also, hypericin, a bioactive compound of SJW, has been used as a photosensitizer in photodynamic therapy. In the present study, we investigate the anti-proliferative and pro-apoptotic effects of SJW to demonstrate the chemo-preventive effect in human breast cancer cells. MCF-7 cells were cultured with DMSO or various concentrations of SJW ethanol extract (SJWE. Cell viability, proliferation, apoptosis, the expression of proteins involved in cell growth and apoptosis, and caspase-3/7 activity were examined. SJWE dose-dependently suppressed cell growth and induced apoptosis of MCF-7 cells. Mechanistically, SJWE enhanced the phosphorylation of AMP-activated protein kinase (AMPK and decreased the expression of p-mammalian target of rapamycin (p-mTOR and p-eukaryotic translation initiation factor 4E (eIF4E-binding protein 1 (4E-BP1. Also, SJWE inhibited the phosphorylation of protein kinase B (Akt and showed increases in the expression of pro-apoptotic proteins Bax and Bad with decreases in the expression of anti-apoptotic proteins including B-cell lymphoma 2 (Bcl-2, B-cell lymphoma-extra large (Bcl-xL, and p-Bcl-2-associated death promoter (p-Bad. SJWE at 50 μg/mL showed markedly enhanced caspase-7 activation. Taken together, our results provide evidence that SJWE shows anti-proliferative and pro-apoptotic effects via inhibition of AMPK/mTOR and activation of a mitochondrial pathway. Therefore, SJWE can be used as a chemo-preventive agent without photo-activation.

  20. Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines.

    Science.gov (United States)

    Yeo, Alan T; Chennamadhavuni, Spandan; Whitty, Adrian; Porco, John A; Gilmore, Thomas D

    2015-04-23

    Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.

  1. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  2. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  3. Natural killer cell cytokine response to M. bovis BCG Is associated with inhibited proliferation, increased apoptosis and ultimate depletion of NKp44(+CD56(bright cells.

    Directory of Open Access Journals (Sweden)

    Damien Portevin

    Full Text Available Mycobacterium bovis BCG, a live attenuated strain of M. bovis initially developed as a vaccine against tuberculosis, is also used as an adjuvant for immunotherapy of cancers and for treatment of parasitic infections. The underlying mechanisms are thought to rely on its immunomodulatory properties including the recruitment of natural killer (NK cells. In that context, we aimed to study the impact of M. bovis BCG on NK cell functions. We looked at cytotoxicity, cytokine production, proliferation and cell survival of purified human NK cells following exposure to single live particles of mycobacteria. We found that M. bovis BCG mediates apoptosis of NK cells only in the context of IL-2 stimulation during which CD56(bright NK cells are releasing IFN-γ in response to mycobacteria. We found that the presence of mycobacteria prevented the IL-2 induced proliferation and surface expression of NKp44 receptor by the CD56(bright population. In summary, we observed that M. bovis BCG is modulating the functions of CD56(bright NK cells to drive this subset to produce IFN-γ before subsequent programmed cell death. Therefore, IFN-γ production by CD56(bright cells constitutes the main effector mechanism of NK cells that would contribute to the benefits observed for M. bovis BCG as an immunotherapeutic agent.

  4. Dominant negative insulin-like growth factor-1 receptor inhibits neointimal formation through suppression of vascular smooth muscle cell migration and proliferation, and induction of apoptosis

    International Nuclear Information System (INIS)

    Lim, Hyun-Joung; Park, Hyun-Young; Ko, Young-Guk; Lee, Sea-Hyoung; Cho, Seung-Yeon; Lee, Eun Jig; Jameson, J. Larry; Jang, Yangsoo

    2004-01-01

    Blocking of the IGF-1 signaling pathway targeting the IGF-1 receptor (IGF-1R) provides a potential treatment strategy for restenosis. In this study, we have examined the effects of a dominant negative IGF-1R (IGF-1Rt) on primary rat VSMCs in vitro and on injured rat carotid artery in vivo. Ad/IGF-1Rt infection inhibited VSMC migration and proliferation, and it also induced apoptosis by inhibiting phosphorylation of Akt and phosphorylation of ERK1/2. Consistent with the anti-proliferative and apoptotic effects in vitro, the Ad/IGF-1Rt infection markedly reduced neointimal formation in carotid injury model. Ad/IGF-1Rt treated carotid arteries exhibited a suppressed proliferation index, PCNA expression, and also were stained positive for TUNEL assay. These results indicate that a dominant negative IGF-1R has the potential to reduce neointimal formation of injured rats' carotid arteries. The delivery of dominant negative IGF-1R by adenoviral or other vectors may provide a useful strategy for inhibiting restenosis after angioplasty

  5. Effects of the isoflavone genistein in early life stages of the Senegalese sole, Solea senegalensis: role of the Survivin and proliferation versus apoptosis pathways.

