WorldWideScience

Sample records for proliferating human colon

  1. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation.

    OpenAIRE

    Kubben, F J; Peeters-Haesevoets, A; Engels, L G; Baeten, C G; Schutte, B; Arends, J W; Stockbrügger, R W; Blijham, G H

    1994-01-01

    Immunohistochemistry of the S phase related proliferating cell nuclear antigen (PCNA) was studied as an alternative to ex-vivo bromodeoxyuridine (BrdU) immunohistochemistry for assessment of human colonic cell proliferation. From 16 subjects without colonic disease biopsy specimens were collected from five different sites along the colorectum and processed for BrdU and PCNA immunohistochemistry. The mean proliferation index of PCNA was significantly higher at 133% of the value obtained with B...

  2. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation.

    Science.gov (United States)

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J; Nomikos, George; Raufman, Jean-Pierre

    2008-09-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist (p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by approximately 40% (P<0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively (P<0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes (n=25) whereas half of colon cancer specimens (n=24) exhibited moderate to strong staining (P<0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.

  3. Galectin-3-independent Down-regulation of GABABR1 due to Treatment with Korean Herbal Extract HAD-B Reduces Proliferation of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kim Kyung-Hee

    2012-09-01

    Full Text Available Objectives: Many efforts have shown multi-oncologic roles of galectin-3 for cell proliferation, angiogenesis, and apoptosis. However, the mechanisms by which galectin-3 is involved in cell proliferation are not yet fully understood, especially in human colon cancer cells. Methods: To cluster genes showing positively or negatively correlated expression with galectin-3, we employed human colon cancer cell lines, SNU-61, SNU-81, SNU-769B, SNU-C4 and SNU-C5 in high-throughput gene expression profiling. Gene and protein expression levels were determined by using real-time quantitative polymerase chain reaction (PCR and western blot analysis, respectively. The proliferation rate of human colon cancer cells was measured by using a 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay. Results: Expression of γ-aminobutyric acid B receptor 1 (GABABR1 showed a positive correlation with galectin-3 at both the transcriptional and the translational levels. Downregulation of galectin-3 decreased not only GABABR1 expression but also the proliferation rate of human colon cancer cells. However, Korean herbal extract, HangAmDan-B (HAD-B, decreased expression of GABABR1 without any expressional change of galectin-3, and offset γ-aminobutyric acid (GABA-enhanced human colon cancer cell proliferation. Conclusions: Our present study confirmed that GABABR1 expression was regulated by galectin-3. HAD-B induced galectin-3-independent down-regulation of GABABR1, which resulted in a decreased proliferation of human colon cancer cells. The therapeutic effect of HAD-B for the treatment of human colon cancer needs to be further validated.

  4. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin

    International Nuclear Information System (INIS)

    Sun, Jian-Yong; Huang, Yi; Li, Ji-Peng; Zhang, Xiang; Wang, Lei; Meng, Yan-Ling; Yan, Bo; Bian, Yong-Qian; Zhao, Jing; Wang, Wei-Zhong

    2012-01-01

    Highlights: ► miR-320a is downregulated in human colorectal carcinoma. ► Overexpression of miR-320a inhibits colon cancer cell proliferation. ► β-Catenin is a direct target of miR-320a in colon cancer cells. ► miR-320a expression inversely correlates with mRNA expression of β-catenin’s target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and β-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and β-catenin’s downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting β-catenin, suggesting its application in prognosis prediction and cancer treatment.

  5. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian-Yong [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Huang, Yi [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 710032 Xi' an (China); Li, Ji-Peng [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Xiang; Wang, Lei [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Meng, Yan-Ling [Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Yan, Bo [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Bian, Yong-Qian [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Wang, Wei-Zhong, E-mail: weichang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); and others

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.

  6. Neural control of colonic cell proliferation.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1980-03-15

    The mitotic rate in rat colonic crypts and in dimethylhydrazine-induced colonic carcinomas was measured using a stathmokinetic technique. In sympathectomized animals cell proliferation was retarded in the crypts but not in the tumors, whereas in animals treated with Metaraminol, a drug which releases norepinephrine from nerve terminals, crypt cell but not tumor cell proliferation was accelerated. Blockade of alpha-adrenoceptors also inhibited crypt cell proliferation. However, stimulation of beta-adrenoceptors inhibited and blockade of beta-adrenoceptors accelerated tumor cell proliferation without influencing crypt cell proliferation. Injection of either serotonin or histamine stimulated tumor but not crypt cell proliferation and blockade or serotonin receptors or histamine H2-receptors inhibited tumor cell proliferation. It is postulated that cell proliferation in the colonic crypts, like that in the jejunal crypts, is under both endocrine and autonomic neural control whereas colonic tumor cell division is subject to endocrine regulation alone.

  7. Differential effects of oestrogenic hormones on cell proliferation in the colonic crypt epithelium and in colonic carcinomata of rats.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1982-01-01

    A number of hormones, including some steroids, have previously been shown to influence the rate of cell division in the colonic crypt epithelium and in colonic tumours. In this report the effect of oophorectomy and of treatment with ovarian hormones on cell proliferation in these tissues is compared. Colonic tumours cell proliferation was retarded following oophorectomy and this retardation was reversed by the administration of oestradiol, but not by the administration of progesterone. Oophorectomy did not retard cell proliferation in the colonic crypts. The possible significance of these findings in relation to age-dependent variations in the sex ratio for human bowel cancer is discussed.

  8. Colon cancer proliferating desulfosinigrin in wasabi (Wasabia japonica).

    Science.gov (United States)

    Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G

    2004-01-01

    A reduced incidence of different types of cancer has been linked to consumption of Brassica vegetables, and there is evidence that glucosinolates (GSLs) and their hydrolysis products play a role in reducing cancer risk. Wasabi (Wasabia japonica) and horseradish (Armoracia rusticana), both Brassica vegetables, are widely used condiments both in Japanese cuisine and in the United States. Desulfosinigrin (DSS) (1) was isolated from a commercially available wasabi powder and from fresh wasabi roots. Sinigrin (2) was isolated from horseradish roots. DSS and sinigrin were evaluated for their inhibitory effects on cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes, on lipid peroxidation, and on the proliferation of human colon (HCT-116), breast (MCF-7), lung (NCIH460), and central nervous system (CNS, SF-268) cancer cell lines. DSS did not inhibit COX enzymes or lipid peroxidation at 250 microg/ml. Sinigrin inhibited lipid peroxidation by 71% at 250 microg/ml. However, DSS promoted the growth of HCT-116 (colon) and NCI H460 (lung) human cancer cells as determined by the MTT assay in a concentration-dependent manner. At 3.72 microg/ml, a 27% increase in the number of viable human HCT-116 colon cancer cells was observed; the corresponding increases at 7.50 and 15 microg/ml were 42 and 69%, respectively. At 60 microg/ml, DSS doubled the number of HCT-16 colon cancer cells. For NCI H460 human lung cancer cells, DSS at 60 microg/ml increased the cell number by 20%. Sinigrin showed no proliferating effect on the tumor cells tested. This is the first report of the tumor cell-proliferating activity by a desulfoglucosinolate, the biosynthetic precursor of GSLs found in Brassica spp.

  9. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway.

    Science.gov (United States)

    Zhang, Rui; Zhao, Jian; Xu, Jian; Jiao, De-Xin; Wang, Jian; Gong, Zhi-Qiang; Jia, Jian-Hui

    2017-10-01

    Modern pharmacological research has revealed that andrographolide has various functions, including anti-bacterial, anti-inflammatory and anti-viral effects, immunoregulation, treating cardiovascular and cerebrovascular diseases, and prevention and treatment of alcoholic liver injury. The present study investigated whether andrographolide suppresses the proliferation of human colon cancer cell through the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB/matrix metalloproteinase-9 (MMP-9) signaling pathway. The MTT assay and lactate dehydrogenase assay were used to evaluate the anticancer effects of andrographolide on cell proliferation and cytotoxicity in human colon cancer SW620 cells. Flow cytometry was used to analyze the anticancer effects of andrographolide on apoptosis by Annexin V-fluorescein isothiocyanate/propidium iodide kit. The effects of andrographolide on the activity of caspase-3/9 were measured using ELISA. Western blot analysis was also used to analyze the protein expression of TLR4, myeloid differentiation primary response gene 88 (MyD88), NF-κB-p65 and MMP-9. In the present study, it was found that andrographolide suppressed the cell proliferation, augmented cytotoxicity, evoked cell apoptosis and activated caspase-3/9 activities in human colon cancer SW620 cells. The results revealed that the anti-proliferation effects of andrographolide on the SW620 cells was associated with the inhibition of TLR4, MyD88, NF-κB-p65 and MMP-9 signaling activation. The results suggest that andrographolide is a promising drug for treatment of human colon cancer via suppression of the TLR4/NF-κB/MMP-9 signaling pathway.

  10. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis.

    Science.gov (United States)

    Fang, Xianjun; Hong, Yali; Dai, Li; Qian, Yuanyuan; Zhu, Chao; Wu, Biao; Li, Shengnan

    2017-11-01

    Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in various diseases. Our previous study showed that its receptor CRHR1 mediated the development of colitis-associated cancer in mouse model. However, the detailed mechanisms remain unclear. In this study, we explored the oncogenetic role of CRH/CRHR1 signaling in colon cancer cells. Cell proliferation and colony formation assays revealed that CRH contributed to cell proliferation. Moreover, tube formation assay showed that CRH-treated colon cancer cell supernatant significantly promoted tube formation of human umbilical vein endothelial cells (HUVECs). And these effects could be reversed by the CRHR1 specific antagonist Antalarmin. Further investigation showed that CRH significantly upregulated the expressions of interlukin-6 (IL-6) and vascular endothelial growth factor (VEGF) through activating nuclear factor-kappa B (NF-κB). The CRH-induced IL-6 promoted phosphorylation of janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). STAT3 inhibition by Stattic significantly inhibited the CRH-induced cell proliferation. In addition, silence of VEGF resulted in declined tube formation induced by CRH. Taken together, CRH/CRHR1 signaling promoted human colon cancer cell proliferation via NF-κB/IL-6/JAK2/STAT3 signaling pathway and tumor angiogenesis via NF-κB/VEGF signaling pathway. Our results provide evidence to support a critical role for the CRH/CRHR1 signaling in colon cancer progression and suggest its potential utility as a new therapeutic target for colon cancer. © 2017 Wiley Periodicals, Inc.

  11. CacyBP/SIP promotes the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Huihong Zhai

    Full Text Available CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

  12. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ya C Wu

    Full Text Available Hydrogen sulfide (H(2S is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC and a panel of colon cancer cell lines (HT-29, SW1116, HCT116 were exposed to H(2S at concentrations similar to those found in the human colon. H(2S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2S was accompanied by G(1-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip. Moreover, exposure to H(2S led to features characteristic of autophagy, including increased formation of LC3B(+ autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2S. Further mechanistic investigation revealed that H(2S stimulated the phosphorylation of AMP-activated protein kinase (AMPK and inhibited the phosphorylation of mammalian target of rapamycin (mTOR and S6 kinase. Inhibition of AMPK significantly reversed H(2S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.

  13. ETV4 and Myeov knockdown impairs colon cancer cell line proliferation and invasion

    International Nuclear Information System (INIS)

    Moss, Alan C.; Lawlor, Garrett; Murray, David; Tighe, Donal; Madden, Stephen F.; Mulligan, Anne-Marie; Keane, Conor O.; Brady, Hugh R.; Doran, Peter P.; MacMathuna, Padraic

    2006-01-01

    We have identified novel colorectal cancer-associated genes using NCBI's UNIGENE cDNA libraries. Colon cancer libraries were examined using Digital Differential Display and disease-associated genes were selected. Among these were ETV4 and MYEOV, novel colorectal cancer-associated genes. Samples of matched normal and neoplastic colon were obtained from human subjects and gene expression was quantified using real-time PCR. ETV4 gene expression was significantly increased in colonic neoplasia in comparison to matched normal colonic tissue (p < 0.05). Myeov expression was also increased in colon neoplasia in comparison to matched normal tissue. The effect of siRNA-mediated knockdown of ETV4 and Myeov on cell proliferation and invasion was assessed. ETV4 knockdown resulted in a 90% decrease in cell proliferation (p < 0.05) and a 67% decrease in cell invasion. Myeov knockdown resulted in a 48% decrease in cell proliferation (p < 0.05) and a 36% decrease in cell invasion. These data suggest that ETV4 and Myeov may provide novel targets for therapeutic intervention

  14. Cell proliferation and ageing in mouse colon

    International Nuclear Information System (INIS)

    Hamilton, E.; Franks, L.M.

    1980-01-01

    Cell kinetic parameters in the descending colon of unirradiated mice, 3-30-months-old were compared with those in mice irradiated repeatedly from the age of 6 or 24 months. The latter animals were given 1250 rad local X-irradiation to the colon every 6 weeks. Dose-survival curves showed the colon crypts of 6 and 24-months-old mice were similarly radiosensitive. In unirradiated mice the number of crypts per colon section decreased significantly at 30 months, but no significant age-related changes were seen in crypt size or labelling index (LI). Cell proliferation returned to control levels within 6 weeks of each X-ray dose and remained at this level for 20 weeks after the final dose. Later, cell proliferation in the irradiated colon fell significantly below control. A total of 6 or 7 doses each of 1250 rad produced only 1 colon carcinoma amongst 50 mice kept until they died. (author)

  15. MicroRNA-215 suppresses cell proliferation, migration and invasion of colon cancer by repressing Yin-Yang 1

    International Nuclear Information System (INIS)

    Chen, Zehong; Han, Siqi; Huang, Wensheng; Wu, Jialin; Liu, Yuyi; Cai, Shirong; He, Yulong; Wu, Suijing; Song, Wu

    2016-01-01

    Colorectal cancer is one of the most common malignant tumors worldwide with rising incidence. MicroRNAs are small non-coding RNAs that implicate in multiple physiological or pathological processes. The aberrant expression of miRNA-215 (miR-215) has been illustrated in various types of cancers. However, the expression of miR-215 in human colon cancer and the biological roles of it remain largely unknown. We conducted this study to explore the expression and the function of miR-215 in human colon cancer. The results showed that miR-215 was remarkably downregulated in colon cancer tissues and cell lines. Overexpression of miR-215 by miR-215 mimic significantly inhibited colon cancer cell proliferation, migration and invasion while knockdown of miR-215 by miR-215 inhibitor exerted reverse effects. Furthermore, we newly identified Yin-Yang 1(YY1) as a direct target of miR-215 which could rescue the effects of miR-215 on colon cancer cells. In summary, our investigation revealed that miR-215 was downregulated in colon cancer and it suppressed colon cancer cell proliferation, migration and invasion by directly targeting YY1. - Highlights: • MiR-215 expression was decreased in colon cancer tissues and cell lines. • Mir-215 inhibited colon cancer cell proliferation, migration and invasion. • MiR-215 targeted YY1 directly. • The effects of miR-215 on colon cancer cells were mediated by YY1.

  16. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation.

    Science.gov (United States)

    Chen, Sun-Xia; Xu, Xiao-En; Wang, Xiao-Qing; Cui, Shu-Jian; Xu, Lei-Lei; Jiang, Ying-Hua; Zhang, Yang; Yan, Hai-Bo; Zhang, Qian; Qiao, Jie; Yang, Peng-Yuan; Liu, Feng

    2014-10-14

    Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel

  17. Up-regulation of CNDP2 facilitates the proliferation of colon cancer.

    Science.gov (United States)

    Xue, Conglong; Zhang, Zhenwei; Yu, Honglan; Yu, Miao; Yuan, Kaitao; Yang, Ting; Miao, Mingyong; Shi, Hanping

    2014-05-21

    Cytosolic nonspecific dipetidase (CN2) belongs to the family of M20 metallopeptidases. It was stated in previous articles that higher expression levels of CN2 were observed in renal cell carcinoma and breast cancer. Our study explored the correlation between CN2 and colon carcinogenesis. We analysed the relationship between 183 patients clinicopathological characteristics and its CN2 expression. To detect the levels of CN2 in colon cancer cell lines and colon cancer tissues by western blot. To verify cell proliferation in colon cancer cells with knockdown of CNDP2 and explore the causes of these phenomena. The expression levels of CN2 in clinical colon tumors and colon cancer cell lines were significantly higher than that in normal colon mucosa and colon cell lines. The difference in CN2 levels was associated with tumor location (right- and left-sided colon cancer), but there was no significant association with age, gender, tumor size, tumor grade, tumor stage or serum carcinoembryonic antigen (CEA). Knockdown of CNDP2 inhibited cell proliferation, blocked cell cycle progression and retarded carcinogenesis in an animal model. The signaling pathway through which knockdown of CNDP2 inhibited cell proliferation and tumorigenesis involved in EGFR, cyclin B1 and cyclin E. Knockdown of CNDP2 can inhibit the proliferation of colon cancer in vitro and retarded carcinogenesis in vivo.

  18. Colon cancer associated transcripts in human cancers.

    Science.gov (United States)

    Chen, Yincong; Xie, Haibiao; Gao, Qunjun; Zhan, Hengji; Xiao, Huizhong; Zou, Yifan; Zhang, Fuyou; Liu, Yuchen; Li, Jianfa

    2017-10-01

    Long non-coding RNAs serve as important regulators in complicated cellular activities, including cell differentiation, proliferation and death. Dysregulation of long non-coding RNAs occurs in the formation and progression of cancers. The family of colon cancer associated transcripts, long non-coding RNAs colon cancer associated transcript-1 and colon cancer associated transcript-2 are known as oncogenes involved in various cancers. Colon cancer associated transcript-1 is a novel lncRNA located in 8q24.2, and colon cancer associated transcript-2 maps to the 8q24.21 region encompassing rs6983267. Colon cancer associated transcripts have close associations with clinical characteristics, such as lymph node metastasis, high TNM stage and short overall survival. Knockdown of them can reverse the malignant phenotypes of cancer cells, including proliferation, migration, invasion and apoptosis. Moreover, they can increase the expression level of c-MYC and oncogenic microRNAs via activating a series of complex mechanisms. In brief, the family of colon cancer associated transcripts may serve as potential biomarkers or therapeutic targets for human cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways. Published by Elsevier Inc.

  20. Effects of glucocorticoid hormones on cell proliferation in dimethylhydrazine-induced tumours in rat colon.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1981-01-01

    Adrenocortical hormones have previously been shown to influence cell proliferation in many tissues. In this report, their influence on cell proliferation in the colonic crypt epithelium and in colonic adenocarcinomata is compared. Colonic tumour cell proliferation was found to be retarded following adrenalectomy and this retardation was reversible by administration of hydrocortisone, or by administration of synthetic steroids with predominantly glucocorticoid activity. Tumour cell proliferation in adrenalectomized rats was not promoted by the mineralocorticoid hormone aldosterone. Neither adrenalectomy, nor adrenocortical hormone treatment, significantly influenced colonic crypt cell proliferation.

  1. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis.

    Science.gov (United States)

    Feng, Y; Dai, X; Li, X; Wang, H; Liu, J; Zhang, J; Du, Y; Xia, L

    2012-10-01

    Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self-renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b-FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self-renewal. Colon CSCs were cultured in serum-free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence-activated cell sorting and western blotting. Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi-1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal-regulated kinase 1/2 (ERK 1/2). This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer. © 2012 Blackwell Publishing Ltd.

  2. γ-Aminobutyric acid inhibits the proliferation and increases oxaliplatin sensitivity in human colon cancer cells.

    Science.gov (United States)

    Song, Lihua; Du, Aiying; Xiong, Ying; Jiang, Jing; Zhang, Yao; Tian, Zhaofeng; Yan, Hongli

    2016-11-01

    γ-Aminobutyric acid (GABA) is a natural non-protein amino acid, which broadly exists in many plant parts and is widely used as an ingredient in the food industry. In mammals, it is widely distributed in central nervous system and non-neural tissues. In addition to a primary inhibitory neurotransmitter in the central nervous system, endogenous GABA content has been found to be elevated in neoplastic tissues in colon cancer. However, the effect of extraneous GABA on colon cancer has rarely been reported. In this study, we found the inhibitory effects of GABA on the proliferation of colon cancer cells (CCCs). The amino acid also suppressed metastasis of SW480 and SW620 cells. To further study the correlated mechanism, we analyzed the changes in cell cycle distribution and found that GABA suppressed cell cycle progression through G2/M or G1/S phase. Furthermore, RNA sequencing analysis revealed GABA-induced changes in the mRNA expression of 30 genes, including EGR1, MAPK4, NR4A1, Fos, and FosB, in all the three types of CCC. Importantly, GABA enhanced the anti-tumor efficacy of oxaliplatin (OXA) in subcutaneous xenograft tumor model in nude mice. The data suggest that GABA inhibits colon cancer cell proliferation perhaps by attenuating EGR1-NR4A1 axis, EGR1-Fos axis, and by disrupting MEK-EGR1 signaling pathway. This work reveals the pharmacological value of GABA derived from food and suggests that exogenous GABA might play an auxiliary role in polychemotherapy of colon cancer.

  3. The influence of androgens, anti-androgens, and castration on cell proliferation in the jejunal and colonic crypt epithelia, and in dimethylhydrazine-induced adenocarcinoma of rat colon.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1982-01-01

    Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.

  4. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    International Nuclear Information System (INIS)

    Li, Hua; Lee, Hwa Jin; Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young; Ryu, Jae-Ha

    2014-01-01

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer

  5. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Lee, Hwa Jin [Department of Natural Medicine Resources, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711 (Korea, Republic of); Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Ryu, Jae-Ha, E-mail: ryuha@sookmyung.ac.kr [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)

    2014-01-03

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.

  6. Effects of homeodomain protein CDX2 expression on the proliferation and migration of lovo colon cancer cells.

    Science.gov (United States)

    Zheng, Jian-bao; Sun, Xue-jun; Qi, Jie; Li, Shou-shuai; Wang, Wei; Ren, Hai-liang; Tian, Yong; Lu, Shao-ying; Du, Jun-kai

    2011-09-01

    The homeobox gene, CDX2, plays a major role in development, especially in the gut, and also functions as a tumor suppressor in the adult colon. In the present study, we investigated the effects of CDX2 expression on the proliferation, migration, and apoptosis of the human colon cancer cell line, Lovo. Lovo cells exogenously expressing CDX2 exhibited no significant differences in the percentage of cells in G1- and S-phase or in apoptosis, as determined by flow cytometry. MTT assay also confirmed that CDX2 expression had no effect on proliferation in these cells. Interestingly, conditioned medium collected from CDX2-overexpressing Lovo cells showed a significant decrease in secretion of MMP-2 and the invasive potential of these cells was significantly inhibited. Collectively, these data suggest that CDX2 may play a critical role in the migration and metastasis of colon carcinoma and over-expression of CDX2 in colon cancer cells markedly inhibits invasion. Based on these results, exogenous expression of CDX2 might be a promising option in the treatment of colon carcinoma.

  7. 3',5'-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation

    International Nuclear Information System (INIS)

    Karaolis, David K.R.; Cheng, Kunrong; Lipsky, Michael; Elnabawi, Ahmed; Catalano, Jennifer; Hyodo, Mamoru; Hayakawa, Yoshihiro; Raufman, Jean-Pierre

    2005-01-01

    The novel cyclic dinucleotide, 3',5'-cyclic diguanylic acid, cGpGp (c-di-GMP), is a naturally occurring small molecule that regulates important signaling mechanisms in prokaryotes. Recently, we showed that c-di-GMP has 'drug-like' properties and that c-di-GMP treatment might be a useful antimicrobial approach to attenuate the virulence and pathogenesis of Staphylococcus aureus and prevent or treat infection. In the present communication, we report that c-di-GMP (≤50 μM) has striking properties regarding inhibition of cancer cell proliferation in vitro. c-di-GMP inhibits both basal and growth factor (acetylcholine and epidermal growth factor)-induced cell proliferation of human colon cancer (H508) cells. Toxicity studies revealed that exposure of normal rat kidney cells and human neuroblastoma cells to c-di-GMP at biologically relevant doses showed no lethal cytotoxicity. Cyclic dinucleotides, such as c-di-GMP, represent an attractive and novel 'drug-platform technology' that can be used not only to develop new antimicrobial agents, but also to develop novel therapeutic agents to prevent or treat cancer

  8. Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line.

    Science.gov (United States)

    Freiburghaus, C; Janicke, B; Lindmark-Månsson, H; Oredsson, S M; Paulsson, M A

    2009-06-01

    Food components modify the risk of cancer at a large number of sites but the mechanism of action is unknown. In the present investigation, we studied the effect of the peptide lactoferricin derived from bovine milk lactoferrin on human colon cancer CaCo-2 cells. The cells were either untreated or treated with 2.0, 0.2, or 0.02 microM lactoferricin. Cell cycle kinetics were investigated with a bromodeoxyuridine DNA flow cytometric method. The results show that lactoferricin treatment slightly but significantly prolonged the S phase of the cell cycle. Lactoferricin treatment lowered the level of cyclin E1, a protein involved in the regulation of genes required for G(1)/S transition and consequently for efficient S phase progression. The slight prolongation of the S phase resulted in a reduction of cell proliferation, which became more apparent after a long treatment time.

  9. The influence of dibutyryl adenosine cyclic monophosphate on cell proliferation in the epithelium of the jejunal crypts, the colonic crypts and in colonic carcinomata of rat.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1980-01-01

    1. Cell proliferation in the jejunal crypts, the colonic crypts and in dimethylhydrazine (DMH)-induced adenocarcinomata of rat colon was measured using a stathmokinetic technique. 2. Dibutryl cyclic adneosine monophosphate (dibutyryl cAMP) was found to inhibit cell proliferation in colonic crypts and in colonic adenocarcinomata. 3. Dibutryl cAMP at very high doses was found to inhibit jejunal crypt cell proliferation but at lower doses was found to accelerate jejunal crypt cell proliferation. 4. Neither bilateral adrenalectomy nor chemical sympathectomy was found to abolish the ability of dibutryl cAMP to stimulate jejunal crypt cell proliferation. 5. The present results are difficult to interpret in terms of known hormonal influences on cell proliferation in the tissues examined and of established actions, of these hormones on cyclic nucleotide metabolism in other tissues.

  10. GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Yajing Wang

    2016-01-01

    Full Text Available Nonresolving inflammation is one of the consistent features of the tumor microenvironment in the intestine and plays a critical role in the initiation and development of colon cancer. Here we reported the inhibitory effects of GEN-27, a new derivative of genistein, on the inflammation-related colon cancer cell proliferation and delineated the mechanism of its action. The results indicated that GEN-27 inhibited the proliferation of human colon tumor HCT116 cells stimulated by culture supernatants of LPS-induced human monocytes THP-1 cells and significantly decreased LPS-induced secretion of proinflammatory cytokines interleukin-6 and interleukin-1β in THP-1 cells. The HCT116 cell proliferation elicited by THP-1-conditioned medium could be blocked by the interleukin-1 receptor antagonist (IL-1RA. Further mechanistic study revealed that GEN-27 remarkably inhibited the nuclear translocation of NF-κB and phosphorylation of IκB and IKKα/β in both HCT116 and THP-1 cells. In addition, GEN-27 markedly suppressed the HCT116 cell proliferation stimulated by IL-1β treatment, which was dependent on the inhibition of NF-κB/p65 nuclear localization, as verified by p65 overexpression and BAY 11-7082, an NF-κB inhibitor. Taken together, our findings established that GEN-27 modulated NF-κB signaling pathway involved in inflammation-induced cancer cells proliferation and therefore could be a potential chemopreventive agent against inflammation-associated colon cancer.

  11. GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway.

    Science.gov (United States)

    Wang, Yajing; Lu, Ping; Zhang, Weifeng; Du, Qianming; Tang, Jingjing; Wang, Hong; Lu, Jinrong; Hu, Rong

    2016-01-01

    Nonresolving inflammation is one of the consistent features of the tumor microenvironment in the intestine and plays a critical role in the initiation and development of colon cancer. Here we reported the inhibitory effects of GEN-27, a new derivative of genistein, on the inflammation-related colon cancer cell proliferation and delineated the mechanism of its action. The results indicated that GEN-27 inhibited the proliferation of human colon tumor HCT116 cells stimulated by culture supernatants of LPS-induced human monocytes THP-1 cells and significantly decreased LPS-induced secretion of proinflammatory cytokines interleukin-6 and interleukin-1β in THP-1 cells. The HCT116 cell proliferation elicited by THP-1-conditioned medium could be blocked by the interleukin-1 receptor antagonist (IL-1RA). Further mechanistic study revealed that GEN-27 remarkably inhibited the nuclear translocation of NF-κB and phosphorylation of IκB and IKKα/β in both HCT116 and THP-1 cells. In addition, GEN-27 markedly suppressed the HCT116 cell proliferation stimulated by IL-1β treatment, which was dependent on the inhibition of NF-κB/p65 nuclear localization, as verified by p65 overexpression and BAY 11-7082, an NF-κB inhibitor. Taken together, our findings established that GEN-27 modulated NF-κB signaling pathway involved in inflammation-induced cancer cells proliferation and therefore could be a potential chemopreventive agent against inflammation-associated colon cancer.

  12. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  13. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-01-01

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G 0 /G 1 -S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  14. Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation.

    Science.gov (United States)

    Pedro, Dalila F N; Ramos, Alice A; Lima, Cristovao F; Baltazar, Fatima; Pereira-Wilson, Cristina

    2016-02-01

    Salvia officinalis and some of its isolated compounds have been found to be preventive of DNA damage and increased proliferation in vitro in colon cells. In the present study, we used the azoxymethane model to test effects of S. officinalis on colon cancer prevention in vivo. The results showed that sage treatment reduced the number of ACF formed only if administered before azoxymethane injection, demonstrating that sage tea drinking has a chemopreventive effect on colorectal cancer. A decrease in the proliferation marker Ki67 and in H2 O2 -induced and azoxymethane-induced DNA damage to colonocytes and lymphocytes were found with sage treatment. This confirms in vivo the chemopreventive effects of S. officinalis. Taken together, our results show that sage treatment prevented initiation phases of colon carcinogenesis, an effect due, at least in part, to DNA protection, and reduced proliferation rates of colon epithelial cell that prevent mutations and their fixation through cell replication. These chemopreventive effects of S. officinalis on colon cancer add to the many health benefits attributed to sage and encourage its consumption. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Higher molecular weight polyethylene glycol increases cell proliferation while improving barrier function in an in vitro colon cancer model.

    Science.gov (United States)

    Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah C

    2011-01-01

    Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  16. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

    Directory of Open Access Journals (Sweden)

    Shruthi Bharadwaj

    2011-01-01

    Full Text Available Polyethylene glycol (PEG has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  17. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  18. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    International Nuclear Information System (INIS)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-01-01

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  19. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    Science.gov (United States)

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  20. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer

    Directory of Open Access Journals (Sweden)

    Yang F

    2017-09-01

    Full Text Available Fei Yang,1,* Jun-Yi Gao,2,* Hua Chen,1 Zhen-Hua Du,1 Xue-Qun Zhang,3 Wei Gao4 1Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 2Department of Clinical Medicine, Weifang Medical College, Weifang, 3Graduate School, Taishan Medical University, Xintai, 4Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Background: Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. Methods: In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim were also detected. Results: We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 µM and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Conclusion: Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer. Keywords: human colon cancer, PI3K/Akt/mTOR pathway, BEZ235, PI3KCA knockdown

  1. The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells

    Science.gov (United States)

    Xiang, Yi; Yao, Xiaohong; Chen, Keqiang; Wang, Xiafei; Zhou, Jiamin; Gong, Wanghua; Yoshimura, Teizo; Huang, Jiaqiang; Wang, Rongquan; Wu, Yuzhang; Shi, Guochao; Bian, Xiuwu; Wang, Jiming

    2016-01-01

    The G-protein coupled chemoattractant receptor formylpeptide receptor-2 (FPR2 in human, Fpr2 in mice) is expressed by mouse colon epithelial cells and plays a critical role in mediating mucosal homeostasis and inflammatory responses. However, the biological role of FPR2 in human colon is unclear. Our investigation revealed that a considerable number of human colon cancer cell lines expressed FPR2 and its ligands promoted cell migration and proliferation. Human colon cancer cell lines expressing high levels of FPR2 also formed more rapidly growing tumors in immunocompromised mice as compared with cell lines expressing lower levels of FPR2. Knocking down of FPR2 from colon cancer cell lines highly expressing FPR2 reduced their tumorigenicity. Clinically, FPR2 is more highly expressed in progressive colon cancer, associated with poorer patient prognosis. These results suggest that FPR2 can be high-jacked by colon cancer cells for their growth advantage, thus becoming a potential target for therapeutic development. PMID:27904774

  2. Exercise reduces inflammation and cell proliferation in rat colon carcinogenesis.

    Science.gov (United States)

    Demarzo, Marcelo Marcos Piva; Martins, Lisandra Vanessa; Fernandes, Cleverson Rodrigues; Herrero, Fábio Augusto; Perez, Sérgio Eduardo de Andrade; Turatti, Aline; Garcia, Sérgio Britto

    2008-04-01

    There is evidence that the risk of colon cancer is reduced by appropriate levels of physical exercise. Nevertheless, the mechanisms involved in this protective effect of exercise remain largely unknown. Inflammation is emerging as a unifying link between a range of environment exposures and neoplastic risk. The carcinogen dimethyl-hydrazine (DMH) induces an increase in epithelial cell proliferation and in the expression of the inflammation-related enzyme cyclooxigenase-2 (COX-2) in the colon of rats. Our aim was to verify whether these events could be attenuated by exercise. Four groups of eight Wistar rats were used in the experiment. The groups G1 and G3 were sedentary (controls), and the groups G2 and G4 were submitted to 8 wk of swimming training, 5 d.wk. The groups G3 and G4 were given subcutaneous injections of DMH immediately after the exercise protocols. Fifteen days after the neoplasic induction, the rats were sacrificed and the colon was processed for histological examination and immunohistochemistry staining of proliferating cell nuclear antigen (PCNA) and COX-2. We found a significant increase in the PCNA-labeling index in both DMH-treated groups of rats. However, this increase was significantly attenuated in the training group G4 (P < 0.01). Similar results were observed in relation to the COX-2 expression. From our findings, we conclude that exercise training exerts remarkable antiproliferative and antiinflammatory effects in the rat colonic mucosa, suggesting that this may be an important mechanism to explain how exercise protects against colonic cancer.

  3. Effect of Ovarian Steroids on Colonic Epithelial Cell Proliferation and Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    K. Altunbas

    2007-01-01

    Full Text Available The aim of this study was to investigate the effects of steroid hormones on proliferation and apoptosis in the colon crypt epithelium. The research was conducted on adult ovariectomized (Ovx rats (Sprague Dawley. Ovx rats were injected for 15 days with 0.2 ml of sesame oil (control; C, or 17β-oestradiol (10 μg/d; E, or progesterone (2 mg/d; P, or E + P. Proliferative activity in the colon was assessed by using proliferating cell nuclear antigen (PCNA antibody. The proliferation index (PI, the number of PCNA positive cells divided by the total number of cells counted in the crypt column multiplied by 100, was calculated. PI was lower in the hormonetreated groups, especially in group P compared to that in group C. The apoptotic index (AI, the mean number of apoptotic cells, was detected by active caspase 3 immunoreactivity per crypt in the colon. AI was lower in the colon crypt epithelium of group E than that of the other groups. However, AI in the colon crypt epithelium in groups P and E + P was higher than that of both group E and group C. In addition, the colon crypt size (the number of epithelial cells lining one side of 10 well-oriented, longitudinally cut crypts was considerably lower in group E than that of the other groups. In conclusion, we showed that the decrease of AI in group E was balanced by progesterone; the decrease of PI in group P was also depressed by oestrogen.

  4. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  5. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  6. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts

    Directory of Open Access Journals (Sweden)

    Cheng M

    2014-12-01

    Full Text Available Michelle Cheng,1,* Samantha Ho,1,* Jun Hwan Yoo,1,2,* Deanna Hoang-Yen Tran,1,* Kyriaki Bakirtzi,1 Bowei Su,1 Diana Hoang-Ngoc Tran,1 Yuzu Kubota,1 Ryan Ichikawa,1 Hon Wai Koon1 1Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; 2Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Republic of Korea *These authors share co-first authorship Background: Cathelicidin (LL-37 in humans and mCRAMP in mice represents a family of endogenous antimicrobial and anti-inflammatory peptides. Cancer-associated fibroblasts can promote the proliferation of colon cancer cells and growth of colon cancer tumors. Methods: We examined the role of cathelicidin in the development of colon cancer, using subcutaneous human HT-29 colon-cancer-cell-derived tumor model in nude mice and azoxymethane- and dextran sulfate-mediated colon cancer model in C57BL/6 mice. We also determined the indirect antitumoral mechanism of cathelicidin via the inhibition of epithelial–mesenchymal transition (EMT of colon cancer cells and fibroblast-supported colon cancer cell proliferation. Results: Intravenous administration of cathelicidin expressing adeno-associated virus significantly reduced the size of tumors, tumor-derived collagen expression, and tumor-derived fibroblast expression in HT-29-derived subcutaneous tumors in nude mice. Enema administration of the mouse cathelicidin peptide significantly reduced the size and number of colonic tumors in azoxymethane- and dextran sulfate-treated mice without inducing apoptosis in tumors and the adjacent normal colonic tissues. Cathelicidin inhibited the collagen expression and vimentin-positive fibroblast expression in colonic tumors. Cathelicidin did not directly affect HT-29 cell viability, but did significantly reduce tumor growth factor-ß1-induced EMT of colon cancer cells. Media conditioned by the

  7. Urotensin-II receptor is over-expressed in colon cancer cell lines and in colon carcinoma in humans.

    Science.gov (United States)

    Federico, Alessandro; Zappavigna, Silvia; Romano, Marco; Grieco, Paolo; Luce, Amalia; Marra, Monica; Gravina, Antonietta Gerarda; Stiuso, Paola; D'Armiento, Francesco Paolo; Vitale, Giovanni; Tuccillo, Concetta; Novellino, Ettore; Loguercio, Carmela; Caraglia, Michele

    2014-01-01

    Urotensin (U)-II receptor (UTR) has been previously reported to be over-expressed in a number of tumours. Whether UTR-related pathway plays a role in colon carcinogenesis is unknown. We evaluated UTR protein and mRNA expression in human epithelial colon cancer cell lines and in normal colon tissue, adenomatous polyps and colon cancer. U-II protein expression was assessed in cancer cell lines. Moreover, we evaluated the effects of U-II(4-11) (an UTR agonist), antagonists and knockdown of UTR protein expression through a specific shRNA, on proliferation, invasion and motility of human colon cancer cells. Cancer cell lines expressed U-II protein and UTR protein and mRNA. By immunohistochemistry, UTR was expressed in 5-30% of epithelial cells in 45 normal controls, in 30-48% in 21 adenomatous polyps and in 65-90% in 48 colon adenocarcinomas. UTR mRNA expression was increased by threefold in adenomatous polyps and eightfold in colon cancer, compared with normal colon. U-II(4-11) induced a 20-40% increase in cell growth while the blockade of the receptor with specific antagonists caused growth inhibition of 20-40%. Moreover, the knock down of UTR with a shRNA or the inhibition of UTR with the antagonist urantide induced an approximately 50% inhibition of both motility and invasion. UTR appears to be involved in the regulation of colon cancer cell invasion and motility. These data suggest that UTR-related pathway may play a role in colon carcinogenesis and that UTR may function as a target for therapeutic intervention in colon cancer. © 2013 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    Science.gov (United States)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  9. Nicotine promotes cell proliferation via α7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    International Nuclear Information System (INIS)

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee; Tai, Emily Kin Ki; Wu, William Ka Kei; Cho, Chi Hin

    2007-01-01

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a β 1 - and β 2 -selective antagonist, respectively, suggesting the role of β-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferation and adrenaline production. Expression of α7-nicotinic acetylcholine receptor (α7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an α7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and DβH expression as well as adrenaline production. Taken together, through the action on α7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and β-adrenergic activation. These data reveal the contributory role α7-nAChR and β-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer

  10. High Endogenous Expression of Chitinase 3-Like 1 and Excessive Epithelial Proliferation with Colonic Tumor Formation in MOLF/EiJ Mice.

    Directory of Open Access Journals (Sweden)

    Daren Low

    Full Text Available Colorectal cancer (CRC development is mediated by uncontrolled survival and proliferation of tumor progenitor cells. Using animal models to identify and study host-derived factors that underlie this process can aid interventions in preventing tumor expansion and metastasis. In healthy steady states in humans and mice (e.g. C57BL/6 strain, colonic Chitinase 3-like 1 (CHI3L1 gene expression is undetectable. However, this expression can be induced during intestinal inflammation and tumorigenesis where CHI3L1 plays an important role in tissue restitution and cell proliferation. Here, we show that a wild-derived mouse strain MOLF/EiJ expresses high levels of colonic epithelial CHI3L1 at the steady state due to several nucleotide polymorphisms in the proximal promoter regions of the CHI3L1 gene. Interestingly, these mice spontaneously developed polypoid nodules in the colon with signs of immune cell infiltrations at steady state. The CHI3L1 positive colonic epithelial cells were highly proliferative and exhibited malignant transformation and expansion when exposed in vivo to azoxymethane, one of the well-known colonic carcinogens.

  11. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines.

    Science.gov (United States)

    Campbell, Sharon E; Stone, William L; Lee, Steven; Whaley, Sarah; Yang, Hongsong; Qui, Min; Goforth, Paige; Sherman, Devin; McHaffie, Derek; Krishnan, Koyamangalath

    2006-01-17

    Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-gamma-tocopherol isoform is found primarily in the US diet, while RRR-alpha-tocopherol is highest in the plasma. The effectiveness of RRR-alpha- and RRR-gamma-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-alpha- or RRR-gamma-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Treatment with RRR-gamma-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-alpha-tocopherol did not. Further, RRR-gamma-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-gamma-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-gamma-tocopherol to induce cell death. This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-gamma-tocopherol without damage to

  12. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    International Nuclear Information System (INIS)

    Campbell, Sharon E; Krishnan, Koyamangalath; Stone, William L; Lee, Steven; Whaley, Sarah; Yang, Hongsong; Qui, Min; Goforth, Paige; Sherman, Devin; McHaffie, Derek

    2006-01-01

    Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-γ-tocopherol without damage to normal colon cells. The amount growth

  13. IL1β-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1β in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1β, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1β. Further analysis indicated that the major COX-2 product, prostaglandin E 2 , directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1β. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1β in the fibroblasts.

  14. Cell proliferation in dimethylhydrazine-induced colonic adenocarcinomata following cytotoxic drug treatment.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-08-25

    A stathmokinetic technique was used to study cell proliferation in dimethylhydrazine-induced adenocarcinomata of rat colon following treatment with cytotoxic drugs. The rate of cell division was significantly increased three days after treatment with 5,7-dihydroxytryptamine and seven days after treatment with 5-fluorouracil. Acceleration of tumour cell proliferation following 5,7-dihydroxytryptamine treatment was inhibited by treating animals with the antiseritoninergic drug Xylamidine Tosylate. Acceleration of tumour cell proliferation following 5-fluorouracil treatment was inhibited by treating animals either with the antiseritoninergic drug BW501 or with the histamine H2-receptor blocking drug Cimetidine.

  15. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    Science.gov (United States)

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  16. NoxO1 Controls Proliferation of Colon Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Franziska Moll

    2018-05-01

    Full Text Available AimReactive oxygen species (ROS produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut.ResultsNoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells.ConclusionNoxO1 affects colon epithelium homeostasis and prevents inflammation.

  17. Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines

    Science.gov (United States)

    Campbell, Sharon E; Stone, William L; Whaley, Sarah G; Qui, Min; Krishnan, Koyamangalath

    2003-01-01

    Background Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. Results We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of

  18. Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines

    International Nuclear Information System (INIS)

    Campbell, Sharon E; Stone, William L; Whaley, Sarah G; Qui, Min; Krishnan, Koyamangalath

    2003-01-01

    Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of α-tocopherol. Our data suggest that

  19. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

    International Nuclear Information System (INIS)

    Qi, Wentao; Weber, Christopher R; Wasland, Kaarin; Savkovic, Suzana D

    2011-01-01

    Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF)-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity. The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation) and promoter of p27kip1 (ChIP assay) were examined in presence of genistein in cells with mutated p53 (HT-29) and wild type p53 (HCT116). Silencing of p53 determined activity of FOXO3 when it is bound to p53. Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state) in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state). Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut) interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut) complex leads to elevated p27kip1 expression and promotes cell cycle arrest. These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer

  20. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction.

    Science.gov (United States)

    Juhasz, Agnes; Markel, Susan; Gaur, Shikha; Liu, Han; Lu, Jiamo; Jiang, Guojian; Wu, Xiwei; Antony, Smitha; Wu, Yongzhong; Melillo, Giovanni; Meitzler, Jennifer L; Haines, Diana C; Butcher, Donna; Roy, Krishnendu; Doroshow, James H

    2017-05-12

    Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O 2 ̇̄ , is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80-90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G 1 /S block that translated into a 2-3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G 1 /S checkpoint was associated with a significant decrease in cyclin D 1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    International Nuclear Information System (INIS)

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-01-01

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  2. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  3. Effect of soy saponin on the growth of human colon cancer cells

    Science.gov (United States)

    Tsai, Cheng-Yu; Chen, Yue-Hwa; Chien, Yi-Wen; Huang, Wen-Hsuan; Lin, Shyh-Hsiang

    2010-01-01

    AIM: To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells. METHODS: WiDr human colon cancer cells were treated with 150, 300, 600 or 1200 ppm of soy saponin to determine the effect on cell growth, cell morphology, alkaline phosphatase (AP) and protein kinase C (PKC) activities, and P53 protein, c-Fos and c-Jun gene expression. RESULTS: Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-O-tetradecanol-phorbol-13-acetate-stimulated PKC activity (P saponins developed cytoplasmic vesicles and the cell membrane became rougher and more irregular in a dose-dependent manner, and eventually disassembled. At 600 and 1200 ppm, the activity of AP was increased (P saponin. CONCLUSION: Soy saponin may be effective in preventing colon cancer by affecting cell morphology, cell proliferation enzymes, and cell growth. PMID:20632438

  4. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Sherman Devin

    2006-01-01

    Full Text Available Abstract Background Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. Methods The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29 and primary colon cells (CCD-112CoN, nontransformed normal phenotype was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Results Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. Conclusion This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR

  5. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells.

    Science.gov (United States)

    Zeng, Huawei; Taussig, David P; Cheng, Wen-Hsing; Johnson, LuAnn K; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  6. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation.

    Science.gov (United States)

    Dame, Michael K; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.

  7. Dietary pectin and calcium inhibit colonic proliferation in vivo by differing mechanisms.

    Science.gov (United States)

    Umar, S; Morris, A P; Kourouma, F; Sellin, J H

    2003-12-01

    Diet plays an important role in promoting and/or preventing colon cancer; however, the effects of specific nutrients remain uncertain because of the difficulties in correlating epidemiological and basic observations. Transmissible murine colonic hyperplasia (TMCH) induced by Citrobacter rodentium, causes significant hyperproliferation and hyperplasia in the mouse distal colon and increases the risk of subsequent neoplasia. We have recently shown that TMCH is associated with an increased abundance of cellular beta-catenin and its nuclear translocation coupled with up-regulation of its downstream targets, c-myc and cyclin D1. In this study, we examined the effects of two putatively protective nutrients, calcium and soluble fibre pectin, on molecular events linked to proliferation in the colonic epithelium during TMCH. Dietary intervention incorporating changes in calcium [high (1.0%) and low (0.1%)] and alterations in fibre content (6% pectin and fibre-free) were compared with the standard AIN-93 diet (0.5% calcium, 5% cellulose), followed by histomorphometry and immunochemical assessment of potential oncogenes. Dietary interventions did not alter the time course of Citrobacter infection. Both 1.0% calcium and 6% pectin diet inhibited increases in proliferation and crypt length typically seen in TMCH. Neither the low calcium nor fibre-free diets had significant effect. Pectin diet blocked increases in cellular beta-catenin, cyclin D1 and c-myc levels associated with TMCH by 70%, whereas neither high nor low calcium diet had significant effect on these molecules. Diets supplemented with either calcium or pectin therefore, exert anti-proliferative effects in mouse distal colon involving different molecular pathways. TMCH is thus a diet-sensitive model for examining the effect of specific nutrients on molecular characteristics of the pre-neoplastic colonic epithelium.

  8. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa.

    Directory of Open Access Journals (Sweden)

    Nives Hörmann

    Full Text Available The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs. Here, we report that colonization of germ-free (GF Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2 and protein-kinase B (AKT induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area.

  9. Commonly used bowel preparations have significant and different effects upon cell proliferation in the colon: a pilot study

    Directory of Open Access Journals (Sweden)

    Riley Stuart A

    2008-11-01

    Full Text Available Abstract Background Markers of crypt cell proliferation are frequently employed in studies of the impact of genetic and exogenous factors on human colonic physiology. Human studies often rely on the assessment of tissue acquired at endoscopy. Modulation of cell proliferation by bowel preparation with oral laxatives may confound the findings of such studies, but there is little data on the impact of commonly used bowel preparations on markers of cell proliferation. Methods Crypt length, crypt cellularity and crypt cell proliferation were assessed in biopsies acquired after preparation with either Klean-Prep or Picolax. Crypt cell proliferation was assessed by whole-mount mitotic figure count, and by two different immunohistochemical (IHC labelling methods (Ki-67 and pHH3. Subsequent biopsies were obtained from the same patients without bowel preparation and similarly assessed. Parameters were compared between groups using analysis of variance and paired t-tests. Results There were significant differences in labelling indices (LI between biopsies taken after Klean-prep and those taken after Picolax preparation, for both Ki67 (p = 0.019 and pHH3 (p = 0.017. A similar trend was seen for whole-mount mitotic figure counts. Suppression or elevation of proliferation parameters by bowel preparation may mask any effect due to an intervention or disease. Conclusion Commonly used bowel preparations may have significant and different effects on crypt cell proliferation. This should be taken into account when designing studies and when considering the findings of existing studies.

  10. Integrin α6Bβ4 inhibits colon cancer cell proliferation and c-Myc activity

    International Nuclear Information System (INIS)

    Dydensborg, Anders Bondo; Teller, Inga C; Groulx, Jean-François; Basora, Nuria; Paré, Fréderic; Herring, Elizabeth; Gauthier, Rémy; Jean, Dominique; Beaulieu, Jean-François

    2009-01-01

    Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin β4 subunit is up-regulated in primary colon cancer. Its partner, the integrin α6 subunit, exists as two different mRNA splice variants, α6A and α6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these α6 splice variants is still lacking. In this work, we first analyzed the expression of integrin α6A and α6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of α6A and α6B on the regulation of cell proliferation in a colon cancer cell line. Using variant-specific antibodies, we observed that α6A and α6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express α6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed α6B. A relative decrease of α6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the α6A/α6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the α6A/α6B balance in favor of α6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc. The findings that the α6Bβ4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its α6Aβ4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this α6Bβ4 integrin. Taken together, these findings point out the importance of integrin

  11. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  12. Prehistoric human colonization of India

    Indian Academy of Sciences (India)

    Unknown

    2. Earliest human colonization of south Asia. The early human colonization of south Asia is represented largely by an abundance of stone tool assemblages. The oldest known tools ..... component among finished tools is conspicuous in the hinterland riverine ...... sativum), green gram (Vigna radiata), gram/chicken pea.

  13. Comparison of the circadian variation in cell proliferation in normal and neoplastic colonic epithelial cells.

    Science.gov (United States)

    Kennedy, M F; Tutton, P J; Barkla, D H

    1985-09-15

    Circadian variations in cell proliferation in normal tissues have been recognised for many years but comparable phenomena in neoplastic tissues appear not to have been reported. Adenomas and carcinomas were induced in mouse colon by injection of dimethylhydrazine (DMH) and cell proliferation in these tumors was measured stathmokinetically. In normal intestine cell proliferation is fastest at night whereas in both adenomas and carcinomas it was found to be slower at night than in the middle of the day. Chemical sympathectomy was found to abolish the circadian variation in tumor cell proliferation.

  14. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    Science.gov (United States)

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. MiR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α.