    Science.gov (United States)

    Sarasquete, Carmen; Úbeda-Manzanaro, María; Ortiz-Delgado, Juan B

    2018-01-17

    Phytochemical flavonoids are widely distributed in the environment and are derived from many anthropogenic activities. The isoflavone genistein is a naturally occurring compound found in soya products that are habitual constituents of the aquafeeds. This isoflavone possesses oestrogenic biological activity and also apoptotic properties. The present study has been performed to determine the effects of the genistein in the early life stages of the flatfish Senegalese sole during the first month of larval life, and it is focused especially at the metamorphosis, analysing the expression transcript levels and the immunohistochemical protein patterns implicated in the cell proliferation and apoptosis pathways (proliferation cellular/PCNA, anti-apoptosis Survivin/BIRC-5, death receptors/Fas, and Caspases). The isoflavone genistein induced some temporal disrupting effects in several pro-apoptotic signalling pathways (Fas, CASP-6) at both genistein doses (3 mg/L and 10 mg/L), with increased Fas transcripts and also decreasing CASP-6 mRNA expression levels during metamorphic and post-metamorphic stages of the Senegalese sole. On the other hand, the anti-apoptotic BIRC-5 expression levels were weakly down-regulated with both the highest and lowest doses, but all of these imbalances were stabilised to the baseline levels. In early life stages of the controls, the constitutive basal transcript levels were temporarily and differentially expressed, reaching the highest levels at the pre-metamorphosis phase, as especially in endotrophic larvae (i.e. BIRC-5 mRNA), as well as in the metamorphic (i.e. CASP-6 mRNA) and post-metamorphic stages (i.e. Fas mRNA). In general, through development, continuous and progressive increases in the protein patterns of cell proliferation-PCNA (e.g. mitotic nuclei), anti-apoptotic Survivin (e.g. haematopoietic system, brain, digestive system, gills) and CASP-2 and -6 (e.g. brain, gills, kidney, digestive system, vascular systems, among others

  6. [X-linked inhibitor of apoptosis protein (XIAP) and Survivin suppression on human pancreatic cancer cells Panc-1 proliferation and chemosensitivety].

    Science.gov (United States)

    Zai, Hong-yan; Yi, Xiao-ping; Li, Yi-xiong; You, Xue-ying; Cao, Li-ping; Liu, Hui

    2013-04-18

    To investigate the effect on cell proliferation and chemosensitivity of human pancreatic cancer cells Panc-1 after X-linked inhibitor of apoptosis protein (XIAP) and Survivin are inhibited simultaneously, and to compare it with the separate gene suppression strategy by which expression of XIAP or Survivin is inhibited respectively. Panc-1 (Panc-1-X, Panc-1-S and Panc-1-XS) in which expression of XIAP and/or Survivin was inhibited, was established by using XIAP-shRNA lentiviral and Survivin-shRNA lentiviral we had built. The expressions of XIAP and Survivin mRNA and protein were evaluated by Real-time PCR and Semi-quantitatively Western blot analysis; cell proliferation was investigated by cell counting and colony formation assay; cell apoptosis was investigated by Caspase-3/7 activity assay kit and flow cytometry; gemcitabine (Gem) chemosensitivity was investigated by MTT assay. The pancreatic cell line Panc-1 in which the expression of XIAP and/or Survivin was stablely inhibited was successfully established. The cell proliferation of Panc-1-XS cells decreased significantly. The colony formation rate of Panc-1-XS cells (10.12%± 1.33%), was significantly lower than that of Panc-1-XncSnc cells (96.61% ± 7.89%) and Panc-1 cells (100.28% ± 8.97%) respectively (PPanc-1-XS cells (15.02 ± 0.57) was significantly higher than that of Panc-1 cells and Panc-1-XncSnc cells (8.87 ± 0.19 and 9.05 ± 0.23, respectively; PPanc-1-XS cells (24.09% ± 2.75%) was significantly higher than that of Panc-1-XncSnc cells and Panc-1 cells (12.09% ± 1.97% and 12.06% ± 1.22%, respectively; PPanc-1-XS cells [(0.47 ± 0.04) mg/L] was significantly lower than that of Panc-1-XncSnc cells [(2.18 ± 0.13) mg/L] and Panc-1 cells [(2.13 ± 0.18) mg/L, PPanc-1-XS cells [(0.47 ± 0.04) mg/L] was significantly lower than that of Panc-1-X cells [(0.76 ± 0.07) mg/L] and Panc-1-S cells [(0.87 ± 0.09) mg/L, PPanc-1 cells was significantly suppressed and the Gem chemosensitivity was significantly