    Science.gov (United States)

    Li, Chunyan; Wang, Yulin; Lu, Shuming; Zhang, Zhuqing; Meng, Hua; Liang, Lina; Zhang, Yan; Song, Bo

    2015-11-01

    The microRNA (miRNA), miR‑34a is significant in colon cancer progression. In the present study, the role of miR‑34a in colon cancer cell proliferation and metastasis was investigated. It was found that the expression of miR‑34a in colon cancer tissues and cell lines was lower when compared with that of normal tissues and cells. Further research demonstrated that miR‑34a inhibited cell proliferation, induced G1 phase arrest, and suppressed metastasis and epithelial mesenchymal transition in colon cancer cells. Bioinformatic prediction indicated that platelet‑derived growth factor receptor α (PDGFRA) was a potential target gene of miR‑34a and a luciferase assay identified that PDGFRA was a novel direct target gene of miR‑34a. In addition, assays of western blot analyses and quantitative reverse‑transcription polymerase chain reaction confirmed that miR‑34a decreased PDGFRA mRNA expression and protein levels in colon cancer cells. Assessment of cellular function indicated that miR‑34a inhibited colon cancer progression via PDGFRA. These findings demonstrate that miR‑34a may act as a negative regulator in colon cancer by targeting PDGFRA.

  16. Adrenergic factors involved in the control of crypt cell proliferation in jejunum and descending colon of mouse.

    Science.gov (United States)

    Kennedy, M F; Tutton, P J; Barkla, D H

    1983-01-01

    The mitotic rates in the crypts of Lieberkühn of the proximal jejunum and descending colon of mouse, following different treatments, were measured using a stathmokinetic technique. Regression coefficients, representing mitotic rates, were then calculated by the method of least squares. Treatment with adrenaline, isoprenaline, phenylephrine, phentolamine, and yohimbine all resulted in decreased mitotic rate of jejunal and colonic crypt cells. Chemical sympathectomy and cryosympathectomy had a similar effect, and chemical sympathectomy was followed by a supersensitivity to clonidine. Intraperitoneal injection of metaraminol, clonidine, propranolol, prazosin, labetolol and simultaneous injection of propranolol and adrenaline all resulted in an increased rate of crypt cell proliferation in both jejunum and colon. A significant increase in mitotic rate was observed in both tissues at night. The amplitude of this diurnal variation was decreased in both jejunum and colon following chemical sympathectomy. In addition, the amplitude of this variation in jejunum was decreased after treatment with yohimbine or phentolamine. The results of the study suggest that the sympathetic nervous system stimulates epithelial cell proliferation in both the small and large intestine and that this effect is mediated by an alpha 2-adrenoceptor. By contrast, stimulation of alpha 1- and beta-adrenoceptors is inhibitory to cell proliferation in these tissues.

  17. Luteolin inhibits the colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition: an experimental study

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2017-11-01

    Full Text Available Objective: To study the regulating effect of luteolin on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition. Methods: Colon cancer HT-29 cells were cultured and randomly divided into two groups, control group were treated with serum-free medium without drugs and LUT group were treated with serum-free medium containing luteolin. After 24 h of treatment, cells were collected to extract RNA, and then fluorescent quantitative PCR method was used to determine the mRNA expression of proliferation genes, migration genes and epithelial-mesenchymal transition genes. Results: After 24 h of luteolin treatment, Lrig1, TSPYL5, Bim, SOX15 and DLC1 mRNA expression in LUT group were significantly higher than those in control group while RPS15a, Bad, TRPV5, TRPV6, PLD2, IBP, SphK1, FAK, Vimentin and N-cadherin mRNA expression were significantly lower than those in control group. Conclusion: Luteolin has inhibiting effect on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition.

  18. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  19. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    International Nuclear Information System (INIS)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei; Lu, Su; Tang, Huamei; Peng, Zhihai

    2014-01-01

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation

  20. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    Science.gov (United States)

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  1. Keratin23 (KRT23 knockdown decreases proliferation and affects the DNA damage response of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Karin Birkenkamp-Demtröder

    Full Text Available Keratin 23 (KRT23 is strongly expressed in colon adenocarcinomas but absent in normal colon mucosa. Array based methylation profiling of 40 colon samples showed that the promoter of KRT23 was methylated in normal colon mucosa, while hypomethylated in most adenocarcinomas. Promoter methylation correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression in vitro. Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed that KRT23 depletion affected molecules of the cell cycle and DNA replication, recombination and repair. In vitro analyses confirmed that KRT23 depletion significantly decreased the cellular proliferation of SW948 and LS1034 cells and markedly decreased the expression of genes involved in DNA damage response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced proliferation of the KRT23 depleted cells compared to irradiated control cells.

  2. Subepithelial myofibroblasts are novel nonprofessional APCs in the human colonic mucosa.

    Science.gov (United States)

    Saada, Jamal I; Pinchuk, Irina V; Barrera, Carlos A; Adegboyega, Patrick A; Suarez, Giovanni; Mifflin, Randy C; Di Mari, John F; Reyes, Victor E; Powell, Don W

    2006-11-01

    The human gastrointestinal mucosa is exposed to a diverse normal microflora and dietary Ags and is a common site of entry for pathogens. The mucosal immune system must respond to these diverse signals with either the initiation of immunity or tolerance. APCs are important accessory cells that modulate T cell responses which initiate and maintain adaptive immunity. The ability of APCs to communicate with CD4+ T cells is largely dependent on the expression of class II MHC molecules by the APCs. Using immunohistochemistry, confocal microscopy, and flow cytometry, we demonstrate that alpha-smooth muscle actin(+), CD90+ subepithelial myofibroblasts (stromal cells) constitutively express class II MHC molecules in normal colonic mucosa and that they are distinct from professional APCs such as macrophages and dendritic cells. Primary isolates of human colonic myofibroblasts (CMFs) cultured in vitro were able to stimulate allogeneic CD4+ T cell proliferation. This process was dependent on class II MHC and CD80/86 costimulatory molecule expression by the myofibroblasts. We also demonstrate that CMFs, engineered to express a specific DR4 allele, can process and present human serum albumin to a human serum albumin-specific and DR4 allele-restricted T cell hybridoma. These studies characterize a novel cell phenotype which, due to its strategic location and class II MHC expression, may be involved in capture of Ags that cross the epithelial barrier and present them to lamina propria CD4+ T cells. Thus, human CMFs may be important in regulating local immunity in the colon.

  3. Pro-apoptotic and anti-proliferative effects of corn silk extract on human colon cancer cell lines

    OpenAIRE

    Guo, Hao; Guan, Hong; Yang, Wenqin; Liu, Han; Hou, Huiling; Chen, Xue; Liu, Zhenyan; Zang, Chuangang; Liu, Yuchao; Liu, Jicheng

    2016-01-01

    Corn silk is an economically and nutritionally significant natural product as it represents a staple food for a large proportion of the world population. This study investigated the anticancer activity of corn silk extract in human colon cancer cells and human gastric cancer cells. Following treatment with corn silk extract, certain apoptosis-related events were observed, including inhibition of cell proliferation, loss of mitochondrial membrane potential (??m), release of Ca2+ and release of...

  4. Identifying colon cancer risk modules with better classification performance based on human signaling network.

    Science.gov (United States)

    Qu, Xiaoli; Xie, Ruiqiang; Chen, Lina; Feng, Chenchen; Zhou, Yanyan; Li, Wan; Huang, Hao; Jia, Xu; Lv, Junjie; He, Yuehan; Du, Youwen; Li, Weiguo; Shi, Yuchen; He, Weiming

    2014-10-01

    Identifying differences between normal and tumor samples from a modular perspective may help to improve our understanding of the mechanisms responsible for colon cancer. Many cancer studies have shown that signaling transduction and biological pathways are disturbed in disease states, and expression profiles can distinguish variations in diseases. In this study, we integrated a weighted human signaling network and gene expression profiles to select risk modules associated with tumor conditions. Risk modules as classification features by our method had a better classification performance than other methods, and one risk module for colon cancer had a good classification performance for distinguishing between normal/tumor samples and between tumor stages. All genes in the module were annotated to the biological process of positive regulation of cell proliferation, and were highly associated with colon cancer. These results suggested that these genes might be the potential risk genes for colon cancer. Copyright © 2013. Published by Elsevier Inc.

  5. Cell proliferation and ageing in mouse colon

    International Nuclear Information System (INIS)

    Hamilton, E.

    1978-01-01

    The descending colon of 4 month and 2 year old mice was exposed to 1250 rad X-rays. This killed most of the epithelial cells. The surviving cells formed new crypts and surface epithelium in animals of both ages. Not all of the crypts were replaced. The irradiated area contained not more than 80% of the control number of crypts per section for at least 6 weeks after irradiation. In the young mice new crypts were much larger and the labelling index (LI) was much higher than in unirradiated animals during the first week after irradiation. In the old mice the overshoot in LI and crypt size began later and continued longer than in young animals. This may be because the control of cell proliferation was much less precise in old than in young mice. The irradiation was repeated, in attempt to age prematurely the epithelial cells by increasing the number of divisions they underwent. The overshoot in LI and cells per crypt was smaller after a second dose than after the first in both young and old mice. There was almost no overshoot after a third dose was given to young mice. Increasing the number of divisions undergone by the surviving epithelial cells did not change the timing of repopulation in young mice compared to that found in old mice. Little evidence was found for the presence of a limited proliferative lifespan in colon epithelial cells. (author)

  6. Programmed Cell Death, Proliferating Cell Nuclear Antigen and p53 Expression in Mouse Colon Mucosa during Diet-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Mauro Risio

    2000-01-01

    Full Text Available Western‐style diets (WDs trigger and sustain the early phases of tumorigenesis in mouse colon, and when continued throughout the life span lead to the development of dysplastic crypts. In order to evaluate the roles both of cell proliferation and programmed cell death (PCD in WD‐induced tumorigenesis, immunohistochemical detection of proliferating nuclear antigen (PCNA, in situ end labeling (TUNEL of DNA breaks, and p53 protein were carried out in mouse colonic mucosa during prolonged feeding of two WDs. PCNA Labeling Index of colonic crypts was significantly higher in WD‐treated animals than in controls only at the beginning of the nutritional study, the gap rapidly bridged by increased cell proliferation spontaneously occurring in the colonic mucosa during aging. A transient early homeostatic activation of PCD at the base of the crypt also was observed in WD groups. No changes in PCD were seen in the upper third of the crypt or in surface epithelium throughout the study, indicating that PCD in that colonic crypt segment produces a constant flux of cell loss, uninfluenced by homeostatic fluctuations. A major finding was an irreversible, progressive, age‐related decline of PCD at the crypt base in both control and treated animals that occurred during the second half of the rodents  life span. p53 protein was not immunohistochemically detected, suggesting that neither overexpression of wild‐type nor mutated forms of the protein are involved in the above mentioned changes.

  7. In vitro evaluation of antiproliferative and cytotoxic properties of pterostilbene against human colon cancer cells.

    Science.gov (United States)

    Wawszczyk, Joanna; Kapral, Małgorzata; Hollek, Andrzej; Węglarz, Ludmiła

    2014-01-01

    Colon cancer has been remaining the second leading cause of cancer mortality in Poland in the last years. Epidemiological, preclinical and clinical studies reveal that dietary phytochemicals may exert chemopreventive and therapeutic effect against colorectal cancer. There is a growing interest in identifying new biologically active agents from dietary sources in this respect. Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a naturally occurring stilbene, that has been found to have antioxidative, anti-inflammatory and antipro- liferative properties. Compared to other stilbenes, pterostilbene has greater bioavailability, and so, a greater potential for clinical applications. Recent studies showed that pterostilbene exhibits the hallmark characteristics of an anticancer agent. The aim of this study was to analyze antiproliferative and cytotoxic effects of pterostilbene on human colon cancer Caco-2 cells. They were cultured using standard techniques and exposed to increasing doses of pterostilbene (5-100 μM) for 48 and 72 h. Cell proliferation was determined by sulforhodamine B assay. The growth of treated cells was expressed as a percentage of that of untreated control cells. Pterostilbene decreased proliferation rate of Caco-2 cells in a dose- and time-dependent manner. Its concentrations = 25 μM did not affect cell growth after 48 h treatment period. Significant growth inhibition was observed in cultures incubated with higher concentrations of pterostilbene (40-100 μM). Pterostilbene at all concentrations used (5-100 μM) caused significant inhibition of cell proliferation when the experimental time period was elongated to 72 h. The maximum growth reduction was observed at 100 mM pterostilbene. The cytotoxicity of pterostilbene was evaluated in 48 h cultures based on lactate dehydrogenase (LDH) leakage into the culture medium and showed dose-related pattern. The findings of this study showed significant dose-dependent antiproliferative and cytotoxic

  8. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction and ergosterol assay.

    Science.gov (United States)

    Chow, Yiing Yng; Rahman, Sadequr; Ting, Adeline Su Yien

    2017-01-01

    This study aimed to establish the colonization behavior and proliferation potential of three endophytes and one pathogen Ganoderma boninense (Gb) introduced into oil palm ramets (host model). The endophytes selected were Diaporthe phaseolorum (WAA02), Trichoderma asperellum (T2), and Penicillium citrinum (BTF08). Ramets were first inoculated with 100 mL of fungal cells (10 6  cfu mL - 1 ) via soil drenching. For the next 7 days, ramets were sampled and subjected to three different assays to detect and identify fungal colonization, and establish their proliferation potential in planta . Plate assay revealed the presence of endophytes in root, stem and leaf tissues within 7 days after inoculation. Polymerase Chain Reaction (PCR) detected and identified the isolates from the plant tissues. The ergosterol assay (via high performance liquid chromatography, HPLC) confirmed the presence of endophytes and Gb in planta . The increase in ergosterol levels throughout 49 days was however insignificant, suggesting that proliferation may be absent or may occur very slowly in planta . This study strongly suggests that the selected endophytes could colonize the host upon inoculation, but proliferation occurs at a slower rate, which may subsequently influence the biocontrol expression of endophytes against the pathogen.

  9. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay

    Directory of Open Access Journals (Sweden)

    Yiing Yng Chow

    2017-01-01

    Full Text Available This study aimed to establish the colonization behavior and proliferation potential of three endophytes and one pathogen Ganoderma boninense (Gb introduced into oil palm ramets (host model. The endophytes selected were Diaporthe phaseolorum (WAA02, Trichoderma asperellum (T2, and Penicillium citrinum (BTF08. Ramets were first inoculated with 100 mL of fungal cells (106 cfu mL−1 via soil drenching. For the next 7 days, ramets were sampled and subjected to three different assays to detect and identify fungal colonization, and establish their proliferation potential in planta. Plate assay revealed the presence of endophytes in root, stem and leaf tissues within 7 days after inoculation. Polymerase Chain Reaction (PCR detected and identified the isolates from the plant tissues. The ergosterol assay (via high-performance liquid chromatography, HPLC confirmed the presence of endophytes and Gb in planta. The increase in ergosterol levels throughout 49 days was however insignificant, suggesting that proliferation may be absent or may occur very slowly in planta. This study strongly suggests that the selected endophytes could colonize the host upon inoculation, but proliferation occurs at a slower rate, which may subsequently influence the biocontrol expression of endophytes against the pathogen.

  10. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    NARCIS (Netherlands)

    Erk, M.J. van; Teuling, E.; Staal, Y.C.M.; Huybers, S.; Bladeren, P.J. van; Aarts, J.M.M.J.G.; Ommen, B. van

    2004-01-01

    Background. Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an

  11. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    NARCIS (Netherlands)

    Erk, van M.J.; Teuling, E.; Staal, Y.C.M.; Huybers, S.; Bladeren, van P.J.; Aarts, J.M.M.J.G.; Ommen, van B.

    2004-01-01

    Background: Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an

  12. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    NARCIS (Netherlands)

    Van Erk, Marjan J; Teuling, Eva; Staal, Yvonne C. M.; Huybers, Sylvie; Van Bladeren, Peter J; Aarts, Jac MMJG; Van Ommen, Ben

    2004-01-01

    BACKGROUND: Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an

  13. Human wound colonization by Lucilia eximia and Chrysomya rufifacies (Diptera: Calliphoridae): myiasis, perimortem, or postmortem colonization?

    Science.gov (United States)

    Sanford, Michelle R; Whitworth, Terry L; Phatak, Darshan R

    2014-05-01

    The infestation of human or animal tissues by fly larvae has been given distinctive terminology depending on the timing and location of colonization. Wounds and orifices colonized by Diptera in a living human or animal are typically referred to as myiasis. When the colonization occurs after death, it is referred to as postmortem colonization and can be used to estimate the minimum postmortem interval. What happens when the human, as in the case presented here, has a necrotic limb while the human remains alive, at least for a short period of time? The case presented here documents perimortem wound colonization by Lucilia eximia (Wiedemann) and Chrysomya rufifacies (Macquart) and the considerations for approximating development temperatures and estimating the time of colonization (TOC). This represents the first record of L. eximia in human myiasis in the United States and the first record of the co-occurrence of L. eximia and C. rufifacies in human myiasis in the United States. The TOC was estimated using both ambient and body temperature. Insect colonization before death complicates the estimation of TOC and minimum postmortem interval and illustrates the problem of temperature approximation in forensic entomology casework.

  14. Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ

    DEFF Research Database (Denmark)

    Alex, Sheril; Lange, Katja; Amolo, Tom

    2013-01-01

    with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin induced PPAR target genes and pathways in the colon. We conclude that (i) SCFA potently stimulate ANGPTL4 synthesis in human colon adenocarcinoma cells and (ii) SCFA transactivate and bind to PPARγ. Our data...

  15. Traditional Chinese Medicine Curcumin Sensitizes Human Colon Cancer to Radiation by Altering the Expression of DNA Repair-related Genes.

    Science.gov (United States)

    Yang, Guangen; Qiu, Jianming; Wang, Dong; Tao, Yong; Song, Yihuan; Wang, Hongtao; Tang, Juping; Wang, Xing; Sun, Y U; Yang, Zhijian; Hoffman, Robert M

    2018-01-01

    The aim of the present study was to investigate the radio-sensitizing efficacy of curcumin, a traditional Chinese medicine (TCM) on colon cancer cells in vitro and in vivo. Human colon cancer HT-29 cells were treated with curcumin (2.5 μM), irradiation (10 Gy) and the combination of irradiation and curcumin. Cell proliferation was assessed using the MTT assay. Apoptotic cells were detected by Annexin V-PE/7-AAD analysis. PCR was performed to determine differential-expression profiling of 95 DNA-repair genes in irradiated cells and cells treated with both irradiation and curcumin. Differentially-expressed genes were confirmed by Western blotting. In vivo radio-sensitizing efficacy of curcumin was assessed in a xenograft mouse model of HT-29 colon cancer. Curcumin was administrated daily by intraperitoneal injection at 20 mg/kg/dose. Mice received irradiation (10 Gy) twice weekly. Apoptosis of the cancer cells following treatment was determined by TUNEL staining. Irradiation induced proliferation inhibition and apoptosis of HT-29 cells in vitro. Concurrent curcumin treatment sensitized the HT-29 tumor to irradiation (pcurcumin and irradiation compared with irradiation alone (pcurcumin and irradiation resulted in a significantly greater tumor-growth inhibition and apoptosis compared to irradiation treatment alone (pCurcumin sensitizes human colon cancer in vitro and in vivo to radiation. Downregulation of LIG4 and PNKP and upregulation of XRCC5 and CCNH DNA-repair-related genes were involved in the radio-sensitizing efficacy of curcumin in colon cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance

    Directory of Open Access Journals (Sweden)

    Tomoaki Naito

    2017-10-01

    Full Text Available We identified a crypt-specific core microbiota (CSCM dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas. Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS, through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage.

  17. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  18. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells.

    Science.gov (United States)

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer.

  19. Combination of Quercetin and Kaempferol enhances in vitro Cytotoxicity on Human Colon Cancer (HCT-116 Cells

    Directory of Open Access Journals (Sweden)

    Sara Jaramillo-Carmona

    2014-05-01

    Full Text Available Colon cancer is one of the most common types of cancer malignancy. Although flavonoids naturally occur as mixtures, little information is available regarding the additive or synergistic biochemical interactions between flavonoids. The objectives of this study were to examine the feasibility of combining two major structurally related flavonoids, quercetin and kaempferol, to affect the cell viability, cell cycle, and proliferation of the human colon cancer HCT-116 cell line. The combination of quercetin and kaempferol exhibited a greater cytotoxic efficacy than did either quercetin or kaempferol alone. This effect was highest and acted in a synergistic fashion in a 2-fold quercetin and 1-fold kaempferol IC50 combination, which also arrested cell growth in the G2/M phase and suppressed proliferation. Our observations support a structure-activity relationship based on the presence of 3’–OH moiety and/or 4’–OH moiety on the B-ring of flavonoids.

  20. Celecoxib induces proliferation and Amphiregulin production in colon subepithelial myofibroblasts, activating erk1-2 signaling in synergy with EGFR.

    Science.gov (United States)

    Benelli, Roberto; Venè, Roberta; Minghelli, Simona; Carlone, Sebastiano; Gatteschi, Beatrice; Ferrari, Nicoletta

    2013-01-01

    The COX-2 inhibitor Celecoxib, tested in phase III trials for the prevention of sporadic colon adenomas, reduced the appearance of new adenomas, but was unable to affect the incidence of colon cancer. Moreover the 5years follow-up showed that patients discontinuing Celecoxib treatment had an increased incidence of adenomas as compared to the placebo arm. In the APC(min/+) mouse model short term treatment with Celecoxib reduced gut adenomas, but a prolonged administration of the drug induced fibroblast activation and intestinal fibrosis with a final tumor burden. The way Celecoxib could directly activate human colon myofibroblasts (MF) has not yet been investigated. We found that MF are activated by non toxic doses of Celecoxib. Celecoxib induces erk1-2 and Akt phosphorylation within 5'. This short term activation is apparently insufficient to cause phenotypic changes, but the contemporary triggering of EGFR causes an impressive synergic effect inducing MF proliferation and the neo-expression and release of Amphiregulin (AREG), a well known EGFR agonist involved in colon cancer progression. As a confirm to these observations, the erk inhibitor U0126 and the EGFR inhibitors Tyrphostin and Cetuximab were able to contrast AREG induction. Our data provide evidence that Celecoxib directly activates MF empowering EGFR signaling. According to these results the association with EGFR (or erk1-2) inhibitors could abolish the off-target activity of Celecoxib, possibly extending the potential of this drug for colon cancer prevention. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    Science.gov (United States)

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  2. Colonic spirochetosis in animals and humans.

    Science.gov (United States)

    Smith, James L

    2005-07-01

    Colonic spirochetosis is a disease caused by the gram-negative bacteria Brachyspira aalborgi and Brachyspira pilosicoli. B. pilosicoli induces disease in both humans and animals, whereas B. aalborgi affects only humans and higher primates. Symptoms in humans include diarrhea, rectal bleeding, and abdominal cramps. Colonic spirochetosis is common in third world countries; however, in developed countries, the disease is observed mainly in homosexual males. Terminally ill patients infected with Brachyspira are particularly at risk for developing spirochetemia. Diarrhea, poor growth performance, and decreased feed-to-gain efficiency is seen in pigs with colonic spirochetosis. The disease in chickens is characterized by delayed and/or reduced egg production, diarrhea, poor feed conversion, and retarded growth. Thus, colonic spirochetosis can represent a serious economic loss in the swine and poultry industries. The organisms are transmitted by the fecal-oral route, and several studies have demonstrated that human, primate, pig, dog, or bird strains of B. pilosicoli can be transmitted to pigs, chickens, and mice. B. pilosicoli may be a zoonotic pathogen, and although it has not been demonstrated, there is a possibility that both B. pilosicoli and B. aalborgi can be transferred to humans via contact with the feces of infected animals, meat from infected animals, or food contaminated by food handlers. Neither B. pilosicoli nor B. aalborgi has been well characterized in terms of basic cellular functions, pathogenicity, or genetics. Studies are needed to more thoroughly understand these Brachyspira species and their disease mechanisms.

  3. Regulation of the proliferation of colon cancer cells by compounds that affect glycolysis, including 3-bromopyruvate, 2-deoxyglucose and biguanides.

    Science.gov (United States)

    Lea, Michael A; Qureshi, Mehreen S; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; Desbordes, Charles

    2013-02-01

    In previous studies performed by our group, we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and it had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation, but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and p53-null cells and affected colonic cancer lines with different growth rates.

  4. 5-Fluorouracil-radiation interactions in human colon adenocarcinoma cells

    International Nuclear Information System (INIS)

    Buchholz, Daniel J.; Lepek, Katherine J.; Rich, Tyvin A.; Murray, David

    1995-01-01

    Purpose: To determine the effect of cellular proliferation and cell cycle stage on the ability of postirradiation 5-fluorouracil (5-FU) to radiosensitize cultured human colon adenocarcinoma Clone A cells. Methods and Materials: Cell survival curves were generated for irradiated: (a) log- and plateau-phase Clone A cells; and (b) Clone A cells separated by centrifugal elutriation into the various phases of the cell cycle; with and without postirradiation treatment with 100 μg/ml 5-FU. Results: Postirradiation treatment with 5-FU sensitized proliferating cells to a greater degree than it sensitized cells growing in plateau phase. The β component of cell kill in log-phase cells was increased by a factor of 1.5 with a sensitizer enhancement ratio of 1.21 at the 0.01 survival level. Plateau-phase cells showed less radiosensitization (sensitizer enhancement ratio of 1.13 at the 0.01 survival level); however, there was a mild increase in both α and β kill in plateau-phase cells. Elutriated G 1 cells were the most radiosensitive, independent of treatment with 5-FU. The phase of the cell cycle had little effect on the ability of fluorouracil to radiosensitize Clone A cells. Conclusion: Proliferating cells are more susceptible to radiosensitization with 5-FU than plateau-phase cells are, but this effect appears to be independent of the phase of the cell cycle

  5. Curcumin Conjugated with PLGA Potentiates Sustainability, Anti-Proliferative Activity and Apoptosis in Human Colon Carcinoma Cells

    Science.gov (United States)

    Waghela, Bhargav N.; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M.; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  6. Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin

    NARCIS (Netherlands)

    Tytgat, K. M.; Büller, H. A.; Opdam, F. J.; Kim, Y. S.; Einerhand, A. W.; Dekker, J.

    1994-01-01

    Human colonic epithelium produces large amounts of mucin. The aim of this study was to examine mucin biosynthesis in the human colon. Human colonic mucin was isolated using CsCl density gradients, and polyclonal antiserum was raised. Biosynthesis of colonic mucins was studied by labeling colonic

  7. PKH26 staining defines distinct subsets of normal human colon epithelial cells at different maturation stages.

    Directory of Open Access Journals (Sweden)

    Anna Pastò

    Full Text Available BACKGROUND AND AIM: Colon crypts are characterized by a hierarchy of cells distributed along the crypt axis. Aim of this paper was to develop an in vitro system for separation of epithelial cell subsets in different maturation stages from normal human colon. METHODOLOGY AND MAJOR FINDINGS: Dissociated colonic epithelial cells were stained with PKH26, which allows identification of distinct populations based on their proliferation rate, and cultured in vitro in the absence of serum. The cytofluorimetric expression of CK20, Msi-1 and Lgr5 was studied. The mRNA levels of several stemness-associated genes were also compared in cultured cell populations and in three colon crypt populations isolated by microdissection. A PKH(pos population survived in culture and formed spheroids; this population included subsets with slow (PKH(high and rapid (PKH(low replicative rates. Molecular analysis revealed higher mRNA levels of both Msi-1 and Lgr-5 in PKH(high cells; by cytofluorimetric analysis, Msi-1(+/Lgr5(+ cells were only found within PKH(high cells, whereas Msi-1(+/Lgr5(- cells were also observed in the PKH(low population. As judged by qRT-PCR analysis, the expression of several stemness-associated markers (Bmi-1, EphB2, EpCAM, ALDH1 was highly enriched in Msi-1(+/Lgr5(+ cells. While CK20 expression was mainly found in PKH(low and PKH(neg cells, a small PKH(high subset co-expressed both CK20 and Msi-1, but not Lgr5; cells with these properties also expressed Mucin, and could be identified in vivo in colon crypts. These results mirrored those found in cells isolated from different crypt portions by microdissection, and based on proliferation rates and marker expression they allowed to define several subsets at different maturation stages: PKH(high/Lgr5(+/Msi-1(+/CK20(-, PKH(high/Lgr5(-/Msi-1(+/CK20(+, PKH(low/Lgr5(-/Msi-1(+/Ck20(-, and PKH(low/Lgr5(-/Msi-1(-/CK20(+ cells. CONCLUSIONS: Our data show the possibility of deriving in vitro, without any

  8. Influence of diet or intrarectal bile acid injections on colon epithelial cell proliferation in rats previously injected with 1,2-dimethylhydrazine

    International Nuclear Information System (INIS)

    Glauert, H.P.; Bennink, M.R.

    1983-01-01

    The effects of varying colon bile acid concentrations on rat colon epithelial cell proliferation were studied. Bile acid concentrations were altered by intrarectally injecting either deoxycholic or lithocholic acid for 4 weeks or by increasing the dietary fat or fiber (wheat bran, agar, or carrageenan) intake for 4 weeks. 1,2-Dimethylhydrazine (DMH) was s.c. injected into half of the rats 1 week before treatments began. Colon epithelial cell proliferation was measured by [ 3 H]thymidine autoradiography of colon crypts. Rats injected with DMH had more DNA-synthesizing cells per crypt. Neither bile acid injection nor any of the diets altered the number of DNA-synthesizing cells per crypt. DMH injections, deoxycholic and lithocholic acid intrarectal injections, and dietary agar and wheat bran all increased the total number of cells per crypt. High fat diets and dietary carrageenan did not affect cell number. All diets containing fiber lowered total fecal bile acid concentrations, but increasing the fat content of the diet did not affect them. These results indicate that the bile acid injections and dietary agar and wheat bran induce a slight hyperplasia in the colon

  9. Prevention and treatment of colon cancer by peroral administration of HAMLET (human α-lactalbumin made lethal to tumour cells).

    Science.gov (United States)

    Puthia, Manoj; Storm, Petter; Nadeem, Aftab; Hsiung, Sabrina; Svanborg, Catharina

    2014-01-01

    Most colon cancers start with dysregulated Wnt/β-catenin signalling and remain a major therapeutic challenge. Examining whether HAMLET (human α-lactalbumin made lethal to tumour cells) may be used for colon cancer treatment is logical, based on the properties of the complex and its biological context. To investigate if HAMLET can be used for colon cancer treatment and prevention. Apc(Min)(/+) mice, which carry mutations relevant to hereditary and sporadic human colorectal tumours, were used as a model for human disease. HAMLET was given perorally in therapeutic and prophylactic regimens. Tumour burden and animal survival of HAMLET-treated and sham-fed mice were compared. Tissue analysis focused on Wnt/β-catenin signalling, proliferation markers and gene expression, using microarrays, immunoblotting, immunohistochemistry and ELISA. Confocal microscopy, reporter assay, immunoprecipitation, immunoblotting, ion flux assays and holographic imaging were used to determine effects on colon cancer cells. Peroral HAMLET administration reduced tumour progression and mortality in Apc(Min)(/+) mice. HAMLET accumulated specifically in tumour tissue, reduced β-catenin and related tumour markers. Gene expression analysis detected inhibition of Wnt signalling and a shift to a more differentiated phenotype. In colon cancer cells with APC mutations, HAMLET altered β-catenin integrity and localisation through an ion channel-dependent pathway, defining a new mechanism for controlling β-catenin signalling. Remarkably, supplying HAMLET to the drinking water from the time of weaning also significantly prevented tumour development. These data identify HAMLET as a new, peroral agent for colon cancer prevention and treatment, especially needed in people carrying APC mutations, where colon cancer remains a leading cause of death.

  10. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    Science.gov (United States)

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  11. Inositol Hexaphosphate Inhibits Proliferation and Induces Apoptosis of Colon Cancer Cells by Suppressing the AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Małgorzata Kapral

    2017-10-01

    Full Text Available Abstract: AKT, a serine/threonine protein kinase and mammalian target of rapamycin (mTOR plays a critical role in the proliferation and resistance to apoptosis that are essential to the development and progression of colon cancer. Therefore, AKT/mTOR signaling pathway has been recognized as an attractive target for anticancer therapy. Inositol hexaphosphate (InsP6, a natural occurring phytochemical, has been shown to have both preventive and therapeutic effects against various cancers, however, its exact molecular mechanisms of action are not fully understood. The aim of the in vitro study was to investigate the anticancer activity of InsP6 on colon cancer with the focus on inhibiting the AKT1 kinase and p70S6K1 as mTOR effector, in relation to proliferation and apoptosis of cells. The colon cancer Caco-2 cells were cultured using standard techniques and exposed to InsP6 at different concentrations (1 mM, 2.5 mM and 5 mM. Cellular proliferative activity was monitored by 5-bromo-2′-deoxyuridine (BrdU incorporation into cellular DNA. Flow cytometric analysis was performed for cell cycle progression and apoptosis studies. Real-time RT-qPCR was used to validate mRNA levels of CDNK1A, CDNK1B, CASP3, CASP9, AKT1 and S6K1 genes. The concentration of p21 protein as well as the activities of caspase 3, AKT1 and p70S6K1 were determined by the ELISA method. The results revealed that IP6 inhibited proliferation and stimulated apoptosis of colon cancer cells. This effect was mediated by an increase in the expression of genes encoding p21, p27, caspase 3, caspase 9 as well a decrease in transcription of AKT1 and S6K1. InsP6 suppressed phosphorylation of AKT1 and p70S6K1, downstream effector of mTOR. Based on these studies it may be concluded that InsP6 can reduce proliferation and induce apoptosis through inhibition of the AKT/mTOR pathway and mTOR effector followed by modulation of the expression and activity of several key components of these pathways in

  12. Overexpression of GRK3, Promoting Tumor Proliferation, Is Predictive of Poor Prognosis in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-01-01

    Full Text Available Deregulation of G protein-coupled receptor kinase 3 (GRK3, which belongs to a subfamily of kinases called GRKs, acts as a promoter mechanism in some cancer types. Our study found that GRK3 was significantly overexpressed in 162 pairs of colon cancer tissues than in the matched noncancerous mucosa (P<0.01. Based on immunohistochemistry staining of TMAs, GRK3 was dramatically stained positive in primary colon cancer (130/180, 72.22%, whereas it was detected minimally or negative in paired normal mucosa specimens (50/180, 27.78%. Overexpression of GRK3 was closely correlated with AJCC stage (P=0.001, depth of tumor invasion (P<0.001, lymph node involvement (P=0.004, distant metastasis (P=0.016, and histologic differentiation (P=0.004. Overexpression of GRK3 is an independent prognostic indicator that correlates with poor survival in colon cancer patients. Consistent with this, downregulation of GRK3 exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate, and impaired colon tumorigenicity in a xenograft model. Hence, a specific overexpression of GRK3 was observed in colon cancer, GRK3 potentially contributing to progression by mediating cancer cell proliferation and functions as a poor prognostic indicator in colon cancer and potentially represent a novel therapeutic target for the disease.

  13. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  14. MicroRNA-340 inhibits the proliferation and promotes the apoptosis of colon cancer cells by modulating REV3L

    Science.gov (United States)

    Arivazhagan, Roshini; Lee, Jaesuk; Bayarsaikhan, Delger; Kwak, Peter; Son, Myeongjoo; Byun, Kyunghee; Salekdeh, Ghasem Hosseini; Lee, Bonghee

    2018-01-01

    DNA Directed Polymerase Zeta Catalytic Subunit (REV3L) has recently emerged as an important oncogene. Although the expressions of REV3L are similar in normal and cancer cells, several mutations in REV3L have been shown to play important roles in cancer. These mutations cause proteins misfolding and mislocalization, which in turn alters their interactions and biological functions. miRNAs play important regulatory roles during the progression and metastasis of several human cancers. This study was undertaken to determine how changes in the location and interactions of REV3L regulate colon cancer progression. REV3L protein mislocalization confirmed from the immunostaining results and the known interactions of REV3L was found to be broken as seen from the PLA assay results. The mislocalized REV3L might interact with new proteins partners in the cytoplasm which in turn may play role in regulating colon cancer progression. hsa-miR-340 (miR-340), a microRNA down-regulated in colon cancer, was used to bind to and downregulate REV3L, and found to control the proliferation and induce the apoptosis of colon cancer cells (HCT-116 and DLD-1) via the MAPK pathway. Furthermore, this down-regulation of REV3L also diminished colon cancer cell migration, and down-regulated MMP-2 and MMP-9. Combined treatment of colon cancer cells with miR-340 and 5-FU enhanced the inhibitory effects of 5-FU. In addition, in vivo experiments conducted on nude mice revealed tumor sizes were smaller in a HCT-116-miR-340 injected group than in a HCT-116-pCMV injected group. Our findings suggest mutations in REV3L causes protein mislocalization to the cytoplasm, breaking its interaction and is believed to form new protein interactions in cytoplasm contributing to colon cancer progression. Accordingly, microRNA-340 appears to be a good candidate for colon cancer therapy. PMID:29435169

  15. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca(2+)-sensitive and Ca(2+)-resistant human colon carcinoma cells.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-10-08

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation.

  16. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    Science.gov (United States)

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4 mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation. PMID:19394137

  17. Isolation and in vitro expansion of human colonic stem cells

    NARCIS (Netherlands)

    Jung, P.; Sato, T.; Merlos-Suarez, A.; Barriga, F.M.; Iglesias, M.; Rossell, D.; Auer, H.; Gallardo, M.; Blasco, M.A.; Sancho, E.; Clevers, H.; Batlle, E.

    2011-01-01

    Here we describe the isolation of stem cells of the human colonic epithelium. Differential cell surface abundance of ephrin type-B receptor 2 (EPHB2) allows the purification of different cell types from human colon mucosa biopsies. The highest EPHB2 surface levels correspond to epithelial colonic

  18. Prehistoric human colonization of India

    Indian Academy of Sciences (India)

    Unknown

    J. Biosci. | Vol. 26 | No. 4 | Suppl. | November 2001. V N Misra. 492 ... humans differ from the other apes in their upright posture, ... characterized by Levallois flakes and blades and by the ... and the coastal region running parallel to them, northeast ..... November 2001. Prehistoric human colonization of India. 497. Figure 1.

  19. Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Bensassi, Fatma; El Golli-Bennour, Emna; Abid-Essefi, Salwa; Bouaziz, Chayma; Hajlaoui, Mohamed Rabeh; Bacha, Hassen

    2009-01-01

    The mycotoxin, deoxynivalenol (DON), is generally detected in cereal grains and grain-based food products worldwide. Therefore, DON has numerous toxicological effects on animals and humans. The present investigation was conducted to determine the molecular aspects of DON toxicity on human colon carcinoma cells (HT 29). To this aim, we have monitored the effects of DON on (i) cell viability, (ii) Heat shock protein expressions as a parameter of protective and adaptive response, (iii) oxidative damage and (iv) cell death signalling pathway. Our results clearly showed that DON treatment inhibits cell proliferation, did not induce Hsp 70 protein expression and reactive oxygen species generation. We have also demonstrated that this toxin induced a DNA fragmentation followed by p53 and caspase-3 activations. Finally, our findings suggested that oxidative damage is not the major contributor to DON toxicity. This mycotoxin induces direct DNA lesions and could be considered by this fact as a genotoxic agent inducing cell death via an apoptotic process.

  20. Influence of prostaglandin analogues on epithelial cell proliferation and xenograft growth.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1980-01-01

    The influence of two prostaglandin (PG) analogues, 16,16-dimethyl PG E2 and 16,16-dimethyl PG F2 alpha and of the cyclo-oxygenase inhibitor, flurbiprofen, on epithelial cell proliferation was assessed using a stathmokinetic technique. The epithelia examined were those of the jejunal crypts, the colonic crypts and that of dimethylhydrazine-induced adenocarcinomas of rat colon. The influence of the two prostaglandin analogues, and of flurbiprofen, on the growth of a human colorectal tumour propagated as xenografts in immune-deprived mice was also assessed. The PG E2 analogue transiently inhibited xenograft growth, but was without effect on the mitotic rate in the rat tissues. The PG F2 alpha analogue was also found to inhibit xenograft growth but, unlike the PG E2 analogue, it was found to be a strong inhibitor of cell proliferation in rat colonic tumours, and an accelerator of proliferation in jejunal-crypt cells. The only statistically significant effect of flurbiprofen was to accelerate cell division in the rat colonic tumours.

  1. Luffa echinata Roxb. Induces Human Colon Cancer Cell (HT-29 Death by Triggering the Mitochondrial Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2012-05-01

    Full Text Available The antiproliferative properties and cell death mechanism induced by the extract of the fruits of Luffa echinata Roxb. (LER were investigated. The methanolic extract of LER inhibited the proliferation of human colon cancer cells (HT-29 in both dose-dependent and time-dependent manners and caused a significant increase in the population of apoptotic cells. In addition, obvious shrinkage and destruction of the monolayer were observed in LER-treated cells, but not in untreated cells. Analysis of the cell cycle after treatment of HT-29 cells with various concentrations indicated that LER extracts inhibited the cellular proliferation of HT-29 cells via G2/M phase arrest of the cell cycle. The Reactive oxygen species (ROS level determination revealed that LER extracts induced apoptotic cell death via ROS generation. In addition, LER treatment led to a rapid drop in mitochondrial membrane potential (MMP as a decrease in fluorescence. The transcripts of several apoptosis-related genes were investigated by RT-PCR analysis. The caspase-3 transcripts of HT-29 cells significantly accumulated and the level of Bcl-XL mRNA was decreased after treatment with LER extract. Furthermore, the ratio of mitochondria-dependent apoptosis genes (Bax and Bcl-2 was sharply increased from 1.6 to 54.1. These experiments suggest that LER has anticancer properties via inducing the apoptosis in colon cancer cells, which provided the impetus for further studies on the therapeutic potential of LER against human colon carcinoma.

  2. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC

    Science.gov (United States)

    Sylman, Joanna L.; Ngo, Anh T. P.; Pang, Jiaqing; Sears, Rosalie C.; Williams, Craig D.; McCarty, Owen J. T.

    2017-01-01

    Aspirin, an anti-inflammatory and antithrombotic drug, has become the focus of intense research as a potential anticancer agent owing to its ability to reduce tumor proliferation in vitro and to prevent tumorigenesis in patients. Studies have found an anticancer effect of aspirin when used in low, antiplatelet doses. However, the mechanisms through which low-dose aspirin works are poorly understood. In this study, we aimed to determine the effect of aspirin on the cross talk between platelets and cancer cells. For our study, we used two colon cancer cell lines isolated from the same donor but characterized by different metastatic potential, SW480 (nonmetastatic) and SW620 (metastatic) cancer cells, and a pancreatic cancer cell line, PANC-1 (nonmetastatic). We found that SW480 and PANC-1 cancer cell proliferation was potentiated by human platelets in a manner dependent on the upregulation and activation of the oncoprotein c-MYC. The ability of platelets to upregulate c-MYC and cancer cell proliferation was reversed by an antiplatelet concentration of aspirin. In conclusion, we show for the first time that inhibition of platelets by aspirin can affect their ability to induce cancer cell proliferation through the modulation of the c-MYC oncoprotein. PMID:27903583

  3. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells

    Science.gov (United States)

    Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris

    2016-09-01

    The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.

  4. Pro-apoptotic and anti-proliferative effects of corn silk extract on human colon cancer cell lines.

    Science.gov (United States)

    Guo, Hao; Guan, Hong; Yang, Wenqin; Liu, Han; Hou, Huiling; Chen, Xue; Liu, Zhenyan; Zang, Chuangang; Liu, Yuchao; Liu, Jicheng

    2017-02-01

    Corn silk is an economically and nutritionally significant natural product as it represents a staple food for a large proportion of the world population. This study investigated the anticancer activity of corn silk extract in human colon cancer cells and human gastric cancer cells. Following treatment with corn silk extract, certain apoptosis-related events were observed, including inhibition of cell proliferation, loss of mitochondrial membrane potential (ΔΨm), release of Ca2+ and release of cytochrome c from the mitochondria into the cytosol. Our results revealed that corn silk extract inhibited the proliferation of cancer cells and increased the level of apoptosis in a concentration-dependent manner. Western blot analysis revealed that corn silk extract upregulated the levels of Bax, cytochrome c , caspase-3 and caspase-9, but downregulated the levels of B-cell lymphoma 2. These results suggest that corn silk extract may induce apoptosis through the mitochondria-mediated pathway.

  5. Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities.

    Science.gov (United States)

    Direito, Rosa; Lima, Ana; Rocha, João; Ferreira, Ricardo Boavida; Mota, Joana; Rebelo, Patrícia; Fernandes, Adelaide; Pinto, Rui; Alves, Paula; Bronze, Rosário; Sepodes, Bruno; Figueira, Maria-Eduardo

    2017-08-01

    Polyphenols from persimmon (Diospyros kaki) have demonstrated radical-scavenging and antiinflammatory activities; however, little is known about the effects of persimmon phenolics on inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Therefore, we aimed in this work to characterize the antiinflammatory and antiproliferative effects of a persimmon phenolic extract (80% acetone in water), using an in vivo model of experimental colitis and a model of cancer cell invasion. Our results show, for the first time, a beneficial effect of a persimmon phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells. Administration of persimmon phenolic extract to mice with TNBS-induced colitis led to a reduction in several functional and histological markers of colon inflammation, namely: attenuation of colon length decrease, reduction of the extent of visible injury (ulcer formation), decrease in diarrhea severity, reduced mortality rate, reduction of mucosal hemorrhage and reduction of general histological features of colon inflammation. In vitro studies also showed that persimmon phenolic extract successfully impaired cell proliferation and invasion in HT-29 cells. Further investigation showed a decreased expression of COX-2 and iNOS in the colonic tissue of colitis mice, two important mediators of intestinal inflammation, but there was no inhibition of the gelatinase MMP-9 and MMP-2 activities. Given the role of inflammatory processes in the progression of CRC and the important link between inflammation and cancer, our results highlight the potential of persimmon polyphenols as a pharmacological tool in the treatment of patients with IBD. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  7. Emigrating Beyond Earth Human Adaptation and Space Colonization

    CERN Document Server

    Smith, Cameron M

    2012-01-01

    For four million years humankind has been actively expanding geographically and in doing so has adapted to a wide variety of hostile environments. Now we are looking towards the ultimate adaptation - the colonization of space. Emigrating Beyond Earth illustrates that this is not a technocratic endeavor, but a natural continuation of human evolution; a journey not just for the engineer and rocket scientist, but for everyman. Based on the most current understanding of our universe, human adaptation and evolution, the authors explain why space colonization must be planned as an adaptation to, rather than the conquest of, space. Emigrating Beyond Earth argues that space colonization is an insurance policy for our species, and that it isn't about rockets and robots, it's about humans doing what we've been doing for four million years: finding new places and new ways to live. Applying a unique anthropological approach, the authors outline a framework for continued human space exploration and offer a glimpse of a po...

  8. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    OpenAIRE

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological lev...

  9. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    Science.gov (United States)

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  10. SILENCING THE NUCLEOCYTOPLASMIC O-GLCNAC TRANSFERASE REDUCES PROLIFERATION, ADHESION AND MIGRATION OF CANCER AND FETAL HUMAN COLON CELL LINES

    Directory of Open Access Journals (Sweden)

    AGATA eSTEENACKERS

    2016-05-01

    Full Text Available The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP, whereas O-GlcNAcase (OGA removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically de-creased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of mi-gration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disor-ganize microfilament, microtubule and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migra-tory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biolog-ical properties of cancer cell lines but also for normal cells.

  11. Characterization of the N-methoxyindole-3-carbinol (NI3C)–Induced Cell Cycle Arrest in Human Colon Cancer Cell Lines

    DEFF Research Database (Denmark)

    Neave, Antje S.; Sarup, Sussi; Seidelin, Michel

    2005-01-01

    Recent results have shown that indole-3-carbinol (I3C) inhibits the cellular growth of human cancer cell lines. In some cruciferous vegetables, another indole, N-methoxyindole-3-carbinol (NI3C), is found beside I3C. Knowledge about the biological effects of NI3C is limited. The aim of the present...... study was to show the effect of NI3C on cell growth of two human colon cancer cell lines, DLD-1 and HCT-116. For the first time it is shown that NI3C inhibits cellular growth of DLD-1 and HCT-116 and that NI3C is a more potent inhibitor of cell proliferation than I3C. In addition to the inhibition...... of cellular proliferation, NI3C caused an accumulation of HCT-116 cells in the G2/M phase, in contrast to I3C, which led to an accumulation of the colon cells in G0/G1 phase. Furthermore, NI3C delays the G1-S phase transition of synchronized HCT-116 cells. The indole-mediated cell-cycle arrest may be related...

  12. Overexpression of UbcH10 alternates the cell cycle profile and accelerate the tumor proliferation in colon cancer

    Directory of Open Access Journals (Sweden)

    Hatoh Shinji

    2009-03-01

    Full Text Available Abstract Background UbcH10 participates in proper metaphase to anaphase transition, and abrogation of UbcH10 results in the premature separation of sister chromatids. To assess the potential role of UbcH10 in colon cancer progression, we analyzed the clinicopathological relevance of UbcH10 in colon cancer. Methods We firstly screened the expression profile of UbcH10 in various types of cancer tissues as well as cell lines. Thereafter, using the colon cancer cells line, we manipulated the expression of UbcH10 and evaluated the cell cycle profile and cellular proliferations. Furthermore, the clinicopathological significance of UbcH10 was immunohistologically evaluated in patients with colon cancer. Statistical analysis was performed using the student's t-test and Chi-square test. Results Using the colon cancer cells, depletion of UbcH10 resulted in suppression of cellular growth whereas overexpression of UbcH10 promoted the cellular growth and oncogenic cellular growth. Mitotic population was markedly alternated by the manipulation of UbcH10 expression. Immunohistochemical analysis indicated that UbcH10 was significantly higher in colon cancer tissue compared with normal colon epithelia. Furthermore, the clinicopathological evaluation revealed that UbcH10 was associated with high-grade histological tumors. Conclusion The results show the clinicopathological significance of UbcH10 in the progression of colon cancer. Thus UbcH10 may act as a novel biomarker in patients with colon cancer.

  13. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  14. Calcium in milk products precipitates intestinal fatty acids and secondary bile acids and thus inhibits colonic cytotoxicity in humans

    NARCIS (Netherlands)

    Govers, MJAP; Termont, DSML; Lapre, JA; Kleibeuker, JH; Vonk, RJ; VanderMeer, R

    1996-01-01

    Dietary calcium may reduce the risk of colon cancer, probably by precipitating cytotoxic surfactants, such as secondary bile acids, in the colonic lumen. We previously showed that milk mineral, an important source of calcium, decreases metabolic risk factors and colonic proliferation in rats, We non

  15. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  16. The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells

    International Nuclear Information System (INIS)

    Cherukuri, Durga Prasad; Chen, Xiao B.O.; Goulet, Anne-Christine; Young, Robert N.; Han, Yongxin; Heimark, Ronald L.; Regan, John W.; Meuillet, Emmanuelle; Nelson, Mark A.

    2007-01-01

    Accumulating evidence indicates that elevated levels of prostaglandin E 2 (PGE 2 ) can increase intestinal epithelial cell proliferation, and thus play a role in colorectal tumorigenesis. PGE 2 exerts its effects through four G-protein-coupled PGE receptor (EP) subtypes, named the EP1, EP2, EP3, and EP4. Increased phosphorylation of extracellular regulated kinases (ERK1/2) is required for PGE 2 to stimulate cell proliferation of human colon cancer cells. However, the EP receptor(s) that are involved in this process remain unknown. We provide evidence that L-161,982, a selective EP4 receptor antagonist, completely blocks PGE 2 -induced ERK phosphorylation and cell proliferation of HCA-7 cells. In order to identify downstream target genes of ERK1/2 signaling, we found that PGE 2 induces expression of early growth response gene-1 (EGR-1) downstream of ERK1/2 and regulates its expression at the level of transcription. PGE 2 treatment induces phosphorylation of cyclic AMP response element binding protein (CREB) at Ser133 residue and CRE-mediated luciferase activity in HCA-7 cells. Studies with dominant-negative CREB mutant (ACREB) provide clear evidence for the involvement of CREB in PGE 2 driven egr-1 transcription in HCA-7 cells. In conclusion, this study reveals that egr-1 is a target gene of PGE 2 in HCA-7 cells and is regulated via the newly identified EP4/ERK/CREB pathway. Finally our results support the notion that antagonizing EP4 receptors may provide a novel therapeutic approach to the treatment of colon cancer

  17. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    Science.gov (United States)

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells.

    Directory of Open Access Journals (Sweden)

    Emma C Skoog

    Full Text Available Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.

  19. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    Science.gov (United States)

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  20. Hath1 inhibits proliferation of colon cancer cells probably through up-regulating expression of Muc2 and p27 and down-regulating expression of cyclin D1.

    Science.gov (United States)

    Zhu, Dai-Hua; Niu, Bai-Lin; Du, Hui-Min; Ren, Ke; Sun, Jian-Ming; Gong, Jian-Ping

    2012-01-01

    Previous studies showed that Math1 homologous to human Hath1 can cause mouse goblet cells to differentiate. In this context it is important that the majority of colon cancers have few goblet cells. In the present study, the potential role of Hath1 in colon carcinogenesis was investigated. Sections of paraffin-embedded tissues were used to investigate the goblet cell population of normal colon mucosa, mucosa adjacent colon cancer and colon cancer samples from 48 patients. Hath1 and Muc2 expression in these samples were tested by immunohistochemistry, quantitative real-time reverse transcription -PCR and Western blotting. After the recombinant plasmid, pcDNA3.1(+)-Hath1 had been transfected into HT29 colon cancer cells, three clones were selected randomly to test the levels of Hath1 mRNA, Muc2 mRNA, Hath1, Muc2, cyclin D1 and p27 by quantitative real-time reverse transcription-PCR and Western blotting. Moreover, the proliferative ability of HT29 cells introduced with Hath1 was assessed by means of colony formation assay and xenografting. Expression of Hath1, Muc2, cyclin D1 and p27 in the xenograft tumors was also detected by Western blotting. No goblet cells were to be found in colon cancer and levels of Hath1 mRNA and Hath1, Muc2 mRNA and Muc2 were significantly down-regulated. Hath1 could decrease cyclin D1, increase p27 and Muc2 in HT29 cells and inhibit their proliferation. Hath1 may be an anti-oncogene in colon carcinogenesis.

  1. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  2. Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1986-01-01

    Serotonin has previously been shown to stimulate cell proliferation in the jejunal crypt epithelium and in colonic tumours. The original classification of serotonin receptors into D and M groups was not conductive to the understanding of these observations. The more recent classification of serotonin receptors into 5HT1 and 5HT2 groups is considered in this report. On the balance of evidence it appears that similar receptors mediate the response to serotonin in the two tissues under consideration and that these receptors resemble those of the 5HT1 group. Such receptors are usually positively linked to adenylate cyclase.

  3. Intestinal Colonization Dynamics of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-05-01

    Full Text Available To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms.

  4. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    International Nuclear Information System (INIS)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-01-01

    Highlights: ► Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. ► G 2 /M phase arrest and chromatin condensation and nuclear fragmentation were induced. ► Noscapine promoted apoptosis via mitochondrial pathways. ► Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC 50 = 75 μM). This cytotoxicity was reflected by cell cycle arrest at G 2 /M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  5. Methylselenol, a selenium metabolite, plays common and different roles in cancerous colon HCT116 cell and noncancerous NCM460 colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Briske-Anderson, Mary; Wu, Min; Moyer, Mary P

    2012-01-01

    Methylselenol is hypothesized to be a critical selenium metabolite for anticancer action, and differential chemopreventive effects of methylselenol on cancerous and noncancerous cells may play an important role. In this study, the submicromolar concentrations of methylselenol were generated by incubating methionase with seleno-L methionine, and colon-cancer-derived HCT-116 cells and noncancerous colon NCM460 cells were exposed to methylselenol. Methylselenol exposure inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase and an induction of apoptosis in HCT116, but to a much lesser extent in NCM460 colon cells. Similarly, the examination of mitogen-activated protein kinase (MAPK) and cellular myelocytomatosis oncogene (c-Myc) signaling status revealed that methylselenol inhibited the phosphorylation of extracellular-regulated kinase1/2 and p38 mitogen-activated protein kinase and the expression of c-Myc in HCT116 cells, but also to a lesser extent in NCM460 cells. The other finding is that methylselenol inhibits sarcoma kinase phosphorylation in HCT116 cells. In contrast, methylselenol upregulated the phosphorylation of sarcoma and focal adhesion kinase survival signals in the noncancerous NCM460 cells. Collectively, methylselenol's stronger potential of inhibiting cell proliferation/survival signals in the cancerous HCT116 cells when compared with that in noncancerous NCM460 cells may partly explain the potential of methylselenol's anticancer action.

  6. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lu-Ying; Deng, Jun; Xiang, Xiao-Jun; Zhang, Ling; Yu, Feng; Chen, Jun; Sun, Zhe; Feng, Miao; Xiong, Jian-Ping, E-mail: jpxiong@medmail.com.cn

    2015-02-06

    Highlights: • miR-320 plays a significant role in chemoresistance. • This role might be attribute to targeting FOXM1. • The Wnt/β-catenin pathway also involves in this chemotherapy sensitivity. - Abstract: miR-320 expression level is found to be down-regulated in human colon cancer. To date, however, its underlying mechanisms in the chemo-resistance remain largely unknown. In this study, we demonstrated that ectopic expression of miR-320 led to inhibit HCT-116 cell proliferation, invasion and hypersensitivity to 5-Fu and Oxaliplatin. Also, knockdown of miR-320 reversed these effects in HT-29 cells. Furthermore, we identified an oncogene, FOXM1, as a direct target of miR-320. In addition, miR-320 could inactive the activity of Wnt/β-catenin pathway. Finally, we found that miR-320 and FOXM1 protein had a negative correlation in colon cancer tissues and adjacent normal tissues. These findings implied that miR-320–FOXM1 axis may overcome chemo-resistance of colon cancer cells and provide a new therapeutic target for the treatment of colon cancer.

  7. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    International Nuclear Information System (INIS)

    Pu, Jun; Bai, Danna; Yang, Xia; Lu, Xiaozhao; Xu, Lijuan; Lu, Jianguo

    2012-01-01

    Highlights: ► Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. ► Adrenaline activates NFκB in a dose dependent manner. ► NFκB–miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NFκB dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline–NFκB–miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  8. Colonic Fermentation: A Neglected Topic in Human Physiology Education

    Science.gov (United States)

    Valeur, Jorgen; Berstad, Arnold

    2010-01-01

    Human physiology textbooks tend to limit their discussion of colonic functions to those of absorbing water and electrolytes and storing waste material. However, the colon is a highly active metabolic organ, containing an exceedingly complex society of microbes. By means of fermentation, gastrointestinal microbes break down nutrients that cannot be…

  9. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  10. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells.

    Science.gov (United States)

    Lugini, Luana; Valtieri, Mauro; Federici, Cristina; Cecchetti, Serena; Meschini, Stefania; Condello, Maria; Signore, Michele; Fais, Stefano

    2016-08-02

    Cancer cells, including colorectal cancer ones (CRC), release high amounts of nanovesicles (exosomes), delivering biochemical messages for paracrine or systemic crosstalk. Mesenchymal stromal cells (MSCs) have been shown to play contradicting roles in tumor progression. CRC exosomes induce in cMSCs: i) atypical morphology, higher proliferation, migration and invasion; ii) formation of spheroids; iii) an acidic extracellular environment associated with iv) a plasma membrane redistribution of vacuolar H+-ATPase and increased expression of CEA. Colon cancer derived MSCs, which were isolated from tumor masses, produce umbilicated spheroids, a future frequently observed in the inner core of rapidly growing tumors and recapitulate the changes observed in normal colonic MSCs exposed to CRC exosomes. Tissue specific colonic (c)MSCs were exposed to primary or metastatic CRC exosomes and analysed by light and electron microscopy, proliferation in 2D and 3D cultures, migration and invasion assays, Western blot and confocal microscopy for vacuolar H+-ATPase expression. CRC exosomes are able to induce morphological and functional changes in colonic MSCs, which may favour tumor growth and its malignant progression. Our results suggest that exosomes are actively involved in cancer progression and that inhibiting tumor exosome release may represent a way to interfere with cancer.

  11. Thalidomide increases human keratinocyte migration and proliferation.

    Science.gov (United States)

    Nasca, M R; O'Toole, E A; Palicharla, P; West, D P; Woodley, D T

    1999-11-01

    Thalidomide is reported to have therapeutic utility in the treatment of pyoderma gangrenosum, Behçet's disease, aphthous ulcers, and skin wounds. We investigated the effect of thalidomide on human keratinocyte proliferation and migration, two early and critical events in the re-epithelialization of skin wounds. Thalidomide at concentrations less than 1 microM did not affect keratinocyte viability. Using a thymidine incorporation assay, we found that thalidomide, at therapeutic concentrations, induced more than a 2. 5-fold increase in the proliferative potential of the cells. Keratinocyte migration was assessed by two independent motility assays: a colloidal gold assay and an in vitro scratch assay. At optimal concentrations, thalidomide increased keratinocyte migration on a collagen matrix more than 2-fold in the colloidal gold assay and more than 3-fold in the scratch assay over control. Although pro-migratory, thalidomide did not alter the level of metalloproteinase-9 secreted into culture medium. Thalidomide did, however, induce a 2-4-fold increase in keratinocyte-derived interleukin-8, a pro-migratory cellular autocrine factor. Human keratinocyte migration and proliferation are essential for re-epithelialization of skin wounds. Interleukin-8 increases human keratinocyte migration and proliferation and is chemotactic for keratinocytes. Therefore, thalidomide may modulate keratinocyte proliferation and motility by a chemokine-dependent pathway.

  12. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province (China); Dong, Wei-Guo, E-mail: dongwg1966@yahoo.com.cn [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province (China)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  13. Evaluation of an in vitro faecal degradation method for early assessment of the impact of colonic degradation on colonic absorption in humans.

    Science.gov (United States)

    Tannergren, Christer; Borde, Anders; Boreström, Cecilia; Abrahamsson, Bertil; Lindahl, Anders

    2014-06-16

    The objective of this study was to develop and evaluate an in vitro method to investigate bacterial-mediated luminal degradation of drugs in colon in humans. This would be a valuable tool for the assessment of drug candidates during early drug development, especially for compounds intended to be developed as oral extended release formulations. Freshly prepared faecal homogenate from healthy human volunteers (n=3-18), dog (n=6) and rat (colon and caecal content, n=3) was homogenised with 3.8 parts (w/w) physiological saline under anaerobical conditions. Four model compounds (almokalant, budesonide, ximelagatran and metoprolol) were then incubated (n=3-18) separately in the human faecal homogenate for up to 120min at 37°C. In addition, ximelagatran was also incubated in the faecal or colonic content from dog and rat. The mean (±SD) in vitro half-life for almokalant, budesonide and ximelagatran was 39±1, 68±21 and 26±12min, respectively, in the human faecal homogenate. Metoprolol was found to be stable in the in vitro model. The in vitro degradation data was then compared to literature data on fraction absorbed after direct colon administration in humans. The percentage of drug remaining after 60min of in vitro incubation correlated (R(2)=0.90) with the fraction absorbed from colon in humans. The mean in vitro half-life of ximelagatran was similar in human faeces (26±12min) and rat colon content (34±31min), but significantly (pdegradation in vivo was rapidly degraded in the faecal homogenates as well as quantitatively since a correlation was established between percentage degraded in vitro at 60min and fraction absorbed in the colon for the model drugs, which have no other absorption limiting properties. Also, the method is easy to use from a technical point of view, which suggests that the method is suitable for use in early assessment of colonic absorption of extended release formulation candidates. Further improvement of the confidence in the use of the

  14. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol.

    Science.gov (United States)

    Romano, Barbara; Borrelli, Francesca; Pagano, Ester; Cascio, Maria Grazia; Pertwee, Roger G; Izzo, Angelo A

    2014-04-15

    Colon cancer is a major public health problem. Cannabis-based medicines are useful adjunctive treatments in cancer patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS, i.e. CBD botanical drug substance, on colorectal cancer cell proliferation and in experimental models of colon cancer in vivo. Proliferation was evaluated in colorectal carcinoma (DLD-1 and HCT116) as well as in healthy colonic cells using the MTT assay. CBD BDS binding was evaluated by its ability to displace [(3)H]CP55940 from human cannabinoid CB1 and CB2 receptors. In vivo, the effect of CBD BDS was examined on the preneoplastic lesions (aberrant crypt foci), polyps and tumours induced by the carcinogenic agent azoxymethane (AOM) as well as in a xenograft model of colon cancer in mice. CBD BDS and CBD reduced cell proliferation in tumoral, but not in healthy, cells. The effect of CBD BDS was counteracted by selective CB1 and CB2 receptor antagonists. Pure CBD reduced cell proliferation in a CB1-sensitive antagonist manner only. In binding assays, CBD BDS showed greater affinity than pure CBD for both CB1 and CB2 receptors, with pure CBD having very little affinity. In vivo, CBD BDS reduced AOM-induced preneoplastic lesions and polyps as well as tumour growth in the xenograft model of colon cancer. CBD BDS attenuates colon carcinogenesis and inhibits colorectal cancer cell proliferation via CB1 and CB2 receptor activation. The results may have some clinical relevance for the use of Cannabis-based medicines in cancer patients. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Histochemical and radioautographic studies of normal human fetal colon

    International Nuclear Information System (INIS)

    Lev, R.; Orlic, D.; New York Medical Coll., N.Y.

    1974-01-01

    Twenty fetal and infant colons ranging from 10 weeks in utero to 20 months postpartum, and 12 adult human colons were examined using histochemical techniques in conjunction with in vitro radioautography using Na 2 35 SO 4 as a sulfomucin precursor. Only the sulfated components of mucus in fetal goblet cells was found to differ significantly from adult colonic mucins. In the fetus sulfomucin staining was much weaker than in the adult, and was more intense in the left colon which is the reverse of the adult pattern. Sulfomucin was concentrated in the crypts throughout the fetal colon whereas in the adult right colon it predominated in the surface cells. As in the adult, saponification liberated carboxyl groups, possibly belonging to sialic acid, and vicinal hydroxyl groups from fetal mucins suggesting that this procedure hydrolyses an ester linkage between these 2 reactive groups. During the middle trimester of fetal life the colon possesses villi whose constituent cells display alkaline phosphatase in their surface coat. These and other morphological and histochemical similarities to fetal small intestine suggest that the fetal colon may have a limited capacity to absorb materials contained within swallowed amniotic fluid during this period. (orig.) [de

  16. Enteric Neural Cells From Hirschsprung Disease Patients Form Ganglia in Autologous Aneuronal ColonSummary

    Directory of Open Access Journals (Sweden)

    Benjamin N. Rollo

    2016-01-01

    Full Text Available Background & Aims: Hirschsprung disease (HSCR is caused by failure of cells derived from the neural crest (NC to colonize the distal bowel in early embryogenesis, resulting in absence of the enteric nervous system (ENS and failure of intestinal transit postnatally. Treatment is by distal bowel resection, but neural cell replacement may be an alternative. We tested whether aneuronal (aganglionic colon tissue from patients may be colonized by autologous ENS-derived cells. Methods: Cells were obtained and cryopreserved from 31 HSCR patients from the proximal resection margin of colon, and ENS cells were isolated using flow cytometry for the NC marker p75 (nine patients. Aneuronal colon tissue was obtained from the distal resection margin (23 patients. ENS cells were assessed for NC markers immunohistologically and by quantitative reverse-transcription polymerase chain reaction, and mitosis was detected by ethynyl-2′-deoxyuridine labeling. The ability of human HSCR postnatal ENS-derived cells to colonize the embryonic intestine was demonstrated by organ coculture with avian embryo gut, and the ability of human postnatal HSCR aneuronal colon muscle to support ENS formation was tested by organ coculture with embryonic mouse ENS cells. Finally, the ability of HSCR patient ENS cells to colonize autologous aneuronal colon muscle tissue was assessed. Results: ENS-derived p75-sorted cells from patients expressed multiple NC progenitor and differentiation markers and proliferated in culture under conditions simulating Wnt signaling. In organ culture, patient ENS cells migrated appropriately in aneural quail embryo gut, and mouse embryo ENS cells rapidly spread, differentiated, and extended axons in patient aneuronal colon muscle tissue. Postnatal ENS cells derived from HSCR patients colonized autologous aneuronal colon tissue in cocultures, proliferating and differentiating as neurons and glia. Conclusions: NC-lineage cells can be obtained from HSCR

  17. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  18. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Jun [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Bai, Danna [Department of Cardiology, 323 Hospital of PLA, Xi' an 710054 (China); Yang, Xia [Department of Teaching and Medical Administration, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Lu, Xiaozhao [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Xu, Lijuan, E-mail: 13609296272@163.com [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Lu, Jianguo, E-mail: lujianguo029@yahoo.com.cn [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. Black-Right-Pointing-Pointer Adrenaline activates NF{kappa}B in a dose dependent manner. Black-Right-Pointing-Pointer NF{kappa}B-miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NF{kappa}B dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline-NF{kappa}B-miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  19. Correlation between the methylation of APC gene promoter and colon cancer.

    Science.gov (United States)

    Li, Bing-Qiang; Liu, Peng-Peng; Zhang, Cai-Hua

    2017-08-01

    The present study was planned to explore the correlation between the methylation of APC (adenomatous polyposis coli) and colon carcinogenesis. Colon cancer tissues and tumor-adjacent normal tissues of 60 colon cancer patients (who received surgical operation in our hospital from January 2012 to December 2014) were collected. SW1116 cells in human colon cancer tissues were selected for culturing. 5-aza-2c-deoxycytidine (5-aza-dC) was utilized as an inhibitor of the methylation for APC gene. Methylation specific PCR (MSP) was utilized for detection of APC methylation in SW1116 cells. The MTT and Transwell assays were performed to detect the effect of the methylation of APC gene on the proliferation and invasive abilities of SW1116 cells. The correlation between the methylation of APC gene and pathological parameters of colon cancer patients was analyzed. MSP results revealed that 41 cases (68.33%) showed methylation of APC gene in colon cancer tissues. No methylation of APC gene was found in tumor-adjacent normal tissues. 5-aza-dC was able to inhibit the methylation of APC gene in SW1116 cells. APC gene methylation was correlated with tumor size, differentiation degree, lymph node metastasis and Dukes staging. In conclusion, the levels of the methylation of APC in colon cancer tissues and SW1116 cells are relatively high. The methylation of APC promoted the proliferation and invasion abilities of SW1116 cells. Furthermore, methylation is correlated with a variety of clinicopathological features of colon cancer patients.

  20. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  1. Geoditin A Induces Oxidative Stress and Apoptosis on Human Colon HT29 Cells

    Directory of Open Access Journals (Sweden)

    Wing-Keung Liu

    2010-01-01

    Full Text Available Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA, and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [1]. In this study, we found fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants, and DNA fragmentation in human colon cancer HT29 cells after treatment with geoditin A for 24 h. This apoptosis was not abrogated by chelation of intracellular iron with salicylaldehyde isonicotinoyl hydrazone (SIH, but suppressed by N-acetylcysteine (NAC, a thiol antioxidant and GSH precursor, indicating that the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress. Our results provide a better understanding of the apoptotic properties and chemotherapeutical potential of this marine triterpene.

  2. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells

    Directory of Open Access Journals (Sweden)

    Waraporn Kaewkorn

    2012-01-01

    Full Text Available Sericin is a silk protein woven from silkworm cocoons (Bombyx mori. In animal model, sericin has been reported to have anti-tumoral action against colon cancer. The mechanisms underlying the activity of sericin against cancer cells are not fully understood. The present study investigated the effects of sericin on human colorectal cancer SW480 cells compared to normal colonic mucosal FHC cells. Since the size of the sericin protein may be important for its activity, two ranges of molecular weight were tested. Sericin was found to decrease SW480 and FHC cell viability. The small sericin had higher anti-proliferative effects than that of the large sericin in both cell types. Increased apoptosis of SW480 cells is associated with increased caspase-3 activity and decreased Bcl-2 expression. The anti-proliferative effect of sericin was accompanied by cell cycle arrest at the S phase. Thus, sericin reduced SW480 cell viability by inducing cell apoptosis via caspase-3 activation and down-regulation of Bcl-2 expression. The present study provides scientific data that support the protective effect of silk sericin against cancer cells of the colon and suggests that this protein may have significant health benefits and could potentially be developed as a dietary supplement for colon cancer prevention.

  3. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts.

    Science.gov (United States)

    Gupta, Manoj K; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F; Windmueller, Rebecca; Wagers, Amy J; Kulkarni, Rohit N

    2015-10-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. ©AlphaMed Press.

  4. Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans

    Directory of Open Access Journals (Sweden)

    Daniel ePrieto

    2015-08-01

    Full Text Available Candida albicans is a member of the human microbiota, colonizing both the vaginal and gastrointestinal tracts. This yeast is devoid of a life style outside the human body and the mechanisms underlying the adaptation to the commensal status remain to be determined. Using a model of mouse gastrointestinal colonization, we show here that C. albicans stably colonizes the mouse gut in about 3 days starting from a dose as low as 100 cells, reaching steady levels of around 107 cells/g of stools. Using fluorescent labeled strains we have assessed the competition between isogenic populations from different sources in cohoused animals. We show that long term (15 days colonizing cells have increased fitness in the gut niche over those grown in vitro or residing in the gut for 1-3 days. Therefore, two distinct states, proliferation and adaptation, seem to exist in the adaptation of this fungus to the mouse gut, a result with potential significance in the prophylaxis and treatment of Candida infections.

  5. EMT is the dominant program in human colon cancer

    Directory of Open Access Journals (Sweden)

    Tollenaar Rob AEM

    2011-01-01

    Full Text Available Abstract Background Colon cancer has been classically described by clinicopathologic features that permit the prediction of outcome only after surgical resection and staging. Methods We performed an unsupervised analysis of microarray data from 326 colon cancers to identify the first principal component (PC1 of the most variable set of genes. PC1 deciphered two primary, intrinsic molecular subtypes of colon cancer that predicted disease progression and recurrence. Results Here we report that the most dominant pattern of intrinsic gene expression in colon cancer (PC1 was tightly correlated (Pearson R = 0.92, P -135 with the EMT signature-- both in gene identity and directionality. In a global micro-RNA screen, we further identified the most anti-correlated microRNA with PC1 as MiR200, known to regulate EMT. Conclusions These data demonstrate that the biology underpinning the native, molecular classification of human colon cancer--previously thought to be highly heterogeneous-- was clarified through the lens of comprehensive transcriptome analysis.

  6. miR-4458 suppresses glycolysis and lactate production by directly targeting hexokinase2 in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yaguang; Cheng, Chuanyao; Lu, Hong, E-mail: honglu6512@163.com; Wang, Yaqiu

    2016-01-01

    miR-4458, a new tumor-suppressor, was reported to down-regulated in human hepatocellular carcinoma. The expression status, roles and inhibitory mechanisms of miR-4458 in other tumors still need to be clarified. The aim of this study is to investigate the effects of miR-4458 and to elucidate the potential mechanism in colon cancer cells. Using bioinformatic databases, we predicted that hexokinase2 (HK2), a rate-limiting enzyme in the glycolytic pathway, was a target of miR-4458, so the effects of miR-4458 on glycolysis and lactate production was assessed in colon cancer cells. We found that miR-4458 was down-regulated and HK2 was up-regulated in colon cancer cells. Overexpression of miR-4458 inhibited proliferation, glycolysis, and lactate production under both normoxic and hypoxic conditions. Luciferase activity assays showed that HK2 was a direct target of miR-4458. Moreover, knockdown of HK2 by specific RNAi also suppressed proliferation, glycolysis, and lactate production under both normoxic and hypoxic conditions. In conclusion, our findings suggested that miR-4458 inhibited the progression of colon cancer cells by inhibition of glycolysis and lactate production via directly targeting HK2 mRNA. - Highlights: • miR-4458 is down-regulated in colon cancer cells. • miR-4458 suppresses proliferation, glycolysis, and lactate production. • HK2 is a target of miR-4458. • HK2 knockdown inhibits proliferation, glycolysis, and lactate production.

  7. Strategies For Human Exploration Leading To Human Colonization of Space

    Science.gov (United States)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  8. Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma.

    Science.gov (United States)

    Bernardi, Stella; Zennaro, Cristina; Palmisano, Silvia; Velkoska, Elena; Sabato, Nicoletta; Toffoli, Barbara; Giacomel, Greta; Buri, Luigi; Zanconati, Fabrizio; Bellini, Giuseppe; Burrell, Louise M; De Manzini, Nicolò; Fabris, Bruno

    2012-03-01

    A new arm of the renin-angiotensin system (RAS) has been recently characterized; this includes angiotensin converting enzyme (ACE)2 and angiotensin (Ang)1-7, a heptapeptide acting through the Mas receptor (MasR). Recent studies show that Ang1-7 has an antiproliferative action on lung adenocarcinoma cells. The aim of this study was to characterize RAS expression in human colon adenocarcinoma and to investigate whether Ang1-7 exerts an antiproliferative effect on human colon adenocarcinoma cells. Gene, protein expression and enzymatic activity of the main components of the RAS were determined on non-neoplastic colon mucosa as well as on the tumor mass and the mucosa taken 5 cm distant from it, both collected from patients with colon adenocarcinoma. Two different human colon cancer cell lines were treated with AngII and Ang1-7. The novel finding of this study was that MasR was significantly upregulated in colon adenocarcinoma compared with non-neoplastic colon mucosa, which showed little or no expression of it. ACE gene expression and enzymatic activity were also increased in the tumors. However, AngII and Ang1-7 did not have any pro-/antiproliferative effects in the cell lines studied. The data suggest that upregulation of the MasR could be used as a diagnostic marker of colon adenocarcinoma.

  9. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    Science.gov (United States)

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Cellular inhibitor of apoptosis protein 2 (cIAP2) controls human colonic epithelial restitution, migration and Rac1 activation

    DEFF Research Database (Denmark)

    Seidelin, JB; Larsen, Sylvester; Linnemann, D

    2015-01-01

    epithelial cells (IECs) was increased at the wound edge after 24 h (P 2 was induced in vitro in regenerating Caco2 IECs after wound infliction (P ...Identification of pathways involved in wound healing is important for understanding the pathogenesis of various intestinal diseases. Cellular inhibitor of apoptosis protein 2 (cIAP2) regulates proliferation and migration in nonepithelial cells and is expressed in human colonocytes. The aim...... of the study was to investigate the role of cIAP2 for wound healing in the normal human colon. Wound tissue was generated by taking rectosigmoidal biopsies across an experimental ulcer in healthy subjects after 5, 24, and 48 h. In experimental ulcers, the expression of cIAP2 in regenerating intestinal...

  11. Colonic complications following human bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Paulino Martínez Hernández-Magro

    2015-01-01

    Full Text Available Background: Human bone marrow transplantation (BMT becomes an accepted treatment of leukemia, aplastic anemia, immunodeficiency syndromes, and hematologic malignancies. Colorectal surgeons must know how to determine and manage the main colonic complications. Objective: To review the clinical features, clinical and pathological staging of graft vs host disease (GVHD, and treatment of patients suffering with colonic complications of human bone marrow transplantation. Patients and methods: We have reviewed the records of all patients that received an allogeneic bone marrow transplant and were evaluated at our Colon and Rectal Surgery department due to gastrointestinal symptoms, between January 2007 and January 2012. The study was carried out in patients who developed colonic complications, all of them with clinical, histopathological or laboratory diagnosis. Results: The study group was constituted by 77 patients, 43 male and 34 female patients. We identified colonic complications in 30 patients (38.9%; five patients developed intestinal toxicity due to pretransplant chemotherapy (6.4%; graft vs. host disease was present in 16 patients (20%; 13 patients (16.8% developed acute colonic GVHD, and 3 (3.8% chronic GVHD. Infection was identified in 9 patients (11.6%. Conclusions: The three principal colonic complications are the chemotherapy toxicity, GVHD, and superinfection; the onset of symptoms could help to suspect the type of complication (0–20 day chemotherapy toxicity, 20 and more GVHD, and infection could appear in any time of transplantation. Resumo: Experiência: O transplante de medula óssea humana (MOH passou a ser um tratamento adotado para leucemia, anemia aplástica, síndromes de imunodeficiência e neoplasias hematológicas. Cirurgiões colorretais devem saber como determinar e tratar as principais complicações do cólon. Objetivo: Revisar as características clínicas, estadiamentos clínico e patológico da doença do enxerto

  12. An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development

    Science.gov (United States)

    Boman, Bruce M.; Fields, Jeremy Z.

    2013-01-01

    APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156

  13. CXCL12 gene silencing down-regulates metastatic potential via blockage of MAPK/PI3K/AP-1 signaling pathway in colon cancer.

    Science.gov (United States)

    Ma, J; Su, H; Yu, B; Guo, T; Gong, Z; Qi, J; Zhao, X; Du, J

    2018-01-05

    To investigate the effect of CXCL12 gene silencing on proliferation,invasion, angiogenesis and the relationship of MAPK/PI3K/AP-1 signaling pathway in colon cancer cells. RT-PCR and Western-blot were used to detect the expression of CXCL12 mRNA and protein in four colon cancer cell lines. Human colon cancer cells were transfected with CXCL12 siRNA carrying by Lipofectamine 2000. The expression of CXCL12 protein was confirmed by immunoblotting. WST-1, invasion and angiogenesis assay were used to examine the effect on proliferation, invasion and angiogenesis in colon cancer cells after CXCL12 siRNA silence, respectively. The phosphorylation of MAPK/PI3K/AP-1 protein levels was detected by Western blotting in CXCL12 siRNA suppression DLD-1 cell. CXCL12 mRNA and proteins were only expressed in DLD-1 colon cancer cell lines. CXCL12 siRNA were transfected into DLD-1 cells, the expression CXCL12 proteins was significantly inhibited (P colon cancer cell. The silencing CXCL12 gene significantly inhibits the proliferation, invasion and angiogenesis ability of some types colon carcinoma cells through down-regulation of MAPK/PI3K/AP-1 signaling pathway.

  14. Dispersal time for ancient human migrations: Americas and Europe colonization

    Science.gov (United States)

    Flores, J. C.

    2007-07-01

    I apply the recently proposed intermittence strategy to investigate the ancient human migrations in the world. That is, the Americas colonization (Bering-bridge and Pacific-coast theories) and Neanderthal replacement in Europe around 45000 years before the present. Using a mathematical equation related to diffusion and ballistic motion, I calculate the colonization time in all these cases in good agreement with archeological data (including Neolithic transition in Europe). Moreover, to support these calculations, I obtain analytically the effective speed of colonization in Europe veff=0.62 [km/yr] and related to the Aurignacian culture propagation.

  15. Harmine stimulates proliferation of human neural progenitors

    Directory of Open Access Journals (Sweden)

    Vanja Dakic

    2016-12-01

    Full Text Available Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A, which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY, and an irreversible selective inhibitor of monoamine oxidase (MAO but not DYRK1A (pargyline. INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.

  16. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis.

    Science.gov (United States)

    Myung, Seung-Jae; Rerko, Ronald M; Yan, Min; Platzer, Petra; Guda, Kishore; Dotson, Angela; Lawrence, Earl; Dannenberg, Andrew J; Lovgren, Alysia Kern; Luo, Guangbin; Pretlow, Theresa P; Newman, Robert A; Willis, Joseph; Dawson, Dawn; Markowitz, Sanford D

    2006-08-08

    15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is a prostaglandin-degrading enzyme that is highly expressed in normal colon mucosa but is ubiquitously lost in human colon cancers. Herein, we demonstrate that 15-PGDH is active in vivo as a highly potent suppressor of colon neoplasia development and acts in the colon as a required physiologic antagonist of the prostaglandin-synthesizing activity of the cyclooxygenase 2 (COX-2) oncogene. We first show that 15-PGDH gene knockout induces a marked 7.6-fold increase in colon tumors arising in the Min (multiple intestinal neoplasia) mouse model. Furthermore, 15-PGDH gene knockout abrogates the normal resistance of C57BL/6J mice to colon tumor induction by the carcinogen azoxymethane (AOM), conferring susceptibility to AOM-induced adenomas and carcinomas in situ. Susceptibility to AOM-induced tumorigenesis is mediated by a marked induction of dysplasia, proliferation, and cyclin D1 expression throughout microscopic aberrant crypt foci arising in 15-PGDH null colons and is concomitant with a doubling of prostaglandin E(2) in 15-PGDH null colonic mucosa. A parallel role for 15-PGDH loss in promoting the earliest steps of colon neoplasia in humans is supported by our finding of a universal loss of 15-PGDH expression in microscopic colon adenomas recovered from patients with familial adenomatous polyposis, including adenomas as small as a single crypt. These models thus delineate the in vivo significance of 15-PGDH-mediated negative regulation of the COX-2 pathway and moreover reveal the particular importance of 15-PGDH in opposing the neoplastic progression of colonic aberrant crypt foci.

  17. Colonic transit time is related to bacterial metabolism and mucosal turnover in the human gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain

    Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic t...... imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.......Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic...... transit time and the gut microbial composition and metabolism, we assessed the colonic transit time of 98 subjects using radiopaque markers, and profiled their gut microbiota by16S rRNA gene sequencing and their urine metabolome by ultra performance liquid chromatography mass spectrometry. Based...

  18. Negligible colon cancer risk from food-borne acrylamide exposure in male F344 rats and nude (nu/nu mice-bearing human colon tumor xenografts.

    Directory of Open Access Journals (Sweden)

    Jayadev Raju

    Full Text Available Acrylamide, a possible human carcinogen, is formed in certain carbohydrate-rich foods processed at high temperature. We evaluated if dietary acrylamide, at doses (0.5, 1.0 or 2.0 mg/kg diet reflecting upper levels found in human foods, modulated colon tumorigenesis in two rodent models. Male F344 rats were randomized to receive diets without (control or with acrylamide. 2-weeks later, rats in each group received two weekly subcutaneous injections of either azoxymethane (AOM or saline, and were killed 20 weeks post-injections; colons were assessed for tumors. Male athymic nude (nu/nu mice bearing HT-29 human colon adenocarcinoma cells-derived tumor xenografts received diets without (control or with acrylamide; tumor growth was monitored and mice were killed 4 weeks later. In the F344 rat study, no tumors were found in the colons of the saline-injected rats. However, the colon tumor incidence was 54.2% and 66.7% in the control and the 2 mg/kg acrylamide-treated AOM-injected groups, respectively. While tumor multiplicity was similar across all diet groups, tumor size and burden were higher in the 2 mg/kg acrylamide group compared to the AOM control. These results suggest that acrylamide by itself is not a "complete carcinogen", but acts as a "co-carcinogen" by exacerbating the effects of AOM. The nude mouse study indicated no differences in the growth of human colon tumor xenografts between acrylamide-treated and control mice, suggesting that acrylamide does not aid in the progression of established tumors. Hence, food-borne acrylamide at levels comparable to those found in human foods is neither an independent carcinogen nor a tumor promoter in the colon. However, our results characterize a potential hazard of acrylamide as a colon co-carcinogen in association with known and possibly other environmental tumor initiators/promoters.

  19. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Park Hae-Duck

    2011-07-01

    Full Text Available Abstract Background Polysaccharides extracted from the Phellinus linteus (PL mushroom are known to possess anti-tumor effects. However, the molecular mechanisms responsible for the anti-tumor properties of PL remain to be explored. Experiments were carried out to unravel the anticancer effects of PL. Methods The anti-cancer effects of PL were examined in SW480 colon cancer cells by evaluating cell proliferation, invasion and matrix metallo-proteinase (MMP activity. The anti-angiogenic effects of PL were examined by assessing human umbilical vein endothelial cell (HUVEC proliferation and capillary tube formation. The in vivo effect of PL was evaluated in an athymic nude mouse SW480 tumor engraft model. Results PL (125-1000 μg/mL significantly inhibited cell proliferation and decreased β-catenin expression in SW480 cells. Expression of cyclin D1, one of the downstream-regulated genes of β-catenin, and T-cell factor/lymphocyte enhancer binding factor (TCF/LEF transcription activity were also significantly reduced by PL treatment. PL inhibited in vitro invasion and motility as well as the activity of MMP-9. In addition, PL treatment inhibited HUVEC proliferation and capillary tube formation. Tumor growth of SW480 cells implanted into nude mice was significantly decreased as a consequence of PL treatment, and tumor tissues from treated animals showed an increase in the apoptotic index and a decrease in β-catenin expression. Moreover, the proliferation index and microvessel density were significantly decreased. Conclusions These data suggest that PL suppresses tumor growth, invasion, and angiogenesis through the inhibition of Wnt/β-catenin signaling in certain colon cancer cells.

  20. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29.

    Science.gov (United States)

    Du, Boyu; Jiang, Liping; Xia, Quan; Zhong, Laifu

    2006-01-01

    The synergistic effect of combination treatment with COX-2 inhibitors and chemotherapy may be another promising therapy regimen in the future treatment of colorectal cancer. Curcumin, a major yellow pigment in turmeric which is used widely all over the world, inhibits the growth of human colon cancer cell line HT-29 significantly and specifically inhibits the expression of COX-2 protein. However, the worldwide exposure of populations to curcumin raised the question of whether this agent would enhance or inhibit the effects of chemotherapy. In this report, we evaluated the growth-inhibitory effect of curcumin and a traditional chemotherapy agent, 5-FU, against the proliferation of a human colon cancer cell line (HT-29). The combination effect was quantitatively determined using the method of median-effect principle and the combination index. The inhibition of COX-2 expression after treatment with the curcumin-5-FU combination was also evaluated by Western blot analysis. The IC(50) value in the HT-29 cells for curcumin was 15.9 +/- 1.96 microM and for 5-FU it was 17.3 +/- 1.85 microM. When curcumin and 5-FU were used concurrently, synergistic inhibition of growth was quantitatively demonstrated. The level of COX-2 protein expression was reduced almost 6-fold after the combination treatment. Our results demonstrate synergism between curcumin and 5-FU at higher doses against the human colon cancer cell line HT-29. This synergism was associated with the decreased expression of COX-2 protein. Copyright 2006 S. Karger AG, Basel.

  1. Colonic cell proliferation in normal mucosa of patients with colon cancer

    International Nuclear Information System (INIS)

    Becciolini, A.; Balzi, M.; Faraoni, P.; Tisti, E.; Thyrion, G.Z.; Giache, V.; Bandettini, L.; Potten, C.S.

    1998-01-01

    Cell kinetics parameters have been analysed in colonic mucosa at different distances from a tumour in patients with colon carcinoma. Total cell number (TCN), 3 H thymidine labelling index (TLI), mitotic index (MI), Goblet cell index (GCI) and the distribution of labelled cells along the crypt column (cell position frequency plot) were determined in well-aligned crypts. Total cell number, GCI and the labelled cell position frequency plots were similar in different samples from the same individual. A negative linear correlation between TCN and TLI was observed. The analysis of the cell position plots showed two patterns (1) with a high concentration in the bottom fifth of the crypt and (2) with frequent labelled cells at high positions. Whereas a negative correlation between overall TLI and the percent contribution to the TLI of the lowermost fifth was seen, the correlation was positive for the next 3 fifths and labelling was absent in the last part of the crypt. (orig.)

  2. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota

    DEFF Research Database (Denmark)

    Wahlström, Annika; Kovatcheva-Datchary, Petia; Ståhlman, Marcus

    2017-01-01

    The gut microbiota influences the development and progression of metabolic diseases partly by metabolism of bile acids (BAs) and modified signaling through the farnesoid X receptor (FXR). In this study, we aimed to determine how the human gut microbiota metabolizes murine BAs and affects FXR...... signaling in colonized mice. We colonized germ-free mice with cecal content from a mouse donor or feces from a human donor and euthanized the mice after short-term (2 weeks) or long-term (15 weeks) colonization. We analyzed the gut microbiota and BA composition and expression of FXR target genes in ileum...... and liver. We found that cecal microbiota composition differed between mice colonized with mouse and human microbiota and was stable over time. Human and mouse microbiota reduced total BA levels similarly, but the humanized mice produced less secondary BAs. The human microbiota was able to reduce the levels...

  3. Silencing of the hTERT gene by shRNA inhibits colon cancer SW480 cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ai-Qun Liu

    Full Text Available Human telomerase reverse transcriptase (hTERT is the key enzyme responsible for synthesizing and maintaining the telomeres on the ends of chromosomes, and it is essential for cell proliferation. This has made hTERT a focus of oncology research and an attractive target for anticancer drug development. In this study, we designed a small interfering RNA (siRNA targeting the catalytic subunit of hTERT and tested its effects on the growth of telomerase-positive human colon carcinoma SW480 cells in vitro, as well as on the tumorigenicity of these cells in nude mice. Transient and stable transfection of hTERT siRNA into colon cancer SW480 cells suppressed hTERT expression, reduced telomerase activity and inhibited cell growth and proliferation. Knocking down hTERT expression in SW480 tumors xenografted into nude mice significantly slowed tumor growth and promoted tumor cell apoptosis. Our results suggest that hTERT is involved in carcinogenesis of human colon carcinoma, and they highlight the therapeutic potential of a hTERT knock-down approach.

  4. The influence of arachidonic acid metabolites on cell division in the intestinal epithelium and in colonic tumors.

    Science.gov (United States)

    Petry, F M; Tutton, P J; Barkla, D H

    1984-09-01

    Various metabolites of arachidonic acid are now known to influence cell division. In this paper the effects on cell proliferation of arachidonic acid, some inhibitors of arachidonic acid metabolism and some analogs of arachidonic acid metabolites is described. The epithelial cell proliferation rate in the jejunum, in the descending colon and in dimethylhydrazine-induced tumors of rat colon was measured using a stathmokinetic technique. Administration of arachidonic acid resulted in retardation of cell proliferation in each of the tissues examined. A cyclooxygenase inhibitor (Flurbiprofen) prevented this effect of arachidonic acid in the jejunal crypts and in colonic tumors, but not in colonic crypts. In contrast, inhibitors of both cyclooxygenase and lipoxygenase (Benoxaprofen and BW755c) prevented the effect of arachidonic acid in the colonic crypts and reduced its effect on colonic tumours but did not alter its effect on the jejunum. An inhibitor of thromoboxane A2 synthetase (U51,605) was also able to prevent the inhibitory effect of arachidonic acid on colonic tumors. Treatment with 16,16-dimethyl PGE2 inhibited cell proliferation in jejunal crypts and in colonic tumors, as did a thromboxane A2 mimicking agent, U46619. Nafazatrom, an agent that stimulates prostacyclin synthesis and inhibits lypoxygenase, promoted cell proliferation in the jejunal crypts and colonic crypts, but inhibited cell proliferation in colonic tumours.

  5. 9-Hydroxystearic acid interferes with EGF signalling in a human colon adenocarcinoma

    International Nuclear Information System (INIS)

    Calonghi, Natalia; Pagnotta, Eleonora; Parolin, Carola; Tognoli, Cristina; Boga, Carla; Masotti, Lanfranco

    2006-01-01

    The epidermal growth factor has long been known to be strictly correlated with the highly proliferating activities of cancer cells and primary tumors. Moreover, in the nucleus, the epidermal growth factor/epidermal growth factor receptor complex (EGF/EGFR) functions as a transcriptional regulator that activates the cyclin D1 gene. 9-hydroxystearic acid (9-HSA) induces cell proliferation arrest and differentiation in HT29 colon cancer cells by inhibiting histone deacetylase 1 (HDAC1). 9-HSA-treated HT29, when stimulated with EGF, are not responsive and surprisingly undergo a further arrest. In order to understand the mechanisms of this effect, we analyzed the degree of internalization of the EGF/EGFR complex and its interactions with HDAC1. It appears that HDAC1, as modified by 9-HSA, is unable to associate with cyclin D1, interfering with the cell proliferation program, and sequesters the EGF/EGFR complex interrupting the transduction of the mitogenic signal

  6. Inferring human colonization history using a copying model.

    Directory of Open Access Journals (Sweden)

    Garrett Hellenthal

    2008-05-01

    Full Text Available Genome-wide scans of genetic variation can potentially provide detailed information on how modern humans colonized the world but require new methods of analysis. We introduce a statistical approach that uses Single Nucleotide Polymorphism (SNP data to identify sharing of chromosomal segments between populations and uses the pattern of sharing to reconstruct a detailed colonization scenario. We apply our model to the SNP data for the 53 populations of the Human Genome Diversity Project described in Conrad et al. (Nature Genetics 38,1251-60, 2006. Our results are consistent with the consensus view of a single "Out-of-Africa" bottleneck and serial dilution of diversity during global colonization, including a prominent East Asian bottleneck. They also suggest novel details including: (1 the most northerly East Asian population in the sample (Yakut has received a significant genetic contribution from the ancestors of the most northerly European one (Orcadian. (2 Native North [corrected] Americans have received ancestry from a source closely related to modern North-East Asians (Mongolians and Oroquen that is distinct from the sources for native South [corrected] Americans, implying multiple waves of migration into the Americas. A detailed depiction of the peopling of the world is available in animated form.

  7. Influence of a highly purified senna extract on colonic epithelium.

    Science.gov (United States)

    van Gorkom, B A; Karrenbeld, A; van Der Sluis, T; Koudstaal, J; de Vries, E G; Kleibeuker, J H

    2000-01-01

    Chronic use of sennoside laxatives often causes pseudomelanosis coli. A recent study suggested that pseudomelanosis coli is associated with an increased colorectal cancer risk. A single high dose of highly purified senna extract increased proliferation rate and reduced crypt length in the sigmoid colon compared to historical controls. To evaluate in a controlled study the effects of highly purified senna extract on cell proliferation and crypt length in the entire colon and on p53 and bcl-2 expression. Addition of a senna extract to colonic lavage was studied in 184 consecutive outpatients. From 32 randomised patients, 15 with sennosides (Sen), 17 without (NSen), biopsies were taken. Proliferative activity was studied in 4 areas of the colon, using 5-bromo-2'-deoxyuridine labelling and immunohistochemistry (labelling index, LI). Expression of p53 and bcl-2 in the sigmoid colon was determined immunohistochemically. Crypts were shorter in Sen than in NSen in the transverse and sigmoid colon. LI was higher in Sen than in NSen in the entire colon. No difference in p53 expression was seen. Bcl-2 expression was higher in both groups when crypts were shorter and/or proliferation was increased. Sennosides induce acute massive cell loss probably by apoptosis, causing shorter crypts, and increased cell proliferation and inhibition of apoptosis to restore cellularity. These effects may reflect the mechanism for the suggested cancer-promoting effect of chronic sennoside use. Copyright 2000 S. Karger AG, Basel

  8. Human Colon Tumors Express a Dominant-Negative Form of SIGIRR That Promotes Inflammation and Colitis-Associated Colon Cancer in Mice.

    Science.gov (United States)

    Zhao, Junjie; Bulek, Katarzyna; Gulen, Muhammet F; Zepp, Jarod A; Karagkounis, Georgio; Martin, Bradley N; Zhou, Hao; Yu, Minjia; Liu, Xiuli; Huang, Emina; Fox, Paul L; Kalady, Matthew F; Markowitz, Sanford D; Li, Xiaoxia

    2015-12-01

    Single immunoglobulin and toll-interleukin 1 receptor (SIGIRR), a negative regulator of the Toll-like and interleukin-1 receptor (IL-1R) signaling pathways, controls intestinal inflammation and suppresses colon tumorigenesis in mice. However, the importance of SIGIRR in human colorectal cancer development has not been determined. We investigated the role of SIGIRR in development of human colorectal cancer. We performed RNA sequence analyses of pairs of colon tumor and nontumor tissues, each collected from 68 patients. Immunoblot and immunofluorescence analyses were used to determine levels of SIGIRR protein in primary human colonic epithelial cells, tumor tissues, and colon cancer cell lines. We expressed SIGIRR and mutant forms of the protein in Vaco cell lines. We created and analyzed mice that expressed full-length (control) or a mutant form of Sigirr (encoding SIGIRR(N86/102S), which is not glycosylated) specifically in the intestinal epithelium. Some mice were given azoxymethane (AOM) and dextran sulfate sodium to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by immunohistochemical and gene expression profile analyses. RNA sequence analyses revealed increased expression of a SIGIRR mRNA isoform, SIGIRR(ΔE8), in colorectal cancer tissues compared to paired nontumor tissues. SIGIRR(ΔE8) is not modified by complex glycans and is therefore retained in the cytoplasm-it cannot localize to the cell membrane or reduce IL1R signaling. SIGIRR(ΔE8) interacts with and has a dominant-negative effect on SIGIRR, reducing its glycosylation, localization to the cell surface, and function. Most SIGIRR detected in human colon cancer tissues was cytoplasmic, whereas in nontumor tissues it was found at the cell membrane. Mice that expressed SIGIRR(N86/102S) developed more inflammation and formed larger tumors after administration of azoxymethane and dextran sulfate sodium than control mice; colon tissues from these mutant mice expressed

  9. The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades.

    Science.gov (United States)

    Liu, Rui; Tang, Jiajia; Ding, Chaodong; Liang, Weicheng; Zhang, Li; Chen, Tianke; Xiong, Yan; Dai, Xiaowei; Li, Wenfeng; Xu, Yunsheng; Hu, Jin; Lu, Liting; Liao, Wanqin; Lu, Xincheng

    2017-04-01

    Ataxia-telangiectasia mutated (ATM) protein kinase is a major guardian of genomic stability, and its well-established function in cancer is tumor suppression. Here, we report an oncogenic role of ATM. Using two isogenic sets of human colon cancer cell lines that differed only in their ATM status, we demonstrated that ATM deficiency significantly inhibits cancer cell proliferation, migration, and invasion. The tumor-suppressive function of ATM depletion is not modulated by the compensatory activation of ATR, but it is associated with B56γ2-mediated Chk1/p53/CD44 signaling pathways. Under normal growth conditions, the depletion of ATM prevents B56γ2 ubiquitination and degradation, which activates PP2A-mediated Chk1/p53/p21 signaling pathways, leading to senescence and cell cycle arrest. CD44 was validated as a novel ATM target based on its ability to rescue cell migration and invasion defects in ATM-depleted cells. The activation of p53 induced by ATM depletion suppresses CD44 transcription, thus resulting in epithelial-mesenchymal transition (EMT) and cell migration suppression. Our study suggests that ATM has tumorigenic potential in post-formed colon neoplasia, and it supports ATM as an appealing target for improving cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of pyrimethamine and sulphadoxine on human lymphocyte proliferation

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Odum, Niels; Theander, T G

    1986-01-01

    The in vitro effect of pyrimethamine (PYR) on human blood mononuclear cells stimulated with phytohaemagglutinin (PHA), pokeweed mitogen (PWM) and purified protein derivative of tuberculin (PPD) was studied by 14C-thymidine incorporation, by cell counting and by total DNA estimation. PYR in concen......The in vitro effect of pyrimethamine (PYR) on human blood mononuclear cells stimulated with phytohaemagglutinin (PHA), pokeweed mitogen (PWM) and purified protein derivative of tuberculin (PPD) was studied by 14C-thymidine incorporation, by cell counting and by total DNA estimation. PYR...... in concentrations 10 times higher than serum values obtained in clinical practice inhibited lymphocyte proliferation irreversibly. PYR in concentrations corresponding to clinical practice quickly and irreversibly suppressed the proliferation of PWM-stimulated cells, and more slowly the proliferation of PPD...

  11. The first microbial colonizers of the human gut

    NARCIS (Netherlands)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Palacio, Susana Delgado; Montes, Silvia Arboleya; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; Vos, De Willem; Gueimonde, Miguel; Margolles, Abelardo; Sinderen, Van Douwe; Ventura, Marco

    2017-01-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially)

  12. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

    Science.gov (United States)

    Sato, Toshiro; Stange, Daniel E; Ferrante, Marc; Vries, Robert G J; Van Es, Johan H; Van den Brink, Stieneke; Van Houdt, Winan J; Pronk, Apollo; Van Gorp, Joost; Siersema, Peter D; Clevers, Hans

    2011-11-01

    We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans.