  7. Strategies for repair of white matter: influence of osmolarity and microglia on proliferation and apoptosis of oligodendrocyte precursor cells in different basal culture media.

    Science.gov (United States)

    Kleinsimlinghaus, Karolina; Marx, Romy; Serdar, Meray; Bendix, Ivo; Dietzel, Irmgard D

    2013-01-01

    The aim of the present study has been to obtain high yields of oligodendrocyte precursor cells (OPCs) in culture. This is a first step in facilitation of myelin repair. We show that, in addition to factors, known to promote proliferation, such as basic fibroblast growth factor (FGF-2) and platelet derived growth factor (PDGF) the choice of the basal medium exerts a significant influence on the yield of OPCs in cultures from newborn rats. During a culture period of up to 9 days we observed larger numbers of surviving cells in Dulbecco's Modified Eagle Medium (DMEM), and Roswell Park Memorial Institute Medium (RPMI) compared with Neurobasal Medium (NB). A larger number of A2B5-positive OPCs was found after 6 days in RPMI based media compared with NB. The percentage of bromodeoxyuridine (BrdU)-positive cells was largest in cultures maintained in DMEM and RPMI. The percentage of caspase-3 positive cells was largest in NB, suggesting that this medium inhibits OPC proliferation and favors apoptosis. A difference between NB and DMEM as well as RPMI is the reduced Na(+)-content. The addition of equiosmolar supplements of mannitol or NaCl to NB medium rescued the BrdU-incorporation rate. This suggested that the osmolarity influences the proliferation of OPCs. Plating density as well as residual microglia influence OPC survival, BrdU incorporation, and caspase-3 expression. We found, that high density cultures secrete factors that inhibit BrdU incorporation whereas the presence of additional microglia induces an increase in caspase-3 positive cells, indicative of enhanced apoptosis. An enhanced number of microglia could thus also explain the stronger inhibition of OPC differentiation observed in high density cultures in response to treatment with the cytokines TNF-α and IFN-γ. We conclude that a maximal yield of OPCs is obtained in a medium of an osmolarity higher than 280 mOsm plated at a relatively low density in the presence of as little microglia as technically

  8. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Hitoshi [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Natsume, Atsushi, E-mail: anatsume@med.nagoya-u.ac.jp [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Iwami, Kenichiro; Ohka, Fumiharu [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae [Department of Biomolecular Engineering, Tokyo Institute of Technology Graduate School of Bioscience and Biotechnology, Yokohama (Japan); Ito, Kengo [National Center for Geriatrics and Gerontology, Aichi (Japan); Saito, Kiyoshi [Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Sugita, Sachi; Hoshino, Tsuneyoshi [MICRON Inc.Medical Facilities Support Department, Aichi (Japan); Wakabayashi, Toshihiko [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan)

    2013-03-29

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas.

  9. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    International Nuclear Information System (INIS)

    Ando, Hitoshi; Natsume, Atsushi; Iwami, Kenichiro; Ohka, Fumiharu; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae; Ito, Kengo; Saito, Kiyoshi; Sugita, Sachi; Hoshino, Tsuneyoshi; Wakabayashi, Toshihiko

    2013-01-01

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas

  10. Hepatitis B virus X protein-induced upregulation of CAT-1 stimulates proliferation and inhibits apoptosis in hepatocellular carcinoma cells.