    Science.gov (United States)

    Murray, Kathryn; Hoad, Caroline L; Mudie, Deanna M; Wright, Jeff; Heissam, Khaled; Abrehart, Nichola; Pritchard, Susan E; Al Atwah, Salem; Gowland, Penny A; Garnett, Martin C; Amidon, Gregory E; Spiller, Robin C; Amidon, Gordon L; Marciani, Luca

    2017-08-07

    The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or "pockets". Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∼8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of

  14. Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells.

    Science.gov (United States)

    González-Sarrías, Antonio; Li, Liya; Seeram, Navindra P

    2012-07-01

    Phenolic-enriched extracts of maple sap and syrup, obtained from the sugar and red maple species (Acer saccharum Marsh, A. rubrum L., respectively), are reported to show anticancer effects. Despite traditional medicinal uses of various other parts of these plants by Native Americans, they have not been investigated for anticancer activity. Here leaves, stems/twigs, barks and sapwoods of both maple species were evaluated for antiproliferative effects against human colon tumorigenic (HCT-116, HT-29, Caco-2) and non-tumorigenic (CCD-18Co) cells. Extracts were standardized to total phenolic and ginnalin-A (isolated in our laboratory) levels. Overall, the extracts inhibited the growth of the colon cancer more than normal cells (over two-fold), their activities increased with their ginnalin-A levels, with red > sugar maple extracts. The red maple leaf extract, which contained the highest ginnalin-A content, was the most active extract (IC₅₀  = 35 and 16 µg/mL for extract and ginnalin-A, respectively). The extracts were not cytotoxic nor did they induce apoptosis of the colon cancer cells. However, cell cycle analyses revealed that the antiproliferative effects of the extracts were mediated through cell cycle arrest in the S-phase. The results from the current study suggest that these maple plant part extracts may have potential anticolon cancer effects. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Oral Candida spp. colonization in human immunodeficiency virus-infected individuals

    Directory of Open Access Journals (Sweden)

    D. V. Moris

    2008-01-01

    Full Text Available Several yeast species of Candida genus can colonize the skin as well as the mucous membrane of the vagina and the digestive tract for short or long periods. Depending on the host's immunological state and the yeast's virulence, colonization can become an infection, invading the colonized tissues and also disseminating. AIDS is characterized by the host's intensive and progressive immunodepression which manifests as diverse symptoms, mainly lesions in the mouth. Oral candidiasis is the most prevalent opportunistic infection in individuals infected with human immunodeficiency virus (HIV and is an important indicator of the disease progress and the immunosuppression increase. The factors involved in the equilibrium between Candida spp. and HIV-infected subjects are sometimes contradictory and were evaluated in the present study specially for colonization.

  16. Red meat and colon cancer : dietary haem-induced colonic cytotoxicity and epithelial hyperproliferation are inhibited by calcium

    NARCIS (Netherlands)

    Sesink, ALA; Termont, DSML; Kleibeuker, JH; Van der Meer, R

    2001-01-01

    High intake of red meat is associated with increased colon cancer risk. We have shown earlier that this may be due to the high haem content of red meat, because dietary haem increased cytolytic activity of faecal water and colonic epithelial proliferation. Dietary calcium inhibits diet-induced

  17. Protective effects of the ethanolic extract of Melia toosendan fruit against colon cancer

    International Nuclear Information System (INIS)

    Tang, Xue-Lian; Yang, Xin-Ying; Park, Hyun; Kim, Youn-Chul; Kim, Sung-Yeon; Kang, Baek-Dong; Park, Won-Cheol; Choi, Du-Young; Kjm, Ok-jin

    2012-01-01

    Colorectal cancer is one of the leading causes of death in the world. Plant-derived products have proven to be valuable sources for discovery and development of unique anticancer drugs. In this study, the inhibitory effects of ethanolic extract of Melia toosendan fruit (EMTF), a traditional medicine in the Chinese Pharmacopoeia were evaluated in vitro and in vivo against colon cancer. Human colon cancer cells SW480 and murine colorectal adenocarcinoma cells CT26 were used to investigate cell proliferation. The results showed that EMTF inhibited cell proliferation of SW480 and CT26 by promoting apoptosis as indicated by nuclear chromatin condensation and DNA fragmentation. Through increasing mitochondrial membrane permeability and cytochrome c release from mitochondria, EMTF induced caspase-9 activity which further activated caspase-3 and poly(ADP-ribose) polymerase cleavage, leading the tumor cells to apoptosis. The in vivo results confirmed reduction of tumor volume and apoptotic effects and the side effects were not induced by EMTF. Therefore, EMTF may be an effective chemotherapeutic agent for colon cancer treatment. (author)

  18. Trypanosomiasis-induced megacolon illustrates how myenteric neurons modulate the risk for colon cancer in rats and humans.

    Directory of Open Access Journals (Sweden)

    Vinicius Kannen

    2015-04-01

    Full Text Available Trypanosomiasis induces a remarkable myenteric neuronal degeneration leading to megacolon. Very little is known about the risk for colon cancer in chagasic megacolon patients. To clarify whether chagasic megacolon impacts on colon carcinogenesis, we investigated the risk for colon cancer in Trypanosoma cruzi (T. cruzi infected patients and rats.Colon samples from T. cruzi-infected and uninfected patients and rats were histopathologically investigated with colon cancer biomarkers. An experimental model for chemical myenteric denervation was also performed to verify the myenteric neuronal effects on colon carcinogenesis. All experiments complied the guidelines and approval of ethical institutional review boards.No colon tumors were found in chagasic megacolon samples. A significant myenteric neuronal denervation was observed. Epithelial cell proliferation and hyperplasia were found increased in chagasic megacolon. Analyzing the argyrophilic nucleolar organiser regions within the cryptal bottom revealed reduced risk for colon cancer in Chagas' megacolon patients. T. cruzi-infected rats showed a significant myenteric neuronal denervation and decreased numbers of colon preneoplastic lesions. In chemical myenteric denervated rats preneoplastic lesions were reduced from the 2nd wk onward, which ensued having the colon myenteric denervation significantly induced.Our data suggest that the trypanosomiasis-related myenteric neuronal degeneration protects the colon tissue from carcinogenic events. Current findings highlight potential mechanisms in tropical diseases and cancer research.

  19. Expanding the Tissue Toolbox : Deriving Colon Tissue from Human Pluripotent Stem Cells

    NARCIS (Netherlands)

    Bruens, Lotte; Snippert, Hugo J.G.

    2017-01-01

    Organoid technology holds great potential for disease modeling and regenerative medicine. In this issue of Cell Stem Cell, Múnera et al. (2017) establish the generation of pluripotent stem cell-derived colon organoids that upon transplantation in mice, resembling human colon to a large extent,

  20. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    Science.gov (United States)

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (Pcolon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  1. FXR silencing in human colon cancer by DNA methylation and KRAS signaling.

    Science.gov (United States)

    Bailey, Ann M; Zhan, Le; Maru, Dipen; Shureiqi, Imad; Pickering, Curtis R; Kiriakova, Galina; Izzo, Julie; He, Nan; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Liang, Han; Kopetz, Scott; Powis, Garth; Guo, Grace L

    2014-01-01

    Farnesoid X receptor (FXR) is a bile acid nuclear receptor described through mouse knockout studies as a tumor suppressor for the development of colon adenocarcinomas. This study investigates the regulation of FXR in the development of human colon cancer. We used immunohistochemistry of FXR in normal tissue (n = 238), polyps (n = 32), and adenocarcinomas, staged I-IV (n = 43, 39, 68, and 9), of the colon; RT-quantitative PCR, reverse-phase protein array, and Western blot analysis in 15 colon cancer cell lines; NR1H4 promoter methylation and mRNA expression in colon cancer samples from The Cancer Genome Atlas; DNA methyltransferase inhibition; methyl-DNA immunoprecipitation (MeDIP); bisulfite sequencing; and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) knockdown assessment to investigate FXR regulation in colon cancer development. Immunohistochemistry and quantitative RT-PCR revealed that expression and function of FXR was reduced in precancerous lesions and silenced in a majority of stage I-IV tumors. FXR expression negatively correlated with phosphatidylinositol-4, 5-bisphosphate 3 kinase signaling and the epithelial-to-mesenchymal transition. The NR1H4 promoter is methylated in ~12% colon cancer The Cancer Genome Atlas samples, and methylation patterns segregate with tumor subtypes. Inhibition of DNA methylation and KRAS silencing both increased FXR expression. FXR expression is decreased early in human colon cancer progression, and both DNA methylation and KRAS signaling may be contributing factors to FXR silencing. FXR potentially suppresses epithelial-to-mesenchymal transition and other oncogenic signaling cascades, and restoration of FXR activity, by blocking silencing mechanisms or increasing residual FXR activity, represents promising therapeutic options for the treatment of colon cancer.

  2. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  3. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Science.gov (United States)

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  4. Oxidized Lipoprotein as a Major Vessel Cell Proliferator in Oxidized Human Serum.

    Directory of Open Access Journals (Sweden)

    Yoshiro Saito

    Full Text Available Oxidative stress is correlated with the incidence of several diseases such as atherosclerosis and cancer, and oxidized biomolecules have been determined as biomarkers of oxidative stress; however, the detailed molecular relationship between generated oxidation products and the promotion of diseases has not been fully elucidated. In the present study, to clarify the role of serum oxidation products in vessel cell proliferation, which is related to the incidence of atherosclerosis and cancer, the major vessel cell proliferator in oxidized human serum was investigated. Oxidized human serum was prepared by free radical exposure, separated using gel chromatography, and then each fraction was added to several kinds of vessel cells including endothelial cells and smooth muscle cells. It was found that a high molecular weight fraction in oxidized human serum specifically induced vessel cell proliferation. Oxidized lipids were contained in this high molecular weight fraction, while cell proliferation activity was not observed in oxidized lipoprotein-deficient serum. Oxidized low-density lipoproteins induced vessel cell proliferation in a concentration-dependent manner. Taken together, these results indicate that oxidized lipoproteins containing lipid oxidation products function as a major vessel cell proliferator in oxidized human serum. These findings strongly indicate the relevance of determination of oxidized lipoproteins and lipid oxidation products in the diagnosis of vessel cell proliferation-related diseases such as atherosclerosis and cancer.

  5. How dysregulated colonic crypt dynamics cause stem cell overpopulation and initiate colon cancer.

    Science.gov (United States)

    Boman, Bruce M; Fields, Jeremy Z; Cavanaugh, Kenneth L; Guetter, Arthur; Runquist, Olaf A

    2008-05-01

    Based on investigation of the earliest colonic tissue alteration in familial adenomatous polyposis (FAP) patients, we present the hypothesis that initiation of colorectal cancer by adenomatous polyposis coli (APC) mutation is mediated by dysregulation of two cellular mechanisms. One involves differentiation, which normally decreases the proportion (proliferative fraction) of colonic crypt cells that can proliferate; the other is a cell cycle mechanism that simultaneously increases the probability that proliferative cells are in S phase. In normal crypts, stem cells (SC) at the crypt bottom generate rapidly proliferating cells, which undergo differentiation while migrating up the crypt. Our modeling of normal crypts suggests that these transitions are mediated by mechanisms that regulate proliferative fraction and S-phase probability. In FAP crypts, the population of rapidly proliferating cells is shifted upwards, as indicated by the labeling index (LI; i.e., crypt distribution of cells in S phase). Our analysis of FAP indicates that these transitions are delayed because the proliferative fraction and S-phase probability change more slowly as a function of crypt level. This leads to expansion of the proliferative cell population, including a subpopulation that has a low frequency of S-phase cells. We previously reported that crypt SC overpopulation explains the LI shift. Here, we determine that SCs (or cells having high stemness) are proliferative cells with a low probability of being in S phase. Thus, dysregulation of mechanisms that control proliferative fraction and S-phase probability explains how APC mutations induce SC overpopulation at the crypt bottom, shift the rapidly proliferating cell population upwards, and initiate colon tumorigenesis.

  6. Characteristics of [18F] fluorodeoxyglucose uptake in human colon cancer cells

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Jeong, Jae Min; Lee, Myung Chul; Koh, Chang Soon

    1997-01-01

    Cancer tissues are characterized by increased glucose uptake. 18 F-fluorodeoxyglucose(FDG), a glucose analogue is used for the diagnosis of cancer in PET studies. This study was aimed to compare the glucose uptake and glucose transporter 1(GLUT1) expression in various human colon cancer cells. We measured FDG uptake by cell retention study and expression of GLUT1 using Western blotting. Human colon cancer cells, SNU-C2A, SNU-C4 and SNU-C5, were used. The cells were incubated with 1μ Ci/ml of FDG in HEPES- buffered saline for one hour. The FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 16.8±1.36, 12.3±5.55 and 61.0±2.17 cpm/μg of protein, respectively. Dose-response and time-course studies represent that FDG uptake of cancer cells were dose dependent and time dependent. The rate of FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 0.29±0.03, 0.21±0.09 and 1.07±0.07 cpm/min/μg of protein, respectively. Western blot analysis showed that the GLUT1 expression of SNU-C5 was significantly higher than those of SNU-C2A and SNU-C4. These results represent that FDG uptake into human colon cancer cells are different from each other. In addition, FDG uptake and expression of GLUT1 are closely related in human colon cancer cells

  7. Isolation of Human Colon Stem Cells Using Surface Expression of PTK7.

    Science.gov (United States)

    Jung, Peter; Sommer, Christian; Barriga, Francisco M; Buczacki, Simon J; Hernando-Momblona, Xavier; Sevillano, Marta; Duran-Frigola, Miquel; Aloy, Patrick; Selbach, Matthias; Winton, Douglas J; Batlle, Eduard

    2015-12-08

    Insertion of reporter cassettes into the Lgr5 locus has enabled the characterization of mouse intestinal stem cells (ISCs). However, low cell surface abundance of LGR5 protein and lack of high-affinity anti-LGR5 antibodies represent a roadblock to efficiently isolate human colonic stem cells (hCoSCs). We set out to identify stem cell markers that would allow for purification of hCoSCs. In an unbiased approach, membrane-enriched protein fractions derived from in vitro human colonic organoids were analyzed by quantitative mass spectrometry. Protein tyrosine pseudokinase PTK7 specified a cell population within human colonic organoids characterized by highest self-renewal and re-seeding capacity. Antibodies recognizing the extracellular domain of PTK7 allowed us to isolate and expand hCoSCs directly from patient-derived mucosa samples. Human PTK7+ cells display features of canonical Lgr5+ ISCs and include a fraction of cells that undergo differentiation toward enteroendocrine lineage that resemble crypt label retaining cells (LRCs). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon.

    Science.gov (United States)

    Cohen, L; Sekler, I; Hershfinkel, M

    2014-06-26

    The intestinal epithelium is a renewable tissue that requires precise balance between proliferation and differentiation, an essential process for the formation of a tightly sealed barrier. Zinc deficiency impairs the integrity of the intestinal epithelial barrier and is associated with ulcerative and diarrheal pathologies, but the mechanisms underlying the role of Zn(2+) are not well understood. Here, we determined a role of the colonocytic Zn(2+) sensing receptor, ZnR/GPR39, in mediating Zn(2+)-dependent signaling and regulating the proliferation and differentiation of colonocytes. Silencing of ZnR/GPR39 expression attenuated Zn(2+)-dependent activation of ERK1/2 and AKT as well as downstream activation of mTOR/p70S6K, pathways that are linked with proliferation. Consistently, ZnR/GPR39 silencing inhibited HT29 and Caco-2 colonocyte proliferation, while not inducing caspase-3 cleavage. Remarkably, in differentiating HT29 colonocytes, silencing of ZnR/GPR39 expression inhibited alkaline phosphatase activity, a marker of differentiation. Furthermore, Caco-2 colonocytes showed elevated expression of ZnR/GPR39 during differentiation, whereas silencing of ZnR/GPR39 decreased monolayer transepithelial electrical resistance, suggesting compromised barrier formation. Indeed, silencing of ZnR/GPR39 or chelation of Zn(2+) by the cell impermeable chelator CaEDTA was followed by impaired expression of the junctional proteins, that is, occludin, zonula-1 (ZO-1) and E-cadherin. Importantly, colon tissues of GPR39 knockout mice also showed a decrease in expression levels of ZO-1 and occludin compared with wildtype mice. Altogether, our results indicate that ZnR/GPR39 has a dual role in promoting proliferation of colonocytes and in controlling their differentiation. The latter is followed by ZnR/GPR39-dependent expression of tight junctional proteins, thereby leading to formation of a sealed intestinal epithelial barrier. Thus, ZnR/GPR39 may be a therapeutic target for promoting

  9. Ethanolic Extract of Traditional Chinese Medicine (TCM) Gamboge Inhibits Colon Cancer via the Wnt/Beta-Catenin Signaling Pathway in an Orthotopic Mouse Model.

    Science.gov (United States)

    Wang, Wei; Li, Youran; Chen, Yiqi; Chen, Hongjin; Zhu, Ping; Xu, Minmin; Wang, Hao; Wu, Minna; Yang, Zhijian; Hoffman, Robert M; Gu, Yunfei

    2018-04-01

    The aim of the present study was to investigate the efficacy of an ethanolic extract of gamboge (EEG), a traditional Chinese medicine (TCM), both in vitro on colon cancer cells and in vivo in an orthotopic mouse model of human colon cancer. The in vitro cytotoxicity of EEG on colon cancer cells was determined with the CCK8 proliferation assay and the Annexin V-PE/7-AAD apoptosis assay. Efficacy of EEG in vivo was evaluated in an orthotopic mouse model of human colon cancer implated with the green fluorescent protein-expressing human colon cancer cell line SW480-GFP. The tumor-bearing mice were treated with vehicle (0.2 ml/dose normal saline, po, daily), irinotecan (50 mg/kg/dose, ip, twice a week), 5-FU (15 mg/kg/dose, ip, every other day) as positive controls or EEG at doses of 12.5, 25 and 50 mg/kg/dose, po, daily. Real-time fluorescence imaging was performed to determine tumor inhibition in each treated group compared to the untreated controls. The protein expression of β-catenin, MMP-7, cyclin D1 and E-cadherin in the tumors was analyzed by immunohistochemistry. EEG significantly induced proliferation inhibition and apoptosis of SW480 colon cancer cells in vitro in a dose-dependent manner. Tumor growth in the colon-cancer orthotopic model was significantly inhibited by irinotecan, 5-FU and all three doses of EEG. The efficacy of EEG was comparable to irinotecan and 5-FU. Irinotecan, 5-FU and 50 mg/kg EEG significantly decreased the protein expression of β-catenin and MMP-7. Cyclin D1 expression was decreased and E-cadherin expression was increased by irinotecan, 5-FU and all three doses of EEG. The present study demonstrates anti-tumor efficacy of EEG on colon cancer both in vitro and in vivo through inducing proliferation inhibition and apoptosis of SW480 colon cancer cells and inhibiting tumor growth, respectively. EEG exerts anti-tumor activity at least partly via down-regulation of the Wnt/β-catenin signaling pathway. Copyright© 2018, International

  10. Separation of water-soluble metabolites of benzo[a]pyrene formed by cultured human colon

    DEFF Research Database (Denmark)

    Autrup, Herman

    1979-01-01

    A method has been developed to separate conjugated metabolites of benzo[a]pyrene into three major fractions: sulfate esters, glucuronides and glutathione conjugates. In cultured human colon, formation of sulfate esters and glutathione conjugates is the major conjugation pathway, while formation......-hydroxybenzo[a]pyrene were the major substrates for sulfotransferase in cultured human colon....

  11. Oropharyngeal perinatal colonization by human papillomavirus.

    Science.gov (United States)

    Sánchez-Torices, María Soledad; Corrales-Millan, Rocío; Hijona-Elosegui, Jesús J

    2016-01-01

    Human papillomavirus (HPV) infection is the most common human sexually transmitted disease. It is clinically relevant because this condition is necessary for the development of epithelial cervical cancer, and it is also a factor closely associated with the occurrence of diverse tumours and various benign and malignant lesions of the head and neck area. The infective mechanism in most of these cases is associated with sexual intercourse, but there is recent scientific evidence suggesting that HPV infection may also be acquired by other routes of infection not necessarily linked to sexual contact. One of them is vertical transmission from mother to child, either during pregnancy or at the time of delivery. The aim of our research was to study maternal-foetal HPV transmission during childbirth in detail, establishing the rate of oropharyngeal neonatal HPV in vaginal deliveries. The presence and type of HPV viral DNA at the time of delivery in samples of maternal cervical secretions, amniotic fluid, venous cord blood samples and neonatal oropharynx in pregnant women (and their babies) were determined. The rate of oropharyngeal neonatal HPV colonization in vaginal deliveries was 58.24%. The maternal and neonatal HPV colonization mechanism is essentially, but not exclusively, transvaginal. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  12. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of luteoloside on the proliferation of human chronic ..... Zhang N, Wang D, Zhu Y, Wang J, Lin H. Inhibition ... Han X. Protection of Luteolin-7-O-Glucoside Against ... Hwang YJ, Lee EJ, Kim HR, Hwang KA.

  13. Modulation of Mucosal Immune Response, Tolerance and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila

    Directory of Open Access Journals (Sweden)

    Muriel eDerrien

    2011-08-01

    Full Text Available Epithelial cells of the mammalian intestine are covered with a mucus layer that prevents direct contact with intestinal microbes but also constitutes a substrate for mucus-degrading bacteria. To study the effect of mucus degradation on the host-response, germ-free mice were colonized with Akkermansia muciniphila. This anaerobic bacterium belonging to the Verrucomicrobia is specialized in the degradation of mucin, the glycoprotein present in mucus, and found in high numbers in the intestinal tract of human and other mammalian species. Efficient colonization of A. muciniphila was observed with highest numbers in the cecum, where most mucin is produced. In contrast, following colonization by Lactobacillus plantarum, a facultative anaerobe belonging to the Firmicutes that ferments carbohydrates, similar cell-numbers were found at all intestinal sites. Whereas A. muciniphila was located closely associated with the intestinal cells, L. plantarum was exclusively found in the lumen. The global transcriptional host response was determined in intestinal biopsies and revealed a consistent, site-specific and unique modulation of about 750 genes in mice colonized by A. muciniphila and over 1500 genes after colonization by L. plantarum. Pathway reconstructions showed that colonization by A. muciniphila altered mucosal gene expression profiles towards increased expression of genes involved in immune responses and cell fate determination, while colonization by L. plantarum led to up-regulation of lipid metabolism. These indicate that the colonizers induce host responses that are specific per intestinal location. In conclusion, we propose that A. muciniphila modulates pathways involved in establishing homeostasis for basal metabolism and immune tolerance towards commensal microbiota.

  14. Human tumor cell proliferation evaluated using manganese-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Rod D Braun

    Full Text Available Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+ [measured with manganese-enhanced MRI (MEMRI], is linked to proliferation rate in vitro.Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2 for one hour and then thoroughly washed. MEMRI R(1 values (longitudinal relaxation rates, which have a positive linear relationship with Mn(2+ concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+-induced increases in R(1 compared to cells not exposed to Mn(2+. C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1 values and proliferation rate (p≤0.005, while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1 for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet.These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI.

  15. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  16. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation.

    Science.gov (United States)

    Ambhore, Nilesh Sudhakar; Katragadda, Rathnavali; Raju Kalidhindi, Rama Satyanarayana; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S; Sathish, Venkatachalem

    2018-04-20

    Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways

  17. Effects of bacterial colonization on the porcine intestinal proteome

    DEFF Research Database (Denmark)

    Danielsen, Marianne; Hornshøj, Henrik; Siggers, Richard Harvey

    2007-01-01

    comparison of 12 animals. Our results showed that bacterial colonization differentially affected mechanisms such as proteolysis, epithelial proliferation, and lipid metabolism, which is in good agreement with previous studies of other germ-free animal models. We have also found that E. coli has a profound...... effect on actin remodeling and intestinal proliferation, which may be related to stimulated migration and turnover of enterocytes. Regulations related to L. fermentum colonization involved individual markers for immunoregulatory mechanisms...

  18. The different expression of TRPM7 and MagT1 impacts on the proliferation of colon carcinoma cells sensitive or resistant to doxorubicin.

    Science.gov (United States)

    Cazzaniga, Alessandra; Moscheni, Claudia; Trapani, Valentina; Wolf, Federica I; Farruggia, Giovanna; Sargenti, Azzurra; Iotti, Stefano; Maier, Jeanette A M; Castiglioni, Sara

    2017-01-17

    The processes leading to anticancer drug resistance are not completely unraveled. To get insights into the underlying mechanisms, we compared colon carcinoma cells sensitive to doxorubicin with their resistant counterpart. We found that resistant cells are growth retarded, and show staminal and ultrastructural features profoundly different from sensitive cells. The resistant phenotype is accompanied by the upregulation of the magnesium transporter MagT1 and the downregulation of the ion channel kinase TRPM7. We demonstrate that the different amounts of TRPM7 and MagT1 account for the different proliferation rate of sensitive and resistant colon carcinoma cells. It remains to be verified whether they are also involved in the control of other "staminal" traits.

  19. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes.

    Science.gov (United States)

    Pongsavee, Malinee

    2009-10-30

    Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation) and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE) technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. It showed that the immune cell proliferation (lymphocyte proliferation) was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI). The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Borax had effects on immune cell proliferation (lymphocyte proliferation) and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  20. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K., E-mail: peter.leung@ubc.ca

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  1. Up-regulation of CNDP2 facilitates the proliferation of colon cancer

    OpenAIRE

    Xue, Conglong; Zhang, Zhenwei; Yu, Honglan; Yu, Miao; Yuan, Kaitao; Yang, Ting; Miao, Mingyong; Shi, Hanping

    2014-01-01

    Background Cytosolic nonspecific dipetidase (CN2) belongs to the family of M20 metallopeptidases. It was stated in previous articles that higher expression levels of CN2 were observed in renal cell carcinoma and breast cancer. Our study explored the correlation between CN2 and colon carcinogenesis. Methods We analysed the relationship between 183 patients clinicopathological characteristics and its CN2 expression. To detect the levels of CN2 in colon cancer cell lines and colon cancer tissues...

  2. Effect of chloroquine on human lymphocyte proliferation

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian; Flachs, H

    1986-01-01

    The effect of chloroquine on human blood mononuclear cells was studied. High concentrations of chloroquine in vitro profoundly suppressed the proliferation of mitogen- and antigen-stimulated cells, as indicated by decreased 14C-thymidine incorporation. Lower concentrations of chloroquine increase...... to large particulate antigens; the response to small antigens was not affected. The mode of action of chloroquine and the possible consequences of the findings for dosage of chloroquine when used for malaria prophylaxis is discussed.......The effect of chloroquine on human blood mononuclear cells was studied. High concentrations of chloroquine in vitro profoundly suppressed the proliferation of mitogen- and antigen-stimulated cells, as indicated by decreased 14C-thymidine incorporation. Lower concentrations of chloroquine increased...... the response to pokeweed mitogen. The response to concanavalin A and to various antigens was suppressed, especially the response to large particulate antigens. Oral intake of 300 mg of chloroquine base/week did not affect the lymphocyte proliferative responses. 600 mg of base/week decreased the response...

  3. A cross sectional study of animal and human colonization with Methicillin-Resistant Staphylococcus aureus (MRSA in an Aboriginal community

    Directory of Open Access Journals (Sweden)

    Peter Daley

    2016-07-01

    Full Text Available Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA infections are common among humans in Aboriginal communities in Canada, for unknown reasons. Methods Cross sectional study of humans and dogs in an Aboriginal community of approximately 1200 persons. Our objectives were to measure community-based prevalence of nasal MRSA colonization among humans, use multivariable logistic regression to analyze risk factors for MRSA colonization, and perform molecular typing of Staphylococci isolated to investigate interspecies transmission. Results 461 humans were approached for consent and 442 provided complete data. 109/442 (24.7 %, 95 % C.I. = 20.7–28.7 % of humans were colonized with MRSA. 169/442 (38.2 % of humans had received antibiotics in the last 12 months. Only number of rooms in the house (OR 0.86, p = 0.023 and recreational dog use (OR 7.7, p = 0.002 were significant risk factors for MRSA colonization. 95/109 (87.1 % of MRSA strains from humans were of the same spa type (CMRSA10/USA300. 8/157 (5.1 %, 95 % C.I. = 1.7–8.5 % of dogs were colonized with methicillin-susceptible S. aureus, and no dogs were colonized with MRSA. Conclusions Human MRSA colonization in this community is very common, and a single clone is predominant, suggesting local transmission. Antibiotic use is also very common. Crowding may partially explain high colonization, but most considered risk factors including animal exposure were not predictive. Very few dogs carried human Staphylococcal strains.

  4. Assessing the potential for raw meat to influence human colonization with Staphylococcus aureus

    OpenAIRE

    Carrel, Margaret; Zhao, Chang; Thapaliya, Dipendra; Bitterman, Patrick; Kates, Ashley E.; Hanson, Blake M.; Smith, Tara C.

    2017-01-01

    The role of household meat handling and consumption in the transfer of Staphylococcus aureus (S. aureus) from livestock to consumers is not well understood. Examining the similarity of S. aureus colonizing humans and S. aureus in meat from the stores in which those individuals shop can provide insight into the role of meat in human S. aureus colonization. S. aureus isolates were collected from individuals in rural and urban communities in Iowa (n?=?3347) and contemporaneously from meat produc...

  5. MiR-145 regulates PAK4 via the MAPK pathway and exhibits an antitumor effect in human colon cells

    International Nuclear Information System (INIS)

    Wang, Zhigang; Zhang, Xiaoping; Yang, Zhili; Du, Hangxiang; Wu, Zhenqian; Gong, Jianfeng; Yan, Jun; Zheng, Qi

    2012-01-01

    Highlights: ► MiR-145 targets a putative binding site in the 3′UTR of PAK4. ► MiR-145 played an important role in inhibiting cell growth by directly targeting PAK4. ► MiR-145 may function as tumor suppressors. -- Abstract: MicroRNAs (miRNAs) are regulators of numerous cellular events; accumulating evidence indicates that miRNAs play a key role in a wide range of biological functions, such as cellular proliferation, differentiation, and apoptosis in cancer. Down-regulated expression of miR-145 has been reported in colon cancer tissues and cell lines. The molecular mechanisms underlying miR-145 and the regulation of colon carcinogenesis remain unclear. In this study, we investigated the levels of miR-145 in human colon cancer cells using qRT-PCR and found markedly decreased levels compared to normal epithelial cells. We identified PAK4 as a novel target of miR-145 using informatics screening. Additionally, we demonstrated that miR-145 targets a putative binding site in the 3′UTR of PAK4 and that its abundance is inversely associated with miR-145 expression in colon cancer cells; we confirmed this relationship using the luciferase reporter assay. Furthermore, restoration of miR-145 by mimics in SW620 cells significantly attenuated cell growth in vitro, in accordance with the inhibitory effects induced by siRNA mediated knockdown of PAK4. Taken together, these findings demonstrate that miR-145 downregulates P-ERK expression by targeting PAK4 and leads to inhibition of tumor growth.

  6. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    International Nuclear Information System (INIS)

    Zhang, Yaonan; Wang, Xiao; Qiu, Yiwei; Cornish, Jillian; Carr, Andrew J.; Xia, Zhidao

    2014-01-01

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferation and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes

  7. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yaonan [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Department of Orthopaedic, Beijing Hospital of Ministry of Public Health, Beijing, China 100730 (China); Wang, Xiao; Qiu, Yiwei [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Cornish, Jillian [Department of Medicine, University of Auckland, Private Bag 92019, Auckland (New Zealand); Carr, Andrew J. [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Xia, Zhidao, E-mail: z.xia@swansea.ac.uk [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom)

    2014-11-14

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferation and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes.

  8. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    Science.gov (United States)

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, prespiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  9. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    Directory of Open Access Journals (Sweden)

    Pongsavee Malinee

    2009-10-01

    Full Text Available Abstract Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0.3 and 0.6 mg/ml. Results It showed that the immune cell proliferation (lymphocyte proliferation was decreased when the concentrations of borax increased. The borax concentration of 0.6 mg/ml had the most effectiveness to the lymphocyte proliferation and had the highest cytotoxicity index (CI. The borax concentrations of 0.15, 0.2, 0.3 and 0.6 mg/ml significantly induced sister chromatid exchange in human chromosomes (P Conclusion Borax had effects on immune cell proliferation (lymphocyte proliferation and induced sister chromatid exchange in human chromosomes. Toxicity of borax may lead to cellular toxicity and genetic defect in human.

  10. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  11. MTG16 contributes to colonic epithelial integrity in experimental colitis

    Science.gov (United States)

    Williams, Christopher S; Bradley, Amber M; Chaturvedi, Rupesh; Singh, Kshipra; Piazuelo, Maria B; Chen, Xi; McDonough, Elizabeth M; Schwartz, David A; Brown, Caroline T; Allaman, Margaret M; Coburn, Lori A; Horst, Sara N; Beaulieu, Dawn B; Choksi, Yash A; Washington, Mary Kay; Williams, Amanda D; Fisher, Melissa A; Zinkel, Sandra S; Peek, Richard M; Wilson, Keith T; Hiebert, Scott W

    2013-01-01

    Objective The myeloid translocation genes (MTGs) are transcriptional corepressors with both Mtg8−/− and Mtgr1−/− mice showing developmental and/or differentiation defects in the intestine. We sought to determine the role of MTG16 in intestinal integrity. Methods Baseline and stress induced colonic phenotypes were examined in Mtg16−/− mice. To unmask phenotypes, we treated Mtg16−/− mice with dextran sodium sulphate (DSS) or infected them with Citrobacter rodentium and the colons were examined for ulceration and for changes in proliferation, apoptosis and inflammation. Results Mtg16−/− mice have altered immune subsets, suggesting priming towards Th1 responses. Mtg16−/− mice developed increased weight loss, diarrhoea, mortality and histological colitis and there were increased innate (Gr1+, F4/80+, CD11c+ and MHCII+; CD11c+) and Th1 adaptive (CD4) immune cells in Mtg16−/− colons after DSS treatment. Additionally, there was increased apoptosis and a compensatory increased proliferation in Mtg16−/− colons. Compared with wild-type mice, Mtg16−/− mice exhibited increased colonic CD4;IFN-γ cells in vehicle-treated and DSS-treated mice. Adoptive transfer of wildtype marrow into Mtg16−/− recipients did not rescue the Mtg16−/− injury phenotype. Isolated colonic epithelial cells from DSS-treated Mtg16−/− mice exhibited increased KC (Cxcl1) mRNA expression when compared with wild-type mice. Mtg16−/− mice infected with C rodentium had more severe colitis and greater bacterial colonisation. Last, MTG16 mRNA levels were reduced in human ulcerative colitis versus normal colon tissues. Conclusions These observations indicate that MTG16 is critical for colonocyte survival and regeneration in response to intestinal injury and provide evidence that this transcriptional corepressor regulates inflammatory recruitment in response to injury. PMID:22833394

  12. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer

    Science.gov (United States)

    Our previous report showed that concomitant supplementation of lycopene and eicosa-pentaenoic acid synergistically inhibited the proliferation of human colon cancer HT-29 cells in vitro. To validate our findings, the present study investigated whether consumption of lycopene and fish oil would help ...

  13. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K.

    Directory of Open Access Journals (Sweden)

    Alexander E Yueh

    Full Text Available The phosphoinositide 3-kinase (PI3K signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin, indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling.

  14. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects.

    Science.gov (United States)

    Romano, Barbara; Fasolino, Ines; Pagano, Ester; Capasso, Raffaele; Pace, Simona; De Rosa, Giuseppe; Milic, Natasa; Orlando, Pierangelo; Izzo, Angelo A; Borrelli, Francesca

    2014-03-01

    Colorectal cancer is an important health problem across the world. Here, we investigated the possible antiproliferative/proapoptotic effects of bromelain (from the pineapple stem Ananas comosus L., family Bromeliaceae) in a human colorectal carcinoma cell line and its potential chemopreventive effect in a murine model of colon cancer. Proliferation and apoptosis were evaluated in human colon adenocarcinoma (Caco-2) cells by the (3) H-thymidine incorporation assay and caspase 3/7 activity measurement, respectively. Extracellular signal-related kinase (ERK) and Akt expression were evaluated by Western blot analysis, reactive oxygen species production by a fluorimetric method. In vivo, bromelain was evaluated using the azoxymethane murine model of colon carcinogenesis. Bromelain reduced cell proliferation and promoted apoptosis in Caco-2 cells. The effect of bromelain was associated to downregulation of pERK1/2/total, ERK, and pAkt/Akt expression as well as to reduction of reactive oxygen species production. In vivo, bromelain reduced the development of aberrant crypt foci, polyps, and tumors induced by azoxymethane. Bromelain exerts antiproliferative and proapoptotic effects in colorectal carcinoma cells and chemopreventive actions in colon carcinogenesis in vivo. Bromelain-containing foods and/or bromelain itself may represent good candidates for colorectal cancer chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae.

    Science.gov (United States)

    Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G

    1998-10-13

    Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.

  16. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    Energy Technology Data Exchange (ETDEWEB)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Makboul, Rania [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Pathology Department, Assiut University, Assiut (Egypt); Chadalawada, Gita; Chen, Ying [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Crawford, Susan E. [Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104 (United States); Savkovic, Suzana D., E-mail: ssavkovi@tulane.edu [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States)

    2016-01-15

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  17. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    International Nuclear Information System (INIS)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe; Makboul, Rania; Chadalawada, Gita; Chen, Ying; Crawford, Susan E.; Savkovic, Suzana D.

    2016-01-01

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  18. Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Victoria C. Foletta

    2016-10-01

    Full Text Available Deuterated water (2H2O, a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules, thus permitting the calculation of their synthesis rates. Here, we have combined 2H2O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation, protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines. Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both ‘self-made’ and exogenously-derived fatty acid.

  19. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts.

    Science.gov (United States)

    Kakudo, Natsuko; Minakata, Tatsuya; Mitsui, Toshihito; Kushida, Satoshi; Notodihardjo, Frederik Zefanya; Kusumoto, Kenji

    2008-11-01

    This study evaluated changes in platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets by platelet-rich plasma activation, and the proliferation potential of activated platelet-rich plasma and platelet-poor plasma on human adipose-derived stem cells and human dermal fibroblasts. Platelet-rich plasma was prepared using a double-spin method, with the number of platelets counted in each preparation stage. Platelet-rich and platelet-poor plasma were activated with autologous thrombin and calcium chloride, and levels of platelet-released PDGF-AB and TGF-beta1 were determined by enzyme-linked immunosorbent assay. Cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 5% whole blood plasma, nonactivated platelet-rich plasma, nonactivated platelet-poor plasma, activated platelet-rich plasma, or activated platelet-poor plasma. In parallel, these cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 1%, 5%, 10%, or 20% activated platelet-rich plasma. The cultured human adipose-derived stem cells and human dermal fibroblasts were assayed for proliferation. Platelet-rich plasma contained approximately 7.9 times as many platelets as whole blood, and its activation was associated with the release of large amounts of PDGF-AB and TGF-beta1. Adding activated platelet-rich or platelet-poor plasma significantly promoted the proliferation of human adipose-derived stem cells and human dermal fibroblasts. Adding 5% activated platelet-rich plasma to the medium maximally promoted cell proliferation, but activated platelet-rich plasma at 20% did not promote it. Platelet-rich plasma can enhance the proliferation of human adipose-derived stem cells and human dermal fibroblasts. These results support clinical platelet-rich plasma application for cell-based, soft-tissue engineering and wound healing.

  20. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of luteoloside on the proliferation of human chronic myeloid leukemia K562 cells and whether luteoloside induces cell cycle arrest and apoptosis in K562 cells. Methods: Luteoloside's cytotoxicity was assessed using a cell counting kit. Cell cycle distribution was analysed by flow cytometry ...

  1. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    Science.gov (United States)

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Adrenergic factors regulating cell division in the colonic crypt epithelium during carcinogenesis and in colonic adenoma and adenocarcinoma.

    Science.gov (United States)

    Kennedy, M F; Tutton, P J; Barkla, D H

    1985-09-01

    Evidence exists implicating adrenergic factors in the control of intestinal epithelial cell proliferation in both normal and diseased states. In this report, attention is focussed on changes in the amine requirements of proliferating cells during the chemical induction of tumours in the colon of mouse. Cell proliferation rates were measured stathmokinetically. Tumours were induced by s.c. injection of dimethylhydrazine (DMH). Results with a series of adrenoceptor agonists and antagonists suggest that there is an alpha 2-adrenoceptor mediated excitatory effect in normal colon but an alpha 2 adrenoceptor mediated inhibitory effect in adenoma and carcinoma. Alpha 1 adrenoceptors, on the other hand, have an inhibitory effect in normal crypts and in adenomas, and an excitatory effect in carcinomas. Beta adrenoceptors have an inhibitory effect in the normal and DMH-treated crypt, and in adenomas, but not in carcinomas. In the crypt epithelium of DMH-treated mice, two regions on cell proliferation, with differing regulatory factors, could be identified. In the upper region of the carcinogen-exposed crypt is a zone where cell proliferation is stimulated by an alpha 2 adrenergic mechanism, thus resembling the basal region of the normal crypt. By contrast, in the basal region of these crypts, cell proliferation is stimulated by an alpha 1 mechanism, thus resembling a malignant tumour.

  3. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33.

    Science.gov (United States)

    Ritter, G; Cohen, L S; Williams, C; Richards, E C; Old, L J; Welt, S

    2001-09-15

    Mouse monoclonal antibody A33 (mAb A33) recognizes a M(r) 43,000 cell surface glycoprotein (designated A33) expressed in human colonic epithelium and colon cancer but absent from most other normal tissues. In patients, mAb A33 localizes with high specificity to colon cancer and is retained for up to 6 weeks in the cancer but cleared rapidly from normal colon (5-6 days). As a carrier of (125)I or (131)I, mAb A33 has shown antitumor activity. Induction of strong human anti-mouse antibody (immunoglobulin; HAMA) responses in patients, however, limits the use of the murine mAb A33 to very few injections. A humanized version of this antibody (huAb A33) has been prepared for Phase I and II clinical studies in patients with colon cancer. In those studies, immunogenicity of huAb A33 has been monitored using a novel, highly sensitive BIACORE method, which allows measurement of human anti-human antibodies (HAHAs) without the use of secondary reagents. We found that 63% (26 of 41) of the patients treated with repeated doses of huAb A33 developed HAHAs against a conformational antigenic determinant located in the V(L) and V(H) regions of huAb A33. Detailed serological analysis showed two distinct types of HAHAs. HAHA of type I (49% of patients) was characterized by an early onset with peak HAHA levels after 2 weeks of treatment, which declined with ongoing huAb A33 treatment. HAHA of type II (17% of patients) was characterized by a typically later onset of HAHA than in type I and by progressively increasing HAHA levels with each subsequent huAb A33 administration. Colon cancer patients with type I HAHAs did not develop infusion-related adverse events. In contrast, HAHA of type II was indicative of infusion-related adverse events. By using this new method, we were able to distinguish these two types of HAHAs in patients while on antibody treatment, allowing patients to be removed from study prior to the onset of severe infusion-related adverse events.

  4. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Loew, Karin; Wagner, Sylvia; Briesen, Hagen von; Knobloch, Thomas; Wiehe, Arno; Engel, Andrea; Langer, Klaus

    2011-01-01

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  5. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Loew, Karin; Wagner, Sylvia; Briesen, Hagen von [Fraunhofer-Institute for Biomedical Engineering, D-66386 Strasse Ingbert (Germany); Knobloch, Thomas [Institute of Pharmaceutical Technology, Biocenter of Goethe-University, D-60438 Frankfurt (Germany); Wiehe, Arno [Biolitec AG, D-07745 Jena (Germany); Engel, Andrea; Langer, Klaus, E-mail: hagen.briesen@ibmt.fraunhofer.de [Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, D-48149 Muenster (Germany)

    2011-06-17

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  6. Effects of liquid versus solid diet on colonic transit in humans. Evaluation by standard colonic transit scintigraphy

    International Nuclear Information System (INIS)

    Kaufman, P.N.; Richter, J.E.; Chilton, H.M.; Kerr, R.M.; Cowan, R.C.; Gelfand, D.W.; Ott, D.J.

    1990-01-01

    The effects of liquid versus solid diet on human colonic transit were investigated, and transit following cecal instillation of tracer was compared with transit following instillation in the proximal jejunum. In a randomized cross-over, single-blind fashion, 6 normal volunteers ingesting either normal solid foods or a liquid diet were studied using colonic transit scintigraphy. 111In-DTPA was instilled either into the cecum via a long intestinal tube or into the proximal jejunum via a feeding tube. Compared with the liquid diet, the solid diet slowed transit in the cecum and ascending colon (p less than 0.025) and delayed progression of the geometric center (p less than 0.05) during the first 4 h of the study. Transit from 18 to 48 h was similar on the 2 diets. On the solid diet, transit was similar whether 111In-DTPA was instilled into the proximal jejunum or into the cecum. Transit from the terminal ileum to the cecum was assessed in an additional 5 volunteers following jejunal instillation of 99mTc-DTPA. Cecal filling was rapid (T1/2 = 0.49 h) and complete in all subjects before the onset of cecal emptying. These results suggest that colonic transit is slower on a solid than a liquid diet and that jejunal instillation of radiopharmaceuticals should be suitable for colonic transit studies in most subjects

  7. Enterobacter Strains Might Promote Colon Cancer.

    Science.gov (United States)

    Yurdakul, Dilşad; Yazgan-Karataş, Ayten; Şahin, Fikrettin

    2015-09-01

    Many studies have been performed to determine the interaction between bacterial species and cancer. However, there has been no attempts to demonstrate a possible relationship between Enterobacter spp. and colon cancer so far. Therefore, in the present study, it is aimed to investigate the effects of Enterobacter strains on colon cancer. Bacterial proteins were isolated from 11 Enterobacter spp., one Morganella morganii, and one Escherichia coli strains, and applied onto NCM460 (Incell) and CRL1790 (ATCC) cell lines. Cell viability and proliferation were determined in MTS assay. Flow Cytometry was used to detect CD24 level and apoptosis. Real-Time PCR studies were performed to determine NFKB and Bcl2 expression. Graphpad Software was used for statistical analysis. The results showed that proteins, isolated from the Enterobacter spp., have significantly increased cell viability and proliferation, while decreasing the apoptosis of the cell lines tested. The data in the present study indicated that Enterobacter strains might promote colon cancer. Moreover, Enterobacter spp. could be a clinically important factor for colon cancer initiation and progression. Studies can be extended on animal models in order to develop new strategies for treatment.

  8. Asiaticoside induces cell proliferation and collagen synthesis in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Linda Yulianti

    2015-08-01

    Full Text Available Asiatiocoside, a saponin component isolated from Centella asiatica can improve wound healing by promoting the proliferation of human dermal fibroblasts (HDF and synthesis of collagen. The skin-renewing cells and type I and III collagen synthesis decrease with aging, resulting in the reduction of skin elasticity and delayed wound healing. Usage of natural active compounds from plants in wound healing should be evaluated and compared to retinoic acid as an active agent that regulates wound healing. The aim of this study was to compare and evaluate the effect of asiaticoside and retinoic acid to induce greater cell proliferation and type I and III collagen synthesis in human dermal fibroblast. Methods Laboratory experiments were conducted using human dermal fibroblasts (HDF isolated from human foreskin explants. Seven passages of HDF were treated with asiaticoside and retinoic acid at several doses and incubated for 24 and 48 hours. Cell viability in all groups was tested with the MTT assay to assess HDF proliferation. Type I and III collagen synthesis was examined using the respective ELISA kits. Analysis of variance was performed to compare the treatment groups. Results Asiaticoside had significantly stronger effects on HDF proliferation than retinoic acid (p<0.05. The type III collagen production was significantly greater induction with asiaticoside compared to retinoic acid (p<0.05. Conclusion Asiaticoside induces HDF proliferation and type I and III collagen synthesis in a time- and dose-dependent pattern. Asiaticoside has a similar effect as retinoic acid on type I and type III collagen synthesis.

  9. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Michael J. [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Longhurst, Celia M.; Baker, Benjamin [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Homayouni, Ramin [Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States); Speich, Henry E.; Kotha, Jayaprakash [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Jennings, Lisa K., E-mail: ljennings@uthsc.edu [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States)

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.

  10. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  11. MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis

    International Nuclear Information System (INIS)

    Tsuchiya, Naoto; Nakagama, Hitoshi

    2010-01-01

    Post-transcriptional regulation of gene expression by microRNA (miRNA) has recently attracted major interest in relation to its involvement in cancer development. miRNA is a member of small non-coding RNA, consists of 22-24 nucleotides and regulates expression of target mRNA species in a post-transcriptional manner by being incorporated with RNA-induced silencing complex (RISC). Staphylococcal nuclease homology domain containing 1 (SND1), a component of RISC, is frequently up-regulated in human colon cancers and also chemically induced colon cancers in animals. We here showed that SDN1 is involved in miRNA-mediated gene suppression and overexpression of SND1 in colon cancer cells causes down-regulation of APC without altering APC mRNA levels. As for the miRNA expression profile in human colon cancer, miR-34a was among the list of down-regulated miRNA. Expression of miR-34a is tightly regulated by p53, and ectopic expression of miR-34a in colon cancer cells causes remarkable reduction of cell proliferation and induces senescence-like phenotypes. MiR-34a also participates in the positive feedback loop of the p53 tumor suppressor network. This circuitry mechanism for p53 activation is of interest in understanding the tumor suppressive function of miR-34a in colon carcinogenesis. miRNA should also be considered as novel anti-cancer agents in tumor suppressive therapeutic applications.

  12. Intermittent pressure decreases human keratinocyte proliferation in vitro.

    Science.gov (United States)

    Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S

    2007-01-01

    The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.

  13. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    International Nuclear Information System (INIS)

    Uchino, Keita; Hirano, Gen; Hirahashi, Minako; Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi; Tsuneyoshi, Masazumi; Akashi, Koichi

    2012-01-01

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: ► Nanog maintains pluripotency by regulating embryonic stem cells differentiation. ► Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. ► Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. ► Nanog pseudogene8 promotes cancer stem cells proliferation. ► Nanog pseudogene8 is involved in gastrointestinal cancer development.

  14. Factors that mediate colonization of the human stomach by Helicobacter pylori.

    Science.gov (United States)

    Dunne, Ciara; Dolan, Brendan; Clyne, Marguerite

    2014-05-21

    Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease.

  15. Colonization and infection by Helicobacter pylori in humans.

    Science.gov (United States)

    Andersen, Leif Percival

    2007-11-01

    When Helicobacter pylori arrives in the human stomach, it may penetrate the mucin layer and adhere to the gastric epithelial cells or it may pass through the stomach without colonizing the mucosa. In this paper, the colonization process and the ensuing immunological response will be briefly described. Urease production is necessary for H. pylori to establish a pH-neutral microenvironment around the bacteria. The flagella enable the bacteria to move and the shape of H. pylori makes it possible to penetrate the mucin layer where it comes into contact with the gastric epithelial cells. H. pylori contains several adhesins that enable it to adhere to the epithelial cells. This adherence activates IL-8 which, together with bacterial antigens, attracts polymorphs and monocytes and causes acute gastritis. Antigen-presenting cells activate lymphocytes and other mononuclear cells that are attracted to the inflamed mucosa, causing chronic superficial gastritis and initiating a cytotoxic or an antigen-producing Th response. The infection is established within a few weeks after the primary exposure to H. pylori. After this initial colonization, many chemical, biochemical, and immunologic reactions take place that are of importance in the progress of the infection and the development of disease.

  16. Mesenchymal Stem Cells Induce Epithelial to Mesenchymal Transition in Colon Cancer Cells through Direct Cell-to-Cell Contact

    Directory of Open Access Journals (Sweden)

    Hidehiko Takigawa

    2017-05-01

    Full Text Available We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow–derived mesenchymal stem cells (MSCs migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT–related genes such as fibronectin (FN, SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.

  17. Transit of solids through the human colon: Regional quantification in the unprepared bowel

    International Nuclear Information System (INIS)

    Proano, M.; Camilleri, M.; Phillips, S.F.; Brown, M.L.; Thomforde, G.M.

    1990-01-01

    We used a noninvasive method to label the solid phase of contents in the unprepared human colon. 111 In-labeled Amberlite pellets (0.5-1.8 mm diam) were placed in a gelatin capsule that was then coated with a pH-sensitive polymer (methacrylate). In vitro, the capsules disintegrated in simulated small bowel contents within 1-2 h; when ingested by healthy subjects, capsules released radiolabel in the distal ileum or proximal colon in 13 of 15 subjects. Transit of 111 In-pellets through the unprepared colon could then be quantitated radioscintigraphically. Segmental transit was defined in the ascending (AC), transverse (TC), descending (DC), and rectosigmoid (RS) colon. Radioactivity was also quantitated in stools. At 12 h, radioactivity was most obvious in the AC (59 +/- 11%, mean +/- SE) and the TC (21 +/- 6%); at 24 h, counts were distributed equally between AC, TC, and stools (P greater than 0.05); by 48 h, 56 +/- 11% counts had been excreted, although 30 +/- 10% remained in the TC. At 24 and 48 h, the amount in DC or RS was lower (P less than 0.05) than in the TC or in stools. Emptying of the AC was characterized by an initial lag period, when no counts emptied into the TC, followed by a period of emptying that was approximately linear. Thus this simple approach is able to label contents in the healthy human colon. The ascending and transverse colon appear to be sites of storage of solid residue, whereas the left colon and rectosigmoid function mainly as conduits

  18. Perivascular Interstitial Cells of Cajal in Human ColonSummary

    Directory of Open Access Journals (Sweden)

    Yuan-An Liu

    2015-01-01

    Full Text Available Background & Aims: Interstitial cells of Cajal (ICC closely associate with nerves and smooth muscles to modulate gut motility. In the ICC microenvironment, although the circulating hormones/factors have been shown to influence ICC activities, the association between ICC and microvessels in the gut wall has not been described. We applied three-dimensional (3D vascular histology with c-kit staining to identify the perivascular ICC and characterize their morphologic and population features in the human colon wall. Methods: Full-thickness colons were obtained from colectomies performed for colorectal cancer. We targeted the colon wall away from the tumor site. Confocal microscopy with optical clearing (use of immersion solution to reduce scattering in optical imaging was performed to simultaneously reveal the ICC and vascular networks in space. 3D image rendering and projection were digitally conducted to illustrate the ICC–vessel contact patterns. Results: Perivascular ICC were identified in the submucosal border, myenteric plexus, and circular and longitudinal muscles via high-definition 3D microscopy. Through in-depth image projection, we specified two contact patterns—the intimate cell body-to-vessel contact (type I, 18% of ICC in circular muscle and the long-distance process-to-vessel contact (type II, 16%—to classify perivascular ICC. Particularly, type I perivascular ICC were detected with elevated c-kit staining levels and were routinely found in clusters, making them readily distinguishable from other ICC in the network. Conclusions: We propose a new subclass of ICC that closely associates with microvessels in the human colon. Our finding suggests a functional relationship between these mural ICC and microvessels based on the morphologic proximity. Keywords: 3D Histology, c-kit, ICC, Mural Cells

  19. Overexpression of Long Non-Coding RNA TUG1 Promotes Colon Cancer Progression.

    Science.gov (United States)

    Zhai, Hui-Yuan; Sui, Ming-Hua; Yu, Xiao; Qu, Zhen; Hu, Jin-Chen; Sun, Hai-Qing; Zheng, Hai-Tao; Zhou, Kai; Jiang, Li-Xin

    2016-09-16

    BACKGROUND Colon cancer is one of the most prevalent and deadly cancers worldwide. It is still necessary to further define the mechanisms and explore therapeutic targets of colon cancer. Dysregulation of long noncoding RNAs (lncRNAs) has been shown to be correlated with diverse biological processes, including tumorigenesis. This study aimed to characterize the biological mechanism of taurine-upregulated gene 1 (TUG1) in colon cancer. MATERIAL AND METHODS qRT-PCR was used to analyze the expression level of TUG1 and p63 in 75 colon cancer tissues and the matched adjacent non-tumor tissue. In vitro, cultured colon cancer cell lines HCT-116 and LoVo were used as cell models. TUG1 and p63 were silenced via transferring siRNA into HCT-116 or LoVo. The effects of TUG1 were investigated by examining cell proliferation, apoptosis, and migration. RESULTS Among the 75 colon cancer cases, the expression of TUG1 was significantly higher in colon cancer tissues compared with the matched adjacent non-tumor tissue, while p63 expression was lower in the tumor tissue. In HCT-116 and LoVo, the expression of TUG1 was significantly increased by p63 siRNA transfection. Furthermore, down-regulation of TUG1 by siRNA significantly inhibited the cell proliferation and promoted colon cancer cell apoptosis. In addition, inhibition of TUG1 expression significantly blocked the cell migration ability of colon cancer cells. CONCLUSIONS LncRNA TUG1 may serve as a potential oncogene for colon cancer. Overexpressed TUG1 may contribute to promoting cell proliferation and migration in colon cancer cells.

  20. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  1. A comparison of cell proliferation in normal and neoplastic intestinal epithelia following either biogenic amine depletion or monoamine oxidase inhibition.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1976-08-11

    Epithelial cell proliferation was studied in the jejunum and in the colon of normal rats, in the colon of dimethylhydrazine-treated rats and in dimethylhydrazine-induced adenocarcinoma of the colon using a stathmokinetic technique. Estimates of cell proliferation rates in these four tissues were then repeated in animals which had been depleted of biogenic animes by treatment with reserpine and in animals whose monoamine oxidase was inhibited by treatment with nialamide. In amine-depleted animals cell proliferation essentially ceased in all four tissues examined. Inhibition of monoamine oxidase did not significantly influence cell proliferation in nonmalignant tissues but accelerated cell division in colonic tumours.

  2. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  3. Rhein induces apoptosis of HCT-116 human colon cancer cells via ...

    African Journals Online (AJOL)

    Rhein, a major compound in rhubarb, has been found to have anti-tumor properties in many human cancer cells. However, the details about rhein suppressing the growth of human colon cancer cells remained elusive. In this paper, we explored the potential of rhein as a chemotherapeutic agent on HCT- 116 cells and ...

  4. Neuron-derived orphan receptor 1 promoted human pulmonary artery smooth muscle cells proliferation.

    Science.gov (United States)

    Wang, Chang-Guo; Lei, Wei; Li, Chang; Zeng, Da-Xiong; Huang, Jian-An

    2015-05-01

    As a transcription factor of the nuclear receptor superfamily, neuron-derived orphan receptor 1 (NOR1) is induced rapidly in response to various extracellular stimuli. But, it is still unclear its role in pulmonary artery smooth muscle cells proliferation. Human PASMCs were cultured in vitro and stimulated by serum. The special antisense oligodeoxynucleotides (AS-ODNs) were used to knockdown human NOR1 gene expression. Real-time PCR and Western-blot were used to evaluate the gene expression and protein levels. Fetal bovine serum (FBS) induced human PASMCs proliferation in a dose dependent manner. Furthermore, FBS promoted NOR1 gene expression in a dose dependent manner and a time dependent manner. 10% FBS induced a maximal NOR1 mRNA levels at 2 h. FBS also induced a significant higher NOR1 protein levels as compared with control. The NOR1 over-expressed plasmid significantly promoted DNA synthesis and cells proliferation. Moreover, the special AS-ODNs against human NOR1 not only prevented NOR1 expression but also inhibited DNA synthesis and cells proliferation significantly. The NOR1 over-expression plasmid could up-regulate cyclin D1 expression markedly, but the AS-ODNs inhibited cyclin D1 expression significantly. So, we concluded that NOR1 could promote human PASMCs proliferation. Cyclin D1 might be involved in this process.

  5. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells.

    Science.gov (United States)

    Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo

    2014-02-01

    Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.

  6. MiR-145 regulates PAK4 via the MAPK pathway and exhibits an antitumor effect in human colon cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhigang [Department of General Surgery, Shanghai Jiaotong University Affiliated 6th People' s Hospital, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine (China); Yang, Zhili; Du, Hangxiang; Wu, Zhenqian; Gong, Jianfeng; Yan, Jun [Department of General Surgery, Shanghai Jiaotong University Affiliated 6th People' s Hospital, Shanghai (China); Zheng, Qi, E-mail: zhengqi1957@yahoo.com.cn [Department of General Surgery, Shanghai Jiaotong University Affiliated 6th People' s Hospital, Shanghai (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer MiR-145 targets a putative binding site in the 3 Prime UTR of PAK4. Black-Right-Pointing-Pointer MiR-145 played an important role in inhibiting cell growth by directly targeting PAK4. Black-Right-Pointing-Pointer MiR-145 may function as tumor suppressors. -- Abstract: MicroRNAs (miRNAs) are regulators of numerous cellular events; accumulating evidence indicates that miRNAs play a key role in a wide range of biological functions, such as cellular proliferation, differentiation, and apoptosis in cancer. Down-regulated expression of miR-145 has been reported in colon cancer tissues and cell lines. The molecular mechanisms underlying miR-145 and the regulation of colon carcinogenesis remain unclear. In this study, we investigated the levels of miR-145 in human colon cancer cells using qRT-PCR and found markedly decreased levels compared to normal epithelial cells. We identified PAK4 as a novel target of miR-145 using informatics screening. Additionally, we demonstrated that miR-145 targets a putative binding site in the 3 Prime UTR of PAK4 and that its abundance is inversely associated with miR-145 expression in colon cancer cells; we confirmed this relationship using the luciferase reporter assay. Furthermore, restoration of miR-145 by mimics in SW620 cells significantly attenuated cell growth in vitro, in accordance with the inhibitory effects induced by siRNA mediated knockdown of PAK4. Taken together, these findings demonstrate that miR-145 downregulates P-ERK expression by targeting PAK4 and leads to inhibition of tumor growth.

  7. The action of sennosides and related compounds on human colon and rectum 1

    Science.gov (United States)

    Hardcastle, J. D.; Wilkins, J. L.

    1970-01-01

    The direct action of intraluminal senna and related compounds on the human colon and rectum has been investigated. Motility was recorded by balloon kymography with recording units inserted into well established transverse colostomies or into the rectum. The motility of the colon was not changed by intraluminal senna glycosides but the introduction of senna previously incubated with faeces or Esch. coli stimulated the colon to peristalt. The peristalsis was similar to that stimulated by rheinanthrone, an oxanthrone produced by chemical hydrolysis and reduction of senna. Both activated senna and rheinanthrone appeared to act in the colon by contact stimulation. No peristaltic response was stimulated in the rectum, either with activated senna or with rheinanthrone. PMID:4929273

  8. Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells.

    Science.gov (United States)

    Selmin, Ornella I; Fang, Changming; Lyon, Adam M; Doetschman, Tom C; Thompson, Patricia A; Martinez, Jesse D; Smith, Jeffrey W; Lance, Peter M; Romagnolo, Donato F

    2016-02-01

    The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells

  9. Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    Epidemiological studies have correlated consumption of dietary phytoestrogens with beneficial effects on colon, breast and prostate cancers. Genomic and non-genomic mechanisms are responsible for anti-carcinogenic effects but, until now, the effect on human colon was assumed to be passive and remote. No direct effect on human colonic smooth muscle has previously been described. Institutional research board approval was granted. Histologically normal colon was obtained from the proximal resection margin of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended under 1g of tension in organ baths containing oxygenated Krebs solution at 37 degrees C. After an equilibration period, tissues were exposed to diarylpropionitrile (DPN) (ER beta agonist) and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (ER alpha agonist) or to the synthetic phytoestrogen compounds genistein (n=8), daidzein (n=8), fisetin (n=8) and quercetin (n=8) in the presence or absence of fulvestrant (oestrogen receptor antagonist). Mechanism of action was investigated by inhibition of downstream pathways. The cholinergic agonist carbachol was used to induce contractile activity. Tension was recorded isometrically. Phytoestrogens inhibit carbachol-induced colonic contractility. In keeping with a non-genomic, rapid onset direct action, the effect was within minutes, reversible and similar to previously described actions of 17 beta oestradiol. No effect was seen in the presence of fulvestrant indicating receptor modulation. While the DPN exerted inhibitory effects, PPT did not. The effect appears to be reliant on a p38\\/mitogen activated protein kinase mediated induction of nitric oxide production in colonic smooth muscle. The present data set provides the first description of a direct effect of genistein, daidzein, fisetin and quercetin on human colonic smooth muscle. The presence of ER in colonic smooth muscle has been functionally proven and the beta

  10. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  11. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research

    NARCIS (Netherlands)

    Tetteh, Paul W.; Kretzschmar, Kai; Begthel, Harry; Van Den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; Van Es, Johan H.; Offerhaus, G. Johan A; Clevers, Hans

    2016-01-01

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic

  12. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    Highlights: ► Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE 2 . ► The fibroblasts interact with human colonic epithelial cancer cells. ► Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. ► Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  13. Echoendoscopic characterization of the human colon

    Directory of Open Access Journals (Sweden)

    Fernando M. Castro-Poças

    Full Text Available Purpose: To characterize colon and rectum walls, pericolic and perirectal spaces, using endoscopic ultrasonography miniprobes. Methods: Sixty individuals (50% males, aged 18-80, were included. Using 12 and 20 MHz endoscopic ultrasonography miniprobes, all different colon segments (ascending, transverse, descending, sigmoid and rectum were evaluated according to the number and thickness of the different layers in intestinal wall, to the presence and (largest diameter of vessels in the submucosa and of peri-intestinal nodes. Results: The 20 MHz miniprobe identified a higher number of layers than the 12 MHz miniprobe, with medians of 7 and 5 respectively (p < 0.001. The rectal wall (p = 0.001, its muscularis propria (p < 0.001 and mucosa (p = 0.01 were significantly thicker than the different segments of the colon, which had no significant differences between them. Patients aged 41-60 presented thicker colonic wall and muscularis propria in descending (p = 0.001 and p = 0.004 and rectum (p=0.01 and p=0.01. Submucosal vessels were identified in 30% of individuals in descending and rectum, and in 12% in ascending. Adenopathies were observed in 9% of the colon segments and 5% in rectum. Conclusions: A higher frequency enabled the identification of a higher number of layers. Rectal wall is thicker than the one from all the segments of the colon and there are no differences between these, namely in the ascending colon. Moreover, peri-intestinal adenopathies were rarely identified but present in asymptomatic individuals. All together, these results describe for the first time features which are relevant during staging and therapeutic management of colonic lesions.

  14. Effect of complex polyphenols on colon carcinogenesis.

    Science.gov (United States)

    Caderni, G; Remy, S; Cheynier, V; Morozzi, G; Dolara, P

    1999-06-01

    Complex polyphenols and tannins from wine (WCPT) are being considered increasingly as potential cancer chemopreventive agents, since epidemiological studies suggest that populations consuming a high amount of polyphenols in the diet may have a lower incidence of some types of cancer. We studied the effect of WCPT on a series of parameters related to colon carcinogenesis in rats. WCPT were administered to F344 rats at a dose of 14 or 57 mg/kg/d, mixed with the diet. The higher dose is about ten times the exposure to polyphenols of a moderate drinker of red wine. In rats treated with WCPT, we measured fecal bile acids and long chain fatty acids, colon mucosa cell proliferation, apoptosis and, after administration of colon carcinogens, the number and size of aberrant crypt foci (ACF) and nuclear aberrations. Colon mucosa proliferation was not varied by chronic administration (90 d) of WCPT (14 or 57 mg/kg/d). The highest dose of WCPT decreased the number of cells in the colon crypts, but did not increase apoptosis. WCPT (57 mg/kg) administered before or after the administration of azoxymethane (AOM) did not vary the number or multiplicity of ACF in the colon. The number of nuclear aberrations (NA) in colon mucosa was studied after administration of 1,2-dimethylhydrazine (DMH) and 2-amino-3-methylimidazo (4,5-f)quinoline (IQ), colon-specific carcinogens which require metabolic activation. The effect of DMH and IQ was not varied by pre-feeding WCPT (57 mg/kg) for 10 d. Similarly, the levels of total, secondary bile acids and long chain fatty acids did not varied significantly in animals fed WCPT for 90 d. WCPT administration does not influence parameters related to colon carcinogenesis in the rat.

  15. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  16. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    International Nuclear Information System (INIS)

    Guo, Kai; Jin, Faguang

    2015-01-01

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells

  17. Detection of human papillomavirus infection by molecular tests and its relation to colonic polyps and colorectal cancer

    Directory of Open Access Journals (Sweden)

    Faten Gazzaz

    2016-03-01

    Full Text Available Objectives: To prospectively examine the association between human papilloma virus (HPV colonization of the colonic mucosa and the development of colorectal polyps (CRPs, and colorectal cancer (CRC in Saudi Arabia. Methods: A case control study was performed between January 2013 and December 2014. All eligible patients underwent standard diagnostic colonoscopy. Patients with polyps or colorectal cancer were considered cases, while those with any other endoscopic findings were controls. Biopsy samples from polyps and tumors, and/or from normal colonic mucosa were acquired. Human papilloma virus colonization was detected using a hybrid capture technique of samples taken from both normal tissue, and CRPs and CRC. The association between HPV and CRPs/CRC was evaluated. Results: A total of 132 patients were recruited. The mean age was 53 (±15.9 years. Sixty patients had endoscopically detectable CRPs/CRC, and 72 had either inflammation or normal endoscopic evaluations. Only 4 (0.8% of the 132 samples that were collected and analyzed were positive for the HPV gene. Statistical analysis did not identify any significant association between HPV colonization and the presence of CRPs/CRC. The only significant predictor of detecting CRPs/CRC on colonoscopy was symptomatic presentation (odds ratio=11.072, 95% confidence interval 4.7-26.2, p<0.001. Conclusion: Human papilloma virus colonic colonization is rare in Saudi Arabia. An association between HPV colonization and CRP/CRC development could not be identified in this cohort of patients.

  18. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    Science.gov (United States)

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  19. PPARδ deficiency disrupts hypoxia-mediated tumorigenic potential of colon cancer cells.

    Science.gov (United States)

    Jeong, Eunshil; Koo, Jung Eun; Yeon, Sang Hyeon; Kwak, Mi-Kyoung; Hwang, Daniel H; Lee, Joo Young

    2014-11-01

    Peroxisome proliferator-activated receptor (PPAR) δ is highly expressed in colon epithelial cells and closely linked to colon carcinogenesis. However, the role of PPARδ in colon cancer cells in a hypoxic tumor microenvironment is not fully understood. We found that expression of the tumor-promoting cytokines, IL-8 and VEGF, induced by hypoxia (colon cancer cells. Consequently, PPARδ-knockout colon cancer cells exposed to hypoxia and deferoxamine failed to stimulate endothelial cell vascularization and macrophage migration/proliferation, whereas wild-type cells were able to induce angiogenesis and macrophage activation in response to hypoxic stress. Hypoxic stress induced transcriptional activation of PPARδ, but not its protein expression, in HCT116 cells. Exogenous expression of p300 potentiated deferoxamine-induced PPARδ transactivation, while siRNA knockdown of p300 abolished hypoxia- and deferoxamine-induced PPARδ transactivation. PPARδ associated with p300 upon hypoxic stress as demonstrated by coimmunoprecipitation studies. PI3K inhibitors or siRNA knockdown of Akt suppressed the PPARδ transactivation induced by hypoxia and deferoxamine in HCT116 cells, leading to decreased expression of IL-8 and VEGF. Collectively, these results reveal that PPARδ is required for hypoxic stress-mediated cytokine expression in colon cancer cells, resulting in promotion of angiogenesis, macrophage recruitment, and macrophage proliferation in the tumor microenvironment. p300 and the PI3K/Akt pathway play a role in the regulation of PPARδ transactivation induced by hypoxic stress. Our results demonstrate the positive crosstalk between PPARδ in tumor cells and the hypoxic tumor microenvironment and provide potential therapeutic targets for colon cancer. © 2014 Wiley Periodicals, Inc.

  20. Staphylococcus aureus MnhF mediates cholate efflux and facilitates survival under human colonic conditions

    OpenAIRE

    Sannasiddappa, Thippeswamy; Hood, Graham; Hanson, Kevan; Costabile, Adele; Gibson, Glenn; Clarke, Simon

    2015-01-01

    Resistance to the innate defenses of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common colonizer of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent antimicrobial activity. The mechanisms by which S. aureus is able to resist such defenses in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated...

  1. Human colon cancer HT-29 cell death responses to doxorubicin and Morus Alba leaves flavonoid extract.

    Science.gov (United States)

    Fallah, S; Karimi, A; Panahi, G; Gerayesh Nejad, S; Fadaei, R; Seifi, M

    2016-03-31

    The mechanistic basis for the biological properties of Morus alba flavonoid extract (MFE) and chemotherapy drug of doxorubicin on human colon cancer HT-29 cell line death are unknown. The effect of doxorubicin and flavonoid extract on colon cancer HT-29 cell line death and identification of APC gene expression and PARP concentration of HT-29 cell line were investigated. The results showed that flavonoid extract and doxorubicin induce a dose dependent cell death in HT-29 cell line. MFE and doxorubicin exert a cytotoxic effect on human colon cancer HT-29 cell line by probably promoting or induction of apoptosis.

  2. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    Directory of Open Access Journals (Sweden)

    Anita Muraglia

    2017-11-01

    Full Text Available Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i an heparin-free human platelet lysate (PL devoid of serum or plasma components (v-PL and (ii an heparin-free human serum derived from plasma devoid of PL components (Pl-s and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment, but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79 regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype.

  3. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells

    Science.gov (United States)

    Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.

    2018-01-01

    Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.

  4. Boletus edulis ribonucleic acid - a potent apoptosis inducer in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Guichard Alves, Helena; Marques, Guilhermina; Nunes, Fernando Milheiro; Rzeski, Wojciech

    2016-07-13

    Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use. Nevertheless, several reports revealed the usefulness of biopolymers isolated from it in cancer treatment. Our previous studies have shown that B. edulis water soluble biopolymers are not toxic against normal colon epithelial cells (CCD841 CoTr) and at the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells (LS180) which was accompanied with cell cycle arrest in the G0/G1 phase. The purpose of the present study was to verify the proapoptotic properties of a selected fraction from B. edulis - BE3, as well as determine its chemical nature. The BE3 fraction was extracted with hot water and purified by anion-exchange chromatography. Further chemical examinations revealed that BE3 consists mainly of ribonucleic acid (59.1%). The ability of BE3 to induce programmed cell death was examined in human colon cancer cell lines LS180 and HT-29 by measuring caspase activation, DNA fragmentation and expression of BAX, BCL2, TP53 and CDKN1A genes. The sensitivity of colon cancer cells with silenced BAX, TP53 and CDKN1A expression to BE3 treatment was also evaluated. We have demonstrated for the first time that the BE3 fraction is a potent apoptosis inducer in human colon cancer cells. The revealed mechanism of apoptosis triggering was dependent on the presence of functional p53 and consequently was a little different in investigated cell lines. Our results indicated that BE3 stimulated proapoptotic genes BAX (LS180, HT-29), TP53 (LS180) and CDKN1A (HT-29) while at the same time silenced the expression of the key prosurvival gene BCL2 (LS180, HT-29). The obtained results indicate the high therapeutic potential of the BE3 fraction against colon cancer, yet it is necessary to further confirm fraction efficacy and safety in animal and clinical studies.

  5. Evaluation of selected features of Staphylococcus cohnii enabling colonization of humans.

    Science.gov (United States)

    Waldon, E; Sobiś-Glinkowska, M; Szewczyk, E M

    2002-01-01

    Based on iron utilization, sensitivity to skin fatty acids, lipolytic and proteolytic activity the potential abilities of Staphylococcus cohnii strains to colonize humans were evaluated. The investigation included 60 strains that belong to both subspecies, viz. S. cohnii ssp. cohnii and S. cohnii ssp. urealyticus. Strains were isolated from different sources of the Intensive Care Unit and from non-hospital environment. Most of the strains were multiple antibiotic-resistant. Strains of both subspecies revealed a relatively low iron requirement. These strains were capable of utilizing iron bound in oxo acids and from host iron-binding proteins. S. cohnii ssp. urealyticus were more effective in iron uptake than S. cohnii ssp. cohnii. All investigated strains revealed sensitivity to skin fatty acids, but S. cohnii ssp. urealyticus strains were more resistant. Special features of strains of this subspecies promote colonization of humans.

  6. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway

    International Nuclear Information System (INIS)

    Luo Xianghang; Guo Lijuan; Yuan Lingqing; Xie Hui; Zhou Houde; Wu Xianping; Liao Eryuan

    2005-01-01

    Adipocytes can highly and specifically express adiponectin, and the adiponectin receptor (AdipoR) has been detected in bone-forming cells. The present study was undertaken to investigate the action of adiponectin on osteoblast proliferation and differentiation. AdipoR1 protein was detected in human osteoblasts. Adiponectin promoted osteoblast proliferation and resulted in a dose- and time-dependent increase in alkaline phosphatase (ALP) activity, osteocalcin and type I collagen production, and an increase in mineralized matrix. Suppression of AdipoR1 with small-interfering RNA (siRNA) abolished the adiponectin-induced cell proliferation and ALP expression. Adiponectin induces activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal Kinase (JNK), but not ERK1/2 in osteoblasts, and these effects were blocked by suppression of AdipoR1 with siRNA. Furthermore, pretreatment of osteoblasts with the JNK inhibitor SP600125 abolished the adiponectin-induced cell proliferation. p38 inhibitor SB203580 blocked the adiponectin-induced ALP activity. These data indicate that adiponectin induces human osteoblast proliferation and differentiation, and the proliferation response is mediated by the AdipoR/JNK pathway, while the differentiation response is mediated via the AdipoR/p38 pathway. These findings suggest that osteoblasts are the direct targets of adiponectin

  7. Indoors forensic entomology: colonization of human remains in closed environments by specific species of sarcosaprophagous flies.

    Science.gov (United States)

    Pohjoismäki, Jaakko L O; Karhunen, Pekka J; Goebeler, Sirkka; Saukko, Pekka; Sääksjärvi, Ilari E

    2010-06-15

    Fly species that are commonly recovered on human corpses concealed in houses or other dwellings are often dependent on human created environments and might have special features in their biology that allow them to colonize indoor cadavers. In this study we describe nine typical cases involving forensically relevant flies on human remains found indoors in southern Finland. Eggs, larvae and puparia were reared to adult stage and determined to species. Of the five species found the most common were Lucilia sericata Meigen, Calliphora vicina Robineau-Desvoidy and Protophormia terraenovae Robineau-Desvoidy. The flesh fly Sarcophaga caerulescens Zetterstedt is reported for the first time to colonize human cadavers inside houses and a COI gene sequence based DNA barcode is provided for it to help facilitate identification in the future. Fly biology, colonization speed and the significance of indoors forensic entomological evidence are discussed. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    Directory of Open Access Journals (Sweden)

    Mehri Fayazi

    2016-07-01

    Full Text Available Background: Stem cell factor (SCF is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146P + P cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01. Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146P+P cells and it has important implications for medical sciences and cell therapies

  9. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com [Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724 (United States); Tissue Tech Inc., Miami, FL 33173 (United States); Zhu, Min; Lance, Peter [Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  10. Fermentation supernatants of Lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway.

    Science.gov (United States)

    Wan, Ying; Xin, Yi; Zhang, Cuili; Wu, Dachang; Ding, Dapeng; Tang, Li; Owusu, Lawrence; Bai, Jing; Li, Weiling

    2014-05-01

    Probiotic bacteria are known to exert a wide range of beneficial effects on their animal hosts. Therefore, the present study explored the effect of the supernatants obtained from Lactobacillus delbrueckii fermentation (LBF) on colon cancer. The results indicated that the proliferation of LBF solution-treated colon cancer SW620 cells was arrested and accumulated in the G1 phase in a concentration-dependent manner. The LBF solution efficiently induced apoptosis through the intrinsic caspase 3-depedent pathway, with a corresponding decreased expression of Bcl-2. The activity of matrix metalloproteinase 9, which is associated with the invasion of colon cancer cells, was also decreased in the LBF-treated cells. In conclusion, the results demonstrate the antitumor effect of LBF in vitro and may contribute to the development of novel therapies for the treatment of colon cancer.

  11. Human gastric emptying and colonic filling of solids characterized by a new method

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, M.; Colemont, L.J.; Phillips, S.F.; Brown, M.L.; Thomforde, G.M.; Chapman, N.; Zinsmeister, A.R. (Mayo Clinic and Foundation, Rochester, MN (USA))

    1989-08-01

    Our first aim was to compare {sup 111}In-labeled Amberlite IR-12OP resin pellets and {sup 131}I-labeled fiber in the assessment of gastric and small bowel transit and colonic filling in healthy humans. Both radiolabels were highly stable for 3 h in an in vitro stomach model and remained predominantly bound to solid phase of stools collected over 5 days (90.5 +/- 2.1 (SE)% for {sup 131}I and 87.4 +/- 1.4% for {sup 111}In). The lag phase of gastric emptying was shorter for {sup 111}In-pellets (30 +/- 11 min compared with 58 +/- 12 min for {sup 131}I-fiber, P less than 0.05). However, the slope of the postlag phase of gastric emptying and the half time of small bowel transit were not significantly different for {sup 111}In-pellets and {sup 131}I-fiber. Filling of the colon was characterized by bolus movements of the radiolabel (10-80% range, 26% mean) followed by plateaus (periods of no movement of isotope into colon lasting 15-120 min, range; 51 min, mean). Half of the bolus movements occurred within 1 h of the intake of a second meal. Thus {sup 111}In-labeled Amberlite pellets provide an excellent marker for the study of gastric and small bowel transit and colonic filling in humans. The ileum acts as a reservoir and transfers boluses of variable sizes into the colon, often soon after the intake of a subsequent meal.

  12. Deregulated GSK3β activity in colorectal cancer: Its association with tumor cell survival and proliferation

    International Nuclear Information System (INIS)

    Shakoori, Abbas; Ougolkov, Andrei; Yu Zhiwei; Zhang Bin; Modarressi, Mohammad H.; Billadeau, Daniel D.; Mai, Masayoshi; Takahashi, Yutaka; Minamoto, Toshinari

    2005-01-01

    Glycogen synthase kinase 3β (GSK3β) reportedly has opposing roles, repressing Wnt/β-catenin signaling on the one hand but maintaining cell survival and proliferation through the NF-κB pathway on the other. The present investigation was undertaken to clarify the roles of GSK3β in human cancer. In colon cancer cell lines and colorectal cancer patients, levels of GSK3β expression and amounts of its active form were higher in tumor cells than in their normal counterparts; these findings were independent of nuclear accumulation of β-catenin oncoprotein in the tumor cells. Inhibition of GSK3β activity by phosphorylation was defective in colorectal cancers but preserved in non-neoplastic cells and tissues. Strikingly, inhibition of GSK3β activity by chemical inhibitors and its expression by RNA interference targeting GSK3β induced apoptosis and attenuated proliferation of colon cancer cells in vitro. Our findings demonstrate an unrecognized role of GSK3β in tumor cell survival and proliferation other than its predicted role as a tumor suppressor, and warrant proposing this kinase as a potential therapeutic target in colorectal cancer

  13. Study on therapy of 188Re labelled stannic sulfur suspension in nude mice bearing human colon tumor

    International Nuclear Information System (INIS)

    Li Huiyuan; Wu Yuanfang; Dong Mo

    2003-01-01

    The effect of therapy, tissue distribution and stability are studied in nude mice bearing human colon tumor after injections of 188 Re labelled stannic sulfur suspension. The tissues are observed with electric microscope. The results show that 188 Re labelled stannic sulfur suspension is stabilized in the tumor and its inhibitive effects on human colon tumor cells are obvious. 188 Re labelled stannic sulfur suspension is a potential radiopharmaceuticals for therapy of human tumor

  14. A paraptosis-like cell death induced by δ-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jing-Shu; Li, Da-Ming; He, Ning; Liu, Ying-Hua; Wang, Chun-Hua; Jiang, Shu-Qing; Chen, Bing-Qing; Liu, Jia-Ren

    2011-01-01

    Tocotrienol is considered a beneficial effect agent on inhibition of tumor development. In this study, we focused on the effects of δ-tocotrienol and its possible mechanism on induction of death in human colon cancer SW620 cells. δ-Tocotrienol inhibited proliferation of SW620 cell in a dose-dependent manner. Our findings showed that δ-tocotrienol effectively induced paraptosis-like death in SW620 cells, correlated with the vacuolation that may be from welling and fusion of mitochondria and/or the endoplasmic reticulum (ER) as well as caspase-3 nonactivated. However, there were no changes in apoptosis based on flow cytometry analysis. Of being noted, δ-tocotrienol reduced the expression of β-catenin and wnt-1 proteins by about 50% at the highest dose (20 μmol/L). δ-Tocotrienol also decreased cyclin D1, c-jun and MMP-7 protein levels in SW620 cells. Altogether, these data indicate that δ-tocotrienol induces paraptosis-like cell death, which is associated with the suppression of the Wnt signaling pathway. Thus, our findings may provide a novel application in treatment of human colon carcinoma.

  15. Deoxynivalenol (DON) is toxic to human colonic, lung and monocytic cell lines, but does not increase the IgE response in a mouse model for allergy

    International Nuclear Information System (INIS)

    Instanes, Christine; Hetland, Geir

    2004-01-01

    We examined whether the common crop mycotoxin deoxynivalenol (DON) from Fusarium species is toxic to human colonic (Caco-2), lung (A549) and monocytic (U937) cell lines. Moreover, since DON reportedly induces increased levels of Th2 cytokines and total IgE, and we have observed that mould extracts adjuvated allergy development in mice, possible adjuvant effect of DON on allergy was studied in a mouse model. For all the cells, exposure to DON for 24 h reduced cellular protein synthesis, proliferation and survival rate dose-dependently. In addition, production of IL-8 in the U937 cell line increased up to eight-fold at levels of DON just lower than the most toxic one, suggesting that IL-8 can be used as an additional index for cytotoxicity in mononuclear phagocytes. However, DON did not increase levels of allergen-specific IgE or IgG1 in the mouse model for allergy. These results suggest that DON, when inhaled or ingested, may have toxic effect on human alveolar macrophages and epithelial cells in lungs and colon, but does not increase the allergic response to allergens

  16. FLAX OIL FROM TRANSGENIC LINUM USITATISSIMUM SELECTIVELY INHIBITS IN VITRO PROLIFERATION OF HUMAN CANCER CELL LINES.

    Science.gov (United States)

    Gebarowski, Tomasz; Gebczak, Katarzyna; Wiatrak, Benita; Kulma, Anna; Pelc, Katarzyna; Czuj, Tadeusz; Szopa, Jan; Gasiorowski, Kazimierz

    2017-03-01

    Emulsions made of oils from transgenic flaxseeds significantly decreased in vitro proliferation of six tested human cancer cell lines in 48-h cultures, as assessed with the standard sulforhodamine assay. However, the emulsions also increased proliferation rate of normal human dermal fibroblasts and, to a lower extend, of keratinocytes. Both inhibition of in vitro proliferation of human cancer cell lines and stimulation of proliferation of normal dermal fibroblasts and keratinocytes were especially strong with the emulsion type B and with emulsion type M. Oils from seeds of transgenic flax type B and M should be considered as valuable adjunct to standard cytostatic therapy of human cancers and also could be applied to improve the treatment of skin lesions in wound healing.

  17. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Paul Lin

    Full Text Available Human mesenchymal stem cells (hMSCs can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1-8 µg/mL negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr. Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical.

  18. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression.

    Science.gov (United States)

    Teng, Yun; Ren, Yi; Hu, Xin; Mu, Jingyao; Samykutty, Abhilash; Zhuang, Xiaoying; Deng, Zhongbin; Kumar, Anil; Zhang, Lifeng; Merchant, Michael L; Yan, Jun; Miller, Donald M; Zhang, Huang-Ge

    2017-02-17

    Exosomes are emerging mediators of intercellular communication; whether the release of exosomes has an effect on the exosome donor cells in addition to the recipient cells has not been investigated to any extent. Here, we examine different exosomal miRNA expression profiles in primary mouse colon tumour, liver metastasis of colon cancer and naive colon tissues. In more advanced disease, higher levels of tumour suppressor miRNAs are encapsulated in the exosomes. miR-193a interacts with major vault protein (MVP). Knockout of MVP leads to miR-193a accumulation in the exosomal donor cells instead of exosomes, inhibiting tumour progression. Furthermore, miR-193a causes cell cycle G1 arrest and cell proliferation repression through targeting of Caprin1, which upregulates Ccnd2 and c-Myc. Human colon cancer patients with more advanced disease show higher levels of circulating exosomal miR-193a. In summary, our data demonstrate that MVP-mediated selective sorting of tumour suppressor miRNA into exosomes promotes tumour progression.

  19. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  20. Effect of sulindac sulfide on metallohydrolases in the human colon cancer cell line HT-29.

    Directory of Open Access Journals (Sweden)

    Hector Guillen-Ahlers

    Full Text Available Matrix metalloproteinase 7 (MMP7, a metallohydrolase involved in the development of several cancers, is downregulated in the Apc(Min/+ colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases.

  1. Spatiotemporal distribution of proliferation, proapoptotic and antiapoptotic factors in the early human limb development.

    Science.gov (United States)

    Bečić, Tina; Bilan, Kanito; Mardešić, Snježana; Vukojević, Katarina; Saraga-Babić, Mirna

    2016-06-01

    Involvement of proliferation and apoptosis in the human limb development was analyzed electronmicroscopically and immunohistochemically in histological sections of 8 human embryos, 4(th) -10(th) week old, using apoptotic (caspase-3, AIF, BAX), anti-apoptotic (Bcl-2) and proliferation (Ki-67) markers, and TUNEL method. The data were analyzed by Mann-Whitney test, Kruskal-Wallis and Dunn's post hoc test. Initially, developing human limbs consisted of mesenchymal core and surface ectoderm with apical ectodermal ridge (AER). During progression of development, strong proliferation activity gradually decreased in the mesenchyme (from 78% to 68%) and in the epithelium (from 62% to 42%), while in the differentiating finger cartilages proliferation was constantly low (26-7%). Apoptotic caspase-3 and AIF-positive cells characterized mesenchyme and AER at earliest stages, while during digit separation they appeared in interdigital mesenchyme as well. Strong Bcl-2 expression was observed in AER, subridge mesenchyme and phalanges, while BAX expression charaterized limb areas undergoing apoptosis. Ultrastructurally, proliferating cells showed mitotic figures, while apoptotic cells were characterized by nuclear fragmentation. Macrophages were observed around the apoptotic cells. We suggest that intense proliferation enables growth and elongation of human limb primordia, and differential growth of digits. Both caspase-3 and AIF-dependant pathways of cell death control the extent of AER and numer of cells in the subridge mesenchyme at earliest developmental stages, as well as process of digit separation at later stages of limb development. Spatio-temporal co-expresson of Bcl-2 and BAX indicates their role in suppression of apoptosis and selective stimulation of growth during human limb morphogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma.

    Science.gov (United States)

    Williams, Christopher S; Zhang, Baolin; Smith, J Joshua; Jayagopal, Ashwath; Barrett, Caitlyn W; Pino, Christopher; Russ, Patricia; Presley, Sai H; Peng, DunFa; Rosenblatt, Daniel O; Haselton, Frederick R; Yang, Jin-Long; Washington, M Kay; Chen, Xi; Eschrich, Steven; Yeatman, Timothy J; El-Rifai, Wael; Beauchamp, R Daniel; Chang, Min S

    2011-10-01

    The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.

  3. MicroRNA-449a deficiency promotes colon carcinogenesis.

    Science.gov (United States)

    Niki, Masanori; Nakajima, Kohei; Ishikawa, Daichi; Nishida, Jun; Ishifune, Chieko; Tsukumo, Shin-Ichi; Shimada, Mitsuo; Nagahiro, Shinji; Mitamura, Yoshinori; Yasutomo, Koji

    2017-09-06

    MicroRNAs have broad roles in tumorigenesis and cell differentiation through regulation of target genes. Notch signaling also controls cell differentiation and tumorigenesis. However, the mechanisms through which Notch mediates microRNA expression are still unclear. In this study, we aimed to identify microRNAs regulated by Notch signaling. Our analysis found that microRNA-449a (miR-449a) was indirectly regulated by Notch signaling. Although miR-449a-deficient mice did not show any Notch-dependent defects in immune cell development, treatment of miR-449a-deficient mice with azoxymethane (AOM) or dextran sodium sulfate (DSS) increased the numbers and sizes of colon tumors. These effects were associated with an increase in intestinal epithelial cell proliferation following AOM/DSS treatment. In patients with colon cancer, miR-449a expression was inversely correlated with disease-free survival and histological scores and was positively correlated with the expression of MLH1 for which loss-of function mutations have been shown to be involved in colon cancer. Colon tissues of miR-449a-deficient mice showed reduced Mlh1 expression compared with those of wild-type mice. Thus, these data suggested that miR-449a acted as a key regulator of colon tumorigenesis by controlling the proliferation of intestinal epithelial cells. Additionally, activation of miR-449a may represent an effective therapeutic strategy and prognostic marker in colon cancer.

  4. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  5. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells.

    Science.gov (United States)

    Zeng, Huawei; Trujillo, Olivia N; Moyer, Mary P; Botnen, James H

    2011-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent; the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon cancer and normal cells. In this study, we demonstrated that SFN (15 μmol/L) exposure (72 h) inhibited cell proliferation by up to 95% in colon cancer cells (HCT116) and by 52% in normal colon mucosa-derived (NCM460) cells. Our data also showed that SFN exposure (5 and 10 μmol/L) led to the reduction of G1 phase cell distribution and an induction of apoptosis in HCT116 cells, but to a much lesser extent in NCM460 cells. Furthermore, the examination of mitogen-activated protein kinase (MAPK) signaling status revealed that SFN upregulated the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) in NCM460 cells but not in HCT116 cells. In contrast, SFN enhanced the phosphorylation of stress-activated protein kinase (SAPK) and decreased cellular myelocytomatosis oncogene (c-Myc) expression in HCT116 cells but not NCM460 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic signaling in HCT116 cells may play a critical role in SFN's stronger potential of inhibiting cell proliferation in colon cancer cells than in normal colon cells. Copyright © 2011, Taylor & Francis Group, LLC

  6. Flux analysis of the human proximal colon using anaerobic digestion model 1.

    Science.gov (United States)

    Motelica-Wagenaar, Anne Marieke; Nauta, Arjen; van den Heuvel, Ellen G H M; Kleerebezem, Robbert

    2014-08-01

    The colon can be regarded as an anaerobic digestive compartment within the gastro intestinal tract (GIT). An in silico model simulating the fluxes in the human proximal colon was developed on basis of the anaerobic digestion model 1 (ADM1), which is traditionally used to model waste conversion to biogas. Model calibration was conducted using data from in vitro fermentation of the proximal colon (TIM-2), and, amongst others, supplemented with the bio kinetics of prebiotic galactooligosaccharides (GOS) fermentation. The impact of water and solutes absorption by the host was also included. Hydrolysis constants of carbohydrates and proteins were estimated based on total short chain fatty acids (SCFA) and ammonia production in vitro. Model validation was established using an independent dataset of a different in vitro model: an in vitro three-stage continuous culture system. The in silico model was shown to provide quantitative insight in the microbial community structure in terms of functional groups, and the substrate and product fluxes between these groups as well as the host, as a function of the substrate composition, pH and the solids residence time (SRT). The model confirms the experimental observation that methanogens are washed out at low pH or low SRT-values. The in silico model is proposed as useful tool in the design of experimental setups for in vitro experiments by giving insight in fermentation processes in the proximal human colon. Copyright © 2014. Published by Elsevier Ltd.

  7. Decorin in Human Colon Cancer: Localization In Vivo and Effect on Cancer Cell Behavior In Vitro.

    Science.gov (United States)

    Nyman, Marie C; Sainio, Annele O; Pennanen, Mirka M; Lund, Riikka J; Vuorikoski, Sanna; Sundström, Jari T T; Järveläinen, Hannu T

    2015-09-01

    Decorin is generally recognized as a tumor suppressing molecule. Nevertheless, although decorin has been shown to be differentially expressed in malignant tissues, it has often remained unclear whether, in addition to non-malignant stromal cells, cancer cells also express it. Here, we first used two publicly available databases to analyze the current information about decorin expression and immunoreactivity in normal and malignant human colorectal tissue samples. The analyses demonstrated that decorin expression and immunoreactivity may vary in cancer cells of human colorectal tissues. Therefore, we next examined decorin expression in normal, premalignant and malignant human colorectal tissues in more detail using both in situ hybridization and immunohistochemistry for decorin. Our results invariably demonstrate that malignant cells within human colorectal cancer tissues are devoid of both decorin mRNA and immunoreactivity. Identical results were obtained for cells of neuroendocrine tumors of human colon. Using RT-qPCR, we showed that human colon cancer cell lines are also decorin negative, in accordance with the above in vivo results. Finally, we demonstrate that decorin transduction of human colon cancer cell lines causes a significant reduction in their colony forming capability. Thus, strategies to develop decorin-based adjuvant therapies for human colorectal malignancies are highly rational. © The Author(s) 2015.

  8. Metabolism of acyclic and cyclic N-nitroamines by cultured human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Harris, Curtis C.; Trump, Benjamin F.

    1978-01-01

    Cultured human colon mucosa was found to metabolize both acyclic and cyclic N-nitrosamines as measured by 14C-CO2 formation and reaction of the activated moieties with cellular macromolecules. Dimethylnitrosamine and N-nitrosopyrrolidine were metabolized by explants from all patients studied. A p...

  9. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    International Nuclear Information System (INIS)

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-01-01

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis

  10. Assessing the potential for raw meat to influence human colonization with Staphylococcus aureus.

    Science.gov (United States)

    Carrel, Margaret; Zhao, Chang; Thapaliya, Dipendra; Bitterman, Patrick; Kates, Ashley E; Hanson, Blake M; Smith, Tara C

    2017-09-07

    The role of household meat handling and consumption in the transfer of Staphylococcus aureus (S. aureus) from livestock to consumers is not well understood. Examining the similarity of S. aureus colonizing humans and S. aureus in meat from the stores in which those individuals shop can provide insight into the role of meat in human S. aureus colonization. S. aureus isolates were collected from individuals in rural and urban communities in Iowa (n = 3347) and contemporaneously from meat products in stores where participants report purchasing meat (n = 913). The staphylococcal protein A (spa) gene was sequenced for all isolates to determine a spa type. Morisita indices and Permutational Multivariate Analysis of Variance Using Distance Matrices (PERMANOVA) were used to determine the relationship between spa type composition among human samples and meat samples. spa type composition was significantly different between households and meat sampled from their associated grocery stores. spa types found in meat were not significantly different regardless of the store or county in which they were sampled. spa types in people also exhibit high similarity regardless of residential location in urban or rural counties. Such findings suggest meat is not an important source of S. aureus colonization in shoppers.

  11. Effects of treatment with antimicrobial agents on the human colonic microflora

    Directory of Open Access Journals (Sweden)

    Fatemeh Rafii

    2008-12-01

    Full Text Available Fatemeh Rafii, John B Sutherland, Carl E CernigliaDivision of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR, USAAbstract: Antimicrobial agents are the most valuable means available for treating bacterial infections. However, the administration of therapeutic doses of antimicrobial agents to patients is a leading cause of disturbance of the normal gastrointestinal microflora. This disturbance results in diminishing the natural defense mechanisms provided by the colonic microbial ecosystem, making the host vulnerable to infection by commensal microorganisms or nosocomial pathogens. In this minireview, the impacts of antimicrobials, individually and in combinations, on the human colonic microflora are discussed.Keywords: antibiotics, intestinal bacteria

  12. Decreased Polyunsaturated Fatty Acid Content Contributes to Increased Survival in Human Colon Cancer

    Directory of Open Access Journals (Sweden)

    Manuela Oraldi

    2009-01-01

    Full Text Available Among diet components, some fatty acids are known to affect several stages of colon carcinogenesis, whereas others are probably helpful in preventing tumors. In light of this, our aim was to determine the composition of fatty acids and the possible correlation with apoptosis in human colon carcinoma specimens at different Duke's stages and to evaluate the effect of enriching human colon cancer cell line with the possible reduced fatty acid(s. Specimens of carcinoma were compared with the corresponding non-neoplastic mucosa: a significant decrease of arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2, Bcl-2, and pBad were found. The importance of arachidonic acid in apoptosis was demonstrated by enriching a Caco-2 cell line with this fatty acid. It induced apoptosis in a dose- and time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the reduced content of arachidonic acid is likely related to carcinogenic process decreasing the susceptibility of cancer cells to apoptosis.

  13. Leptin Regulates Proliferation and Apoptosis in Human Prostate

    Directory of Open Access Journals (Sweden)

    Eduardo Leze

    2012-01-01

    Full Text Available This paper aimed to evaluate the leptin role on the cellular proliferation and the expression of fibroblast growth factor 2, aromatase enzyme, and apoptotic genes in the human prostate tissue. Methods. Fifteen samples of hyperplasic prostate tissue were divided in four symmetric parts maintained in RPMI medium supplemented with 10% fetal bovine serum, 1 ng/mL of gentamicin, and added with 50 ng/mL leptin (L or not (C. After 3 hours of incubation, gene expression was evaluated by real time RT-PCR. Cellular proliferation was evaluated by immunohistochemistry for PCNA. Results. The leptin treatment led to an increase cellular proliferation (C=21.8±0.5; L=64.8±0.9; P<0.0001 and in the expression of Bax (C=0.4±0.1; L=0.9±0.2; P<0.05 while Bcl-2 (C=19.9±5.6; L=5.6±1.8; P<0.05, Bcl-x (C=0.2±0.06; L=0.07±0.02; P<0.05, and aromatase expressions (C=1.9±0.6; L=0.4±0.1; P<0.04 were significantly reduced. Conclusion. Leptin has an important role in maintaining the physiological growth of the prostate since it stimulates both cellular proliferation and apoptosis, with the decrement in the aromatase gene expression.

  14. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling

    International Nuclear Information System (INIS)

    Oh, Somi; You, Eunae; Ko, Panseon; Jeong, Jangho; Keum, Seula; Rhee, Sangmyung

    2017-01-01

    Microtubules are required for diverse cellular processes, and abnormal regulation of microtubule dynamics is closely associated with severe diseases including malignant tumors. In this study, we report that α-tubulin N-acetyltransferase (αTAT1), a regulator of α-tubulin acetylation, is required for colon cancer proliferation and invasion via regulation of Wnt1 and its downstream genes expression. Public transcriptome analysis showed that expression of ATAT1 is specifically upregulated in colon cancer tissue. A knockout (KO) of ATAT1 in the HCT116 colon cancer cell line, using the CRISPR/Cas9 system showed profound inhibition of proliferative and invasive activities of these cancer cells. Overexpression of αTAT1 or the acetyl-mimic K40Q α-tubulin mutant in αTAT1 KO cells restored the invasiveness, indicating that microtubule acetylation induced by αTAT1 is critical for HCT116 cell invasion. Analysis of colon cancer-related gene expression in αTAT1 KO cells revealed that the loss of αTAT1 decreased the expression of WNT1. Mechanistically, abrogation of tubulin acetylation by αTAT1 knockout inhibited localization of β-catenin to the plasma membrane and nucleus, thereby resulting in the downregulation of Wnt1 and of its downstream genes including CCND1, MMP-2, and MMP-9. These results suggest that αTAT1-mediated Wnt1 expression via microtubule acetylation is important for colon cancer progression. - Highlights: • Ablation of αTAT1 inhibits HCT116 colon cancer cell invasion. • αTAT1/acetylated microtubules regulate expression of Wnt1/β-catenin target genes. • Acetylated microtubules regulate cellular localization of β-catenin. • Loss of αTAT1 prevents Wnt1 from inducing β-catenin-dependent and -independent pathways.