    Science.gov (United States)

    Dai, Rongjuan; Peng, Feng; Xiao, Xinqiang; Gong, Xing; Jiang, Yongfang; Zhang, Min; Tian, Yi; Xu, Yun; Ma, Jing; Li, Mingming; Luo, Yue; Gong, Guozhong

    2017-09-22

    The HBx protein of hepatitis B virus (HBV) is widely recognized to be a critical oncoprotein contributing to the development of HBV-related hepatocellular carcinoma (HCC). In addition, cationic amino acid transporter 1 (CAT-1) gene is a target of miR-122. In this study, we found that CAT-1 protein levels were higher in HBV-related HCC carcinomatous tissues than in para-cancerous tumor tissues, and that CAT-1 promoted HCC cell growth, proliferation, and metastasis. Moreover, HBx-induced decreases in Gld2 and miR-122 levels that contributed to the upregulation of CAT-1 in HCC. These results indicate that a Gld2/miR-122/CAT-1 pathway regulated by HBx likely participates in HBV-related hepatocellular carcinogenesis.

  11. Dietary Proteins and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Medina

    2014-01-01

    Full Text Available Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  12. Suppression of VEGF-induced angiogenesis and tumor growth by Eugenia jambolana, Musa paradisiaca, and Coccinia indica extracts.

    Science.gov (United States)

    M, Harsha Raj; Ghosh, Debidas; Banerjee, Rita; Salimath, Bharathi P

    2017-12-01

    Abnormal angiogenesis and evasion of apoptosis are hallmarks of cancer. Accordingly, anti-angiogenic and pro-apoptotic therapies are effective strategies for cancer treatment. Medicinal plants, namely, Eugenia jambolana Lam. (Myrtaceae), Musa paradisiaca L. (Musaceae), and Coccinia indica Wight & Arn. (Cucurbitaceae), have not been greatly investigated for their anticancer potential. We investigated the anti-angiogenic and pro-apoptotic efficacy of ethyl acetate (EA) and n-butanol (NB) extracts of E. jambolana (seeds), EA extracts of M. paradisiaca (roots) and C. indica (leaves) with respect to mammary neoplasia. Effect of extracts (2-200 μg/mL) on cytotoxicity and MCF-7, MDA-MB-231 and endothelial cell (EC) proliferation and in vitro angiogenesis were evaluated by MTT, 3 [H]thymidine uptake and EC tube formation assays, respectively. In vivo tumour proliferation, VEGF secretion and angiogenesis were assessed using the Ehrlich ascites tumour (EAT) model followed by rat corneal micro-pocket and chicken chorioallantoic membrane (CAM) assays. Apoptosis induction was assessed by morphological and cell cycle analysis. EA extracts of E. jambolana and M. paradisiaca exhibited the highest cytotoxicity (IC 50 25 and 60 μg/mL), inhibited cell proliferation (up to 81%), and tube formation (83% and 76%). In vivo treatment reduced body weight (50%); cell number (16.5- and 14.7-fold), secreted VEGF (∼90%), neoangiogenesis in rat cornea (2.5- and 1.5-fold) and CAM (3- and 1.6-fold) besides EAT cells accumulation in sub-G1 phase (20% and 18.38%), respectively. Considering the potent anti-angiogenic and pro-apoptotic properties, lead molecules from EA extracts of E. jambolana and M. paradisiaca can be developed into anticancer drugs.

  13. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Li, Qianyin; Huang, Zhenglan; Gao, Miao; Cao, Weixi; Xiao, Qin; Luo, Hongwei; Feng, Wenli

    2017-03-02

    The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.

  14. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Qianyin Li

    2017-03-01

    Full Text Available The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML. The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag, HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK and signal transducer and activator of transcription 5 (STAT5 pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI-resistance.

  15. Proliferation and apoptosis of lamina propria CD4+ T cells from scid mice with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Reimann, J; Claesson, Mogens Helweg

    1998-01-01

    Scid mice transplanted with low numbers of syngeneic CD4+ T cells, develop a chronic and lethal inflammatory bowel disease (IBD) within 4-6 months. We have used in vivo 5-bromo2-deoxy-uridine (BrdU) labeling to assess the proliferation of lamina propria-derived CD4+ T cells in diseased scid mice....... The hourly rate of renewal of colonic lamina propria CD4+ T cells in diseased mice was 7% compared with 1.5% in normal BALB/c control mice. Transplantation of scid mice with in vitro activated CD4+ T cells accelerated the disease onset and development in a cell dose-dependent fashion when compared with non......-activated CD4+ T cells. In pulse-chase experiments it was shown that BrdU-labeled cells disappeared rapidly from the lamina propria of diseased mice. DNA analysis revealed that this was due to the presence of nearly four times as many apoptotic CD4+ T cells in diseased than in control mice. Further analyses...