  15. Dissociation of Survival, Proliferation, and State Control in Human Hematopoietic Stem Cells.

    Science.gov (United States)

    Knapp, David J H F; Hammond, Colin A; Miller, Paul H; Rabu, Gabrielle M; Beer, Philip A; Ricicova, Marketa; Lecault, Véronique; Da Costa, Daniel; VanInsberghe, Michael; Cheung, Alice M; Pellacani, Davide; Piret, James; Hansen, Carl; Eaves, Connie J

    2017-01-10

    The role of growth factors (GFs) in controlling the biology of human hematopoietic stem cells (HSCs) remains limited by a lack of information concerning the individual and combined effects of GFs directly on the survival, Mitogenesis, and regenerative activity of highly purified human HSCs. We show that the initial input HSC activity of such a purified starting population of human cord blood cells can be fully maintained over a 21-day period in serum-free medium containing five GFs alone. HSC survival was partially supported by any one of these GFs, but none were essential, and different combinations of GFs variably stimulated HSC proliferation. However, serial transplantability was not detectably compromised by many conditions that reduced human HSC proliferation and/or survival. These results demonstrate the dissociated control of these three human HSC bio-responses, and set the stage for future improvements in strategies to modify and expand human HSCs ex vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    Science.gov (United States)

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  17. Peroxiredoxin 5 promotes the epithelial-mesenchymal transition in colon cancer

    International Nuclear Information System (INIS)

    Ahn, Hye-Mi; Yoo, Jin-Woo; Lee, Seunghoon; Lee, Hong Jun; Lee, Hyun-Shik; Lee, Dong-Seok

    2017-01-01

    Globally, colorectal cancer (CRC) is common cause of cancer-related deaths. The high mortality rate of patients with colon cancer is due to cancer cell invasion and metastasis. Initiation of the epithelial-to-mesenchymal transition (EMT) is essential for the tumorigenesis. Peroxiredoinxs (PRX1-6) have been reported to be overexpressed in various tumor tissues, and involved to be responsible for tumor progression. However, the exact role of PRX5 in colon cancer remains to be investigated enhancing proliferation and promoting EMT properties. In this study, we constructed stably overexpressing PRX5 and suppressed PRX5 expression in CRC cells. Our results revealed that PRX5 overexpression significantly enhanced CRC cell proliferation, migration, and invasion. On the other hand, PRX5 suppression markedly inhibited these EMT properties. PRX5 was also demonstrated to regulate the expression of two hallmark EMT proteins, E-cadherin and Vimentin, and the EMT-inducing transcription factors, Snail and Slug. Moreover, in the xenograft mouse model, showed that PRX5 overexpression enhances tumor growth of CRC cells. Thus, our findings first provide evidence in CRC that PRX5 promotes EMT properties by inducing the expression of EMT-inducing transcription factors. Therefore, PRX5 can be used as a predictive biomarker and serves as a putative therapeutic target for the development of clinical treatments for human CRC. - Highlights: • PRX5 promoted colorectal cancer cell proliferation. • PRX5 enhanced EMT properties in colorectal cancer. • PRX5 mediated the EMT by inducing the expression of Snail and Slug. • PRX5 promoted tumor growth of colorectal cancer cells.

  18. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both...... the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...... foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates....

  19. Distribution of some elements in human colon mucosa

    International Nuclear Information System (INIS)

    Drashkovich, R.J.

    1985-01-01

    The contents of Co, Zn, Fe, Cr and Sb were determined in human colon mucosa as a function of pathalogical alterations during development of colitis Chronica, Colitis Ulcerosa, Adenoma Tubulare and Adenocarcinoma. The sample (0.00023-0.00087 kg in weight) from 80 patients were taken during rectosigmoidoscopy by teflon coated forceps and were deep frozen (T=244 deg. K) and liophilysed. A thermal neutron fluxes 0.54-1.85x10 17 n/m 2 .s for 3 days and 4096-channel analyser with a Ge(Li) detector

  20. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Yuan, Yasheng, E-mail: yuanyasheng@163.com [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 (United States); Chi, Fanglu [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China)

    2014-09-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis.

  1. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    International Nuclear Information System (INIS)

    Guo, Peng; Yuan, Yasheng; Chi, Fanglu

    2014-01-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis

  2. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle

    Science.gov (United States)

    Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.

    2011-01-01

    Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016

  3. Immunohistochemical study of p53 overexpression in radiation-induced colon cancers

    International Nuclear Information System (INIS)

    Minami, Kazunori; Hayashi, Nobuyuki; Mokarim, A.; Matsuzaki, Sumihiro; Ito, Masahiro; Sekine, Ichiro.

    1998-01-01

    The expressions of p53 and proliferating cell nuclear antigen (PCNA) were studied immunohistochemically from paraffin sections of 7 cases (9 lesions) of radiation-induced colon cancer and 42 cases of spontaneous colon cancer. Age distribution of radiation-induced and spontaneous colon cancer were 68.1 years (range, 56 to 77 years) and 67.4 years (range, 31 to 85 years), respectively. Among the radiation-induced colon cancers, there were 3 lesions of mucinous carcinoma (33%), a much higher than found for spontaneous mucinous cancer. Immunohistochemically, p53 protein expression was detected in 7/9 (78%) of radiation-induced cancers and in 23/42 (55%) of spontaneous colon cancers. χ 2 analysis found no significant differences between radiation-induced and spontaneous colon cancers in age distribution or p53-positive staining for frequency, histopathology, or Dukes'' classification. In radiation colitis around the cancers including aberrant crypts, spotted p53 staining and abnormal and scattered PCNA-positive staining were observed. In histologically normal cells, p53 staining was almost absent and PCNA-positive staining was regularly observed in the lower half of the crypt. In radiation colitis including aberrant glands, cellular proliferation increased and spotted p53 expression was observed. This study suggests that radiation colitis and aberrant glands might possess malignant potential and deeply associate with carcinogenesis of radiation-induced colon cancer. (author)

  4. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.

    Science.gov (United States)

    Herrera, Mercedes; Islam, Abul B M M K; Herrera, Alberto; Martín, Paloma; García, Vanesa; Silva, Javier; Garcia, Jose M; Salas, Clara; Casal, Ignacio; de Herreros, Antonio García; Bonilla, Félix; Peña, Cristina

    2013-11-01

    Cancer-associated fibroblasts (CAF) actively participate in reciprocal communication with tumor cells and with other cell types in the microenvironment, contributing to a tumor-permissive neighborhood and promoting tumor progression. The aim of this study is the characterization of how CAFs from primary human colon tumors promote migration of colon cancer cells. Primary CAF cultures from 15 primary human colon tumors were established. Their enrichment in CAFs was evaluated by the expression of various epithelial and myofibroblast specific markers. Coculture assays of primary CAFs with different colon tumor cells were performed to evaluate promigratory CAF-derived effects on cancer cells. Gene expression profiles were developed to further investigate CAF characteristics. Coculture assays showed significant differences in fibroblast-derived paracrine promigratory effects on cancer cells. Moreover, the association between CAFs' promigratory effects on cancer cells and classic fibroblast activation or stemness markers was observed. CAF gene expression profiles were analyzed by microarray to identify deregulated genes in different promigratory CAFs. The gene expression signature, derived from the most protumorogenic CAFs, was identified. Interestingly, this "CAF signature" showed a remarkable prognostic value for the clinical outcome of patients with colon cancer. Moreover, this prognostic value was validated in an independent series of 142 patients with colon cancer, by quantitative real-time PCR (qRT-PCR), with a set of four genes included in the "CAF signature." In summary, these studies show for the first time the heterogeneity of primary CAFs' effect on colon cancer cell migration. A CAF gene expression signature able to classify patients with colon cancer into high- and low-risk groups was identified.

  5. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA CC398 with and without exposure to pigs.

    Directory of Open Access Journals (Sweden)

    Christiane Cuny

    Full Text Available BACKGROUND: Studies in several European countries and in North America revealed a frequent nasal colonization of livestock with MRSA CC398 and also in humans with direct professional exposure to colonized animals. The study presented here addresses the question of further transmission to non exposed humans. METHODS: After selecting 47 farms with colonized pigs in different regions of Germany we sampled the nares of 113 humans working daily with pigs and of their 116 non exposed family members. The same was performed in 18 veterinarians attending pig farms and in 44 of their non exposed family members. For investigating transmission beyond families we samples the nares of 462 pupils attending a secondary school in a high density pig farming area. MRSA were detected by direct culture on selective agar. The isolates were typed by means of spa-sequence typing and classification of SCCmec elements. For attribution of spa sequence types to clonal lineages as defined by multi locus sequence typing we used the BURP algorithm. Antibiotic susceptibility testing was performed by microbroth dilution assay. RESULTS: At the farms investigated 86% of humans exposed and only 4.3% of their family members were found to carry MRSA exhibiting spa-types corresponding to clonal complex CC398. Nasal colonization was also found in 45% of veterinarians caring for pig farms and in 9% of their non exposed family members. Multivariate analysis revealed that antibiotic usage prior to sampling beard no risk with respect to colonization. From 462 pupils only 3 were found colonized, all 3 were living on pig farms. CONCLUSION: These results indicate that so far the dissemination of MRSA CC398 to non exposed humans is infrequent and probably does not reach beyond familial communities.

  6. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  7. MiR-1254 inhibits proliferation, migration and invasion of human ...

    African Journals Online (AJOL)

    MiR-1254 inhibits proliferation, migration and invasion of human brain tumour cell lines. ... The transcripts were analysed by real-time polymerase chain reaction (RT-PCR) ... Over-expression of miR- 1254 also led to significant decrease in cell ...

  8. Inhibition of proliferation, migration and invasion of human non ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were ...

  9. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  10. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    International Nuclear Information System (INIS)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-01-01

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  11. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model

    Science.gov (United States)

    BOUSSEROUEL, SOUAD; LE GRANDOIS, JULIE; GOSSÉ, FRANCINE; WERNER, DALAL; BARTH, STEPHAN W.; MARCHIONI, ERIC; MARESCAUX, JACQUES; RAUL, FRANCIS

    2013-01-01

    Shoots of white asparagus are a popular vegetable dish, known to be rich in many bioactive phytochemicals reported to possess antioxidant, and anti-inflammatory and antitumor activities. We evaluated the anticancer mechanisms of a methanolic extract of Asparagus officinalis L. shoots (Asp) on human colon carcinoma cells (SW480) and their derived metastatic cells (SW620), and Asp chemopreventive properties were also assessed in a model of colon carcinogenesis. SW480 and SW620 cell proliferation was inhibited by 80% after exposure to Asp (80 μg/ml). We demonstrated that Asp induced cell death through the activation of TRAIL DR4/DR5 death receptors leading to the activation of caspase-8 and caspase-3 and to cell apoptosis. By specific blocking agents of DR4/DR5 receptors we were able to prevent Asp-triggered cell death confirming the key role of DR4/DR5 receptors. We found also that Asp (80 μg/ml) was able to potentiate the effects of the cytokine TRAIL on cell death even in the TRAIL-resistant metastatic SW620 cells. Colon carcinogenesis was initiated in Wistar rats by intraperitoneal injections of azoxymethane (AOM), once a week for two weeks. One week after (post-initiation) rats received daily Asp (0.01%, 14 mg/kg body weight) in drinking water. After 7 weeks of Asp-treatment the colon of rats exhibited a 50% reduction of the number of preneoplastic lesions (aberrant crypt foci). In addition Asp induced inhibition of several pro-inflammatory mediators, in association with an increased expression of host-defense mediators. In the colonic mucosa of Asp-treated rats we also confirmed the pro-apoptotic effects observed in vitro including the activation of the TRAIL death-receptor signaling pathway. Taken together, our data highlight the chemopreventive effects of Asp on colon carcinogenesis and its ability to promote normal cellular homeostasis. PMID:23754197

  12. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    International Nuclear Information System (INIS)

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-01-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is ∼9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged

  13. Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

    Directory of Open Access Journals (Sweden)

    Ann-Marie Baker

    2014-08-01

    Full Text Available Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+. Furthermore, we show that, in adenomatous crypts (APC−/−, there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.

  14. Differential expression of nanog1 and nanogp8 in colon cancer cells

    International Nuclear Information System (INIS)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki; Nakagama, Hitoshi; Okamoto, Koji

    2012-01-01

    Highlights: ► Nanog is expressed in a majority of colon cancer cell lines examined. ► Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. ► Nanog mediates cell proliferation of colon cancer cells. ► Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  15. Differential expression of nanog1 and nanogp8 in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Nakagama, Hitoshi, E-mail: hnakagam@ncc.go.jp [Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Okamoto, Koji, E-mail: kojokamo@ncc.go.jo [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Nanog is expressed in a majority of colon cancer cell lines examined. Black-Right-Pointing-Pointer Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. Black-Right-Pointing-Pointer Nanog mediates cell proliferation of colon cancer cells. Black-Right-Pointing-Pointer Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  16. Two-dimensional electrophoretic analysis of nuclear matrix proteins in human colon adenocarcinoma.

    Science.gov (United States)

    Toumpanaki, A; Baltatzis, G E; Gaitanarou, E; Seretis, E; Toumpanakis, C; Aroni, K; Kittas, Christos; Voloudakis-Baltatzis, I E

    2009-01-01

    The aim of the present study was to observe possible qualitative and quantitative expression differences between nuclear matrix proteins (NMPs) of human colon adenocarcinoma and their mirror biopsies, using the technique of two-dimensional gel electrophoresis, in order to identify the existence of specific NMP fingerprints for colon cancer. Colon tissues were examined ultrastructurally and NMPs were isolated biochemically, by serial extraction of lipids, soluble proteins, DNA, RNA, and intermediate filaments and were separated according to their isoelectric point (pI) and their molecular weight (MW) by high-resolution two-dimensional electrophoresis (2D). By comparing the 2D electropherograms of colon cancer tissues and mirror biopsy tissues we observed qualitative and quantitative expression differences between their NMPs but also a differentiation of NMP composition between the stages of malignancy. Moreover, despite the similarities between mirror biopsy samples, a highlight percentage of exception was observed. Electrophoretic results provided in this study demonstrated that the examined NMPs could be further investigated as potential markers for detection of colorectal cancer in an early stage, for the assessment of the disease progression, as well as useful tools for individual therapy and for preventing a possible recurrence of cancer and metastasis.

  17. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells.

    Science.gov (United States)

    Zhang, Bo; Li, Angdi; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2016-06-10

    Proteinaceous bioactive substances and pharmaceuticals are most conveniently administered orally. However, the facing problems are the side effects of proteolytic degradation and denaturation in the gastrointestinal tract. In recent years, lactic acid bacteria (LAB) have been verified to be a promising delivery vector for susceptible functional proteins and drugs. KiSS-1 peptide, a cancer suppressor, plays a critical role in inhibiting cancer metastasis and its activity has been confirmed by direct administration. However, whether this peptide can be functionally expressed in LAB and exert activity on cancer cells, thus providing a potential alternative administration manner in the future, has not been demonstrated. A recombinant Lactococcus lactis strain NZ9000-401-kiss1 harboring a plasmid containing the gene of the tumor metastasis-inhibiting peptide KiSS1 was constructed. After optimization of the nisin induction conditions, the recombinant strain efficiently secreted KiSS1 with a maximum detectable amount of 27.9 μg/ml in Dulbecco's Modified Eagle medium. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide and would healing assays, respectively, indicated that the secreted KiSS1 peptide remarkably inhibited HT-29 cell proliferation and migration. Furthermore, the expressed KiSS1 was shown to induce HT-29 cell morphological changes, apoptosis and reduce the expression of matrix metalloproteinase 9 (MMP-9) at both mRNA and protein levels. A recombinant L. lactis NZ9000-401-kiss1 successfully expressing the human kiss1 was constructed. The secreted KiSS1 peptide inhibited human HT-29 cells' proliferation and migration probably by invoking, or mediating the cell-apoptosis pathway and by down regulating MMP-9 expression, respectively. Our results suggest that L. lactis is an ideal cell factory for secretory expression of tumor metastasis-inhibiting peptide KiSS1, and the KiSS1-producing L. lactis strain may serve as a new tool for cancer therapy in

  18. Collaborative human-machine nuclear non-proliferation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, F.L.; Badalamente, R.V.; Stewart, T.S.

    1993-10-01

    The purpose of this paper is to report on the results of a project investigating support concepts for the information treatment needs of the International Atomic Energy Agency (IAEA, also referred to as the Agency) and its attempts to strengthen international safeguards. The aim of the research was to define user/computer interface concepts and intelligent support features that will enhance the analyst`s access to voluminous and diverse information, the ability to recognize and evaluate uncertain data, and the capability to make decisions and recommendations. The objective was to explore techniques for enhancing safeguards analysis through application of (1) more effective user-computer interface designs and (2) advanced concepts involving human/system collaboration. The approach was to identify opportunities for human/system collaboration that would capitalize on human strengths and still accommodate human limitations. This paper documents the findings and describes a concept prototype, Proliferation Analysis Support System (PASS), developed for demonstration purposes. The research complements current and future efforts to enhance the information systems used by the IAEA, but has application elsewhere, as well.

  19. Intrinsic denervation of the colon is associated with a decrease of some colonic preneoplastic markers in rats treated with a chemical carcinogen

    Directory of Open Access Journals (Sweden)

    M.V.O. Vespúcio

    2008-04-01

    Full Text Available Denervation of the colon is protective against the colon cancer; however, the mechanisms involved are unknown. We tested the hypothesis that the denervated colonic mucosa could be less responsive to the action of the chemical carcinogen dimethylhydrazine (DMH. Three groups of 32 male Wistar rats were treated as follows: group 1 (G1 had the colon denervated with 0.3 mL 1.5 mM benzyldimethyltetradecylammonium (benzalkonium chloride, BAC; G2 received a single ip injection of 125 mg/kg DMH; G3 was treated with BAC + the same dose and route of DMH. A control group (Sham, N = 32 did not receive any treatment. Each group was subdivided into four groups according to the sacrifice time (1, 2, 6, and 12 weeks after DMH. Crypt fission index, ß-catenin accumulated crypts, aberrant crypt foci, and cell proliferation were evaluated and analyzed by ANOVA and the Student t-test. G3 animals presented a small number of aberrant crypt foci and low crypt fission index compared to G2 animals after 2 and 12 weeks, respectively. From the second week on, the index of ß-catenin crypt in G3 animals increased slower than in G2 animals. From the 12th week on, G2 animals presented a significant increase in cell proliferation when compared to the other groups. Colonic denervation plays an anticarcinogenic role from early stages of colon cancer development. This finding can be of importance for the study of the role of the enteric nervous system in the carcinogenic process.

  20. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum.

    Science.gov (United States)

    Mann, Elizabeth R; Bernardo, David; English, Nicholas R; Landy, Jon; Al-Hassi, Hafid O; Peake, Simon T C; Man, Ripple; Elliott, Timothy R; Spranger, Henning; Lee, Gui Han; Parian, Alyssa; Brant, Steven R; Lazarev, Mark; Hart, Ailsa L; Li, Xuhang; Knight, Stella C

    2016-02-01

    Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Sansom, Owen J; Porecha, Nehal; Raich, Natacha; Du, Liqin; Maher, Joseph F

    2010-02-01

    In the treatment of colon cancer, the development of resistance to apoptosis is a major factor in resistance to therapy. New molecular approaches to overcome apoptosis resistance, such as selectively upregulating proapoptotic proteins, are needed in colon cancer therapy. In a mouse model with inactivation of the adenomatous polyposis coli (Apc) tumor suppressor gene, reflecting the pathogenesis of most human colon cancers, the gene encoding feminization-1 homolog b (Fem1b) is upregulated in intestinal epithelium following Apc inactivation. Fem1b is a proapoptotic protein that interacts with apoptosis-inducing proteins Fas, tumor necrosis factor receptor-1 (TNFR1), and apoptotic protease activating factor-1 (Apaf-1). Increasing Fem1b expression induces apoptosis of cancer cells, but effects on colon cancer cells have not been reported. Fem1b is a homolog of feminization-1 (FEM-1), a protein in Caenorhabditis elegans that is regulated by proteasomal degradation, but whether Fem1b is likewise regulated by proteasomal degradation is unknown. Herein, we found that Fem1b protein is expressed in primary human colon cancer specimens, and in malignant SW620, HCT-116, and DLD-1 colon cancer cells. Increasing Fem1b expression, by transfection of a Fem1b expression construct, induced apoptosis of these cells. We found that proteasome inhibitor treatment of SW620, HCT-116, and DLD-1 cells caused upregulation of Fem1b protein levels, associated with induction of apoptosis. Blockade of Fem1b upregulation with morpholino antisense oligonucleotide suppressed the proteasome inhibitor-induced apoptosis of these cells. In conclusion, the proapoptotic protein Fem1b is downregulated by the proteasome in malignant colon cancer cells and mediates proteasome inhibitor-induced apoptosis of these cells. Therefore, Fem1b could represent a novel molecular target to overcome apoptosis resistance in therapy of colon cancer.

  2. Amine dependence of proliferative activity in two transplantable lines of mouse colonic carcinoma.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1987-01-01

    Serotonin, histamine and their antagonists have previously been shown to influence both the cell proliferation rate and the volumetric growth rate of colonic tumours. Of these earlier studies, those on cell proliferation could not distinguish between direct effects on tumour cells and indirect effects on the host, whereas those on the volumetric growth rate of tumours, whilst suggesting an outcome related to the individual properties of the tumour rather than the host, could not distinguish between influences on cell gain, cell loss or stromal changes. In an attempt to distinguish between these possibilities the current experiments on the mitotic rate in two lines of transplantable mouse colonic carcinoma were undertaken. One line of tumour proved to be sensitive to inhibition by a histamine H2 receptor antagonist and a dopamine D2 antagonist but resistant to serotonin antagonists; the inhibition by histamine antagonists was surmountable by co-administration of histamine. The other line proved to be highly sensitive to the inhibitory effects of serotonin antagonist and less so to antagonists of the other two amines and in this case the effect of serotonin antagonists was surmountable by serotonin. These results suggest that the variations between different colonic tumours in the response to amine antagonists is due to differences in the extent of inhibition of cell proliferation rather than differences in cell loss or stromal effects. Thus it appears likely that amine antagonists are able to directly interfere with the proliferation of some colonic tumour cells.

  3. Reduction of Orc6 expression sensitizes human colon cancer cells to 5-fluorouracil and cisplatin.

    Directory of Open Access Journals (Sweden)

    Elaine J Gavin

    Full Text Available Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53 and HCT116 (null-p53 colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt treatment. Decreased Orc6 expression in HCT-116 (wt-p53 cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53 cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53 cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53 cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45beta and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.

  4. 2-Dodecylcyclobutanone, a radiolytic product of palmitic acid, is genotoxic in primary human colon cells and in cells from preneoplastic lesions

    International Nuclear Information System (INIS)

    Knoll, Nadine; Weise, Anja; Claussen, Uwe; Sendt, Wolfgang; Marian, Brigitte; Glei, Michael; Pool-Zobel, Beatrice L.

    2006-01-01

    The irradiation of fat results in the formation of 2-alkylcyclobutanones, a new class of food contaminants. Results of previous in vitro studies with primary human colon cells and in vivo experiments with rats fed with 2-alkylcyclobutanones indicated that these radiolytic derivatives may be genotoxic and enhance the progression of colon tumors. The underlying mechanisms of these effects, however, are not clearly understood. Therefore we performed additional investigations to elucidate the genotoxic potential of 2-dodecylcyclobutanone (2dDCB) that is generated from palmitic acid. In particular, we explored the relative sensitivities of human colon cells, representing different stages of tumor development and healthy colon tissues, respectively. HT29clone19A cells, LT97 adenoma cells and primary human epithelial cells were exposed to 2dDCB (150-2097 μM). We determined cytotoxic effects using trypan blue exclusion. Genotoxicity, reflected as strand breaks, was assessed using the alkaline version of the comet assay and chromosomal abnormalities were investigated by 24-color fluorescence-in-situ-hybridization. 2dDCB was cytotoxic in a time- and dose-dependent manner in LT97 adenoma cells and in freshly isolated primary cells but not in the human colon tumor cell line. Associated with this was a marked induction of DNA damage by 2dDCB in LT97 adenoma cells and in freshly isolated colonocytes, whereas in the HT29clone19A cells no strand breaks were detectable. A long-term incubation of LT97 adenoma cells with lower concentrations of 2dDCB revealed cytogenetic effects. In summary, 2dDCB was clearly genotoxic in healthy human colon epithelial cells and in cells representing preneoplastic colon adenoma. These findings provide additional evidence that this compound may be regarded as a possible risk factor for processes in colon carcinogenesis related to initiation and progression

  5. Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Yong-Xian, Gui; Xiao-Huan, Li; Fan, Zhang; Guo-Fang, Tian

    2016-10-01

    The aim of the study is to investigate the underlying molecular mechanisms by which gemcitabine (gem) inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells in vitro. After PANC-1 cells had been treated by indicated concentration (0, 5, and 25 mg/L) of gem for 48 h, cell proliferation was evaluated by 3'-(4, 5 dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay; cell morphology was observed by transmission electron microscopy; Expression of c-IAP2 and Bcl-2 proteins was analyzed by Western blot; the activity of caspase-3 and -9 was detected by spectrophotometry. Gem significantly inhibited cell proliferation and could induce apoptosis of human pancreatic cancer PANC-1 cells, with a dose-dependent manner. Western blot analysis showed that gem significantly reduced c-IAP2 and Bcl-2 proteins expression level (P PANC-1 cells. Gem could induce apoptosis of human pancreatic cancer PANC-1 cells, probably through downregulating c-IAP2 and Bcl-2 expression levels, and at the same time activating caspase-3 and -9.

  6. Colon carcinogenesis: influence of Western diet-induced obesity and targeting stem cells using dietary bioactive compounds.

    Science.gov (United States)

    Kasdagly, Maria; Radhakrishnan, Sridhar; Reddivari, Lavanya; Veeramachaneni, D N Rao; Vanamala, Jairam

    2014-01-01

    Colon cancer strikes more than 1 million people annually and is responsible for more than 500,000 cancer deaths worldwide. Recent evidence suggests that the majority of malignancies, including colon cancer are driven by cancer stem cells (CSCs) that are resistant to current chemotherapeutic approaches leading to cancer relapse. Wnt signaling plays a critical role in colon stem cell renewal and carcinogenesis. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a Wnt target gene, and aldehyde dehydrogenase 1 B1 (ALDH1B1) are good markers for normal and malignant human colon stem cells. Diet contributes to 20% to 42% of all human cancers and 50% to 90% of colon cancer. Recent evidence shows that the Western diet has a causative link to colon cancer; however, mechanisms of action are not fully elucidated. Western diet-induced obesity elevates systemic insulin-like growth factor-1 and insulin levels, which could lead to elevated proliferation and suppressed apoptosis of CSCs through PI3K/AKT/Wnt pathway. Although conventional chemotherapy targets the PI3K/AKT pathways and can significantly reduce tumor size, it fails to eliminate CSCs and has serious side effects. Dietary bioactive compounds such as grape seed extract, curcumin, lycopene, and resveratrol have promising chemopreventive effects, without serious side effects on various types of cancers due to their direct and indirect actions on CSC self-renewal pathways such as the Wnt pathway. Understanding the role of CSCs in diet-induced colon cancer will aid in development of evidence-based dietary chemopreventive strategies and/or therapeutic agents targeting CSCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Molecular Basis of Alcohol-Related Gastric and Colon Cancer.

    Science.gov (United States)

    Na, Hye-Kyung; Lee, Ja Young

    2017-05-24

    Many meta-analysis, large cohort studies, and experimental studies suggest that chronic alcohol consumption increases the risk of gastric and colon cancer. Ethanol is metabolized by alcohol dehydrogenases (ADH), catalase or cytochrome P450 2E1 (CYP2E1) to acetaldehyde, which is then further oxidized to acetate by aldehyde dehydrogenase (ALDH). Acetaldehyde has been classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen to humans. The acetaldehyde level in the stomach and colon is locally influenced by gastric colonization by Helicobacter pylori or colonic microbes, as well as polymorphisms in the genes encoding tissue alcohol metabolizing enzymes, especially ALDH2. Alcohol stimulates the uptake of carcinogens and their metabolism and also changes the composition of enteric microbes in a way to enhance the aldehyde level. Alcohol also undergoes chemical coupling to membrane phospholipids and disrupts organization of tight junctions, leading to nuclear translocation of β-catenin and ZONAB, which may contributes to regulation of genes involved in proliferation, invasion and metastasis. Alcohol also generates reactive oxygen species (ROS) by suppressing the expression of antioxidant and cytoprotective enzymes and inducing expression of CYP2E1 which contribute to the metabolic activation of chemical carcinogens. Besides exerting genotoxic effects by directly damaging DNA, ROS can activates signaling molecules involved in inflammation, metastasis and angiogenesis. In addition, alcohol consumption induces folate deficiency, which may result in aberrant DNA methylation profiles, thereby influencing cancer-related gene expression.

  8. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of); Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2010-06-15

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  9. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    International Nuclear Information System (INIS)

    Choi, Eun Seo; Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha; Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il

    2010-01-01

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  10. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    Science.gov (United States)

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  11. Abrogation of Gli3 expression suppresses the growth of colon cancer cells via activation of p53

    International Nuclear Information System (INIS)

    Kang, Han Na; Oh, Sang Cheul; Kim, Jun Suk; Yoo, Young A.

    2012-01-01

    p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)–Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh–Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3–p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P < 0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2–p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.

  12. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    International Nuclear Information System (INIS)

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-01-01

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice

  13. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling [Department of Clinical Laboratory, Tongren Hospital, Shanghai (China); Shen, Jie, E-mail: tongrensj163@163.com [Department of Administrative, Tongren Hospital, No. 786 Yuyuan Road, Changning District, Shanghai (China)

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.

  14. Type II cGMP‑dependent protein kinase inhibits the migration, invasion and proliferation of several types of human cancer cells.

    Science.gov (United States)

    Wu, Min; Wu, Yan; Qian, Hai; Tao, Yan; Pang, Ji; Wang, Ying; Chen, Yongchang

    2017-10-01

    Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.

  15. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer.

    Directory of Open Access Journals (Sweden)

    Mingquan Chen

    Full Text Available FBP1, fructose-1,6-bisphosphatase-1, a gluconeogenesis regulatory enzyme, catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. The mechanism that it functions to antagonize glycolysis and was epigenetically inactivated through NF-kappaB pathway in gastric cancer has been reported. However, its role in the liver carcinogenesis still remains unknown. Here, we investigated the expression and DNA methylation of FBP1 in primary HCC and colon tumor. FBP1 was lowly expressed in 80% (8/10 human hepatocellular carcinoma, 66.7% (6/9 liver cancer cell lines and 100% (6/6 colon cancer cell lines, but was higher in paired adjacent non-tumor tissues and immortalized normal cell lines, which was well correlated with its promoter methylation status. Methylation was further detected in primary HCCs, gastric and colon tumor tissues, but none or occasionally in paired adjacent non-tumor tissues. Detailed methylation analysis of 29 CpG sites at a 327-bp promoter region by bisulfite genomic sequencing confirmed its methylation. FBP1 silencing could be reversed by chemical demethylation treatment with 5-aza-2'-deoxycytidine (Aza, indicating direct epigenetic silencing. Restoring FBP1 expression in low expressed cells significantly inhibited cell growth and colony formation ability through the induction of G2-M phase cell cycle arrest. Moreover, the observed effects coincided with an increase in reactive oxygen species (ROS generation. In summary, epigenetic inactivation of FBP1 is also common in human liver and colon cancer. FBP1 appears to be a functional tumor suppressor involved in the liver and colon carcinogenesis.

  16. Early colonizing Escherichia coli elicits remodeling of rat colonic epithelium shifting toward a new homeostatic state.

    Science.gov (United States)

    Tomas, Julie; Reygner, Julie; Mayeur, Camille; Ducroc, Robert; Bouet, Stephan; Bridonneau, Chantal; Cavin, Jean-Baptiste; Thomas, Muriel; Langella, Philippe; Cherbuy, Claire

    2015-01-01

    We investigated the effects of early colonizing bacteria on the colonic epithelium. We isolated dominant bacteria, Escherichia coli, Enterococcus faecalis, Lactobacillus intestinalis, Clostridium innocuum and a novel Fusobacterium spp., from the intestinal contents of conventional suckling rats and transferred them in different combinations into germfree (GF) adult rats. Animals were investigated after various times up to 21 days. Proliferative cell markers (Ki67, proliferating cell nuclear antigen, phospho-histone H3, cyclin A) were higher in rats monocolonized with E. coli than in GF at all time points, but not in rats monocolonized with E. faecalis. The mucin content of goblet cells declined shortly after E. coli administration whereas the mucus layer doubled in thickness. Fluorescence in situ hybridization analyses revealed that E. coli resides in this mucus layer. The epithelial mucin content progressively returned to baseline, following an increase in KLF4 and in the cell cycle arrest-related proteins p21(CIP1) and p27(KIP1). Markers of colonic differentiated cells involved in electrolyte (carbonic anhydrase II and slc26A3) and water (aquaglyceroporin3 (aqp3)) transport, and secretory responses to carbachol were modulated after E. coli inoculation suggesting that ion transport dynamics were also affected. The colonic responses to simplified microbiotas differed substantially according to whether or not E. coli was combined with the other four bacteria. Thus, proliferation markers increased substantially when E. coli was in the mix, but very much less when it was absent. This work demonstrates that a pioneer strain of E. coli elicits sequential epithelial remodeling affecting the structure, mucus layer and ionic movements and suggests this can result in a microbiota-compliant state.

  17. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Tachibana, Keisuke; Takeuchi, Kentaro; Inada, Hirohiko; Yamasaki, Daisuke; Ishimoto, Kenji; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Doi, Takefumi

    2009-01-01

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial β-oxidation. The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that plays an important role in the regulation of β-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPARα and found that PPARα induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPARα regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  18. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    International Nuclear Information System (INIS)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun; Yarishkin, Oleg V.; Bae, Young Min; Kim, Jae Gon; O'Grady, Scott M.; Yoon, Kyong-Ah; Kang, Kyung-Sun; Ryu, Pan Dong; Lee, So Yeong

    2009-01-01

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  19. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota

    Science.gov (United States)

    Chung, Hachung; Pamp, Sünje J.; Hill, Jonathan A.; Surana, Neeraj K.; Edelman, Sanna M.; Troy, Erin B.; Reading, Nicola C.; Villablanca, Eduardo J.; Wang, Sen; Mora, Jorge R.; Umesaki, Yoshinori; Mathis, Diane; Benoist, Christophe; Relman, David A.; Kasper, Dennis L.

    2012-01-01

    SUMMARY Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4+ and CD8+ T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression–all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system. PMID:22726443

  20. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth.

    Directory of Open Access Journals (Sweden)

    Ron Firestein

    2008-04-01

    Full Text Available Numerous longevity genes have been discovered in model organisms and altering their function results in prolonged lifespan. In mammals, some have speculated that any health benefits derived from manipulating these same pathways might be offset by increased cancer risk on account of their propensity to boost cell survival. The Sir2/SIRT1 family of NAD(+-dependent deacetylases is proposed to underlie the health benefits of calorie restriction (CR, a diet that broadly suppresses cancer in mammals. Here we show that CR induces a two-fold increase SIRT1 expression in the intestine of rodents and that ectopic induction of SIRT1 in a beta-catenin-driven mouse model of colon cancer significantly reduces tumor formation, proliferation, and animal morbidity in the absence of CR. We show that SIRT1 deacetylates beta-catenin and suppresses its ability to activate transcription and drive cell proliferation. Moreover, SIRT1 promotes cytoplasmic localization of the otherwise nuclear-localized oncogenic form of beta-catenin. Consistent with this, a significant inverse correlation was found between the presence of nuclear SIRT1 and the oncogenic form of beta-catenin in 81 human colon tumor specimens analyzed. Taken together, these observations show that SIRT1 suppresses intestinal tumor formation in vivo and raise the prospect that therapies targeting SIRT1 may be of clinical use in beta-catenin-driven malignancies.

  1. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.

    Science.gov (United States)

    Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans

    2016-10-18

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.

  2. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an In vitro and In vivo study

    Directory of Open Access Journals (Sweden)

    Paulraj Gabriel M

    2010-06-01

    Full Text Available Abstract Background Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of β-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models. Methods The active molecule was isolated, based upon bioassay guided fractionation, and identified as β-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of β-catenin and proliferating cell nuclear antigen (PCNA in human colon cancer cell lines (COLO 320 DM. The chemopreventive potential of β-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w. into male Wistar rats and supplementing this with β-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w. Results β-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 μM, induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of β-catenin and PCNA antigens in human colon cancer cells. β-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects. Conclusion We found doses of 10-20 mg/kg b.w. β-sitosterol to be effective for future in vivo studies. β-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated β-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis.

  3. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an In vitro and In vivo study

    Science.gov (United States)

    2010-01-01

    Background Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of β-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models. Methods The active molecule was isolated, based upon bioassay guided fractionation, and identified as β-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of β-catenin and proliferating cell nuclear antigen (PCNA) in human colon cancer cell lines (COLO 320 DM). The chemopreventive potential of β-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w.) into male Wistar rats and supplementing this with β-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w. Results β-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 μM), induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of β-catenin and PCNA antigens in human colon cancer cells. β-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects. Conclusion We found doses of 10-20 mg/kg b.w. β-sitosterol to be effective for future in vivo studies. β-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated β-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis. PMID:20525330

  4. LIF is a contraction-induced myokine stimulating human myocyte proliferation

    DEFF Research Database (Denmark)

    Broholm, Christa; Laye, Matthew J; Brandt, Claus

    2011-01-01

    in skeletal muscle, but LIF was not detectable in plasma of the subjects. However, electrically stimulated cultured human myotubes produced and secreted LIF, suggesting that LIF is a myokine with local effects. The well-established exercise-induced signaling molecules PI3K, Akt and mTor contributed...... to the regulation of LIF in cultured human myotubes as chemical inhibition of PI3K and mTor and siRNA knockdown of Akt1 were independently sufficient to down regulate LIF. Human myoblast proliferation was increased by recombinant exogenous LIF and decreased by siRNA knockdown of the endogenous LIF receptor. Finally...

  5. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  6. Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis.

    Science.gov (United States)

    Mazué, Frédéric; Delmas, Dominique; Murillo, Genoveva; Saleiro, Diana; Limagne, Emeric; Latruffe, Norbert

    2014-04-01

    Various epidemiological studies have shown that a regular and moderate consumption of red wine is correlated with a decreased relative risk of developing coronary heart disease and cancer. These health benefits are commonly attributed to high contents of polyphenols, particularly resveratrol, representing important sources of antioxidants. However, resveratrol does not seem to be the only bioactive compound present in the wine which contains numerous other polyphenols. The present study investigates the efficiency of red wine extracts (RWEs), containing different polyphenols, on colon cancer cell proliferation in vitro and on colonic aberrant crypt foci (ACF) in vivo. Proliferation, cell cycle analysis and incidence of ACF were monitored to examine the effects of RWEs. RWEs derived from a long vinification process exhibit superior anti-proliferative activity in colon cancer cells and prevent the appearance of ACF in mice. Interestingly, quercetin and resveratrol, representing two major bio-active polyphenols, exhibit synergistic anti-proliferative effects. These data suggest that the efficacy of RWEs on colon carcinogenesis may depend on the polyphenolic content, synergistic interaction of bio-active polyphenols and modulation of cellular uptake of polyphenols.

  7. Chemopreventive properties of raisins originating from Greece in colon cancer cells.

    Science.gov (United States)

    Kountouri, Aggeliki M; Gioxari, Aristea; Karvela, Evangelia; Kaliora, Andriana C; Karvelas, Michalis; Karathanos, Vaios T

    2013-02-26

    Colorectal cancer is one of the major causes of cancer-related mortality in humans in both developed and developing countries. Dietary patterns influence the risk of colon cancer development, while plant-derived foods have gained great interest, due to the high content of antioxidants. Corinthian raisins (Currants, CR) and Sultanas (S) (Vitis vinifera L., Vitaceae) are dried vine fruits produced in Greece with many culinary uses in both the Mediterranean and the Western nutrition. In the present study, we investigated the effects of CR and S on human colon cancer cells. Methanol extracts of CR and S were used at different concentrations. The total polyphenol content and anti-radical activity were measured by Folin-Ciocalteu and DPPH, respectively. Antioxidant, anti-inflammatory and anti-proliferative effects on HT29 cell culture were evaluated. All extracts exhibited DPPH˙ scavenging activity in a dose-dependent manner. Both products suppressed cell proliferation, while the levels of glutathione and cyclooxygenase 2 were significantly decreased. A significant reduction in IL-8 levels and NF-kappaB p65 activation was also observed. Both antioxidant and anti-inflammatory effects were dependent on the duration of exposure. Results indicate that the methanol extracts of CR and S exhibit anti-radical activity in vitro, as well as cancer preventive efficacy on colon cancer cells, with S having slightly higher activity. The beneficial properties of these unique dried grapes are attributed to their high content of phenolic compounds.

  8. Metabolism of aflatoxin B1 and identification of the major aflatoxin B1-DNA adducts formed in cultured human bronchus and colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Essigmann, John M.; Croy, Robert G.

    1979-01-01

    Aflatoxin B1 and benzo(a)pyrene were activated by both cultured human bronchus and human colon as measured by binding to cellular DNA and protein. The binding of aflatoxin B1 to DNA was dose dependent, and the level of binding was higher in cultured human bronchus than it was in the colon. When c...

  9. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  10. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  11. DK1 Induces Apoptosis via Mitochondria-Dependent Signaling Pathway in Human Colon Carcinoma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Yazmin Hussin

    2018-04-01

    Full Text Available Extensive research has been done in the search for innovative treatments against colon adenocarcinomas; however, the incidence rate of patients remains a major cause of cancer-related deaths in Malaysia. Natural bioactive compounds such as curcumin have been substantially studied as an alternative to anticancer drug therapies and have been surmised as a potent agent but, nevertheless, remain deficient due to its poor cellular uptake. Therefore, efforts now have shifted toward mimicking curcumin to synthesize novel compounds sharing similar effects. A synthetic analog, (Z-3-hydroxy-1-(2-hydroxyphenyl-3-phenylprop-2-ene-1-one (DK1, was recently synthesized and reported to confer improved bioavailability and selectivity toward human breast cancer cells. This study, therefore, aims to assess the anticancer mechanism of DK1 in relation to the induction of in vitro cell death in selected human colon cancer cell lines. Using the3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide(MTT assay, the cytotoxicity of DK1 towards HT29 and SW620 cell lines were investigated. Acridine orange/propidium iodide (AO/PI dual-staining assay and flow cytometry analyses (cell cycle analysis, Annexin/V-FITC and JC-1 assays were incorporated to determine the mode of cell death. To further determine the mechanism of cell death, quantitative real-time polymerase chain reaction (qRT-PCR and proteome profiling were conducted. Results from this study suggest that DK1 induced changes in cell morphology, leading to a decrease in cell viability and subsequent induction of apoptosis. DK1 treatment inhibited cell viability and proliferation 48 h post treatment with IC50 values of 7.5 ± 1.6 µM for HT29 cells and 14.5 ± 4.3 µM for SW620 cells, causing cell cycle arrest with increased accumulation of cell populations at the sub-G0/G1phaseof 74% and 23%, respectively. Flow cytometry analyses showed that DK1 treatment in cancer cells induced apoptosis, as indicated by DNA

  12. Red meat and colon cancer : The cytotoxic and hyperproliferative effects of dietary heme

    NARCIS (Netherlands)

    Sesink, ALA; Termont, DSML; Kleibeuker, JH; Van der Meer, R

    1999-01-01

    The intake of a Western diet with a high amount of red meat is associated with a high risk for colon cancer. We hypothesize that heme, the iron carrier of red meat, is involved in diet-induced colonic epithelial damage, resulting in increased epithelial proliferation. Rats were fed purified control

  13. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon.

    Directory of Open Access Journals (Sweden)

    Laura Harrell

    Full Text Available Past studies of the human intestinal microbiota are potentially confounded by the common practice of using bowel-cleansing preparations. We examined if colonic lavage changes the natural state of enteric mucosal-adherent microbes in healthy human subjects.Twelve healthy individuals were divided into three groups; experimental group, control group one, and control group two. Subjects in the experimental group underwent an un-prepped flexible sigmoidoscopy with biopsies. Within two weeks, subjects were given a standard polyethylene glycol-based bowel cleansing preparation followed by a second flexible sigmoidoscopy. Subjects in control group one underwent two un-prepped flexible sigmoidoscopies within one week. Subjects in the second control group underwent an un-prepped flexible sigmoidoscopy followed by a second flexible sigmoidoscopy after a 24-hour clear liquid diet within one week. The mucosa-associated microbial communities from the two procedures in each subject were compared using 16S rRNA gene based terminal restriction fragment length polymorphism (T-RFLP, and library cloning and sequencing.Clone library sequencing analysis showed that there were changes in the composition of the mucosa-associated microbiota in subjects after colonic lavage. These changes were not observed in our control groups. Standard bowel preparation altered the diversity of mucosa-associated microbiota. Taxonomic classification did not reveal significant changes at the phylum level, but there were differences observed at the genus level.Standard bowel cleansing preparation altered the mucosal-adherent microbiota in all of our subjects, although the degree of change was variable. These findings underscore the importance of considering the confounding effects of bowel preparation when designing experiments exploring the gut microbiota.

  14. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takeuchi, Kentaro; Inada, Hirohiko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yamasaki, Daisuke [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Doi, Takefumi [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  15. Modification of nucleotide metabolism in relationship with differentiation and in response to irradiation in human tumour cells

    International Nuclear Information System (INIS)

    Wei, Shuang

    1998-01-01

    This research thesis reports the study of the metabolism of nucleotides in human tumour cells. The first part addresses the modifications of nucleotide (more specifically purine) metabolism in relationship with human melanoma cell proliferation and differentiation. The second part addresses the modifications of this metabolism in response to an irradiation in human colon tumour cells. For each part, the author proposes a bibliographic synthesis, and a presentation of studied cells and of methods used to grow cells, and respectively to proliferate and differentiate them or to irradiate them, and then discusses the obtained results [fr

  16. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    Directory of Open Access Journals (Sweden)

    Andreas eHofmann

    2014-05-01

    Full Text Available In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system or via agricultural soil amended with spiked organic fertilizers (soil system. In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4x10CFU/ml in the axenic system or 4x105CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in

  17. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate

    Directory of Open Access Journals (Sweden)

    Erika Kitakami

    2014-01-01

    Full Text Available Human periodontal ligament (PDL cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate (PMEA is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate and poly[(2-methacryloyloxyethyl phosphorylcholine-co-(n-butyl methacrylate]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET. In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment.

  18. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    International Nuclear Information System (INIS)

    Lin, Chunlong; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-01-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  19. Effects of fibulin-5 on attachment, adhesion, and proliferation of primary human endothelial cells

    International Nuclear Information System (INIS)

    Preis, M.; Cohen, T.; Sarnatzki, Y.; Ben Yosef, Y.; Schneiderman, J.; Gluzman, Z.; Koren, B.; Lewis, B.S.; Shaul, Y.; Flugelman, M.Y.

    2006-01-01

    Background: Fibulin-5 is a novel extracellular protein that is thought to act as a bridging peptide between elastin fibers and cell surface integrins in blood vessel wall. Fibulin-5 binding to endothelial cell (EC) surface integrins may effect cell proliferation and cell attachment to extracellular matrix (ECM) or to artificial surfaces. In this paper, we describe the effects of fibulin-5 on attachment, adhesion, and proliferation of primary human EC. After demonstrating that fibulin-5 over-expression inhibited EC proliferation, we tested the hypothesis that co-expression of fibulin-5 and VEGF 165 will lead to unique EC phenotype that will exhibit increased adherence properties and retain its proliferation capacity. Methods and results: Fibulin-5 and VEGF 165 gene transfer to primary human saphenous vein endothelial cells was accomplished using retroviral vectors encoding the two genes. Transgene expression was verified using immunohistochemistry, Western blotting, and ELISA. Fibulin 5 over-expression tended to improve immediate EC attachment (30 min after seeding) and improved significantly adhesion (>40%) under shear stress tested 24 h after EC seeding. The effects of fibulin-5 and VEGF 165 on EC proliferation in the presence or absence of basic FGF were also tested. EC expressing fibulin-5 had reduced proliferation while VEGF 165 co-expression ameliorated this effect. Conclusion: Fibulin-5 improved EC attachment to artificial surfaces. Dual transfer of fibulin-5 and VEGF 165 resulted in EC phenotype with increased adhesion and improved proliferation. This unique EC phenotype can be useful for tissue engineering on endovascular prostheses

  20. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chunlong, E-mail: lclmd@sina.com; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-02-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  1. Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of SNAIL/beta-catenin signaling.

    Science.gov (United States)

    Roy, Hemant K; Kunte, Dhananjay P; Koetsier, Jennifer L; Hart, John; Kim, Young L; Liu, Yang; Bissonnette, Marc; Goldberg, Michael; Backman, Vadim; Wali, Ramesh K

    2006-08-01

    Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1-beta-catenin-mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-76A diet alone or supplemented with 5% PEG-8000. After 30 weeks, animals were euthanized and biopsies of aberrant crypt foci and uninvolved crypts were subjected to immunohistochemical and immunoblot analyses. PEG markedly suppressed both early and late markers of azoxymethane-induced colon carcinogenesis (fractal dimension by 80%, aberrant crypt foci by 64%, and tumors by 74%). In both azoxymethane-treated rats and HT-29 cells treated with 5% PEG-3350 for 24 hours, PEG decreased proliferation (45% and 52%, respectively) and cyclin D1 (78% and 56%, respectively). Because beta-catenin is the major regulator of cyclin D1 in colorectal cancer, we used the T-cell factor (Tcf)-TOPFLASH reporter assay to show that PEG markedly inhibited beta-catenin transcriptional activity. PEG did not alter total beta-catenin expression but rather its nuclear localization, leading us to assess E-cadherin expression (a major determinant of beta-catenin subcellular localization), which was increased by 73% and 71% in the azoxymethane-rat and HT-29 cells, respectively. We therefore investigated the effect of PEG treatment on levels of the negative regulator of E-cadherin, SNAIL, and observed a 50% and 75% decrease, respectively. In conclusion, we show, for the first time, a molecular mechanism through which PEG imparts its antiproliferative and hence profound chemopreventive effect.

  2. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  3. Omentin-1 Stimulates Human Osteoblast Proliferation through PI3K/Akt Signal Pathway

    Directory of Open Access Journals (Sweden)

    Shan-Shan Wu

    2013-01-01

    Full Text Available It has been presumed that adipokines deriving from adipose tissue may play important roles in bone metabolism. Omentin-1, a novel adipokine, which is selectively expressed in visceral adipose tissue, has been reported to stimulate proliferation and inhibit differentiation of mouse osteoblast. However, little information refers to the effect of omentin-1 on human osteoblast (hOB proliferation. The current study examined the potential effects of omentin-1 on proliferation in hOB and the signal pathway involved. Omentin-1 promoted hOB proliferation in a dose-dependent manner as determined by [3H]thymidine incorporation. Western blot analysis revealed that omentin-1 induced activation of Akt (phosphatidylinositol-3 kinase downstream effector and such effect was impeded by transfection of hOB with Akt-siRNA. Furthermore, LY294002 (a selective PI3K inhibitor and HIMO (a selective Akt inhibitor abolished the omentin-1-induced hOB proliferation. These findings indicate that omentin-1 induces hOB proliferation via the PI3K/Akt signaling pathway and suggest that osteoblast is a direct target of omentin-1.

  4. Epithelial response to a high-protein diet in rat colon.

    Science.gov (United States)

    Beaumont, Martin; Andriamihaja, Mireille; Armand, Lucie; Grauso, Marta; Jaffrézic, Florence; Laloë, Denis; Moroldo, Marco; Davila, Anne-Marie; Tomé, Daniel; Blachier, François; Lan, Annaïg

    2017-01-31

    High-protein diets (HPD) alter the large intestine microbiota composition in association with a metabolic shift towards protein degradation. Some amino acid-derived metabolites produced by the colon bacteria are beneficial for the mucosa while others are deleterious at high concentrations. The aim of the present work was to define the colonic epithelial response to an HPD. Transcriptome profiling was performed on colonocytes of rats fed an HPD or an isocaloric normal-protein diet (NPD) for 2 weeks. The HPD downregulated the expression of genes notably implicated in pathways related to cellular metabolism, NF-κB signaling, DNA repair, glutathione metabolism and cellular adhesion in colonocytes. In contrast, the HPD upregulated the expression of genes related to cell proliferation and chemical barrier function. These changes at the mRNA level in colonocytes were not associated with detrimental effects of the HPD on DNA integrity (comet assay), epithelium renewal (quantification of proliferation and apoptosis markers by immunohistochemistry and western blot) and colonic barrier integrity (Ussing chamber experiments). The modifications of the luminal environment after an HPD were associated with maintenance of the colonic homeostasis that might be the result of adaptive processes in the epithelium related to the observed transcriptional regulations.

  5. Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro.

    Directory of Open Access Journals (Sweden)

    Jing Gong

    Full Text Available To investigate the effects of four strains, generally used in clinic, including Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis, and their related products on human colonic smooth muscle in vitro.Human colonic circular muscle strips obtained from disease-free margins of resected segments from 25 patients with colorectal cancer were isometrically examined in a constant-temperature organ bath and exposed to different concentrations of living bacteria, sonicated cell fractions and cell-free supernatant (CFS. The area under the curve (AUC representing the contractility of smooth muscle strips was calculated.(1 The four living probiotics inhibited the contractility of human colonic muscle strips only at high concentration (1010 CFUs/mL, all P0.05.Four common probiotics related products, including the sonicated cell fractions and the CFS, obviously inhibited human colonic smooth muscles strips contraction in a dose-dependent manner. Only high concentration living probiotics (1010 CFUs/mL can inhibit the colonic smooth muscles strips contraction. The NO pathway may be partly involved in the inhibitory effect of CFS from Streptococcus thermophilus and Enterococcus faecalis.

  6. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  7. URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2018-01-01

    Full Text Available Upregulated gene 11 (URG11, a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP, compared with human prostate epithelial cell line (RWPE-1. Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.

  8. Orlistat Reduces Proliferation and Enhances Apoptosis in Human Pancreatic Cancer Cells (PANC-1).

    Science.gov (United States)

    Sokolowska, Ewa; Presler, Malgorzata; Goyke, Elzbieta; Milczarek, Ryszard; Swierczynski, Julian; Sledzinski, Tomasz

    2017-11-01

    Pancreatic cancer is a disease with very poor prognosis, and none of currently available pharmacotherapies have proven to be efficient in this indication. The aim of this study was to analyze the expression of fatty acid synthase (FASN) gene as a potential therapeutic target in proliferating human pancreatic cancer cells (PANC-1), and verify if orlistat, originally developed as an anti-obesity drug, inhibits PANC-1 proliferation. The effects of orlistat on gene expression, lipogenesis, proliferation and apoptosis was studied in PANC-1 cell culture. Expression of FASN increased during proliferation of PANC-1. Inhibition of FASN by orlistat resulted in a significant reduction of PANC-1 proliferation and enhanced apoptosis of these cells. This study showed, to our knowledge for the first time, that orlistat exhibits significant antitumor activity against PANC-1 cells. This implies that orlistat analogs with good oral bioavailability may find application in pharmacotherapy of pancreatic cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan.

    Science.gov (United States)

    Wang, Kui; Pereira, Gabriel V; Cavalcante, Janaina J V; Zhang, Meiling; Mackie, Roderick; Cann, Isaac

    2016-09-29

    Many human diets contain arabinoxylan, and the ease of genome sequencing coupled with reduced cost have led to unraveling the arsenal of genes utilized by the colonic Bacteroidetes to depolymerize this polysaccharide. The colonic Bacteroidetes with potential to ferment arabinoxylans include Bacteroides intestinalis. In this study, we analyzed the hydrolytic activities of members of a xylan degradation cluster encoded on the genome of Bacteroides intestinalis DSM 17393. Here, it is demonstrated that a cocktail of the xylanolytic enzymes completely hydrolyze arabinoxylans found in human diets. We show that this bacterium and relatives have evolved and secrete a unique bifunctional endoxylanase/arabinofuranosidase in the same polypeptide. The bifunctional enzyme and other secreted enzymes attack the polysaccharides extracellularly to remove the side-chains, exposing the xylan backbone for cleavage to xylo-oligosaccharides and xylose. These end products are transported into the cell where a β-xylosidase cleaves the oligosaccharides to fermentable sugars. While our experiments focused on B. intestinalis, it is likely that the extracellular enzymes also release nutrients to members of the colonic microbial community that practice cross-feeding. The presence of the genes characterized in this study in other colonic Bacteroidetes suggests a conserved strategy for energy acquisition from arabinoxylan, a component of human diets.

  10. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    Science.gov (United States)

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  11. Corticotropin-releasing hormone and mast cells in the regulation of mucosal barrier function in the human colon.

    Science.gov (United States)

    Wallon, Conny; Söderholm, Johan D

    2009-05-01

    Corticotropin-releasing hormone (CRH) is an important neuro-endocrine mediator of the stress response. Local effects of CRH in the intestinal mucosa have become evident in recent years. We showed that CRH activates CRH receptor subtypes R1 and R2 on subepithelial mast cells, thereby inducing increased transcellular uptake of protein antigens in human colonic biopsies in Ussing chambers. Ongoing studies also implicate local cholinergic signaling in regulation of macromolecular permeability in the human colon. Since increased uptake of antigenic molecules is associated with mucosal inflammation, our findings may have implications for understanding stress-related intestinal disorders.

  12. Tryptophan autofluorescence imaging of neoplasms of the human colon

    Science.gov (United States)

    Banerjee, Bhaskar; Renkoski, Timothy; Graves, Logan R.; Rial, Nathaniel S.; Tsikitis, Vassiliki Liana; Nfonsom, Valentine; Pugh, Judith; Tiwari, Piyush; Gavini, Hemanth; Utzinger, Urs

    2012-01-01

    Detection of flat neoplasia is a major challenge in colorectal cancer screening, as missed lesions can lead to the development of an unexpected `incident' cancer prior to the subsequent endoscopy. The use of a tryptophan-related autofluorescence has been reported to be increased in murine intestinal dysplasia. The emission spectra of cells isolated from human adenocarcinoma and normal mucosa of the colon were studied and showed markedly greater emission intensity from cancerous cells compared to cells obtained from the surrounding normal mucosa. A proto-type multispectral imaging system optimized for ultraviolet macroscopic imaging of tissue was used to obtain autofluorescence images of surgical specimens of colonic neoplasms and normal mucosa after resection. Fluorescence images did not display the expected greater emission from the tumor as compared to the normal mucosa, most probably due to increased optical absorption and scattering in the tumors. Increased fluorescence intensity in neoplasms was observed however, once fluorescence images were corrected using reflectance images. Tryptophan fluorescence alone may be useful in differentiating normal and cancerous cells, while in tissues its autofluorescence image divided by green reflectance may be useful in displaying neoplasms.

  13. Apoptotic block in colon cancer cells may be rectified by lentivirus mediated overexpression of caspase-9.

    Science.gov (United States)

    Xu, D; Wang, C; Shen, X; Yu, Y; Rui, Y; Zhang, D; Zhou, Z

    2013-12-01

    At present, the inhibition of apoptosis during pathogenesis of colorectal cancer is widely recognized while the role of caspase-9 in this process remains controversial. We aimed to investigate the differential expression of caspase-9 and evaluate the therapeutic potential of expression intervention in this study. We first examined the different expression of caspase-9 in normal colon mucosa, adenoma and cancer, investigating the relationship between its expression and clinico-pathological characteristics. Secondly, overexpression of caspase-9 was established in colon cancer cell lines by lentivirus infection to study the changes in growth, proliferation and apoptosis. Compared with normal colon mucosa, the expression of caspase-9 was higher in adenoma while lower in cancer both at mRNA and protein level (P expression is more common in poorly differentiated cancers (P expression of caspase-9, poorer colony formation and slower cell proliferation. In terms of apoptosis related indicators, caspase-9 overexpression leads to higher apoptosis rate and GO/G1 arrest, while up-regulating the expression of caspase-3 (P expression from colon mucosa, adenoma to cancer suggested it may be involved in the carcinogenesis of colon cancer. The overexpression of caspase-9 exhibits an inhibitory role in cancer growth and proliferation while promoting apoptosis. However, a non-apoptotic role of caspase-9 facilitating differentiation was also implied.

  14. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    Science.gov (United States)

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  15. CARMA3 is overexpressed in colon cancer and regulates NF-κB activity and cyclin D1 expression

    International Nuclear Information System (INIS)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua; Xu, Huimian

    2012-01-01

    Highlights: ► CARMA3 expression is elevated in colon cancers. ► CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. ► CARMA3 upregulates cyclinD1 through NF-κB activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.

  16. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the tibetan plateau.

    Science.gov (United States)

    Qi, Xuebin; Cui, Chaoying; Peng, Yi; Zhang, Xiaoming; Yang, Zhaohui; Zhong, Hua; Zhang, Hui; Xiang, Kun; Cao, Xiangyu; Wang, Yi; Ouzhuluobu; Basang; Ciwangsangbu; Bianba; Gonggalanzi; Wu, Tianyi; Chen, Hua; Shi, Hong; Su, Bing

    2013-08-01

    Tibetans live on the highest plateau in the world, their current population size is approximately 5 million, and most of them live at an altitude exceeding 3,500 m. Therefore, the Tibetan Plateau is a remarkable area for cultural and biological studies of human population history. However, the chronological profile of the Tibetan Plateau's colonization remains an unsolved question of human prehistory. To reconstruct the prehistoric colonization and demographic history of modern humans on the Tibetan Plateau, we systematically sampled 6,109 Tibetan individuals from 41 geographic populations across the entire region of the Tibetan Plateau and analyzed the phylogeographic patterns of both paternal (n = 2,354) and maternal (n = 6,109) lineages as well as genome-wide single nucleotide polymorphism markers (n = 50) in Tibetan populations. We found that there have been two distinct, major prehistoric migrations of modern humans into the Tibetan Plateau. The first migration was marked by ancient Tibetan genetic signatures dated to approximately 30,000 years ago, indicating that the initial peopling of the Tibetan Plateau by modern humans occurred during the Upper Paleolithic rather than Neolithic. We also found evidences for relatively young (only 7-10 thousand years old) shared Y chromosome and mitochondrial DNA haplotypes between Tibetans and Han Chinese, suggesting a second wave of migration during the early Neolithic. Collectively, the genetic data indicate that Tibetans have been adapted to a high altitude environment since initial colonization of the Tibetan Plateau in the early Upper Paleolithic, before the last glacial maximum, followed by a rapid population expansion that coincided with the establishment of farming and yak pastoralism on the Plateau in the early Neolithic.

  17. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    International Nuclear Information System (INIS)

    Gualde, N.; Goodwin, J.S.

    1984-01-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [ 3 H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [ 3 H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset

  18. Saccharomyces boulardii Protease Inhibits the Effects of Clostridium difficile Toxins A and B in Human Colonic Mucosa

    Science.gov (United States)

    Castagliuolo, Ignazio; Riegler, Martin F.; Valenick, Leyla; LaMont, J. Thomas; Pothoulakis, Charalabos

    1999-01-01

    Saccharomyces boulardii is a nonpathogenic yeast used in the treatment of Clostridium difficile diarrhea and colitis. We have reported that S. boulardii inhibits C. difficile toxin A enteritis in rats by releasing a 54-kDa protease which digests the toxin A molecule and its brush border membrane (BBM) receptor (I. Castagliuolo, J. T. LaMont, S. T. Nikulasson, and C. Pothoulakis, Infect. Immun. 64:5225–5232, 1996). The aim of this study was to further evaluate the role of S. boulardii protease in preventing C. difficile toxin A enteritis in rat ileum and determine whether it protects human colonic mucosa from C. difficile toxins. A polyclonal rabbit antiserum raised against purified S. boulardii serine protease inhibited by 73% the proteolytic activity present in S. boulardii conditioned medium in vitro. The anti-protease immunoglobulin G (IgG) prevented the action of S. boulardii on toxin A-induced intestinal secretion and mucosal permeability to [3H]mannitol in rat ileal loops, while control rabbit IgG had no effect. The anti-protease IgG also prevented the effects of S. boulardii protease on digestion of toxins A and B and on binding of [3H]toxin A and [3H]toxin B to purified human colonic BBM. Purified S. boulardii protease reversed toxin A- and toxin B-induced inhibition of protein synthesis in human colonic (HT-29) cells. Furthermore, toxin A- and B-induced drops in transepithelial resistance in human colonic mucosa mounted in Ussing chambers were reversed by 60 and 68%, respectively, by preexposing the toxins to S. boulardii protease. We conclude that the protective effects of S. boulardii on C. difficile-induced inflammatory diarrhea in humans are due, at least in part, to proteolytic digestion of toxin A and B molecules by a secreted protease. PMID:9864230

  19. Annona crassiflora Mart. fruit pulp effects on biochemical parameters and rat colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Vinícius Paula Venâncio

    2013-08-01

    Full Text Available A. crassiflora Mart. a Brazilian savannah fruit, is a source of phytochemical compounds that possess a wide array of biological activities, including free radical scavenging. This native fruit proved to potentialize the mutagenic process in previous in vivo investigations. The aim of the present study was to investigate the effects of A. crassiflora Mart. pulp intake on colonic cell proliferation and on the development of Aberrant Crypt Foci (ACF in male Wistar rats. The animals were fed with either a commercial diet or a diet supplemented with A. crassiflora Mart. pulp mixed in 1%, 10% or 20% (w/w for 4 weeks or 20 weeks. The carcinogen 1,2-dimethylhydrazine dihydrochloride (4 doses, 40 mg kg-1 each was used to induce colonic ACF. After euthanasia, the blood, liver and colon samples were collected for biochemical determinations, oxidative stress or ACF development analysis, respectively. Immunohistochemical analyses of the colonic mucosa were performed using antibodies against proliferating cell nuclear antigen (PCNA in normal-appearing colonic crypt and β-catenin in ACF. There was no ACF development in the colon from groups treated with A. crassiflora Mart. pulp. Also, the biochemical and oxidative stress analysis, PCNA labeling and ACF development (number, multiplicity or cellular localization of β-catenin were unchanged as a result of marolo pulp intake. Thus, the present results suggest that A. crassiflora Mart. pulp intake did not exert any protective effect in the colon carcinogenesis induced by DMH in rats.

  20. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis.

    Science.gov (United States)

    Huang, Emina H; Hynes, Mark J; Zhang, Tao; Ginestier, Christophe; Dontu, Gabriela; Appelman, Henry; Fields, Jeremy Z; Wicha, Max S; Boman, Bruce M

    2009-04-15

    Although the concept that cancers originate from stem cells (SC) is becoming scientifically accepted, mechanisms by which SC contribute to tumor initiation and progression are largely unknown. For colorectal cancer (CRC), investigation of this problem has been hindered by a paucity of specific markers for identification and isolation of SC from normal and malignant colon. Accordingly, aldehyde dehydrogenase 1 (ALDH1) was investigated as a possible marker for identifying colonic SC and for tracking them during cancer progression. Immunostaining showed that ALDH1(+) cells are sparse and limited to the normal crypt bottom, where SCs reside. During progression from normal epithelium to mutant (APC) epithelium to adenoma, ALDH1(+) cells increased in number and became distributed farther up the crypt. CD133(+) and CD44(+) cells, which are more numerous and broadly distributed in normal crypts, showed similar changes during tumorigenesis. Flow cytometric isolation of cancer cells based on enzymatic activity of ALDH (Aldefluor assay) and implantation of these cells in nonobese diabetic-severe combined immunodeficient mice (a) generated xenograft tumors (Aldefluor(-) cells did not), (b) generated them after implanting as few as 25 cells, and (c) generated them dose dependently. Further isolation of cancer cells using a second marker (CD44(+) or CD133(+) serially) only modestly increased enrichment based on tumor-initiating ability. Thus, ALDH1 seems to be a specific marker for identifying, isolating, and tracking human colonic SC during CRC development. These findings also support our original hypothesis, derived previously from mathematical modeling of crypt dynamics, that progressive colonic SC overpopulation occurs during colon tumorigenesis and drives CRC development.

  1. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    Science.gov (United States)

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  2. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults

    Science.gov (United States)

    Chambers, Edward S; Viardot, Alexander; Psichas, Arianna; Morrison, Douglas J; Murphy, Kevin G; Zac-Varghese, Sagen E K; MacDougall, Kenneth; Preston, Tom; Tedford, Catriona; Finlayson, Graham S; Blundell, John E; Bell, Jimmy D; Thomas, E Louise; Mt-Isa, Shahrul; Ashby, Deborah; Gibson, Glen R; Kolida, Sofia; Dhillo, Waljit S; Bloom, Stephen R; Morley, Wayne; Clegg, Stuart; Frost, Gary

    2015-01-01

    Objective The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. Design To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. Results Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. Conclusions These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans. Trial registration number NCT00750438. PMID:25500202

  3. Human colon cancers as a major problem in poland and in the world – medical and environmental issues

    Directory of Open Access Journals (Sweden)

    Sylwia Katarzyna Król

    2011-12-01

    Full Text Available Many epidemiological data have shown an increasing incidence and mortality of colon cancer cases in the past several years, not only in Poland but all over the world as well. Each year, approximately a million new cases of colon cancer are diagnosed and that is the cause of death of almost half a million patients in the world. The aim of this article is to present the epidemiology and the current state of scientific knowledge concerning etiology and pathogenesis of neoplastic diseases in human large intestine. Furthermore, this short review describes the essential risk factors and suggests the simple and effective ways of colon cancer prevention.Colorectal cancer is one of the most frequently diagnosed cancers in EU countries. Scientific studies have proved that genetic and hereditary factors have a strong influence on carcinogenesis in human colon. Moreover, environmental factors, such as dietary contribute to the development of colon neoplasm. The most useful tool to reduce high morbidity and mortality is a prevention. Screening tests in nonsymptomatic people from high-risk groups or populations enable diagnosis in the early stage of colorectal cancer. Many publications have reported that modification of lifestyle and daily diet also play a significant role in prevention.

  4. RODENT AND HUMAN NEUROPROGENITOR CELLS FOR HIGH-CONTENT SCREENS OF CHEMICAL EFFECTS ON PROLIFERATION AND APOPTOSIS

    Science.gov (United States)

    The objective of these experiments is to develop high-throughput screens for proliferation and apoptosis in order to compare rodent and human neuroprogenitor cell responses to potential developmental neurotoxicants. Effects of 4 chemicals on proliferation and apoptosis in mouse c...

  5. Effect of oral proguanil on human lymphocyte proliferation

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian; Flachs, H

    1986-01-01

    In vitro studies have indicated that the antifolates pyrimethamine [4, 6] and cycloguanil (the active metabolite of proguanil) suppress the proliferation of stimulated human lymphocytes; proguanil has no effect [2]. During the early growth phase of the cells, 14C-thymidine (14C-TdR) incorporation...... is increased by pyrimethamine and cycloguanil, reflecting blockage of endogenous TdR synthesis [3]. Proguanil (Paludrine) is increasingly being used for malaria prophylaxis. It is considered the most innocuous of the antimalarials currently employed. Since nothing is known about the effect of oral proguanil...

  6. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    Science.gov (United States)

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  7. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, Maria Lauda [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); Ryoo, Minjung; Skay, Anna [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); Tomasi, Ivan; Giordano, Pasquale [Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR (United Kingdom); Mato, José M. [CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia (Spain); Lu, Shelly C., E-mail: shellylu@usc.edu [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States)

    2013-07-15

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosis and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and growth

  8. Effects of mercury on the proliferation of human peripheral lymphocytes in vitro

    International Nuclear Information System (INIS)

    Piwecka, K.; Poniedzialek, B.; Rzymski, P.; Karczewski, J.; Zurawski, J.; Wiktorowicz, K.

    2011-01-01

    Our project aimed to investigate the effects of mercury on the proliferation of human peripheral lymphocytes in vitro. The lymphocytes were isolated from the blood collected from healthy donors at Regionalne Centrum Krwiodawstwa i Krwiolecznictwa in Poznan, Poland. For the purpose of cell culture, the lymphocyte suspension (25 · 10 4 cells/ml) in Eagle's medium supplemented with 10% fetal calf serum was prepared. Phytohaemagglutinin-L (PHA-L) was used in a concentration of 2.5 mg/ml to stimulate cell proliferation. Mercuric chloride (HgCl 2 ) in four different concentrations (1 μM, 10 μM, 50 μM, 100 μM) and [3H]-thymidine were added after 48 hours of incubation and the cell culture was continued for the next 24 hours. The rate of lymphocyte proliferation was measured by [3H]-thymidine incorporation method with a liquid scintillation counter. Results indicate that higher concentrations of mercury (50 μM, 100 μM) inhibit the [3H]-thymidine incorporation of human peripheral lymphocytes in vitro. The incorporation was lower than the control sample by 65% at a concentration of 50 μM, while at a concentration of 100 μM it fell to virtually zero. Moreover, the phase of lymphocyte proliferation cycle affected by mercuric chloride was also investigated. For this purpose HgCl 2 in 2 concentrations (10 μM, 50 μM) was added to the cell culture in 4 different time points: at the start of the cell culture and after 4, 24, and 48 hours of incubation. After 48 hours, [3H]-thymidine was added and the cell culture was continued for an additional 24 hours. The rate of cell proliferation was estimated by [3H]-thymidine incorporation using a liquid scintillation counter. The inhibition effect was observed in samples with metal added at the start of the cell culture and after 4 h of incubation, i.e. at the initial phase of the lymphocyte proliferation cycle. (authors)

  9. Role of neutral ceramidase in colon cancer.

    Science.gov (United States)

    García-Barros, Mónica; Coant, Nicolas; Kawamori, Toshihiko; Wada, Masayuki; Snider, Ashley J; Truman, Jean-Philip; Wu, Bill X; Furuya, Hideki; Clarke, Christopher J; Bialkowska, Agnieszka B; Ghaleb, Amr; Yang, Vincent W; Obeid, Lina M; Hannun, Yusuf A

    2016-12-01

    Alterations in sphingolipid metabolism, especially ceramide and sphingosine 1-phosphate, have been linked to colon cancer, suggesting that enzymes of sphingolipid metabolism may emerge as novel regulators and targets in colon cancer. Neutral ceramidase (nCDase), a key enzyme in sphingolipid metabolism that hydrolyzes ceramide into sphingosine, is highly expressed in the intestine; however, its role in colon cancer has not been defined. Here we show that molecular and pharmacological inhibition of nCDase in colon cancer cells increases ceramide, and this is accompanied by decreased cell survival and increased apoptosis and autophagy, with minimal effects on noncancerous cells. Inhibition of nCDase resulted in loss of β-catenin and inhibition of ERK, components of pathways relevant for colon cancer development. Furthermore, inhibition of nCDase in a xenograft model delayed tumor growth and increased ceramide while decreasing proliferation. It is noteworthy that mice lacking nCDase treated with azoxymethane were protected from tumor formation. Taken together, these studies show that nCDase is pivotal for regulating initiation and development of colon cancer, and these data suggest that this enzyme is a suitable and novel target for colon cancer therapy.-García-Barros, M., Coant, N., Kawamori, T., Wada, M., Snider, A. J., Truman, J.-P., Wu, B. X., Furuya, H., Clarke, C. J., Bialkowska, A. B., Ghaleb, A., Yang, V. W., Obeid, L. M., Hannun, Y. A. Role of neutral ceramidase in colon cancer. © FASEB.

  10. Radioimmunotoxin Therapy of Experimental Colon and Ovarian Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, Donald J.; Vallera, Daniel A.

    2006-02-09

    To pursue the development of radiolabeled immunotoxins (RIT) for colon cancer, it was first necessary to identify an immunotoxin (IT) that could selectively kill colon cancer cell lines. Recently, our collaborators in the Vallera laboratory have observed that potent recombinant IT can be synthesized using recombinant single chain antibodies (sFv) spliced to truncated diphtheria toxin (DT) consisting of the first 390 amino acids of native DT. DT was chosen as a toxin because it is a catalytic bacterial toxin that is easily manipulated in genetic engineering studies. Also, the Vallera lab has developed new procedures for preparing the sFv fusion toxins from bacterial inclusion bodies such as DT and another good genetic engineering toxin pseudomonas exotoxin (PE) based on detergent refolding. This allows for enhanced yields and higher purity that is essential for generating the protein that will be needed for preparation of larger amounts of RIT for therapy. Many potential sFvs were considered for targeting colon cancer. The best results have been obtained with an sFv recognizing EpCam. EpCam, also known as ESA or EGP40, is a 40 kDa epithelial transmembrane glycoprotein found on the basolateral surface of simple, pseudostratified, and transitional epithelia. It has been found overexpressed on 81% of adenocarcinomas of the colon (Went et al. Human pathology 35:122, 2004). EpCam sliced to DT (DTEpCam) was highly potent in studies in which we measured its ability to inhibit the proliferation of the HT-29 and COLO 205 colon cancer cell lines since we measured its IC50 at 1-2 x 10-2 nM. Potency is important, but is also critical that DTEpCam is selective in its cytotoxicity against EpCam-expressing target colon cancer cells. The activity of DTEpCam was highly selective since irrelevant control IT that did not recognize any markers on cancer cells, did not show any activity against the same colon cancer cell lines. Also, blocking studies were performed in which DTEpCam was

  11. Radioimmunotoxin Therapy of Experimental Colon and Ovarian Cancer

    International Nuclear Information System (INIS)

    Buchsbaum, Donald J.; Vallera, Daniel A.

    2006-01-01

    To pursue the development of radiolabeled immunotoxins (RIT) for colon cancer, it was first necessary to identify an immunotoxin (IT) that could selectively kill colon cancer cell lines. Recently, our collaborators in the Vallera laboratory have observed that potent recombinant IT can be synthesized using recombinant single chain antibodies (sFv) spliced to truncated diphtheria toxin (DT) consisting of the first 390 amino acids of native DT. DT was chosen as a toxin because it is a catalytic bacterial toxin that is easily manipulated in genetic engineering studies. Also, the Vallera lab has developed new procedures for preparing the sFv fusion toxins from bacterial inclusion bodies such as DT and another good genetic engineering toxin pseudomonas exotoxin (PE) based on detergent refolding. This allows for enhanced yields and higher purity that is essential for generating the protein that will be needed for preparation of larger amounts of RIT for therapy. Many potential sFvs were considered for targeting colon cancer. The best results have been obtained with an sFv recognizing EpCam. EpCam, also known as ESA or EGP40, is a 40 kDa epithelial transmembrane glycoprotein found on the basolateral surface of simple, pseudostratified, and transitional epithelia. It has been found overexpressed on 81% of adenocarcinomas of the colon (Went et al. Human pathology 35:122, 2004). EpCam sliced to DT (DTEpCam) was highly potent in studies in which we measured its ability to inhibit the proliferation of the HT-29 and COLO 205 colon cancer cell lines since we measured its IC50 at 1-2 x 10-2 nM. Potency is important, but is also critical that DTEpCam is selective in its cytotoxicity against EpCam-expressing target colon cancer cells. The activity of DTEpCam was highly selective since irrelevant control IT that did not recognize any markers on cancer cells, did not show any activity against the same colon cancer cell lines. Also, blocking studies were performed in which DTEpCam was

  12. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  13. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    Youakim, A.; Herscovics, A.

    1985-01-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2- 3 H]mannose or L-[5,6- 3 H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2- 3 H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2- 3 H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6- 3 H]glucosamine and L-[1- 14 C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3 H-labeled N-acetylglucosamine and N-acetylgalactosamine

  14. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon[S

    Science.gov (United States)

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-01-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90–100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon. PMID:23729502

  15. A general native-state method for determination of proliferation capacity of human normal and tumor tissues in vitro

    International Nuclear Information System (INIS)

    Hoffman, R.M.; Connors, K.M.; Meerson-Monosov, A.Z.; Herrera, H.; Price, J.H.

    1989-01-01

    An important need in cancer research and treatment is a physiological means in vitro by which to assess the proliferation capacity of human tumors and corresponding normal tissue for comparison. The authors have recently developed a native-state, three-dimensional, gel-supported primary culture system that allows every type of human cancer to grow in vitro at more than 90% frequency, with maintenance of tissue architecture, tumor-stromal interaction, and differentiated functions. Here they demonstrate that the native-state culture system allows proliferation indices to be determined for all solid cancer types explanted directly from surgery into long-term culture. Normal tissues also proliferate readily in this system. The degree of resolution of measurement of cell proliferation by histological autoradiography within the cultured tissues is greatly enhanced with the use of epi-illumination polarization microscopy. The histological status of the cultured tissues can be assessed simultaneously with the proliferation status. Carcinomas generally have areas of high epithelial proliferation with quiescent stromal cells. Sarcomas have high proliferation of cells of mesenchymal organ. Normal tissues can also proliferate at high rates. An image analysis system has been developed to automate proliferation determination. The high-resolution physiological means described here to measure the proliferation capacity of tissues will be important in further understanding of the deregulation of cell proliferation in cancer as well as in cancer prognosis and treatment

  16. Deciphering the colon cancer genes--report of the InSiGHT-Human Variome Project Workshop, UNESCO, Paris 2010

    DEFF Research Database (Denmark)

    Kohonen-Corish, Maija R J; Macrae, Finlay; Genuardi, Maurizio

    2011-01-01

    The Human Variome Project (HVP) has established a pilot program with the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) to compile all inherited variation affecting colon cancer susceptibility genes. An HVP-InSiGHT Workshop was held on May 10, 2010, prior to the HVP...... Integration and Implementation Meeting at UNESCO in Paris, to review the progress of this pilot program. A wide range of topics were covered, including issues relating to genotype-phenotype data submission to the InSiGHT Colon Cancer Gene Variant Databases (chromium.liacs.nl/LOVD2/colon_cancer...

  17. The inflammatory mediator leukotriene D4 induces subcellular β-catenin translocation and migration of colon cancer cells

    International Nuclear Information System (INIS)

    Salim, Tavga; Sand-Dejmek, Janna; Sjölander, Anita

    2014-01-01

    The abnormal activation of the Wnt/β-catenin pathway frequently occurs in colorectal cancer. The nuclear translocation of β-catenin activates the transcription of target genes that promote cell proliferation, survival, and invasion. The pro-inflammatory mediator leukotriene D 4 (LTD 4 ) exerts its effects through the CysLT 1 receptor. We previously reported an upregulation of CysLT 1 R in patients with colon cancer, suggesting the importance of leukotrienes in colon cancer. The aim of this study was to investigate the impact of LTD 4 on Wnt/β-catenin signaling and its effects on proliferation and migration of colon cancer cells. LTD 4 stimulation led to an increase in β-catenin expression, β-catenin nuclear translocation and the subsequent transcription of MYC and CCND1. Furthermore, LTD 4 significantly reduced the expression of E-cadherin and β-catenin at the plasma membrane and increased the migration and proliferation of HCT116 colon cancer cells. The effects of LTD 4 can be blocked by the inhibition of CysLT 1 R. Furthermore, LTD 4 induced the inhibition of glycogen synthase kinase 3 (GSK)-3β activity, indicating a crosstalk between the G-protein-coupled receptor CysLT 1 and the Wnt/β-catenin pathway. In conclusion, LTD 4 , which can be secreted from macrophages and leukocytes in the tumor microenvironment, induces β-catenin translocation and the activation of β-catenin target genes, resulting in the increased proliferation and migration of colon cancer cells. - Highlights: • Leukotriene D 4 (LTD 4 ) lowers membrane β-catenin but increases nuclear β-catenin levels in colon cancer cells. • In agreement, LTD 4 triggers inactivation of GSK-3β, activation of TCF/LEF and increased expression of Cyclin D1 and c-Myc. • LTD 4 also caused a significant reduction in the expression of E-cadherin and an increased migration of colon cancer cells

  18. Keratin23 (KRT23) knockdown decreases proliferation and affects the DNA damage response of colon cancer cells

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Hahn, Stephan; Mansilla, Francisco

    2013-01-01

    correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression in vitro. Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed...... response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced......Keratin 23 (KRT23) is strongly expressed in colon adenocarcinomas but absent in normal colon mucosa. Array based methylation profiling of 40 colon samples showed that the promoter of KRT23 was methylated in normal colon mucosa, while hypomethylated in most adenocarcinomas. Promoter methylation...

  19. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    OpenAIRE

    Sherman Devin; Goforth Paige; Qui Min; Yang Hongsong; Whaley Sarah; Lee Steven; Stone William L; Campbell Sharon E; McHaffie Derek; Krishnan Koyamangalath

    2006-01-01

    Abstract Background Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemopreventi...

  20. Transforming growth factor-β suppresses metastasis in a subset of human colon carcinoma cells

    International Nuclear Information System (INIS)

    Simms, Neka A K; Rajput, Ashwani; Sharratt, Elizabeth A; Ongchin, Melanie; Teggart, Carol A; Wang, Jing; Brattain, Michael G

    2012-01-01

    TGFβ signaling has typically been associated with suppression of tumor initiation while the role it plays in metastasis is generally associated with progression of malignancy. However, we present evidence here for an anti-metastatic role of TGFβ signaling. To test the importance of TGFβ signaling to cell survival and metastasis we compared human colon carcinoma cell lines that are either non-tumorigenic with TGFβ response (FET), or tumorigenic with TGFβ response (FETα) or tumorigenic with abrogated TGFβ response via introduction of dominant negative TGFβRII (FETα/DN) and their ability to metastasize. Metastatic competency was assessed by orthotopic transplantation. Metastatic colony formation was assessed histologically and by imaging. Abrogation of TGFβ signaling through introduction of a dominant negative TGFβ receptor II (TGFβRII) in non-metastatic FETα human colon cancer cells permits metastasis to distal organs, but importantly does not reduce invasive behavior at the primary site. Loss of TGFβ signaling in FETα-DN cells generated enhanced cell survival capabilities in response to cellular stress in vitro. We show that enhanced cellular survival is associated with increased AKT phosphorylation and cytoplasmic expression of inhibitor of apoptosis (IAP) family members (survivin and XIAP) that elicit a cytoprotective effect through inhibition of caspases in response to stress. To confirm that TGFβ signaling is a metastasis suppressor, we rescued TGFβ signaling in CBS metastatic colon cancer cells that had lost TGFβ receptor expression due to epigenetic repression. Restoration of TGFβ signaling resulted in the inhibition of metastatic colony formation in distal organs by these cells. These results indicate that TGFβ signaling has an important role in the suppression of metastatic potential in tumors that have already progressed to the stage of an invasive carcinoma. The observations presented here indicate a metastasis suppressor role for TGF

  1. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  2. Effects of dark chocolate on azoxymethane-induced colonic aberrant crypt foci.

    Science.gov (United States)

    Hong, Mee Young; Nulton, Emily; Shelechi, Mahshid; Hernández, Lisa M; Nemoseck, Tricia

    2013-01-01

    Epidemiologic evidence supports that diets rich in polyphenols promote health and may delay the onset of colon cancer. Cocoa and chocolate products have some of the highest polyphenolic concentrations compared to other polyphenolic food sources. This study tested the hypothesis that a diet including dark chocolate can protect against colon cancer by inhibiting aberrant crypt foci (ACF) formation, downregulating gene expression of inflammatory mediators, and favorably altering cell kinetics. We also investigated whether bloomed dark chocolate retains the antioxidant capacity and protects against colon cancer. Forty-eight rats received either a diet containing control (no chocolate), regular dark chocolate, or bloomed dark chocolate and were injected subcutaneously with saline or azoxymethane. Relative to control, both regular and bloomed dark chocolate diets lowered the total number of ACF (P = 0.022). Chocolate diet-fed animals downregulated transcription levels of COX-2 (P = 0.035) and RelA (P = 0.045). Both chocolate diets lowered the proliferation index (P = 0.001). These results suggest that a diet including dark chocolate can reduce cell proliferation and some gene expression involving inflammation, which may explain the lower number of early preneoplastic lesions. These results provide new insight on polyphenol-rich chocolate foods and colon cancer prevention.

  3. Anti-proliferative effect of rhein, an anthraquinone isolated from Cassia species, on Caco-2 human adenocarcinoma cells

    Science.gov (United States)

    Aviello, Gabriella; Rowland, Ian; Gill, Christopher I; Acquaviva, Angela Maria; Capasso, Francesco; McCann, Mark; Capasso, Raffaele; Izzo, Angelo A; Borrelli, Francesca

    2010-01-01

    Abstract In recent years, the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In this study, we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Cytotoxicity studies were performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR) and trans-epithelial electrical resistance (TEER) assays whereas 3H-thymidine incorporation and Western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Rhein (0.1–10 μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as mitogen-activated protein (MAP) kinase activation; by contrast, at high concentration (10 μg/ml) rhein significantly increased cell proliferation and extracellular-signal-related kinase (ERK) phosphorylation. Moreover, rhein (0.1–10 μg/ml): (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function; (ii) did not induce DNA damage, rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and reactive oxygen species (ROS) levels induced by H2O2/Fe2+. Rhein was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism that seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism. PMID:19538468

  4. Metabolism of benzo(a)pyrene and identification of the major benzo(a)pyrene-DNA adducts in cultured human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Harris, Curtis C.; Trump, Benjamin F.

    1978-01-01

    The metabolism of benzo(a)pyrene in cultured human colon has been investigated. Nontumorous colonie tissue was collected at the time of either surgery or "immediate autopsy" from patients with or without colonic cancer. After 24 hr in culture the expiants were exposed to [3H]benzo(a)pyrene for an...

  5. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice

    Science.gov (United States)

    Artesi, Maria; Jalinot, Pierre

    2018-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization. PMID:29566098

  6. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice.

    Science.gov (United States)

    Pérès, Eléonore; Blin, Juliana; Ricci, Emiliano P; Artesi, Maria; Hahaut, Vincent; Van den Broeke, Anne; Corbin, Antoine; Gazzolo, Louis; Ratner, Lee; Jalinot, Pierre; Duc Dodon, Madeleine

    2018-03-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization.

  7. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  8. Dietary haem stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon

    NARCIS (Netherlands)

    IJssennagger, N.; Rijnierse, A.; Wit, de N.; Jonker-Termont, D.S.M.L.; Dekker, J.; Muller, M.R.; Meer, van der R.

    2012-01-01

    Objective Colon cancer is a leading cause of cancer deaths in Western countries and is associated with diets high in red meat. Haem, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents and damages the colon surface epithelium. Compensatory hyperproliferation leads to

  9. The effects of a "low-risk" diet on cell proliferation and enzymatic parameters of preneoplastic rat colon.

    Science.gov (United States)

    Goettler, D; Rao, A V; Bird, R P

    1987-01-01

    The relationship between various dietary constituents and colon cancer has been demonstrated by previous research. This study was conducted to investigate the combined effects of several dietary constituents on the preneoplastic stage of azoxymethane (AOM)-induced colon cancer in rats. A nutritionally adequate, "low-risk" (LR) diet was formulated through the modulation of dietary fat, fiber, protein, vitamins A and E, and selenium. Female F344 rats were given three weekly subcutaneous injections of AOM and were maintained on either the LR diet or a "high-risk" (HR) diet. After 12 weeks, the rats were killed and the following parameters were determined: pH of colon contents, fecal beta-glucuronidase activity, tissue ornithine decarboxylase (ODC) activity, and colonic labeling index. The pH of the colon contents and incremental labeling index were lower in the group given the LR diet and treated with AOM compared with the group given the HR diet and treated with AOM; however, no statistically significant dietary effects were observed for beta-glucuronidase and ODC activities. The results of this study indicated that the colons of rats fed the LR diet exhibited different proliferative characteristics than did the colons of rats fed the HR diet.

  10. Differential expression of carbohydrate antigen 19-9 in human colorectal cancer: A comparison with colon and rectal cancers

    Science.gov (United States)

    ZHANG, SHUAI; CHEN, YIJUN; ZHU, ZHANMENG; DING, YUNLONG; REN, SHUANGYI; ZUO, YUNFEI

    2013-01-01

    Colorectal cancer is one of the leading causes of cancer-related mortality, being the third most commonly diagnosed cancer among men and the second among women. Accumulating evidence regarding carbohydrate antigen (CA) demonstrated that tumor-associated antigens are clinically useful for the diagnosis, staging and monitoring of human gastrointestinal cancers, particularly colorectal cancer. There has been an extensive investigation for sensitive and specific markers of this disease. Currently, the gastrointestinal cancer-associated carbohydrate antigen 19-9 (CA19-9) is the most widely applied tumor marker in cancer diagnosis. Despite a similar etiology and cancer incidence rates, there are anatomical and clinical differences between colon and rectal cancer, as well as differences regarding tumor progression and adjuvant treatments. To investigate whether CA19-9 is differentially expressed between colon and rectal cancer, we conducted a differential analysis of serum CA19-9 levels among 227 cases of colorectal cancer, analyzing gender, age, Dukes’ stage and distant metastasis for human colon and rectal cancer as a single entity, separately and as matched pairs. We demonstrated that the serum CA19-9 levels in colorectal cancer were upregulated in advanced stages with distant metastasis. By contrast, the serum CA19-9 levels in colon cancer displayed a differential and upregulated behavior in advanced stages with distant metastasis. By analyzing as matched pairs, the upregulated serum CA19-9 levels in rectal cancer during the early stages without distant metastasis further supported our hypothesis that the expression of CA19-9 displays a site-specific differential behavior. The integrative analysis suggested a significant difference between human colon and rectal cancer, justifying individualized therapy for these two types of cancer. PMID:24649295

  11. Assessment of cytotoxicity of Portulaca oleracea Linn. against human colon adenocarcinoma and vero cell line

    Science.gov (United States)

    Mali, Prashant Y.

    2015-01-01

    Background: Portulaca oleracea Linn. (Portulacaceae) is commonly known as purslane in English. In traditional system it is used to cure diarrhea, dysentery, leprosy, ulcers, asthma, and piles, reduce small tumors and inflammations. Aim: To assess cytotoxic potential of chloroform extract of P. oleracea whole plant against human colon adenocarcinoma (HCT-15) and normal (Vero) cell line. Materials and Methods: Characterization of chloroform extract of P. oleracea by Fourier transform infrared (FTIR) spectroscopy was performed. Cytotoxicity (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was used for assessment of cytotoxic potential of chloroform extract of P. oleracea. The concentrations of 1000–0.05 μg/ml were used in the experiment. Doxorubicin was considered as standard reference drug. Results: FTIR spectrum showed the peak at 1019.52 and 1396.21 center. The 50% cell growth inhibition (IC50) of chloroform extract of P. oleracea and doxorubicin was 1132.02 μg/ml and 460.13 μg/ml against human colon adenocarcinoma and 767.60 μg/ml and 2392.71 μg/ml against Vero cell line, respectively. Conclusion: Chloroform extract of P. oleracea whole plant was less efficient or does not have cytotoxic activity against human colon adenocarcinoma cell line. It was not safe to normal Vero cell line. But, there is a need to isolate, identify, and confirm the phytoconstituents present in extract by sophisticated analytical techniques. PMID:27833374

  12. A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt

    KAUST Repository

    Mirams, Gary R.

    2012-11-01

    The surface epithelium lining the intestinal tract renews itself rapidly by a coordinated programme of cell proliferation, migration and differentiation events that is initiated in the crypts of Lieberkühn. It is generally believed that colorectal cancer arises due to mutations that disrupt the normal cellular dynamics of the crypts. Using a spatially structured cell-based model of a colonic crypt, we investigate the likelihood that the progeny of a mutated cell will dominate, or be sloughed out of, a crypt. Our approach is to perform multiple simulations, varying the spatial location of the initial mutation, and the proliferative and adhesive properties of the mutant cells, to obtain statistical distributions for the probability of their domination. Our simulations lead us to make a number of predictions. The process of monoclonal conversion always occurs, and does not require that the cell which initially gave rise to the population remains in the crypt. Mutations occurring more than one to two cells from the base of the crypt are unlikely to become the dominant clone. The probability of a mutant clone persisting in the crypt is sensitive to dysregulation of adhesion. By comparing simulation results with those from a simple one-dimensional stochastic model of population dynamics at the base of the crypt, we infer that this sensitivity is due to direct competition between wild-type and mutant cells at the base of the crypt. We also predict that increases in the extent of the spatial domain in which the mutant cells proliferate can give rise to counter-intuitive, non-linear changes to the probability of their fixation, due to effects that cannot be captured in simpler models. © 2012 Elsevier Ltd.

  13. Chemopreventive effects of in vitro digested and fermented bread in human colon cells.

    Science.gov (United States)

    Schlörmann, Wiebke; Hiller, Beate; Jahns, Franziska; Zöger, Romy; Hennemeier, Isabell; Wilhelm, Anne; Lindhauer, Meinolf G; Glei, Michael

    2012-10-01

    Bread as a staple food product represents an important source for dietary fibre consumption. Effects of wheat bread, wholemeal wheat bread and wholemeal rye bread on mechanisms which could have impact on chemoprevention were analysed in colon cells after in vitro fermentation. Effects of fermented bread samples on gene expression, glutathione S-transferase activity and glutathione content, differentiation, growth and apoptosis were investigated using the human colon adenoma cell line LT97. Additionally, apoptosis was studied in normal and tumour colon tissue by determination of caspase activities. The expression of 76 genes (biotransformation, differentiation, apoptosis) was significantly upregulated (1.5-fold) in LT97 cells. The fermented bread samples were able to significantly increase glutathione S-transferase activity (1.8-fold) and glutathione content (1.4-fold) of the cells. Alkaline phosphatase activity as a marker of differentiation was also significantly enhanced (1.7-fold). The fermented bread samples significantly inhibited LT97 cell growth and increased the level of apoptotic cells (1.8-fold). Only marginal effects on apoptosis in tumour compared to normal tissue were observed. This is the first study which presents chemopreventive effects of different breads after in vitro fermentation. In spite of differences in composition, the results were comparable between the bread types. Nevertheless, they indicate a potential involvement of this staple food product regarding the prevention of colon cancer.

  14. Pueraria mirifica inhibits 17β-estradiol-induced cell proliferation of human endometrial mesenchymal stem cells.

    Science.gov (United States)

    Lin, Ta-Chin; Wang, Kai-Hung; Kao, An-Pei; Chuang, Kuo-Hsiang; Kuo, Tsung-Cheng

    2017-12-01

    The notion that the human endometrium may contain a population of stem cells has recently been proposed. The mesenchymal stem cells (MSCs) in the endometrium are believed to be responsible for the remarkable regenerative ability of endometrial cells. Estrogens influence the physiological and pathological processes of several hormone-dependent tissues, such as the endometrium. Pueraria mirifica (PM) is a herbal plant that contains several phytoestrogens, including isoflavones, lignans, and coumestans, and is known to exert an estrogenic effect on animal models. The present study investigated the effects of PM on the proliferation of human endometrial MSCs (hEN-MSCs). The hEN-MSCs were isolated from human endometrial tissue. The surface markers of these hEN-MSCs were identified through reverse transcription-polymerase chain reaction analysis. The proliferation potential of hEN-MSCs was measured through a cell proliferation assay. Multilineage differentiation ability was confirmed through Oil red O and von Kossa staining. This study demonstrated that 17β-estradiol-responsive MSCs with Oct-4, CD90, and CD105 gene expression can be derived from the human endometrium and that PM exerts biological effects on hEN-MSCs, specifically, enhanced cell growth rate, through the estrogen receptor. Furthermore, PM at 1500 and 2000 μg/mL significantly increased cell proliferation compared with the vehicle control, and PM concentration at 1000 μg/mL significantly inhibited the enhanced cell growth rate induced by 17β-estradiol in hEN-MSCs. This study provides new insights into the possible biological effects of PM on the proliferation of hEN-MSCs. Copyright © 2017. Published by Elsevier B.V.

  15. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    Science.gov (United States)

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  16. The inflammatory mediator leukotriene D{sub 4} induces subcellular β-catenin translocation and migration of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Tavga [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden); Sand-Dejmek, Janna [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden); Section of Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö (Sweden); Bayer HealthCare, Pharmaceuticals Medical Affairs, Solna (Sweden); Sjölander, Anita, E-mail: anita.sjolander@med.lu.se [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden)

    2014-02-15

    The abnormal activation of the Wnt/β-catenin pathway frequently occurs in colorectal cancer. The nuclear translocation of β-catenin activates the transcription of target genes that promote cell proliferation, survival, and invasion. The pro-inflammatory mediator leukotriene D{sub 4} (LTD{sub 4}) exerts its effects through the CysLT{sub 1} receptor. We previously reported an upregulation of CysLT{sub 1}R in patients with colon cancer, suggesting the importance of leukotrienes in colon cancer. The aim of this study was to investigate the impact of LTD{sub 4} on Wnt/β-catenin signaling and its effects on proliferation and migration of colon cancer cells. LTD{sub 4} stimulation led to an increase in β-catenin expression, β-catenin nuclear translocation and the subsequent transcription of MYC and CCND1. Furthermore, LTD{sub 4} significantly reduced the expression of E-cadherin and β-catenin at the plasma membrane and increased the migration and proliferation of HCT116 colon cancer cells. The effects of LTD{sub 4} can be blocked by the inhibition of CysLT{sub 1}R. Furthermore, LTD{sub 4} induced the inhibition of glycogen synthase kinase 3 (GSK)-3β activity, indicating a crosstalk between the G-protein-coupled receptor CysLT{sub 1} and the Wnt/β-catenin pathway. In conclusion, LTD{sub 4}, which can be secreted from macrophages and leukocytes in the tumor microenvironment, induces β-catenin translocation and the activation of β-catenin target genes, resulting in the increased proliferation and migration of colon cancer cells. - Highlights: • Leukotriene D{sub 4} (LTD{sub 4}) lowers membrane β-catenin but increases nuclear β-catenin levels in colon cancer cells. • In agreement, LTD{sub 4} triggers inactivation of GSK-3β, activation of TCF/LEF and increased expression of Cyclin D1 and c-Myc. • LTD{sub 4} also caused a significant reduction in the expression of E-cadherin and an increased migration of colon cancer cells.

  17. Streptococcus sanguinis as an opportunistic bacteria in human oral cavity: Adherence, colonization, and invasion

    Directory of Open Access Journals (Sweden)

    Hening Tjaturina Pramesti

    2017-08-01

    Full Text Available Streptococcus sanguinis (formerly S. sanguis is a Gram-positive, facultative anaerobe,  nonmotile , normal  inhabitant of the human oral cavity, and  a member of  the viridans group of streptococci. Among the streptococcus, S. sanguinis is a  primary colonizer in the human tooth surface or it is recognize as a ‘pioneer’ by forming dental plaque. The aim of this paper is to review the role of Streptococcus sanguinis  in the adherence to and  invasion of  human tissues.  S. sanguinis  has been reported  that it is associated  with healthy  tooth  surfaces  but not with caries. S. sanguinis  tend to involved in an interspecies interactions with Streptococcus mutans, which is known as  competition/coexistence within dental biofilm.  In their colonization, this bacteria used enzyme sortase A (SrtA to cleave  LPXTG-containing proteins sequence and  anchored  the  cell wall, while virulence factors  in infective endocarditis  involved housekeeping functions such as cell wall synthesis, amino acid and nucleic acid synthesis, and the ability to survive under anaerobic conditions.

  18. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric; Ivorra, Carmen; Perez-Arago, Amparo; Guerri, Consuelo; Perez-Roger, Ignacio; Guasch, Rosa M.

    2007-01-01

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  19. Effects of recombinant human epidermal growth factor on the proliferation and radiation survival of human fibroblast cell lines in vitro

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Kang, Ki Mun; Na, Jae Boem; Chai, Gyu Young; Lee, Sang Wook

    2006-01-01

    To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. Number of fibroblast was significant more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing

  20. Isolation and characterisation of new putative probiotic bacteria from human colonic flora.

    Science.gov (United States)

    Raz, Irit; Gollop, Natan; Polak-Charcon, Sylvie; Schwartz, Betty

    2007-04-01

    The present study describes a novel bacterial isolate exhibiting high ability to synthesise and secrete butyrate. The novel isolated bacterium was obtained from human faeces and grown in selective liquid intestinal microflora medium containing rumen fluid under microaerobic conditions. Its probiotic properties were demonstrated by the ability of the isolate to survive high acidity and medium containing bile acids and the ability to adhere to colon cancer cells (Caco-2) in vitro. Phylogenetic identity to Enterococcus durans was established using specific primers for 16S rRNA (99% probability). PCR analyses with primers to the bacterial gene encoding butyrate kinase, present in the butyrogenic bacteria Clostridium, showed that this gene is present in E. durans. The in vivo immunoprotective and anti-inflammatory effects of E. durans were assessed in dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Administration of E. durans ameliorated histological, clinical and biochemical scores directly related to intestinal inflammation whereas the lactic acid bacterium Lactobacillus delbrueckii was ineffective in this regard. Colonic cDNA concentrations of IL-1beta and TNF-alpha were significantly down regulated in DSS-treated E. durans-fed mice but not in control or DSS-treated L. delbrueckii- fed mice. Fluorescent in situ hybridisation analyses of colonic tissue from mice fed E. durans, using a butyrate kinase probe, demonstrated that E. durans significantly adheres to the colonic tissue. The novel isolated bacterium described in the present paper, upon further characterisation, can be developed into a useful probiotic aimed at the treatment of patients suffering from ulcerative colitis.