  16. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β‑catenin signaling.

    Science.gov (United States)

    Kundu, Juthika; Wahab, S M Riajul; Kundu, Joydeb Kumar; Choi, Yoon-La; Erkin, Ozgur Cem; Lee, Hun Seok; Park, Sang Gyu; Shin, Young Kee

    2012-09-01

    Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.

  17. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    Science.gov (United States)

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic

  18. Evaluation of potential prognostic value of Bmi-1 gene product and selected markers of proliferation (Ki-67 and apoptosis (p53 in the neuroblastoma group of tumors

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-02-01

    Full Text Available Introduction: Cancer in children is a very important issue in pediatrics. The least satisfactory treatment outcome occurs among patients with clinically advanced neuroblastomas. Despite much research, the biology of this tumor still remains unclear, and new prognostic factors are sought. The Bmi-1 gene product is a currently highly investigated protein which belongs to the Polycomb group (PcG and has been identified as a regulator of primary neural crest cells. It is believed that Bmi‑1 and N-myc act together and are both involved in the pathogenesis of neuroblastoma. The aim of the study was to assess the potential prognostic value of Bmi-1 protein and its relations with mechanisms of proliferation and apoptosis in the neuroblastoma group of tumors.Material/Methods: 29 formalin-fixed and paraffin-embedded neuroblastoma tissue sections were examined using mouse monoclonal antibodies anti-Bmi-1, anti-p53 and anti-Ki-67 according to the manufacturer’s instructions.Results: There were found statistically significant correlations between Bmi-1 expression and tumor histology and age of patients.Conclusions: Bmi-1 seems to be a promising marker in the neuroblastoma group of tumors whose expression correlates with widely accepted prognostic parameters. The pattern of BMI-1 expression may indicate that the examined protein is also involved in maturation processes in tumor tissue.

  19. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Flávia Silva Damasceno

    2014-02-01

    Full Text Available Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately 10 million people in endemic areas of Mexico and Central and South America. Currently available chemotherapies are limited to two compounds: Nifurtimox and Benznidazole. Both drugs reduce the symptoms of the disease and mortality among infected individuals when used during the acute phase, but their efficacy during the chronic phase (during which the majority of cases are diagnosed remains controversial. Moreover, these drugs have several side effects. The aim of this study was to evaluate the effect of Memantine, an antagonist of the glutamate receptor in the CNS of mammals, on the life cycle of T. cruzi. Memantine exhibited a trypanocidal effect, inhibiting the proliferation of epimastigotes (IC50 172.6 µM. Furthermore, this compound interfered with metacyclogenesis (approximately 30% reduction and affected the energy metabolism of the parasite. In addition, Memantine triggered mechanisms that led to the apoptosis-like cell death of epimastigotes, with extracellular exposure of phosphatidylserine, increased production of reactive oxygen species, decreased ATP levels, increased intracellular Ca(2+ and morphological changes. Moreover, Memantine interfered with the intracellular cycle of the parasite, specifically the amastigote stage (IC50 31 µM. Interestingly, the stages of the parasite life cycle that require more energy (epimastigote and amastigote were more affected as were the processes of differentiation and cell invasion.

  20. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  1. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2014-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  2. Angiogenesis in liver fibrosis

    NARCIS (Netherlands)

    Adlia, Amirah

    2017-01-01

    Angiogenesis emerges in parallel with liver fibrosis, but it is still unclear whether angiogenesis is a defense mechanism of the body in response to fibrosis, or whether it aggravates the fibrotic condition. In this thesis, Amirah Adlia applied different approaches to elucidate the role of

  3. Anti-angiogenesis and anti-tumor activity of recombinant anginex

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Dings, Ruud P.M.; Linden, Edith van der; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2006-01-01

    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment

  4. In vitro inhibition of angiogenesis by heat and low pH stable hydroalcoholic extract of Peganum harmala seeds via inhibition of cell proliferation and suppression of VEGF secretion

    DEFF Research Database (Denmark)

    Yavari, Niloofar; Emamian, Farnoosh; Yarani, Reza

    2015-01-01

    ) is a native plant from the eastern Iranian region, which is used as a traditional folk medicine. Although some biological properties of this plant are determined, its effect on angiogenesis is still unclear. Objective: We investigated the anti-angiogenic effects of heat and low pH stable hydroalcoholic...... and angiogenesis with an ID50 of ∼85 μg/ml. VEGF secretion was (inhibited) decreased by the extracts at concentrations higher than 10 μg/ml. Discussion and conclusion: Herbal plant extracts still attract attention owing to their fewer side effects comparing to synthetic drug agents. Current study indicated...

  5. [The influence of EphA2 overexpression on proliferation and apoptosis of human lens epithelial cells exposed to high-concentration dexamethasone in vitro].

    Science.gov (United States)

    Ma, C X; Zheng, G Y

    2018-02-11

    Objective: To construct lentiviral-mediated EphA2 overexpression vectors, transfect them into human lens epithelial cells (HLE-B3) in vitro , and investigate the effect of EphA2 gene overexpression on the proliferation and apoptosis of HLE-B3 exposed to high-concentration dexamethasone. Methods: Experimental Study. The pCDH-CMV- MCS-EF1-RFP plasmid was set up by the digestion of NOTⅠand XbaⅠ double restriction enzyme and ligation of CE ligase, and then the plasmid was transformed into DH10B cells. Seven clons were picked for enzymatic digestion and the clons with correct results were chosen for sequencing. The 293 T/17 cells were co-transfected with the pCDH-CMV-MCS-EF1-RFP-EphA2 and the packaging mixture by Lipofectamine 2000. At different multiplicities of infection (MOI=20, 50, 100, and 200) after 72-hour infection, we observed the expression of RFP and morphological changes of HLE-B3 by an inverted fluorescence microscope, and calculated the transfection efficiency through the flow cytometry. EphA2 protein expression was detected by Western blot. The following experiments were divided into four groups: normal control group (group A), EphA2 overexpression vector transfection group (group B), HLE-B3 cells exposed to dexamethasone group (group C) and EphA2 overexpression vector transfection HLE-B3 cells exposed to dexamethasone group (group D). Statistical analysis method was single factor or two factors variance analysis. Cell survival rate was detected by the Cell Counting Kit-8 assay. Cell apoptosis index was detected by Tunel. Results: Restriction enzyme digestion and sequencing indicated that EphA2 cDNA fragment was successfully inserted in the vector. The infection efficiency was up to 38.6%±3.9%, 49.2%±4.2%, 79.5%±5.5% and 80.2%±6.0% when the MOI was 20, 50, 100 and 200, respectively. There was statistically significant difference ( F= 2 600.8, P= 0.001) among the four groups and between any two groups except between the MOI=100 group and MOI=200

  6. Effects of microRNA-129 and its target gene c-Fos on proliferation and apoptosis of hippocampal neurons in rats with epilepsy via the MAPK signaling pathway.

    Science.gov (United States)

    Wu, Dong-Mei; Zhang, Yu-Tong; Lu, Jun; Zheng, Yuan-Lin

    2018-09-01

    This study aims to investigate the effect of microRNA-129 (miR-129) on proliferation and apoptosis of hippocampal neurons in epilepsy rats by targeting c-Fos via the MAPK signaling pathway. Thirty rats were equally classified into a model group (successfully established as chronic epilepsy models) and a normal group. Expression of miR-129, c-Fos, bax, and MAPK was detected by RT-qPCR and Western blotting. Hippocampal neurons were assigned into normal, blank, negative control (NC), miR-129 mimic, miR-129 inhibitor, siRNA-c-Fos, miR-129 inhibitor+siRNA-c-Fos groups. The targeting relationship between miR-129 and c-Fos was predicted and verified by bioinformatics websites and dual-luciferase reporter gene assay. Cell proliferation after transfection was measured by MTT assay, and cell cycle and apoptosis by flow cytometry. c-Fos is a potential target gene of miR-129. Compared with the normal group, the other six groups showed a decreased miR-129 expression; increased expression of expression of c-Fos, Bax, and MAPK; decreased proliferation; accelerated apoptosis; more cells arrested in the G1 phase; and fewer cells arrested in the S phase. Compared with the blank and NC groups, the miR-129 mimic group and the siRNA-c-Fos group showed decreased expression of c-Fos, Bax, and MAPK, increased cells proliferation, and decreased cell apoptosis, fewer cells arrested in the G1 phase and more cells arrested in the S phase. However, the miR-129 inhibitor groups showed reverse consequences. This study suggests that miR-129 could inhibit the occurrence and development of epilepsy by repressing c-Fos expression through inhibiting the MAPK signaling pathway. © 2017 Wiley Periodicals, Inc.