  1. Complications of acromegaly: thyroid and colon.

    Science.gov (United States)

    Tirosh, Amit; Shimon, Ilan

    2017-02-01

    In acromegaly the long-term exposure to high growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels may result in specific complications in different human organs, including the thyroid gland and the colon. We will review here the evidence available regarding the characteristic thyroid and colon complications in acromegaly. This review summarizes the published data observing noncancerous structural abnormalities (thyroid nodules, colonic polyps) and thyroid and colon cancer in patients diagnosed with acromegaly. Thyroid micro-carcinomas are probably over-diagnosed among acromegalic patients. In regard to colon cancer, there is no sufficient data to suggest that colon cancer risk is higher in acromegaly compared to the general population.

  2. Curcumin synergizes with resveratrol to inhibit colon cancer.

    Science.gov (United States)

    Majumdar, Adhip P N; Banerjee, Sanjeev; Nautiyal, Jyoti; Patel, Bhaumik B; Patel, Vaishali; Du, Jianhua; Yu, Yingjie; Elliott, Althea A; Levi, Edi; Sarkar, Fazlul H

    2009-01-01

    Development and progression of many malignancies, including colorectal cancer, are associated with activation of multiple signaling pathways. Therefore, inhibition of these signaling pathways with noncytotoxic natural products represents a logical preventive and/or therapeutic approach for colon cancer. Curcumin and resveratrol, both of which inhibit the growth of transformed cells and colon carcinogenesis, were selected to examine whether combining them would be an effective preventive and/or therapeutic strategy for colon cancer. Indeed, the combination of curcumin and resveratrol was found to be more effective in inhibiting growth of p53-positive (wt) and p53-negative colon cancer HCT-116 cells in vitro and in vivo in SCID xenografts of colon cancer HCT-116 (wt) cells than either agent alone. Analysis by Calcusyn software showed synergism between curcumin and resveratrol. The inhibition of tumors in response to curcumin and/or resveratrol was associated with the reduction in proliferation and stimulation of apoptosis accompanied by attenuation of NF-kappaB activity. In vitro studies have further demonstrated that the combinatorial treatment caused a greater inhibition of constitutive activation of EGFR and its family members as well as IGF-1R. Our current data suggest that the combination of curcumin and resveratrol could be an effective preventive/therapeutic strategy for colon cancer.

  3. Oestrogen inhibits human colonic motility by a non-genomic cell membrane receptor-dependent mechanism.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    BACKGROUND: Classical effects of oestrogen involve activation of target genes after binding nuclear receptors. Oestrogenic effects too rapid for DNA transcription (non-genomic) are known to occur. The effect of oestrogen on colonic motility is unknown despite the prevalence of gastrointestinal symptoms in pregnant and premenopausal women. METHODS: Histologically normal colon was obtained from proximal resection margins of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended in organ baths under 1 g of tension. After equilibration, they were exposed to 17beta-oestradiol (n = 8) or bovine serum albumin (BSA)-conjugated 17beta-oestradiol (n = 8). Fulvestrant, an oestrogen receptor antagonist, was added to some baths (n = 8). Other strips were exposed to calphostin C or cycloheximide. Carbachol was added in increasing concentrations and contractile activity was recorded isometrically. RESULTS: Oestrogen inhibited colonic contractility (mean difference 19.7 per cent; n = 8, P < 0.001). In keeping with non-genomic, rapid-onset steroid action, the effect was apparent within minutes and reversible. It was observed with both 17beta-oestradiol and BSA-conjugated oestrogen, and was not altered by cycloheximide. Effects were inhibited by fulvestrant, suggesting receptor mediation. CONCLUSION: Oestrogen decreases contractility in human colonic smooth muscle by a non-genomic mechanism involving cell membrane coupling.

  4. Immunomodulating effects of heparin on human B cell proliferation

    International Nuclear Information System (INIS)

    Wasik, Maria; Stepien-Sopniewska, Barbara; Gorski, Andrzej

    1993-01-01

    Recent data indicate that heparin may act as an immunomodulator. In this paper we have analyzed the effect of this agent on human B cell proliferation ''in vitro'' induced by ''S. aureus'' Cowan. The action of heparin is complex, but there was a trend for inhibition of B cell responses obtained from defibrinated but not heparinized blood samples. This suggest that heparin interacts with platelet products (growth factors, cytokines) and the results of such interactions determine the final effect. (author). 6 refs, 4 figs

  5. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice.

    Science.gov (United States)

    Zeng, Huawei; Cheng, Wen-Hsing; Johnson, Luann K

    2013-05-01

    It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth. Copyright © 2013. Published by Elsevier Inc.

  6. NLRX1 Acts as an Epithelial-Intrinsic Tumor Suppressor through the Modulation of TNF-Mediated Proliferation

    Directory of Open Access Journals (Sweden)

    Ivan Tattoli

    2016-03-01

    Full Text Available The mitochondrial Nod-like receptor protein NLRX1 protects against colorectal tumorigenesis through mechanisms that remain unclear. Using mice with an intestinal epithelial cells (IEC-specific deletion of Nlrx1, we find that NLRX1 provides an IEC-intrinsic protection against colitis-associated carcinogenesis in the colon. These Nlrx1 mutant mice have increased expression of Tnf, Egf, and Tgfb1, three factors essential for wound healing, as well as increased epithelial proliferation during the epithelial regeneration phase following injury triggered by dextran sodium sulfate. In primary intestinal organoids lacking Nlrx1, stimulation with TNF resulted in exacerbated proliferation and expression of the intestinal stem cell markers Olfm4 and Myb. This hyper-proliferation response was associated with increased activation of Akt and NF-κB pathways in response to TNF stimulation. Together, these results identify NLRX1 as a suppressor of colonic tumorigenesis that acts by controlling epithelial proliferation in the intestine during the regeneration phase following mucosal injury.

  7. Autocrine regulation of human urothelial cell proliferation and migration during regenerative responses in vitro

    International Nuclear Information System (INIS)

    Varley, Claire; Hill, Gemma; Pellegrin, Stephanie; Shaw, Nicola J.; Selby, Peter J.; Trejdosiewicz, Ludwik K.; Southgate, Jennifer

    2005-01-01

    Regeneration of the urothelium is rapid and effective in order to maintain a barrier to urine following tissue injury. Whereas normal human urothelial (NHU) cells are mitotically quiescent and G0 arrested in situ, they rapidly enter the cell cycle upon seeding in primary culture and show reversible growth arrest at confluency. We have used this as a model to investigate the role of EGF receptor signaling in urothelial regeneration and wound-healing. Transcripts for HER-1, HER-2, and HER-3 were expressed by quiescent human urothelium in situ. Expression of HER-1 was upregulated in proliferating cultures, whereas HER-2 and HER-3 were more associated with a growth-arrested phenotype. NHU cells could be propagated in the absence of exogenous EGF, but autocrine signaling through HER-1 via the MAPK and PI3-kinase pathways was essential for proliferation and migration during urothelial wound repair. HB-EGF was expressed by urothelium in situ and HB-EGF, epiregulin, TGF-α, and amphiregulin were expressed by proliferating NHU cells. Urothelial wound repair in vitro was attenuated by neutralizing antibodies against HER-1 ligands, particularly amphiregulin. By contrast, the same ligands applied exogenously promoted migration, but inhibited proliferation, implying that HER-1 ligands provoke differential effects in NHU cells depending upon whether they are presented as soluble or juxtacrine ligands. We conclude that proliferation and migration during wound healing in NHU cells are mediated through an EGFR autocrine signalling loop and our results implicate amphiregulin as a key mediator

  8. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  9. MicroRNA-98 Suppress Warburg Effect by Targeting HK2 in Colon Cancer Cells.

    Science.gov (United States)

    Zhu, Weimin; Huang, Yijiao; Pan, Qi; Xiang, Pei; Xie, Nanlan; Yu, Hao

    2017-03-01

    Warburg effect is a hallmark of cancer cells. Accumulating evidence suggests that microRNAs (miRs) could regulate such metabolic reprograming. Aberrant expression of miR-98 has been observed in many types of cancers. However, its functions and significance in colon cancer remain largely elusive. To investigate miR-98 expression and the biological functions in colon cancer progression. miR-98 expression levels were determined by quantitative RT-PCR in 215 cases of colon cancer samples. miR-98 mimic or inhibitor was used to test the biological functions in SW480 and HCT116 cells, followed by cell proliferation assay, lactate production, glucose uptake, and cellular ATP levels assay and extracellular acidification rates measurement. Western blot and luciferase assay were used to identify the target of miR-98. miR-98 was significantly down-regulated in colon cancer tissues compared to adjacent colon tissues and acted as a suppressor for Warburg effect in cancer cells. miR-98 inhibited glycolysis by directly targeting hexokinase 2, or HK2, illustrating a novel pathway to mediate Warburg effect of cancer cells. In vitro experiments further indicated that HK2 was involved in miR-98-mediated suppression of glucose uptake, lactate production, and cell proliferation. In addition, we detected HK2 expression in colon cancer tissues and found that the expressions of miR-98 and HK2 were negatively correlated. miR-98 acts as tumor suppressor gene and inhibits Warburg effect in colon cancer cells, which provided potential targets for clinical treatments.

  10. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway.

    Science.gov (United States)

    Pan, Li; Zhang, Yuming; Zhao, Wanlu; Zhou, Xia; Wang, Chunxia; Deng, Fan

    2017-07-01

    Evidence indicates that the cardiac glycoside oleandrin exhibits cytotoxic activity against several different types of cancer. However, the specific mechanisms underlying oleandrin-induced anti-tumor effects remain largely unknown. The present study examined the anti-cancer effect and underlying mechanism of oleandrin on human colon cancer cells. The cytotoxicity and IC50 of five small molecule compounds (oleandrin, neriifolin, strophanthidin, gitoxigenin, and convallatoxin) in human colon cancer cell line SW480 cells and normal human colon cell line NCM460 cells were determined by cell counting and MTT assays, respectively. Apoptosis was determined by staining cells with annexin V-FITC and propidium iodide, followed by flow cytometry. Intracellular Ca 2+ was determined using Fluo-3 AM,glutathione (GSH) levels were measured using a GSH detection kit,and the activity of caspase-3, -9 was measured using a peptide substrate. BAX, pro-caspase-3, -9, cytochrome C and BCL-2 expression were determined by Western blotting. Oleandrin significantly decreased cell viabilities in SW480, HCT116 and RKO cells. The IC50 for SW480 cells was 0.02 µM, whereas for NCM460 cells 0.56 µM. More interestingly, the results of flow cytometry showed that oleandrin potently induced apoptosis in SW480 and RKO cells. Oleandrin downregulated protein expression of pro-caspase-3, -9, but enhanced caspase-3, -9 activities. These effects were accompanied by upregulation of protein expression of cytochrome C and BAX, and downregulation of BCL-2 protein expression in a concentration-dependent manner. Furthermore, oleandrin increased intracellular Ca 2+ concentration, but decreased GSH concentration in the cells. The present results suggest that oleandrin induces apoptosis in human colorectal cancer cells via the mitochondrial pathway. Our findings provide new insight into the mechanism of anti-cancer property of oleandrin.

  11. Does hyperbaric oxygen therapy reduce the effects of ischemia on colonic anastomosis in laparoscopic colon resection?

    Science.gov (United States)

    Emir, Seyfi; Gurdal, Sibel Ozkan; Sozen, Selim; Bali, Ilhan; Yesildag, Ebru; Celik, Atilla; Guzel, Savas; Sahin, Onder; Ay, Hakan; Topcu, Birol

    2016-01-01

    An increase in intra-abdominal pressure causes a decrease in the splanchnic blood flow and the intramucosal pH of the bowel, as well as increasing the risk of ischemia in the colon. The aim of the present study is to evaluate the effect of hyperbaric oxygen therapy (HBOT) on the ischemia caused by laparoscopy in colonic anastomosis in an experimental model of laparoscopic colonic surgery. We divided 30 male Wistar albino rats into three groups: Group A was the control (open colon anastomosis); Group B received LCA (laparoscopic colon anastomosis); while Group C received both LCA and HBOT. Each group contained ten animals. We placed Group C (LCA and HBOT) in an experimental hyperbaric chamber into which we administered pure oxygen at 2.1 atmospheres absolute 100% oxygen for 60 min for ten consecutive days. The anastomotic bursting pressure value was found to be higher in the open surgery group (226 ± 8.8) (Group A). The result for Group C (213 ± 27), which received HBOT, was better than that for Group B (197 ± 27). However, there was no statistically significant difference between Group B and Group C. Group A showed better healing than the other groups, while significant differences in the fibroblast proliferation scores were found between Groups A and B. In terms of tissue hydroxyproline levels, a significant difference was found between Groups A and B and between Groups A and C, but not between Groups B and C. HBOT increases the oxygen level in the injured tissue. Although HBOT might offer several advantages, it had only a limited effect on the healing of colonic anastomosis in rats with increased intra-abdominal pressure in our study. Anastomosis, Colon, Hyperbaric Oxygen Treatment, Oxidative Stress.

  12. Selling space colonization and immortality: A psychosocial, anthropological critique of the rush to colonize Mars

    Science.gov (United States)

    Slobodian, Rayna Elizabeth

    2015-08-01

    Extensive media coverage regarding the proposal to send four people to Mars by 2025 has exploded recently. Private enterprise has taken the reins to venture into space, which has typically only been reserved for government agencies. I argue, that with this new direction comes less regulation, raising questions regarding the ethics of sending people into outer space to colonize Mars within a decade. Marketers selling colonization to the public include perspectives such as biological drives, species survival, inclusiveness and utopian ideals. I challenge these narratives by suggesting that much of our desire to colonize space within the next decade is motivated by ego, money and romanticism. More specifically, I will examine the roles that fear and stories of immortality play within selling space and how those stories are marketed. I am passionate about space and hope that one day humanity will colonize other worlds, but the rush to settle is dangerous and careless. I assert that humanity should first gain more experience and knowledge before colonizing outer space, using this research to mitigate the risk to astronauts and proceed with careful consideration for the lives of potential astronauts.

  13. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line

    Energy Technology Data Exchange (ETDEWEB)

    Vendramini-Costa, Débora Barbosa, E-mail: vendramini.debora@gmail.com [Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP (Brazil); Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Campinas, SP (Brazil); Alcaide, Antonio [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain); Pelizzaro-Rocha, Karin Juliane [Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, SP (Brazil); Talero, Elena; Ávila-Román, Javier [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain); Garcia-Mauriño, Sofia [Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville (Spain); Pilli, Ronaldo Aloise [Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP (Brazil); Carvalho, João Ernesto de [Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Campinas, SP (Brazil); Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP (Brazil); Motilva, Virginia [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain)

    2016-06-01

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10 μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer. - Highlights: • Goniothalamin (GTN) inhibits the development of TNBS-induced colitis in rats. • Moreover, GTN prevents the development of spontaneous colitis in IL-10 deficient mice. • This activity relies on downregulation of TNF-α and upregulation of SIRT-1 expression

  14. An ultrastructural study of the effect of neomycin on the colon in the human subject and in the conventional and the germ-free mouse.

    Science.gov (United States)

    Aluwihare, A P

    1971-05-01

    An electron microscopic study of the colon of normal mice and human subjects and those treated with neomycin is reported; there is a close resemblance between the mouse and human colons. After rapid disinfection of the colon, there is epithelial cell damage due to a toxic effect of the drug, a reduction in epithelial turnover accompanying the change in flora, and an important reduction in the cellularity of the lamina propria mainly due to a reduction in inflammatory cells. The changes in the lamina propria probably represent changes in the antipathogenetic defences of the host.

  15. Histamine and chondroitin sulfate E proteoglycan released by cultured human colonic mucosa: indication for possible presence of E mast cells

    International Nuclear Information System (INIS)

    Eliakim, R.; Gilead, L.; Ligumsky, M; Okon, E.; Rachmilewitz, D.; Razin, E.

    1986-01-01

    An association between the release of histamine and chondroitin sulfate E proteoglycan (PG) was demonstrates in human colonic mucosa (HCM). Colonic biopsy samples incorporated [ 35 S]sulfate into PG, which was partially released into the culture medium during the incubation period. Ascending thin-layer chromatography of the released 35 S-labeled PG after its digestion by chondroitin ABC lyase (chondroitinase, EC 4.2.2.4) followed by autoradiography yielded three products that migrated in the position of monosulfated disaccharides of N-acetylgalactosamine 4-sulfate and N-acetylgalactosoamine 6-sulfate and of an oversulfated disaccharide possessing N-acetylgalatosamine 4,6-disulfate. Cultured colonic mucosa released 23.6 +/- 3.7ng of histamine per mg of wet tissue without any special trigger. Comparison by linear regression analysis of the release of histamine and chondroitin [ 35 S]sulfate E PG revealed a correlation coefficient (r) of 0.7. Histological examination of the colonic biopsies revealed the presence of many mast cells in various degrees of degranulation in the mucosa and submucosa. The above correlation, the observation that most of the mast cells showed various degrees of degranulation, and the lack of heparin synthesis as opposed to the synthesis and immunological release of chondroitin sulfate E strongly suggest that the E mast cell exists in the human colon

  16. Inhibition of human lung cancer cell proliferation and survival by wine

    Science.gov (United States)

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further

  17. Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes

    OpenAIRE

    Pongsavee Malinee

    2009-01-01

    Abstract Background Borax is used as a food additive. It becomes toxic when accumulated in the body. It causes vomiting, fatigue and renal failure. Methods The heparinized blood samples from 40 healthy men were studied for the impact of borax toxicity on immune cell proliferation (lymphocyte proliferation) and sister chromatid exchange in human chromosomes. The MTT assay and Sister Chromatid Exchange (SCE) technic were used in this experiment with the borax concentrations of 0.1, 0.15, 0.2, 0...

  18. Proteomic profiling of human colon cancer cells treated with the histone deacetylase inhibitor belinostat

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Petersen, Jørgen; Nielsen, Søren Jensby

    2010-01-01

    in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 muM belinostat were analysed by 2-D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed...

  19. The effect of Saccharomyces boulardii on human colon cells and inflammation in rats with trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Lee, Sang Kil; Kim, Youn Wha; Chi, Sung-Gil; Joo, Yeong-Shil; Kim, Hyo Jong

    2009-02-01

    Saccharomyces boulardii (S. boulardii) has beneficial effects in the treatment of intestinal inflammation; however, little is known about the mechanisms by which these effects occur. We investigated the effects of S. boulardii on the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and interleukin-8 (IL-8), using human HT-29 colonocytes and a rat model of trinitrobenzene sulfonic acid (TNBS)-induced colitis. The effect of S. boulardii on gene expression was assessed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), and Northern blot and Western blot assays. Pharmacological inhibitors for various signaling pathways were used to determine the signaling pathways implicated in the S. boulardii regulation of PPAR-gamma and IL-8. We found that S. boulardii up-regulated and down-regulated PPAR-gamma and IL-8 expression at the transcription level, both in vitro and in vivo (P Saccharomyces boulardii blocked tumor necrosis factor-alpha (TNF-alpha) regulation of PPAR-gamma and IL-8 through disruption of TNF-alpha-mediated nuclear factor kappa B (NF-kappaB) activation. Furthermore, S. boulardii suppressed colitis and expression of pro-inflammatory cytokine genes in vivo (P boulardii reduces colonic inflammation and regulates inflammatory gene expression.

  20. WNT5A inhibits human dental papilla cell proliferation and migration

    International Nuclear Information System (INIS)

    Peng, L.; Ye, L.; Dong, G.; Ren, L.B.; Wang, C.L.; Xu, P.; Zhou, X.D.

    2009-01-01

    WNT proteins are a large family of cysteine-rich secreted molecules that are linked to both canonical and non-canonical signal pathways, and have been implicated in oncogenesis and tissue development. Canonical WNT proteins have been proven to play critical roles in tooth development, while little is known about the role of non-canonical WNT proteins such as WNT5A. In this study, WNT5A was localized to human dental papilla tissue and human dental papilla cells (HDPCs) cultured in vitro, using immunochemistry and RT-PCR. Recombinant adenovirus encoding full-length Wnt5a cDNA was constructed to investigate the biological role of WNT5A on HDPCs. The BrdU incorporation assay, the MTT assay and flow cytometric analysis showed that over-expression of Wnt5a strongly inhibited the proliferation of HDPCs in vitro. Wound healing and transwell migration assays indicated that over-expression of WNT5A reduced migration of HDPCs. In conclusion, our results showed that WNT5A negatively regulates both proliferation and migration of HDPCs, suggesting its important role in odontogenesis via controlling the HDPCs.

  1. Diurnal variations in proliferation and crypt survival suggest a small target cell population in mouse colon

    International Nuclear Information System (INIS)

    Dobbin, J.; Hamilton, E.

    1986-01-01

    Male C57BLasup(t) mice of two ages, 3-5 months (young) and 14-15 months (old) were given 11 or 15Gy whole body irradiation at different times through the day. The mice were killed after 4.5 days and the number of surviving crypts per circumference of jejunum, ileum, transverse colon and descending colon were scored. These results show crypt survival in the small and large intestine of 15-month-old mice. In the ileum the maximum crypt survival was found at 04.00 h and the minimum at 08.00 h. In the jejunum and both regions of the colon the maximum crypt survival occurred at 16.00 h. The nadir of crypt survival after 15 Gy was at 04.00 h in the jejunum and at 20.00 and 24.00 h in the transverse and descending colon, respectively. In young mice, crypt survival levels were similar to those found in old animals except at 04.00 h. when survival in the jejunum and ileum fell to 0.0004+-0.0002 and 0.0007+-0.0004, respectively. The lowest crypt survival in the colon of young mice also occurred at 04.00 h and in all four tissues the greatest number of crypts survived irradiation at 24.00 h. (author)

  2. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    International Nuclear Information System (INIS)

    Ohshimo, Shinichiro; Yokoyama, Akihito; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-01-01

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases

  3. In vitro radiosensitization by oxaliplatin and 5-fluorouracil in a human colon cancer cell line

    International Nuclear Information System (INIS)

    Kjellstroem, Johan; Kjellen, Elisabeth; Johnsson, Anders

    2005-01-01

    The current study was designed to compare the radiosensitizing effects of oxaliplatin and 5-fluorouracil (5FU) in a human colon cancer cell line. A human colon cancer cell line (S1) was treated with various doses of oxaliplatin, 5FU, radiation, and combinations thereof. Various clinically used schedules were mimicked. 5FU was either incubated during 1 h ('bolus') or 24 h ('continuous infusion'). When combining oxaliplatin and 5FU, an isobologram analysis revealed synergistic effects, regardless of 5FU schedule. The IC 10 and IC 50 -doses for the drugs where then combined with radiotherapy. With equitoxic drug doses (IC 50 ), radiosensitization was observed in the following order: oxaliplatin>5FU 24 h>5FU 1 h exposure. The degree of potentiation corresponded to approximately 0.8 Gy, 0.7 Gy, and 0.2 Gy, respectively. In this experimental setting, oxaliplatin seemed to be a better radiosensitizer than 5FU, and longer incubation time with 5FU was better than short exposure

  4. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Kyung Sun

    2015-07-01

    Full Text Available Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA, significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  5. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Science.gov (United States)

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-01-01

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation. PMID:26204837

  6. 5-Geranyloxy-7-methoxycoumarin inhibits colon cancer (SW480) cells growth by inducing apoptosis.

    Science.gov (United States)

    Patil, Jaiprakash R; Jayaprakasha, Guddadarangavvanahally K; Kim, Jinhee; Murthy, Kotamballi N Chidambara; Chetti, Mahadev B; Nam, Sang-Yong; Patil, Bhimanagouda S

    2013-03-01

    For the first time, three coumarins were isolated from the hexane extract of limes (Citrus aurantifolia) and purified by flash chromatography. The structures were identified by NMR (1D, 2D) and mass spectral analyses as 5-geranyloxy-7-methoxycoumarin, limettin, and isopimpinellin. These compounds inhibited human colon cancer (SW-480) cell proliferation, with 5-geranyloxy-7-methoxycoumarin showing the highest inhibition activity (67 %) at 25 µM. Suppression of SW480 cell proliferation by 5-geranyloxy-7-methoxycoumarin was associated with induction of apoptosis, as evidenced by annexin V staining and DNA fragmentation. In addition, 5-geranyloxy-7-methoxycoumarin arrested cells at the G0/G1 phase, and induction of apoptosis was demonstrated through the activation of tumour suppressor gene p53, caspase8/3, regulation of Bcl2, and inhibition of p38 MAPK phosphorylation. These findings suggest that 5-geranyloxy-7-methoxycoumarin has potential as a cancer preventive agent. Georg Thieme Verlag KG Stuttgart · New York.

  7. Ecology of root colonizing Massilia (Oxalobacteraceae.

    Directory of Open Access Journals (Sweden)

    Maya Ofek

    Full Text Available BACKGROUND: Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae, a major group of rhizosphere and root colonizing bacteria of many plant species. METHODOLOGY/PRINCIPAL FINDINGS: The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter and potential competitors. Massilia absolute abundance and relative abundance (dominance were positively related, and peaked (up to 85% at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. CONCLUSIONS: In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  8. Ecology of root colonizing Massilia (Oxalobacteraceae).

    Science.gov (United States)

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  9. Progranulin Inhibits Human T Lymphocyte Proliferation by Inducing the Formation of Regulatory T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Kyu Hwan Kwack

    2017-01-01

    Full Text Available We have examined the effect of progranulin (PGRN on human T cell proliferation and its underlying mechanism. We show that PGRN inhibits the PHA-induced multiplication of T lymphocytes. It increases the number of iTregs when T lymphocytes are activated by PHA but does not do so in the absence of PHA. PGRN-mediated inhibition of T lymphocyte proliferation, as well as the induction of iTregs, was completely reversed by a TGF-β inhibitor or a Treg inhibitor. PGRN induced TGF-β secretion in the presence of PHA whereas it did not in the absence of PHA. Our findings indicate that PGRN suppresses T lymphocyte proliferation by enhancing the formation of iTregs from activated T lymphocytes in response to TGF-β.

  10. Expression of a novel non-coding mitochondrial RNA in human proliferating cells.

    Science.gov (United States)

    Villegas, Jaime; Burzio, Veronica; Villota, Claudio; Landerer, Eduardo; Martinez, Ronny; Santander, Marcela; Martinez, Rodrigo; Pinto, Rodrigo; Vera, María I; Boccardo, Enrique; Villa, Luisa L; Burzio, Luis O

    2007-01-01

    Previously, we reported the presence in mouse cells of a mitochondrial RNA which contains an inverted repeat (IR) of 121 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). Here, we report the structure of an equivalent transcript of 2374 nt which is over-expressed in human proliferating cells but not in resting cells. The transcript contains a hairpin structure comprising an IR of 815 nt linked to the 5' end of the 16S mtrRNA and forming a long double-stranded structure or stem and a loop of 40 nt. The stem is resistant to RNase A and can be detected and isolated after digestion with the enzyme. This novel transcript is a non-coding RNA (ncRNA) and several evidences suggest that the transcript is synthesized in mitochondria. The expression of this transcript can be induced in resting lymphocytes stimulated with phytohaemagglutinin (PHA). Moreover, aphidicolin treatment of DU145 cells reversibly blocks proliferation and expression of the transcript. If the drug is removed, the cells re-assume proliferation and over-express the ncmtRNA. These results suggest that the expression of the ncmtRNA correlates with the replicative state of the cell and it may play a role in cell proliferation.

  11. Inhibition of glycolysis and growth of colon cancer cells by 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO in combination with butyrate, 2-deoxy glucose, 3-bromopyruvate or biguanides

    Directory of Open Access Journals (Sweden)

    Lea MA

    2015-09-01

    Full Text Available Introduction: Glycolysis shows a positive correlation with growth of human colon cancer cells. PFKFB3 is an important enzyme regulating glycolysis in many tumor cells and presents a target for cancer chemotherapy. We studied the action of an inhibitor of PFKFB3, 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO, as a single agent and in combination with other molecules that affect glycolysis. Materials and methods: Effects on growth were studied in four human colon cancer cell lines. Glucose metabolism was monitored by uptake from the incubation medium and lactic acid production was judged by acidification of the medium. Induction of alkaline phosphatase served as a marker of differentiation. Results: Growth of colon cancer cells was inhibited by 3PO and butyrate but only butyrate induced activation of alkaline phosphatase. Although metformin and phenformin can increase glucose metabolism, they inhibit colon cancer cell growth and can exert additive inhibitory effects in combination with 3PO. Additive growth inhibitory effects with 3PO were also observed with two compounds that inhibit glycolysis: 2-deoxyglucose and 3-bromopyruvate. Conclusion: 3PO was an inhibitor of growth of colon cancer cells and may be a useful agent in combination with other drugs that inhibit colon cancer cell proliferation.

  12. Ideology of white racial supremacy: colonization and de-colonization processes

    Directory of Open Access Journals (Sweden)

    Simone Gibran Nogueira

    2013-01-01

    Full Text Available This article is a literature review on how the ideology of white racial supremacy dehumanizes and colonizes the minds of Whites and Blacks in Brazil. For this aim I use critical references about whiteness to highlight dehumanization processes in Whites, and I make use of critical references of Black and African studies to examine specific dehumanization processes of the Black population. Furthermore, the work seeks to reflect on possibilities of mental humanization and de-colonization in both groups considering current policies of Affirmative Action in Education in Brazil.

  13. Expression and new exon mutations of the human Beta defensins and their association on colon cancer development.

    Directory of Open Access Journals (Sweden)

    Abdelhabib Semlali

    Full Text Available The development of cancer involves genetic predisposition and a variety of environmental exposures. Genome-wide linkage analyses provide evidence for the significant linkage of many diseases to susceptibility loci on chromosome 8p23, the location of the human defensin gene cluster. Human β-defensins (hBDs are important molecules of innate immunity. This study was designed to analyze the expression and genetic variations in hBDs (hBD-1, hBD-2, hBD-3 and hBD-4 and their putative association with colon cancer. hBD gene expression and relative protein expression were evaluated by Real-Time polymerase chain reaction (qPCR and immunohistochemistry, respectively, from 40 normal patients and 40 age-matched patients with colon cancer in Saudi Arabia. In addition, hBD polymorphisms were genotyped by exon sequencing and by promoter methylation. hBD-1, hBD-2, hBD-3 and hBD-4 basal messenger RNA expression was significantly lower in tumor tissues compared with normal tissues. Several insertion mutations were detected in different exons of the analyzed hBDs. However, no methylation in any hBDs promoters was detected because of the limited number of CpG islands in these regions. We demonstrated for the first time a link between hBD expression and colon cancer. This suggests that there is a significant link between innate immunity deregulation through disruption of cationic peptides (hBDs and the potential development of colon cancer.

  14. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Omar García-Sánchez

    2014-01-01

    Full Text Available Background/Aims: Chronic kidney disease (CKD is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods: Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ, and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results: We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2 cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion: Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  15. Overexpression of HOXA4 and HOXA9 genes promotes self-renewal and contributes to colon cancer stem cell overpopulation.

    Science.gov (United States)

    Bhatlekar, Seema; Viswanathan, Vignesh; Fields, Jeremy Z; Boman, Bruce M

    2018-02-01

    Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC. © 2017 Wiley Periodicals, Inc.

  16. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Pedersen, G

    2003-01-01

    Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells....

  17. Plaque assay for human coronavirus NL63 using human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Drosten Christian

    2008-11-01

    Full Text Available Abstract Background Coronaviruses cause a broad range of diseases in animals and humans. Human coronavirus (hCoV NL63 is associated with up to 10% of common colds. Viral plaque assays enable the characterization of virus infectivity and allow for purifying virus stock solutions. They are essential for drug screening. Hitherto used cell cultures for hCoV-NL63 show low levels of virus replication and weak and diffuse cytopathogenic effects. It has not yet been possible to establish practicable plaque assays for this important human pathogen. Results 12 different cell cultures were tested for susceptibility to hCoV-NL63 infection. Human colon carcinoma cells (CaCo-2 replicated virus more than 100 fold more efficiently than commonly used African green monkey kidney cells (LLC-MK2. CaCo-2 cells showed cytopathogenic effects 4 days post infection. Avicel, agarose and carboxymethyl-cellulose overlays proved suitable for plaque assays. Best results were achieved with Avicel, which produced large and clear plaques from the 4th day of infection. The utility of plaque assays with agrose overlay was demonstrated for purifying virus, thereby increasing viral infectivity by 1 log 10 PFU/mL. Conclusion CaCo-2 cells support hCoV-NL63 better than LLC-MK2 cells and enable cytopathogenic plaque assays. Avicel overlay is favourable for plaque quantification, and agarose overlay is preferred for plaque purification. HCoV-NL63 virus stock of increased infectivity will be beneficial in antiviral screening, animal modelling of disease, and other experimental tasks.

  18. The effect of stem cell from human exfoliated deciduous teeth on T lymphocyte proliferation.

    Science.gov (United States)

    Alipour, Razieh; Adib, Minoo; Hashemi-Beni, Batool; Sadeghi, Farzaneh

    2014-01-01

    Mesenchymal stem cells (MSC), a specific type of adult tissue stem cell; have the immunosuppressive effects that make them valuable targets for regenerative medicine and treatment of many human illnesses. Hence, MSC have been the subject of numerous studies. The classical source of MSC is adult bone marrow (BM). Due to many shortcomings of harvesting MSC from BM, finding the alternative sources for MSC is an urgent. Stem cells from human exfoliated deciduous teeth (SHED) are relative new MSC populations that fulfill these criteria but their potential immunosuppressive effect has not been studied enough yet. Thus, in this work the effect of SHED on the proliferation of in vitro activated T lymphocytes were explored. In this study, both mitogen and alloantigen activated T cells were cultured in the presence of different numbers of SHED. In some co-cultures, activated T cells were in direct contact to MSCs and in other co-cultures; they were separated from SHED by a permeable membrane. In all co-cultures, the proliferation of T cells was measured by ELISA Bromodeoxyuridine proliferation assay. In general, our results showed that SHED significantly suppress the proliferation of activated T cells in a dose-dependent manner. Moreover, the suppression was slightly stronger when MSCs were in physical contact to activated T cells. This study showed that SHED likewise other MSC populations can suppress the activation of T lymphocytes, which can be used instead of BM derived MSCs in many investigational and clinical applications.

  19. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis.

    Science.gov (United States)

    Bhatlekar, Seema; Addya, Sankar; Salunek, Moreh; Orr, Christopher R; Surrey, Saul; McKenzie, Steven; Fields, Jeremy Z; Boman, Bruce M

    2014-01-15

    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis.

  20. [Effect of nonsteroidal antiinflammatory drugs on colonic lipoxygenase and cyclooxygenase activities from patients with colonic neoplasia].

    Science.gov (United States)

    Di Girolamo, G; Franchi, A; De Los Santos, A R; Martí, M L; Farina, M; Fernández de Gimeno, M A

    2001-01-01

    Lysine clonixinate (LC) is a nonsteroidal anti-inflammatory drug (NSAID) with good gastrointestinal tolerance. Treatment with LC at levels equivalent to those found in plasma following therapeutic doses resulted in significant inhibition of both cyclooxygenase 2 (COX-2) and production of 5 hydroxy-eicosatetraeonic acid (5-HETE) and slightly affected levels of cyclooxygenase 1 (COX-1) in in vitro studies carried out on human tissues. This study deals with the in vivo effect of the drug on human colon segments. Experiment 1: Five patients about to undergo hemicholectomy due to colon neoplasia were treated preoperatively with a continuous infusion of LC, to achieve a steady-state concentration between 4 and 6 mg/ml. Human colon segments from the five patients and from another five control patients receiving no treatment with [14C]-arachidonic acid were incubated. Human colon segments treated with LC showed significant inhibition of PGE2, the only prostaglandin (PG) synthesised by the tissue, as well as of 5-HETE. Experiment 2: Fifteen patients received an i.v. bolus of LC 100 mg (n1 = 5); LC 200 mg (n2 = 5) or indomethacin (INDO) 50 mg (n3 = 5). Both doses of LC showed greater inhibition of PGE2 synthesis than the INDO bolus. Both NSAIDs studied proved to have different effects on the production of 5-HETE; while treatment with LC elicited significant inhibition, levels with INDO remained unchanged. Western blotting analysis showed expression of both COX isoforms in colon segments, COX-2 levels being 20% higher. Both types of in vivo studies conducted continuous infusion and i.v. bolus, revealed that LC exerted significant inhibition of basal synthesis of PGE2 and 5-HETE.

  1. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    International Nuclear Information System (INIS)

    Xie, Xin; Dai, Hui; Zhuang, Binyu; Chai, Li; Xie, Yanguang; Li, Yuzhen

    2016-01-01

    The effects and the underlying mechanisms of hydrogen sulfide (H 2 S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H 2 S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H 2 S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H 2 S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H 2 S promotes keratinocyte proliferation and differentiation. • The effects of H 2 S on proliferation and differentiation is modulated by autophagy. • Exogenous H 2 S has no effect on keratinocyte apoptosis.

  2. Lactate has the potential to promote hydrogen sulphide formation in the human colon.

    Science.gov (United States)

    Marquet, Perrine; Duncan, Sylvia H; Chassard, Christophe; Bernalier-Donadille, Annick; Flint, Harry J

    2009-10-01

    High concentrations of sulphide are toxic for the gut epithelium and may contribute to bowel disease. Lactate is a favoured cosubstrate for the sulphate-reducing colonic bacterium Desulfovibrio piger, as shown here by the stimulation of sulphide formation by D. piger DSM749 by lactate in the presence of sulphate. Sulphide formation by D. piger was also stimulated in cocultures with the lactate-producing bacterium Bifidobacterium adolescentis L2-32. Other lactate-utilizing bacteria such as the butyrate-producing species Eubacterium hallii and Anaerostipes caccae are, however, expected to be in competition with the sulphate-reducing bacteria (SRB) for the lactate formed in the human colon. Strains of E. hallii and A. caccae produced 65% and 96% less butyrate from lactate, respectively, in a coculture with D. piger DSM749 than in a pure culture. In triculture experiments involving B. adolescentis L2-32, up to 50% inhibition of butyrate formation by E. hallii and A. caccae was observed in the presence of D. piger DSM749. On the other hand, sulphide formation by D. piger was unaffected by E. hallii or A. caccae in these cocultures and tricultures. These experiments strongly suggest that lactate can stimulate sulphide formation by SRB present in the colon, with possible consequences for conditions such as colitis.

  3. Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-01-01

    A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CM treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration

  4. Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Aichi (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Aichi (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-02-01

    A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CM treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration.

  5. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells.

    Science.gov (United States)

    Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A; de Boer, Jan; Watt, Fiona M

    2016-01-13

    It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation.

  6. Antiproliferative Effects of Tetrabuthylammonium Chloride Ionic Liquid on HCT 8 Human Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Gabi Dumitrescu

    2017-05-01

    Full Text Available The ionic liquids have attracted a great of attention in the scientific community due to their potential pharmaceutical such as antimicrobial. In this paper, the main objective was the assessment of the cytotoxic effect of tetrabutylammonium chloride against HCT 8 human colon carcinoma cell line. The cells were cultured in 75 cm2 culture flasks  using RPMI medium supplemented with 10% inactivated fetal bovine serum (FBS, penicillin (100 IU/mL and streptomycin (100 μg/mL and maintained at 37 °C and 5% CO2. Before achieving viability test, the cells were harvested using trypsin solution (0.25%. Then, the cells were seeded in 24 – well plates at a density of 5 x 105 cells/mL in 100 µL medium/well in order to reach confluence. After 24 h, the medium was replaced with fresh medium containing different concentrations of ionic liquid, respectively, 0.085, 0.17, 0.34, 0.68 and 1.36 mg /mL. Control group contained cells without treatment. Cell proliferation kinetics have been studied at 24 and 48 h after IL treatment, following trypsinization and counting total cells per plate by using a Trypan blue dye and a hemocytometer. Data obtained from the growth kinetics assay shows that the tetrabutylammonium chloride (TBAC had an inhibitory effect on the growth of cells in a concentration dependent manner. The maximum inhibitory effect on HCT 8 cells it was obtained at 1.36 mg TBAC/mL.

  7. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  10. Inhibition of in vitro growth and arrest in the G0/G1 phase of HCT8 line human colon cancer cells by kaempferide triglycoside from Dianthus caryophyllus.

    Science.gov (United States)

    Martineti, Valentina; Tognarini, Isabella; Azzari, Chiara; Carbonell Sala, Silvia; Clematis, Francesca; Dolci, Marcello; Lanzotti, Virginia; Tonelli, Francesco; Brandi, Maria Luisa; Curir, Paolo

    2010-09-01

    The effects of phytoestrogens have been studied in the hypothalamic-pituitary-gonadal axis and in various non-gonadal targets. Epidemiologic and experimental evidence indicates a protective effect of phytoestrogens also in colorectal cancer. The mechanism through which estrogenic molecules control colorectal cancer tumorigenesis could possibly involve estrogen receptor beta, the predominantly expressed estrogen receptor subtype in colon mucosa.To validate this hypothesis, we therefore used an engineered human colon cancer cell line induced to overexpress estrogen receptor beta, beside its native cell line, expressing very low levels of ERbeta and not expressing ERalpha; as a phytoestrogenic molecule, we used kaempferide triglycoside, a glycosylated flavonol from a Dianthus caryophyllus cultivar. The inhibitory properties of this molecule toward vegetal cell growth have been previously demonstrated: however, no data on its activity on animal cell or information about the mechanism of this activity are available. Kaempferide triglycoside proved to inhibit the proliferation of native and estrogen receptor beta overexpressing colon cancer cells through a mechanism not mediated by ligand binding dependent estrogen receptor activation. It affected HCT8 cell cycle progression by increasing the G(0)/G(1) cell fraction and in estrogen receptor beta overexpressing cells increased two antioxidant enzymes. Interestingly, the biological effects of this kaempferide triglycoside were strengthened by the presence of high levels of estrogen receptor beta.Pleiotropic molecular effects of phytoestrogens may explain their protective activity against colorectal cancer and may represent an interesting area for future investigation with potential clinical applications. Copyright 2010 John Wiley & Sons, Ltd.

  11. Antiproliferative Activity of Egg Yolk Peptides in Human Colon Cancer Cells.

    Science.gov (United States)

    Yousr, Marwa N; Aloqbi, Akram A; Omar, Ulfat M; Howell, Nazlin K

    2017-01-01

    Egg yolk peptides were successfully prepared from egg yolk protein by-products after lecithin extraction. Defatted egg yolk protein was hydrolyzed with pepsin and pancreatin and purified by gel filtration to produce egg yolk gel filtration fraction (EYGF-33) with antiproliferative activity. The highlight of this study was that the peptide EYGF-33 (1.0 mg/ml) significantly inhibits cell viability of colon cancer cells (Caco-2) with no inhibitory effects on the viability of human colon epithelial normal cells (HCEC) after 48 h. Reduced cell viability can be explained by cell cycle arrest in the S-phase in which DNA replication normally takes place. EYGF-33 significantly enhanced the production of superoxide anions in the mitochondria of Caco-2 cells; this could activate a mitochondrial apoptotic pathway leading to typical Poly Adenosine diphosphate-ribose polymerase (PARP) cleavage as observed in the Western blot result. The induction of apoptotic cell death by EYGF-33 was supported by the externalization of phosphatidylserine (PS). However, further elucidation of the mechanism of EYGF-33-mediated apoptosis would provide further support for its use as a potential therapeutic and chemopreventive agent.

  12. Absorption of wheat starch in patients resected for left-sided colonic cancer

    DEFF Research Database (Denmark)

    Nordgaard, I; Rumessen, J J; Nielsen, S A

    1992-01-01

    Bacterial fermentation of carbohydrate in the colon, producing short-chain fatty acids (SCFA)--and especially butyrate--has been shown possibly to impede cell proliferation and regulate cell differentiation of colonocytes. In patients with diverticular disease or benign polyps in the colon...... a hyperabsorption of potato starch in the small intestine has been found. We have investigated the absorption of wheat starch in 15 patients radically resected for cancer in the descending or sigmoid colon, and the results were compared with those of 15 healthy controls. The starch malabsorption was quantified...... also similar in patients and controls. The results do not support the theory that hyperabsorption of starch is characteristic of patients with malignant disease in the large intestine....

  13. In Vitro Degradation and Fermentation of Three Dietary Fiber Sources by Human Colonic Bacteria

    Science.gov (United States)

    Bliss, Donna Z.; Weimer, Paul J.; Jung, Hans-Joachim G.; Savik, Kay

    2013-01-01

    Although clinical benefits of dietary fiber supplementation seem to depend partially on the extent of fiber degradation and fermentation by colonic bacteria, little is known about the effect of supplemental fiber type on bacterial metabolism. In an experiment using a non-adapted human bacterial population from three normal subjects, extent of in vitro fermentation was greater for gum arabic (GA) than for psyllium (PSY), which was greater than that for carboxymethylcellulose (CMC). In a separate experiment, in vitro incubation with feces from 52 subjects with fecal incontinence, before and after random assignment to and consumption of one of three fiber (GA, PSY, or CMC) supplements or a placebo for 20-21d, indicated that prior consumption of a specific fiber source did not increase its degradation by fecal bacteria. Results suggest that the colonic microbial community enriched on a particular fiber substrate can rapidly adapt to the presentation of a new fiber substrate. Clinical implications of the findings are that intake of a fiber source by humans is not expected to result in bacterial adaptation that would require continually larger and eventually intolerable amounts of fiber to achieve therapeutic benefits. PMID:23556460

  14. Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Liu, Maoxi; Fu, Zhongxue; Wu, Xingye; Du, Kunli; Zhang, Shouru; Zeng, Li

    2016-05-01

    Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.

  15. Livestock-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) as Causes of Human Infection and Colonization in Germany

    NARCIS (Netherlands)

    Koeck, Robin; Schaumburg, Frieder; Mellmann, Alexander; Koeksal, Mahir; Jurke, Annette; Becker, Karsten; Friedrich, Alexander W.

    2013-01-01

    Pigs, cattle and poultry are colonized with MRSA and the zoonotic transmission of such MRSA to humans via direct animal contact, environmental contaminations or meat are a matter of concern. Livestock-associated (LA) MRSA are mostly belonging to clonal complex (CC) 398 as defined by multilocus

  16. Recombinant human interleukin 2 directly provides signals for the proliferation and functional maturation of murine B lymphocytes

    OpenAIRE

    Moll, Heidrun; Emmrich, F.; Simon, Markus M.

    2009-01-01

    In this study the effect of recombinant human interleukin 2 (rec.hIL-2) on the proliferation and maturation of B lymphocytes was investigated. It was found that the presence of rec.hIL 2 results in proliferation of mitogen (LPS)-activated B cell blasts. In addition, it is shown that highly enriched murine B cells can be induced by rec.hIL-2 to proliferate and to develop into antibody-secreting cells (PFC) in the presence of antigen (SRBC). When tested for its effect on B cell preparations enr...

  17. Promotion of minTBP-1-PRGDN on the attachment, proliferation and collagen I synthesis of human keratocyte on titanium

    Directory of Open Access Journals (Sweden)

    Xin-Yu Li

    2014-02-01

    Full Text Available AIM:To investigate the influence of minTBP-1-PRGDN on the attachment, proliferation and collagen I synthesis of human keratocyte on titanium (Ti surface.METHODS:The chimeric peptide RKLPDAPRGDN (minTBP-1-PRGDN was synthesized by connecting RKLPDA (minTBP-1 to the N-terminal of PRGDN , the influence of minTBP-1-PRGDN on the attachment, proliferation and collagen I synthesis of human keratocyte on Ti surface were tested using PRGDN and minTBP-1as controls. The keratocytes attached to the surface of Ti were either stained with FITC-labeled phalloidin and viewed with fluorescence microscope or quantified with alamar Blue method. The proliferation of keratocytes on Ti were quantified with 3-(4,5-dim- ethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide up-taking methods. The secretion of type I collagen were determined using an ELISA kit.RESULTS:The results showed that minTBP-1-PRGDN at a concentration of 100ng/mL was the most potent peptide to enhance the attachment of human keratocytes to the surface of Ti (1.40±0.03 folds, P=0.003, to promote the proliferation (1.26±0.05 folds, P=0.014 and the synthesis of type I collagen (1.530±0.128, P=0.008. MinTBP-1 at the same concentration could only promote the attachment (1.13±0.04 folds, P=0.020 and proliferation(1.15±0.06 folds, P=0.021, while PRGDN had no significant influence (P>0.05.CONCLUSION:Our data shows that the novel chimeric peptide minTBP-1-PRGDN could promote the attachment, proliferation and type I collagen synthesis of human keratocytes on the surface of Ti.

  18. Inhibition of human arterial smooth muscle (HASM) cell proliferation and collagen synthesis by protamine

    International Nuclear Information System (INIS)

    Drucker, D.E.; Graham, M.F.; Diegelmann, R.F.; Greenfield, L.J.

    1986-01-01

    Atherosclerotic plaques result from vascular smooth muscle cell proliferation and collagen deposition. The authors have been studying factors which modulate HASM cell proliferation and collagen synthesis. HASM cells were isolated from the media of normal human thoracic and infrarenal aortas and grown in vitro. Cell numbers were determined by direct counting and collagen synthesis was measured by incorporation of 3 H-proline into collagenase-digestible protein. In this study, protamine (200 μg/ml) was tested and found to cause a 55% reduction of HASM cell proliferation which was reversible when the cells were returned to control medium or when heparin (100 μg/ml) was added with protamine. Protamine caused a constant 33% decrease in non-collagen protein (NCP) synthesis per cell. In contrast, collagen synthesis was inhibited in dose dependent fashion (88% reduction at 200 μg/ml). Protamine blocks HASM cell proliferation and specifically inhibits collagen production. The exact mechanism of this inhibition is unclear but may be related to a transcriptional event since protamine has a high affinity for DNA

  19. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xin [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Dai, Hui [Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province (China); Zhuang, Binyu [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China); Chai, Li; Xie, Yanguang [Institute of Dermatology of Heilongjiang Province, Harbin, 150001, Heilongjiang Province (China); Li, Yuzhen, E-mail: liyuzhen@medmail.com.cn [Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province (China)

    2016-04-08

    The effects and the underlying mechanisms of hydrogen sulfide (H{sub 2}S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H{sub 2}S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H{sub 2}S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagic vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H{sub 2}S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H{sub 2}S promotes keratinocyte proliferation and differentiation. • The effects of H{sub 2}S on proliferation and differentiation is modulated by autophagy. • Exogenous H{sub 2}S has no effect on keratinocyte apoptosis.

  20. Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model.

    Science.gov (United States)

    Metildi, Cristina A; Kaushal, Sharmeela; Snyder, Cynthia S; Hoffman, Robert M; Bouvet, Michael

    2013-01-01

    We inquired if fluorescence-guided surgery (FGS) could improve surgical outcomes in fluorescent orthotopic nude mouse models of human colon cancer. We established fluorescent orthotopic mouse models of human colon cancer expressing a fluorescent protein. Tumors were resected under bright light surgery (BLS) or FGS. Pre- and post-operative images with the OV-100 Small Animal Imaging System (Olympus Corp, Tokyo Japan) were obtained to assess the extent of surgical resection. All mice with primary tumor that had undergone FGS had complete resection compared with 58% of mice in the BLS group (P = 0.001). FGS resulted in decreased recurrence compared with BLS (33% versus 62%, P = 0.049) and lengthened disease-free median survival from 9 to >36 wk. The median overall survival increased from 16 wk in the BLS group to 31 weeks in the FGS group. FGS resulted in a cure in 67% of mice (alive without evidence of tumor at >6 mo after surgery) compared with only 37% of mice that underwent BLS (P = 0.049). Surgical outcomes in orthotopic nude mouse models of human colon cancer were significantly improved with FGS. The present study can be translated to the clinic by various effective methods of fluorescently labeling tumors. Copyright © 2013 Elsevier Inc. All rights reserved.