  7. A comparison among HER2, TP53, PAI-1, angiogenesis, and proliferation activity as prognostic variables in tumours from 408 patients diagnosed with early breast cancer

    DEFF Research Database (Denmark)

    Offersen, Birgitte Vrou; Alsner, Jan; Olsen, Karen Ege

    2008-01-01

    : Tumour sections were stained for HER2, CD34, and MIB-1. HER2 scores were based on staining intensity, 3+ being considered HER2+. Angiogenesis was scored by the Chalkley method. MIB-1 was evaluated using systematic random sampling. PAI-1 was measured by ELISA. TP53 mutations were evaluated by DGGE...

  8. Vitamin A family compounds, estradiol, and docetaxel in proliferation, apoptosis and immunocytochemical profile of human ovary endometrioid cancer cell line CRL-11731.

    Directory of Open Access Journals (Sweden)

    Dorota Lemancewicz

    2010-01-01

    Full Text Available Endometrioid carcinoma represents approximately 10% of cases of the malignant ovarian epithelial tumors. According to literature, the vitamin A (carotenoids and retinoids plays an essential role in cell proliferation, differentiation and apoptosis in both normal and neoplastic ovarian tissues. Apart from that, the retinoids alter a cytotoxic effect of chemiotherapeutics, i.e. docetaxel, on ovarian cancer cell lines. Retinoids act on cancer cells throughout different mechanism than taxanes, so they may be the potential candidates for the new treatment strategies of ovarian cancer. The aim of the study was to determine the effects of vitamin A family compounds (retinol, beta-carotene, lycopene, all-trans -, 9-cis - and 13-cis retinoic acid on the growth and proliferation of CRL-11731 endometrioid ovary cancer cell line and on docetaxel and estradiol activity in this culture. The assay was based on [3H] thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in CRL-11731 cells were also studied. Among vitamin A family compounds retinol and carotenoids, but not retinoids, inhibited the growth of cancer cells in dose dependent manner. Only the concentration of 100 muM of docetaxel inhibited incorporation [3H] thymidine into CRL-11731 cancer cells. Retinol (33.4%+/-8.5, carotenoids (beta-carotene 20 muM 4.7%+/-2.9, 50 muM 2.2%+/-0.9; lycopene 10 muM 7.6%+/-0.8, 20 muM 5.2%+/-2.5, 50 muM 2.9%+/-1.2, and 13-cis retinoic acid (19.7%+/-2.2 combined with docetaxel (100 muM significantly decreased the percentage of proliferating cells (p<0.0001. The antiproliferative action of lycopene alone and in combination with docetaxel was also confirmed in immunohistochemical examination (decreased the percentage of PCNA and Ki67 positive cells. Also retinol (10 muM and lycopene (20 and 50 muM combined with estradiol (0.01 muM statistically decreased the percentage of

  9. [Angiogenesis and endometriose].

    Science.gov (United States)

    Becker, C M; Bartley, J; Mechsner, S; Ebert, A D

    2004-08-01

    Endometriosis is considered a chronic disease of women during their reproductive phase, which resembles many signs of malignancy. So far, therapeutic options for endometriosis-associated pain and infertility are unsatisfactory and often lead to recurrence of disease after termination of treatment. Angiogenesis seems to play an important role in the pathogenesis of endometriosis. The use of angiogenesis inhibitors may add an important new tool to well-established treatment schedules. Therefore, it is very important to thoroughly investigate the role of angiogenesis in endometriosis with respect to the female reproductive system.

  10. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken toget